Sample records for atmospheric sampling program

  1. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  2. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0006

    NASA Technical Reports Server (NTRS)

    Gauntner, D. J.; Holdeman, J. D.; Humenik, F. M.

    1977-01-01

    The NASA Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board several commercial B-747 aircraft in routine airline service. Atmospheric ozone, and related flight and meteorological data were obtained during 245 flights of a Qantas Airways of Australia B-747 and two Pan American World Airways B-747s from July 1976 through September 1976. In addition, whole air samples, obtained during three flights, were analyzed for trichlorofluoromethane, and filter samples, obtained during four flights, were analyzed for sulfates, nitrates, fluorides, and chlorides. Flight routes and dates, instrumentation, data processing procedures, data tape specifications, and selected analyses are discussed.

  3. An automated system for global atmospheric sampling using B-747 airliners

    NASA Technical Reports Server (NTRS)

    Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.

    1981-01-01

    The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.

  4. Atmospheric transmission computer program CP

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Barnett, T. L.; Korb, C. L.; Hanby, W.; Dillinger, A. E.

    1974-01-01

    A computer program is described which allows for calculation of the effects of carbon dioxide, water vapor, methane, ozone, carbon monoxide, and nitrous oxide on earth resources remote sensing techniques. A flow chart of the program and operating instructions are provided. Comparisons are made between the atmospheric transmission obtained from laboratory and spacecraft spectrometer data and that obtained from a computer prediction using a model atmosphere and radiosonde data. Limitations of the model atmosphere are discussed. The computer program listings, input card formats, and sample runs for both radiosonde data and laboratory data are included.

  5. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  6. Updated operational protocols for the U.S. Geological Survey Precipitation Chemistry Quality Assurance Project in support of the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2017-02-06

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.

  7. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... Requirement § 222.404 Observer program sampling. (a) During the program design, NMFS would be guided by the...

  8. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... Requirement § 222.404 Observer program sampling. (a) During the program design, NMFS would be guided by the...

  9. Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Lehmann, Christopher M.B.

    2008-01-01

    The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.

  10. External quality assurance project report for the National Atmospheric Deposition Program’s National Trends Network and Mercury Deposition Network, 2013–14

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2016-07-05

    The Mercury Deposition Network programs include the system blank program and an interlaboratory comparison program. System blank results indicated that maximum total mercury contamination concentrations in samples were less than the third percentile of all Mercury Deposition Network sample concentrations. The Mercury Analytical Laboratory produced chemical concentration results with low bias and variability compared with other domestic and international laboratories that support atmospheric-deposition monitoring.

  11. An efficient routine for infrared radiative transfer in a cloudy atmosphere

    NASA Technical Reports Server (NTRS)

    Chou, M. D.; Kouvaris, L.

    1981-01-01

    A FORTRAN program that calculates the atmospheric cooling rate and infrared fluxes for partly cloudy atmospheres is documented. The IR fluxes in the water bands and the 9.6 and 15 micron bands are calculated at 15 levels ranging from 1.39 mb to the surface. The program is generalized to accept any arbitrary atmospheric temperature and humidity profiles and clouds as input and return the cooling rate and fluxes as output. Sample calculations for various atmospheric profiles and cloud situations are demonstrated.

  12. Sample Collection for Investigation of Mars (SCIM): An Early Mars Sample Return Mission Through the Mars Scout Program

    NASA Technical Reports Server (NTRS)

    Leshin, L. A.; Yen, A.; Bomba, J.; Clark, B.; Epp, C.; Forney, L.; Gamber, T.; Graves, C.; Hupp, J.; Jones, S.

    2002-01-01

    The Sample Collection for Investigation of Mars (SCIM) mission is designed to: (1) make a 40 km pass through the Martian atmosphere; (2) collect dust and atmospheric gas; and (3) return the samples to Earth for analysis. Additional information is contained in the original extended abstract.

  13. NASA Global Atmospheric Sampling Program (GASP). Data report for tape VL0001. [data management and data retrieval of information from environmental surveys

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Lezberg, E. A.

    1976-01-01

    Atmospheric trace constituents in the upper troposphere and lower stratosphere are now being measured as part of the NASA Global Atmospheric Sampling Program (GASP), using fully automated air sampling systems on board commercial 747 aircraft in routine airline service. Measurements of atmospheric ozone and related meteorological and flight information obtained during several GASP flights in March 1975 are now available from the National Climatic Center, Asheville, North Carolina. In addition to the data from the aircraft, tropopause pressure data obtained from the National Meteorological Center (NMC) archives for the dates of the flights are included. This report is the first of a series of reports which describes the data currently available from GASP, including flight routes and dates, instrumentation, the data processing procedure used, and data tape specifications.

  14. Balloon/Parachute to Orbiter Communications Using a Dipole Antenna

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Danos, Monika J.

    2001-01-01

    Currently, quite a few missions are being studied to send satellites to the outer and inner planets and their moons of the solar system; a large percentage of these missions will have a landed element. NASA's Origins program, Solar System Exploration, Program and Sun Earth Connection (SEC) program, etc., will have a variety of spacecrafts to various solar system planets and their moons to sample and analyze the related atmospheres as well as the soil once the lander lands on the body. These sampling missions may involve a tender element sampling the atmosphere by performing experiments while descending into the atmosphere or a rover collecting samples to return to Earth or a station for experimentation on the planet surface. In either of these cases, the pertinent data generated will have to be sent to the Earth through a communication link. Communications with the Tender during the Entry, Decent and Landing (EDL) phases of a mission is of paramount importance. This article explores a particular method of passing through the atmosphere while communicating with the ground station (DSN station) before landing an instrument package (the lander) on the surface of the planet or moon of interest.

  15. Investigation of the feasibility of an analytical method of accounting for the effects of atmospheric drag on satellite motion

    NASA Technical Reports Server (NTRS)

    Bozeman, Robert E.

    1987-01-01

    An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.

  16. Condensation-nuclei (Aitken Particle) measurement system used in NASA global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Nyland, T. W.

    1979-01-01

    The condensation-nuclei (Aitken particle) measuring system used in the NASA Global Atmospheric Sampling Program is described. Included in the paper is a description of the condensation-nuclei monitor sensor, the pressurization system, and the Pollack-counter calibration system used to support the CN measurement. The monitor has a measurement range to 1000 CN/cm cubed and a noise level equivalent to 5 CN/cm cubed at flight altitudes between 6 and 13 km.

  17. Test evaluation of potential heat shield contamination of an Outer Planet Probe's atmospheric sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.

    1975-01-01

    An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.

  18. The precision of wet atmospheric deposition data from national atmospheric deposition program/national trends network sites determined with collocated samplers

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.

    1994-01-01

    A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median relative difference at the two northern sites. Bias accounted for less than 25% of the collocated variability in analyte concentration and deposition from weekly collocated precipitation samples at most sites.A collocated, wet-deposition sampler program has been operated since OCtober 1988 by the U.S Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database.

  19. Measurement of high altitude air quality using aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  20. Measurement of high-altitude air quality using aircraft.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  1. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES Observer...

  2. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  3. Model Stellar Atmospheres and Real Stellar Atmospheres and Status of the ATLAS12 Opacity Sampling Program and of New Programs for Rosseland and for Distribution Function Opacity

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    1996-01-01

    I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity, and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration. I have also developed a new opacity-sampling version of my model atmosphere program called ATLAS12. It recognizes more than 1000 atomic and molecular species, each in up to 10 isotopic forms. It can treat all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental and isotopic abundances are treated as variables with depth. The fluxes predicted by ATLAS12 are not accurate in intermediate or narrow bandpass intervals because the sample size is too small. A special stripped version of the spectrum synthesis program SYNTHE is used to generate the surface flux for the converged model using the line data on CD-ROMs 1 and 15. ATLAS12 can be used to produce improved models for Am and Ap stars. It should be very useful for investigating diffusion effects in atmospheres. It can be used to model exciting stars for H II regions with abundances consistent with those of the H II region. These programs and line files will be distributed on CD-ROMs.

  4. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 1: Technical/users manual

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A technical description of the NASA/MSFC Global Reference Atmospheric Model 1990 version (GRAM-90) is presented with emphasis on the additions and new user's manual descriptions of the program operation aspects of the revised model. Some sample results for the new middle atmosphere section and comparisons with results from a three dimensional circulation model are provided. A programmer's manual with more details for those wishing to make their own GRAM program adaptations is also presented.

  5. External quality-assurance programs managed by the U.S. Geological Survey in support of the National Atmospheric Deposition Program/National Trends Network

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory A.

    2005-01-01

    The U.S. Geological Survey, Branch of Quality Systems, operates the external quality-assurance programs for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Beginning in 1978, six different programs have been implemented?the intersite-comparison program, the blind-audit program, the sample-handling evaluation program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program was designed to measure error contributed by specific components in the data-collection process. The intersite-comparison program, which was discontinued in 2004, was designed to assess the accuracy and reliability of field pH and specific-conductance measurements made by site operators. The blind-audit and sample-handling evaluation programs, which also were discontinued in 2002 and 2004, respectively, assessed contamination that may result from sampling equipment and routine handling and processing of the wet-deposition samples. The field-audit program assesses the effects of sample handling, processing, and field exposure. The interlaboratory-comparison program evaluates bias and precision of analytical results produced by the contract laboratory for NADP, the Illinois State Water Survey, Central Analytical Laboratory, and compares its performance with the performance of international laboratories. The collocated-sampler program assesses the overall precision of wet-deposition data collected by NADP/NTN. This report documents historical operations and the operating procedures for each of these external quality-assurance programs. USGS quality-assurance information allows NADP/NTN data users to discern between actual environmental trends and inherent measurement variability.

  6. Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospheric Sampling Program (GASP)

    NASA Astrophysics Data System (ADS)

    Newell, R. E.; Wu, M.-F.

    It is noted that the Global Atmospheric Sampling Program (GASP) was intended to establish global baseline values of selected atmospheric constituents that could be used for studies of the dynamics of the sampled region as well as for modeling purposes. Instrument packages were carried on four Boeing 747 aircraft in routine commercial service. Carbon monoxide and ozone data were collected simultaneously from early 1977 to early 1979 when GASP terminated. CO was measured with an infrared absorption analyzer using dual isotope fluorescence. Ozone was measured via absorption of UV light. Correlations between the CO and the O3 are tabulated; they are clearly negative for both troposphere and stratosphere in middle latitudes, indicating that transport processes between the stratosphere and troposphere (discussed) dominate. But in the low latitude troposphere the correlations are positive, indicating the possible influence of photochemical effects.

  7. Monthly Atmospheric 13C/12C Isotopic Ratios for 11 SIO Stations (1977-2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, R. F.; Piper, S. C.; Bollenbacher, A. F.

    Stable isotopic measurements for atmospheric 13C/12C and 18O/16O at global sampling sites were initiated by Dr. C.D. Keeling and co-workers at Scripps Institution of Oceanography (SIO) in 1977. These isotopic measurements complement the continuing global atmospheric and oceanic CO2 measurements initiated by Keeling in 1957. This work is currently being continued under the direction of R.F. Keeling, who also runs a parallel program at SIO to measure changes in atmospheric O2 and Ar abundances (Scripps O2 Program). A more complete set of 13CO2 data is found online at http://scrippsco2.ucsd.edu/data/atmospheric_co2.html

  8. External Quality Assurance Programs Managed by the U.S. Geological Survey in Support of the National Atmospheric Deposition Program/Mercury Deposition Network

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory A.

    2007-01-01

    The U.S. Geological Survey (USGS) Branch of Quality Systems operates external quality assurance programs for the National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Beginning in 2004, three programs have been implemented: the system blank program, the interlaboratory comparison program, and the blind audit program. Each program was designed to measure error contributed by specific components in the data-collection process. The system blank program assesses contamination that may result from sampling equipment, field exposure, and routine handling and processing of the wet-deposition samples. The interlaboratory comparison program evaluates bias and precision of analytical results produced by the Mercury Analytical Laboratory (HAL) for the NADP/MDN, operated by Frontier GeoSciences, Inc. The HAL's performance is compared with the performance of five other laboratories. The blind audit program assesses bias and variability of MDN data produced by the HAL using solutions disguised as environmental samples to ascertain true laboratory performance. This report documents the implementation of quality assurance procedures for the NADP/MDN and the operating procedures for each of the external quality assurance programs conducted by the USGS. The USGS quality assurance information provides a measure of confidence to NADP/MDN data users that measurement variability is distinguished from environmental signals.

  9. Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

    1986-01-01

    Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author 's abstract)

  10. Precision and bias of selected analytes reported by the National Atmospheric Deposition Program and National Trends Network, 1983; and January 1980 through September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Bricker, A.W.; Willoughby, T.C.

    1985-01-01

    Blind-audit samples with known analyte concentrations have been prepared by the U.S. Geological Survey and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The difference between the National Atmospheric Deposition Program and National Trends Network reported analyte concentrations and known analyte concentrations have been calculated, and the bias has been determined. Calcium, magnesium , sodium, and chloride were biased at the 99-percent confidence limit; potassium and sulfate were unbiased at the 99-percent confidence limit, for 1983 results. Relative-percent differences between the measured and known analyte concentration for calcium , magnesium, sodium, potassium, chloride, and sulfate have been calculated for 1983. The median relative percent difference for calcium was 17.0; magnesium was 6.4; sodium was 10.8; potassium was 6.4; chloride was 17.2; and sulfate was -5.3. These relative percent differences should be used to correct the 1983 data before user-analysis of the data. Variances have been calculated for calcium, magnesium, sodium, potassium, chloride, and sulfate determinations. These variances should be applicable to natural-sample analyte concentrations reported by the National Atmospheric Deposition Program and National Trends Network for calendar year 1983. (USGS)

  11. Cleanroom Robotics: Appropriate Technology for a Sample Receiving Facility?

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Allen, C. C.

    2005-01-01

    NASA is currently pursuing a vigorous program that will collect samples from a variety of solar system environments. The Mars Exploration Program is expected to launch spacecraft that are designed to collect samples of martian soil, rocks, and atmosphere and return them to Earth, perhaps as early as 2016. International treaty obligations mandate that NASA conduct such a program in a manner that avoids cross-contamination both Earth and Mars. Because of this requirement, Mars sample curation will require a high degree biosafety, combined with extremely low levels inorganic, organic, and biological contamination.

  12. Shipboard Programs: A Coast-to-Coast Sampler.

    ERIC Educational Resources Information Center

    Landscroener, Barbara, Ed.

    1982-01-01

    Describes marine education programs in five states which provide participants with onboard ship experiences including sailing, sampling, and collecting in different marine environments. Includes public and higher education programs in Connecticut, Massachusetts, Florida, and California and the National Oceanic and Atmospheric Administration's Corp…

  13. ARM Carbon Cycle Gases Flasks at SGP Site

    DOE Data Explorer

    Biraud, Sebastien

    2013-03-26

    Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

  14. Four studies on effects of environmental factors on the quality of National Atmospheric Deposition Program measurements

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rhodes, Mark F.

    2011-01-01

    Selected aspects of National Atmospheric Deposition Program / National Trends Network (NADP/NTN) protocols are evaluated in four studies. Meteorological conditions have minor impacts on the error in NADP/NTN sampling. Efficiency of frozen precipitation sample collection is lower than for liquid precipitation samples. Variability of NTN measurements is higher for relatively low-intensity deposition of frozen precipitation than for higher-intensity deposition of liquid precipitation. Urbanization of the landscape surrounding NADP/NTN sites is not affecting trends in wet-deposition chemistry data to a measureable degree. Five NADP siting criteria intended to preserve wet-deposition sample integrity have varying degrees of effectiveness. NADP siting criteria for objects within the 90 degrees cones and trees within the 120 degrees cones projected from the collector bucket to sky are important for protecting sample integrity. Tall vegetation, fences, and other objects located within 5 meters of the collectors are related to the frequency of visible sample contamination, indicating the importance of these factors in NADP siting criteria.

  15. Discussion of NAEG distribution and inventory program sampling data in preparation for initiation of phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, D.N.; Church, B.W.; White, M.G.

    Soil sampling activities during 1974 were concentrated in Area 5 of the Nevada Test Site (NTS). Area 5 has been assigned the highest priority because of the number of atmospheric test events held and a wide distribution of contaminants. Improved sampling techniques are described. Preliminary data analysis aided in designing a program to infer $sup 239-240$Pu results by Ge(Li) scanning techniques. (auth)

  16. Beryllium 7 and lead 210 in the Western Hemisphere Arctic atmosphere - Observations from three recent aircraft-based sampling programs

    NASA Technical Reports Server (NTRS)

    Dibb, Jack E.; Talbot, Robert W.; Gregory, Gerald L.

    1992-01-01

    Concentrations of the natural radionuclides Be-7 and Pb-210 in the Western Hemisphere Arctic atmosphere were determined during the recent NOAA Arctic Gas and Aerosol Sampling Program (AGASP 3) and NASA Global Tropospheric Experiment/Arctic Boundary Layer Expeditions (GTE/ABLE 3A and ABLE 3B) missions. Be-7 concentrations measured during the AGASP 3 mission north and west of Norway are in accord with previous results for high northern latitudes, but suggest that the 'stratospheric' air masses sampled at the highest elevations reached were significantly diluted with tropospheric air. Higher resolution sampling in the free troposphere of the North American Arctic during ABLE 3B revealed a layer of elevated Be-7 concentrations near 5 km. The distribution of Pb-210 in the high-altitude troposphere of North America during the summer was quite similar to distributions of more frequently measured aerosol species.

  17. The value and limitations of global air-sampling networks for improving our understanding trace gas behavior

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.

    2016-12-01

    Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.

  18. Carbon monoxide measurement in the global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Dudzinski, T. J.

    1979-01-01

    The carbon monoxide measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available infrared absorption analyzer. The modifications increased the sensitivity of the analyzer to 1 ppmv full scale, with a limit of detectability of 0.02 ppmv. Packaging was modified for automatic, unattended operation in an aircraft environment. The GASP system is described along with analyzer operation, calibration procedures, and measurement errors. Uncertainty of the CO measurement over a 2-year period ranged from + or - 3 to + or - 13 percent of reading, plus an error due to random fluctuation of the output signal + or - 3 to + or - 15 ppbv.

  19. Results of external quality-assurance program for the National Atmospheric Deposition Program and National Trends Network during 1985

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1988-01-01

    External quality assurance monitoring of the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN) was performed by the U.S. Geological Survey during 1985. The monitoring consisted of three primary programs: (1) an intersite comparison program designed to assess the precision and accuracy of onsite pH and specific conductance measurements made by NADP and NTN site operators; (2) a blind audit sample program designed to assess the effect of routine field handling on the precision and bias of NADP and NTN wet deposition data; and (3) an interlaboratory comparison program designed to compare analytical data from the laboratory processing NADP and NTN samples with data produced by other laboratories routinely analyzing wet deposition samples and to provide estimates of individual laboratory precision. An average of 94% of the site operators participated in the four voluntary intersite comparisons during 1985. A larger percentage of participating site operators met the accuracy goal for specific conductance measurements (average, 87%) than for pH measurements (average, 67%). Overall precision was dependent on the actual specific conductance of the test solution and independent of the pH of the test solution. Data for the blind audit sample program indicated slight positive biases resulting from routine field handling for all analytes except specific conductance. These biases were not large enough to be significant for most data users. Data for the blind audit sample program also indicated that decreases in hydrogen ion concentration were accompanied by decreases in specific conductance. Precision estimates derived from the blind audit sample program indicate that the major source of uncertainty in wet deposition data is the routine field handling that each wet deposition sample receives. Results of the interlaboratory comparison program were similar to results of previous years ' evaluations, indicating that the participating laboratories produced comparable data when they analyzed identical wet deposition samples, and that the laboratory processing NADP and NTN samples achieved the best analyte precision of the participating laboratories. (Author 's abstract)

  20. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  1. NASA thunderstorm overflight program: Atmospheric electricity research. An overview report on the optical lightning detection experiment for spring and summer 1983

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1984-01-01

    This report presents an overview of the NASA Thunderstorm Overflight Program (TOP)/Optical Lightning Experiment (OLDE) being conducted by the Marshall Space Flight Center and university researchers in atmospheric electricity. Discussed in this report are the various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used in 1983 to collect optical and electronic signatures from the lightning events. Samples of some of the photographic and electronic signatures are presented. Approximately 4132 electronic data samples of optical pulses were collected and are being analyzed by the NASA and university researchers. A number of research reports are being prepared for future publication. These reports will provide more detailed data analysis and results from the 1983 spring and summer program.

  2. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    NASA Astrophysics Data System (ADS)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  3. Atmospheric turbulence power spectral measurements to long wavelengths for several meteorological conditions

    NASA Technical Reports Server (NTRS)

    Rhyne, R. H.; Murrow, H. N.; Sidwell, K.

    1976-01-01

    Use of power spectral design techniques for supersonic transports requires accurate definition of atmospheric turbulence in the long wavelength region below the knee of the power spectral density function curve. Examples are given of data obtained from a current turbulence flight sampling program. These samples are categorized as (1) convective, (2) wind shear, (3) rotor, and (4) mountain-wave turbulence. Time histories, altitudes, root-mean-square values, statistical degrees of freedom, power spectra, and integral scale values are shown and discussed.

  4. A measurement system for the atmospheric trace gases CH4 and CO

    NASA Technical Reports Server (NTRS)

    Condon, E. P.

    1977-01-01

    A system for measuring ambient clean air levels of the atmospheric trace gases methane and carbon monoxide is described. The analytical method consists of a gas chromatographic technique that incorporates sample preconcentration with catalytic conversion of CO to CH4 and subsequent flame ionization detection of these gases. The system has sufficient sensitivity and repeatability to make the precise measurements required to establish concentration profiles for CO and CH4 in the planetary boundary layer. A discussion of the bottle sampling program being conducted to obtain the samples for the concentration profiles is also presented.

  5. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; hide

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  6. AEROSOL SAMPLING AND ANALYSIS, PHOENIX, ARIZONA

    EPA Science Inventory

    An atmospheric sampling program was carried out in the greater Phoenix, Arizona metropolitan area in November, 1975. Objectives of the study were to measure aerosol mass flux through Phoenix and to characterize the aerosol according to particle type and size. The ultimate goal of...

  7. A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Ahmad

    2018-04-01

    In the present work, the influence of different sintering atmospheres and temperatures on physical properties of the Cu0.5Zn0.5Fe2O4 nanoparticles including the redistribution of Zn2+ and Fe3+ ions, the oxidation of Fe atoms in the lattice, crystallite sizes, IR bands, saturation magnetization and magnetic core sizes have been investigated. The fitting of XRD patterns by using Fullprof program and also FT-IR measurement show the formation of a cubic structure with no presence of impurity phase for all the samples. The unit cell parameter of the samples sintered at the air- and inert-ambient atmospheres trend to decrease with sintering temperature, but for the samples sintered under carbon monoxide-ambient atmosphere increase. The magnetization curves versus the applied magnetic field, indicate different behaviour for the samples sintered at 700 °C with the respect to the samples sintered at 300 °C. Also, the saturation magnetization increases with the sintering temperature and reach a maximum 61.68 emu/g in the sample sintered under reducing atmosphere at 600 °C. The magnetic particle size distributions of samples have been calculated by fitting the M-H curves with the size distributed Langevin function. The results obtained from the XRD and FTIR measurements suggest that the magnetic core size has the dominant effect in variation of the saturation magnetization of the samples.

  8. Spatial and temporal variability of the overall error of National Atmospheric Deposition Program measurements determined by the USGS collocated-sampler program, water years 1989-2001

    USGS Publications Warehouse

    Wetherbee, G.A.; Latysh, N.E.; Gordon, J.D.

    2005-01-01

    Data from the U.S. Geological Survey (USGS) collocated-sampler program for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) are used to estimate the overall error of NADP/NTN measurements. Absolute errors are estimated by comparison of paired measurements from collocated instruments. Spatial and temporal differences in absolute error were identified and are consistent with longitudinal distributions of NADP/NTN measurements and spatial differences in precipitation characteristics. The magnitude of error for calcium, magnesium, ammonium, nitrate, and sulfate concentrations, specific conductance, and sample volume is of minor environmental significance to data users. Data collected after a 1994 sample-handling protocol change are prone to less absolute error than data collected prior to 1994. Absolute errors are smaller during non-winter months than during winter months for selected constituents at sites where frozen precipitation is common. Minimum resolvable differences are estimated for different regions of the USA to aid spatial and temporal watershed analyses.

  9. Bias and precision of selected analytes reported by the National Atmospheric Deposition Program and National Trends Network, 1984

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1987-01-01

    The U.S. Geological Survey operated a blind audit sample program during 1974 to test the effects of the sample handling and shipping procedures used by the National Atmospheric Deposition Program and National Trends Network on the quality of wet deposition data produced by the combined networks. Blind audit samples, which were dilutions of standard reference water samples, were submitted by network site operators to the central analytical laboratory disguised as actual wet deposition samples. Results from the analyses of blind audit samples were used to calculate estimates of analyte bias associated with all network wet deposition samples analyzed in 1984 and to estimate analyte precision. Concentration differences between double blind samples that were submitted to the central analytical laboratory and separate analyses of aliquots of those blind audit samples that had not undergone network sample handling and shipping were used to calculate analyte masses that apparently were added to each blind audit sample by routine network handling and shipping procedures. These calculated masses indicated statistically significant biases for magnesium, sodium , potassium, chloride, and sulfate. Median calculated masses were 41.4 micrograms (ug) for calcium, 14.9 ug for magnesium, 23.3 ug for sodium, 0.7 ug for potassium, 16.5 ug for chloride and 55.3 ug for sulfate. Analyte precision was estimated using two different sets of replicate measures performed by the central analytical laboratory. Estimated standard deviations were similar to those previously reported. (Author 's abstract)

  10. 50 CFR 679.93 - Amendment 80 Program recordkeeping, permits, monitoring, and catch accounting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED... moved to the fish bin. (6) Sample storage. There is sufficient space to accommodate a minimum of 10 observer sampling baskets. This space must be within or adjacent to the observer sample station. (7) Pre...

  11. Effects of Subsonic Aircraft on Aerosols and Cloudiness in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Detwiler, Andrew G.

    1997-01-01

    This work was accomplished primarily by Allison G. Wozniak, a graduate research assistant who has completed the Master of Science in Meteorology program at the South Dakota School of Mines and Technology. Ms. Wozniak was guided and assisted in her work by L. R. Johnson and the principal investigator. Invaluable guidance was supplied by Dr. James Holdeman, NASA Lewis, the manager of the Global Atmospheric Sampling Program (GASP). Dr. Gregory Nastrom, St. Cloud (Minnesota) State University, who has used the GASP data set to provide unique views of the distribution of ozone, clouds, and atmospheric waves and turbulence, in the upper troposphere/lower stratosphere region, was also extremely helpful. Finally, Dr. Terry Deshler, University of Wyoming, supplied observations from the university's upper atmospheric monitoring program for comparison to GASP data.

  12. NASA's Student Airborne Research Program (2009-2013)

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2013-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.

  13. A quality-assurance assessment for constituents reported by the national atmospheric deposition program and the national trends network

    NASA Astrophysics Data System (ADS)

    See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.

    A continuing quality-assurance program has been operated by the U.S. Geological Survey to evaluate any bias introduced by routine handling, shipping, and laboratory analyses of wet-deposition samples collected in the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN). Blind-audit samples having a variety of constituent concentrations and values were selected. Only blind-audit samples with constituent concentrations and values less than the 95th-percentile concentration for natural wet-deposition samples were included in the analysis. Of the major ions, there was a significant increase of Ca 2+, Mg 2+, Na 2+, K +, SO 42- and Cl -1 in samples handled according to standard protocols and shipped in NADP/NTN sample-collection buckets. For 1979-1987, graphs of smoothed data showing the estimated contamination in blind-audit samples indicate a decrease in the median concentration and ranges of Ca 2+, Mg 2+ and SO 42- contamination of blind-audit samples shipped in sample-collection buckets. Part of the contamination detected in blind-audit samples can be attributed to contact with the sample-collection bucket and lid; however, additional sources also seem to contaminate the blind-audit sample. Apparent decreases in the magnitude and range of sample contamination may be caused by differences in sample-collection bucket- and lid-washing procedures by the NADP/NTN Central Analytical Laboratory. Although the degree of bias is minimal for most constituents, summaries of the NADP/NTN data base may contain overestimates of Ca 2+, Mg 2+, Na -, K + and SO 42- and Cl - concentrations, and underestimates of H + concentrations.

  14. A quality-assurance assessment for constituents reported by the National Atmospheric Deposition Program and the National Trends Network

    USGS Publications Warehouse

    See, R.B.; Schroder, L.J.; Willoughby, T.C.

    1989-01-01

    A continuing quality-assurance program has been operated by the U.S. Geographical Survey to evaluate any bias introduced by routine handling, shipping, and laboratory analyses of wet-deposition samples collected in the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN). Blind-audit samples having a variety of constituent concentrations and values were selected. Only blind-audit samples with constituent concentrations and values less than the 95th-percentile concentration for natural wet-deposition samples were included in the analysis. Of the major ions, there was a significant increase of Ca2+, Mg2+, K+ SO42+ and Cl- in samples handled according to standard protocols and shipped in NADP/NTN sample-collection buckets. For 1979-1987, graphs of smoothed data showing the estimated contaminations in blind-audit samples indicate a decrease in the median concentration and ranges of Ca2+, Mg2+ and SO42- contamination of blind-audit samples shipped in sample-collection buckets. Part of the contamination detected in blind-audit samples can be attributed to contact with the sample-collection bucket and lid; however, additional sources also seem to contaminate the blind-audit sample. Apparent decreases in the magnitude and range of sample contamination may be caused by differences in sample-collection bucket- and lid-washing procedures by the NADP/NTN Central Analytical Laboratory. Although the degree of bias is minimal for most constituents, summaries of the NADP/NTN data base may contain overestimates of Ca2+, Mg2+, Na-, K+, SO42- and Cl- concentrations, and underestimates of H+ concentrations.

  15. The NASA Thunderstorm Overflight Program (TOP): Research in atmospheric electricity from an instrumented U-2 aircraft platform

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1983-01-01

    An overview of the NASA Thunderstorm Overflight Program (TOP) is presented. The various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used to collect optical and electronic signature from the lightning events, are discussed. Samples of some of the photographic and electronic signatures are presented. Approximately 6400 electronic data samples of optical pulses were collected and are being analyzed.

  16. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    USGS Publications Warehouse

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  17. An analysis of the first two years of GASP data. [Global Atmospheric Sampling Program

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1978-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes. The GASP water vapor data, analyzed with respect to the location of the tropopause, correlates well with the simultaneously obtained ozone and cloud data.

  18. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available parameters to enable the user to generate special output. Appendix G gives an example and guidance on incorporating GRAM07 as a subroutine in other programs such as trajectory codes or orbital propagation routines.

  19. Accomplishing Mars exploration goals by returning a simple "locality" sample

    NASA Astrophysics Data System (ADS)

    McKay, G.; Draper, D.; Bogard, D.; Agee, C.; Ming, D.; Jones, J.

    A major stumbling block to a Mars sample return (MSR) mission is cost. This problem is greatly exacerbated by using elaborate rovers, sophisticated on-board instruments, and complex sample selection techniques to maximize diversity. We argue that many key science goals of the Mars Exploration Program may be accomplished by returning a simple "locality" sample from a well-chosen landing site. Such a sample , collected by a simple scoop, would consist of local regolith containing soil, windblown fines, and lithic fragments (plus Martian atmosphere). Even the simplest sample return mission could revolutionize our understanding of Mars, without the need for expensive rovers or sophisticated on-board instruments. We expect that by the time a MSR mission could be flown, information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to choose a good landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; the role and history of water and other volatiles; interpreting remotely-sensed spectral data; and understanding the planet as a system. A locality sample can further the search for life by identifying trace organics, biogenic elements and their isotopic compositions, evidence for water such as hydrous minerals or cements, the Martian soil oxidant, and trace biomarkers. Learning the nature and timing of atmosphere-soil-rock interactions will improve understanding of the role and history of water. An atmosphere sample will reveal fundamental information about current atmospheric processes. Information about the mineralogy and lithology of sample materials, the extent of impact gardening, and the nature of dust coatings and alteration rinds will provide much-needed ground truth for interpreting remotely-sensed data, including Mars Pathfinder. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. By bringing a simple locality sample back for analysis in the world's best labs, using the world's most sophisticated state-of-the-art instruments, we can make break-through progress in addressing fundamental questions about Mars.

  20. NASA Global Atmospheric Sampling Program (GASP) data report for tapes VL0011 and VL0013

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Dudzinski, T. J.; Tiefermann, M. W.

    1979-01-01

    In-situ measurements of atmospheric ozone, carbon monoxide, clouds, and related meteorological and flight information obtained during 1122 flights of aircraft VH-EBE and N655PA from January 10 through October 2, 1977 are reported. In addition, tropopause pressures obtained from time and space interpolation of achieved data for the dates of the flights are included.

  1. External quality-assurance results for the National Atmospheric Deposition Program and the National Trends Network during 1986

    USGS Publications Warehouse

    See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1988-01-01

    During 1986, the U.S. Geological Survey operated three programs to provide external quality-assurance monitoring of the National Atmospheric Deposition Program and National Trends Network. An intersite-comparison program was used to assess the accuracy of onsite pH and specific-conductance determinations at quarterly intervals. The blind-audit program was used to assess the effect of routine sample handling on the precision and bias of program and network wet-deposition data. Analytical results from four laboratories, which routinely analyze wet-deposition samples, were examined to determine if differences existed between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. An average of 78 and 89 percent of the site operators participating in the intersite-comparison met the network goals for pH and specific conductance. A comparison of analytical values versus actual values for samples submitted as part of the blind-audit program indicated that analytical values were slightly but significantly (a = 0.01) larger than actual values for pH, magnesium, sodium, and sulfate; analytical values for specific conductance were slightly less than actual values. The decreased precision in the analyses of blind-audit samples when compared to interlaboratory studies indicates that a large amount of uncertainty in network deposition data may be a result of routine field operations. The results of the interlaboratory comparison study indicated that the magnitude of the difference between laboratory analyses was small for all analytes. Analyses of deionized, distilled water blanks by participating laboratories indicated that the laboratories had difficulty measuring analyte concentrations near their reported detection limits. (USGS)

  2. Flight contaminant trace analyser. Phase 1: Chromatographic input system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development of a chromatographic column capable of resolving compounds associated with spacecraft atmospheres is presented. Consideration is given to sampling techniques, column parameters and operation, and column interface with a mass spectrometer. A capillary column coated with a mixture of polyalkylene glycols is found to provide the best selectivity for resolving multicomponent mixtures found in spacecraft atmospheres. Temperature programming and isothermal operation of the column are evaluated and it is found that temperature programming has a shorter analysis time for a given carrier gas flow rate and overall superior resolution. It is observed that hydrogen provides a 15% savings in analysis time over helium. Following the optimization of column operational parameters, a mixed phase Ucon capillary is prepared for evaluation during the column test period in which the test sample is automatically analyzed. Analysis of the multicomponent test mixture is completed within 45 minutes provided temperature programming is used. All but two of the test compounds are well resolved.

  3. Business grants

    NASA Astrophysics Data System (ADS)

    Twelve small businesses who are developing equipment and computer programs for geophysics have won Small Business Innovative Research (SBIR) grants from the National Science Foundation for their 1989 proposals. The SBIR program was set up to encourage the private sector to undertake costly, advanced experimental work that has potential for great benefit.The geophysical research projects are a long-path intracavity laser spectrometer for measuring atmospheric trace gases, optimizing a local weather forecast model, a new platform for high-altitude atmospheric science, an advanced density logging tool, a deep-Earth sampling system, superconducting seismometers, a phased-array Doppler current profiler, monitoring mesoscale surface features of the ocean through automated analysis, krypton-81 dating in polar ice samples, discrete stochastic modeling of thunderstorm winds, a layered soil-synthetic liner base system to isolate buildings from earthquakes, and a low-cost continuous on-line organic-content monitor for water-quality determination.

  4. NASA's Student Airborne Research Program (SARP) 2009-2017

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2017-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.

  5. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0014

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Dudzinski, T. J.; Liu, D. C.

    1980-01-01

    The data currently available from GASP, including flight routes and dates, instrumentation, data processing procedures, and data tape specifications are described. Measurements of atmospheric ozone, cabin ozine, carbon monoxide, water vapor, particles, clouds, condensation nuclei, filter samples and related meteorological and flight information obtained during 562 flights of aircraft N533PA, N4711U, N655PA, and VH-EBE from October 3, 1977 through January 5, 1978 are reported. Data representing tropopause pressures obtained from time and space interpolation of National Meteorological Center archived data for the dates of the flights are included.

  6. External quality assurance project report for the National Atmospheric Deposition Program’s National Trends Network and Mercury Deposition Network, 2015–16

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2018-06-29

    The U.S. Geological Survey Precipitation Chemistry Quality Assurance project operated five distinct programs to provide external quality assurance monitoring for the National Atmospheric Deposition Program’s (NADP) National Trends Network and Mercury Deposition Network during 2015–16. The National Trends Network programs include (1) a field audit program to evaluate sample contamination and stability, (2) an interlaboratory comparison program to evaluate analytical laboratory performance, and (3) a colocated sampler program to evaluate bias and variability attributed to automated precipitation samplers. The Mercury Deposition Network programs include the (4) system blank program and (5) an interlaboratory comparison program. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends for chemical constituents in wet deposition.The field audit program results indicate increased sample contamination for calcium, magnesium, and potassium relative to 2010 levels, and slight fluctuation in sodium contamination. Nitrate contamination levels dropped slightly during 2014–16, and chloride contamination leveled off between 2007 and 2016. Sulfate contamination is similar to the 2000 level. Hydrogen ion contamination has steadily decreased since 2012. Losses of ammonium and nitrate resulting from potential sample instability were negligible.The NADP Central Analytical Laboratory produced interlaboratory comparison results with low bias and variability compared to other domestic and international laboratories that support atmospheric deposition monitoring. Significant absolute bias above the magnitudes of the detection limits was observed for nitrate and sulfate concentrations, but no analyte determinations exceeded the detection limits for blanks.Colocated sampler program results from dissimilar colocated collectors indicate that the retrofit of the National Trends Network with N-CON Systems Company, Inc. precipitation collectors could cause substantial shifts in NADP annual deposition (concentration multiplied by depth) values. Median weekly relative percent differences for analyte concentrations ranged from -4 to +76 percent for cations, from 5 to 6 percent for ammonium, from +14 to +25 percent for anions, and from -21 to +8 percent for hydrogen ion contamination. By comparison, weekly absolute concentration differences for paired identical N-CON Systems Company, Inc., collectors ranged from 4–22 percent for cations; 2–9 percent for anions; 4–5 percent for ammonium; and 13–14 percent for hydrogen ion contamination. The N-CON Systems Company, Inc. collector caught more precipitation than the Aerochem Metrics Model 301 collector (ACM) at the WA99/99WA sites, but it typically caught slightly less precipitation than the ACM at ND11/11ND, sites which receive more wind and snow than WA99/99WA.Paired, identical OTT Pluvio-2 and ETI Noah IV precipitation gages were operated at the same sites. Median absolute percent differences for daily measured precipitation depths ranged from 0 to 7 percent. Annual absolute differences ranged from 0.08 percent (ETI Noah IV precipitation gages) to 11 percent (OTT Pluvio-2 precipitation gages).The Mercury Deposition Network programs include the system blank program and an interlaboratory comparison program. System blank results indicate that maximum total mercury contamination concentrations in samples were less than the third percentile of all Mercury Deposition Network sample concentrations (1.098 nanograms per liter; ng/L). The Mercury Analytical Laboratory produced chemical concentration results with low bias and variability compared with other domestic and international laboratories that support atmospheric-deposition monitoring. The laboratory’s performance results indicate a +1-ng/L shift in bias between 2015 (-0.4 ng/L) and 2016 (+0.5 ng/L).

  7. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network during 1991

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.; Paulin, C.E.

    1995-01-01

    The U.S. Geological Survey used four programs in 1991 to provide external quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). An intersite-comparison program was used to evaluate onsite pH and specific-conductance determinations. The effects of routine sample handling, processing, and shipping of wet-deposition samples on analyte determinations and an estimated precision of analyte values and concentrations were evaluated in the blind-audit program. Differences between analytical results and an estimate of the analytical precision of four laboratories routinely measuring wet deposition were determined by an interlaboratory-comparison program. Overall precision estimates for the precipitation-monitoring system were determined for selected sites by a collocated-sampler program. Results of the intersite-comparison program indicated that 93 and 86 percent of the site operators met the NADP/NTN accuracy goal for pH determinations during the two intersite-comparison studies completed during 1991. The results also indicated that 96 and 97 percent of the site operators met the NADP/NTN accuracy goal for specific-conductance determinations during the two 1991 studies. The effects of routine sample handling, processing, and shipping, determined in the blind-audit program indicated significant positive bias (a=.O 1) for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias (or=.01) was determined for hydrogen ion and specific conductance. Only ammonium determinations were not biased. A Kruskal-Wallis test indicated that there were no significant (*3t=.01) differences in analytical results from the four laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler program indicated the median relative error for cation concentration and deposition exceeded eight percent at most sites, whereas the median relative error for sample volume, sulfate, and nitrate concentration at all sites was less than four percent. The median relative error for hydrogen ion concentration and deposition ranged from 4.6 to 18.3 percent at the four sites and as indicated in previous years of the study, was inversely proportional to the acidity of the precipitation at a given site. Overall, collocated-sampling error typically was five times that of laboratory error estimates for most analytes.

  8. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  9. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P.; Gustafsson, U. R. C.

    1975-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.

  10. New Generation Flask Sampling Technology Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James R.

    Scientists are turning their focus to the Arctic, site of one of the strongest climate change signals. A new generation of technologies is required to function within that harsh environment, chart evolution of its trace gases and provide new kinds of information for models of the atmosphere. Our response to the solicitation tracks how global atmospheric monitoring was launched more than a half century ago; namely, acquisition of discrete samples of air by flask and subsequent analysis in the laboratory. AOS is proposing to develop a new generation of flask sampling technology. It will enable the new Arctic programs tomore » begin with objective high density sampling of the atmosphere by UAS. The Phase I program will build the prototype flask technology and show that it can acquire and store mol fractions of CH4 and CO2 and value of δ13C with good fidelity. A CAD model will be produced for the entire platform including a package with 100 flasks and the airframe with auto-pilot, electronic propulsion and ground-to-air communications. A mobile flask analysis station will be prototyped in Phase I and designed to final form in Phase II. It expends very small sample per analysis and will interface directly to the flask package integrated permanently into the UAS fuselage. Commercial Applications and Other Benefits: • The New Generation Flask Sampling Technology able to provide a hundred or more samples of air per UAS mission. • A mobile analysis station expending far less sample than the existing ones and small enough to be stationed at the remote sites of Arctic operations. • A new form of validation for continuous trace gas observations from all platforms including the small UAS. • Further demonstration to potential customers of the AOS capabilities to invent, build, deploy and exploit entire platforms for observations of Earth’s atmosphere and ocean. Key Words: Flask Sampler, Mobile Analysis Station, Trace Gas, CO2, CH4, δC13, UAS, Baseline Airborne Observatory, Arctic, Climate Change. Summary for Members of Congress: The air, land and sea of the Arctic combine to produce a large climate change signal. AOS is proposing to develop unmanned airborne technologies able to begin prompt, objective observations of the signal’s atmospheric component.« less

  11. Radar error statistics for the space shuttle

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

  12. Effects of equipment performance on data quality from the National Atmospheric Deposition Program/National Trends Network and the Mercury Deposition Network

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Rhodes, Mark F.

    2013-01-01

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance project (PCQA) to provide independent, external quality-assurance for the National Atmospheric Deposition Program (NADP). NADP is composed of five monitoring networks that measure the chemical composition of precipitation and ambient air. PCQA and the NADP Program Office completed five short-term studies to investigate the effects of equipment performance with respect to the National Trends Network (NTN) and Mercury Deposition Network (MDN) data quality: sample evaporation from NTN collectors; sample volume and mercury loss from MDN collectors; mercury adsorption to MDN collector glassware, grid-type precipitation sensors for precipitation collectors, and the effects of an NTN collector wind shield on sample catch efficiency. Sample-volume evaporation from an NTN Aerochem Metrics (ACM) collector ranged between 1.1–33 percent with a median of 4.7 percent. The results suggest that weekly NTN sample evaporation is small relative to sample volume. MDN sample evaporation occurs predominantly in western and southern regions of the United States (U.S.) and more frequently with modified ACM collectors than with N-CON Systems Inc. collectors due to differences in airflow through the collectors. Variations in mercury concentrations, measured to be as high as 47.5 percent per week with a median of 5 percent, are associated with MDN sample-volume loss. Small amounts of mercury are also lost from MDN samples by adsorption to collector glassware irrespective of collector type. MDN 11-grid sensors were found to open collectors sooner, keep them open longer, and cause fewer lid cycles than NTN 7-grid sensors. Wind shielding an NTN ACM collector resulted in collection of larger quantities of precipitation while also preserving sample integrity.

  13. SEASAT economic assessment

    NASA Technical Reports Server (NTRS)

    Hicks, K.; Steele, W.

    1974-01-01

    The SEASAT program will provide scientific and economic benefits from global remote sensing of the ocean's dynamic and physical characteristics. The program as presently envisioned consists of: (1) SEASAT A; (2) SEASAT B; and (3) Operational SEASAT. This economic assessment was to identify, rationalize, quantify and validate the economic benefits evolving from SEASAT. These benefits will arise from improvements in the operating efficiency of systems that interface with the ocean. SEASAT data will be combined with data from other ocean and atmospheric sampling systems and then processed through analytical models of the interaction between oceans and atmosphere to yield accurate global measurements and global long range forecasts of ocean conditions and weather.

  14. USDA Forest Service national protocols for sampling air pollution-sensitive waters

    Treesearch

    T. J. Sullivan

    2012-01-01

    The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...

  15. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  16. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR USE OF A PASSIVE SAMPLING DEVICE FOR THE COLLECTION OF AIRBORNE VOCS AT FIXED INDOOR AND OUTDOOR SITES (UA-F-12.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used to sample residential indoor and outdoor atmospheres for the presence of certain volatile organic compounds (VOCs) by means of absorption onto activated charcoal contained within a sampling badge. Activated charcoal diffusi...

  17. Linear Regression Modeling of Selected Analytes from the Balad Air Sampling Program

    DTIC Science & Technology

    2012-04-05

    groundwater, air and soil contamination with unwanted chemicals as well as attract vectors (Insects, rodents, etc.) for diseases. In deployed...via in-flight jettisoning of fuel and from 31 accidental spills or leaks to soil during use, storage, and transportation. VOC components of JP-8...can be introduced to the atmosphere from the soil through volatilization.46 In addition, the reaction between JP-8 and atmospheric chemicals may

  18. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    2001-01-01

    This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  19. Forecasting long-range atmospheric transport episodes of polychlorinated biphenyls using FLEXPART

    NASA Astrophysics Data System (ADS)

    Halse, Anne Karine; Eckhardt, Sabine; Schlabach, Martin; Stohl, Andreas; Breivik, Knut

    2013-06-01

    The analysis of concentrations of persistent organic pollutants (POPs) in ambient air is costly and can only be done for a limited number of samples. It is thus beneficial to maximize the information content of the samples analyzed via a targeted observation strategy. Using polychlorinated biphenyls (PCBs) as an example, a forecasting system to predict and evaluate long-range atmospheric transport (LRAT) episodes of POPs at a remote site in southern Norway has been developed. The system uses the Lagrangian particle transport model FLEXPART, and can be used for triggering extra ("targeted") sampling when LRAT episodes are predicted to occur. The system was evaluated by comparing targeted samples collected over 12-25 h during individual LRAT episodes with monitoring samples regularly collected over one day per week throughout a year. Measured concentrations in all targeted samples were above the 75th percentile of the concentrations obtained from the regular monitoring program and included the highest measured values of all samples. This clearly demonstrates the success of the targeted sampling strategy.

  20. U.S. Geological Survey external quality-assurance project report to the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2007-08

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Chesney, Tanya A.

    2010-01-01

    The U.S. Geological Survey (USGS) used six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2007-08. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples, and a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL), Mercury (Hg) Analytical Laboratory (HAL), and 12 other participating laboratories. A blind-audit program was also implemented for the MDN to evaluate analytical bias in HAL total Hg concentration data. A co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and prototype precipitation collectors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the U.S. NADP data-quality objectives continued to be achieved during 2007-08. Results also indicate that retrofit of the NADP networks with the new E-gages is not likely to create step-function type shifts in NADP precipitation-depth records, except for sites where annual precipitation depth is dominated by snow because the E-gages tend to catch more snow than the original NADP rain gages. Evaluation of prototype precipitation collectors revealed no difference in sample volumes and analyte concentrations between the original NADP collectors and modified, deep-bucket collectors, but the Yankee Environmental Systems, Inc. (YES) collector obtained samples of significantly higher volumes and analyte concentrations than the standard NADP collector.

  1. Atmospheric CO2 Concentrations from Aircraft for 1972-1981, CSIRO Monitoring Program

    DOE Data Explorer

    Beardsmore, David J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Victoria, Australia; Pearman, Graeme I. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Victoria, Australia

    2012-01-01

    From 1972 through 1981, air samples were collected in glass flasks from aircraft at a variety of latitudes and altitudes over Australia, New Zealand, and Antarctica. The samples were analyzed for CO2 concentrations with nondispersive infrared gas analysis. The resulting data contain the sampling dates, type of aircraft, flight number, flask identification number, sampling time, geographic sector, distance in kilometers from the listed distance measuring equipment (DME) station, station number of the radio navigation distance measuring equipment, altitude of the aircraft above mean sea level, sample analysis date, flask pressure, tertiary standards used for the analysis, analyzer used, and CO2 concentration. These data represent the first published record of CO2 concentrations in the Southern Hemisphere expressed in the WMO 1981 CO2 Calibration Scale and provide a precise record of atmospheric CO2 concentrations in the troposphere and lower stratosphere over Australia and New Zealand.

  2. Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Papathakos, L. C.

    1977-01-01

    The Global Atmospheric Sampling Program (GASP) by NASA is collecting and analyzing data on gaseous and aerosol trace species in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Advances were made in airborne sampling instrumentation. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei and mass concentrations of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to uniquely identify the source of the air mass as being typically tropospheric or stratospheric. A quantitative understanding of the tropospheric-stratospheric exchange processes leads to better knowledge of the atmospheric impact of pollution through the development of improved simulation models of the atmosphere.

  3. Experimental simulations of oxidizing conditions and organic decomposition on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    One important scientific objective of a Mars Rover Sample Return mission would be to look for traces of living and extinct life on Mars. An instrument to search for organic carbon may be the simplest instrument that could screen samples which are interesting from a biological point of view. An experimental program is described which would help to understand the nature of the oxidizing soil on Mars and the mechanism responsible for organic degradation on the Martian surface. This is approached by lab simulations of the actual conditions that occur on Mars, particularly the oxidant production by atmospheric photochemistry, and the combined effects of UV light and oxidants in decomposing organic compounds. The results will be used to formulate models of the photochemistry of the atmospheric, the atmosphere-soil interaction, and the diffusion of reactive compounds into the soils. This information will provide insights and constraints on the design of a sampling strategy to search for organic compounds on Mars.

  4. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    NASA Astrophysics Data System (ADS)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  5. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0005

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Humenik, F. M.

    1977-01-01

    Atmospheric ozone, water vapor, and related flight and meteorological data were obtained during 214 flights of a United Airlines B-747 and two Pan American World Airways B-747's from March through June 1976. In addition, trichlorofluoromethane data obtained from laboratory analysis of two whole air samples collected in flight are reported. These data are available on GASP tape VL0005 from the National Climatic Center, Asheville, North Carolina. In addition to the GASP data, tropopause pressure fields obtained from NMC archives for the dates of the GASP flights are included on the data tape. Flight routes and dates, instrumentation, data processing procedures, and data tape specifications are described in this report. Selected analyses including ozone and sample bottle data are also presented.

  6. Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger-Teton National Forest (USFS Region 4)

    Treesearch

    Jill Grenon; Terry Svalberg; Ted Porwoll; Mark Story

    2010-01-01

    Air quality monitoring data from several programs in and around the Bridger-Teton (B-T) National Forest - National Atmospheric Deposition Program (NADP), longterm lake monitoring, long-term bulk precipitation monitoring (both snow and rain), and Interagency Monitoring of Protected Visual Environments (IMPROVE) - were analyzed in this report. Trends were analyzed using...

  7. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  8. DITTY - a computer program for calculating population dose integrated over ten thousand years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.

    The computer program DITTY (Dose Integrated Over Ten Thousand Years) was developed to determine the collective dose from long term nuclear waste disposal sites resulting from the ground-water pathways. DITTY estimates the time integral of collective dose over a ten-thousand-year period for time-variant radionuclide releases to surface waters, wells, or the atmosphere. This document includes the following information on DITTY: a description of the mathematical models, program designs, data file requirements, input preparation, output interpretations, sample problems, and program-generated diagnostic messages.

  9. The Atmospheric Lifetime Experiment and the Global Atmospheric Gas Experiment (ALE/GAGE)

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. Aslam K.

    1995-01-01

    The ALE/GAGE project was designed to determine the global atmospheric lifetimes of the chlorofluorocarbons CCl3F and CCl2F2 (F-11 and F-12), which had been identified as the main gases that cause stratospheric ozone depletion. The experimental procedures also provided the concentrations of CH3CCl3, CCl4 and N2O. The extended role of the project was to evaluate the mass balances of these gases as well. Methylchloroform (CH3CCl3) serves as a tracer of average atmospheric OH concentrations and hence the oxidizing capacity of the atmosphere. Nitrous oxide (N2O) is a potent greenhouse gas and can also deplete the ozone layer. Measurements of these gases were taken with optimized instruments in the field at a frequency of about 1 sample/hr. Toward the end of the present project methane measurements were added to the program. The final report deals with the research of the Oregon Graduate Institute (OGI) as part of the ALE/GAGE program between 4/1/1988 and 1/31/1991. The report defines the scope of the OGI project, the approach, and the results.

  10. Method for the determination of lignin content of a sample by flash pyrolysis in an atmosphere of hydrogen or helium and method therefor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Lawson, Daniel D. (Inventor)

    1991-01-01

    The lignin content of wood, paper pulp or other material containing lignin (such as filter paper soaked in black liquor) is more readily determined by flash pyrolysis of the sample at approximately 550.degree. C. in a reducing atmosphere of hydrogen or in an inert atmosphere of helium followed by a rapid analysis of the product gas by a mass spectrometer. The heated pyrolysis unit as fabricated comprises a small platinum cup welded to an electrically-heated stainless steel ribbon with control means for programmed short duration (1.5 sec, approximately) heating and means for continuous flow of hydrogen or helium. The pyrolysis products enter an electron-ionization mode mass spectrometer for spectral evaluation. Lignin content is obtained from certain ratios of integrated ion currents of many mass spectral lines, the ratios being linearly related to the Kappa number of Klason lignin.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, P; Bonin, TA; Newman, JF

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  12. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    NASA Astrophysics Data System (ADS)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  13. Ocean Drilling Program: Related Sites

    Science.gov Websites

    ) 306-0390 Web site: www.nsf.gov Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) US Members: Columbia University, Lamont-Doherty Earth Observatory Florida State University Oregon State University, College of Oceanic and Atmospheric Sciences Pennsylvania State University, College of Earth and

  14. Atmospheric CO2 Records from Sites in the Main Geophysical Observatory Air Sampling Network (1983 - 1993)

    DOE Data Explorer

    Brounshtein, A. M. [Main Geophysical Observatory, St. Petersburg, Russia; Shaskov, A. A. [Main Geophysical Observatory, St. Petersburg, Russia; Paramonova, N. N. [Main Geophysical Observatory, St. Petersburg, Russia; Privalov, V. I. [Main Geophysical Observatory, St. Petersburg, Russia; Starodubtsev, Y. A. [Main Geophysical Observatory, St. Petersburg, Russia

    1997-01-01

    Air samples were collected from five sites in the Main Geophysical Observatory air sampling network to monitor the atmospheric CO2 from 1983 - 1993. Airwas collected generally four times per month in pairs of 1.5-L stainless steel electropolished flasks with one greaseless stainless steel stopcock. Sampling was performed by opening the stopcock of the flasks, which have been evacuated at the central laboratory at the Main Geophysical Observatory (MGO). The air was not dried during sample collection. Attempts were made to obtain samples when the wind speed was >5 m/s and the wind direction corresponded to the predetermined "clean air" sector. The period of record at Bering Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Bering Island rose from approximately 346 parts per million by volume (ppmv) in 1986 to 362.6 ppmv in 1993. Measurements from this station are considered indicative of maritime air masses. The period of record at Kotelny Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Kotelny Island rose from 356.08 parts per million by volume (ppmv) in 1988 to 358.8 ppmv in 1993. Because Kotelny Island is the northernmost Russian sampling site, measurements from this site serve as a useful comparison to other northern sites (e.g., Alert, Northwest Territories). In late 1989, air sampling began at the Russian site of Kyzylcha, located in the Republic of Uzbekistan. Unfortunately, the desert site at Kyzylcha has been out of operation since mid-1991 due to financial difficulties in Russia. The annual mean value of 359.02 parts per million by volume (ppmv) for 1990, the lone full year of operation, is higher than measurements from other monitoring programs at this latitude [e.g., Niwot Ridge (354.7 ppmv in 1990) and Tae-ahn Peninsula]. Station "C," an open ocean site, in the North Atlantic, east of Greenland, was established in 1968 and was operated in cooperation with NOAA's National Weather Service through 1973. The Main Geophysical Observatory collected flask samples at the site from January 1983 through October 1990. The yearly mean atmospheric CO concentration at Station "C" rose from 348.15 parts per million by volume (ppmv) in 1985 to 354.33 ppmv in 1989. The period of record at Teriberka Station is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Teriberka Station rose from 354.8 parts per million by volume (ppmv) in 1989 to 358.7 ppmv in 1993.

  15. Physical properties of repressurized samples recovered during the 2006 National Gas Hydrate Program expedition offshore India

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.

    2008-01-01

    As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.

  16. Worldwide deposition of strontium-90 through 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monetti, M.A.

    1996-03-01

    Strontium-90 results from the Environmental Measurements Laboratory`s (EML) Global Fallout Program (GFP) are presented for the years 1987 through 1990. Quarterly {sup 90}Sr deposition results for the 66 sampling locations of EML`s GFP were generally low, indicating that there was no significant release of fission products into the atmosphere during this period. The global {sup 90}Sr deposition during these 4 years was lower than it has been for any similar period since this program began in 1958. Since there was no major atmospheric source of {sup 90}Sr during this period, the global cumulative deposit of {sup 90}Sr continued to decreasemore » by radioactive decay to a 27 year low of 311.4 Pbq.« less

  17. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  18. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  19. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  20. Curriculum of Work-Study Program, Special Education.

    ERIC Educational Resources Information Center

    Smith, Darrell; And Others

    The work study curriculum guide for secondary special education students was designed for use in a classroom atmosphere simulating a work setting. Performance objectives and suggested activities are listed for 10 units (sample subunits in parentheses): purchasing habits (advertising methods, types of stores and merchandise, sales tax); budgeting…

  1. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  2. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J. K. R.; Alderman, O. L. G.; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment wasmore » integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  3. Middle Atmosphere Program. Handbook for MAP, volume 27

    NASA Technical Reports Server (NTRS)

    Edwards, Belva (Editor)

    1989-01-01

    The proceedings are presented from the MAP program of July 1988. It is intended to be a quick synopsis of the symposium. General topics include: New International Equatorial Observatory; Dynamics of the Middle Atmosphere in Winter (DYNAMICS); Global Budget of Stratospheric Trace Constituents (GLOBUS); Gravity Waves and Turbulence in the Middle Atmosphere Program (GRATMAP); Middle Atmosphere Electrodynamics (MAE); Winter in Northern Europe (WINE); Atmospheric Tides Middle Atmosphere Program (ATMAP); and many others.

  4. 50 CFR 679.93 - Amendment 80 Program recordkeeping, permits, monitoring, and catch accounting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED... storage. There is sufficient space to accommodate a minimum of 10 observer sampling baskets. This space... manager, and any observers assigned to the vessel. (8) Belt and flow operations. The vessel operator stops...

  5. MONTHLY AND ANNUAL BIAS IN WEEKLY (NADP/NTN) VERSUS DAILY (AIRMON) PRECIPITATION CHEMISTRY DATA IN THE EASTERN USA

    EPA Science Inventory

    Previous comparisons of the data from the National Atmospheric Deposition Program (NADP) National Trends Network (NTN) against collocated event- and daily-sampled data suggest a substantial bias in the concentration of ammonium [NH4+] and concentrations of several base cations,...

  6. PRECISION OF ATMOSPHERIC DRY DEPOSITION DATA FROM THE CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET)

    EPA Science Inventory

    A collocated, dry deposition sampling program was begun in January 1987 by the US Environmental Protection Agency to provide ongoing estimates of the overall precision of dry deposition and supporting data entering the Clean Air Status and Trends Network (CASTNet) archives Duplic...

  7. Study of airborne science experiment management concepts for application to space shuttle. Volume 3: Appendixes

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729.

  8. Atmospheric/Space Environment Support Lessons Learned Regarding Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2005-01-01

    In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.

  9. Aircraft measurements of trace gases and particles near the tropopause

    NASA Technical Reports Server (NTRS)

    Falconer, P.; Pratt, R.; Detwiler, A.; Chen, C. S.; Hogan, A.; Bernard, S.; Krebschull, K.; Winters, W.

    1983-01-01

    Research activities which were performed using atmospheric constituent data obtained by the NASA Global Atmospheric Sampling Program are described. The characteristics of the particle size spectrum in various meteorological settings from a special collection of GASP data are surveyed. The relationship between humidity and cloud particles is analyzed. Climatological and case studies of tropical ozone distributions measured on a large number of flights are reported. Particle counter calibrations are discussed as well as the comparison of GASP particle data in the upper troposphere with other measurements at lower altitudes over the Pacific Ocean.

  10. Atmospheric CO2 Records from Sites in the Atmospheric Environment Service Air Sampling Network (1975 and 1994)

    DOE Data Explorer

    Trivett, N. B.A. [Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada

    1997-01-01

    From the mid-1970s through the mid-1990s, air samples were collected for the purposes of monitoring atmospheric CO2 from four sites in the AES air sampling network. Air samples were collected approximately once per week, between 12:00 and 16:00 local time, in a pair of evacuated 2-L thick-wall borosilicate glass flasks. Samples were collected under preferred conditions of wind speed and direction (i.e., upwind of the main station and when winds are strong and steady). The flasks were evacuated to pressures of ~1 × 10-4 mbar or 0.01 Pa prior to being sent to the stations. The airwas not dried during sample collection. The flask data from Alert show an increase in the annual atmospheric CO2 concentration from 341.35 parts per million by volume (ppmv) in 1981 to 357.21 ppmv in 1991. For Cape St. James, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.43 ppmv per year. In August 1992, the weather station at Cape St. James was automated; as a result, the flask sampling program was discontinued at this site. Estevan Point, on the West Coast of Vancouver Island, was chosen as a replacement station. Sampling at Estevan Point started in 1992; thus, the monthly and annual CO2record from Estevan Point is too short to show any long-term trends. The sampling site at Sable Island, off the coast of Nova Scotia, was established in 1975. The flask data from Sable Island show an increase in the annual atmospheric CO2 concentration from 334.49 parts per million by volume (ppmv) in 1977 (the first full year of data) to 356.02 ppmv in 1990. For Sable Island, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.48 ppmv per year.

  11. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network, 2002-03

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Burke, Kevin P.

    2005-01-01

    Six external quality-assurance programs were operated by the U.S. Geological Survey (USGS) External Quality-Assurance (QA) Project for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) from 2002 through 2003. Each program measured specific components of the overall error inherent in NADP/NTN wet-deposition measurements. The intersite-comparison program assessed the variability and bias of pH and specific conductance determinations made by NADP/NTN site operators twice per year with respect to accuracy goals. The percentage of site operators that met the pH accuracy goals decreased from 92.0 percent in spring 2002 to 86.3 percent in spring 2003. In these same four intersite-comparison studies, the percentage of site operators that met the accuracy goals for specific conductance ranged from 94.4 to 97.5 percent. The blind-audit program and the sample-handling evaluation (SHE) program evaluated the effects of routine sample handling, processing, and shipping on the chemistry of weekly NADP/NTN samples. The blind-audit program data indicated that the variability introduced by sample handling might be environmentally significant to data users for sodium, potassium, chloride, and hydrogen ion concentrations during 2002. In 2003, the blind-audit program was modified and replaced by the SHE program. The SHE program was designed to control the effects of laboratory-analysis variability. The 2003 SHE data had less overall variability than the 2002 blind-audit data. The SHE data indicated that sample handling buffers the pH of the precipitation samples and, in turn, results in slightly lower conductivity. Otherwise, the SHE data provided error estimates that were not environmentally significant to data users. The field-audit program was designed to evaluate the effects of onsite exposure, sample handling, and shipping on the chemistry of NADP/NTN precipitation samples. Field-audit results indicated that exposure of NADP/NTN wet-deposition samples to onsite conditions tended to neutralize the acidity of the samples by less than 1.0 microequivalent per liter. Onsite exposure of the sampling bucket appeared to slightly increase the concentration of most of the analytes but not to an extent that was environmentally significant to NADP data users. An interlaboratory-comparison program was used to estimate the analytical variability and bias of the NADP Central Analytical Laboratory (CAL) during 2002-03. Bias was identified in the CAL data for calcium, magnesium, sodium, potassium, ammonium, chloride, nitrate, sulfate, hydrogen ion, and specific conductance, but the absolute value of the bias was less than analytical minimum detection limits for all constituents except magnesium, nitrate, sulfate, and specific conductance. Control charts showed that CAL results were within statistical control approximately 90 percent of the time. Data for the analysis of ultrapure deionized-water samples indicated that CAL did not have problems with laboratory contamination. During 2002-03, the overall variability of data from the NADP/NTN precipitation-monitoring system was estimated using data from three collocated monitoring sites. Measurement differences of constituent concentration and deposition for paired samples from the collocated samplers were evaluated to compute error terms. The medians of the absolute percentage errors (MAEs) for the paired samples generally were larger for cations (approximately 8 to 50 percent) than for anions (approximately 3 to 33 percent). MAEs were approximately 16 to 30 percent for hydrogen-ion concentration, less than 10 percent for specific conductance, less than 5 percent for sample volume, and less than 8 percent for precipitation depth. The variability attributed to each component of the sample-collection and analysis processes, as estimated by USGS quality-assurance programs, varied among analytes. Laboratory analysis variability accounted for approximately 2 percent of the

  12. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    DOE PAGES

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; ...

    2016-07-01

    We integrated an aerodynamic levitator with carbon dioxide laser beam heating with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. Furthermore, the chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The samplemore » environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. Our system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.« less

  13. Use of Landsat-based monitoring of forest change to sample and assess the role of disturbance and regrowth in the carbon cycle at continental scales

    Treesearch

    Warren B. Cohen; Sean P. Healey; Samuel Goward; Gretchen G. Moisen; Jeffrey G. Masek; Robert E. Kennedy; Scott L. Powell; Chengquan Huang; Nancy Thomas; Karen Schleeweis; Michael A. Wulder

    2007-01-01

    The exchange of carbon between forests and the atmosphere is a function of forest type, climate, and disturbance history, with previous studies illustrating that forests play a key role in the terrestrial carbon cycle. The North American Carbon Program (NACP) has supported the acquisition of biennial Landsat image time-series for sample locations throughout much of...

  14. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network, 1997-99

    USGS Publications Warehouse

    Gordon, John D.; Latysh, Natalie E.; Lindholm, Sandy J.

    2003-01-01

    Five external quality-assurance programs were operated by the U.S. Geological Survey for the National Atmospheric Deposition Program/ National Trends Network (NADP/NTN) during 1997 through 1999: the intersite-comparison program, the blind-audit program, the field- audit program, the interlaboratory-comparison program, and the collocated-sampler program. The intersite-comparison program assesses the accuracy of pH and specific-conductance determinations made by NADP/NTN site operators. In two 1997 intersite-comparison studies, 83.7 and 85.8 percent of the pH determinations met the NADP/NTN accuracy goals, whereas 97.3 and 92.4 percent of the specific-conductance determinations met the NADP/NTN accuracy goals. The percentage of pH and specific-conductance determinations that met the accuracy goals in 1998 were, for the most part, higher than in 1997. In two 1998 studies, 90.9 and 90.3 percent of the pH determinations met the accuracy goals compared to 94.7 and 96.0 percent of the specific- conductance measurements meeting the accuracy goals. In one 1999 intersite-comparison study, 89.5 percent and 99.4 percent of pH and specific- conductance determinations, respectively, met the NADP/NTN accuracy goals. The blind-audit program evaluates the effects of routine sample handling, processing, and shipping on the analytical bias and precision of weekly precipitation samples. A portion of the blind-audit sample subject to the normal onsite handling and processing of a weekly precipitation sample is referred to as the bucket portion, whereas the portion receiving only minimal handling is referred to as the bottle portion. Positive bias in regard to blind-audit results indicates that the bucket portion has a higher concentration than the bottle portion. The paired t-test for the 1997 through 1999 blind- audit data indicates that routine sample handling, processing, and shipping introduced a positive bias (a=0.05) for calcium and chloride and a negative bias (cz=0.05) for hydrogen ion. During 1997 through 1999, the median paired differences between the bucket and bottle portions ranged from 0.00 milligram per liter for nitrate and ammonium to +0.010 milligram per liter for both chloride and sulfate. The median paired difference between the bucket and bottle portions for hydrogen ion was -1.086 microequivalents per liter, whereas for specific conductance, the median paired difference between the bucket and bottle portions was -0.200 microsiemen per centimeter during 1997 through 1999. Surface-chemistry effects due to variable amounts of precipitation contacting prewashed sample-collection and shipping-container surfaces were studied in the blind-audit program by using three different sample volumes. The sample- collection and shipping containers used for the blind-audit study were obtained from the site operator's supply and could have been used for precipitation samples. Results of a Kruskal-Wallis analysis of variance test of the relation between paired blind-audit sample differences in units of concentration and sample volume were statistically significant for magnesium, chloride, sulfate, and hydrogen ion during 1997 through 1999. Before 1994, at least 5 of the 10 analytes displayed a statistically significant difference between paired blind-audit differences in units of concentration and sample volume, supporting the premise that chemical reactions between the 13-liter bucket shipping container (primarily the butadiene o-ring lid of the shipping container) and the sample, which resulted in an increasing loss of hydrogen ion with increasing volume, have been eliminated by the new l-liter bottle sample- shipping protocol. The field-audit program measures the effects of field exposure, handling, and processing on the chemistry of NADP/NTN precipitation samples. In the field-audit program, the site operator is instructed to process and submit a quality- control sample following a standard 7-day, Tuesday-to-Tuesday sampling period with no

  15. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less

  16. External quality-assurance project report for the National Atmospheric Deposition Program/National Trends Network and Mercury Deposition Network, 2009-2010

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn; Rhodes, Mark F.; Chesney, Tanya A.

    2014-01-01

    The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2009–2010. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL) and Mercury (Hg) Analytical Laboratory (HAL). The blind-audit program was also implemented for the MDN to evaluate analytical bias in total Hg concentration data produced by the HAL. The co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and precipitation collectors that use optical sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Results also suggest that retrofit of the NADP networks with the new precipitation collectors could cause –8 to +14 percent shifts in NADP annual precipitation-weighted mean concentrations and total deposition values for ammonium, nitrate, sulfate, and hydrogen ion, and larger shifts (+13 to +74 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector is more efficient in the catch of precipitation in winter than Aerochem Metrics Model 301 collector, especially for light snowfall.

  17. U.S. Geological Survey external quality-assurance project report for the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2011-2012

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2014-01-01

    The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program (NADP) / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2011–2012. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory and Mercury Analytical Laboratory (HAL). A blind-audit program was implemented for the MDN during 2011 to evaluate analytical bias in HAL total mercury concentration data. The co-located–sampler program was used to identify and quantify potential shifts in NADP data resulting from the replacement of original network instrumentation with new electronic recording rain gages and precipitation collectors that use optical precipitation sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Co-located rain gage results indicate -3.7 to +6.5 percent bias in NADP precipitation-depth measurements. Co-located collector results suggest that the retrofit of the NADP networks with the new precipitation collectors could cause +10 to +36 percent shifts in NADP annual deposition values for ammonium, nitrate, and sulfate; -7.5 to +41 percent shifts for hydrogen-ion deposition; and larger shifts (-51 to +52 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector typically catches more precipitation than the NADP-approved Aerochem Metrics Model 301 collector.

  18. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  19. Middle Atmosphere Program. Handbook for MAP, volume 11

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1984-01-01

    An overview is presented of the research activities and objectives of the middle atmosphere program (MAP). Status reports are presented of projects underway in the area of middle atmosphere climatology and atmospheric chemistry condensed minutes of MAP steering committee meetings are contained in this volume. Research recommendations for increased U.S. participation in the middle atmosphere program are given.

  20. The Effects of an Inquiry Development Program on Elementary School Children's Science Learnings.

    ERIC Educational Resources Information Center

    Schlenker, George Charles

    This investigation presents a comparative study between a classroom atmosphere conducive to inquiry, with teachers considered qualified for this type of teaching, and the more formal didactic lecture-demonstration type teaching (traditional), with teachers judged to be particularly competent in this approach. The sample consisted of 582 pupils…

  1. NOAA Freedom of Information Act (FOIA) Training and Tutorials

    Science.gov Websites

    Commerce FOIA Program Sample Letters FOIA Training and Tutorials FOIA Training and Tutorials Welcome to the National Oceanic and Atmospheric Administration's (NOAA) Freedom of Information Act (FOIA)Training Tutorial Training Tutorial is listed alphabetically by subject, so that individuals will not have to read the entire

  2. 50 CFR 679.93 - Amendment 80 Program recordkeeping, permits, monitoring, and catch accounting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED... space to accommodate a minimum of 10 observer sampling baskets. This space must be within or adjacent to... observers assigned to the vessel. (8) Belt and flow operations. The vessel operator stops the flow of fish...

  3. Rocky Mountain snowpack chemistry network; history, methods, and the importance of monitoring mountain ecosystems

    USGS Publications Warehouse

    Ingersoll, George P.; Turk, John T.; Mast, M. Alisa; Clow, David W.; Campbell, Donald H.; Bailey, Zelda C.

    2002-01-01

    Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey to more thoroughly determine the quality of precipitation and to identify sources of atmospherically deposited pollution in a network of high-elevation sites. Depth-integrated samples of seasonal snowpacks at 52 sampling sites, in a network from New Mexico to Montana, were collected and analyzed each year since 1993. The results of the first 5 years (1993?97) of the program are discussed in this report. Spatial patterns in regional data have emerged from the geographically distributed chemical concentrations of ammonium, nitrate, and sulfate that clearly indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Snowpacks in northern Colorado that lie adjacent to both the highly developed Denver metropolitan area to the east and coal-fired powerplants to the west had the highest overall concentrations of nitrate and sulfate in the network. Ammonium concentrations were highest in northwestern Wyoming and southern Montana.

  4. Analysis of atmospheric ozone measurements made from a B-747 airliner during March 1975

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Falconer, P. D.

    1976-01-01

    Measurements of atmospheric ozone in the upper troposphere and lower stratosphere made during March 1975 as part of the NASA Global Atmospheric Sampling Program are reported and analyzed. The interrelationships between the ozone mixing ratio and geographical and meteorological parameters are examined in several case studies. The ozone data correlate well with the difference between the flight altitude and the height of the tropopause, as obtained from National Meteorological Center gridded data. The distribution of ozone mixing ratios with latitude at an altitude of 11 + or - 0.5 km shows a poleward increase and large variability at latitudes greater than 30 deg N in agreement with published mean ozone levels from the North American ozone sonde network.

  5. Middle Atmosphere Program. Handbook for MAP, Volume 7

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    Completed and proposed research relating to the Middle Atmosphere Program is discussed. Emphasis is given to the winters in the Northern Hemisphere, the equatorial atmosphere, meteor observation, solar irradiance, atmospheric temperature, geopotential height, atmospheric circulation, and electrodynamics.

  6. In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim\\, Tasmania\\, Australia,1982-1993 (DB1014)

    DOE Data Explorer

    Francey, R. J. [CSIRO Division of Atmospheric Research, Mordialloc, Victoria, Australia; Allison, C. E. [CSIRO Division of Atmospheric Research, Mordialloc, Victoria, Australia

    1998-01-01

    Since 1982, a continuous program of sampling atmospheric CO2 to determine stable isotope ratios has been maintained at the Australian Baseline Air Pollution Station, Cape Grim, Tasmania (40°, 40'56"S, 144°, 41'18"E). The process of in situ extraction of CO2 from air, the preponderance of samples collected in conditions of strong wind from the marine boundary layer of the Southern Ocean, and the determination of all isotope ratios relative to a common high purity CO2 reference gas with isotopic δ13C close to atmospheric values, are a unique combination of factors with respect to obtaining a globally representative signal from a surface site. Air samples are collected during baseline condition episodes at a frequency of around one sample per week. Baseline conditions are characterized by wind direction in the sector 190°-280°, condensation nucleus concentration below 600 per cm-3, and steady continuous CO2 concentrations (variation ± 0.2 ppmv per hour). A vacuum pump draws air from either the 10 m or 70 m intakes and sampling alternates between the two intakes. The air from the intake is dried with a trap immersed in an alcohol bath at about -80°C. Mass spectrometer analyses for δ13C and δ18O are carried out by CSIRO's Division of Atmospheric Research in Aspendale, usually one to three weeks following collection. This record is possibly the most accurate representation of global atmospheric 13C behavior over the last decade and may be used to partition the uptake of fossil-fuel carbon emissions between ocean and terrestrial plant reservoirs. Using these data, Francey et al. (1995) observed a gradual decrease in δ13C from 1982 to 1993, but with a pronounced flattening from 1988 to 1990; a trend that appears to involve the terrestrial carbon cycle.

  7. NASA/MSFC FY90 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1990-01-01

    Research supported by the Global Atmospheric Research Program at the Marshall Space Flight Center on atmospheric remote sensing, meteorology, numerical weather forecasting, satellite data analysis, cloud precipitation, atmospheric circulation, atmospheric models and related topics is discussed.

  8. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload. The GCMS would obtain samples directly from the atmosphere at the surface and also from gases evolved from solid phase material collected from well below the surface with a Sample Acquisition and Transport Mechanism (SATM). The experiment envisioned in the Mars Micromission described would obtain samples from a much greater depth of up to one meter below the surface, and would search for organic molecules trapped in ancient stratified layers well below the oxidized surface. Insitu instruments on upcoming NASA missions working in concert with remote sensing measurement techniques have the potential to provide a more detailed investigation of mineralogy and the extent of simple volatiles such as CO2 and H2O in surface and subsurface solid phase materials. Within the context of subsequent mission opportunities such as those provided by the Ariane 5 piggyback payload based Micromissions, it is essential to implement an even broader chemical analysis and to enable a significant extension of previous isotope measurements. Such a development would enhance the presently very active study of questions of atmospheric evolution and loss and past climatic conditions. The method selected to implement this program can be based on well-established mass spectrometry techniques. Sampled gas is chemically and physically processed to separate the gas mixture into components using gas chromatograph and related enrichment techniques. This allows trace species to be identified and reveals isotopic distributions in many cases with improved precision. Samples of interest, such as organic molecules, may lie deep below the highly oxidized surface layer and the suggested program includes enhanced sampling techniques to measure volatiles preserved in solid phase material deep below the surface as well as gas from the well mixed atmosphere.

  9. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  10. Using box models to quantify zonal distributions and emissions of halocarbons in the background atmosphere.

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Montzka, S. A.; Hall, B. D.; Miller, B.; Butler, J. H.; Mondeel, D. J.; Siso, C.; Moore, F. L.; Hintsa, E. J.; Wofsy, S. C.; Rigby, M. L.

    2015-12-01

    The Halocarbons and other Atmospheric Trace Species (HATS) of NOAA's Global Monitoring Division started measurements of the major chlorofluorocarbons and nitrous oxide in 1977 from flask samples collected at five remote sites around the world. Our program has expanded to over 40 compounds at twelve sites, which includes six in situ instruments and twelve flask sites. The Montreal Protocol for Substances that Deplete the Ozone Layer and its subsequent amendments has helped to decrease the concentrations of many of the ozone depleting compounds in the atmosphere. Our goal is to provide zonal emission estimates for these trace gases from multi-box models and their estimated atmospheric lifetimes in this presentation and make the emission values available on our web site. We plan to use our airborne measurements to calibrate the exchange times between the boxes for 5-box and 12-box models using sulfur hexafluoride where emissions are better understood.

  11. Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)

    EPA Science Inventory

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...

  12. CLOUD CHEMISTRY IN THE EASTERN UNITED STATES, AS SAMPLED FROM THREE HIGH-ELEVATION SITES ALONG THE APPALACHIAN MOUNTAINS

    EPA Science Inventory

    Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends ...

  13. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    ERIC Educational Resources Information Center

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  14. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    PubMed Central

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples. PMID:17671615

  15. Atmospheric deposition to forests in the eastern USA

    USGS Publications Warehouse

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.

  16. Atmospheric mercury deposition to forests in the eastern USA.

    PubMed

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors. Published by Elsevier Ltd.

  17. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-03-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.

  18. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0015, VL0016, VL0017, VL0018, VL0019, and VL0020

    NASA Technical Reports Server (NTRS)

    Papthakos, L. C.; Briehl, D.

    1981-01-01

    This is the twelfth of a series of reports which describes the data currently available from GASP, including flight routes and dates, instrumentation, data processing procedures, and data tape specifications. In-situ measurements of atmospheric ozone, cabin ozone, carbon monoxide, water vapor, particles, clouds, condensation nuclei, filter samples and related meteorological and flight information obtained during 1732 flights of aircraft N533PA, N4711U, N655PA, and VH-EBE from January 5, 1978 through October 9, 1978 are reported. These data are now available from the National Climatic Center, Asheville, NC, 22801. In addition to the GASP data, tropopause pressures obtained from time ans space interpolation of National Meteorological Center archived data for the dates of the flights are included.

  19. Onboard measurement system of atmospheric carbon monoxide in the Pacific by voluntary observing ships

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Nojiri, Y.; Mukai, H.; Machida, T.; Tohjima, Y.

    2011-11-01

    Long-term monitoring of carbon monoxide (CO) mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruise routes: from Japan to Oceania, the United States, Canada, and Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv) and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3-5 years. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises.

  20. Onboard measurement system of atmospheric carbon monoxide over the Pacific Ocean by voluntary observing ships

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Nojiri, Y.; Mukai, H.; Machida, T.; Tohjima, Y.

    2011-07-01

    Long-term monitoring of carbon monoxide (CO) mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruising routes: from Japan to Oceania, from Japan to the United States, from Japan to Canada, and from Japan to Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv) and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards (CO balanced with purified air at ppmv levels) during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3-5 yr. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises.

  1. A modular radiative transfer program for gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1977-01-01

    The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.

  2. A new processing scheme for ultra-high resolution direct infusion mass spectrometry data

    NASA Astrophysics Data System (ADS)

    Zielinski, Arthur T.; Kourtchev, Ivan; Bortolini, Claudio; Fuller, Stephen J.; Giorio, Chiara; Popoola, Olalekan A. M.; Bogialli, Sara; Tapparo, Andrea; Jones, Roderic L.; Kalberer, Markus

    2018-04-01

    High resolution, high accuracy mass spectrometry is widely used to characterise environmental or biological samples with highly complex composition enabling the identification of chemical composition of often unknown compounds. Despite instrumental advancements, the accurate molecular assignment of compounds acquired in high resolution mass spectra remains time consuming and requires automated algorithms, especially for samples covering a wide mass range and large numbers of compounds. A new processing scheme is introduced implementing filtering methods based on element assignment, instrumental error, and blank subtraction. Optional post-processing incorporates common ion selection across replicate measurements and shoulder ion removal. The scheme allows both positive and negative direct infusion electrospray ionisation (ESI) and atmospheric pressure photoionisation (APPI) acquisition with the same programs. An example application to atmospheric organic aerosol samples using an Orbitrap mass spectrometer is reported for both ionisation techniques resulting in final spectra with 0.8% and 8.4% of the peaks retained from the raw spectra for APPI positive and ESI negative acquisition, respectively.

  3. Balloon-Borne Full-Column Greenhouse Gas Profiling Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Marc L

    The vertical distributions of CO2, CH4, and other gases provide important constraints for the determination of terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The DOE Biological and Environmental Research Program (DOE-BER) and the NOAA Earth System Research Laboratory (NOAA-ESRL) collaborate to quantify the vertically resolved distribution of atmospheric carbon-cycle gases (CO2, and CH4) within approximately 99% of the atmospheric column at the DOE ARM Southern Great Plains Facility in Oklahoma. In 2015, flights were delayed while research at NOAA focused on evaluating sources of systematic errors in the gas collection andmore » analysis system and modifying the sampling system to provide duplicate air samples in a single flight package. In 2017, we look forward to proposing additional sampling and analysis at ARM-SGP (and other sites) that characterize the vertical distribution of CO2 and CH4 over time and space.« less

  4. Rainfall and runoff quantity and quality data collected at four urban land-use catchments in Fresno, California, October 1981-April 1983

    USGS Publications Warehouse

    Oltmann, R.N.; Guay, J.R.; Shay, J.M.

    1987-01-01

    Data were collected as part of the National Urban Runoff Program to characterize urban runoff in Fresno, California. Rainfall-runoff quantity and quality data are included along with atmospheric dry-deposition and street-surface particulate quality data. The data are presented in figures and tables that reflect four land uses: industrial, single-dwelling residential, multiple-dwelling residential, and commercial. A total of 255 storms were monitored for rainfall and runoff quantity. Runoff samples from 112 of these storms were analyzed for physical, organic, inorganic, and biological constituents. The majority of the remaining storms have pH and specific conductance data only. Ninety-two composite rain samples were collected. Of these, 63 were analyzed for physical, inorganic, and (or) organic constituents. The remaining rainfall samples have pH and specific conductance data only. Nineteen atmospheric deposition and 21 street-particulate samples were collected and analyzed for inorganic and organic constituents. The report also details equipment utilization and operation, and discusses data collection methods. (USGS)

  5. Laboratory Studies of Alkali Components in Tenuous Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.

    2004-05-01

    We report on studies performed at the Laboratory for Surface Modification of Rutgers University and focused on the origin of alkali vapors (Na, K) in the tenuous atmospheres of the planet Mercury, the Moon, and Jupiter's icy satellite Europa [1, 2]; we also address the question why alkaline-earth metals (Mg, Ca) are less abundant in the atmospheres. A variety of ultrahigh-vacuum surface science techniques are used, including X-ray Photoelectron Spectroscopy (XPS), Low-Energy Ion Scattering (LEIS), Thermal Programmed Desorption (TPD), Electron- and Photon-Stimulated Desorption (ESD and PSD), Surface Ionization (SI). Measurements have been made on different samples, including the model mineral binary oxide SiO2 that simulates lunar silicates, and a lunar sample obtained from NASA. Desorption induced by electronic excitations (mainly PSD) rather than by thermal processes is found to be the dominant source process on the lunar surface. The flux at the lunar surface of ultraviolet photons from the Sun is adequate to insure that PSD of sodium contributes substantially to the Moon's atmosphere. A model based on irradiation-induced charge-transfer is proposed to explain the desorption process. There is a strong temperature-dependence of Na ESD and PSD signals from a lunar sample, under conditions where the Na surface coverage is constant and thermal desorption is negligible [3]. On Mercury solar heating of the surface is high enough that thermal desorption will also be a potential source of atmospheric sodium. Ion bombardment of the lunar sample causes both the sputtering of alkali atoms into vacuum and implantation into the sample bulk. In the future we outline the use a novel method, Nuclear Resonance Profiling (NRP) to study the diffusion of alkalis through model minerals, ices, and lunar samples; these measurements would provide additional information to understand the replenishment of Na at the surface of the Moon, Mercury and Europa. We also describe a new detector that we will use to search for desorption of alkaline-earth atoms. [1] T.E. Madey, R.E. Johnson, T.M. Orlando, Surf. Sci. 500 (2002) 838. [2] B.V. Yakshinskiy, T.E. Madey, Surf. Sci. 528 (2003) 54. [3] B.V. Yakshinskiy, T.E. Madey, Icarus 168 (2004) 53.

  6. The continuous measurement of hydrogen chloride in the ambient atmosphere using the dual isotope infrared absorption technique

    NASA Technical Reports Server (NTRS)

    Williams, K. G.

    1974-01-01

    The results of a program to develop a prototype gas filter correlation NDIR analyzer capable of providing the required HCl measurement capability, while maintaining an adequate rejection of any other gases anticipated in the atmosphere are presented. Examples of the performance of the prototype analyzer are presented which show an rms noise equivalent concentration of 0.06 ppm of HCl was achieved while maintaining an electronically determined 10% to 90% time response to gas samples of about 2 seconds. No measureable response was observed to CO2, CO, and H2O while maintaining an adequate rejection of the hydrocarbons, for example CH4 and n-hexane. The experiments were performed which demonstrate that the span stability of the HCl gas filter correlation analyzer is unaffected by the presence of water vapor and which support the belief that the incorporation of a relatively open-volume, multiple path sample cell into the instrument would enable ground station as well as airborne measurements of trace quantities of HCl in the ambient atmosphere to be performed.

  7. Recent Rainfall and Aerosol Chemistry From Bermuda

    NASA Astrophysics Data System (ADS)

    Landing, W. M.; Shelley, R.; Kadko, D. C.

    2014-12-01

    This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.

  8. The atmospheric effects of stratospheric aircraft: A third program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.

  9. Middle Atmosphere Program. Handbook for MAP, Volume 17

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1985-01-01

    The Middle Atmosphere Program (MAP) handbook is divided into three parts. Part 1 consists of minutes of MAP steering committee meeting and MAP assembly. Part 2 consists of project and study group reports, such as: (1) Atmospheric Tides Middle Atmosphere Program (ATMAP), report of the Nov./Dec. 1981, and May 1982 observational campaigns; MAP/WINE experimenters meeting at Berlin, 1985; (3) MAP/WINE experimenters meeting at Loen, Norway, 1985; and (4) the penetration of ultraviolet solar radiation into the middle atmosphere. Part 3 consists of national reports.

  10. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  11. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  12. MarsVac: Pneumatic Sampling System for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

    2008-12-01

    We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

  13. Construction of Hierarchical Models for Fluid Dynamics in Earth and Planetary Sciences : DCMODEL project

    NASA Astrophysics Data System (ADS)

    Takahashi, Y. O.; Takehiro, S.; Sugiyama, K.; Odaka, M.; Ishiwatari, M.; Sasaki, Y.; Nishizawa, S.; Ishioka, K.; Nakajima, K.; Hayashi, Y.

    2012-12-01

    Toward the understanding of fluid motions of planetary atmospheres and planetary interiors by performing multiple numerical experiments with multiple models, we are now proceeding ``dcmodel project'', where a series of hierarchical numerical models with various complexity is developed and maintained. In ``dcmodel project'', a series of the numerical models are developed taking care of the following points: 1) a common ``style'' of program codes assuring readability of the software, 2) open source codes of the models to the public, 3) scalability of the models assuring execution on various scales of computational resources, 4) stressing the importance of documentation and presenting a method for writing reference manuals. The lineup of the models and utility programs of the project is as follows: Gtool5, ISPACK/SPML, SPMODEL, Deepconv, Dcpam, and Rdoc-f95. In the followings, features of each component are briefly described. Gtool5 (Ishiwatari et al., 2012) is a Fortran90 library, which provides data input/output interfaces and various utilities commonly used in the models of dcmodel project. A self-descriptive data format netCDF is adopted as a IO format of Gtool5. The interfaces of gtool5 library can reduce the number of operation steps for the data IO in the program code of the models compared with the interfaces of the raw netCDF library. Further, by use of gtool5 library, procedures for data IO and addition of metadata for post-processing can be easily implemented in the program codes in a consolidated form independent of the size and complexity of the models. ``ISPACK'' is the spectral transformation library and ``SPML (SPMODEL library)'' (Takehiro et al., 2006) is its wrapper library. Most prominent feature of SPML is a series of array-handling functions with systematic function naming rules, and this enables us to write codes with a form which is easily deduced from the mathematical expressions of the governing equations. ``SPMODEL'' (Takehiro et al., 2006) is a collection of various sample programs using ``SPML''. These sample programs provide the basekit for simple numerical experiments of geophysical fluid dynamics. For example, SPMODEL includes 1-dimensional KdV equation model, 2-dimensional barotropic, shallow water, Boussinesq models, 3-dimensional MHD dynamo models in rotating spherical shells. These models are written in the common style in harmony with SPML functions. ``Deepconv'' (Sugiyama et al., 2010) and ``Dcpam'' are a cloud resolving model and a general circulation model for the purpose of applications to the planetary atmospheres, respectively. ``Deepconv'' includes several physical processes appropriate for simulations of Jupiter and Mars atmospheres, while ``Dcpam'' does for simulations of Earth, Mars, and Venus-like atmospheres. ``Rdoc-f95'' is a automatic generator of reference manuals of Fortran90/95 programs, which is an extension of ruby documentation tool kit ``rdoc''. It analyzes dependency of modules, functions, and subroutines in the multiple program source codes. At the same time, it can list up the namelist variables in the programs.

  14. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  15. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer-tracer correlations are used to investigate sources and the correlations between NMHCs are used to analyze photochemical processing and transport.

  16. Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities.

    PubMed

    Rich, Alisa L; Orimoloye, Helen T

    2016-01-01

    The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.

  17. External quality-assurance results for the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2004

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Greene, Shannon M.

    2006-01-01

    The U.S. Geological Survey (USGS) used five programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and two programs to provide external quality-assurance monitoring for the NADP/Mercury Deposition Network (NADP/MDN) during 2004. An intersite-comparison program was used to estimate accuracy and precision of field-measured pH and specific-conductance. The variability and bias of NADP/NTN data attributed to field exposure, sample handling and shipping, and laboratory chemical analysis were estimated using the sample-handling evaluation (SHE), field-audit, and interlaboratory-comparison programs. Overall variability of NADP/NTN data was estimated using a collocated-sampler program. Variability and bias of NADP/MDN data attributed to field exposure, sample handling and shipping, and laboratory chemical analysis were estimated using a system-blank program and an interlaboratory-comparison program. In two intersite-comparison studies, approximately 89 percent of NADP/NTN site operators met the pH measurement accuracy goals, and 94.7 to 97.1 percent of NADP/NTN site operators met the accuracy goals for specific conductance. Field chemistry measurements were discontinued by NADP at the end of 2004. As a result, the USGS intersite-comparison program also was discontinued at the end of 2004. Variability and bias in NADP/NTN data due to sample handling and shipping were estimated from paired-sample concentration differences and specific conductance differences obtained for the SHE program. Median absolute errors (MAEs) equal to less than 3 percent were indicated for all measured analytes except potassium and hydrogen ion. Positive bias was indicated for most of the measured analytes except for calcium, hydrogen ion and specific conductance. Negative bias for hydrogen ion and specific conductance indicated loss of hydrogen ion and decreased specific conductance from contact of the sample with the collector bucket. Field-audit results for 2004 indicate dissolved analyte loss in more than one-half of NADP/NTN wet-deposition samples for all analytes except chloride. Concentrations of contaminants also were estimated from field-audit data. On the basis of 2004 field-audit results, at least 25 percent of the 2004 NADP/NTN concentrations for sodium, potassium, and chloride were lower than the maximum sodium, potassium, and chloride contamination likely to be found in 90 percent of the samples with 90-percent confidence. Variability and bias in NADP/NTN data attributed to chemical analysis by the NADP Central Analytical Laboratory (CAL) were comparable to the variability and bias estimated for other laboratories participating in the interlaboratory-comparison program for all analytes. Variability in NADP/NTN ammonium data evident in 2002-03 was reduced substantially during 2004. Sulfate, hydrogen-ion, and specific conductance data reported by CAL during 2004 were positively biased. A significant (a = 0.05) bias was identified for CAL sodium, potassium, ammonium, and nitrate data, but the absolute values of the median differences for these analytes were less than the method detection limits. No detections were reported for CAL analyses of deionized-water samples, indicating that contamination was not a problem for CAL. Control charts show that CAL data were within statistical control during at least 90 percent of 2004. Most 2004 CAL interlaboratory-comparison results for synthetic wet-deposition solutions were within ?10 percent of the most probable values (MPVs) for solution concentrations except for chloride, nitrate, sulfate, and specific conductance results from one sample in November and one specific conductance result in December. Overall variability of NADP/NTN wet-deposition measurements was estimated during water year 2004 by the median absolute errors for weekly wet-deposition sample concentrations and precipitation measurements for tw

  18. Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)

    2002-01-01

    Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.

  19. AMS Measurements of South American Rainwater Samples

    NASA Astrophysics Data System (ADS)

    Fernandez Niello, J. O.; Alvarez, D. E.; Ferrero, A. M. J.; Capurro, O. A.; Abriola, D.; Marti, G. V.; Pacheco, A. J.; Testoni, J. E.; Liberman, R. G.; Knie, K.; Korschinek, G.

    1999-05-01

    Accelerator mass spectrometry (AMS) is one of the most powerful applications of heavy-ion beams in fields not directly related to nuclear physics basic research. The development of this highly sensitive technique at the electrostatic accelerator of the TANDAR laboratory has recently been accomplished. Aiming at environmental applications of our AMS activities, we have established a research program using the long-lived radioisotope 36Cl as an atmospheric tracer, in cooperation with the AMS group of the Technical University of Munich. The subject of the investigation was the global fallout of 36Cl and its latitudinal distribution. Precipitation samples were collected at different latitudes in Argentina, Chile, and Antarctic, covering a range from 24° S to 62 ° S. The resulting 36Cl/Cl ratios varied from 1 × 10-14 to 62 × 10-14. Systematics studies of this radioisotope may provide a monitor for atmospheric releases (anthropogenic contribution) and a baseline for natural 36Cl concentration.

  20. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Woodrum, A. W.

    1989-01-01

    GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.

  1. Temperature histories of commercial flights at severe conditions from GASP data

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.

    1983-01-01

    The thermal environment of commercial aircraft from a data set gathered during the Global Atmospheric Sampling Program (GASP) is studied. The data set covers a four-year period of measurements. The report presents plots of airplane location and speed and atmospheric temperature as functions of elapsed time for 35 extreme-condition flights, selected by minimum values of several temperature parameters. One of these parameters, the severity factor, is an approximation of the in-flight wing-tank temperature. Representative low-severity-factor flight histories may be useful for actual temperature-profile inputs to design and research studies. Comparison of the GASP atmospheric temperatures to interpolated temperatures from National Meteorological Center and Global Weather Central analysis fields shows that the analysis temperatures are slightly biased toward warmer than actual temperatures, particularly over oceans and at extreme conditions.

  2. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.

  3. Global Observations of Inorganic Gases in the Remote Atmosphere - First Observations from the Atmospheric Tomography Mission (ATom)

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Neuman, J. A.

    2017-12-01

    The Atmospheric Tomography Mission (ATom) is a NASA field program that investigates the impact of human emissions on air quality and climate in remote regions of the atmosphere. NASA DC-8 flights during the ATom sampled the atmosphere over the Pacific and Atlantic Oceans, up to 12 km altitude and nearly from pole to pole. New observations of key species (e.g. N2O5, reactive halogens, nitrous acid) in these regions are provided during the third deployment of the NASA DC-8 research aircraft (October, 2017) by the NOAA iodide ion time-of-flight chemical ionization mass spectrometer (iCIMS). In this study, we will present the first observations of inorganic gas-phase species using iCIMS from the ATom 3 deployment. Laboratory results detailing the instrument performance including inlet response times, background characterization and sensitivity will be presented. We will show vertical profiles of newly measured trace gases derived from in-situ observations, and discuss the potential impact on the NOx, NOy and reactive halogen budgets.

  4. The Atmospheric Constraint: What we Know About the State of the Carbon Cycle by Observing Carbon Dioxide and Methane

    NASA Astrophysics Data System (ADS)

    Denning, S.; Jacobson, A. R.; Miller, J. B.; Ballantyne, A.; Bruhwiler, L.; Chatterjee, A.; Davis, K. J.; Duncan, B. N.; Gurney, K. R.; Houghton, R. A.; Keppel-Aleks, G.; Michalak, A. M.; Ott, L.

    2016-12-01

    Much of what is known about the global carbon cycle has been learned by studying the time rate of change and spatial distribution of carbon gases in the atmosphere. In the past decade, the network of measurements of atmospheric CO2 and CH4 has increased by leaps and bounds. Observations now include many programs of sample collection; commercial as well as academic and government measurement programs; in-situ measurements from towers, ships, and aircraft; and new satellite sensors with near-global coverage. Quantitative estimates of regional budgets for both CO2 and CH4 require atmospheric tracer transport inversion. These methods have been further developed and improved in recent years and several groups are now providing updated regional fluxes using a suite of such models. Analysis of atmospheric CO2 has shown that ongoing sink processes continue to sequester about half of global fossil fuel emissions, with about half the sink activity on land and half in the oceans. Enhanced observing and improved inverse modeling of CO2 has been evaluated for smaller regions and shown to match direct carbon inventories. Aircraft sampling and satellite observations have finally begun to converge on the partition between tropical and extratropical land sinks and on the influence of climate variability. Additional tracers such as 13CO2, 14CO2, and COS as well as new remote sensing products such as solar induced fluorescence are helping carbon cycle scientists to better understand and predict sink mechanisms. An emerging area of work is the use of atmospheric data to conduct monitoring, reporting, and verification of emissions from point sources and cities. A major field campaign to study CO2 transport by convective and frontal storms is now underway. After a period of stable concentrations, concentrations of atmospheric CH4 have again begun to increase. Campaigns using mobile instruments and in-situ measurements made from fixed towers have established that leakage of CH4 associated with oil and gas extraction is greater than had previously been estimated. A dedicated field campaigns to study CH4 sources in the Arctic have carefully quantified emissions from seasonal sources such as wetlands and forests as well as point sources.

  5. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 2: Program/data listings

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included.

  6. External quality-assurance results for the national atmospheric deposition program/national trends network, 2000-2001

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Gordon, John D.

    2004-01-01

    Five external quality-assurance programs were operated by the U.S. Geological Survey for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) from 2000 through 2001 (study period): the intersite-comparison program, the blind-audit program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program is designed to measure specific components of the total error inherent in NADP/NTN wet-deposition measurements. The intersite-comparison program assesses the variability and bias of pH and specific-conductance determinations made by NADP/NTN site operators with respect to accuracy goals. The accuracy goals are statistically based using the median of all of the measurements obtained for each of four intersite-comparison studies. The percentage of site operators responding on time that met the pH accuracy goals ranged from 84.2 to 90.5 percent. In these same four intersite-comparison studies, 88.9 to 99.0 percent of the site operators met the accuracy goals for specific conductance. The blind-audit program evaluates the effects of routine sample handling, processing, and shipping on the chemistry of weekly precipitation samples. The blind-audit data for the study period indicate that sample handling introduced a small amount of sulfate contamination and slight changes to hydrogen-ion content of the precipitation samples. The magnitudes of the paired differences are not environmentally significant to NADP/NTN data users. The field-audit program (also known as the 'field-blank program') was designed to measure the effects of field exposure, handling, and processing on the chemistry of NADP/NTN precipitation samples. The results indicate potential low-level contamination of NADP/NTN samples with calcium, ammonium, chloride, and nitrate. Less sodium contamination was detected by the field-audit data than in previous years. Statistical analysis of the paired differences shows that contaminant ions are entrained into the solutions from the field-exposed buckets, but the positive bias that results from the minor amount of contamination appears to affect the analytical results by less than 6 percent. An interlaboratory-comparison program is used to estimate the analytical variability and bias of participating laboratories, especially the NADP Central Analytical Laboratory (CAL). Statistical comparison of the analytical results of participating laboratories implies that analytical data from the various monitoring networks can be compared. Bias was identified in the CAL data for ammonium, chloride, nitrate, sulfate, hydrogen-ion, and specific-conductance measurements, but the absolute value of the bias was less than analytical minimum reporting limits for all constituents except ammonium and sulfate. Control charts show brief time periods when the CAL's analytical precision for sodium, ammonium, and chloride was not within the control limits. Data for the analysis of ultrapure deionized-water samples indicated that the laboratories are maintaining good control of laboratory contamination. Estimated analytical precision among the laboratories indicates that the magnitudes of chemical-analysis errors are not environmentally significant to NADP data users. Overall precision of the precipitation-monitoring system used by the NADP/NTN was estimated by evaluation of samples from collocated monitoring sites at CA99, CO08, and NH02. Precision defined by the median of the absolute percent difference (MAE) was estimated to be approximately 10 percent or less for calcium, magnesium, sodium, chloride, nitrate, sulfate, specific conductance, and sample volume. The MAE values for ammonium and hydrogen-ion concentrations were estimated to be less than 10 percent for CA99 and NH02 but nearly 20 percent for ammonium concentration and about 17 percent for hydrogen-ion concentration for CO08. As in past years, the variability in the collocated-site data for sam

  7. Sentinel-5 instrument: status of design, performance, and development

    NASA Astrophysics Data System (ADS)

    Gühne, T.; Keim, C.; Bartsch, P.; Weiß, S.; Melf, M.; Seefelder, W.

    2017-09-01

    The Sentinel-5 instrument is currently under development by a consortium led by Airbus Defence and Space in the frame of the European Union Copernicus program. It is a customer furnished item to the MetOp Second Generation satellite platform, which will provide operational meteorological data for the coming decades. Mission objective of the Sentinel-5 is to monitor the composition of the Earth atmosphere for Copernicus Atmosphere Services by taking measurements of trace gases and aerosols impacting air quality and climate with high resolution and daily global coverage. Therefore the Sentinel-5 provides five dispersive spectrometers covering the UV-VIS (270…500 nm), NIR (685 …773 nm) and SWIR (1590…1675 and 2305…2385 nm) spectral bands with resolutions <=1nm. Spatially the Sentinel-5 provides a 108° field of view with a ground sampling of 7.5 x 7 km2 at Nadir. The development program is post PDR and the build-up of the industrial team is finalised. We report on the instrument architecture and design derived from the driving requirements, the predicted instrument performance, and the general status of the program.

  8. Results from the Air Force Geophysics Laboratory survey catalog. [IR astronomy

    NASA Technical Reports Server (NTRS)

    Price, S. D.; Walker, R. G.

    1977-01-01

    Results of an IR survey program designed to obtain the spatial and brightness distributions of a representative sample of IR-emitting objects in the 3-30 micron range are analyzed. Small cryogenically cooled telescopes carried above the atmosphere on sounding rockets were employed in the research. Minimization of sky noise and photon background, experimental equipment, and data reduction techniques are discussed.

  9. The NASA program on upper atmospheric research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of the NASA Upper Atmospheric Research Program is to develop a better understanding of the physical and chemical processes that occur in the earth's upper atmosphere with emphasis on the stratosphere.

  10. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  11. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    NASA Astrophysics Data System (ADS)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved program sustainability will be explored. NOAA Center for Atmospheric Science (NCAS) sponsors the CAREERS Weather Camps

  12. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  13. Quantitative determination of atmospheric hydroperoxyl radical

    DOEpatents

    Springston, Stephen R.; Lloyd, Judith; Zheng, Jun

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  14. An Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 Orbiter and Lander

    NASA Technical Reports Server (NTRS)

    Striepe, Scott A.; Queen, Eric M.; Powell, Richard W.; Braun, Robert D.; Cheatwood, F. McNeil; Aguirre, John T.; Sachi, Laura A.; Lyons, Daniel T.

    1998-01-01

    An Atmospheric Flight Team was formed by the Mars Surveyor Program '01 mission office to develop aerocapture and precision landing testbed simulations and candidate guidance algorithms. Three- and six-degree-of-freedom Mars atmospheric flight simulations have been developed for testing, evaluation, and analysis of candidate guidance algorithms for the Mars Surveyor Program 2001 Orbiter and Lander. These simulations are built around the Program to Optimize Simulated Trajectories. Subroutines were supplied by Atmospheric Flight Team members for modeling the Mars atmosphere, spacecraft control system, aeroshell aerodynamic characteristics, and other Mars 2001 mission specific models. This paper describes these models and their perturbations applied during Monte Carlo analyses to develop, test, and characterize candidate guidance algorithms.

  15. CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase

    NASA Technical Reports Server (NTRS)

    Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.

    2000-01-01

    A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the aerocapture phase of the MSR mission, the main principles of the guidance algorithms that are under development, the atmospheric entry simulators developed for the evaluations, the process for the evaluations, and preliminary results from the evaluations.

  16. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns weremore » undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.« less

  17. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  18. A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA

    USGS Publications Warehouse

    Naftz, D.L.; Schuster, P.F.; Johnson, C.A.

    2011-01-01

    Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (??15N, NO3-) and sulfur (??34SO42-), as well as NO3- and SO42- deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched ??34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining ??34S values were similar to the isotopic composition of coal from southern Wyoming. The ??15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 % and all fall within the ??15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s. ?? 2011 Naftz et al; licensee Chemistry Central Ltd.

  19. Error analysis of Dobson spectrophotometer measurements of the total ozone content

    NASA Technical Reports Server (NTRS)

    Holland, A. C.; Thomas, R. W. L.

    1975-01-01

    A study of techniques for measuring atmospheric ozone is reported. This study represents the second phase of a program designed to improve techniques for the measurement of atmospheric ozone. This phase of the program studied the sensitivity of Dobson direct sun measurements and the ozone amounts inferred from those measurements to variation in the atmospheric temperature profile. The study used the plane - parallel Monte-Carlo model developed and tested under the initial phase of this program, and a series of standard model atmospheres.

  20. Chemical pump study for Pioneer Venus program

    NASA Technical Reports Server (NTRS)

    Rotheram, M.

    1973-01-01

    Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.

  1. Loch Vale Watershed Project quality assurance report, 1995-1998

    USGS Publications Warehouse

    Allstott, E.J.; Bashkin, Michael A.; Baron, Jill S.

    1999-01-01

    The Loch Vale Watershed (LVWS) project was initiated in 1980 by the National Park Service with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Initial research objectives were to understand the processes that would either mitigate or accelerate the effects of pollution on soil and surface water chemistry, and to build a record in which long-term trends could be identified and examined.It is important for all data collected in Loch Vale to meet the high standards of quality set forth in previous LVWS QA/QC reports and LVWS Methods Manuals. Given the ever-widening usage of data collected in Loch Vale, it is equally important to provide users of that data with a report assuring that all data are sound. Parameters covered in this report are the quality of meteorological measurements, hydrological measurements, surface water chemistry, and similarities in catch efficiency of two raingage types in Loch Vale for the period of 1995-1998.Routine sampling of weather conditions, precipitation chemistry, and stream/lake water chemistry began in 1982. Since then, all samples and data have been analyzed according to widely accepted and published methods. Weather data have been collected, analyzed, and stored by LVWS project personnel. Methods for the handling of meteorological data are well documented (Denning 1988, Edwards 1991, Newkirk 1995,and Allstott 1995). Precipitation chemistry has always been collected according to National Atmospheric Deposition Program protocol (Bigelow 1988), and analyzed at the Central Analytical Laboratory of the Illinois State Water Survey in Champaign, IL. QA/QC procedures of the National Atmospheric Deposition Program are well documented (Aubertin 1990). Protocols for sampling surface waters are also well documented (Newkirk 1995). Analysis of surface water chemistry has been performed using standard EPA protocol at the US Forest Service's Rocky Mt. Station Biogeochemistry Laboratory since 1993.

  2. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  3. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  4. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al. reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  5. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  6. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  7. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network, 1995-96

    USGS Publications Warehouse

    Gordon, John D.

    1999-01-01

    The U.S. Geological Survey operated four external quality-assurance programs for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) in 1995 and 1996: the intersite-comparison program, the blind-audit program, the interlaboratory- comparison program, and the collocated-sampler program. The intersite-comparison program assessed the precision and bias of pH and specific-conductance determinations made by NADP/NTN site operators. The analytical bias introduced during routine handling, processing, and shipping of wet-deposition samples and precision of analyte values was estimated using a blind-audit program. An interlaboratory-comparison program was used to evaluate differences between analytical results and to estimate the analytical precision of five North American laboratories that routinely analyzed wet deposition. A collocated-sampler program estimated the precision of the overall precipitation collection and analysis system from initial sample collection through final storage of the data. Results of two intersite-comparison studies completed in 1995 indicated 94.6 and 94.4 percent of the onsite pH determinations met the NADP/NTN accuracy goals, whereas 97.2 and 98.3 percent of the specific-conductance determinations were within the established limits. The percentages of onsite determinations that met the accuracy goals in 1996 were slightly less for both pH and specific-conductance than in 1995. In 1996, 93.2 and 87.5 percent of onsite pH determinations met the accuracy goals, whereas the percentage of onsite specific-conductance measurements that met the goals was 93.9 and 94.9 percent.The blind audit program utilizes a paired sample design to evaluate the effects of routine sample handling, processing and shipping on the chemistry of weekly precipitation samples. The portion of the blind audit sample subject to all of the normal onsite handling and processing steps of a regular weekly precipitation sample is referred to as the bucket portion, whereas the portion receiving only minimal handling is referred to as the bottle portion. Throughout the report, the term positive bias in regard to blind-audit results indicates that the bucket portion had a higher concentration than the bottle portion. The paired t-test of 1995 blind-audit data indicated that routine sample handling, processing, and shipping introduced a very small positive bias (a=0.05) for hydrogen ion and specific conductance and a slight negative bias (a =0.05) for ammonium and sodium. In 1995, the median paired differences between the bucket and bottle portions ranged from -0.02 milligram per liter for both ammonium and nitrate to +0.002 milligram per liter for calcium. Although the paired t-test indicated a very small positive bias for hydrogen ion, the median paired difference between the bucket and bottle portions was 0.00 microequivalents per liter, whereas for specific conductance, the median paired difference between the bucket and bottle portions was 0.200 microsiemens per centimeter in 1995. The paired t-test of blind-audit results in 1996 indicated statistically significant bias for 6 of the 10 analytes. Only chloride, nitrate, hydrogen ion, and specific conductance were not biased in 1996. However, the magnitude of the bias in 1996 was very small and only of limited importance from the viewpoint of an analytical chemist or data user. The median paired differences between the bucket and bottle portions ranged from -0.02 milligram per liter for both ammonium and chloride to +0.006 milligram per liter for calcium. For hydrogen ion, the median paired difference between the bucket and bottle portions was -0.357 microequivalent per liter; for specific conductance, the median paired difference between the bucket and bottle portions was 0.00 microsiemens per centimeter in 1996. Surface-chemistry effects due to different amounts of precipitation contacting the sample collection and shipping container surfac

  8. A Comprehensive COS Study of the Magnetic Dynamos, Rotations, UV Irradiances and Habitability of dM Stars with a Broad Span of Ages

    NASA Astrophysics Data System (ADS)

    Guinan, Edward

    2012-10-01

    We propose HST/COS FUV spectrophotometry of a carefully selected sample of 9 dM1-5 stars with recently reliably determined ages ranging from 1-12 Gyr. This program complements our Chandra Cycle 13 program of the same targets to determine their coronal X-ray properties. Ages {of all but one star} have recently been firmly determined from memberships in wide binaries with white dwarf {WD} companions having reliable cooling time+main-sequence evolution ages {Zhao et al. 2012, Garces et al 2011}. Until these studies, reliable age determinations for dM stars >2 Gyr were nearly impossible. However, we can now carry out a comprehensive UV study of dM star atmospheres across nearly the full age-range of the current Universe. The primary goals are 1} to study the evolution of their dynamo-generated X-ray and UV {XUV} emissions with age/rotation and to better define the heating and energetics of their atmospheres {via Age-Rotation-Activity-XUV Irradiance relations} and 2} to study the effects of the XUV radiation on planets hosted by red dwarfs. The COS UV spectral region contains numerous important diagnostic emission lines for characterizing the energy transfer and atmospheric structure, while line ratios yield valuable information about the electron density. Further, these data {when combined with our coronal X-ray measures} are also important for gauging dM star XUV emissions - critical for assessing the photochemical & photoionization evolution of planetary atmospheres and ionospheres that in turn strongly affect the possible development of life on hosted extrasolar planets. We are requesting a total of 19 HST orbits to achieve the science goals of the program.

  9. Optimized method for atmospheric signal reduction in irregular sampled InSAR time series assisted by external atmospheric information

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.

    2013-12-01

    It is well known that spatio-temporal the tropospheric phase signatures complicate the interpretation and detection of smaller magnitude deformation signals or unstudied motion fields. Several advanced time-series InSAR techniques were developed in the last decade that make assumptions about the stochastic properties of the signal components in interferometric phases to reduce atmospheric delay effects on surface deformation estimates. However, their need for large datasets to successfully separate the different phase contributions limits their performance if data is scarce and irregularly sampled. Limited SAR data coverage is true for many areas affected by geophysical deformation. This is either due to their low priority in mission programming, unfavorable ground coverage condition, or turbulent seasonal weather effects. In this paper, we present new adaptive atmospheric phase filtering algorithms that are specifically designed to reconstruct surface deformation signals from atmosphere-affected and irregularly sampled InSAR time series. The filters take advantage of auxiliary atmospheric delay information that is extracted from various sources, e.g. atmospheric weather models. They are embedded into a model-free Persistent Scatterer Interferometry (PSI) approach that was selected to accommodate non-linear deformation patterns that are often observed near volcanoes and earthquake zones. Two types of adaptive phase filters were developed that operate in the time dimension and separate atmosphere from deformation based on their different temporal correlation properties. Both filter types use the fact that atmospheric models can reliably predict the spatial statistics and signal power of atmospheric phase delay fields in order to automatically optimize the filter's shape parameters. In essence, both filter types will attempt to maximize the linear correlation between a-priori and the extracted atmospheric phase information. Topography-related phase components, orbit errors and the master atmospheric delays are first removed in a pre-processing step before the atmospheric filters are applied. The first adaptive filter type is using a filter kernel of Gaussian shape and is adaptively adjusting the width (defined in days) of this filter until the correlation of extracted and modeled atmospheric signal power is maximized. If atmospheric properties vary along the time series, this approach will lead to filter setting that are adapted to best reproduce atmospheric conditions at a certain observation epoch. Despite the superior performance of this first filter design, its Gaussian shape imposes non-physical relative weights onto acquisitions that ignore the known atmospheric noise in the data. Hence, in our second approach we are using atmospheric a-priori information to adaptively define the full shape of the atmospheric filter. For this process, we use a so-called normalized convolution (NC) approach that is often used in image reconstruction. Several NC designs will be presented in this paper and studied for relative performance. A cross-validation of all developed algorithms was done using both synthetic and real data. This validation showed designed filters are outperforming conventional filter methods that particularly useful for regions with limited data coverage or lack of a deformation field prior.

  10. Methodology and significance of studies of atmospheric deposition in highway runoff

    USGS Publications Warehouse

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available.Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and gases by impaction, especially during precipitation periods.Ultimately, traffic and road maintenance may be determined to be the source of many constituents measured in highway runoff previously attributed to ambient atmospheric deposition. An investigative design using tracers of ambient deposition that are not present in highway traffic sources could determine conclusively what fraction of highway runoff load is contributed by ambient atmospheric deposition.

  11. Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China.

    PubMed

    Shang, Dongjie; Hu, Min; Guo, Qingfeng; Zou, Qi; Zheng, Jing; Guo, Song

    2017-10-01

    Although organic compounds in marine atmospheric aerosols have significant effects on climate and marine ecosystems, they have rarely been studied, especially in the coastal regions of East China. To assess the origins of the organic aerosols in the East China coastal atmosphere, PM 2.5 samples were collected from the atmospheres of the Yellow Sea, the East China Sea, and Changdao Island during the CAPTAIN (Campaign of Air PolluTion At INshore Areas of Eastern China) field campaign in the spring of 2011. The marine atmospheric aerosol samples that were collected were grouped based on the backward trajectories of their air masses. The organic carbon concentrations in the PM 2.5 samples from the marine and Changdao Island atmospheres were 5.5 ± 3.1 μgC/m 3 and 6.9 ± 2.4 μgC/m 3 , respectively, which is higher than in other coastal water atmospheres. The concentration of polycyclic aromatic hydrocarbons (PAHs) in the marine atmospheric PM 2.5 samples was 17.0 ± 20.2 ng/m 3 , indicating significant continental anthropogenic influences. The influences of fossil fuels and biomass burning on the composition of organic aerosols in the coastal atmosphere of East China were found to be highly dependent on the origins of the air masses. Diesel combustion had a strong impact on air masses from the Yangtze River Delta (YRD), and gasoline emissions had a more significant impact on the "North China" marine atmospheric samples. The "Northeast China" marine atmospheric samples were most impacted by biomass burning. Coal combustion contributed significantly to the compositions of all of the atmospheric samples. The proportions of secondary compounds increased as samples aged in the marine atmosphere indicating that photochemical oxidation occured during transport. Our results quantified ecosystem effects on marine atmospheric aerosols and highlighted the uncertainties that arise when modeling marine atmospheric PM 2.5 without considering high spatial resolution source data and meteorological parameters. Copyright © 2017. Published by Elsevier Ltd.

  12. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  13. Middle Atmosphere Program. Handbook for MAP, volume 25

    NASA Technical Reports Server (NTRS)

    Roper, R. G. (Editor)

    1987-01-01

    GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.

  14. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    NASA Astrophysics Data System (ADS)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and challenges to continued progress in diversifying the atmospehric sciences will be discussed.

  15. Test evaluation of potential heatshield contamination of an outer planet probe's gas sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.

    1975-01-01

    The feasibility of retaining the heat shield for outer planet probes was investigated as a potential source of atmospheric sample contamination by outgassing. The onboard instruments which are affected by the concept are the pressure sensor, temperature sensor, IR detector, nephelometer, and gas sampling instruments. It was found that: (1) The retention of the charred heatshield and the baseline atmospheric sampling concepts are compatible with obtaining noncontaminated atmospheric samples. (2) Increasing the sampling tube length so that it extends beyond the viscous boundary layer eliminates contamination of the atmospheric sample. (3) The potential for contamination increases with angle of attack.

  16. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the atmosphere, air temperature, and plant iWUE. This positive feedback is expressed by (a) nonparallel changes of δ13C signal of atmospheric CO2 (δa) and plant samples (δp), (b) negative correlation between the Δ and average temperatures during the growth season, although only for temperatures up to 21°C. The lack of effect at higher temperatures suggests a negative influence of growing season warming on the iWUE. These results suggest a complex feedback between atmospheric CO2 increase, plant physiology, ecosystem productivity, and soil CO2 fluxes. These complex effects support our hypothesis of a CO2 fertilization effect on plant productivity, and they raise additional questions regarding adaptation of plants to changing atmospheric CO2 and climate.

  17. THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WATSON, T.B.; HEISER, J.; KALB, P.

    The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs.more » Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.« less

  18. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This report describes the environmental radiological monitoring programs conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstreams from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 34 tabs.« less

  19. Browns Ferry Nuclear Plant annual radiological environmental operating report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1990. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  20. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1989. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts if plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in river sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less

  1. Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs.« less

  2. Meteorological and operational aspects of 46 clear air turbulent sampling missions with an instrumented B-57B aircraft. Volume 2, appendix C: Turbulence missions

    NASA Technical Reports Server (NTRS)

    Waco, D. E.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized from a meteorological viewpoint in a two-volume technical memorandum. The missions were part of the NASA Langley Research Center's MAT (Measurement of Atmospheric Turbulence) program, which was conducted between March 1974, and September 1975, at altitudes ranging up to 15 km. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encountered on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program.

  3. System aspects of the Indian MST radar facility

    NASA Technical Reports Server (NTRS)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  4. The development of a Martian atmospheric Sample collection canister

    NASA Astrophysics Data System (ADS)

    Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.

    The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.

  5. Combustion products of plastics as indicators for refuse burning in the atmosphere.

    PubMed

    Simoneit, Bernd R T; Medeiros, Patricia M; Didyk, Borys M

    2005-09-15

    Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.

  6. Spatial and Temporal Distribution of Current-Use Pesticides in Atmospheric Particulate Matter in Houston, Texas.

    PubMed

    Clark, Adelaide E; Yoon, Subin; Sheesley, Rebecca J; Usenko, Sascha

    2016-12-01

    The atmospheric concentrations of seven current-use pesticides in particulate matter were determined at four locations throughout the Houston metropolitan area in TSP and PM 2.5 samples from September 2013. Atmospheric concentrations in both TSP and PM 2.5 ranged from below method detection limits (MDLs) to nearly 1100 pg m -3 . The three compounds most frequently detected above MDLs were chlorothalonil, bifenthrin, and λ-cyhalothrin. Atmospheric chlorothalonil concentrations were above 800 pg m -3 in several TSP samples, but

  7. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  8. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  9. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  10. A non-gaussian model of continuous atmospheric turbulence for use in aircraft design

    NASA Technical Reports Server (NTRS)

    Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.

    1976-01-01

    A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.

  11. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  12. Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Worley, B. A. (Editor); Peslen, C. A. (Editor)

    1984-01-01

    Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.

  13. OCCIMA: Optical Channel Characterization in Maritime Atmospheres

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Tsintikidis, Dimitri; deGrassie, John; Reinhardt, Colin; McBryde, Kevin; Hallenborg, Eric; Wayne, David; Gibson, Kristofor; Cauble, Galen; Ascencio, Ana; Rudiger, Joshua

    2015-05-01

    The Navy is actively developing diverse optical application areas, including high-energy laser weapons and free- space optical communications, which depend on an accurate and timely knowledge of the state of the atmospheric channel. The Optical Channel Characterization in Maritime Atmospheres (OCCIMA) project is a comprehensive program to coalesce and extend the current capability to characterize the maritime atmosphere for all optical and infrared wavelengths. The program goal is the development of a unified and validated analysis toolbox. The foundational design for this program coordinates the development of sensors, measurement protocols, analytical models, and basic physics necessary to fulfill this goal.

  14. The atmospheric effects of stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations.

  15. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1996.- An Assessment Report. It consists primarily of the Executive Summary and Chapter Summaries of the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 37, Scientific Assessment of Ozone Depletion: 1994, sponsored by NASA, the National Oceanic and Atmospheric Administration (NOAA), the UK Department of the Environment, the United Nations Environment Program, and the World Meteorological Organization. Other sections of Part 11 include summaries of the following: an Atmospheric Ozone Research Plan from NASA's Office of Mission to Planet Earth; summaries from a series of Space Shuttle-based missions and two recent airborne measurement campaigns; the Executive Summary of the 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, and the most recent evaluation of photochemical and chemical kinetics data (Evaluation No. 12 of the NASA Panel for Data Evaluation) used as input parameters for atmospheric models.

  16. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful media. Samples of ice and snow have been used for limited geochemical surveys. Both geobotanical and biogeochemical surveys have been successful in locating copper deposits in many parts of the world. Micro-organisms, including bacteria and algae, are other unproved media that should be studied. Animals can be used in geochemical-prospecting programs. Dogs have been used quite successfully to sniff out hidden and exposed sulfide minerals. Tennite mounds are commonly composed of subsurface material, but have not as yet proved to be useful in locating buried mineral deposits. Animal tissue and waste products are essentially unproved but potentially valuable sampling media. Knowledge of the location of areas where trace-element-associated diseases in animals and man are endemic as well as a better understanding of these diseases, may aid in identifying regions that are enriched in or depleted of various elements, including copper. Results of analyses of gases in the atmosphere are proving valuable in mineral-exploration surveys. Studies involving metallic compounds exhaled by plants into the atmosphere, and of particulate matter suspended in the atmosphere are reviewed these methods may become important in the future. Remote-sensing techniques are useful for making indirect measurements of geochemical responses. Two techniques applicable to geochemical exploration are neutron-activation analysis and gamma-ray spectrometry. Aerial photography is especially useful in vegetation surveys. Radar imagery is an unproved but potentially valuable method for use in studies of vegetation in perpetually clouded regions. With the advent of modern computers, many new techniques, such as correlation analysis, regression analysis, discriminant analysis, factor analysis, cluster analysis, trend-surface analysis, and moving-average analysis can be applied to geochemical data sets. Selective use of these techniques can provide new insights into the interpretatio

  17. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  18. A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program

    EPA Science Inventory

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...

  19. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  20. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two-stage arrangement. With the modified IEC design, ammonium, nitrate, and sulfate ions were determined with a precision of between 5 and 10 percent relative standard deviation for the low loads that happen in remote areas of Alaska. Results from 2012 field studies demonstrated that the targeted ions were stable and fully retained on the IEC during field deployment and could be fully recovered by extraction in the laboratory. Importantly, measurements of annual loads determined by combining snowpack and IEC sampling at sites near National Atmospheric Deposition Program monitoring stations was comparable to results obtained by the National Atmospheric Deposition Program.Field studies completed in 2014 included snowpack and IEC samples to measure depositional loads; the results were compared to concentrations of similar substances in co-located moss samples. Analyses of constituents in snow and IECs included ammonium, nitrate, and sulfate ions; and a suite of trace metals. Constituent measurements in Hylocomium splendens moss included total nitrogen, phosphorous, and sulfur, and trace metals. To recover ammonium ions and metal ions from the upper cation-exchange column, a two-step extraction procedure was developed from laboratory spiking experiments. The 2014 studies determined that concentrations of certain metals, nitrogen, and sulfur in tissues of Hylocomium splendens moss reflected differences in presumptive deposition from local atmospheric sources. Moss tissues collected from two sites farthest from urban locales had the lowest levels of total nitrogen and sulfur, whereas tissues collected from three of the urban sites had the greatest concentrations of many of the trace metals. Moss tissue concentrations of three trace metals (cobalt, chromium, and nickel) were strongly (positively) Spearman’s rank correlated (p<0.05) with annual depositional loads of those metals. In addition, moss sulfur concentrations were positively rank correlated with annual depositional loads of sulfate (p<0.07). Exploratory models indicated linear uptake of the three metals by Hylocomium splendens moss and nonlinear uptake of sulfur from sulfate.Our results provided useful preliminary models for several of the targeted substances; however, our ability to characterize relations between concentrations in moss and loadings for many of the metals was precluded by several factors. The few test sites, small concentration gradients, and generally low concentrations hampered model developments. In addition, the weather was unusually warm throughout Alaska during the winter of 2013–14, which caused intermittent melting of the snowpack at some of the test sites; consequently, our measurements of overwinter loads based on snowpack samples (obtained in late March) probably underestimated the actual loads. Regardless of these potential limitations, these studies have established a foundation to support further studies that can improve our understanding of how mosses accumulate inorganic substances and ultimately how mosses might be used as biomonitors of atmospheric pollutants; moreover, the successful development and validation of the IECs during this research documents how the methodology can be used for future monitoring efforts in remote regions of Alaska and elsewhere.

  1. GRAM-86 - FOUR DIMENSIONAL GLOBAL REFERENCE ATMOSPHERE MODEL

    NASA Technical Reports Server (NTRS)

    Johnson, D.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The UNIVAC version of GRAM is written in UNIVAC FORTRAN and has been implemented on a UNIVAC 1110 under control of EXEC 8 with a central memory requirement of approximately 30K of 36 bit words. The GRAM program was developed in 1976 and GRAM-86 was released in 1986. The monthly data files were last updated in 1986. The DEC VAX version of GRAM is written in FORTRAN 77 and has been implemented on a DEC VAX 11/780 under control of VMS 4.X with a central memory requirement of approximately 100K of 8 bit bytes. The GRAM program was originally developed in 1976 and later converted to the VAX in 1986 (GRAM-86). The monthly data files were last updated in 1986.

  2. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  3. The Voice of Youth: Atmosphere in Positive Youth Development Program

    ERIC Educational Resources Information Center

    Ward, Stefan; Parker, Melissa

    2013-01-01

    Background: Positive youth development (PYD) programs adhere to the notion that all children have strengths and assets to be promoted and nurtured rather than deficits that require "fixing." The study of PYD programs indicates three aspects which set them apart from other programs for youth: activities, goals, and atmosphere. Of these,…

  4. The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)

    NASA Technical Reports Server (NTRS)

    Hirasawa, T.

    1982-01-01

    Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.

  5. Improved Atmospheric Sampling of Hexavalent Chromium

    PubMed Central

    Torkmahalleh, Mehdi Amouei; Yu, Chang-Ho; Lin, Lin; Fan, Zhihua (Tina); Swift, Julie L.; Bonanno, Linda; Rasmussen, Don H.; Holsen, Thomas M.; Hopke, Philip K.

    2015-01-01

    Hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) are the primary chromium oxidation states found in ambient atmospheric particulate matter. While Cr(III) is relatively nontoxic, Cr(VI) is toxic and exposure to Cr(VI) may lead to cancer, nasal damage, asthma, bronchitis, and pneumonitis. Accurate measurement of the ambient Cr(VI) concentrations is an environmental challenge since Cr(VI) can be reduced to Cr(III) and vice versa during sampling. In the present study, a new Cr(VI) sampler (Clarkson sampler) was designed, constructed, and field tested to improve the sampling of Cr(VI) in ambient air. The new Clarkson Cr(VI) sampler was based on the concept that deliquescence during sampling leads to aqueous phase reactions. Thus, the relative humidity of the sampled air was reduced below the deliquescence relative humidity (DRH) of the ambient particles. The new sampler was operated to collect Total Suspended Particles (TSP), and compared side-by-side with the current National Air Toxics Trends Stations (NATTS) Cr(VI) sampler that is utilized in the United States Environmental Protection Agency (USEPA) air toxics monitoring program. Side-by-side field testing of the samplers occurred in Elizabeth, NJ during the winter and summer of 2012. The average recovery values of Cr(VI) spikes after 24 hour sampling intervals during summer and winter sampling were 57 and 72%, respectively, for the Clarkson sampler, while the corresponding average values for NATTS samplers were 46% for both summer and winter sampling, respectively. Preventing the ambient aerosol collected on the filters from deliquescing is a key to improving the sampling of Cr(VI). PMID:24344574

  6. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.

  7. The UARS (Upper Atmosphere Research Satellite): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Upper Atmosphere Research Satellite (UARS) program, its goals and objectives are described. Also included are its significance to upper atmosphere science, the experimental and theoretical investigations that comprise it, and the compelling issues of global change, driven by human activities, that led NASA to plan and implement it.

  8. Nimbus-F to carry advanced weather instruments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Meteorological research instruments launched aboard NASA's Nimbus-F spacecraft are briefly described along with the Nimbus satellite program initiated to develop an observatory system capable of meeting the research and development needs of the nation's atmospheric and earth sciences program. The following aspects of the mission are described: spacecraft design, launch operations, sequence of orbital events, and operations control and tracking. The Global Atmospheric Research program is discussed in terms of the Nimbus-F experiments and atmospheric sounding instruments.

  9. Mass spectrometry in the U.S. space program: past, present, and future.

    PubMed

    Palmer, P T; Limero, T F

    2001-06-01

    Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.

  10. Mass spectrometry in the U.S. space program: past, present, and future

    NASA Technical Reports Server (NTRS)

    Palmer, P. T.; Limero, T. F.

    2001-01-01

    Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.

  11. The Optical Profiling of the Atmospheric Limb (OPAL) CubeSat Experiment

    NASA Astrophysics Data System (ADS)

    Jeppesen, M.; Miller, J.; Cox, W.; Taylor, M. J.; Swenson, C.; Neilsen, T. L.; Fish, C. S.; Scherliess, L.; Christensen, A. B.; Cleave, M.

    2015-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument, CubeSat bus and mission are being designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  12. Optical Profiling of the Atmospheric Limb CubeSat Experiment

    NASA Astrophysics Data System (ADS)

    Jeppesen, M.; Taylor, M. J.; Swenson, C.; Marchant, A.

    2014-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument and mission will be designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  13. Testing of an automated online EA-IRMS method for fast and simultaneous carbon content and stable isotope measurement of aerosol samples

    NASA Astrophysics Data System (ADS)

    Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály

    2016-04-01

    Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment investigations of atmospheric carbonaceous aerosol. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 'National Excellence Program.

  14. Extensive middle atmosphere (20-120 KM) modification in the Global Reference Atmospheric Model (GRAM-90)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, Dale

    1990-01-01

    The Global Reference Atmospheric Model (GRAM) is currently available in the 'GRAM-88' version (Justus, et al., 1986; 1988), which includes relatively minor upgrades and changes from the 'MOD-3' version (Justus, et al., 1980). Currently a project is underway to use large amounts of data, mostly collected under the Middle Atmosphere Program (MAP) to produce a major upgrade of the program planned for release as the GRAM-90 version. The new data and program revisions will particularly affect the 25-90 km height range. Sources of data and preliminary results are described here in the form of cross-sectional plots.

  15. ATMOSPHERIC ELECTRICITY PROGRAM, FLAGSTAFF, ARIZONA, PART I.

    DTIC Science & Technology

    The report summarizes the weather conditions that were encountered during two of the three weeks (9-21 July 1967) comprising the Army/ Environmental ... Science Service Administration (ESSA) summer program on atmospheric electricity held at Flagstaff, Arizona, in July 1967. Short as the program was, it

  16. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Nastrom, G. D.

    1979-01-01

    Measurements of zone concentrations both outside and in the cabin of an airline operated Boeing 747SP and Boeing 747-100 airliner are presented. Plotted data and the corresponding tables of observations taken at altitude between the departure and destination airports of each flight are arranged chronologically for the two aircraft. Data were taken at five or ten minute intervals by automated instrumentation used in the NACA Global Atmospheric Sampling Program.

  17. Upper Atmosphere Research Satellite (UARS): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.

  18. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.

  19. Measurements of CO2 Mole Fractionand δ13C in Archived Air Samples from Cape Meares, Oregon (USA) 1977 - 1998

    NASA Astrophysics Data System (ADS)

    Clark, O.; Rice, A. L.

    2017-12-01

    Carbon dioxide (CO2) is the most abundant, anthropogenically forced greenhouse gas (GHG) in the global atmosphere. Emissions of CO2 account for approximately 75% of the world's total GHG emissions. Atmospheric concentrations of CO2 are higher now than they've been at any other time in the past 800,000 years. Currently, the global mean concentration exceeds 400 ppm. Today, global networks regularly monitor CO2 concentrations and isotopic composition (δ13C and δ18O). However, past data is sparse. Over 200 ambient air samples from Cape Meares, Oregon (45.5°N, 124.0°W), a coastal site in Western United States, were obtained by researchers at Oregon Institute of Science and Technology (OGI, now Oregon Health & Science University), between the years of 1977 and 1998 as part of a global monitoring program of six different sites in the polar, middle, and tropical latitudes of the Northern and Southern Hemispheres. Air liquefaction was used to compress approximately 1000L of air (STP) to 30bar, into 33L electropolished (SUMMA) stainless steel canisters. Select archived air samples from the original network are maintained at Portland State University (PSU) Department of Physics. These archived samples are a valuable look at changing atmospheric concentrations of CO2 and δ13C, which can contribute to a better understanding of changes in sources during this time. CO2 concentrations and δ13C of CO2 were measured at PSU, with a Picarro Cavity Ringdown Spectrometer, model G1101-i analytical system. This study presents the analytical methods used, calibration techniques, precision, and reproducibility. Measurements of select samples from the archive show rising CO2 concentrations and falling δ13C over the 1977 to 1998 period, compatible with previous observations and rising anthropogenic sources of CO2. The resulting data set was statistically analyzed in MATLAB. Results of preliminary seasonal and secular trends from the archive samples are presented.

  20. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al. reported Juniperus spp. pollen was transported 200-600 km. Hence local obse rvations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data produ cts to identify source regions and quantities of dust. We are modifyi ng the DREAM model to incorporate pollen transport. Pollen release wi ll be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observations records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention?s Nat ional Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  1. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  2. Global measurements of gaseous and aerosol trace species in the upper troposphere and lower stratosphere from daily flights of 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1976-01-01

    A description is given of the NASA Global Atmospheric Sampling Program (GASP), taking into account the onboard system which collects atmospheric data automatically, the extensive atmospheric measurement capability, and the data handling and distribution procedure. GASP was implemented to assess the environmental impact of aircraft exhaust emissions in the upper troposphere and lower stratosphere. Global air quality data are to be obtained for a period of five to ten years. Measurements of pollutants not related to aircraft exhaust emissions, such as chlorofluoromethanes, are now included. GASP systems are operating on a United Airlines 747, two Pan Am 747s, and a Qantas Airways of Australia 747. Real-time, in-situ measurements are conducted of ozone, water vapor, carbon monoxide, and oxides of nitrogen. Chlorofluoromethanes are measured by laboratory analysis. Typical GASP data show significant changes in ozone, carbon monoxide, and water vapor related to crossings of the tropopause.

  3. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  4. World weather program: Plan for fiscal year 1972

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.

  5. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  6. 76 FR 65182 - Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Indirect Cost Rates for the Damage Assessment, Remediation, and Restoration Program for Fiscal Years 2009 and 2010 AGENCY: National... Atmospheric Administration's (NOAA's) Damage Assessment, Remediation, and Restoration Program (DARRP) is...

  7. PC-BASED MIE SCATTERING PROGRAM FOR THEORETICAL INVESTIGATIONS OF THE OPTICAL PROPERTIES OF ATMOSPHERIC AEROSOLS AS A FUNCTION OF COMPOSITION AND RELATIVE HUMIDITY

    EPA Science Inventory

    Over the past decade there has been interest in exploring possible relationships between atmospheric visibility (extinction of light) and the chemical form of aerosols in the atmosphere. ser-friendly, menu-driven program for the personal computer (AT 286 with math co-processor or...

  8. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  9. Assessing the impact of atmospheric chemistry on the fate, transport, and transformation of adulticides in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.

    2017-12-01

    Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter <2.5 um) samplers, as well as real-time instruments that made congruent measurements of O3, NOx, and wind speed and direction. Nighttime atmospheric half-lives of malathion were calculated to be 40-90% lower than malathion half-lives measured in previous studies; these half-lives were determined using diurnal atmospheric concentrations of malathion and its oxidation product, malaoxon. Interestingly, during malathion-use periods, atmospheric malaoxon concentrations measured in the PM2.5 samples were similar to corresponding TSP samples. This suggests that the majority of the malathion (and malaoxon) was associated with fine PM. During permethrin-use periods, atmospheric permethrin concentrations measured in the PM2.5 samples were an order and half lower in magnitude. This suggests that permethrin may be undergoing less volatilization into the gas phase after application as compared to malathion (and or malaoxon). Unlike permethrin, malathion was not sprayed with a carrier or a synergistic compound. As a result, malathion may be more prone to volatilization. The atmospheric oxidation and migration to fine PM may result in decreased efficacy and increase atmospheric transport, both of which have environmental and human health consequences.

  10. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  11. NASA earth science and applications division: The program and plans for FY 1988-1989-1990

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Described here are the Division's research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered.

  12. 78 FR 77104 - Coastal Nonpoint Pollution Control Program: Intent To Find That Oregon Has Failed To Submit an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration ENVIRONMENTAL PROTECTION AGENCY Coastal Nonpoint Pollution Control Program: Intent To Find That Oregon Has Failed To Submit an Approvable Coastal Nonpoint Pollution Control Program AGENCY: National Oceanic and Atmospheric Administration...

  13. Processing and display of atmospheric phenomenaa data

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Garst, R. A.; Purser, L. R.

    1984-01-01

    A series of technical efforts dealing with various atmospheric phenomena is described. Refinements to the Potential in an Electrostatic Cloud (PEC) model are discussed. The development of an Apple III graphics program, the NSSL Lightning Data Program and a description of data reduction procedures are examined. Several utility programs are also discussed.

  14. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  15. Estimated variability of National Atmospheric Deposition Program/Mercury Deposition Network measurements using collocated samplers

    USGS Publications Warehouse

    Wetherbee, G.A.; Gay, D.A.; Brunette, R.C.; Sweet, C.W.

    2007-01-01

    The National Atmospheric Deposition Program/Mercury Deposition Network (MDN) provides long-term, quality-assured records of mercury in wet deposition in the USA and Canada. Interpretation of spatial and temporal trends in the MDN data requires quantification of the variability of the MDN measurements. Variability is quantified for MDN data from collocated samplers at MDN sites in two states, one in Illinois and one in Washington. Median absolute differences in the collocated sampler data for total mercury concentration are approximately 11% of the median mercury concentration for all valid 1999-2004 MDN data. Median absolute differences are between 3.0% and 14% of the median MDN value for collector catch (sample volume) and between 6.0% and 15% of the median MDN value for mercury wet deposition. The overall measurement errors are sufficiently low to resolve between NADP/MDN measurements by ??2 ng??l-1 and ??2 ????m-2?? year-1, which are the contour intervals used to display the data on NADP isopleths maps for concentration and deposition, respectively. ?? Springer Science+Business Media B.V. 2007.

  16. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-01-01

    A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18 000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject misreconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than 1%. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric νμ+ν¯μ flux.

  17. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  18. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    NASA Astrophysics Data System (ADS)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  19. The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Jeffries, W. R., III; Yung, S. P.; Johnson, D. L.

    1995-01-01

    The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.

  20. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Timothy Edward

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  1. Gaseous Environment Considerations and Evaluation Programs Leading to Spacecraft Atmosphere Selection

    NASA Technical Reports Server (NTRS)

    Johnston, Richard S.; Michel, Edward L.; Smith, George B., Jr.

    1965-01-01

    The NASA Manned Spacecraft Center has been actively involved in the direction and support of programs leading to the selection and validations of the atmosphere for forthcoming Gemini and Apollo missions. This paper discusses the engineering and physiologic considerations involved, describes the investigations to validate spacecraft atmospheres, and discusses the implications derived from the results of these investigations.

  2. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  3. THE SM-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM, NOVEMBER 1954- DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pressman, M; Pruett, P B

    1961-08-31

    BS>An environmental radiological monitoring program was conducted. All data obtained during a period extending from l 1/2 years prior to SM-1 reactor start-up through more than 3 years of reactor operation are summarized. The period extended from November 1954 through December 1960. Samples assayed for radioactivity include river water and bottom silt, SM-1 condenser cooling water, subsurface ground water, rain and snow, atmospheric particles obtained by air filtration and fallout, and biota. The report concludes that after more than 3 years of SM-1 reactor operation, no significant increase has been noted in the radiological background level in the Fort Belvoirmore » area.« less

  4. Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.

  5. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  6. Satellite-tracking and earth-dynamics research programs. [geodetic and geophysical investigations and atmospheric research using satellite drag data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.

  7. Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.

  8. A new geochemical instrument for the precise measurement of isotopic ratios and trace species in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Sarda, Ph.; Agrinier, P.

    2003-04-01

    The technique of GCMS analysis, which has been used with a great success on several past planetary missions, is not adapted for precise measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation, and chemical trapping, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. This technique allows to reach a precision on isotopic ratios of the order of a few 0.1 ppm for a typical amount of gas of a few micromoles. We are presently studying an instrument based on the same principle for space exploration applications. The PALOMA instrument (PAyload for Local Observation of Mars Atmosphere) will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. The miniaturization of major key elements, like the cryogenic device, the mass spectrometer, the line and its ensemble of valves, is presently led in our laboratories under CNES funding. The instrument consists of : (i) a gas purification and separation line, using techniques of cryogenic and chemical trapping, and possibly membrane permeation for molecular hydrogen analysis, (ii) a mass spectrometer working in static mode, without carrier gas (both time-of-flight and magnetic solutions are studied), (iii) a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer. In the specific case of Mars, it is designed to work during typically 2 years (about 1000 measurement cycles), in order to perform accurate measurements of molecular, elemental and isotopic composition and of their diurnal/seasonal variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The general characteristics of the instrument are as following . The mass is 6 kg, for a size of 30 x 30 x 20 cm. The required power, averaged over a complete measurement cycle, is 20 W (peak value : 30 W). The total energy required for one sequence is 100 Wh. This number must be considered as an upper limit, and corresponds to the most complex sequence (noble gas isotope analysis). Sequences used for stable isotopes measurement, and atmospheric molecular composition (trace gases of geological and/or astrobiological interest), are expected to be simpler, and less power-consuming. The anticipated volume of data produced by one observation sequence is estimated to be in the 3-6 kb range. The gas is sampled directly from the ambient atmosphere.

  9. Biomass Burning Emissions of Black Carbon from African Sources

    NASA Astrophysics Data System (ADS)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC physical and optical properties change as particles are transported in the atmosphere due to oxidation, coagulation, and condensation which is observed in the laboratory BC data. Laboratory BC emissions and emission ratios are compared with those from LASIC to improve model treatment of BB BC emissions and aging in global climate models.

  10. Middle Atmosphere Program. Handbook for MAP, volume 8

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1983-01-01

    Various investigations relative to middle atmosphere research are discussed. Atmospheric warming periods in 1982-83, atmospheric composition, the comparison of irradiance measurement calibration, and molecular absorption processes related to the penetration of ultraviolet solar radiation into the middle atmosphere, are among the topics discussed.

  11. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan Inland Lakes, August 2002

    USGS Publications Warehouse

    Fuller, L.M.; Aichele, Stephen S.; Minnerick, R.J.

    2004-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Environmental Quality have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Through this program, approximately 730 of Michigan's 11,000 inland lakes will be monitored once during this 15-year study. Targeted lakes will be sampled during spring turnover and again in late summer to characterize water quality. Because more extensive and more frequent sampling is not economically feasible in the Lake Water Quality Assessment program, the U.S. Geological Survey and Michigan Department of Environmental Quality investigate the use of satellite imagery as a means of estimating water quality in unsampled lakes. Satellite imagery has been successfully used in Minnesota, Wisconsin, and elsewhere to compute the trophic state of inland lakes from predicted secchi-disk measurements. Previous attempts of this kind in Michigan resulted in a poorer fit between observed and predicted data than was found for Minnesota or Wisconsin. This study tested whether estimates could be improved by using atmospherically corrected satellite imagery, whether a more appropriate regression model could be obtained for Michigan, and whether chlorophyll a concentrations could be reliably predicted from satellite imagery in order to compute trophic state of inland lakes. Although the atmospheric-correction did not significantly improve estimates of lake-water quality, a new regression equation was identified that consistently yielded better results than an equation obtained from the literature. A stepwise regression was used to determine an equation that accurately predicts chlorophyll a concentrations in northern Lower Michigan.

  12. Middle Atmosphere Program. Handbook for MAP, volume 6

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    A directory of scientists associated with the Middle Atmosphere Program (MAP) is presented. The MAP steering committee, the standing committees, MAP study groups, and MAP projects are mentioned along with the MAP secretariat and regional consultative group.

  13. Atmospheric pollution in Lisbon urban atmosphere

    NASA Astrophysics Data System (ADS)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µm

  14. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, G.M.; Tichler, J.L.

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less

  15. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  16. Shuttle atmospheric lidar research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Shuttle atmospheric lidar program is discussed in relation to an understanding of the processes governing the Earth's atmosphere and in the capacity to evaluate the atmospheric susceptibility to manmade and natural perturbations. Applications of the lidar which are discussed are the determination of the global flow of water vapor and pollutants in the troposphere, improvement of chemical and transport models of the stratosphere and mesosphere, evaluation of radiative models of the atmosphere, investigation of chemistry and transport of thermospheric atomic species, and investigation of magnetospheric aspects of sun/weather relationships. The features of the lidar measurements discussed are the high spatial resolution, control of the source wavelength and intensity, and high measurement specificity.

  17. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOEpatents

    Aldstadt, III, Joseph H.

    1997-01-01

    A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.

  18. Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, S.A.

    1996-01-01

    In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less

  19. Atmospheric chemistry: Description of the area of performance and a working plan

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Volker W. J. H.

    1986-11-01

    INPE's program in Atmospheric Chemistry Research is described. Research in this area is concerned with atmospheric gases and their chemical reactions, production and loss rates, and their interactions with the biosphere. Atmospheric chemistry includes concepts in Physics, Chemistry, Meteorology, and Biology, which gives it a strong interdisciplinary character. The interaction of some of the atmospheric gases with the biosphere, such as ozone, is very strong and direct. Studying atmospheric chemistry is, therefore, of direct interest to man and the quality of life. Details are described to define the objectives of study, in particular those of our research program at INPE. A working plan is proposed in order to reach the defined goals. Owing to the large anthropogenic interference in the balance of the natural atmosphere it is anticipated that a better understanding of Atmospheric Chemistry will be the great scientific challenge of the next decade.

  20. Stratospheric CCN sampling program

    NASA Technical Reports Server (NTRS)

    Rogers, C. F.

    1981-01-01

    When Mt. St. Helens produced several major eruptions in the late spring of 1980, there was a strong interest in the characterization of the cloud condensation nuclei (CCN) activity of the material that was injected into the troposphere and stratosphere. The scientific value of CCN measurements is two fold: CCN counts may be directly applied to calculations of the interaction of the aerosol (enlargement) at atmospherically-realistic relative humidities or supersaturations; and if the chemical constituency of the aerosol can be assumed, the number-versus-critical supersaturation spectrum may be converted into a dry aerosol size spectrum covering a size region not readily measured by other methods. The sampling method is described along with the instrumentation used in the experiments.

  1. Implementation and Testing of Turbulence Models for the F18-HARV Simulation

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1998-01-01

    This report presents three methods of implementing the Dryden power spectral density model for atmospheric turbulence. Included are the equations which define the three methods and computer source code written in Advanced Continuous Simulation Language to implement the equations. Time-history plots and sample statistics of simulated turbulence results from executing the code in a test program are also presented. Power spectral densities were computed for sample sequences of turbulence and are plotted for comparison with the Dryden spectra. The three model implementations were installed in a nonlinear six-degree-of-freedom simulation of the High Alpha Research Vehicle airplane. Aircraft simulation responses to turbulence generated with the three implementations are presented as plots.

  2. An Improved Extraction and Analysis Technique for Determination of Carbon Monoxide Stable Isotopes and Mixing Ratios from Ice Core and Atmospheric Air Samples.

    NASA Astrophysics Data System (ADS)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.

    2017-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to anthropogenic radiative forcing. Carbon monoxide stable isotopes can also serve as a tracer for variations in biomass burning, particularly in the preindustrial atmosphere. A good understanding of the past variations in CO mole fractions and isotopic composition can help improve the skill of chemical transport models and constrain biomass burning changes. Ice cores may preserve a record of past atmospheric CO for analysis and interpretation. To this end, a new extraction system has been developed for analysis of stable isotopes (δ13CO and δC18O) of atmospheric carbon monoxide from ice core and atmospheric air samples. This system has been designed to measure relatively small sample sizes (80 cc STP of air) to accommodate the limited availability of ice core samples. Trapped air is extracted from ice core samples via melting in a glass vacuum chamber. This air is expanded into a glass expansion loop and then compressed into the sample loop of a Reducing Gas Detector (Peak Laboratories, Peak Performer 1 RCP) for the CO mole fraction measurement. The remaining sample gas will be expelled from the melt vessel into a larger expansion loop via headspace compression for isotopic analysis. The headspace compression will be accomplished by introduction of clean degassed water into the bottom of the melt vessel. Isotopic analysis of the sample gas is done utilizing the Schütze Reagent to convert the carbon monoxide to carbon dioxide (CO2) which is then measured using continuous-flow isotope ratio mass spectrometry (Elementar Americas, IsoPrime 100). A series of cryogenic traps are used to purify the sample air, capture the converted sample CO2, and cryofocus the sample CO2 prior to injection.

  3. Atmospheric Carbon Dioxide Mixing Ratios from the NOAA CMDL Carbon Cycle Cooperative Global Air Sampling Network (2009)

    DOE Data Explorer

    Conway, Thomas [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA); Tans, Pieter [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA)

    2009-01-01

    The National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) has measured CO2 in air samples collected weekly at a global network of sites since the late 1960s. Atmospheric CO2 mixing ratios reported in these files were measured by a nondispersive infrared absorption technique in air samples collected in glass flasks. All CMDL flask samples are measured relative to standards traceable to the World Meteorological Organization (WMO) CO2 mole fraction scale. These measurements constitute the most geographically extensive, carefully calibrated, internally consistent atmospheric CO2 data set available and are essential for studies aimed at better understanding the global carbon cycle budget.

  4. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    PubMed

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  6. A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Geland, S.; Perovich, D. K.

    2017-12-01

    The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.

  7. Reducing alcohol consumption among university students: recruitment and program design strategies based on Social Marketing Theory.

    PubMed

    Black, D R; Smith, M A

    1994-09-01

    Recruitment of program participants and development of appealing comprehensive alcohol abuse prevention programs is an exigent priority for university campuses due to the serious physical and emotional consequences related to alcohol consumption. A sample of 67 students from a large midwestern university completed a survey based on Social Marketing Theory (SMT) which was developed to improve recruitment and enhance the design of comprehensive alcohol abuse prevention programs. The results indicate that recruitment may be optimized by providing a flexible, convenient, low-cost program that encourages friends' participation, communicates alcohol-related risks and offers university credit or refund as participation incentives. The design of alcohol abuse prevention programs may be enhanced by emphasizing the positive outcomes of reducing alcohol consumption, improving the quality and quantity of alternatives to the social atmosphere connected with drinking, and soliciting respected opinion leaders (physicians and parents) to communicate alcohol reduction messages. This project is a first initiative to 'fill the gap' in the social marketing research literature by providing formative information pertinent to recruitment and design of alcohol reduction programs specifically for college students.

  8. LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, P.; Bonin, T. A.; Newman, J. F.

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The mainmore » objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.« less

  9. He, Ne and Ar systematics in single vesicles: Mantle isotopic ratios and origin of the air component in basaltic glasses

    NASA Astrophysics Data System (ADS)

    Raquin, Aude; Moreira, Manuel Alexis; Guillon, Fabien

    2008-09-01

    An outstanding problem in understanding the origin of the gaseous phase, particularly the rare gas compositions in magmatic rocks, is the ubiquitous atmospheric component in bulk rock samples, and whether this atmospheric component is a late stage contamination of the sample, or a recycled component though sediments or altered oceanic crust. In the present study we address this problem by analyzing single vesicles from the "popping rock 2∏D43" sample from the Mid-Atlantic Ridge using a UV laser ablation system. We have determined both elemental and isotopic compositions of He, Ne and Ar in single vesicles as well as Kr and Xe abundances. All vesicles analyzed have an isotopic composition identical to the referred degassed mantle value estimated from this same sample, despite analyzing vesicles from a wide size distribution. The atmospheric component, which is always detected in bulk samples by crushing or heating, was not detected in the single vesicles. This implies that the recycling of atmospheric noble gases in the mantle cannot explain the air-like component of this sample. The addition of the atmospheric component must occur either during the eruption, or after sample recovery.

  10. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils.

    PubMed

    Rueda-Holgado, F; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2016-02-01

    Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Field Testing of a Two-Micron DIAL System for Profiling Atmospheric Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Ismail, Syed; Koch, Grady J.; Diaz, Liza; Davis, Ken; Rubio, Manuel

    2010-01-01

    A 2-m DIAL system has been developed at NASA Langley Research Center through the NASA Instrument Incubator Program. The system utilizes a tunable 2-m pulsed laser and an IR phototransistor for the transmitter and the receiver, respectively. The system targets the CO2 absorption line R22 in the 2.05-m band. Field experiments were conducted at West Branch, Iowa, for evaluating the system for CO2 measurement by comparison with in-situ sensors. The CO2 in-situ sensors were located on the NOAA's WBI tower at 31, 99 and 379 m altitudes, besides the NOAA s aircraft was sampling at higher altitudes. Preliminary results demonstrated the capabilities of the DIAL system in profiling atmospheric CO2 using the 2-m wavelength. Results of these experiments will be presented and discussed.

  12. Carbon-14 Measurements in Atmospheric CO2 from Northern and Southern Hemisphere Sites, 1962-1993 (NDP-057)

    DOE Data Explorer

    Nydal, Reidar [Radiological Dating Laboratory, The Norwegian Institute of Technology, Trondheim, Norway; Lovseth, Knut [Radiological Dating Laboratory, The Norwegian Institute of Technology, Trondheim, Norway; Boden, Thomas A. [CDIAC, Oak Ridge National Laboratory, Oak Ridge TN (USA); World Data Center A - Atmospheric Trace Gases; Zumbrunn, Virgene [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    1996-01-01

    In the 1960s, thermonuclear bomb tests released significant pulses of radioactive 14C into the atmosphere. This major perturbation allowed scientists to study the dynamics of the global carbon cycle by measuring and observing rates of isotopic exchange. The Radiological Dating Laboratory at the Norwegian Institute of Technology performed 14C measurements in atmospheric CO2 from 1962 to 1993 at a network of ground stations in the Northern and Southern hemispheres. These measurements were supplemented during 1965 with high-altitude (9-12.6 km) air samples collected using aircraft from the Norwegian Air Force. The resulting database, coupled with other 14C data sets, provides a greater understanding of the dynamic carbon reservoir and a crude picture of anomalous sources and sinks at different geographical latitudes. This database is outstanding for its inclusion of early 14C measurements, broad spatial coverage of sampling, consistency of sampling method, and 14C calculation results corrected for isotopic fractionation and radioactive decay. This database replaces previous versions published by the authors and the Radiological Dating Laboratory. Fourteen stations spanning latitudes from Spitsbergen (78° N) to Madagascar (21° S) were used for sampling during the lifetime of the Norwegian program. Some of the stations have data for only a brief period, while others have measurements through 1993. Sampling stations subject to local industrial CO2 contamination were avoided. The sites have sufficient separation to describe the latitudinal distribution of 14C in atmospheric models. The sampling procedure for all the surface (10-2400 m asl) 14C measurements in this database consisted of quantitative absorption of atmospheric CO2 in carbonate-free 0.5 N NaOH solution. The 14C measurements were made in a CO2 proportional counter and calculated (14C) as per mil excess above the normal 14C level defined by the US National Institute of Standards and Technology (NIST). Atmospheric 14C content is finally expressed as 14C, which is the relative deviation of the measured 14C activity from the NIST oxalic acid standard activity, after correction for isotopic fractionation and radioactive decay related to age. The data are organized by sampling station, and each record of the database contains the sampling dates; values for 14C excess (14C) relative to the NIST standard, fractionation 13C (13C) relative to the Pee Dee Belemnite (PDB) standard, and corrected 14C ( 14C) excess; and the standard deviation for 14C. The 14C calculation results presented here are thus corrected for isotopic fractionation and radioactive decay, and constitute the final product of a research effort that has spanned three decades. The 14C station data show a sharp increase in tropospheric radiocarbon levels in the early 1960s and then a decline after the majority of nuclear tests came to an end on August 5, 1963 (Test Ban Treaty). The sharp peaks in tropospheric radiocarbon in the early 1960s are more pronounced in the Northern Hemisphere, reflecting the location of most atomic weapons tests. The measurements show large seasonal variations in the 14C level during the early 1960s mainly as a result of springtime transport of bomb 14C from the stratosphere. During the 1970s, the seasonal variations are smaller and due partly to seasonal variations in CO2 from fossil-fuel emissions. The rate of decrease of atmospheric radiocarbon provides a check on the exchange constants of the atmosphere and ocean. This report and all data it describes are available from the Carbon Dioxide Information Analysis Center (CDIAC) without charge. The Nydal and Lövseth atmospheric 14C database comprises 21 data files totaling 0.2 megabytes in size. The following report describes the sampling methods and analysis. In addition, the report includes a complete discussion of CDIAC's data-processing efforts, the contents and format of the data files, and a reprint of a Nydal and Lövseth journal article.

  13. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J., ed

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  14. PALOMA : An instrument to measure the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform (MSL 09, EXOMARS)

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Paloma Team

    2003-04-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astrobiological interest, like CH_4, H_2CO, N_2O, H_2S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest (a small fraction of ppbv). Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. The PALOMA instrument consists of : a gas purification and separation line, using techniques of chemical and cryogenic trapping, and possibly membrane permeation, a mass spectrometer working in static mode, a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer, a small additional stand-alone sensor for radon and its short-lived daughters measurement. It is designed to work during one full Martian year, in order to perform accurate measurements of the atmospheric composition and its seasonal, and more generally temporal, variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The main parameters of PALOMA are 6.5 kg, 20 W (peak value : 30 W), 4 kb/day (peak value : 15 kb/day).

  15. Research Review: Walter Orr Roberts on the Atmosphere, Global Pollution and Weather Modification

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1973-01-01

    Global Atmospheric Research Program is envisaged to study various aspects of the environment for the whole globe. Describes programs undertaken and the international problems involved in implementing results of such research on a global level. (PS)

  16. 76 FR 44306 - Proposed Information Collection; Comment Request; Fisheries Finance Program Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Fisheries Finance Program Requirements AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice. SUMMARY: The Department of Commerce, as part of its continuing...

  17. Merits of a Locality Sample for Accomplishing Mars Exploration Goals: The First Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Draper, D. S.; Bogard, D. D.; Agee, C. B.; McKay, G. A.; Jones, J. H.

    2002-05-01

    A major stumbling block to a Mars sample return (MSR) mission is the seemingly prohibitive cost of maximizing sample diversity. The use of rovers, sophisticated on-board instrumentation, and various sample selection techniques are perceived by some to be necessary to maximize the scientific return by making it possible to acquire as diverse a suite of samples as possible. Here, we argue that many key science goals of the Mars Exploration Program may be accomplished by returning only a "locality sample" at a well-chosen landing site. A locality sample would be local regolith consisting of soil, windblown fines, and lithic fragments (plus Martian atmosphere). We argue that even the simplest sample return mission could revolutionize our understanding of the planet, without requiring the large outlays for technology development currently envisioned. By the time a MSR mission could realistically be flown, it is reasonable to expect that information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to make a good choice of landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; understanding the role and history of water and other volatiles; helping to interpret remotely-sensed spectral data; and understanding the planet as a system. The value of such samples has been studied exhaustively for decades and detailed in publications dating back at least to 1974. A locality sample can further the search for life by identifying, among other things, trace quantities of surface organics, biogenic elements and their isotopic compositions, evidence for water in the form of hydrous minerals and/or cements, the nature of the Martian soil oxidant, trace biomarkers, and evidence for clay-forming processes. The role of water will be better understood by revealing, in addition, whether interactions between soil/rocks and the Martian atmosphere have recently occurred, and whether there are currently pathways among cyclic reservoirs (e.g. for carbon). Fundamental information regarding the current atmosphere is certain to be gained as well. Interpreting remotely-sensed data will be greatly strengthened by providing ground truth in the form of mineralogy and lithology of sample materials and by allowing an estimate of the extent of regolith gardening by impacts, the nature and thickness of dust coatings and/or alteration rinds, the nature of Martian layered deposits, and the extent to which materials like the Martian meteorites are present at the surface. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. The much-discussed alternative, a mission built around a very capable rover, has several large drawbacks. First, the mass and expense of making the rover highly autonomous diminishes science return. Second, the rover represents a single-point failure; if the rover is stranded, the samples cannot be returned. Third, there is no demonstrable positive correlation between roving ability/range and sampling diversity. A simple locality-sample MSR mission provides the foundation for later, targeted return missions. Such a mission "follows the water" down into surface minerals and soils, and uniquely provides understanding of the surface environment that will best enable us to target the most promising sites to look for life.

  18. [Pollution of Halogenated Polycyclic Aromatic Hydrocarbons in Atmospheric Particulate Matters of Shenzhen].

    PubMed

    Sun, Jian-lin; Chang, Wen-jing; Chen, Zheng-xia; Zeng, Hui

    2015-05-01

    Concentrations of halogenated polycyclic aromatic hydrocarbons ( HPAHs) in atmospheric PM10 and PM2.5 samples collected from Shenzhen were determined using GC-MS. Total concentrations of nine HPAHs in atmospheric PM10 and PM2.5 samples ranged from 118 to 1,476 pg · m(-3) and 89 to 407 pg · m(-3), respectively. In PM10 and PM(2.5) samples, the concentration of 9-BrAnt was the highest, followed by 7-BrBaA and 9, 10-Br2Ant. Seasonal levels of total HPAHs in atmospheric PM10 and PM2.5 samples in Shenzhen decreased in the following order: winter > autumn > spring > summer, whereas concentrations of individual HPAHs showed different seasonal levels. Meteorological conditions, including temperature, precipitation, and relative humidity, might be important factors affecting the seasonal levels of HPAHs in atmospheric PM10 and PM2.5 In addition, there were significant correlations between concentrations of HPAHs and parent PAHs. Finally, the toxic equivalency quotients (TEQs) of HPAHs were estimated. The TEQs of HPAHs in atmospheric PM10 and PM2.5 samples ranged from 17.6 to 86.2 pg · m(-3) and 14.6 to 70.4 pg · m(-3), respectively. Among individual HPAHs, 7-BrBaA contributed greatly to the total TEQs of HPAHs. Our results indicated that the total TEQs of HPAHs were lower than parent PAHs in atmospheric PM10 and PM2.5 samples in Shenzhen.

  19. Analysis of model Titan atmospheric components using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Kojiro, D. R.; Cohen, M. J.; Wernlund, R. F.; Stimac, R. M.; Humphry, D. E.; Takeuchi, N.

    1991-01-01

    The Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS) was proposed as an analytical technique for the analysis of Titan's atmosphere during the Cassini Mission. The IMS is an atmospheric pressure, chemical detector that produces an identifying spectrum of each chemical species measured. When the IMS is combined with a GC as a GC-IMS, the GC is used to separate the sample into its individual components, or perhaps small groups of components. The IMS is then used to detect, quantify, and identify each sample component. Conventional IMS detection and identification of sample components depends upon a source of energetic radiation, such as beta radiation, which ionizes the atmospheric pressure host gas. This primary ionization initiates a sequence of ion-molecule reactions leading to the formation of sufficiently energetic positive or negative ions, which in turn ionize most constituents in the sample. In conventional IMS, this reaction sequence is dominated by the water cluster ion. However, many of the light hydrocarbons expected in Titan's atmosphere cannot be analyzed by IMS using this mechanism at the concentrations expected. Research at NASA Ames and PCP Inc., has demonstrated IMS analysis of expected Titan atmospheric components, including saturated aliphatic hydrocarbons, using two alternate sample ionizations mechanisms. The sensitivity of the IMS to hydrocarbons such as propane and butane was increased by several orders of magnitude. Both ultra dry (waterless) IMS sample ionization and metastable ionization were successfully used to analyze a model Titan atmospheric gas mixture.

  20. Middle Atmosphere Program. Handbook for MAP. Volume 18: Extended abstracts

    NASA Technical Reports Server (NTRS)

    Kato, S. (Editor)

    1985-01-01

    Various topics related to middle atmosphere research are discussed. Variability of the middle atmosphere during winter, climatology, gravity waves, atmospheric turbulence, transport processes of trace species and aerosols, and research in the Antarctic are among the topics covered.

  1. [Gas chromatography with a Pulsed discharge helium ionization detector for measurement of molecular hydrogen(H2) in the atmosphere].

    PubMed

    Luan, Tian; Fang, Shuang-xi; Zhou, Ling-xi; Wang, Hong-yang; Zhang, Gen

    2015-01-01

    A high precision GC system with a pulsed discharge helium ionization detector was set up based on the commercial Agilent 7890A gas chromatography. The gas is identified by retention time and the concentration is calculated through the peak height. Detection limit of the system is about 1 x 10(-9) (mole fraction, the same as below). The standard deviation of 140 continuous injections with a standard cylinder( concentration is roughly 600 x 10(-9)) is better than 0.3 x 10(-9). Between 409.30 x 10(-9) and 867.74 x 10(-9) molecular hydrogen mole fractions and peak height have good linear response. By using two standards to quantify the air sample, the precision meets the background molecular hydrogen compatibility goal within the World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) program. Atmospheric molecular hydrogen concentration at Guangzhou urban area was preliminarily measured by this method from January to November 2013. The results show that the atmospheric molecular hydrogen mole fraction varies from 450 x 10(-9) to 700 x 10(-9) during the observation period, with the lowest value at 14:00 (Beijing time, the same as below) and the peak value at 20:00. The seasonal variation of atmospheric hydrogen at Guangzhou area was similar with that of the same latitude stations in northern hemisphere.

  2. Scientific objectives of human exploration of Mars

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    While human exploration of Mars is unlikely to be undertaken for science reasons alone, science will be the main beneficiary. A wide range of science problems can be addressed at Mars. The planet formed in a different part of the solar system from the Earth and retains clues concerning compositional and environmental conditions in that part of the solar system when the planets formed. Mars has had a long and complex history that has involved almost as wide a range of processes as occurred on Earth. Elucidation of this history will require a comprehensive program of field mapping, geophysical sounding, in situ analyses, and return of samples to Earth that are representative of the planet's diversity. The origin and evolution of the Mars' atmosphere are very different from the Earth's, Mars having experienced major secular and cyclical changes in climate. Clues as to precisely how the atmosphere has evolved are embedded in its present chemistry, possibly in surface sinks of former atmosphere-forming volatiles, and in the various products of interaction between the atmosphere and surface. The present atmosphere also provides a means of testing general circulation models applicable to all planets. Although life is unlikely to be still extant on Mars, life may have started early in the planet's history. A major goal of any future exploration will, therefore, be to search for evidence of indigenous life.

  3. PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event.

    PubMed

    Chi, Kai Hsien; Lin, Chuan-Yao; Yang, Chang-Feng Ou; Wang, Jia-Lin; Lin, Neng-Heui; Sheu, Guey-Rong; Lee, Chung-Te

    2010-04-15

    Recent biomass burning in Southeast Asia has raised global concerns over its adverse effects on visibility, human health, and global climate. The concentrations of total suspended particles (TSPs) and other vapor-phase pollutants (CO and ozone) were monitored at Lulin, an atmospheric background station in central Taiwan in 2008. To evaluate the long-range transport of persistent organic pollutants (POPs) during the Southeast Asia biomass burning event, the atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were also measured at Lulin station. The atmospheric PCDD/F and TSP concentrations measured at Lulin station ranged from 0.71-3.41 fg I-TEQ/m(3) and 5.32-55.6 microg/m(3), respectively, during the regular sampling periods. However, significantly higher concentrations of PCDD/Fs, TSPs, CO, and ozone were measured during the spring season. These high concentrations could be the result of long-range transport of the products of Southeast Asia biomass burning. During the Southeast Asia biomass burning event (March 18-24, 2008), an intensive observation program was also carried out at the same station. The results of this observation program indicated that the atmospheric PCDD/F concentration increased dramatically from 2.33 to 390 fg I-TEQ/m(3) (March 19, 2008). The trace gas (CO) of biomass burning also significantly increased to 232 ppb during the same period, while the particle-bound PCDD/Fs in the TSP increased from 28.7 to 109 pg I-TEQ/g-TSP at Lulin station during the burning event. We conclude that there was a significant increase in the PCDD/F concentration in ambient air at a high-altitude background station in central Taiwan during the Southeast Asia biomass burning event.

  4. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  5. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  6. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is not possible to conclude that the actual contamination by zinc is due to atmospheric deposition or spill. However, some samples in this same area present lightly higher zinc concentration in topsoil than in subsoil indicating a cursory atmospheric deposition. Regarding to lead, one of the industrial areas showed a very active atmospheric deposition, with concentrations higher than 900 mg/kg in topsoil decreasing until less than 10 mg/kg to 30 cm depth. Oppositely, the lead concentration in natural soil is constant in the profile. On the other hand, the range of cadmium concentrations in the different depths of the profiles was, generally, low. Only one sample from the industrial area shows high concentration in the first centimetre of soil, decreasing quickly with the depth, supporting the hypothesis that the atmospheric deposition is the main pathway of cadmium contamination. Studding the copper concentration, only in agricultural soil atmospheric deposition is observed, probably due to application of pesticides. Oppositely to the rest of metals, manganese increases its concentration with the depth in natural soil, probably due to that the parent material (metamorphic rock) is rich in this metal. In the case of chromium has not been detected atmospheric deposition in any sampling point. Finally, only one sample located at the industrial area, nickel concentration shows a higher level in topsoil than subsoil, indicating atmospheric deposition. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support

  7. The soiling of materials in the ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Hamilton, R. S.; Mansfield, T. A.

    Models describing the rate of soiling of exposed surfaces due to the deposition and accumulation of particulate matter from the atmosphere are reviewed. Samples of white painted wood were exposed for 110 days in the ambient atmosphere. Separate samples were sheltered and unsheltered from rainfall. Reflectance was measured daily. Results are compared with recently published studies in the U.S.A. (samples in the ambient atmosphere) and the U.K. (samples in a road tunnel). Experimental soiling rates were compared with predicted values. Existing models were satisfactory for predicting soiling in a tunnel but underestimated soiling in an ambient situation; a revised formulation is proposed for this situation. Rainfall generally produced a cleaning effect but redistribution of washed-off material could produce enhanced soiling.

  8. The Junior Science & Humanities Symposium: Management and Operations, 2003-2004. Theme--Atmosphere--The Other Ocean.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…

  9. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOEpatents

    Aldstadt, J.H. III

    1997-06-24

    A method is described for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere. 2 figs.

  10. THE CLIMATE-AIR QUALITY SCALE CONTINUUM AND THE GLOBAL EMISSION INVENTORY ACTIVITY

    EPA Science Inventory

    The Global Emissions Inventory Activity (GEIA), a core program activity of the International Global Atmospheric Chemistry (IGAC) Project of the International Geosphere-Biosphere Program, develops data and other related information on key chemical emissions to the atmosphere and...

  11. Effect of volume-scattering function on the errors induced when polarization is neglected in radiance calculations in an atmosphere-ocean system.

    PubMed

    Adams, C N; Kattawar, G W

    1993-08-20

    We have developed a Monte Carlo program that is capable of calculating both the scalar and the Stokes vector radiances in an atmosphere-ocean system in a single computer run. The correlated sampling technique is used to compute radiance distributions for both the scalar and the Stokes vector formulations simultaneously, thus permitting a direct comparison of the errors induced. We show the effect of the volume-scattering phase function on the errors in radiance calculations when one neglects polarization effects. The model used in this study assumes a conservative Rayleigh-scattering atmosphere above a flat ocean. Within the ocean, the volume-scattering function (the first element in the Mueller matrix) is varied according to both a Henyey-Greenstein phase function, with asymmetry factors G = 0.0, 0.5, and 0.9, and also to a Rayleigh-scattering phase function. The remainder of the reduced Mueller matrix for the ocean is taken to be that for Rayleigh scattering, which is consistent with ocean water measurement.

  12. Peroxy Radicals Observed in a Forested Environment with Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.; Mauldin, L.; Nowak, J. B.

    2017-12-01

    Observations of peroxy radicals were made using time-of-flight chemical ionization mass spectrometry (ToF-CIMS) during the PROPHET-AMOS (Program for Research on Oxidants, Photochemistry, Emissions and Transport - Atmospheric Measurements of Oxidants in Summer) campaign in summer 2016 at the University of Michigan Biological Station (UMBS) in the northern lower peninsula of Michigan. The environment is one of high isoprene productivity and generally low NOx, depending on the origin of air masses that are sampled, and has been the subject of several comprehensive atmospheric observational studies. The ToF-CIMS was configured to measure OH, HO2+RO2, and extremely oxygenated volatile organic compounds (ELVOCs) in a cycle of about 5 minutes for each. This presentation examines the time- and chemical coordinate-dependent behavior of the peroxy radicals, and compares the observations with models that are constrained by observations of the controlling variables. The results are used to estimate factors such as the photochemical production rate of ozone and other atmospheric oxidation parameters for this remote forest site.

  13. Biomonitoring of air pollution as exemplified by recent IAEA programs.

    PubMed

    Smodis, B; Parr, R M

    1999-01-01

    Biomonitoring is an appropriate tool for assessing the levels of atmospheric pollution, having several advantages compared with the use of direct measurements of contaminants (e.g., in airborne particulate matter, atmospheric deposition, precipitation), related primarily to the permanent and common occurrence of the chosen organisms in the field, the ease of sampling, and trace element accumulation. Furthermore, biomonitors may provide a measure of integrated exposure over an extended period of time and are present in remote areas and no expensive technical equipment is involved in collecting them. They accumulate contaminants over the exposure time and concentrate them, thus facilitating analytical measurements. Based on large-scale biomonitoring surveys, polluted areas can be identified, and by applying appropriate statistical tools, information can be obtained on the type of pollution sources and on the transboundary transport of atmospheric pollutants. The International Atomic Energy Agency is including the research on biomonitors in its projects on health-related environmental studies. Biomonitoring activities from several coordinated research projects on air pollution are presented, and results from an international workshop are discussed. In addition, activities in supporting improvement quality in the participating laboratories are outlined.

  14. Marshall Team Complete Testing for Lunar Atmosphere and Dust Environment Explorer

    NASA Technical Reports Server (NTRS)

    Swofford, Philip

    2013-01-01

    Dr. Huu Trinh and his team with the Propulsion Systems and Test Departments at Marshall Space Flight Center in Huntsville, Ala. successfully complete a simulated cold-flow test series on the propulsion system used for the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. NASA Ames Research Center, Moffett Field, Calif., is leading NASA s work on the development of the LADEE spacecraft, and the Marshall center is the program office for the project. The spacecraft, scheduled for launch this fall, will orbit the Moon and gather information about the lunar atmosphere, conditions near the surface of the Moon, and collect samples of lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. The test team at the Marshall center conducted the cold flow test to identify how the fluid flows through the propulsion system feed lines, especially during critical operation modes. The test data will be used to assist the LADEE team in identifying any potential flow issues in the propulsion system, and allow them to address and correct them in advance of the launch.

  15. An Overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Aerosol effects on atmospheric radiation are a leading source of uncertainty in predicting future climate. As a result, the International Global Atmospheric Chemistry Program has established a Focus on Atmospheric Aerosols (IGAC/FAA) and endorsed a series of aerosol field campaigns. TARFOX, the second in the IGAC/FAA series, was designed to reduce this uncertainty by measuring aerosol properties and effects in the US eastern seaboard, where one of the world's major plumes of industrial haze moves from the continent over the Atlantic Ocean. TARFOX's objectives are to: 1. Make simultaneous measurements of: (a) aerosol effects on radiation fields, and (b) the chemical, physical, and optical properties of the aerosols causing those effects. 2. Perform a variety of closure studies by using overdetermined data sets to test the mutual consistency of measurements and calculations of a wide range of aerosol properties and effects. 3. Use the results of the closure studies to assess and reduce uncertainties in estimates of aerosol radiative forcing, as well as to guide future field programs. An important subset of the closure studies is tests and improvements of algorithms used to derive aerosol properties and radiative effects from satellite measurements. The TARFOX Intensive Field Period (IFP) was conducted July 10-31, 1996. It included coordinated measurements from four satellites (GOES-8, NOAA-14, ERS-2, LANDSAT), four aircraft (ER-2, C-130, C-131, and a modified Cessna), land sites, and ships. A variety of aerosol conditions was sampled, ranging from relatively clean behind frontal passages to moderately polluted with aerosol optical depths exceeding 0.5 at mid-visible wavelengths. The latter conditions included separate incidents of enhancements caused primarily by anthropogenic sources and another incident of enhancement apparently influenced by recent fog processing. Spatial gradients of aerosol optical thickness were sampled to aid in isolating aerosol effects from other radiative effects and to more tightly constrain closure tests, including those of satellite retrievals. This talk gives an overview of TARFOX goals, rationale, methods, and initial key findings.

  16. Atmospheric contamination by pesticides: Determination in the liquid, gaseous and particulate phases.

    PubMed

    Millet, M; Wortham, H; Sanusi, A; Mirabel, P

    1997-01-01

    Between 1991 and 1993, 18 fogwater samples, 31 rainwater samples and 17 atmosphere (gas and particles) samples were analysed for 13 pesticides (pp'DDT,pp'DDD,pp'DDE, aldrin, dieldrin, lindane, hexachlorobenzene, fenpropathrin, mecoprop, methyl-parathion, atrazine, isoproturon and aldicarb). The samples were collected in a rural area where some of the compounds are in use (experimental INRA farm, "Institut National de la Recherche Agronomique" in Colmar, Eastern France, 80,000 inhabitants). This paper briefly presents the analytical methodology used and, in detail, the contamination level of the different atmospheric phases. The contamination levels are roughly constant throughout the year in all the atmospheric phases and the most abundant pesticides are those commonly used on the experimental INRA farm and other surrounding farms. Nevertheless, some pesticides not used since the 1970s such as 1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (pp'DDT) and 2,2-Bis(4-chlorophenyl)-1,1-dichloroethane (pp 'DDD) are also detected in the atmosphere of Colmar. A small increase in the pesticide concentrations in the atmosphere (gas and particles) was observed during treatments.

  17. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  18. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem.

    PubMed

    Ahmed, Manan; Chin, Ying Hui; Guo, Xinxin; Zhao, Xing-Min

    2017-05-01

    The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid-liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30μg/m 3 ) and aluminum (53.58-378.93μg/m 3 ) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere. Copyright © 2016. Published by Elsevier B.V.

  19. Fogwater Chemistry and Air Quality in the Texas-Louisiana Gulf Coast Corridor

    NASA Astrophysics Data System (ADS)

    Kommalapati, R. R.; Raja, S.; Ravikrishna, R.; Murugesan, K.; Collett, J. L.; Valsaraj, K.

    2007-05-01

    The presence of fog water in polluted atmosphere can influence atmospheric chemistry and air quality. The study of interactions between fog water and atmospheric gases and aerosols are very important in understanding the atmospheric fate of the pollutants. In this Study several air samples and fogwater samples were collected in the heavily industrialized area of Gulf Coast corridor( Houston, TX and Baton Rouge, LA). A total of 32 fogwater samples were collected, comprising of nine fog events in Baton Rouge (Nov 2004 to Feb 2005) and two fog events in Houston (Feb, 2006), during the fog sampling campaigns. These samples were analyzed for pH, total and dissolved carbon, major inorganic ions, organic acids, and aromatics, aldehydes, VOCs, and linear alkanes organic compounds. Fogwater samples collected in Houston show clear influence of marine and anthropogenic environment, while Baton Rouge samples reveal a relatively less polluted environment. Also, a time series observation of air samples indicated that fog event at the monitoring site impacted the air concentrations of the pollutants. This is attributed to presence of surface active organic matter in fog water.

  20. Aerosol emissions from forest and grassland burnings in the southern amazon basin and central Brazil

    NASA Astrophysics Data System (ADS)

    Leslie, Alistair C. D.

    1981-03-01

    Forest and grassland clearing by means of prescribed fires in tropical areas of the world may be responsible for large inputs of fine particulates to the global atmosphere besides being a major source of trace gases. The major continents on which extensive biomass burning takes place are Africa and South America. Such agricultural practices of burning have been employed throughout man's existence, but the importance and significance of such burning relative to anthropogenic industrial emissions to the atmosphere has not until extremely recently been seriously studied. In August-September 1979 project "Brushfire 1979" took place based in Brasília, Brazil. The Air Quality Division of the National Center for Atmospheric Research made ground level and aircraft measurements of trace gases (e.g. CO 2, CO, CH 4, N 2O, H 2, CH 3Cl, COS, NO, NO 2, O 3) and Florida State University sampled ground level aerosol emissions from grass and forest burnings. Aerosols were sampled using plastic 7-stage single orifice cascade impactors and FSU type linear and circular "streakers". Long term sampling was made of regional background for total particulates (<15 μmad) with 2 h resolution using streakers and with impactors for 24 h resolution of 7 particle size fractions (<0.25 to >8 μmad). Short term sampling within grass or forest fires was made using impactors incorporated into portable kits containing 4 miniature 12-18 V dc Brailsford pumps and a disposable dry cell power pack. Sampling times of 5-15 min were found optimal under these conditions. Grass fires were sampled in the savannah area northeast of Brasília and forest fires in the state of Mato Grosso on the southern edge of the dryland forest of the Amazon basin. Residual ash samples were collected. All of the samples were analyzed at Florida State University using PIXE for 15-20 elements including Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb and Sr. Computer reduction of the X-ray spectra was made using the "HEXB" program. One of the prominent features found was the large flux of small particles (<2.0 μm) from both fire types. P, S and Cl were mostly small particle, Mg, Al, Si and K showed a bimodal distribution biased towards the small particle range, while Ca, Ti and Fe (crustal elements) predominated in the large particle mode. As Cl was found to be exclusively small particle, a formation mechanism in which HCl gas neutralizes small organic particles containing P and S may be hypothesized. A much more extensive field program for the summer of 1980 is planned to take place in the central Amazon basin using ground and airborne aerosol samplers, to capitalize on the work pioneered in this study.

  1. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons burst and the modules return to the surface. The second module will contain instrumentation recording temperature, pressure, and humidity, plus a radio beacon to track the location, facilitating recovery. Another instrument we are planning is a small, lightweight optical aerosol spectrometer probe. This would provide a valuable secondary set of data to compare with the actual sampling. The aerosol particle population will be assessed using the SEM at Morehead State University. Over the next several years, sampling is planned at locations both near and far from urban areas, and at intermediate locations. Sampling will be conducted at four times during the year to assess seasonal variations and, at some sites, repeated short-term samplings (e.g., 5 flights in 10 days) will be undertaken to assess short-term variations. In addition, the SEM should permit the assessment of the ratio of BC to organic carbon (OC). Like BC, organic carbon species are produced through biomass burning, but are not as effective as light absorbers, so are not responsible for as much forcing as black carbon. The atmosphere is sampled at a known volumetric rate, resulting in a picture of the atmospheric column density for both BC and OC, information of great use in modeling of the aerosol contribution to climate change.

  2. Winter in Northern Europe (WINE) Project

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1982-01-01

    The scientific aims, work plan, and organization of the Middle Atmosphere Program winter in northern Europe (MAP/WINE) are described. Proposed contributions to the MAP/WINE program from various countries are enumerated. Specific atmospheric parameters to be examined are listed along with the corresponding measurement technique.

  3. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climatemore » change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.« less

  4. Atmospheric bioaerosols originating from Adélie penguins (Pygoscelis adeliae): Ecological observations of airborne bacteria at Hukuro Cove, Langhovde, Antarctica

    NASA Astrophysics Data System (ADS)

    Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Noda, Takuji; Mitamura, Hiromichi; Takahashi, Akinori; Imura, Satoshi; Iwasaka, Yasunobu

    2016-03-01

    The relationship between atmospheric bioaerosols and ecosystems is currently of global importance. Antarctica has an extreme climate, meaning that ecosystem behavior in this region is relatively simple. Direct sampling of atmospheric bioaerosols was performed at an Adélie penguin (Pygoscelis adeliae) colony at Hukuro Cove, Langhovde, Antarctica on 22 January 2013. The aim of the sampling was to reveal the effect of the penguins on the Antarctic ecosystem within the atmospheric bioaerosols. Samples were bio-analyzed using a next-generation sequencing method. Biomass concentrations of Bacilli-class bacteria were 19.4 times higher when sampled leeward of the penguin colony compared with windward sampling. The source of these bacteria was the feces of the penguins. Predicted atmospheric trajectories indicate that the bacteria disperse towards the Southern Ocean. The largest biomass concentration in the windward bacteria was of the Gammaproteobacteria class, which decreased markedly with distance through the penguin colony, being deposited on soil, surface water, and ocean. It is concluded that bioaerosols and ecosystems near the penguin colony strongly influence each other.

  5. A Spectroscopic Survey and Analysis of Bright, Hydrogen-rich White Dwarfs

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Bergeron, P.; Ruiz, M. T.

    2011-12-01

    We have conducted a spectroscopic survey of over 1300 bright (V <= 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 078.D-0824(A).

  6. NASA's Planetary Data System: Support for the Delivery of Derived Data Sets at the Atmospheres Node

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Beebe, Reta; Neakrase, Lynn; Huber, Lyle; Rees, Shannon; Hornung, Danae

    2015-11-01

    NASA’s Planetary Data System is charged with archiving electronic data products from NASA planetary missions that are sponsored by NASA’s Science Mission Directorate. This archive, currently organized by science disciplines, uses standards for describing and storing data that are designed to enable future scientists who are unfamiliar with the original experiments to analyze the data, and to do this using a variety of computer platforms, with no additional support. These standards address the data structure, description contents, and media design. The new requirement in the NASA ROSES-2015 Research Announcement to include a Data Management Plan will result in an increase in the number of derived data sets that are being delivered to the PDS. These data sets may come from the Planetary Data Archiving, Restoration and Tools (PDART) program, other Data Analysis Programs (DAPs) or be volunteered by individuals who are publishing the results of their analysis. In response to this increase, the PDS Atmospheres Node is developing a set of guidelines and user tools to make the process of archiving these derived data products more efficient. Here we provide a description of Atmospheres Node resources, including a letter of support for the proposal stage, a communication schedule for the planned archive effort, product label samples and templates in extensible markup language (XML), documentation templates, and validation tools necessary for producing a PDS4-compliant derived data bundle(s) efficiently and accurately.

  7. Trends in atmospheric heavy metals abundances over the Russian part of EMEP region in 1990-2012

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Konkova, Elizaveta S.

    2016-04-01

    The European part of Russia is covered by two atmospheric environment monitoring networks established in the 1970s-1980s to monitor and evaluate anthropogenic pollution of regional/background natural environment. These are EMEP - European Monitoring and Evaluation Program of transboundary atmospheric pollutant transmission (under the UN ECE Convention on Long-Range Transboundary Air Pollution) and IBMoN - Integrated Background Monitoring Network of environmental toxic pollution (prior to 1990 under the UNEP/GEMS supervision, mostly for East European countries). IGCE laboratories operate as analytical centers for both networks. Historically, IBMoN was partly implemented at EMEP sites to support this international program with additional (optional) data. IBMoN datasets were selected for analysis of atmospheric heavy metal trends in the Russian territory of EMEP region for the last twenty three years due to more intensive operation up to now [1, 2]. Atmospheric heavy metals are collected at the remote sites with the air samples of atmospheric aerosols deposited on Petryanov's cellulose acetate filters through high-volume pumping during 24 hours. To measure lead and cadmium content, filters are transferred into the solution to determine total amounts by the Atomic Absorption Spectroscopy (AAS) with flameless atomization. Precipitation samples (collected monthly with acidic preserving) are directly injected into the AAS detection module after filtering. The sampling procedure, special processing and analytical techniques allow us to measure concentrations at substantially low levels [3, 2]. In this study we investigate the long term trends of lead and cadmium in air and precipitation at two stations, viz. Astrakhan Biosphere Reserve (46°N, 49°E) and Danki (Oka-Terrace Biosphere Reserve, 54.9°N, 37.8°E). Following the EMEP general recommendations, the evaluation was done for two continuous periods covering 1990-2001 and 2002-2012, respectively. We apply the common methodology recommended by WMO/EMEP Task Force for trend evaluation, implemented in software developed and distributed by EMEP [4]. This methodology allows approximation of apparent trends using the superposition of the exponential (main) and residual components obtained using the ad hoc trend regression model. We further use so-called reduction parameters to investigate quantitatively the nature of trends: The total over the period (Rtot) and annual average (Rave), with the latter corresponding to increasing trend at negative values. Overall, temporal tendencies of airborne cadmium and lead demonstrate similar behaviour, however on top of different average concentration levels. For both species our analysis confirms the increase in air and precipitation abundances at the regional and remote sites over the European part of Russia for the period of 2002-2012. References: 1. Gromov S.A., and S.G. Paramonov, 2015. Current status and prospects for the development of integrated background monitoring of environmental pollution. Problems of Ecological Monitoring and Ecosystem Modelling, v. XXVI, N 1, p. 205-221. 2. Rovinsky F.Ya. (Ed.), 1989. Analytical review of environmental pollution with heavy metals in background areas of the CMEA member countries (1982-1989). Moscow, Gidrometeoizdat, 88 p. 3. Izrael Yu.A., and F.Ya. Rovinsky, 1991. Integrated background monitoring of environmental pollution in mid-latitude Eurasia. WMO Global Atmospheric Watch No 72, WMO/TD No. 434, 104 p. 4. MSC-East, 2015. Methodology of trend analysis of air quality data (http://www.msceast.org/documents/ Methodology_of_trend_analysis.pdf).

  8. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes. Volume 3: October 1978 - July 1979

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Jasperson, W. H.

    1985-01-01

    Measurements of ozone concentrations at cruise altitudes both outside and in the cabin of a Boeing 747SP and Boeing 747-100 airliners in routine commercial service are presented. Plotted and tabulated data are identified by route and are arranged chronologically for each airplane. These data were taken at 5- or 10-min intervals by automated instruments used in the NASA Global Atmospheric Sampling Program (GASP). All GASP cabin ozone data obtained from October 1978 to early July 1979 are presented.

  9. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  10. The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Protat, A.; Zhao, C.

    2013-12-01

    One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.

  11. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  12. Exploratory investigation of the need for and feasibility of a Lower Atmosphere Research Satellite (LARS) program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The need for and feasibility of a research satellite program for the intensive study of the lower atmosphere (the troposphere and lower stratosphere) is discussed. The priorities for scientific investigation of the lower atmosphere during the next decade are examined. The findings of the study are concerned with identification of those broad research issues of highest priority and, in particular, with those that are most appropriate for investigation from space platforms.

  13. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  14. Theoretical and experimental studies of atmospheric structure and dynamics, using high altitude chemical release, Radio meteor, and meteorological rocket network and other data

    NASA Technical Reports Server (NTRS)

    Edwards, H. D.

    1976-01-01

    Data collected by the Georgia Tech Radio Meteor Wind Facility during the fall and winter of 1975 are analyzed indicating a relationship between lower thermospheric circulation at mid latitudes and polar stratospheric dynamics. Techniques of measurement of mixing processes in the upper atmosphere and the interpretation of those measurements are described along with a diffusion simulation program based on the Global Reference Atmosphere program.

  15. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  16. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  17. Thermophysical Property Measurements of Molten Semiconductors in 1-g and Reduced-g Condition

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1999-01-01

    Understanding and controlling the formation kinetics of varieties of crystal imperfections such as point defects, non uniform distribution of doping atoms, and impurity atoms in growing crystals are very important. Theoretical (numerical) modeling of the crystal growth process is an essential step to achieving these objectives. In order to obtain reliable modeling results, input parameters, i.e. various thermophysical parameters, must be accurate. The importance of accurate thermophysical properties of semiconductors in crystal growth cannot be overly emphasized. The total hemispherical emissivity, for instance, has a dramatic impact on the thermal environment. It determines the radiative emission from the surface of the melt which determines to a large extent the profile of the solidified crystal. In order to understand the convection and the turbulence in a melt, viscosity becomes an important parameter. The liquid surface tension determines the shape of the liquid-atmosphere interface near the solid-liquid-atmosphere triple point. Currently used values for these parameters are rather inaccurate, and this program intends to provide more reliable measurements of these thermophysical properties. Thus, the objective of this program is in the accurate measurements of various thermophysical properties which can be reliably used in the modeling of various crystal growth processes. In this program, thermophysical properties of molten semiconductors, such as Si, Ge, Si-Ge, and InSb will be measured as a function of temperature using the High Temperature Electrostatic Levitator at JPL. Each material will be doped by different kinds of impurities at various doping levels. Thermophysical properties which will be measured include: density, thermal expansion coefficient, surface tension, viscosity, specific heat, hemispherical total emissivity, and perhaps electrical and thermal conductivities. Many molten semiconductors are chemically reactive with crucibles. As a result, these dispersed impurities in the melts tend to substantially modify the properties of pure semiconductors. Sample levitation done in a vacuum clearly helps maintain the sample purity. However, in the 1-g environment, all gravity caused effects such as convection, sedimentation and buoyancy are still present in the sample. In addition, large forces needed to levitate a sample in the presence of the gravity can cause additional flows in the melt. The use of the High Temperature Electrostatic Levitator (HTESL) for the present research is a recent development and little is known about the flows induced by the electrostatic forces. In this ground base program, we will define the limits of HTESL technology as various thermophysical properties of molten semiconductors are measured.

  18. Atmospheric Radiation Measurement Program facilities newsletter, March 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisterson, D. L.

    2000-04-03

    The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.

  19. Data on microscale atmospheric pollution of Bolshoy Kamen town (Primorsky region, Russia)

    NASA Astrophysics Data System (ADS)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Maiss, Natalia; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter of Bolshoy Kamen town by means of laser granulometry of snow water samples. Snow sampling points were selected close to major enterprises, along the main streets and roads of the town and in the residential area. The near-ground layer of atmospheric air of the town contains particulate matter of three main size classes: under 10 microns, 10-50 microns and over 700 microns. It is shown that the atmosphere of this town is lightly polluted with particles under 10 μm (PM10). Only in 5 sampling points out of 11 we found microparticles potentially hazardous to human health in significant quantities - from 16.2% to 34.6%. On the most territory of the town large particles (over 400 μm) dominate reaching 79.2%. We can conclude that judging by the particle size analysis of snow water samples Bolshoy Kamen town can be considered safe in terms of presence of particles under 10 μm (PM10) in the atmosphere.

  20. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    PubMed

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.

  1. Treatment of atomic and molecular line blanketing by opacity sampling. [atmospheric optics - stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Krupp, B. M.

    1975-01-01

    An opacity sampling (OS) technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is presented. Tests were conducted and results show that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 500 frequency points is often adequate. The effects of atomic and molecular lines are separately studied. A test model computed by using the OS method agrees very well with a model having identical atmospheric parameters computed by the giant line (opacity distribution function) method.

  2. Atmospheric Science Program. Summaries of research in FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded bymore » a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.« less

  3. Sample Return Propulsion Technology Development Under NASA's ISPT Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.

    2011-01-01

    Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12

  4. Hubble’s Global View of Jupiter During the Juno Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Cosentino, Richard; Tollefson, Joshua; Johnson, Perianne

    2017-10-01

    With two observing programs designed for mapping clouds and hazes in Jupiter's atmosphere during the Juno mission, the Hubble Space Telescope is acquiring an unprecedented set of global maps for study. The Outer Planet Atmospheres Legacy program (OPAL, PI: Simon) and the Wide Field Coverage for Juno program (WFCJ, PI: Wong) are designed to enable frequent multi-wavelength global mapping of Jupiter, with many maps timed specifically for Juno’s perijove passes. Filters span wavelengths from 212 to 894 nm. Besides offering global views for Juno observation context, they also reveal a wealth of information about interesting atmospheric dynamical features. We will summarize the latest findings from these global mapping programs, including changes in the Great Red Spot, zonal wind profile analysis, and persistent cyclone-generated waves in the North Equatorial Belt.

  5. You Can Run, But You Can't Hide Juniper Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.

    2013-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modified the DREAM model to incorporate pollen transport. Pollen release is estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities are used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  6. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  7. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    NASA Technical Reports Server (NTRS)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  8. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.

    PubMed

    Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A

    2015-07-21

    Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  9. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less

  10. SPECIAL ISSUE OF ATMOSPHERIC ENVIRONMENT FOR PARTICULATE MATTER SUPERSITES PROGRAM AND RELATED STUDIES

    EPA Science Inventory

    This special issue of Atmospheric Environment provides a selection of papers that were presented at the 2005 AAAR PM Supersites Program and Related Studies International Specialty Conference held in Atlanta, GA, 7-11 February 2005. Topics of papers in this issue range from the e...

  11. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.

    2017-12-01

    Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface structure and activity. In addition to surface investigations, Dragonfly can perform measurements during flight, including atmospheric profiles and aerial observations of surface geology, which also provide sampling context and scouting for landing sites.

  12. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    NASA Astrophysics Data System (ADS)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  13. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  14. Electro-optic and holographic measurement techniques for the atmospheric sciences. [considering spacecraft simulation applications

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Lemons, J. F.; Kurtz, R. L.; Liu, H.-K.

    1977-01-01

    A comprehensive examination is made of recent advanced research directions in the applications of electro-optical and holographic instrumentations and methods to atmospheric sciences problems. In addition, an overview is given of the in-house research program for environmental and atmospheric measurements with emphasis on particulates systems. Special treatment is made of the instrument methods and applications work in the areas of laser scattering spectrometers and pulsed holography sizing systems. Selected engineering tests data on space simulation chamber programs are discussed.

  15. Some applications of remote sensing in atmospheric monitoring programs

    NASA Technical Reports Server (NTRS)

    Heller, A. N.; Bryson, J. C.; Vasuki, N. C.

    1972-01-01

    The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.

  16. A Water Mass Tracer Detected in Aerosols Demonstrates Ocean-Atmosphere Mass Transfer and Links Sea Spray Aerosol to Source Waters

    NASA Astrophysics Data System (ADS)

    Pendergraft, M.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Prather, K. A.; Santander, M.; Lee, C.; Beall, C.

    2016-12-01

    During September and October of 2015 the Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) project released rhodamine WT dye to study nearshore water movement and exchange offshore along a Southern California sandy beach. We utilized this opportunity to investigate ocean-atmosphere mass transfer via sea spray aerosol and linkage to source waters. Aerosol-concentrating sampling equipment was deployed at beachside and inland locations during three dye releases. Concentrated aerosol samples were analyzed for dye content using fluorescence spectroscopy. Here we present the ocean and atmosphere conditions associated with the presence and absence of dye in aerosol samples. Dye was identified in aerosol samples collected 0.1-0.3 km from the shoreline for 6 hs during the first and third dye releases of the CSIDE project. During these releases the dye persisted in the waters upwind of the sampling equipment. Dye was not detected in aerosol samples collected during the second release during which dye was moved away from waters upwind of the sampling equipment. Recovery of a chemical tracer in sea spray aerosol allows direct linkage to a known source area in the ocean that is independent of, but supported by, wind data. Our observations demonstrate: a tight ocean-atmosphere spatial coupling; a short residence time of coastal marine constituents before transfer to the atmosphere; that the ocean is both a sink for and a source of atmospheric and terrestrial material; and that human inputs to the ocean can return to us in sea spray aerosol.

  17. Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.; Irwin, Troy

    2002-11-01

    The lower cloud level of the Venusian atmosphere is an environmental niche that could harbor microbial life. Particularly the mode 3 particles that are enriched in this atmospheric layer are of astrobiological interest. We propose here a sample collection mission to the atmosphere of Venus and evaluate three mission options. The first option is a Stardust-type spacecraft used for sample collection, the second option is a Rotating Probe Tether System, and the third option is a Parachute Drop - Balloon Floatation System. Given the current state of technology, the result of our preliminary analysis is that the Parachute Drop - Balloon Floatation Mission is the most feasible and practical option.

  18. Testing Ultracool Atmospheres with Mass Benchmarks

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, Michael C.

    2011-08-01

    After years of patient orbital monitoring, there is now a sample of ~10 very low-mass stars and brown dwarfs with precise (~5%) dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to obtain narrow-band imaging with Keck/OSIRIS LGS to measure resolved SEDs for this first sizable sample of ultracool binaries with well-determined dynamical masses. This multi- band photometry will enable us to precisely estimate spectral types and effective temperatures of individual binary components, providing the strongest constraints to date on widely used evolutionary and atmospheric models. Our proposed Keck observations are much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these data are equally vital for robust tests of theory. (Note: Our proposed time is intended to replace the 1 night awarded by NOAO to carry out this program in 2010B, which was completely lost due to weather.)

  19. Expectations for Particulate Contamination Relevant to in Situ Atmospheric Sampling for Compositional Analysis at Uranus

    NASA Astrophysics Data System (ADS)

    Wong, M. H.

    2017-12-01

    NASA and ESA are considering options for in situ science with atmospheric entry probes to the ice giants Uranus and Neptune. Nominal probe entry mass is in the 300-kg range, although a miniaturized secondary probe option is being studied in the 30-kg range. In all cases, compositional sampling would commence near the 100-mbar level at Uranus, after ejection of the heat shield and deployment of the descent parachute. In this presentation, I review existing literature on the composition, mass loading, and vertical distribution of condensed material that the probe may encounter. Sample inlets for measurement of the gas composition should be heated to avoid potential buildup of condensate, which would block the flow of atmospheric gas into composition sensors. Heating rate and temperature values -- sufficient to keep sample inlets clean under various assumptions -- will be presented. Three main types of condensed material will be considered: Stratospheric hydrocarbon ices: Solar UV photolyzes CH4, leading to the production of volatile hydrocarbons with higher C/H ratios. These species diffuse from their production regions into colder levels where the ices of C2H2, C2H6, and C4H2 condense. Some studies have also considered condensation of C3H8, C4H10, C6H6, and C6H2. Gunk: The hydrocarbon ices are thought to become polymerized due to irradiation from solar UV. The exact composition of the resulting gunk is not known. Solid-state photochemical processing may produce the traces of reddish (blue-absorbing) haze material, present in the troposphere at temperatures warm enough to sublimate the simple hydrocarbon ices. Tropospheric ices: In the region accessible to probes under study (P < 10 bar), much thicker condensation clouds may form from volatile gases CH4, NH3, and H2S. If large amounts of NH3 are sequestered in the deeper H2O liquid cloud, then the S/N ratio could exceed 1 in the probe-accessible region of the atmosphere, leading to NH4SH and H2S ices below the CH4-ice cloud deck. Otherwise, NH4SH and NH3 ices would be found. This work is supported by a grant from the NASA Planetary Science Deep Space Small Satellite Program to the Small Next-generation Atmospheric Probe (SNAP) mission concept study (PI: Kunio Sayanagi).

  20. Policy Implications of Air Quality Research

    NASA Astrophysics Data System (ADS)

    Sheinbaum, C.

    2004-12-01

    While an integrated assessment approach will be required to achieve and sustain improvements in the air quality of Mexico City Metropolitan Area's (MCMA), policy strategies must be based on a solid understanding of the pollutant emissions and atmospheric processes that lead to unacceptable levels of air pollution. The required level of understanding can only be achieved by comprehensive atmospheric measurements followed by a coordinated atmospheric modeling program. The innovative, two-phase atmospheric measurement program, which was a collaborative effort between Massachusetts Institute of Technology and the Mexican Metropolitan Environmental Commission, with exploratory measurements in February 2002 and extensive measurements from late March through early May of 2003, was an important step towards meeting these requirements. Although the extensive data sets from the two measurement programs are still being analyzed by the investigators, their preliminary analysis efforts have yielded important insights into the nature and extent of air pollution problem in the MCMA, which in turn will have important policy implications.

  1. Modeling the Atmospheric Phase Effects of a Digital Antenna Array Communications System

    NASA Technical Reports Server (NTRS)

    Tkacenko, A.

    2006-01-01

    In an antenna array system such as that used in the Deep Space Network (DSN) for satellite communication, it is often necessary to account for the effects due to the atmosphere. Typically, the atmosphere induces amplitude and phase fluctuations on the transmitted downlink signal that invalidate the assumed stationarity of the signal model. The degree to which these perturbations affect the stationarity of the model depends both on parameters of the atmosphere, including wind speed and turbulence strength, and on parameters of the communication system, such as the sampling rate used. In this article, we focus on modeling the atmospheric phase fluctuations in a digital antenna array communications system. Based on a continuous-time statistical model for the atmospheric phase effects, we show how to obtain a related discrete-time model based on sampling the continuous-time process. The effects of the nonstationarity of the resulting signal model are investigated using the sample matrix inversion (SMI) algorithm for minimum mean-squared error (MMSE) equalization of the received signal

  2. A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol.

    PubMed

    Perrino, Cinzia; Marcovecchio, Francesca

    2016-02-01

    Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors. Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%. The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6-10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18-5.3 μg m(-3) (N=20), with a contribution to the organic matter in PM10 in the range 0.5-31% and to the total mass concentration of PM10 in the range 0.3-18%. The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  4. Middle Atmosphere Program. Handbook for MAP. Volume 16: Atmospheric Structure and Its Variation in the Region 20 to 120 Km. Draft of a New Reference Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Labitzke, K. (Editor); Barnett, J. J. (Editor); Edwards, B. (Editor)

    1985-01-01

    A draft of a new reference atmosphere for the region between 20 and 80 km which depends largely on recent satellite experiments covering the globe from 80 deg S to 80 deg N is given. A separate international tropical reference atmosphere is given, as well as reference ozone models for the middle atmosphere.

  5. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  6. Study of properties of tungsten irradiated in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.

    2017-12-01

    The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.

  7. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radigan, Jacqueline, E-mail: radigan@stsci.edu

    Observations of variability can provide valuable information about the processes of cloud formation and dissipation in brown dwarf atmospheres. Here we report the results of an independent analysis of archival data from the Brown dwarf Atmosphere Monitoring (BAM) program. Time series data for 14 L and T dwarfs reported to be significantly variable over timescales of hours were analyzed. We confirm large-amplitude variability (amplitudes >2%) for 4 out of 13 targets and place upper limits of 0.7%-1.6% on variability in the remaining sample. For two targets we find evidence of weak variability at amplitudes of 1.3% and 1.6%. Based onmore » our revised classification of variable objects in the BAM study, we find strong variability outside the L/T transition to be rare at near infrared wavelengths. From a combined sample of 81 L0-T9 dwarfs from the revised BAM sample and the variability survey of Radigan et al., we infer an overall observed frequency for large-amplitude variability outside the L/T transition of 3.2{sub −1.8}{sup +2.8}%, in contrast to 24{sub −9}{sup +11}% for L9-T3.5 spectral types. We conclude that while strong variability is not limited to the L/T transition, it occurs more frequently in this spectral type range, indicative of larger or more highly contrasting cloud features at these spectral types.« less

  9. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    1999-01-01

    A web site has been set up to make the calculations accessible; (i.e., cfakus.harvard.edu) This data can also be accessed by FTP. It has all of the atomic and diatomic molecular data, tables of distribution function opacities, grids of model atmospheres, colors, fluxes, etc, programs that are ready for distribution, and most of recent papers developed during this grant. Atlases and computed spectra will be added as they are completed. New atomic and molecular calculations will be added as they are completed. The atomic programs that had been running on a Cray at the San Diego Supercomputer Center can now run on the Vaxes and Alpha. The work started with Ni and Co because there were new laboratory analyses that included isotopic and hyperfine splitting. Those calculations are described in the appended abstract for the 6th Atomic Spectroscopy and oscillator Strengths meeting in Victoria last summer. A surprising finding is that quadrupole transitions have been grossly in error because mixing with higher levels has not been included. All levels up through n=9 for Fe I and II, the spectra for which the most information is available, are now included. After Fe I and Fe II, all other spectra are "easy". ATLAS12, the opacity sampling program for computing models with arbitrary abundances, has been put on the web server. A new distribution function opacity program for workstations that replaces the one used on the Cray at the San Diego Supercomputer Center has been written. Each set of abundances would take 100 Cray hours costing $100,000.

  10. Atmospheric Carbon Dioxide Record from Flask Measurements at Lampedusa Island (May 1992- December 2000)

    DOE Data Explorer

    Chamard, Paolo [ENEA, GEM-CLIM, Rome, Italy; Ciattaglia, Luigi [ENEA, GEM-CLIM, Rome, Italy; di Sarra, Alcide [ENEA, GEM-CLIM, Rome, Italy; Monteleone, Francesco [ENEA, GEM-CLIM, Rome, Italy

    2001-01-01

    Lampedusa Station rests on a rocky seashore on the eastern tip of Lampedusa Island, located south of Sicily in the central Mediterranean Sea. Air samples at Lampedusa Station are collected each Friday in two pairs of 2-L glass flasks. Flasks are evacuated and then pressurized to 280-300 kPa with ambient air at the sampling site. Determinations of CO2 are made by using a Siemens Ultramat 5E nondispersive infrared gas analyzer. Water vapor is removed during the sampling process by means of a chemical trap (Magnesium Perchlorate). During the measurement, residual water vapor is removed by means of a cold trap at -70°C. From the inception of the monitoring program at Lampedusa Station, CO2-in-synthetic air calibration gases have been used. Values are relative to the dry air WMO mole fraction scale.

  11. Atmospheric Plasma Depainting

    DTIC Science & Technology

    2014-11-19

    Atmospheric Plasma Depainting Peter Yancey Atmospheric Plasma Solutions, Inc. Report Documentation Page Form ApprovedOMB No. 0704-0188...00-00-2014 4. TITLE AND SUBTITLE Atmospheric Plasma Depainting 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Atmospheric Plasma Solutions, Inc,11301

  12. The Panchromatic Comparative Exoplanetary Treasury Program

    NASA Astrophysics Data System (ADS)

    Sing, David

    2016-10-01

    HST has played the definitive role in the characterization of exoplanets and from the first planets available, we have learned that their atmospheres are incredibly diverse. The large number of transiting planets now available has prompted a new era of atmospheric studies, where wide scale comparative planetology is now possible. The atmospheric chemistry of cloud/haze formation and atmospheric mass-loss are a major outstanding issues in the field of exoplanets, and we seek to make progress gaining insight into their underlying physical process through comparative studies. Here we propose to use Hubble's full spectroscopic capabilities to produce the first large-scale, simultaneous UVOIR comparative study of exoplanets. With full wavelength coverage, an entire planet's atmosphere can be probed simultaneously and with sufficient numbers of planets, we can statistically compare their features with physical parameters for the first time. This panchromatic program will build a lasting HST legacy, providing the UV and blue-optical spectra unavailable to JWST. From these observations, chemistry over a wide range of physical environments will be probed, from the hottest condensates to much cooler planets where photochemical hazes could be present. Constraints on aerosol size and composition will help unlock our understanding of clouds and how they are suspended at such high altitudes. Notably, there have been no large transiting UV HST programs, and this panchromatic program will provide a fundamental legacy contribution to atmospheric escape of small exoplanets, where the mass loss can be significant and have a major impact on the evolution of the planet itself.

  13. Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999)

    DOE Data Explorer

    Quay, Paul [School of Oceanography, University of Washington; Stutsman, Johnny [School of Oceanography, University of Washington

    1999-01-01

    This database offers precise measurements of atmospheric methane and 13C/12C in atmospheric methane from flask air samples collected at eight sites worldwide and aboard NOAA cruises in the Pacific Ocean. The eight sites include Olympic Peninsula, Washington; Cape Grim, Tasmania; Fraserdale, Ontario; Marshall Islands; Baring Head, New Zealand; Mauna Loa, Hawaii; Point Barrow, Alaska; and American Samoa. The measurements span the period 1988 to mid-1996. These data are useful for global methane budget analyses and for determining the atmospheric isotopic composition of methane. All isotopic measurements have been corrected for standard drift.

  14. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derivedmore » from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors.« less

  15. MEPAG Recommendations for a 2018 Mars Sample Return Caching Lander - Sample Types, Number, and Sizes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2011-01-01

    The return to Earth of geological and atmospheric samples from the surface of Mars is among the highest priority objectives of planetary science. The MEPAG Mars Sample Return (MSR) End-to-End International Science Analysis Group (MEPAG E2E-iSAG) was chartered to propose scientific objectives and priorities for returned sample science, and to map out the implications of these priorities, including for the proposed joint ESA-NASA 2018 mission that would be tasked with the crucial job of collecting and caching the samples. The E2E-iSAG identified four overarching scientific aims that relate to understanding: (A) the potential for life and its pre-biotic context, (B) the geologic processes that have affected the martian surface, (C) planetary evolution of Mars and its atmosphere, (D) potential for future human exploration. The types of samples deemed most likely to achieve the science objectives are, in priority order: (1A). Subaqueous or hydrothermal sediments (1B). Hydrothermally altered rocks or low temperature fluid-altered rocks (equal priority) (2). Unaltered igneous rocks (3). Regolith, including airfall dust (4). Present-day atmosphere and samples of sedimentary-igneous rocks containing ancient trapped atmosphere Collection of geologically well-characterized sample suites would add considerable value to interpretations of all collected rocks. To achieve this, the total number of rock samples should be about 30-40. In order to evaluate the size of individual samples required to meet the science objectives, the E2E-iSAG reviewed the analytical methods that would likely be applied to the returned samples by preliminary examination teams, for planetary protection (i.e., life detection, biohazard assessment) and, after distribution, by individual investigators. It was concluded that sample size should be sufficient to perform all high-priority analyses in triplicate. In keeping with long-established curatorial practice of extraterrestrial material, at least 40% by mass of each sample should be preserved to support future scientific investigations. Samples of 15-16 grams are considered optimal. The total mass of returned rocks, soils, blanks and standards should be approximately 500 grams. Atmospheric gas samples should be the equivalent of 50 cubic cm at 20 times Mars ambient atmospheric pressure.

  16. The UCAR SOARS Program: Strategies for Supplementing Undergraduate Research Experience

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2005-12-01

    Many REU programs have a goal of recruiting students to continue in the sciences. Undergraduate research is a successful strategy for engaging talented undergraduates to think about a career in science, encouraging them to purse graduate degrees, and for preparing them to succeed in graduate school. In the Significant Opportunities for Atmospheric Research (SOARS) program, we supplement undergraduate research with several strategies as part of an undergraduate-to-graduate bridge program aimed at broadening participation in the atmospheric and related sciences. In addition to a 10-week research program, SOARS also includes a formal mentoring program, writing workshop, vigorous learning community, and extensive professional development opportunities. Our presentation will describe these research-extending strategies in SOARS in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw on the results of a major, independent evaluation of the SOARS program to determine the relative importance of these strategies in the overall success of the SOARS program. In the 10 yeas since SOARS creations, 98 students have participated in the program. Of those participants, 18 are still enrolled as undergraduates, and 55 have gone on to purse graduate school in the atmospheric sciences. Overall, this represents a graduate school placement rate of 69% and an overall retention rate of 82%. Of the 27 SOARS participants who have entered the workforce, 23 are in STEM related disciplines. Finally, 3 SOARS participants have already earned their PhD, and 32 have earned Master's. These numbers are especially significant given that SOARS participants come from groups that have been historically under-represented in the atmospheric sciences.

  17. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    ,; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may contain wastewater from domestic or industrial sources with CFC concentrations greater than modern atmospheric levels. However, based on a lack of detections of the volatile organic compounds analyzed for in most of the water samples collected for this and similar USGS investigations, ground-water resources of West Virginia used for public and private consumption do not appear to be routinely affected by anthropogenic activities despite their young apparent age.

  18. Influence of atmospheric processes on the solubility and composition of iron in Saharan dust

    DOE PAGES

    Longo, Amelia F.; Feng, Yan; Lai, Barry; ...

    2016-06-10

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less

  19. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    PubMed

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  20. Chemical quality of precipitation at Greenville, Maine

    USGS Publications Warehouse

    Smath, J.A.; Potter, T.L.

    1987-01-01

    Weekly composite precipitation samples were collected at a rural site located in Greenville, Maine for analysis of trace metals and organic compounds. Samples collected during February 1982, through May 1984, were analyzed for cadmium, chromium, copper, lead, mercury, nickel, and zinc and during February 1982, through March 1983, for chlorinated hydrocarbon pesticides, pthalate ester plasticizers, and polychlorinated biphenyls. Deposition rates were computed. Data reported by the NADP (National Atmospheric Deposition Program) was used to evaluate the general chemical quality of the precipitation. The precipitation had relatively high concentrations of hydrogen ions, sulfate, and nitrate, compared to other constituents. Of the trace metals included for analysis, only copper, lead, and zinc were consistently detected. Lead concentrations exceeded the U.S. EPA recommended limit for domestic water supply in three samples. High deposition rates for some of the metals were episodic. Alpha-hexachlorocyclohexane was the only organic compound that was consistently detected (maximum 120 nanograms/L). None of the other organic compounds were detected in any of the samples. (Author 's abstract)

  1. Rocky Mountain snowpack physical and chemical data for selected sites, 2009

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.

    2010-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition. The U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2009. Sixty-three snowpack-sampling sites were sampled once each in 2009 and data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2009 also are included.

  2. Development and Experimental Verification of a High Resolution, Tunable LIDAR Computer Simulation Model for Atmospheric Laser Remote Sensing

    NASA Astrophysics Data System (ADS)

    Wilcox, William Edward, Jr.

    1995-01-01

    A computer program (LIDAR-PC) and associated atmospheric spectral databases have been developed which accurately simulate the laser remote sensing of the atmosphere and the system performance of a direct-detection Lidar or tunable Differential Absorption Lidar (DIAL) system. This simulation program allows, for the first time, the use of several different large atmospheric spectral databases to be coupled with Lidar parameter simulations on the same computer platform to provide a real-time, interactive, and easy to use design tool for atmospheric Lidar simulation and modeling. LIDAR -PC has been used for a range of different Lidar simulations and compared to experimental Lidar data. In general, the simulations agreed very well with the experimental measurements. In addition, the simulation offered, for the first time, the analysis and comparison of experimental Lidar data to easily determine the range-resolved attenuation coefficient of the atmosphere and the effect of telescope overlap factor. The software and databases operate on an IBM-PC or compatible computer platform, and thus are very useful to the research community for Lidar analysis. The complete Lidar and atmospheric spectral transmission modeling program uses the HITRAN database for high-resolution molecular absorption lines of the atmosphere, the BACKSCAT/LOWTRAN computer databases and models for the effects of aerosol and cloud backscatter and attenuation, and the range-resolved Lidar equation. The program can calculate the Lidar backscattered signal-to-noise for a slant path geometry from space and simulate the effect of high resolution, tunable, single frequency, and moderate line width lasers on the Lidar/DIAL signal. The program was used to model and analyze the experimental Lidar data obtained from several measurements. A fixed wavelength, Ho:YSGG aerosol Lidar (Sugimoto, 1990) developed at USF and a tunable Ho:YSGG DIAL system (Cha, 1991) for measuring atmospheric water vapor at 2.1 μm were analyzed. The simulations agreed very well with the measurements, and also yielded, for the first time, the ability to easily deduce the atmospheric attentuation coefficient, alpha, from the Lidar data. Simulations and analysis of other Lidar measurements included that of a 1.57 mu m OPO aerosol Lidar system developed at USF (Harrell, 1995) and of the NASA LITE (Laser-in-Space Technology Experiment) Lidar recently flown in the Space shuttle. Finally, an extensive series of laboratory experiments were made with the 1.57 μm OPO Lidar system to test calculations of the telescope/laser overlap and the effect of different telescope sizes and designs. The simulations agreed well with the experimental data for the telescope diameter and central obscuration test cases. The LIDAR-PC programs are available on the Internet from the USAF Lidar Home Page Web site, http://www.cas.usf.edu/physics/lidar.html/.

  3. Shuttle program: Computing atmospheric scale height for refraction corrections

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Methods for computing the atmospheric scale height to determine radio wave refraction were investigated for different atmospheres, and different angles of elevation. Tables of refractivity versus altitude are included. The equations used to compute the refraction corrections are given. It is concluded that very accurate corrections are determined with the assumption of an exponential atmosphere.

  4. NASA Planetary Astronomy Lunar Atmospheric Imaging Study

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    Authors have conducted a program of research focused on studies of the lunar atmosphere. Also present preliminary results of an ongoing effort to determine the degree that metal abundances in the lunar atmosphere are stoichiometric, that is, reflective of the lunar surface composition. We make the first-ever mid-ultraviolet spectroscopic search for emission from the lunar atmosphere.

  5. Images reveal that atmospheric particles can undergo liquid–liquid phase separations

    PubMed Central

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-01-01

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

  6. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.

    PubMed

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K

    2012-08-14

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

  7. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  8. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    PubMed

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.; Wagner, William J. (Technical Monitor)

    2000-01-01

    During the last three years we have continued the development of extensive computer programs for constructing realistic models of the solar atmosphere and for calculating detailed spectra to use in the interpretation of solar observations. This research involves two major interrelated efforts: work by Avrett and Loeser on the Pandora computer program for optically thick non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed high-resolution synthesis of the solar spectrum using data for over 58 million atomic and molecular lines. Our objective is to construct atmospheric models from which the calculated spectra agree as well as possible with high-and low-resolution observations over a wide wavelength range. Such modeling leads to an improved understanding of the physical processes responsible for the structure and behavior of the atmosphere.

  10. [Health risk assessment of heavy metals in atmospheric dust of Qingdao City].

    PubMed

    Zhang, Chun-Rong; Wu, Zheng-Long; Yao, Chun-Hui; Gao, Zong-Jun

    2014-07-01

    Based on the 89 atmospheric dust samples and soil samples that were collected around Qingdao, we tested and analyzed the contents of Cd, Cr, Cu, Hg, Ni, Pb, Zn. Based on these analysis results, the risk of heavy metals in atmospheric dusts to human health were assessed by using the US EPA Health Risk Assessment Model. Analysis showed that the average contents of Cd, Cr, Cu, Hg, Pb, Zn in the atmospheric dust of Shinan, Shibei and Laoshan districts were the highest. Therefore, the air pollution of these districts was more serious than the districts of Licang, Chengyang and Huangdao. Comparing the average contents of heavy metals in atmospheric dust with those in soil, we found that only the content of Hg in atmospheric dust collected from the districts of Shinan, Shibei and Laoshan was lower than that in the corresponding soil. All the contents of other heavy metals in atmospheric dust were higher than those in corresponding soil. As a whole, the heavy metals in atmospheric dust of Qingdao City showed slight difference and were less harmful to human health. However, it was harmful in some samples to human health if the contents of Cr and Pb in atmospheric dusts of Shinan, Laoshan and Chengyang districts were always kept at such high densities. Besides, the accumulation of heavy metals in atmospheric dust through various approaches and categories may obviously increase the risk of damaging human health.

  11. Evaluation of National Atmospheric Deposition Program measurements for co-located Sites CO89 and CO98 at Rocky Mountain National Park, 2012

    USGS Publications Warehouse

    ,

    2013-01-01

    Median weekly absolute percent differences for selected parameters including: sample volume, 8.0 percent; ammonium concentration, 9.1 percent; nitrate concentration, 8.5 percent; sulfate concentration, 10.2 percent. Annual precipitation-weighted mean concentrations were higher for CO98 compared to CO89 for all analytes. The chemical concentration record for CO98 contains more valid samples than the CO89 record. Therefore, the CO98 record is more representative of 2012 total annual deposition at Loch Vale. Daily precipitation-depth records for the co-located precipitation gages were 100 percent complete, and the total annual precipitation depths between the sites differed by 0.1 percent for the year (91.5 and 91.4 cm).

  12. Assessment of a Constructivist-Motivated Mentoring Program to Enhance the Teaching Skills of Atmospheric Science Graduate Students

    ERIC Educational Resources Information Center

    Drossman, Howard; Benedict, Jim; McGrath-Spangler, Erica; Van Roekel, Luke; Wells, Kelley

    2011-01-01

    This article describes a collaborative mentoring program in which graduate students (fellows) from a university atmospheric science research department team-taught environmental science classes with professors in a liberal arts college. The mentorship allowed fellows to develop and test the effectiveness of curriculum based on the Process Oriented…

  13. Science: Our Solar System, From Atmosphere to Space. Authorized Course of Instruction for the Quinmester Program.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for both of the secondary school units included in this package of instructional guides prepared for the Dade County Florida Quinmester Program. Both units are concerned with astronomy and space: "Our Solar System" and "From Atmosphere to Space." The former deals mainly with astronomy while the…

  14. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to experimental work, initial field data will be presented including a transect of increasing distance from a known strong source of Hg (Mt. Amiata mine, Italy), downwind of Kilauea volcano in Hawaii, and several other locales including the Arctic station Alert and various sites across Ontario, Canada.

  15. Optical depth measurements by shadow-band radiometers and their uncertainties.

    PubMed

    Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  16. Venus Express is a step toward the surface of the planet

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.

    2005-12-01

    The Venus atmosphere makes it extremely challenging to mimic the steps of the successful Mars Exploration Program, namely orbital reconnaissance, followed by targeted in situ landers, rovers and sample return. Thus, many fundamental questions about the Venus surface remain unanswered, the most important of which is composition. We must measure the composition of the crust to constrain the thermal, volatile and geochemical evolution of the planet. In addition to measurement of recent processes, the crustal composition may contain clues to the first 80% of the history of this planet. This need has been recognized by the scientific community who has placed Venus in situ science as a high priority mission in the Decadal Survey and the Solar System Roadmap. Consider VEX as a helpful step in a Venus Exploration Program that includes a New Frontiers to Flagship class mission to the surface in the coming decade. How can VEX drive landing site selection? The VIRTIS instrument will provide a new map of the Venus surface at several wavelengths, including the atmospheric window at ~1 micron. Hashimoto and Sugita (2003 JGR E9) contend that observations in the NIR will allow the distinction of emissivity differences between mafic and felsic materials. Certainly the spatial resolution of VIRTIS will allow comparison of tessera plateaus to plains and potentially lava flow fields as well. Such a first order compositional map, in the context of the Venera measurements and Magellan observations, may reveal areas of special attention including: compositional contacts, regions of unique or unusual compositions (ala the Opportunity landing site on Mars), and thermal aberrations that may be related to volcanic activity. The emissivity data will improve understanding of the thermal environment of potential landing sites. A model Venus sample return mission (Sweetser et al. 1999 IEEEAC; Rodgers et al. 2000 IEEEAC) will be described as an example of the long term goal of this prototype program.

  17. The Deuterium to Hydrogen Ratio in the Water that Formed the Yellowknife Bay Mudstones in Gale Crater

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Brunner, Anna E.; Webster, Chris R.; Atreya, Sushil K.; Mcadam, Amy Catherine; Stern, Jennifer Claire; Leshin, Laurie Ann; Navarro-Gonzales, Rafael; Jones, J.; Kashyap, Srishti

    2014-01-01

    A suite of isotope ratios of light elements in the present martian atmosphere (13C/12C, 15N/14N, 18O/16O, 38Ar/36Ar, and D/H) are all substantially enriched in the heavy element suggesting atmospheric loss to space over the past billions of years with preferential loss of the lighter isotope from each pair. In situ measurements from MSL's Sample Analysis at Mars (SAM) instrument [e.g. 1,2,3] have considerably refined previous measurements from the Viking mass spectrometers [e.g. 4], from remote spectroscopic observations [e.g. 5,6], and from martian meteorite studies [e.g. 7,8]. The persistence of habitable environments such as the ancient Yellowknife Bay lake recently revealed by measurements from the Curiosity rover [9] depends on the surface temperatures and the duration of an atmosphere thicker than that at present. Current and planned measurements from orbit with the Mars Express and MAVEN missions respectively intend to study the processes of atmospheric escape including solar wind interaction, sputtering, thermal escape, and dissociative recombination, and determine or refine the current rate of atmospheric loss caused by these and other mechanisms. The goal of these programs is to understand the physical processes sufficiently well so that robust extrapolations over the past billions of years can be made D/H is measured by both the Tunable Laser Spectrometer (TLS) and the Quadrupole Mass Spectrometer (QMS) of the SAM suite. to predict the atmospheric and surface conditions on early Mars. However, the study of the history of martian atmospheric evolution will be greatly facilitated if we are able to also directly measure the isotopic composition of volatiles captured in rocks that are representative of the ancient atmosphere. To date, D/H is one of the most promising candidates for this study since water is the most abundant volatile thermally released from the Yellowknife Bay phylosilicates discovered by the SAM and CheMin experiments of MSL and its

  18. A Department of Atmospheric and Planetary Sciences at Hampton University

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will consider the matter during their October, 2006 meeting.

  19. Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Buehler, Stefan A.; John, Viju O.; Eliasson, Salomon

    2010-12-01

    Atmospheric humidity plays an important role in the Earth's climate. Microwave satellite data provide valuable humidity observations in the upper troposphere with global coverage. In this study, we compare upper tropospheric humidity (UTH) retrieved from the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder against radiosonde data measured at four of the central facilities of the Atmospheric Radiation Measurement program. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate satellite brightness temperatures from the radiosonde profiles. Strong ice clouds were filtered out, as their influence on microwave measurements leads to incorrect UTH values. Day and night radiosonde profiles were analyzed separately to take into account the radiosonde radiation bias. The comparison between radiosonde and satellite is most meaningful for data in cloud-free, nighttime conditions and with a time difference of less than 2 hr. We found good agreement between the two data sets. The satellite data were slightly moister than the radiosonde data, with a mean difference of 1%-2.3% relative humidity (RH), depending on the radiosonde site. Monthly gridded data were also compared and showed a slightly larger mean difference of up to 3.3% RH, which can be explained by sampling issues.

  20. Relationships among Teachers' Self-Efficacy and Students' Motivation, Atmosphere, and Satisfaction in Physical Education

    ERIC Educational Resources Information Center

    Pan, Yi-Hsiang

    2014-01-01

    The purpose of this study was to confirm the relationships among teachers' self-efficacy, and students' learning motivation, learning atmosphere, and learning satisfaction in senior high school physical education (PE). A sample of 462 PE teachers and 2681 students was drawn using stratified random sampling and cluster sampling from high schools in…

  1. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less

  2. Severe Storms Branch research report (April 1984 April 1985)

    NASA Technical Reports Server (NTRS)

    Dubach, L. (Editor)

    1985-01-01

    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.

  3. The atmospheric effects of stratospheric aircraft: A topical review

    NASA Technical Reports Server (NTRS)

    Johnston, Harold S.; Prather, M. J.; Watson, R. T.

    1991-01-01

    In the late 1960s the aircraft industry became interested in developing a fleet of supersonic transports (SSTs). Between 1972 and 1975, the Climatic Impact Assessment Program (CIAP) studied the possible environmental impact of SSTs. For environmental and economic reasons, the fleet of SSTs was not developed. The Upper Atmosphere Research Program (UARP) has recently undertaken the responsibility of directing scientific research needed to assess the atmospheric impact of supersonic transports. The UARP and the High-Speed Research Program asked Harold Johnston to review the current understanding of aircraft emissions and their effect on the stratosphere. Johnston and his colleagues have recently re-examined the SST problem using current models for stratospheric ozone chemistry. A unique view is given here of the current scientific issues and the lessons learned since the beginning of CIAP, and it links the current research program with the assessment process that began two years ago.

  4. Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.; Johnson, Dale L.

    1996-01-01

    This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

  5. Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Papathakos, L. C.

    1978-01-01

    The Global Atmospheric Sampling Program (GASP) is collecting and analyzing data on gaseous and aerosol trace contaminants in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei, and mass concentration of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to identify the source of the air mass as being typically tropospheric or stratospheric.

  6. Remotely piloted aircraft in the civil environment

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.

    1977-01-01

    Improved remotely piloted aircraft (RPAs), i.e., incorporating reductions in size, weight, and cost, are becoming available for civilian applications. Existing RPA programs are described and predicted into the future. Attention is given to the NASA Mini-Sniffer, which will fly to altitudes of more than 20,000 m, sample the atmosphere behind supersonic cruise aircraft, and telemeter the data to ground stations. Design and operating parameters of the aircraft are given, especially the optical sensing systems, and civilian RPA uses are outlined, including airborne research, remote mapping, rescue, message relay, and transportation of need materials. Civil regulatory factors are also dealt with.

  7. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic.

    PubMed

    Galbán-Malagón, Cristóbal; Berrojalbiz, Naiara; Ojeda, María-José; Dachs, Jordi

    2012-05-29

    Semivolatile persistent organic pollutants have the potential to reach remote environments, such as the Arctic Ocean, through atmospheric transport and deposition. Here we show that this transport of polychlorinated biphenyls to the Arctic Ocean is strongly retarded by the oceanic biological pump. A simultaneous sampling of atmospheric, seawater and plankton samples was performed in July 2007 in the Greenland Current and Atlantic sector of the Arctic Ocean. The atmospheric concentrations declined during atmospheric transport over the Greenland Current with estimated half-lives of 1-4 days. These short half-lives can be explained by the high air-to-water net diffusive flux, which is similar in magnitude to the estimated settling fluxes in the water column. Therefore, the decrease of atmospheric concentrations is due to sequestration of atmospheric polychlorinated biphenyls by enhanced air-water diffusive fluxes driven by phytoplankton uptake and organic carbon settling fluxes (biological pump).

  8. [Simultaneous determination of nine perfluorinated compound precursors in atmospheric precipitation by solid phase extraction and ultra performance liquid chromatography with tandem mass spectrometry].

    PubMed

    Zhang, Ming; Tang, Fangliang; Xu, Jianfen; Yu, Bo; Zhang, Wei; Yao, Jianliang; Hu, Minhua

    2017-10-08

    A high-throughput detection method has been developed for the determination of nine perfluorinated compound precursors (PFCPs) in atmospheric precipitation by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The atmospheric precipitation samples were concentrated and purified with HLB solid phase extraction cartridges. The UPLC separation was performed on an HSS T 3 column (100 mm×2.1 mm, 1.7 μm) utilizing a gradient elution program of methanol and water as the mobile phases at a flow rate of 0.2 mL/min. The MS/MS detection was performed under negative electrospray ionization (ESI - ) in multiple reaction monitoring (MRM) mode. Good linearity was observed in the range of 0.05-5.00 μg/L, 0.50-50.0 μg/L or 5.00-500 μg/L with correlation coefficients from 0.9921 to 0.9995. The limits of detection (LODs) for the nine perfluorinated compound precursors were in the ranges of 0.05-7.9 ng/L. The recoveries ranged from 76.0% to 106% with the relative standard deviations between 0.72% and 13.7%. This method is characterized by high sensitivity and precision, extensive analytical range and quick analytical rate, and can be applied for the analysis of perfluorinated compound precursors in atmospheric precipitation.

  9. Using Laboratory Methods to Better Understand Refractory Cloud Formation in Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Kohler, E.; Ferguson, F.

    2017-12-01

    The high number of extrasolar planets found in recent years has brought a new importance to planetary atmospheres. These recently discovered planets show a large diversity in their masses, temperatures, orbital periods, and other properties. With such a diverse mix of planetary parameters, it is safe to assume that the atmospheric properties are just as varied. Recent literature suggests silicates and metals as possible condensates in extrasolar planetary atmospheres as well as the atmospheres of brown dwarfs. While theoretical studies have laid the foundation of cloud formation analysis, their findings still need to be validated via experiments. A verification of the condensation and vaporization predictions of refractory materials needs to be found in order to assist global circulation models in being as accurate as possible. The stability of minerals identified in the literature as potential candidates, will be tested in a thermogravimetric balance. The minerals will be pumped under vacuum for twenty-four hours under room temperature and then heated to a predetermined high temperature, dependent on the expected vaporization temperature of that sample. If there is apparent mass loss, then the temperature will be lowered at preset durations and mass measurements will be taken in similar measured increments. The data will be processed by a computer program in order to calculate the mass loss as a function of temperature. The current cloud formation and global circulation models are very important to the field of planetary science but their accuracy is hindered by the lack of experimental data. The aim of this work is to investigate the mineral stability of potential condensates in an effort to explain the formation of refractory clouds in the atmospheres of extrasolar planets and brown dwarfs.

  10. Development of an engineering model atmosphere for Mars

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1988-01-01

    An engineering model atmosphere for Mars is being developed with many of the same features and capabilities for the highly successful Global Reference Atmospheric Model (GRAM) program for Earth's atmosphere. As an initial approach, the model is being built around the Martian atmosphere model computer subroutine (ATMOS) of Culp and Stewart (1984). In a longer-term program of research, additional refinements and modifications will be included. ATMOS includes parameterizations to stimulate the effects of solar activity, seasonal variation, diurnal variation magnitude, dust storm effects, and effects due to the orbital position of Mars. One of the current shortcomings of ATMOS is the neglect of surface variation effects. The longer-term period of research and model building is to address some of these problem areas and provide further improvements in the model (including improved representation of near-surface variations, improved latitude-longitude gradient representation, effects of the large annual variation in surface pressure because of differential condensation/sublimation of the CO2 atmosphere in the polar caps, and effects of Martian atmospheric wave perturbations on the magnitude of the expected density perturbation.

  11. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  12. Atmospheric Science: It's More than Meteorology.

    ERIC Educational Resources Information Center

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  13. A bacterial bioreporter panel to assay the cytotoxicity of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Kessler, Nivi; Schauer, James J.; Yagur-Kroll, Sharon; Melamed, Sahar; Tirosh, Ofir; Belkin, Shimshon; Erel, Yigal

    2012-12-01

    Numerous studies have demonstrated that elevated concentrations of suspended atmospheric particulate matter (PM) are associated with adverse health effects. In order to minimize the adverse public health effects of atmospheric PM by exposure management, there is a need for a greater understanding of the toxic mechanisms and the components that are responsible for the toxic effects. The aim of this study was to utilize bioassay techniques to investigate these aspects. For this purpose a reporter panel of 9 genetically engineered bacterial (Escherichia coli) strains was composed. Each panel member was designed to report on a different stress condition with a measurable light signal produced by the luciferase enzyme. Toxic mechanisms and components were studied using six anthropogenic PM source samples, including two vehicle combustion particles, three coal fly ash (CFA) samples and an urban dust sample. The most prominent outcome of the panel exposure results were broad panel responses observed for two of the CFA samples, indicating oxidative stress, respiration inhibition and iron deficiency. These responses were relieved when the samples were treated with EDTA, a non-specific metal chelator, suggesting the involvement of metals in the observed effects. Bioavailability analysis of the samples suggests that chromium was related to the toxic responses induced by two of the CFA samples. Oxidative stress was also observed in several samples of ambient atmospheric aerosols and excess metal toxicity in an urban dust sample collected in a parking lot. The reporter panel approach, as demonstrated in this study, has the potential of providing novel insights as to the mechanisms of atmospheric PM toxicity. Furthermore, combining the panel's results with bioavailability data can enlighten about the role of different PM components in the observed toxicity.

  14. Using commercial software products for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.

    2002-02-01

    The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate in the mid and far infrared spectral bands (3 to 12 micrometers wavelength). It predicts the Minimum Resolvable Temperature Difference (MRTD) or just MRT) that can be discriminated by a human when using a thermal imager. NVTherm also predicts the target acquisition range performance likely to be achieved using the sensor.

  15. NASA geodynamics program investigations summaries: A supplement to the NASA geodynamics program overview

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a time series of global atmospheric motion and mass fields through April 1984 to compare with changes in length of day and polar motion was investigated. Earth rotation was studied and the following topics are discussed: (1) computation of atmospheric angular momentum through April 1984; (2) comparisons of psi sub values with variations in length of day obtained by several groups utilizing B.I.H., lunar laser ranging, VLBI, or Lageos measurements; (3) computation of atmospheric excitation of polar motion using daily fields of atmospheric winds and pressures for a short test period. Daily calculations may be extended over a longer period to examine the forcing of the annual and Chandler wobbles, in addition to higher frequency nutations.

  16. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2002-01-01

    The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seinfeld, John H.

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratorymore » chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.« less

  18. CTRANS: A Monte Carlo program for radiative transfer in plane parallel atmospheres with imbedded finite clouds: Development, testing and user's guide

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program called CTRANS is described which was designed to perform radiative transfer computations in an atmosphere with horizontal inhomogeneities (clouds). Since the atmosphere-ground system was to be richly detailed, the Monte Carlo method was employed. This means that results are obtained through direct modeling of the physical process of radiative transport. The effects of atmopheric or ground albedo pattern detail are essentially built up from their impact upon the transport of individual photons. The CTRANS program actually tracks the photons backwards through the atmosphere, initiating them at a receiver and following them backwards along their path to the Sun. The pattern of incident photons generated through backwards tracking automatically reflects the importance to the receiver of each region of the sky. Further, through backwards tracking, the impact of the finite field of view of the receiver and variations in its response over the field of view can be directly simulated.

  19. Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies

    USGS Publications Warehouse

    Long, E.S.; Sweitzer, R.A.; Diefenbach, D.R.; Ben-David, M.

    2005-01-01

    Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 ??13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue ??13C of terrestrial and aquatic organisms. Such depletion in CO2 ??13C and its effects on tissue ??13C may introduce bias into ??13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 ??13C from ice cores and direct atmospheric measurements to model modern change in CO2 ??13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue ??13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 ??13C depletion, we applied the correction to a dataset of collagen ??13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen ??13C decreased significantly concurrent with depletion of atmospheric CO2 ??13C (n ??? 32, P ??? 0.01). Application of the correction to collagen ??13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range. ?? Springer-Verlag 2005.

  20. Bathymetry, acoustic backscatter, and seafloor character of Farallon Escarpment and Rittenburg Bank, northern California

    USGS Publications Warehouse

    Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.

    2014-01-01

    In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.

  1. Precipitation collector bias and its effects on temporal trends and spatial variability in National Atmospheric Deposition Program/National Trends Network data

    USGS Publications Warehouse

    Wetherbee, Gregory A.

    2017-01-01

    Precipitation samples have been collected by the National Atmospheric Deposition Program's (NADP) National Trends Network (NTN) using the Aerochem Metrics Model 301 (ACM) collector since 1978. Approximately one-third of the NTN ACM collectors have been replaced with N-CON Systems, Inc. Model ADS 00-120 (NCON) collectors. Concurrent data were collected over 6 years at 12 NTN sites using colocated ACM and NCON collectors in various precipitation regimes. Linear regression models of the colocated data were used to adjust for relative bias between the collectors. Replacement of ACM collectors with NCON collectors resulted in shifts in 10-year seasonal precipitation-weighted mean concentration (PWMC) trend slopes for: cations (−0.001 to −0.007 mgL−1yr−1), anions (−0.009 to −0.028 mgL−1yr−1), and hydrogen ion (+0.689 meqL-1yr−1). Larger shifts in NO3− and SO4−2 seasonal PWMC trend slopes were observed in the Midwest and Northeast US, where concentrations are generally higher than in other regions. Geospatial analysis of interpolated concentration rasters indicated regions of accentuated variability introduced by incorporation of NCON collectors into the NTN.

  2. HST/WFC3 Observations of Giant Hot Exoplanets

    NASA Technical Reports Server (NTRS)

    Deming, D.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.-M.; Gilliland, R.; Knutson, H.; Madhusudhan, N.; Mandell, A.; hide

    2011-01-01

    Low resolution thermal emission spectra of several dozen extrasolar planets have been measured using Spitzer, and HST observations of a few key exoplanets have reported molecular abundances via transmission spectroscopy. However, current models for the atmospheric structure of these worlds exhibit degeneracies wherein different combinations of temperature and molecular abundance profiles can fit the same Spitzer data. The advent of the IR capability on HST/WFC3 allows us to address this problem. We are currently obtaining transmission spectroscopy of the 1.4-micron water band in a sample of 13 planets, using the G141 grism on WFC3. This is the largest pure-exoplanet program ever executed on HST (115 orbits). Among the abundant molecules, only water absorbs significantly at 1.4-microns, and our measurement of water abundance will enable us to break the degeneracies in the Spitzer results with minimal model assumptions. We are also using the G141 grism to observe secondary eclipses for 7 very hot giant exoplanets at 1.S-microns, including several bright systems in the Kepler and CoRoT fields. The strong temperature sensitivity of the thermal continuum at 1.S-microns provides high leverage on atmospheric temperature for these worlds, again helping to break degeneracies in interpreting the Spitzer data. We here describe preliminary results for several exoplanets observed in this program.

  3. Cyclical tests of selected space shuttle TPS metallic materials in a plasma arc tunnel Volume 1: Description of tests and program summary

    NASA Technical Reports Server (NTRS)

    Rinehart, W. A.; Land, D. W.; Painter, J. H.; Williamson, R. A.

    1972-01-01

    Work, concerned with cyclical thermal evaluation of selected space shuttle thermal protection system (TPS) metallic materials in a hypervelocity oxidizing atmosphere that approximated an actual entry environment, is presented. A total of 325 sample test hours were conducted on 21 super-alloy metallic samples at temperatures from 1800 to 2200 F (1256 to 1478 K) without any failures. The 4 x 4 in. (10.2 x 10.2 cm) samples were fabricated from five nickel base alloys and one cobalt base alloy. Eighteen of the samples were cycled 100 times each and the other three samples 50 times each in a test stream emanating from an 8 in. (20.3 cm) diam exit, Mach 4.6, conical nozzle. The test cycle consisted of a 10 min heat pulse to a controlled temperature followed by a 10 min cooldown period. The TD-NiCrAl and TD-NiAlY materials showed the least change in weight, thickness, and physical appearance even though they were subjected to the highest temperature environment.

  4. The Role of Atmospheric Organic Nitrogen in Forest Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Lockwood, A.; Shepson, P.; Rhodes, D.

    2003-12-01

    Changes in the global climate and atmosphere cause significant effects to the biosphere. Forests respond to these global changes in various ways which all can affect their ability to store carbon, which in turn impacts climate change. Many temperate latitude forests are nitrogen-limited. A current working hypothesis is that atmospheric nitrogen compounds that are deposited to the canopy may be directly utilized by the plant as a nitrogen source. A significant fraction of atmospheric reactive nitrogen that can be deposited is organic. Organic nitrogen deposition is not well characterized nor have the ecological consequences been assessed. Our hypothesis is that organic nitrogen deposition to the canopy is significant, and that that nitrogen is utilized by trees. Fumigation experiments were conducted with 14N and 15N-labeled organic nitrates (focusing on 1-nitrooxy-3-methyl butane as a surrogate for isoprene nitrates) to determine if and how that nitrogen gets incorporated into the leaves by detecting the 15N-labeled leaf amino acids. This research builds on work completed during past summer intensives as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET), and begins the next stage of research as part of the Biosphere Atmosphere Research & Training program (BART) at the University of Michigan Biological Station (UMBS). The overall goal of the new effort, the Biosphere Exchange of Atmospheric Carbon and Odd Nitrogen (BEACON) program, is to evaluate the interactive roles of the atmosphere and forest in the coupling of the carbon and nitrogen cycles.

  5. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice

    NASA Astrophysics Data System (ADS)

    Tueros, Matías; Sciutto, Sergio

    2010-02-01

    In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of 1 km of standard rock (or 2.5 km of water equivalent). Neutrinos are not tracked on the simulation, but their energy is taken into account in decays. Running time: A TIERRAS for AIRES run of a 10 eV shower with statistical sampling (thinning) below 10 eV and 0.2 weight factor (see [1]) uses approximately 1 h of CPU time on an Intel Core 2 Quad Q6600 at 2.4 GHz. It uses only one core, so 4 simultaneous simulations can be run on this computer. Aires includes a spooling system to run several simultaneous jobs of any type. References:S. Sciutto, AIRES 2.6 User Manual, http://www.fisica.unlp.edu.ar/auger/aires/.

  6. Constraining Our Understanding of the Actions and Effects of Martian Volatiles Through the Study of Returned Samples

    NASA Astrophysics Data System (ADS)

    iMOST Team; Swindle, T. D.; Altieri, F.; Busemann, H.; Niles, P. B.; Shaheen, R.; Zorzano, M. P.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Campbell, K. A.; Carrier, B. L.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.

    2018-04-01

    Volatiles play a key role in the evolution of Mars' atmosphere, hydrosphere, and geosphere, and returned samples of the atmosphere, sedimentary rocks, regolith, and secondary minerals will inform our understanding of that evolution.

  7. Stratospheric Sampling and In Situ Atmospheric Chemical Element Analysis During Meteor Showers: A Resource Study

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    2000-01-01

    Resources studies for asteroidal mining evaluation have depended historically on remote sensing analysis for chemical elements. During the November 1998 Leonids meteor shower, a stratospheric balloon and various low-density capture media were used to sample fragments from Comet Tempel-Tuttle debris during a peak Earth crossing. The analysis not only demonstrates how potential sampling strategies may improve the projections for metals or rare elements in astromining, but also benchmarks materials during low temperature (-60 F), high dessication environments as seen during atmospheric exposure. The results indicate high aluminum, magnesium and iron content for various sampled particles recovered, but generalization to the sporadic meteors expected from asteroidal sources will require future improvements in larger sampling volumes before a broad-use strategy for chemical analysis can be described. A repeat of the experimental procedure is planned for the November 1999 Leonids' shower, and various improvements for atmospheric sampling will be discussed.

  8. Logistic Support for the Navy One-Man One-Atmosphere Diving System (NOMOADS).

    DTIC Science & Technology

    1987-12-01

    AD-19 621 LOGISTIC SUPPORT FOR THE NAVY ONE-MAN ONE-ATMOSPHERE 1/1 DIVING SYSTEM (NOMODS)(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA M P SMITH DEC 67...6-1 6.1 Major Program Events .................................... 6-1 6.2 M IIe st on es...4-i 6-1 Major Program Events ...................................... 6-2 6-2 M i lestones

  9. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    NASA Technical Reports Server (NTRS)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  10. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  11. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Anderson, James G.; Baughcum, Steven L.; Brock, Charles A.; Brune, William H.; Cohen, Ronald C.; Kinnison, Douglas E.; Newman, Paul A.; Rodriquez, Jose M.; Stolarski, Richard S.; hide

    1999-01-01

    This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT's.

  12. Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Anderson, James G.; Baughcum, Steven L.; Brock, Charles A.; Brune, William H.; Cohen, Ronald C.; Kinnison, Douglas E.; Newman, Paul A.; Rodriguez, Jose M.; Stolarski, Richard S.; hide

    1999-01-01

    This report assesses the potential atmospheric impacts of a proposed fleet of high-speed civil transport (HSCT) aircraft. The purpose of the report is to assess the effects of HSCT's on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet. The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (a component of the High-Speed Research Program) as well as other NASA, U.S., and international research programs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. The report describes progress in understanding atmospheric processes, the current state of understanding of HSCT emissions, numerical model predictions of HSCT impacts, the principal uncertainties in atmospheric predictions, and the associated sensitivities in predicted effects of HSCT'S.

  13. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  14. Carbon-13 Isotopic Abundance and Concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (NDP-049)

    DOE Data Explorer

    Stevens, C. M. [Chemical Technology Division, Argonne National Laboratory, Argonne, Illinois (USA)

    2012-01-01

    This data package presents atmospheric CH4 concentration and 13C isotopic abundance data derived from air samples collected over the period 1978-1989 at globally distributed clean-air sites. The data set comprises 201 records, 166 from the Northern Hemisphere and 35 from the Southern Hemisphere. The air samples were collected mostly in rural or marine locations remote from large sources of CH4 and are considered representative of tropospheric background conditions. The air samples were processed by isolation of CH4 from air and conversion to CO2 for isotopic analysis by isotope ratio mass spectrometry. These data represent one of the earliest records of 13C isotopic yy!measurements for atmospheric methane and have been used to refine estimates of CH4 emissions, calculate annual growth rates of emissions from changing sources, and provide evidence for changes in the rate of atmospheric removal of CH4. The data records consist of sample collection date; number of samples combined for analysis; sampling location; analysis date; CH4 concentration; 13C isotopic abundance; and flag codes to indicate outliers, repeated analyses, and other information.

  15. Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer.

    PubMed

    Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao

    2017-12-05

    The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

  16. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo

    An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.

  17. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica using unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Cassano, J. J.; Seefeldt, M. W.; Palo, S.; Knuth, S. L.; Bradley, A. C.; Herrman, P. D.; Kernebone, P. A.; Logan, N. J.

    2015-12-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air - sea ice - ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aircraft systems (UAS) sampling the atmosphere over Terra Nova Bay on five different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A dataset containing the atmospheric and surface data as well as operational aircraft data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  18. ANALYSIS OF ATMOSPHERE DEPOSITION SAMPLES FROM EASTON, PA

    EPA Science Inventory

    The report gives results of an analysis of samples of tenacious atmospheric deposits on exposed surfaces (e.g., automobiles and houses) in an industrial area near Easton, PA. The analysis was made at the request of the State of Pennsylvania. The Pennsylvania Department of Environ...

  19. ANALYSIS OF ATMOSPHERE DEPOSITION SAMPLES FROM EASTON, PA

    EPA Science Inventory

    The report gives results of an analysis of samples of tenacious atmospheric deposits on exposed surfaces (e.g., automobiles and houses) in an industrial area near Easton, PA. he analysis was made at the request of the State of Pennsylvania. he Pennsylvania Department of Environme...

  20. Detection in subsurface air of radioxenon released from medical isotope production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christine; Biegalski, Steven; Haas, Derek

    Abstract Under the Comprehensive Nuclear-Test-Ban Treaty, an On-Site Inspection (OSI) may be conducted to clarify whether a nuclear explosion has been carried out in violation of Article I of the Treaty. A major component of an OSI is the measurement of subsurface gases in order to detect radioactive noble gases that are produced in a nuclear explosion, particularly radioxenon and radioargon. In order to better understand potential backgrounds of these gases, a sampling campaign was performed near Canadian Nuclear Laboratories in the Ottawa River Valley, a major source of environmental radioxenon. First of their kind measurements of atmospheric radioxenon imprintedmore » into the shallow subsurface from an atmospheric pressure driven force were made using current OSI techniques to measure both atmospheric and subsurface gas samples which were analyzed for radioxenon. These measurements indicate that under specific sampling conditions, on the order of one percent of the atmospheric radioxenon concentration may be measured via subsurface sampling.« less

  1. Long term atmospheric aerosol characterization in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  2. Arctic sea ice: an investigation into the origin of nitrate using δ15N, δ18O and Δ17O

    NASA Astrophysics Data System (ADS)

    Clark, S. C.; Mastorakis, A.; Granger, J.; Aguilar-Islas, A. M.; Hastings, M. G.

    2016-12-01

    Nitrogen (N) is essential to primary production and is made bioavailable through N2-fixation, and potentially, atmospheric deposition. While the Pacific delivers a significant supply of reactive N to the Arctic, it is unclear if atmospheric deposition helps fuel primary production in the N-deplete western Arctic Ocean. Sea ice and snow provide a unique opportunity to partition the end-member contributions of nitrate (NO3-) from the atmosphere to the ocean. Sea ice cores and snow samples were collected at six stations between 82 and 89°N as part of the U.S. Arctic GEOTRACES expedition in 2015. Sea ice samples had NO3- concentrations ranging from 0.2-1.0 µmol L-1 while snow samples were slightly higher ranging from 1.1-3.7 µmol L-1. The complete isotopic composition of NO3- (δ15N, δ18O, Δ17O) was measured using the denitrifier method on all snow samples and 32 core sub-samples. The Δ17O (Δ17O=δ17O-0.52*δ18O≠0) is a proven diagnostic tool for atmospheric NO3- compared to other NO3- sources because a nonzero Δ17O originates from the influence of ozone on the formation of NO3- in the atmosphere. Snow samples were characteristic of atmospheric NO3- with generally negative δ15N (-5.9-2‰) and highly enriched 17O and 18O (Δ17O=27.1-33.5‰; δ18O =70.8-87.8‰). In contrast, sea ice samples were more enriched in 15N (-0.3-15‰) and depleted in 17O and 18O (Δ17O=0-12.4‰; δ18O=23.3-67.5‰). The presence of a Δ17O>0‰ occurs at various depths, indicating that atmospheric NO3- is an important component of the NO3- found in sea ice. However, the lower Δ17O and δ18O values compared to snow suggest that a significant portion of the NO3- is either derived from seawater and/or issued from biological cycling of atmospheric/seawater reactive N in sea ice. Moreover, it appears that atmospheric NO3- is lost or consumed such that this biological processing of NO3- is most prominent. Recent trends in sea ice decline may result in future changes to the distribution of N in N-limited Arctic ecosystems.

  3. Atmospheric Sampling on Ascension Island Using Multirotor UAVs.

    PubMed

    Greatwood, Colin; Richardson, Thomas S; Freer, Jim; Thomas, Rick M; MacKenzie, A Rob; Brownlow, Rebecca; Lowry, David; Fisher, Rebecca E; Nisbet, Euan G

    2017-05-23

    As part of an NERC-funded project investigating the southern methane anomaly, a team drawn from the Universities of Bristol, Birmingham and Royal Holloway flew small unmanned multirotors from Ascension Island for the purposes of atmospheric sampling. The objective of these flights was to collect air samples from below, within and above a persistent atmospheric feature, the Trade Wind Inversion, in order to characterise methane concentrations and their isotopic composition. These parameters allow the methane in the different air masses to be tied to different source locations, which can be further analysed using back trajectory atmospheric computer modelling. This paper describes the campaigns as a whole including the design of the bespoke eight rotor aircraft and the operational requirements that were needed in order to collect targeted multiple air samples up to 2.5 km above the ground level in under 20 min of flight time. Key features of the system described include real-time feedback of temperature and humidity, as well as system health data. This enabled detailed targeting of the air sampling design to be realised and planned during the flight mission on the downward leg, a capability that is invaluable in the presence of uncertainty in the pre-flight meteorological data. Environmental considerations are also outlined together with the flight plans that were created in order to rapidly fly vertical transects of the atmosphere whilst encountering changing wind conditions. Two sampling campaigns were carried out in September 2014 and July 2015 with over one hundred high altitude sampling missions. Lessons learned are given throughout, including those associated with operating in the testing environment encountered on Ascension Island.

  4. Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds

    DTIC Science & Technology

    2010-06-01

    momentum fluxes. Hurricane simulations using the Navy Coupled Ocean / Atmosphere Mesoscale Prediction System are also sensitive to the surface flux and sea... Atmospheric Research NWP Numerical Weather Prediction NOAA National Oceanic and Atmospheric Administration PTH Pressure, Temperature, relative Humidity RE87... Oceanic and Atmospheric Administration for organizing the CBLAST field program and collecting the data used for this study. xx THIS PAGE

  5. Habitable Zone Planets: PLATO, and the search for Earth 2.0

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.

    2015-10-01

    The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.

  6. Lunar mass spectrometer test program

    NASA Technical Reports Server (NTRS)

    Torney, F. L.; Dobrott, J. R.

    1972-01-01

    The procedures are described along with results obtained in a test program conducted to demonstrate the performance of a candidate lunar mass spectrometer. The instrument was designed to sample and measure gases believed to exist in the lunar atmosphere at the surface. The subject instrument consists of a cold cathode ion source, a small quadrupole mass analyzer and an off axis electron multiplier ion counting detector. The major program emphasis was placed on demonstrating instrument resolution, sensitivity and S/N ratio over the mass range 0-150 amu and over a partial pressure range from 10 to the minus 9th power to 10 to the minus 13th power torr. Ultrahigh vacuum tests were conducted and the minimum detectable partial pressure for neon, argon, krypton and xenon was successfully determined for the spectrometer using isotopes of these gases. With the exception of neon, the minimum detectable partial pressure is approximately 4 x 10 to the minus 14th power torr for the above gases.

  7. Middle Atmosphere Program. Handbook for MAP, Volume 10

    NASA Technical Reports Server (NTRS)

    Taubenheim, J. (Editor)

    1984-01-01

    The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences.

  8. The atmospheric effects of stratospheric aircraft: A fourth program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor); Wofsy, Steven C.; Ravishankara, A. R.; Rodriguez, Jose M.; Grose, William L.

    1995-01-01

    This document presents the fourth report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent AESA interim assessment report and a review of that report have shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA has been designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This fourth report comes after the interim assessment and sets forth directions for the 1995 assessment at the end of AESA Phase 1. It also sets forth the goals and directions for AESA Phase 2, as reported at the 1994 Atmospheric Effects of Aviation Project (AEAP) annual meeting held in June. The focus of the Phase 2 effort is to obtain the best possible closure on the outstanding problems identified in the interim assessment and NASA/NRC review. Topics discussed in this report include how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements.

  9. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  10. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  11. Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.

    2001-01-01

    A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.

  12. Laser long-range remote-sensing program experimental results

    NASA Astrophysics Data System (ADS)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  13. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  14. Heavy metal contamination in the vicinity of an industrial area near Bucharest.

    PubMed

    Velea, Teodor; Gherghe, Liliana; Predica, Vasile; Krebs, Rolf

    2009-08-01

    Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children's health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town-Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized. Water, soil, and atmospheric deposition samples were collected from different locations within 3 km from the industrial area. For comparison, samples were also taken from Bucharest. Water samples were filtered (<0.45 microm), extracted by salpetric acid, and quantified by ICP-OES and ICP-MS. Soil samples were dried, sieved (<2 mm), extracted by aqua regia and analyzed by AAS. In order to quantify the atmospheric deposition, three kinds of permanently open collecting pots were used on nine different sites between August and November 2006. At most sampling locations, the heavy metal concentrations in soil decrease with increasing distance to the presumably major source of pollution. Highest heavy metal concentrations were found in 10-20 cm soil depths. There were also decreasing heavy metal concentrations for atmospheric deposition with increasing distance to the industrial site. In surface and groundwater samples, traces of zinc, copper and lead were detected. The heavy metal concentrations in soil were increased in the study area, mostly under legal action limits in low-concern areas (e.g., 1,000 mg Pb/kg dry soil), but often above action limits for high-concern areas (100 mg Pb/kg dry soil) such as populated areas. The soluble lead concentrations in water samples indicate a need for monitoring and assessing water quality in more detail. The results for atmospheric deposition showed increased dust precipitation and heavy metal loads in the study area compared to Bucharest. However, based on mass flow balance calculations, the actual atmospheric deposition of heavy metals must be much lower than it was in the past decades. It was shown that highest lead values in water, soil and atmospheric deposition are rather to be found near the investigated industrial site than at the control sites in Bucharest. Our results correspond very well with results that show that children from Pantelimon have significantly increased lead concentrations in their blood compared to children in Bucharest. The increased lead contamination around the investigated industrial area is likely to have caused the increased exposure for children living in Pantelimon. In high-concern areas, such as found in populated areas, further measures have to be taken to avoid health risks for people living in these areas. The measures already taken to reduce emissions from the industrial site will help to avoid further increases in heavy metal concentrations. In areas with exceeded action limits, measures have to be taken as required by law. Detailed risk assessments could help to take necessary actions to protect public health in this area. The public should be informed about the potential hazards of eating plants grown in that area. Educational programs for schools, informing children about the contamination, should lead to a better understanding of environmental problems and a more sustainable behavior in the future.

  15. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2013-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention s National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts

  16. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2012-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  17. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A. R.; Nickovic, S.; Prasad, A. K.; Pejanovic, G.; Vukovic, A.; Van De Water, P. K.; Budge, A.; Hudspeth, W. B.; Krapfl, H.; Toth, B.; Zelicoff, A.; Myers, O.; Bunderson, L.; Ponce-Campos, G.; Menache, M.; Crimmins, T. M.; Vujadinovic, M.

    2012-12-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and concentrations of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen emission is based on MODIS-derived phenology of Juniperus spp. communities. Ground-based observational records of pollen release timing and quantities will be used as model verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  18. Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.

    Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less

  19. Direct Observations of Clouds on Brown Dwarfs: A Spitzer Study of Extreme Cases

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam; Cruz, Kelle; Cushing, Michael; Kirkpatrick, J. Davy; Looper, Dagny; Lowrance, Patrick; Marley, Mark; Saumon, Didier

    2008-03-01

    Clouds play a fundamental role in the emergent spectral energy distributions and observed variability of very low mass stars and brown dwarfs, yet hey have only been studied indirectly thus far. Recent indications of a broad silicate grain absorption feature in the 8-11 micron spectra of mid-type L dwarfs, and evidence that the strength of this absorption varies according to broad-band near-infrared color, may finally allow the first direct studies of clouds and condensate grain properties in brown dwarf atmospheres. We propose to observe a sample of 18 ``extreme'' L dwarfs - objects with unusually blue and red near-infrared colors - with IRAC and IRS to study the 8-11 micron feature in detail (including grain size distributions and bulk compositions), and to constrain advanced condensate cloud atmosphere models currently in development. Our program provides a unique examination of the general processes of cloud formation by focusing on the relatively warm photospheres of late-type brown dwarfs.

  20. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    NASA Astrophysics Data System (ADS)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  1. Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range

    DOE PAGES

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; ...

    2018-01-31

    Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less

  2. A technique for correcting ERTS data for solar and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Peacock, K.; Shah, N. J.

    1974-01-01

    A technique is described by which ERTS investigators can obtain and utilize solar and atmospheric parameters to transform spacecraft radiance measurements to absolute target reflectance signatures. A radiant power measuring instrument (RPMI) and its use in determining atmospheric paramaters needed for ground truth are discussed. The procedures used and results achieved in processing ERTS CCTs to correct for atmospheric parameters to obtain imagery are reviewed. Examples are given which demonstrate the nature and magnitude of atmospheric effects on computer classification programs.

  3. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison.

    PubMed

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-11-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Properties and chemical constituents in ground water from the middle Claiborne Aquifer, Gulf Coast regional aquifer systems, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Busby, John F.; Cervantes, Michael A.

    1993-01-01

    The U.S. Geological Survey used four programs in 1990 to provide external data quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Results of the intersite- comparison program indicate that 80 and 74 percent of the site operators met the NADP/NTN goals for pH determination and 98 and 95 percent of the site operators met the NADP/NTN goals for specific- conductance determination during the two studies in 1990. The effects of routine sample handling, processing, and shipping determined in the blind-audit program indicated significant positive bias for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias was determined for hydrogen ion and specific conductance. A Kruskal-Wallis test indicated that there were no significant (a=0.01) differences in analytical results from the three laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler study indicate the median relative error for potassium and ammonium concentration and deposition exceeded 15 percent at most sites while the median relative error for sulfate and nitrate at all sites was less than 6 percent for concentration and was less than 15 percent for deposition.

  5. How many earths are enough?

    NASA Astrophysics Data System (ADS)

    Beichman, C. A.

    2003-10-01

    The goals of NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions are to find and characterize terrestrial planets in the habitable zones of other stars, and to search for evidence of life in the atmospheres of any planets found. A key issue that must be addressed is the size of the sample of stars that must be searched before the scientific community, the funding agencies, and the public at large will be satisfied that an expensive space observatory will have a high probability of success. This question lies at the heart of the definition of TPF/Darwin. In this paper, I discuss some of the parameters that bound the size of the TPF/Darwin sample and outline a science program to improve our knowledge so that we can make timely decisions about the scope and expense of TPF/Darwin.

  6. Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.

  7. Long Term Baseline Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Goldman, Mark A.

    1975-01-01

    Describes a program designed to measure the normal concentrations of certain chemical and physical parameters of the atmosphere so that quantitative estimates can be made of local, regional, and global pollution. (GS)

  8. Spacelab

    NASA Image and Video Library

    1994-11-04

    This is an STS-66 mission onboard photo showing the Remote Manipulator System (RMS) moving toward one of the solar science instruments for the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission in the cargo bay of the Orbiter Atlantis. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies, to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Shuttle Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66). The ATLAS program was managed by the Marshall Space Flight Center.

  9. Atmospheric density models

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An atmospheric model developed by Jacchia, quite accurate but requiring a large amount of computer storage and execution time, was found to be ill-suited for the space shuttle onboard program. The development of a simple atmospheric density model to simulate the Jacchia model was studied. Required characteristics including variation with solar activity, diurnal variation, variation with geomagnetic activity, semiannual variation, and variation with height were met by the new atmospheric density model.

  10. POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS IN THE REMOTE NORTH ATLANTIC MARINE ATMOSPHERE (R825377)

    EPA Science Inventory

    We have developed a sampling strategy that allows us to determine
    femtogram/cubic meter concentrations of polychlorinated dibenzo-p-dioxins
    and polychlorinated dibenzofurans (PCDD/F) in remote marine atmospheres. Using
    this sampling strategy, a total of 37 a...

  11. Transboundary atmospheric lead pollution.

    PubMed

    Erel, Yigal; Axelrod, Tamar; Veron, Alain; Mahrer, Yitzak; Katsafados, Petros; Dayan, Uri

    2002-08-01

    A high-temporal resolution collection technique was applied to refine aerosol sampling in Jerusalem, Israel. Using stable lead isotopes, lead concentrations, synoptic data, and atmospheric modeling, we demonstrate that lead detected in the atmosphere of Jerusalem is not only anthropogenic lead of local origin but also lead emitted in other countries. Fifty-seven percent of the collected samples contained a nontrivial fraction of foreign atmospheric lead and had 206Pb/207Pb values which deviated from the local petrol-lead value (206Pb/207Pb = 1.113) by more than two standard deviations (0.016). Foreign 206Pb/207Pb values were recorded in Jerusalem on several occasions. The synoptic conditions on these dates and reported values of the isotopic composition of lead emitted in various countries around Israel suggest that the foreign lead was transported to Jerusalem from Egypt, Turkey, and East Europe. The average concentration of foreign atmospheric lead in Jerusalem was 23 +/- 17 ng/m3, similar to the average concentration of local atmospheric lead, 21 +/- 18 ng/ m3. Hence, the load of foreign atmospheric lead is similar to the load of local atmospheric lead in Jerusalem.

  12. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  13. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA

    Treesearch

    Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter

    2010-01-01

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...

  14. Surface atmospheric extremes (launch and transportation areas)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria are provided on atmospheric extremes from the surface to 150 meters for geographical locations of interest to NASA. Thermal parameters (temperature and solar radiation), humidity, precipitation, pressure, and atmospheric electricity (lightning and static) are presented. Available data are also provided for the entire continental United States for use in future space programs.

  15. NASA/MSFC FY-83 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1983-01-01

    The atmospheric processes research program was reviewed. Research tasks sponsored by the NASA Office of Space Science and Applications, Earth Sciences and Applications Division in the areas of upper atmosphere, global weather, and mesoscale processes are discussed. The are: the research project summaries, together with the agenda and other information about the meeting.

  16. Oxygen Concentration Flammability Threshold Tests for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Williams, James H.

    2007-01-01

    CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.

  17. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Analysis

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.

  18. Characterization by culture-dependent and culture-independent methods of the bacterial population of suckling-lamb packaged in different atmospheres.

    PubMed

    Osés, Sandra M; Diez, Ana M; Melero, Beatriz; Luning, Pieternel A; Jaime, Isabel; Rovira, Jordi

    2013-12-01

    This study offers insight into the dynamics of bacterial populations in fresh cuts of suckling lamb under four different atmospheric conditions: air (A), and three Modified Atmosphere Packaging (MAP) environments, 15%O2/30%CO2/55%N2 (C, commercial), 70%O2/30%CO2 (O), and 15%O2/85%CO2 (H) for 18 days. Microbial analyses by both conventional methods and PCR-DGGE were performed. Controversial and surprising results emerged from comparing both methods in relation to the genus Pseudomonas. Thus, conventional methods detected the presence of high numbers of Pseudomonas colonies, although PCR-DGGE only detected this genus in air-packaged samples. PCR-DGGE detected higher microbial diversity in the control samples (A) than in the modified atmospheres (C, O, H), having atmosphere H the fewest number of species. Brochothrix thermosphacta, LAB (Carnobacterium divergens and Lactobacillus sakei), and Escherichia spp. were detected in all the atmospheres throughout storage. Moreover, previously undescribed bacteria from lamb meat such as Enterobacter hormaechei, Staphylococcus equorum and Jeotgalicoccus spp. were also isolated in this study by DGGE. Additionally, qPCR analysis was used to detect and characterize strains of Escherichia coli. Virulence genes (stx1, stx2 and eae) were detected throughout storage in 97% of the samples. A high CO2 atmosphere was the most effective packaging combination doubling storage time in comparison with commercial atmosphere. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Understanding the atmospheric measurement and behavior of perfluorooctanoic acid.

    PubMed

    Webster, Eva M; Ellis, David A

    2012-09-01

    The recently reported quantification of the atmospheric sampling artifact for perfluorooctanoic acid (PFOA) was applied to existing gas and particle concentration measurements. Specifically, gas phase concentrations were increased by a factor of 3.5 and particle-bound concentrations by a factor of 0.1. The correlation constants in two particle-gas partition coefficient (K(QA)) estimation equations were determined for multiple studies with and without correcting for the sampling artifact. Correction for the sampling artifact gave correlation constants with improved agreement to those reported for other neutral organic contaminants, thus supporting the application of the suggested correction factors for perfluorinated carboxylic acids. Applying the corrected correlation constant to a recent multimedia modeling study improved model agreement with corrected, reported, atmospheric concentrations. This work confirms that there is sufficient partitioning to the gas phase to support the long-range atmospheric transport of PFOA. Copyright © 2012 SETAC.

  20. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  1. Atmospheric inputs to watersheds of the Luquillo Mountains in eastern Puerto Rico: Chapter D in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Twenty years of precipitation-chemistry data from the National Atmospheric Deposition Program site at El Verde, Puerto Rico, demonstrate that three major sources control the composition of solutes in rain in eastern Puerto Rico. In order of importance, these sources are marine salts, temperate contamination from the Northern Hemisphere, and Sahara Desert dust. Marine salts are a source of roughly 82 percent of the ionic charge in precipitation; marine salt inputs are greatest in January. Evaluation of 15 years of U.S. Geological Survey data for four watersheds in eastern Puerto Rico suggests that large storms, including hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Some of these storms were missed in sampling by the National Atmospheric Deposition Program, and therefore its data on the marine contribution likely underestimate chloride. The marine contribution is a weak source of acidity. Temperate contamination contributes about 10 percent of the ionic charge in precipitation; contaminants are primarily nitrate, ammonia, and sulfate derived from various manmade and natural sources. Peak deposition of temperate contaminants is during January, April, and May, months in which strong weather fronts arrive from the north. Temperate contamination, a strong source of acidity, is the only component that is increasing through time. Sahara Desert dust provides 5 percent of the ionic charge in precipitation; it is strongly seasonal, peaking in June and July during times of maximum dust transport from the Sahara and sub-Saharan regions. This dust contributes, on average, enough alkalinity to neutralize the acidity in June and July rains.

  2. Evaluation of National Atmospheric Deposition Program measurements for colocated sites CO89 and CO98 at Rocky Mountain National Park, water years 2010–14

    USGS Publications Warehouse

    Wetherbee, Gregory A.

    2016-07-22

    Atmospheric wet-deposition monitoring in Rocky Mountain National Park included precipitation depth and aqueous chemical measurements at colocated National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites CO89 and CO98 (Loch Vale) during water years 2010–14 (study period). The colocated sites were separated by approximately 6.5 meters horizontally and 0.5 meter in elevation, in accordance with NADP siting criteria. Assessment of the 5-year record of colocated data is intended to inform man-agement decisions pertaining to the achievement of nitrogen deposition reduction goals of the Rocky Mountain National Park Nitrogen Deposition Reduction Plan.The data at site CO98 met NADP completeness criteria for the first time in 29 years of operation in 2011 and then again in 2012. During the study period, data at site CO89 met completeness criteria in 2012. Median weekly relative precipitation-depth differences between sites CO89 and CO98 ranged from 0 to 0.25 millimeter during the study period. Median weekly absolute percent differences in sample volume ranged from 5 to 10 percent. Median relative concentration differences for weekly ammonium (NH4+) and nitrate (NO3-) concentrations were near the NADP Central Analytical Laboratory’s method detection limits and thus were considered small. Absolute percent differences for water-year 2010–14 precipitation-weighted mean concentrations of NH4+, NO3-, and inorganic nitrogen (Ninorg) ranged from 0.0 to 25.7 percent. Absolute percent differences for water-year 2010–14 NH4+, NO3-, and Ninorg deposition ranged from 2.1 to 18.9 percent, 3.3 to 24.5 percent, and 0.3 to 17.4 percent, respectively.

  3. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  4. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    L-R: Dwayne Brown, NASA Public Affairs Officer, Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. discuss the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  5. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    L-R: Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. are applauded at the end of a panel discussion on the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  6. SOARS: Significant Opportunities in Atmospheric Research and Science

    NASA Astrophysics Data System (ADS)

    Windham, T. L.; Hagan, M. E.

    2001-05-01

    SOARS, a model program, has developed a unique mutli-year mentoring and learning community to support, teach, and guide college students from diverse backgrounds. SOARS is dedicated to increasing the number of African American, American Indian, and Hispanic/Latino students enrolled in master's and doctoral degree programs in the atmospheric and related sciences with the goal of supporting the development of a diverse, internationally competitive and globally engaged workforce within the scientific community. Since its 1996 inception, 51 undergraduates have participated. All 51 completed or are on schedule to complete their undergraduate degrees with a major in an atmospheric or related science. Currently 17 protégés are in graduate programs. Eight have completed M.S. degrees; two are Ph.D. candidates. SOARS has a retention rate of 82 percent. The SOARS learning community provides multi-year programing for protégés that includes educational and research opportunities, mentoring, career counseling and guidance, and the possibility of financial support for a graduate level program. Protégés spend their summers at NCAR, participate in ongoing research projects, an eight week scientific writing and communication workshop, and scientific seminars. They benefit from long-term mentoring from respected scientists and professionals, learn about career opportunities, practice leadership and are encouraged to complete a graduate program in an atmospheric or related science. In this presentation we highlight the SOARS program structure and objectives with particular emphasis on the mentoring model that is fundamental to SOARS. We conclude with a summary of SOARS protégés' contributions to the broader scientific community which include oral and poster presentations at national and regional scientific conferences, as well as co-authorship of refereed journal articles.

  7. PYFLOW_2.0: a computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela

    2018-03-01

    This paper presents PYFLOW_2.0, a hazard tool for the calculation of the impact parameters of dilute pyroclastic density currents (DPDCs). DPDCs represent the dilute turbulent type of gravity flows that occur during explosive volcanic eruptions; their hazard is the result of their mobility and the capability to laterally impact buildings and infrastructures and to transport variable amounts of volcanic ash along the path. Starting from data coming from the analysis of deposits formed by DPDCs, PYFLOW_2.0 calculates the flow properties (e.g., velocity, bulk density, thickness) and impact parameters (dynamic pressure, deposition time) at the location of the sampled outcrop. Given the inherent uncertainties related to sampling, laboratory analyses, and modeling assumptions, the program provides ranges of variations and probability density functions of the impact parameters rather than single specific values; from these functions, the user can interrogate the program to obtain the value of the computed impact parameter at any specified exceedance probability. In this paper, the sedimentological models implemented in PYFLOW_2.0 are presented, program functionalities are briefly introduced, and two application examples are discussed so as to show the capabilities of the software in quantifying the impact of the analyzed DPDCs in terms of dynamic pressure, volcanic ash concentration, and residence time in the atmosphere. The software and user's manual are made available as a downloadable electronic supplement.

  8. Atmospheric Sampling on Ascension Island Using Multirotor UAVs

    PubMed Central

    Greatwood, Colin; Richardson, Thomas S.; Freer, Jim; Thomas, Rick M.; MacKenzie, A. Rob; Brownlow, Rebecca; Lowry, David; Fisher, Rebecca E.; Nisbet, Euan G.

    2017-01-01

    As part of an NERC-funded project investigating the southern methane anomaly, a team drawn from the Universities of Bristol, Birmingham and Royal Holloway flew small unmanned multirotors from Ascension Island for the purposes of atmospheric sampling. The objective of these flights was to collect air samples from below, within and above a persistent atmospheric feature, the Trade Wind Inversion, in order to characterise methane concentrations and their isotopic composition. These parameters allow the methane in the different air masses to be tied to different source locations, which can be further analysed using back trajectory atmospheric computer modelling. This paper describes the campaigns as a whole including the design of the bespoke eight rotor aircraft and the operational requirements that were needed in order to collect targeted multiple air samples up to 2.5 km above the ground level in under 20 min of flight time. Key features of the system described include real-time feedback of temperature and humidity, as well as system health data. This enabled detailed targeting of the air sampling design to be realised and planned during the flight mission on the downward leg, a capability that is invaluable in the presence of uncertainty in the pre-flight meteorological data. Environmental considerations are also outlined together with the flight plans that were created in order to rapidly fly vertical transects of the atmosphere whilst encountering changing wind conditions. Two sampling campaigns were carried out in September 2014 and July 2015 with over one hundred high altitude sampling missions. Lessons learned are given throughout, including those associated with operating in the testing environment encountered on Ascension Island. PMID:28545231

  9. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  10. Atmospheric measurement of point source fossil CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2014-05-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  11. Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program

    DTIC Science & Technology

    2017-05-09

    resolution land-surface data with comparison to observations . These will be extended to higher resolution with the immersed boundary method when...To) 09/05/2017 Final 1 Jun 1 1 to 30 May 17 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Mountain Terrain Atmospheric Modeling and Observations ...OF NOTRE DAME DU LAC REPORT NUMBER RESEARCH AND SPONSORED PROGRAMS Final 940 GRACE HALL NOTRE DAME, IN 46556-5602 9. SPONSORING/MONITORING AGENCY

  12. The Kinetics of Evolution of Water Vapor Clusters in Air

    DTIC Science & Technology

    1975-12-01

    Academy Annapnlis, Mazylsnd 21402 D IUP 17% Work Supported by: Power Branch and Atmospheric Sciences Program, Office of Naval Research and Naval Air...to experiments in supersonic nozzles. The patient support of the Power Branch and the Atmospheric Sciences Program, Office of Naval Research over...the start by relying on the dioital compxiter from the start of development. Time- shared computer facilities were provided by the Naval Weapons Lab

  13. SRS environmental air surveillance program 1954-2015: General trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, K.; Jannik, T.

    The radiological monitoring program at SRS was established under the DuPont Company in June 1951 and was used as a measurement of the effectiveness of plant controls and as an authoritative record of environmental conditions surrounding the plant. It also served as a method of demonstrating compliance with applicable federal regulations and guidance. This document serves as a general summary of changes made specifically to the environmental air monitoring program since its inception, and a discussion of the general trends seen in the air monitoring program at SRS from 1954 to 2015. Initially, the environmental air surveillance program focused notmore » only on releases from SRS but also on fallout from various weapons testing performed through the end of 1978. Flypaper was used to measure the amount of fallout in the atmosphere during this period, and was present at each of the 10 monitoring stations. By 1959, all site stacks were included in the air monitoring program to determine their contribution to the airborne radioactivity onsite, and the number of air surveillance samplers rose to 18. This trend of an increased number of sampling locations continued to a peak of 35 sampling locations before shifting to a downward trend in the mid-1990s. In 1962, 4 outer-range samplers were placed in Savannah and Macon, GA, and in Greenville and Columbia, SC. Until 1976, air samplers were simply placed around the perimeter of the various operation locations (after 1959, this included stacks to determine their contribution to the airborne radioactivity), with the intent of creating as representative a distribution as possible of the air surrounding operations.« less

  14. Scientific program in planetary atmospheric studies

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.

    1983-01-01

    The Voyager encounters with Jupiter led to two main areas of investigation: (1) the definition of the structure and composition of the upper atmosphere and the interaction of the magnetosphere and atmosphere, and (2) the study of the plasma torus using the EUV (Extreme Ultraviolet) data in conjunction with ground-based and in-situ measurements. In the course of these investigations, the atmosphere studies were extended to a comparative study with the bound atmospheres of Saturn and Titan; and the torus study expanded to include the extended atmospheres of Titan (the H torus) and the rings of Saturn.

  15. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    PubMed

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.; Brigmon, R.

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical,more » biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.« less

  17. An analysis of the first two years of GASP data

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1977-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes.

  18. Electrodynamics of the middle atmosphere: Superpressure balloon program

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.

  19. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  20. Ozone contamination in aircraft cabins: Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

Top