Science.gov

Sample records for atmospheric turbulence

  1. Measurements of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murrow, Harold N.

    1987-01-01

    Various types of atmospheric turbulence measurements are addressed for the purpose of stimulating discussion relative to available data. An outline of these various types of measurements are discussed. Some specific results of detailed characterization studies made at NASA Langley are emphasized. The most recent reports on statistics of turbulence encounters for various types of aircraft operations are summarized. Special severe encounter studies and reference to remote sensing are also included. Wind shear is considered to be a special topic and is not covered.

  2. Correlated imaging through atmospheric turbulence

    SciTech Connect

    Zhang Pengli; Gong Wenlin; Shen Xia; Han Shensheng

    2010-09-15

    Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by numerical simulations, in which turbulence-induced phase perturbations are simulated by random-phase screens inserted into propagation paths.

  3. The problem of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Toomre, J.; HILL; MERRYFIELD; GOUGH

    1984-01-01

    All ground-based observations of the solar five-minute oscillations are affected by turbulence in the Earth's atmosphere that leads to substantial refractive index variations. The turbulent motions serve to mix an air mass that is thermally stratified in the vertical, thereby producing intermittent thermal fluctuations over a wide range of heights in the atmosphere. These thermal structures yield refractive index changes that deflect the light path in a complicated way, producing intricate variations of amplitude and phase in what might have started out as simple plane waves. Since the fluid turbulence is statistical in nature, so too is the optical turbulence which is an integral measure of the refractive index changes along the light travel path. All of this produces what is usually called atmospheric seeing, which consists of image motion, blurring and distortion across the field of view. The effects of atmospheric seeing upon observations of five-minute oscillations carried out from the ground were assessed. This will help to provide a baseline estimate of the scienctific benefits that might accrue if one were able to observe the same oscillations from a space observatory unfettered by seeing effects.

  4. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.

    PubMed

    Baykal, Yahya

    2016-02-20

    The parameters composing oceanic turbulence are the wavelength, link length, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum. The required physical entities such as the average intensity and the scintillation index in the oceanic medium are formulated by using the power spectrum of oceanic turbulence, which is described by oceanic turbulence parameters. On the other hand, there exists a rich archive of formulations and results for the above-mentioned physical entities in atmospheric turbulence, where the parameters describing the turbulence are the wavelength, the link length, and the structure constant. In this paper, by equating the spherical wave scintillation index solutions in the oceanic and atmospheric turbulences, we have expressed the oceanic turbulence parameters by an equivalent structure constant used in turbulent atmosphere. Such equivalent structure constant will help ease reaching solutions of similar entities in an oceanic turbulent medium by employing the corresponding existing solutions, which are valid in an atmospheric turbulent medium.

  5. New Atmospheric Turbulence Model for Shuttle Applications

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Campbell, C. W.; Doubleday, M. K.; Johnson, D. L.

    1990-01-01

    An updated NASA atmospheric turbulence model, from 0 to 200 km altitude, which was developed to be more realistic and less conservative when applied to space shuttle reentry engineering simulation studies involving control system fuel expenditures is presented. The prior model used extreme turbulence (3 sigma) for all altitudes, whereas in reality severe turbulence is patchy within quiescent atmospheric zones. The updated turublence model presented is designed to be more realistic. The prior turbulence statistics (sigma and L) were updated and were modeled accordingly.

  6. Atmospheric turbulence review of space shuttle launches

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1991-01-01

    Research and analysis on the identification of turbulent regions from the surface to 16 km during Space Shuttle launches are discussed. It was demonstrated that the results from the FPS-16 radar/jimsphere balloon system in measuring winds can indeed indicate the presence or conditions ripe for turbulence in the troposphere and lower stratosphere. It was further demonstrated that atmospheric data obtained during the shuttle launches by the rawinsonde in conjunction with the jimsphere provides the necessary meteorological data to compute aerodynamic parameters to identify turbulence, such as Reynolds number drag coefficient, turbulent stresses, total energy, stability parameter, vertical gradient of kinetic energy, Richardson number, and the turbulence probability index. Enhanced temperature lapse rates and inversion rates, strong vector wind shears, and large changes in wind direction identify the occurrence of turbulence at the troposphere. When any two of the above conditions occur simultaneously, a significant probability of turbulence can occur.

  7. Adaptive optical ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Zhang, Jinghui; Shen, Hong; Qiao, Chunhong; Wang, Yingjian

    2012-12-17

    We demonstrate for the first time (to our knowledge) that a high-quality image can still be obtained in atmospheric turbulence by applying adaptive optical ghost imaging (AOGI) system even when conventional ghost imaging system fails to produce an image. The performance of AOGI under different strength of atmospheric turbulence is investigated by simulation. The influence of adaptive optics system with different numbers of adaptive mirror elements on obtained image quality is also studied.

  8. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  9. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  10. Estimating Atmospheric Turbulence From Flight Records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.

    1991-01-01

    Method for estimation of atmospheric turbulence encountered by airplanes utilizes wealth of data captured by multichannel digital flight-data recorders and air-traffic-control radar. Developed as part of continuing effort to understand how airplanes respond to such potentially hazardous phenomena as: clear-air turbulence generated by destabilized wind-shear layers above mountains and thunderstorms, and microbursts (intense downdrafts striking ground), associated with thunderstorms. Reconstructed wind fields used to predict and avoid future hazards.

  11. Impact of Atmospheric Turbulence on Beam Propagation

    SciTech Connect

    Strasburg, Jana D.; Harper, Warren W.; William E Thompson & Richard L Brunson

    2004-09-08

    A trailer-based sensor system has been developed for remote chemical sensing applications. The detection scheme utilizes quantum cascade lasers operating in the long-wave infrared. It has been determined that atmospheric turbulence is the dominating noise source for this system. For this application, horizontal path lengths vary from several hundred meters to several kilometers resulting in weak to moderate to strong turbulence conditions.

  12. Advanced Numerical Modeling of Turbulent Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Dörnbrack, Andreas; Gerz, Thomas

    The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.

  13. Laser beam propagation in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  14. Atmospheric waves as scaling, turbulent phenomena

    NASA Astrophysics Data System (ADS)

    Pinel, J.; Lovejoy, S.

    2014-04-01

    It is paradoxical that, while atmospheric dynamics are highly nonlinear and turbulent, atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are in fact high-Reynolds-number (Re), emergent laws so that - in common with the emergent high-Re turbulent laws - they are also constrained by scaling symmetries. We propose an effective turbulence-wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator, with dispersion relations similar to those of inertial gravity waves (and Kelvin waves) yet with an anomalous (fractional) order Hwav/2. Using geostationary IR radiances, we estimate the parameters, finding that Hwav ≈ 0.17 ± 0.04 (the classical value = 2).

  15. Atmospheric waves as scaling, turbulent phenomena

    NASA Astrophysics Data System (ADS)

    Pinel, J.; Lovejoy, S.

    2013-06-01

    It is paradoxical that while atmospheric dynamics are highly nonlinear and turbulent that atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are on the contrary high Reynold's number (Re), emergent laws so that - in common with the emergent high Re turbulent laws - they are also constrained by scaling symmetries. We propose an effective turbulence - wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator with dispersion relations similar to those of inertial gravity waves (and Kelvin waves) yet with an anomalous (fractional) order Hwav/2. Using geostationary IR radiances, we estimate the parameters finding that Hwav/2 ≈ 0.17 ± 0.04 (the classical value = 2).

  16. Optical intensity interferometry through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.

    2016-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  17. Propagation of Bessel and Airy beams through atmospheric turbulence.

    PubMed

    Nelson, W; Palastro, J P; Davis, C C; Sprangle, P

    2014-03-01

    We investigate, through simulation, the modifications to Bessel and Airy beams during propagation through atmospheric turbulence. We find that atmospheric turbulence disrupts the quasi-non-diffracting nature of Bessel and Airy beams when the transverse coherence length (Fried parameter) nears the initial aperture diameter or diagonal, respectively. The turbulence-induced transverse phase distortion limits the effectiveness of Bessel and Airy beams for applications requiring propagation over long distances in the turbulent atmosphere.

  18. Street canyon ventilation and atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Salizzoni, P.; Soulhac, L.; Mejean, P.

    Operational models for pollutant dispersion in urban areas require an estimate of the turbulent transfer between the street canyons and the overlying atmospheric flow. To date, the mechanisms that govern this process remain poorly understood. We have studied the mass exchange between a street canyon and the atmospheric flow above it by means of wind tunnel experiments. Fluid velocities were measured with a Particle Image Velocimetry system and passive scalar concentrations were measured using a Flame Ionisation Detector. The mass-transfer velocity between the canyon and the external flow has been estimated by measuring the cavity wash-out time. A two-box model, used to estimate the transfer velocity for varying dynamical conditions of the external flow, has been used to interpret the experimental data. This study sheds new light on the mechanisms which drive the ventilation of a street canyon and illustrates the influence of the external turbulence on the transfer process.

  19. Atmospheric turbulence effects on aircraft noise propagation

    NASA Technical Reports Server (NTRS)

    Chapkis, R. L.

    1979-01-01

    The Brown and Clifford model for the apparent sound attenuation cuased by atmospheric turbulence was reviewed and extended. Calculations, based on the model, were made for the predicted sound attenuation for a tower-mounted loudspeaker-type sound source and for an airplane sound source. The important parameters in the model are identified and discussed. A model for sound fluctuations is also presented and a practical experimental program to validate the models described.

  20. Space Shuttle response to atmospheric turbulence.

    NASA Technical Reports Server (NTRS)

    Huntington, R. G.

    1973-01-01

    A fully reusable Space Shuttle configuration has been analyzed during ascent flight to determine its response to atmospheric turbulence. Propellant sloshing, gust penetration, and automatic control system effects were included. The steady-state aerodynamic method of Woodward was used to derive the generalized aerodynamic forces, using the standard quasi-steady assumption. Aerodynamic interference effects between adjacent wings and bodies were found to be significant, with symmetric responses generally higher than antisymmetric. The stability augmentation system tended to lower booster response while increasing orbiter response. Loads due to 9 m/s quasi-square-wave gusts were considerably higher than the 3 sigma random turbulence loads. The elastic portion of the response accounted for about 15% of the total wing load in the discrete gust analysis, while in the random case the elastic effect was small.

  1. Gaussian entanglement in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Semenov, A. A.; Sperling, J.; Vogel, W.

    2016-07-01

    We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a nontrivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.

  2. Turbulent transport process in atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Awasaki, T.

    2012-04-01

    The organized motion or the coherent motion can be detected in wind tunnel and water channel experiments and those motions play an important role for the production of turbulent energy and transport of turbulent fluxes. Similar phenomena can be found in the atmospheric surface layer (Gao et al., 1989). The purpose of this study is to clarify the transport structure and process of turbulent fluxes, especially heat, water vapor and carbon dioxide. The organized motions are detected by using the wavelet transform analysis as well as the conventional statistical method such as Fourier spectral analysis. We consider the dependency of transport process by the organized motion to the atmospheric stability in the surface layer. The observation was carried out at the test field of Shionomisaki Wind Effect Laboratory, where two sets of the combination of sonic anemometer thermometer and open path H2O/CO2 analyzer were mounted at 2m and 20m height. The evident ramp and inverse ramp structures can be found in the time series of temperature, water vapor and CO2 in the unstable stability, using the Mexican hut wavelet transform analysis. The co-spectral density in wavelet analysis is considered as the flux at each time scale. The large amount of fluxes is transported at the sudden decrease in scalar ramp structure and the sudden increase in inverse ramp structure in several tens of seconds. The scalar and vertical wind velocity are completely either in phase or out of phase, which means that the turbulent transport by the organized motion occurs at time scales of several tens of seconds. The quadrant analysis of turbulent flux shows that the rate of the transport amount of scalar by ejection and sweep to the total transport flux increases according to the increase of the atmospheric stability. At 2m height, the transport by ejection is dominant in unstable condition, and that by sweep is larger in the stable condition. At 20m height, transport by ejection is larger than that by

  3. Atmospheric turbulence simulation techniques with application to flight analysis

    NASA Technical Reports Server (NTRS)

    Wang, S. T.; Frost, W.

    1980-01-01

    Statistical modeling of atmospheric turbulence is discussed. The statistical properties of atmospheric turbulence, in particular the probability distribution, the spectra, and the coherence are reviewed. Different atmospheric turbulence simulation models are investigated, and appropriate statistical analyses are carried out to verify their validity. The models for simulation are incorporated into a computer model of aircraft flight dynamics. Statistical results of computer simulated landings for an aircraft having characteristics of a DC-8 are reported for the different turbulence simulation techniques. The significance of various degrees of sophistication in the turbulence simulation techniques on the landing performance of the aircraft is discussed.

  4. Rotor noise due to atmospheric turbulence ingestion. I - Fluid mechanics

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.; Greitzer, E. M.

    1986-01-01

    In the present analytical procedure for the prediction of helicopter rotor noise generation due to the ingestion of atmospheric turbulence, different models for turbulence fluid mechanics and the ingestion process are combined. The mean flow and turbulence statistics associated with the atmospheric boundary layer are modeled with attention to the effects of atmospheric stability length, windspeed, and altitude. The turbulence field can be modeled as isotropic, locally stationary, and homogeneous. For large mean flow contraction ratios, accurate predictions of turbulence vorticity components at the rotor face requires the incorporation of the differential drift of fluid particles on adjacent streamlines.

  5. Impact of atmospheric turbulence on geodetic very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Haas, R.

    2010-03-01

    We assess the impact of atmospheric turbulence on geodetic very long baseline interferometry (VLBI) through simulations of atmospheric delays. VLBI observations are simulated for the two best existing VLBI data sets: The continuous VLBI campaigns CONT05 and CONT08. We test different methods to determine the magnitude of the turbulence above each VLBI station, i.e., the refractive index structure constant Cn2. The results from the analysis of the simulated data and the actually observed VLBI data are compared. We find that atmospheric turbulence today is the largest error source for geodetic VLBI. Accurate modeling of atmospheric turbulence is necessary to reach the highest accuracy with geodetic VLBI.

  6. Two-wavelength ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Shen, Hong; Zhang, Jinghui; Qiao, Chunhong; Wang, Yingjian

    2013-01-28

    Recent work has indicated that ghost imaging might find useful application in standoff sensing where atmospheric turbulence is a serious problem. There has been theoretical study of ghost imaging in the presence of turbulence. However, most work has addressed signal-wavelength ghost imaging. Two-wavelength ghost imaging through atmospheric turbulence is theoretically studied in this paper. Based on the extended Huygens-Fresnel integral, the analytical expressions describing atmospheric turbulence effects on the point spread function (PSF) and field of view (FOV) are derived. The computational case is also reported.

  7. Large Eddy Simulation of Aircraft Wake Vortices: Atmospheric Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Kao, C.-T.

    1997-01-01

    Crow instability can develop in most atmospheric turbulence levels, however, the ring vortices may not form in extremely strong turbulence cases due to strong dissipation of the vortices. It appears that strong turbulence tends to accelerate the occurrences of Crow instability. The wavelength of the most unstable mode is estimated to be about 5b(sub 0), which is less than the theoretical value of 8.6b(sub 0) (Crow, 1970) and may be due to limited domain size and highly nonlinear turbulent flow characteristics. Three-dimensional turbulence can decay wake vortices more rapidly. Axial velocity may be developed by vertical distortion of a vortex pair due to Crow instability or large turbulent eddy motion. More experiments with various non-dimensional turbulence levels are necessary to get useful statistics of wake vortex behavior due to turbulence. Need to investigate larger turbulence length scale effects by enlarging domain size or using grid nesting.

  8. Effects of ingested atmospheric turbulence on measured tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Signor, David B.; Yamauchi, Gloria K.; Mosher, Marianne; Hagen, Martin J.; George, Albert R.

    1992-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of turbulence ingestion on rotor noise are quantified. Turbulence ingestion noise is found to be the dominant noise mechanism at locations near the rotor axis. At these locations, the sound radiated by the hovering rotor increases with both increasing atmospheric wind speed and ingested rms turbulent velocity.

  9. Calculation of turbulence effects in an upward-refracting atmosphere

    NASA Astrophysics Data System (ADS)

    Gilbert, Kenneth E.; di, Xiao; Raspet, Richard

    1990-06-01

    The effect of atmospheric turbulence on sound propagation was investigated for both nonrefractive and refractive atmospheres, using the parabolic equation method of Gilbert and White (1989) in conjunction with a two-dimensional atmospheric turbulence model. The calculations for a nonrefractive atmosphere gave good agreement with experimental data and with Daigle's (1979) theory, while calculations for an upward-refractive atmosphere gave reasonable agreement with the data of Weiner and Keast (1959). It is concluded that, for a receiver deep in a shadow zone and for frequencies greater than a few hundred hertz, the measured sound-pressure level is due almost entirely to the sound scattered into the shadow zone by atmospheric turbulence. Consequently, for upward refraction and frequencies above a few hundred hertz, turbulence must be included in long-range propagation calculations.

  10. Causes of non-Kolmogorov turbulence in the atmosphere.

    PubMed

    Lukin, V P; Nosov, E V; Nosov, V V; Torgaev, A V

    2016-04-20

    In the present work, we briefly describe a model for atmospheric turbulence energy on the basis of experimental data obtained in Siberia. A series of new studies is considered and the results of our long-term experimental observations are summarized. The results of these studies form the basis for an explanation of some effects in interactions between optical waves and atmospheric turbulence. Our numerous experimental results point to the possible generation of so-called coherent turbulence in the atmosphere. When analyzing the problem, we proceeded based on our own experimental data and comprehension that the coherent turbulence is a result of the action of self-organizing nonlinear processes, which run in continuous media, including atmospheric air. The experimental data confirmed the effect of attenuation of light fluctuations in coherent turbulence.

  11. Turbulent Heat Fluxes in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Izakov, M. N.

    2002-05-01

    A thermal regime of the troposphere of Venus is mainly determined by the greenhouse effect. A closeness of the real temperature gradient to the adiabatic one indicates that turbulent heat fluxes are also essential. Additional problems arise as only about 11% of the solar radiation absorbed by the planet reaches the surface, and most of it is taken up in the clouds at altitudes of 60-70 km. The present study summarizes experimental data on atmospheric parameters related to turbulence and estimates turbulent fluxes and turbulence characteristics. These data confirm the author's hypothesis of an anomalous downward turbulent heat flux in the free atmosphere. A normal upward turbulent heat flux exists in the planetary boundary layer.

  12. Estimation of atmospheric turbulence parameters with wave front sensor data

    NASA Astrophysics Data System (ADS)

    Iroshnikov, N. G.; Koryabin, A. V.; Larichev, A. V.; Shmalhausen, V. I.; Andreeva, M. S.

    2012-11-01

    Estimates of atmospheric turbulence parameters can be calculated on the basis of data, obtained with wave front sensor. The method described is based on decomposition of phase fluctuations into Zernike series and analysis of statistics of this decomposition coefficients. Estimates of turbulence outer scale L0 and refractive index structure constant C2/n obtained in experiments with turbulence in water cell showed good agreement with previous results.

  13. Measurements of atmospheric turbulence effects on tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Hagen, Martin J.; Yamauchi, Gloria K.; Signor, David B.; Mosher, Marianne

    1994-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of atmospheric turbulence ingestion on rotor noise are quantified. In contradiction to current theories, increasing rotor inflow and rotor thrust were found to increase turbulence ingestion noise. This is the final report of Task 13A--Helicopter Tail Rotor Noise, of the NASA/United Kingdom Defense Research Agency cooperative Aeronautics Research Program.

  14. Scattering of sonic booms by anisotropic turbulence in the atmosphere

    PubMed

    Kelly; Raspet; Bass

    2000-06-01

    An earlier paper [J. Acoust. Soc. Am. 98, 3412-3417 (1995)] reported on the comparison of rise times and overpressures of sonic booms calculated with a scattering center model of turbulence to measurements of sonic boom propagation through a well-characterized turbulent layer under moderately turbulent conditions. This detailed simulation used spherically symmetric scatterers to calculate the percentage of occurrence histograms of received overpressures and rise times. In this paper the calculation is extended to include distorted ellipsoidal turbules as scatterers and more accurately incorporates the meteorological data into a determination of the number of scatterers per unit volume. The scattering center calculation overpredicts the shifts in rise times for weak turbulence, and still underpredicts the shift under more turbulent conditions. This indicates that a single-scatter center-based model cannot completely describe sonic boom propagation through atmospheric turbulence. PMID:10875351

  15. Statistics of optical vortex wander on propagation through atmospheric turbulence.

    PubMed

    Gu, Yalong

    2013-04-01

    The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.

  16. Measurement of atmospheric turbulence strength by vortex beam

    NASA Astrophysics Data System (ADS)

    Gu, Yalong; Gbur, Greg

    2010-04-01

    The behavior of spatial correlation singularities suggests a possible method for measuring atmospheric turbulence strength with a vortex beam. The refractive index structure constant Cn2 can be obtained by measuring the radius of a ring dislocation of a vortex beam which has passed through atmospheric turbulence. An approximate analytic expression for the radius of a ring dislocation as a function of Cn2 has been derived, and its accuracy is verified by numerical examples.

  17. Performance of wind turbines in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Sundar, R. M.; Sullivan, J. P.

    1981-05-01

    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency.

  18. Performance of wind turbines in a turbulent atmosphere

    NASA Technical Reports Server (NTRS)

    Sundar, R. M.; Sullivan, J. P.

    1981-01-01

    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency.

  19. A radiosonde thermal sensor technique for measurement of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1975-01-01

    A new system was developed to measure vertical profiles of microthermal turbulence in the free atmosphere. It combines thermal sensor technology with radiosonde balloon systems. The resultant data set from each thermosonde flight is a profile of the strength and distribution of microthermal fluctuations which act as tracers for turbulence. The optical strength of this turbulence is computed and used to predict optical and laser beam propagation statistics. A description of the flight payload, examples of turbulence profiles, and comparison with simultaneous stellar observations are included.

  20. Helicopter rotor noise due to ingestion of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.; Greitzer, E. M.

    1986-01-01

    A theoretical study was conducted to develop an analytical prediction method for helicopter main rotor noise due to the ingestion of atmospheric turbulence. This study incorporates an atmospheric turbulence model, a rotor mean flow contraction model and a rapid distortion turbulence model which together determine the statistics of the non-isotropic turbulence at the rotor plane. Inputs to the combined mean inflow and turbulence models are controlled by atmospheric wind characteristics and helicopter operating conditions. A generalized acoustic source model was used to predict the far field noise generated by the non-isotropic flow incident on the rotor. Absolute levels for acoustic spectra and directivity patterns were calculated for full scale helicopters, without the use of empirical or adjustable constants. Comparisons between isotropic and non-isotropic turbulence at the rotor face demonstrated pronounced differences in acoustic spectra. Turning and contraction of the flow for hover and low speed vertical ascent cases result in a 3 dB increase in the acoustic spectrum energy and a 10 dB increase in tone levels. Compared to trailing edge noise, turbulence ingestion noise is the dominant noise mechanism below approximately 30 rotor harmonics, while above 100 harmonics, trailing edge noise levels exceed turbulence ingestion noise by 25 dB.

  1. Large-eddy simulations of contrails in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Picot, J.; Paoli, R.; Thouron, O.; Cariolle, D.

    2014-11-01

    In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES) coupled to a Lagrangian particle tracking method to treat the ice phase. This is the first paper where fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere lower stratosphere. The initial flow-field is composed by the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail decent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex break-up dominates over background turbulence at the end of the vortex regime and dominates the mixing with ambient air. This results in global microphysical characteristics such as ice mass and optical depth that are be slightly affected by the intensity of atmospheric turbulence. On the other hand, the background humidity and temperature have a first order effect on the survival of ice crystals and particle size distribution, which is in line with recent and ongoing studies in the literature.

  2. Propagation of optical coherence lattices in the turbulent atmosphere.

    PubMed

    Liu, Xianlong; Yu, Jiayi; Cai, Yangjian; Ponomarenko, Sergey A

    2016-09-15

    We explore the propagation of recently introduced optical coherence lattices (OCLs) in the turbulent atmosphere. We show that the lattice intensity profile and the spatial degree of coherence will display periodicity reciprocity over long propagation distances even though the lattices are affected by the turbulence. The lattice periodicity reciprocity has been previously conjectured to be advantageous for free-space information transfer and optical communications. We then show how one can increase the distance over which the lattice periodicity reciprocity is preserved in the turbulent atmosphere by engineering input lattice beam parameters. We also show that the OCLs have scintillation indices lower than those of Gaussian beams. PMID:27628352

  3. Turbulence structures in wind turbine wake: Effects of atmospheric stratification

    NASA Astrophysics Data System (ADS)

    Bhaganagar, Kiran

    2014-11-01

    Turbulence structure in the wake behind full-scale horizontal-axis WT under the influence of realistic atmospheric turbulent flow conditions has been investigated using actuator-line-model based large-eddy-simulations. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of turbine wake. Turbulent mixing layer forms downstream of the WT, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer. NSF CBET Energy for Sustainability.

  4. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings

    SciTech Connect

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2012-01-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5-MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  5. Noise produced by turbulent flow into a rotor: Theory manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.

    1989-01-01

    Prediction of helicopter main rotor noise due to ingestion of atmospheric turbulence was analyzed. The analysis combines several different models that describe the fluid mechanics of the turbulence and the ingestion process. Two models, atmospheric turbulence, and mean flow and turbulence contraction were covered. The third model, covered in a separate report, describes the rotor acoustic mode. The method incorporates the atmospheric turbulence model and a rapid distortion turbulence contraction description to determine the statistics of the anisotropic turbulence at the rotor plane. The analytical basis for a module was provided which was incorporated in NASA's ROTONET helicopter noise prediction program. The mean flow and turbulence statistics associated with the atmospheric boundary layer were modeled including effects of atmospheric stability length, wind speed, and altitude. The turbulence distortion process is modeled as a deformation of vortex filaments (which represent the turbulence field) by a mean flow field due to the rotor inflow.

  6. Optical measurements of the outer scale of the atmospheric turbulence.

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.

    The light scattering on the turbulence inhomogeneities of the atmosphere is the one of the main mechanism of distortion of the received optical signal. The random spacetime changes of the atmospheric refractive index lead to distortion of the optical beam structure, the fluctuations of the intensity and phase of the optical wave are manifested, in particular, in blurring, shivering and flickering of the source images, as well as in the turbulent extinction of the mean received power of the signal. Several models are compared with measurements of atmospheric parameters.

  7. Atmospheric Quantum Channels with Weak and Strong Turbulence

    NASA Astrophysics Data System (ADS)

    Vasylyev, D.; Semenov, A. A.; Vogel, W.

    2016-08-01

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.

  8. Atmospheric Quantum Channels with Weak and Strong Turbulence.

    PubMed

    Vasylyev, D; Semenov, A A; Vogel, W

    2016-08-26

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios.

  9. Atmospheric Quantum Channels with Weak and Strong Turbulence.

    PubMed

    Vasylyev, D; Semenov, A A; Vogel, W

    2016-08-26

    The free-space transfer of high-fidelity optical signals between remote locations has many applications, including both classical and quantum communication, precision navigation, clock synchronization, etc. The physical processes that contribute to signal fading and loss need to be carefully analyzed in the theory of light propagation through the atmospheric turbulence. Here we derive the probability distribution for the atmospheric transmittance including beam wandering, beam shape deformation, and beam-broadening effects. Our model, referred to as the elliptic beam approximation, applies to weak, weak-to-moderate, and strong turbulence and hence to the most important regimes in atmospheric communication scenarios. PMID:27610835

  10. Hyperspectral Image Turbulence Measurements of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Kireev, Stanislav; Smith, William L., Sr.; Burdette, Edward M.; Daniels, Taumi; Cornman, Larry

    2012-01-01

    A Forward Looking Interferometer (FLI) sensor has the potential to be used as a means of detecting aviation hazards in flight. One of these hazards is mountain wave turbulence. The results from a data acquisition activity at the University of Colorado s Mountain Research Station will be presented here. Hyperspectral datacubes from a Telops Hyper-Cam are being studied to determine if evidence of a turbulent event can be identified in the data. These data are then being compared with D&P TurboFT data, which are collected at a much higher time resolution and broader spectrum.

  11. On the application of Rice's exceedance statistics to atmospheric turbulence.

    NASA Technical Reports Server (NTRS)

    Chen, W. Y.

    1972-01-01

    Discrepancies produced by the application of Rice's exceedance statistics to atmospheric turbulence are examined. First- and second-order densities from several data sources have been measured for this purpose. Particular care was paid to each selection of turbulence that provides stationary mean and variance over the entire segment. Results show that even for a stationary segment of turbulence, the process is still highly non-Gaussian, in spite of a Gaussian appearance for its first-order distribution. Data also indicate strongly non-Gaussian second-order distributions. It is therefore concluded that even stationary atmospheric turbulence with a normal first-order distribution cannot be considered a Gaussian process, and consequently the application of Rice's exceedance statistics should be approached with caution.

  12. Propagation of rotational field correlation through atmospheric turbulence.

    PubMed

    Nairat, Mazen; Voelz, David

    2014-04-01

    A general formulation is presented that describes the propagation of the rotational field correlation of an optical beam through atmospheric turbulence. The associated influence on the orbital angular momentum (OAM) of a single photon is described analytically. The analysis predicts the probability of change in the OAM state due to the process of propagating through turbulence. The probability of a change in an OAM state depends on the Fresnel number and on the ratio of the beam diameter to the Fried parameter.

  13. Atmospheric turbulence parameters for modeling wind turbine dynamics

    NASA Technical Reports Server (NTRS)

    Holley, W. E.; Thresher, R. W.

    1982-01-01

    A model which can be used to predict the response of wind turbines to atmospheric turbulence is given. The model was developed using linearized aerodynamics for a three-bladed rotor and accounts for three turbulent velocity components as well as velocity gradients across the rotor disk. Typical response power spectral densities are shown. The system response depends critically on three wind and turbulence parameters, and models are presented to predict desired response statistics. An equation error method, which can be used to estimate the required parameters from field data, is also presented.

  14. Trajectory of an optical vortex in atmospheric turbulence.

    PubMed

    Dipankar, A; Marchiano, R; Sagaut, P

    2009-10-01

    Trajectory of an optical vortex has been identified for its propagation in atmospheric turbulence using numerical simulations. An analytical expression has been found, relating the radial departure of the vortex in plane perpendicular to the direction of propagation, to the refractive index structure function parameter and the inner scale of turbulence. The angular orientation of the vortex in the same transverse plane is found to be related to the anisotropy of the medium. The obtained results provide an alternative way to find turbulent parameters with the help of optical vortices.

  15. Why turbulence sustains in supercritically stratified free atmosphere?

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2016-04-01

    It is widely believed that in very stable stratifications, at Richardson numbers (Ri) exceeding critical value Ric ˜ 0.25 turbulence decays and flow becomes laminar. This is so at low Reynolds numbers (Re), e.g., in lab experiments; but this is not true in very-high-Re geophysical flows. Free atmosphere and deep ocean are turbulent in spite of strongly supercritical stratifications: 1 << Ri < 103. Until recently, this paradox remained unexplained. The Energy- and Flux-Budget (EFB) turbulence-closure (Zilitinkevich et al., 2013) has disclosed the following turbulence self-control mechanisms. Until recently, the role of negative buoyancy flux, Fb > 0, in turbulence energetics was treated in terms of the turbulent kinetic energy (TKE) budget equation and understood as just consumption of TKE by the buoyancy forces. This has led to the conclusion that sufficiently strong static stability causes the negative buoyancy flux sufficiently strong to exceed the TKE generation rate and thus to kill turbulence. However, considering TKE equation together with budget equation for turbulent potential energy (TPE proportional to the squared buoyancy fluctuations) shows that the role of Fb in turbulence energetics is nothing but conversion of TKE into TPE (Fb just quantifies the rate of this conversion); so that Fb does not affect total turbulent energy (TTE = TKE + TPE). Moreover, as follows from the buoyancy-flux budget equation, TPE generates positive (directed upward) buoyancy flux irrespective of the sign of the buoyancy gradient. Indeed, the warmer fluid particles (with positive buoyancy fluctuation) rise up, whereas the cooler particles sink down, so that both contribute to the positive buoyancy flux opposing to the usual, negative flux generated by mean buoyancy gradient. In this context, strengthening the negative buoyancy flux leads to decreasing TKE and increasing TPE. The latter enhances the counter-gradient share of the total flux, thus reduces |Fb| and, eventually

  16. High-resolution speckle imaging through strong atmospheric turbulence.

    PubMed

    Hope, Douglas A; Jefferies, Stuart M; Hart, Michael; Nagy, James G

    2016-05-30

    We demonstrate that high-resolution imaging through strong atmospheric turbulence can be achieved by acquiring data with a system that captures short exposure ("speckle") images using a range of aperture sizes and then using a bootstrap multi-frame blind deconvolution restoration process that starts with the smallest aperture data. Our results suggest a potential paradigm shift in how we image through atmospheric turbulence. No longer should image acquisition and post processing be treated as two independent processes: they should be considered as intimately related.

  17. Experimental study of laser beam propagation in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Ping; He, Wu-Guang; Wu, Jian

    2009-05-01

    Intensity of atmospheric turbulence may overly affect bit error rate for a ground-based laser wireless communication system, so it is necessary to measure of atmospheric turbulence intensity and fluctuation of image centroid while laser beam propagates in turbulent atmosphere. In this paper, an experiment system is set up based on theory of light transmission in turbulent atmosphere. In the system, a laser named Nd : YAG is used horizontally to emit a laser beam with wavelength 1.06 μm on a platform at the height of 1.5 m. Three infrared CCD cameras are set at 200 m, 300 m(or 600 m) and 1000 m far from laser, which are applied to receive laser facula images from Lambertian boards, respectively. A lot of laser facula images are collected within some serial days under different periods of time every day, and hundreds of image frames are gathered at a time by making use of this experiment device. Fluctuation of image centroid is computed with these image frames, and the structure constant of atmospheric refractive index (C 2n) is also derived. Finally, a comparison is made between aforementioned C2n and those derived by meteorology factors.

  18. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  19. Atmospheric turbulence optical model (ATOM) based on fractal theory

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Scoggins, Jim; Carroll, Marvin P.

    1994-06-01

    An Atmospheric Turbulence Optical Model (ATOM) is presented that used cellular automata (CA) rules as the basis for modeling synthetic phase sheets. This method allows image fracture, scintillation and blur to be correctly models using the principle of convolution with a complex kernel derived from CA rules interaction. The model takes into account the changing distribution of turbules from micro-turbule domination at low altitudes to macro-domination at high altitudes. The wavelength of propagating images (such as a coherent laser beam) and the range are taken into account. The ATOM model is written in standard FORTRAN 77 and enables high-speed in-line calculation of atmospheric effects to be performed without resorting to computationally intensive solutions of Navier Stokes equations or Cn2 profiles.

  20. Irradiance scintillation index on slant atmospheric turbulence: simple approach

    NASA Astrophysics Data System (ADS)

    Fayed, Heba A.; El Aziz, Ahmed Abd; Aly, Asmaa M.; Aly, Moustafa H.

    2016-05-01

    Turbulence plays an important role in investigating the irradiance scintillation index (SI) for a free-space optical wave propagating through atmospheric turbulence. The Hufnagel-Valley model is used in most studies, where the SI of the slant path is obtained using numerical analysis. A polynomial is proposed for the refractive index structure parameter, on which a closed form is derived for the irradiance SI of a spherical optical wave propagating through a slant atmospheric turbulence. This is used to study signal-to-noise ratio and bit error rate for system performance evaluation. The obtained results demonstrate the simplicity of using the derived closed form of SI compared to statistical methods. The derived expression takes less computational time for SI, which reflects positively on the system performance, which is an essential issue in vehicular mobile applications, in particular.

  1. Inflight data collection for ride quality and atmospheric turbulence research

    NASA Technical Reports Server (NTRS)

    Kadlec, P. W.; Buckman, R. C.

    1974-01-01

    A flight test program to investigate the effects of atmospheric turbulence on passenger ride quality in large, wide-body commercial aircraft was conducted. Data were collected on a series of flight on a Boeing 747 aircraft. Atmospheric and aircraft performance data were obtained from special sensors, as well as conventional instruments and avionics systems normally available. Visual observations of meteorlogical conditions encountered were manually recorded during the flights.

  2. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    NASA Technical Reports Server (NTRS)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  3. Partially coherent beam propagation in atmospheric turbulence [invited].

    PubMed

    Gbur, Greg

    2014-09-01

    Partially coherent beams hold much promise in free-space optical communications for their resistance to the deleterious effects of atmospheric turbulence. We describe the basic theoretical and computational tools used to investigate these effects, and review the research to date.

  4. Characterising atmospheric optical turbulence using stereo-SCIDAR

    NASA Astrophysics Data System (ADS)

    Osborn, James; Butterley, Tim; Föhring, Dora; Wilson, Richard

    2015-04-01

    Stereo-SCIDAR (SCIntillation Detection and Ranging) is a development to the well known SCIDAR method for characterisation of the Earth's atmospheric optical turbulence. Here we present some interesting capabilities, comparisons and results from a recent campaign on the 2.5 m Isaac Newton Telescope on La Palma.

  5. New remote sensing technique for lidar monitoring of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail S.; Gimmestad, Gary G.

    1993-09-01

    A new remote sensing technique is proposed for determining the turbulent parameters of the atmosphere using a single-ended lidar system. This technique is based on the enhanced backscattering effect and is insensitive to the scattering volume averaging effect on the intensity fluctuations of the reflected wave and the sounding beam. The corresponding measurements are independent of the turbulent scintillation spectrum and that permits the use of high power pulsed lasers with a relatively low repetition rate for determining the refractive index structure characteristic Cn2, its vertical profile Cn2(h) and inner scale of turbulence lo in the atmosphere. A theory of the method is developed, and the conditions are obtained for observing the backscattering amplification effect in the atmosphere with a laser beam scattered by aerosol. The signal-to-noise ratio and the sensitivity of the measured quantities to the inner scale of turbulence lo variations are estimated. A planned demonstration of this technique in the boundary layer of the atmosphere with an eyesafe lidar which has been developed at Georgia Tech is discussed.

  6. Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.

  7. Statistical analysis of low level atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Chen, W. W. L.

    1974-01-01

    The statistical properties of low-level wind-turbulence data were obtained with the model 1080 total vector anemometer and the model 1296 dual split-film anemometer, both manufactured by Thermo Systems Incorporated. The data obtained from the above fast-response probes were compared with the results obtained from a pair of Gill propeller anemometers. The digitized time series representing the three velocity components and the temperature were each divided into a number of blocks, the length of which depended on the lowest frequency of interest and also on the storage capacity of the available computer. A moving-average and differencing high-pass filter was used to remove the trend and the low frequency components in the time series. The calculated results for each of the anemometers used are represented in graphical or tabulated form.

  8. An integrated fiber-optic turbulence sensor and its applications in maritime atmospheric optical turbulence research

    NASA Astrophysics Data System (ADS)

    Xiao, Shu-mei; Mei, Hai-ping; Wang, Qian; Rao, Rui-zhong

    2013-08-01

    An integrated fiber-optic turbulence sensor based on non-balanced fiber-optic Mach-Zehnder interferometer with a small air gap as light path difference has been designed for detecting air refractive index fluctuation. For avoiding sensing signal fading and perturbations from circumstance during signal transmission, the phase generated carrier is used. The turbulence induced air refractive index fluctuations are demodulated by the algorithm of correlation. Background noise of the sensor is below10-17 . By comparing with the refractive index structure constant measured by fine-wire resistance thermometer, results show good agreement in both their magnitude and tendency. For its outstanding property of corrosion protection, the sensor is especially suitable for maritime atmospheric optical turbulence research, which is verified by one month sea beach investigation. Some results of the maritime optical turbulence intensity are reported in the end.

  9. Laboratory experiments of an atmospheric/oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Thacker, Adrien; Eiff, Olivier; waves, turbulence, environment Team

    2015-11-01

    Atmospheric or oceanic turbulence is strongly influenced by the effects of stratification leading to the emmergence of quasi-horizontal layers often described as ``pancake'' structures. The mechanisms of this layering and the selection of the vertical length scale of pancake structures is discussed for one decade whereas it is of a major importance to elucidate the energetic cascade that leads to viscous dissipation. In this present work, we analyze a new series of decaying grid turbulence experiments under the effects of stratification aiming to identify and observe the strongly stratified turbulence regime. The experiments have been performed in a large water towing tank with salt stratification and measurements have been carried out using a scanning correlation imaging velocimetry technique providing instantaneous 3D3C velocity fields along the decaying turbulence. Self similar power laws of the decaying grid turbulence have been assessed and allow the definition of empirical critical time giving transitions to the strongly stratified turbulence regime. A first experimental evidence of overturning process between layers of pancake vortices has been obtained through vorticity fields observation. This observation support the existence of a downscale energy cascade.

  10. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  11. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  12. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  13. Turbulence structures associated with fire-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Clements, C. B.; Seto, D.; Heilman, W. E.

    2013-12-01

    Wildland fires radically modify the atmospheric boundary layer by emitting large sensible and latent heat fluxes. These fluxes drive fire-atmosphere interactions at multiple scales resulting in fire-induced circulations in and around the fire front. During the fire front passage, FFP, turbulence kinetic energy increases due to increased heating and wind shear that develops in response to both free convection and fire-induced winds. New field observations from multiple fire experiments have shown that turbulence spectral energy increases during the FFP as a result of small eddies being shed from the fire front and that that normalized velocity spectra using the friction velocity collapse into a narrow band in the inertial subrange, suggesting that Monin-Obukhov scaling is a valid scaling parameter that can be used for wildfire prediction systems. Additionally, during FFP the mean profiles of winds and sensible heat flux change compared to ambient conditions due to the fire-atmosphere interactions. These profiles are also different during different environmental conditions such as grass fires in open field and fires within a forest canopy. This presentation will discuss new turbulence observations from the FireFlux II field experiment conducted in 2013 which indicate that during FFP there are also an increases in horizontal mean winds, friction velocity, horizontal and vertical velocity variances and a decrease in anisotropy in turbulence kinetic energy and are similar to lower intensity fires.

  14. Scattering of coherent sound waves by atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Chow, P. L.; Liu, C. H.; Maestrello, L.

    1975-01-01

    An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.

  15. Simulation of laser propagation in a turbulent atmosphere.

    PubMed

    Frehlich, R

    2000-01-20

    The split-step Fourier-transform algorithm for numerical simulation of wave propagation in a turbulent atmosphere is refined to correctly include the effects of large-scale phase fluctuations that are important for imaging problems and many beam-wave problems such as focused laser beams and beam spreading. The results of the improved algorithm are similar to the results of the traditional algorithm for the performance of coherent Doppler lidar and for plane-wave intensity statistics because the effects of large-scale turbulence are less important. The series solution for coherent Doppler lidar performance converges slowly to the results from simulation. PMID:18337906

  16. Restoring atmospheric-turbulence-degraded images.

    PubMed

    Furhad, Md Hasan; Tahtali, Murat; Lambert, Andrew

    2016-07-01

    Image data experiences geometric distortions and spatial-temporal varying blur due to the strong effects of random spatial and temporal variations in the optical refractive index of the communication path. Simultaneously removing these effects from an image is a challenging task. An efficient approach is proposed in this paper to address this problem. The approach consists of four steps. First, a frame selection strategy is employed by proposing an unsupervised k-means clustering technique. Second, a B-spline-based nonrigid image registration is carried out to suppress geometric distortions. Third, a spatiotemporal kernel regression is proposed by introducing the local sharp patch concept to fuse the registered frame sequences into an image. Finally, a blind deconvolution technique is employed to deblur the fused image. Experiments are carried out with synthetic and real-world turbulence-degraded data by implementing the proposed method and two recently reported methods. The proposed method demonstrates significant improvement over the two reported methods in terms of alleviating blur and distortions, as well as improving visual quality.

  17. Restoring atmospheric-turbulence-degraded images.

    PubMed

    Furhad, Md Hasan; Tahtali, Murat; Lambert, Andrew

    2016-07-01

    Image data experiences geometric distortions and spatial-temporal varying blur due to the strong effects of random spatial and temporal variations in the optical refractive index of the communication path. Simultaneously removing these effects from an image is a challenging task. An efficient approach is proposed in this paper to address this problem. The approach consists of four steps. First, a frame selection strategy is employed by proposing an unsupervised k-means clustering technique. Second, a B-spline-based nonrigid image registration is carried out to suppress geometric distortions. Third, a spatiotemporal kernel regression is proposed by introducing the local sharp patch concept to fuse the registered frame sequences into an image. Finally, a blind deconvolution technique is employed to deblur the fused image. Experiments are carried out with synthetic and real-world turbulence-degraded data by implementing the proposed method and two recently reported methods. The proposed method demonstrates significant improvement over the two reported methods in terms of alleviating blur and distortions, as well as improving visual quality. PMID:27409194

  18. Field correlations of laser arrays in atmospheric turbulence.

    PubMed

    Baykal, Yahya

    2014-03-01

    Correlations of the fields at the receiver plane are evaluated after a symmetrical radial laser array beam incident field propagates in a turbulent atmosphere. The laser array configuration is composed of a number of the same size laser beamlets symmetrically located around a ring having a radius that determines the distance of the ring from the origin. The variations of the correlations of the received field originating from such laser array incidence versus the diagonal length starting from a receiver point are examined for various laser array parameters, turbulence parameters, and the locations of the reception points. Laser array parameters consist of the ring radius and the number and size of the beamlets. Structure constant, link length, and wavelength are the turbulence parameters whose effects on the field correlation of the laser arrays are also investigated.

  19. Higher order correlation beams in atmosphere under strong turbulence conditions.

    PubMed

    Avetisyan, H; Monken, C H

    2016-02-01

    Higher order correlation beams, that is, two-photon beams obtained from the process of spontaneous parametric down-conversion pumped by Hermite-Gauss or Laguerre-Gauss beams of any order, can be used to encode information in many modes, opening the possibility of quantum communication with large alphabets. In this paper we calculate, analytically, the fourth-order correlation function for the Hermite-Gauss and Laguerre-Gauss coherent and partially coherent correlation beams propagating through a strong turbulent medium. We show that fourth-order correlation functions for correlation beams have, under certain conditions, expressions similar to those of intensities of classical beams and are degraded by turbulence in a similar way as the classical beams. Our results can be useful in establishing limits for the use of two-photon beams in quantum communications with larger alphabets under atmospheric turbulence.

  20. Atmospheric waves and the nature of buoyancy turbulence in the context of the waves VS 2D-turbulence debate

    NASA Technical Reports Server (NTRS)

    Dewan, E. M.

    1986-01-01

    The problem of how to empirically distinguish between velocity fluctuations due to turbulence and those due to atmospheric waves is addressed. The physical differences between waves and turbulence are reviewed. New theoretical ideas on the subject of bouyancy range turbulence are presented. A unique scale K sub B is given that allows one to differentiate between waves and turbulence for the special case of theta = 0 (i.e., horizontal propagating waves).

  1. Turbulence, superrotation, and general circulation models of the atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Izakov, M. N.

    2016-09-01

    The data obtained in space-borne measurements and the findings of turbulence theory show that turbulence, of both small and large scales, has a decisive influence on the structure and dynamics of the atmosphere of Venus. The small-scale turbulence generates anomalous convection, while large-scale turbulence induces the return spectral flux of energy that is the main element of the superrotation mechanism in the atmosphere. Ways for improving the general circulation model of the atmosphere of Venus are proposed.

  2. Coherent Optical Receiver for PPM Signals under Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Munoz Fernandez, Michela; Vilnrotter, Victor A.

    2005-01-01

    Adaptive combining of experimentally obtained heterodyned pulse position modulated (PPM) signals with pulse-to-pulse coherence in the presence of simulated spatial distortions resembling atmospheric turbulence is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot-noise. A convergence analysis of the algorithm is presented, and results with both, computer simulated and experimentally obtained PPM signals are analyzed.

  3. Temporal power spectra of irradiance scintillation for infrared optical waves' propagation through marine atmospheric turbulence.

    PubMed

    Cui, Linyan

    2014-09-01

    Current theoretical temporal power spectra models of an optical wave have been developed for terrestrial environments. The interactions between humidity and temperature fluctuations in the marine atmospheric environments make the marine atmospheric turbulence particularly challenging, and the optical waves' propagation through marine turbulence exhibits a different behavior with respect to terrestrial propagation. In this paper, the temporal power spectra of irradiance scintillation under weak marine atmospheric turbulence, which is one of the key temporal statistics to describe the correlation of irradiance fluctuations at different time instances, is investigated in detail both analytically and numerically. Closed-form expressions for the temporal power spectra of irradiance scintillation are derived for infrared plane and spherical waves under weak marine atmospheric turbulence, and they consider physically the influences of finite turbulence inner and outer scales. The final results indicate that the marine atmospheric turbulence brings more effects on the irradiance scintillation than the terrestrial atmospheric turbulence.

  4. Implementation of SLODAR atmospheric turbulence profiling to the ARGOS system

    NASA Astrophysics Data System (ADS)

    Mazzoni, Tommaso; Busoni, Lorenzo; Bonaglia, Marco; Esposito, Simone

    2014-08-01

    ARGOS is the Ground Layer Adaptive Optics system of the Large Binocular Telescope, it uses three Laser Guide Stars at 12 km altitude, generated by Rayleigh backscattered light of pulsed Nd:YAG lasers at 532nm. The wavefront distortion in the Ground Layer is measured by three Shack-Hartmann WFS, sampling with 15×15 subaperture the three LGS arranged on a single CCD with 8×8px per square subaperture. The SLOpe Detection And Ranging (SLODAR) is a method used to measure the turbulence profiles. Cross correlation of wavefronts gradient from multiple stars is used to estimate the relative strengths of turbulent layers at different altitudes. In the ARGOS case the LGS are arranged on a triangle inscribed in a 2 arcmin radius circle, so we expect an effective slopes correlation up to 5km altitude. We present here the results of a study aimed to implement the SLODAR method on ARGOS performed with the idl-based simulation code used to characterize the ARGOS performance. Simulation implements the atmospheric turbulence on different layers with variable strength, altitude and wind speed. The algorithm performance are evaluated comparing the input turbulence with the cross-correlation of the SH slopes acquired in open loop.

  5. Ground to space atmospheric turbulence monitoring by satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Kral, L.; Nemec, M.; Prochazka, I.; Hamal, K.; Kirchner, G.; Koidl, F.; Fumin, Y.

    The millimeter accuracy Satellite Laser Ranging SLR is becoming of certain interest for geodesy and geophysics on a global scale We are presenting a new method of atmospheric turbulence monitoring on slant ground to space paths by means of high repetition rate SLR followed by a special data analysis algorithm The method is based on the relation between the integral strength of the turbulence along the laser beam path which is the unknown quantity and the contribution of the turbulence to the laser ranging error budget which is determined from the SLR data We have already proved applicability of the theoretical model describing this relation by direct measurements performed at the satellite laser ranging station in Graz Austria equipped by a 2 kHz laser system During these measurements the turbulence along the beam path was measured independently and compared to the values obtained from the SLR data analysis The results show a good agreement between the theory and experiment for a horizontal path to a ground-based target as well as for slant paths to space when ranging to satellites Using the Portable Calibration Standard based on a three picosecond resolution Pico Event Timer and Seeing Monitor we have been applying and planning to carry out this procedure at different SLR sites -- Chinese SLR network and some others as well

  6. Evolution of decentred laser beams propagating through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing; Ji, Xiaoling; Zhu, Wenyue

    2012-07-01

    The changes of the average intensity, the centre of beam gravity and the position of intensity maximum of decentred laser beams propagating through atmospheric turbulence are examined in detail. It is shown that the decentred intensity distribution is amended gradually with increasing the propagation distance and the strength of turbulence, and it becomes an off-axis Gaussian-like beam when the propagation distance and the strength of turbulence become large enough. The centre of beam gravity is independent of both the propagation distance and the strength of turbulence. On the other hand, there are two intensity maxima, and their positions are symmetrical around the propagation z-axis when the propagation distance z is small. With increasing z, there is only one intensity maximum. As z further increases, position of the intensity maximum is further shifted towards the z-axis. When z is large enough, the position of the intensity maximum is unchanged. The unchanged position of the intensity maximum moves further away from the z-axis with an increase in the refraction index structure constant, the decentred parameter and the waist width.

  7. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    NASA Astrophysics Data System (ADS)

    Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.

    2014-12-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.

  8. Turbulence in a convective marine atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.; Yeh, E.-N.

    1986-01-01

    The structure and kinetic energy budget of turbulence in the convective marine atmospheric boundary layer as observed by aircraft during a cold air outbreak have been studied using mixed layer scaling. The results are significantly different from those of previous studies under conditions closer to free convection. The normalized turbulent kinetic energy and turbulent transport are about twice those found during the Air Mass Transformation Experiment (AMTEX). This implies that for a given surface heating the present case is dynamically more active. The difference is mainly due to the greater importance of wind shear in the present case. This case is closer to the roll vortex regime, whereas AMTEX observed mesoscale cellular convection which is closer to free convection. Shear generation is found to provide a significant energy source, in addition to buoyancy production, to maintain a larger normalized turbulent kinetic energy and to balance a larger normalized dissipation. The interaction between turbulent pressure and divergence (i.e., pressure scrambling) is also found to transfer energy from the vertical to the horizontal components, and is expected to be stronger in roll vortices than in m esoscale cells. The sensible heat flux is found to fit well with a linear vertical profile in a clear or subcloud planetary boundary layer (PBL), in good agreement with the results of Lenschow et al., (1980). The heat flux ratio between the PBL top and the surface, derived from the linear fitted curve, is approximately -0.14, in good agreement with that derived from the lidar data for the same case. Near the PBL top, the heat flux profiles are consistent with those of Deardoff (1979) and Deardorff et al. (1980).

  9. Buffer requirements of an optical communication system in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Leclerc, Troy T.; Phillips, Ronald L.; Andrews, Larry C.; Crabbs, Robert

    2013-05-01

    Expressions related to the buffer requirements of an optical communication system in atmospheric turbulence are developed from the channel signal fade time statistics. Laser irradiance data were recorded over the course of one day by a receiving aperture of variable diameter at the Townes Institute Science and Technology Experimentation Facility (TISTEF) 1km laser range located within the Kennedy Space Center at Cape Canaveral, FL. Fade statistics of collected data and scintillometer measurements were compared to the derived model gamma-gamma fade model. Parallel to the laser instrumentation was a commercial scintillometer unit which reported the refractive index structure coefficient, Cn2 and the inner-scale of atmospheric turbulence, l0. The atmospheric parameters inferred from the collected laser data and the commercial instruments were compared. Mean and variance of the fade times were found to agree well with theory for smaller apertures where effects of aperture averaging are not present and in cases where scintillation is weak to moderate. It is suggested that a more appropriate PDF, with a heavier focus on aperture averaging, may be applied in future studies of free space optical communication system fade statistics.

  10. Atmospheric turbulence mitigation using complex wavelet-based fusion.

    PubMed

    Anantrasirichai, Nantheera; Achim, Alin; Kingsbury, Nick G; Bull, David R

    2013-06-01

    Restoring a scene distorted by atmospheric turbulence is a challenging problem in video surveillance. The effect, caused by random, spatially varying, perturbations, makes a model-based solution difficult and in most cases, impractical. In this paper, we propose a novel method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which can severely degrade a region of interest (ROI). In order to extract accurate detail about objects behind the distorting layer, a simple and efficient frame selection method is proposed to select informative ROIs only from good-quality frames. The ROIs in each frame are then registered to further reduce offsets and distortions. We solve the space-varying distortion problem using region-level fusion based on the dual tree complex wavelet transform. Finally, contrast enhancement is applied. We further propose a learning-based metric specifically for image quality assessment in the presence of atmospheric distortion. This is capable of estimating quality in both full- and no-reference scenarios. The proposed method is shown to significantly outperform existing methods, providing enhanced situational awareness in a range of surveillance scenarios.

  11. Theoretical comparison of subgrid turbulence in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Kitsios, V.; Frederiksen, J. S.; Zidikheri, M. J.

    2015-12-01

    Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities) from the subgrid statistics of high resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have alternative scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including: weather, seasonal and climate prediction; transport studies; and understanding natural variability and extreme events.

  12. Image processing techniques for laser propagation through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Belichki, Sara B.; Splitter, Landon J.; Andrews, Larry C.; Phillips, Ronald L.; Coffaro, Joseph T.; Panich, Michael G.

    2014-06-01

    In order to better understand laser beam propagation through the analysis of the fluctuations in scintillation data, images from a 30 frame per second monochrome camera are utilized. Scintillation is the effect of atmospheric turbulence which is known to disrupt and alter the intensity and formation of a laser signal as it propagates through the atmosphere. To model and understand this phenomenon, recorded video output of a laser upon a target screen is inspected to determine how much of an effect the atmospheric turbulence has disrupted the laser signal as it has been propagated upon a set distance. The techniques of data processing outlined in this paper moves toward a software-based approach of determining the effects of propagation and detection of a laser based on the visual fluctuations caused by the scintillation effect. With the aid of such visual models, this paper examines the idea of implementing mathematical models via software that is then validated by the gathered video data taken at Kennedy Space Center.

  13. On Parameterizing Turbulence in the Stably Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan M.; Venayagamoorthy, Subhas K.

    2014-11-01

    Parameterizing turbulent mixing in the stably stratified atmospheric boundary layer remains an active area of research connecting available field measurements with appropriate model parameters. The research presented studies the pertinent mixing lengths for shear- and buoyancy-dominated (or weakly stable and very stable) regimes in the stable atmospheric boundary layer (SABL). Incorporating shear and buoyancy effects, two length scales can be constructed, LkS =k 1 / 2 / S and LkN =k 1 / 2 / N , respectively. Extending the conceptual framework of Mater & Venayagamoorthy (2014), LkS and LkN are shown to be accurate representations of large-scale motions from which relevant model parameters are developed using observations from three field campaigns. An a priori analysis of large-eddy simulation (LES) data evaluates the efficacy of parameterizations applied to the vertical structure of the SABL. The results of this study provide a thorough evaluation of the pertinent mixing lengths in stably stratified turbulence through applications to atmospheric observations and numerical models for the boundary layer extendable to larger-scale weather prediction or global circulation models. S.K.V. gratefully acknowledges the support of the National Science Foundation under Grant No. OCE-1151838.

  14. Group-kinetic theory and modeling of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1989-01-01

    A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.

  15. Random bits, true and unbiased, from atmospheric turbulence.

    PubMed

    Marangon, Davide G; Vallone, Giuseppe; Villoresi, Paolo

    2014-06-30

    Random numbers represent a fundamental ingredient for secure communications and numerical simulation as well as to games and in general to Information Science. Physical processes with intrinsic unpredictability may be exploited to generate genuine random numbers. The optical propagation in strong atmospheric turbulence is here taken to this purpose, by observing a laser beam after a 143 km free-space path. In addition, we developed an algorithm to extract the randomness of the beam images at the receiver without post-processing. The numbers passed very selective randomness tests for qualification as genuine random numbers. The extracting algorithm can be easily generalized to random images generated by different physical processes.

  16. A flight instrumentation system for acquisition of atmospheric turbulence data

    NASA Technical Reports Server (NTRS)

    Meissner, C. W., Jr.

    1976-01-01

    A flight instrumentation system for the acquisition of atmospheric turbulence data is described. Airflow direction transducers and an impact pressure transducer are the primary instruments for measuring vertical and lateral gust velocity, and a sensitive incremental pressure transducer is used to measure longitudinal gust velocity. Airplane motions, sensed by an inertial platform, are subtracted from the primary measurements during postflight data reduction to yield true gust velocity time histories. Salient engineering features of the instrumentation are discussed, and a complete description of the instrumentation is presented.

  17. Comparative measurements of the level of turbulence atmosphere by optical and acoustic devices

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botugina, N. N.; Gladkih, V. A.; Emaleev, O. N.; Konyaev, P. A.; Odintsov, S. L.; Torgaev, A. V.

    2014-11-01

    The complex measurements of level of atmospheric turbulence are conducted by the differential measurement device of turbulence (DMT), wave-front sensor (WFS), and also by ultrasonic weather-stations. Daytime measurements of structure parameters of refractive index of atmospheric turbulence carried out on horizontal optical paths on the Base Experimental Complex (BEC) of V.E. Zuev Institute of Atmospheric Optics SB RAS (IOA). A comparative analysis over of the got results is brought.

  18. Statistical behavior of atmospheric turbulence at the Teide Observatory

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; Fuensalida, J. J.; Castro-Almazán, J. A.; Rodríguez-Hernández, M. A. C.

    2009-09-01

    The proper characterization of the turbulence structure in an astronomical site requires a statistical analysis of the refractive index structure constant, CN2(h). Our team has been monitoring this variable since November 2002 at the Teide Observatory (Tenerife, Canary Islands, Spain). We have derived the seasonal evolution of turbulence structure at this site using data from more than 150 nights of useful G-SCIDAR measurements. The monthly statistical profiles for different years present a similar structure for different years, suggesting a stable seasonal evolution of the turbulence at the Canary Islands sites. From this statistical analysis, we have derived the seasonal evolution of the Fried's parameter, the isoplanatic angle and the coherence time. The average values for these parameters are < r0 >=15.1+/-4.6 cm, <θ0 >= 2.7+/-1.3 arcsec and <τ0 >= 5.8 +/- 3.1 ms. Uncertainties indicate the standard deviation of the averaged measurements. These statistical values for atmospheric adaptive optics parameters and their smooth seasonal behavior bring up the sky quality of the Canary Islands astronomical sites for the implementation of adaptive optics systems.

  19. Fractional Order Modeling of Atmospheric Turbulence - A More Accurate Modeling Methodology for Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2014-01-01

    The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.

  20. Is 2-D turbulence relevant in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Schertzer, Daniel

    2010-05-01

    Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate. Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly

  1. Whole atmospheric-turbulence profiling with generalized scidar.

    PubMed

    Avila, R; Vernin, J; Masciadri, E

    1997-10-20

    Statistical analysis of stellar scintillation on the pupil of a telescope, known as the scidar (scintillation, detection, and ranging) technique, is sensitive only to atmospheric turbulence at altitudes higher than a few kilometers. With the generalized scidar technique, recently proposed and tested under laboratory conditions, one can overcome this limitation by analyzing the scintillation on a plane away from the pupil. We report the first experimental implementation of this technique, to our knowledge, under real atmospheric conditions as a vertical profiler of the refractive-index structure constant C (N)(2) (h). The instrument was adapted to the Nordic Optical Telescope and the William Hershel Telescope at La Palma, Canary Islands. We measure the spatial autocorrelation function of double-star scintillation for different positions of the analysis plane, finding good agreement with theoretical expectations.

  2. Two-color correlation between intensity fluctuations in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Luo, Meilan; Zhao, Daomu

    2016-06-01

    The correlation between intensity fluctuations generated by two varying wavelengths through a turbulent medium is investigated, where the influences arising from source correlation and perturbation of atmosphere are mainly emphasized. It is demonstrated that the correlation between intensity fluctuations can be enhanced or reduced by modulating the difference of two incident wavelengths. For shorter wavelength, the correlation between intensity fluctuations is stronger at the far field. In addition, in the case of single wavelength, a relationship λ1z1 =λ2z2 =λnzn holding in free space could be found, from which the distance where the peak value occurs may be inferred. However, it can be destroyed by increasing the strength of atmosphere.

  3. Is 2-D turbulence relevant in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Schertzer, Daniel

    2010-05-01

    Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate. Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly

  4. Turbulent atmospheric flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Kaul, U. K.; Frost, W.

    1976-01-01

    The phenomenon of atmospheric shear layer separation over a man-made structure such as a building (modeled as a backward-facing step) has been analyzed theoretically by (1) solving the two-dimensional equations of motion in the two variables, stream function and vorticity, and by (2) employing an approximate integral technique. Boundary conditions for the undisturbed flow are that of the turbulent atmospheric shear flow over a rough terrain. In the first approach a two-equation model of turbulence was used. In the second approach an approximate technique was utilized in an attempt to describe the details of the flow in the recirculation zone behind the step. The results predict velocity profiles in sufficient detail that the presence of the corner eddy in the region of negative surface pressure gradient is evident. The magnitude of the reversed flow velocity in the recirculation eddy has been found to agree with that found from experiments. Also, a surface eddy viscosity distribution has been an outgrowth of the method which realistically follows the magnitude of the surface pressure gradient distribution as found experimentally.

  5. Real time atmospheric turbulence compensation: implementing dedicated hardware

    NASA Astrophysics Data System (ADS)

    Linde, Peter; Astroem, Anders; Dai, Guang-Ming; Forchheimer, Robert; Ardeberg, Arne L.

    1997-03-01

    We discuss a device for real time compensation of image quality deterioration induced by atmospheric turbulence. The device will permit ground based observations with very high image resolution. We propose an instrument with two channels. One is an ordinary image detection channel, while the other uses a Hartmann-Shack wavefront detector to measure image degradation. This information is obtained in the form of a set of lenslet focus shifts, each corresponding to the local tilt of the wavefront. Through modeling, the entire wavefront is reconstructed. Consequently, we can estimate the optical transfer function and its corresponding point spread function. Through convolution techniques, the distorted image can subsequently be restored. Thus, image correction is performed in software, eliminating the need for expensive live optics designs. Due to the nature of atmospheric turbulence, detection and correction have to be made with 50 - 100 frames per second. This implies a need for very high computing capacity. A study of the mathematical operations involved has been made with special emphasis on implementation in the hardware architecture known as radar video image processor (RVIP). This hardware utilizes a high degree of parallelism. Results available show that RVIP together with complementary units provide the necessary high-speed computing capacity. The detection system in both channels must meet very high demands. We mention high quantum efficiency, fast readout at low noise levels and a wide spectral range. A preliminary investigation evaluates suitable detectors. ICCDs are so far the most promising candidates.

  6. Noise produced by turbulent flow into a rotor: Users manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Caplin, B.

    1989-01-01

    A users manual for a computer program for predicting atmospheric turbulence and mean flow and turbulence contraction as part of a noise prediction scheme for nonisotropic turbulence ingestion noise in helicopters is described. Included are descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.

  7. Analytical investigation of fan tone noise due to ingested atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ganz, U. W.

    1980-08-01

    The atmospheric turbulence involved in the fan noise generation is evaluated with an existing model for the atmospheric turbulence and an extended version of an existing model concerned with the effects of a flow contraction on convected turbulence. Fan tone noise due to ingested atmospheric turbulence is evaluated with existing fan noise models. The results indicate that the difference in fan narrowband noise due to atmospheric turbulence between static and flight landing approach conditions is in the order of 30 dB. It is concluded that fan noise due to atmospheric turbulence is insignificant in flight conditions for the fans used in the current high bypass ratio engines. The difference in fan narrowband noise between the two conditions is primarily due to the low intensity of the turbulence involved in fan noise generation in flight conditions. Fan noise due to atmospheric turbulence in static conditions should be reduced below the flight fan broadband noise levels which is best achieved with a reduction in the intensity of the fan inflow turbulence. Such a reduction can be obtained with the use of an inflow control device, low wind velocities, small surface roughness in the test stand environment, and large engine axis height above the ground. Peak sound power levels for fan tone noise due to ingested turbulence occur for transverse integral scales in the order of 25% of the rotor blade spacing in the fan tip region.

  8. Analytical investigation of fan tone noise due to ingested atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Ganz, U. W.

    1980-01-01

    The atmospheric turbulence involved in the fan noise generation is evaluated with an existing model for the atmospheric turbulence and an extended version of an existing model concerned with the effects of a flow contraction on convected turbulence. Fan tone noise due to ingested atmospheric turbulence is evaluated with existing fan noise models. The results indicate that the difference in fan narrowband noise due to atmospheric turbulence between static and flight landing approach conditions is in the order of 30 dB. It is concluded that fan noise due to atmospheric turbulence is insignificant in flight conditions for the fans used in the current high bypass ratio engines. The difference in fan narrowband noise between the two conditions is primarily due to the low intensity of the turbulence involved in fan noise generation in flight conditions. Fan noise due to atmospheric turbulence in static conditions should be reduced below the flight fan broadband noise levels which is best achieved with a reduction in the intensity of the fan inflow turbulence. Such a reduction can be obtained with the use of an inflow control device, low wind velocities, small surface roughness in the test stand environment, and large engine axis height above the ground. Peak sound power levels for fan tone noise due to ingested turbulence occur for transverse integral scales in the order of 25% of the rotor blade spacing in the fan tip region.

  9. Characteristics and analysis of a type of simulator of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yu, Xinpeng; Dan, Youquan; Xu, Luopeng

    2014-12-01

    Comparison and analysis for several usual types of atmospheric turbulence simulator are first given in this paper. Considering the Tatarskii spectrum and the conditions of laboratory, secondly, the numerical calculations of the M2 factor and the spatial and angular widths of coherent Gaussian beams in turbulence are performed. Finally, a kind of a hot-wind atmospheric turbulence generator is designed and its characteristics are analyzed. The results show that the turbulence generator is very suitable to use in studying the effects of turbulence on the M2 factor of cw laser beams. Also, the values of both the structure constant of refractive index fluctuations Cn2 and the inner scale of turbulence required by the generator are still in accordance with those of actual atmospheric turbulence.

  10. Influence of atmospheric turbulence on states of light carrying orbital angular momentum.

    PubMed

    Rodenburg, Brandon; Lavery, Martin P J; Malik, Mehul; O'Sullivan, Malcolm N; Mirhosseini, Mohammad; Robertson, David J; Padgett, Miles; Boyd, Robert W

    2012-09-01

    We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in crosstalk between OAM modes. We study this crosstalk in OAM for 11 modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.

  11. A summary of atmospheric turbulence measurements with specially-equipped aircraft in the US

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.

    1987-01-01

    The technique of measurement of atmospheric turbulence in the form of true gust velocity is summarized. Specific aspects pointed out are related to NASA programs conducted over the last 15 years. Liberal use is made of references for details. Some recommendations resulting from a Spring 1986 workshop on atmospheric turbulence are also presented.

  12. Temporal averaging of atmospheric turbulence-induced optical scintillation.

    PubMed

    Yura, H T; Beck, S M

    2015-08-24

    Based on the Rytov approximation we have developed for weak scintillation conditions a general expression for the temporal averaged variance of irradiance. The present analysis provides, for what we believe is the first time, a firm theoretical basis for the often-observed reduction of irradiance fluctuations of an optical beam due to atmospheric turbulence. Accurate elementary analytic approximations are presented here for plane, spherical and beam waves for predicting the averaging times required to obtain an arbitrary value of the ratio of the standard deviation to the mean of an optical beam propagating through an arbitrary path in the atmosphere. In particular, a novel application of differential absorption measurement for the purpose of measuring column-integrated concentrations of various so-called greenhouse gas (GHG) atmospheric components is considered where the results of our analysis indicates that relatively short averaging times, on the order of a few seconds, are required to reduce the irradiance fluctuations to a value precise enough for GHG measurements of value to climate related studies.

  13. Spanwise measurements of vertical components of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sleeper, Robert K.

    1990-01-01

    Correlation and spectrum magnitude estimates are computed for vertical gust velocity measurements at the nose and wing tips of a NASA B-57B aircraft for six level flight, low speed and low altitude runs and are compared with those of the von Karman atmospheric turbulence model extended for spanwise relationships. The distance between the wing tips was 62.6 ft. Airspeeds ranged from about 330 to 400 ft/sec, heights above the ground ranged from near ground level to about 5250 ft. and gust velocity standard deviations ranged from 4.10 to 8.86 ft/sec. Integral scale lengths, determined by matching measured autocorrelation estimates with those of the model, ranged from 410 to 2050 ft. Digital signals derived from piezoelectric sensors provided continuous pressure and airspeed measurements. Some directional acceleration sensitivity of the sensors was eliminated by sensor orientation, and their performance was spectrally verified for the higher frequencies with supplemental onboard piezoresistive sensors. The model appeared to satisfactorily predict the trends of the measured cross-correlations and cross-spectrum magnitudes, particularly between the nose and wing tips. However, the measured magnitude estimates of the cross-spectra between the wing tips exceeded the predicted levels at the higher frequencies. Causes for the additional power across the wing tips were investigated. Vertical gust velocity components evaluated along and lateral to the flight path implied that the frozen-turbulence-field assumption is a suitable approximation.

  14. Filtering effect of wind flow turbulence on atmospheric pollutant dispersion.

    PubMed

    Yassin, Mohamed F

    2012-06-01

    This paper presents a model for coupling the statistics of wind velocity distribution and atmospheric pollutant dispersion. The effect of wind velocity distribution is modeled as a three-dimensional finite-impulse response (3D-FIR) filter. A phase space representation of the 3D-FIR filter window is discussed. The resulting pollutant dispersion is the multiplication in the phase space of the 3-D Fourier transform of the pollutant concentration and the volume described by the filter window coefficients. The shape of the filter window in the phase space enables representing such effects as vortex shedding thermal currents, etc. The impact of spatial distribution of the sensors on the resulting pollutant spatial distribution and the 3-D FIR filter model employed also discuss. The case of a neutrally buoyant plume emitted from an elevated point source in a turbulent boundary layer considers. The results show that wind turbulence is an important factor in the pollutant dispersion and introduces expected random fluctuations in pollutant distribution and leads to spreading the distribution due to wind mixing.

  15. Investigation of the influence of atmospheric stability and turbulence on land-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Osibanjo, O.; Holmes, H.

    2015-12-01

    Surface energy fluxes are exchanged between the surface of the earth and the atmosphere and impact weather, climate, and air quality. The radiation from the sun triggers the surface-atmosphere interaction during the day as heat is transmitted to the surface and the surface heats the air directly above generating wind (i.e., thermal turbulence) that transports heat, moisture, and momentum in the atmospheric boundary layer (ABL). This process is impacted by greenhouse gasses (i.e., water vapor, carbon dioxide and other trace gases) that absorb heat emitted by the earth's surface. The concentrations of atmospheric greenhouse gasses are increasing leading to changes in ABL dynamics as a result of the changing surface energy balance. The ABL processes are important to characterize because they are difficult to parameterize in global and regional scale atmospheric models. Empirical data can be collected using eddy covariance micrometeorological methods to measure turbulent fluxes (e.g., sensible heat, moisture, and CO2) and quantify the exchange between the surface and the atmosphere. The objective of this work is to calculate surface fluxes using observational data collected during one week in September 2014 from a monitoring site in Echo, Oregon. The site is located in the Columbia Basin with rolling terrain, irrigated farmland, and over 100 wind turbines. The 10m tower was placed in a small valley depression to isolate nighttime cold air pools. This work will present observations of momentum, sensible heat, moisture, and carbon dioxide fluxes from data collected at a sampling frequency of 10Hz at four heights. Atmospheric stability is determined using Monin-Obukov length and flux Richardson number, and the impact of stability on surface-atmosphere exchange is investigated. This work will provide a better understanding of surface fluxes and mixing, particularly during stable ABL periods, and the results can be used to compare with numerical models.

  16. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail.

  17. Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-02-28

    The propagation of a higher-order cosh-Gaussian beam through a paraxial and real ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity, the effective beam size, and the kurtosis parameter of a higher-order cosh-Gaussian beam through a paraxial and real ABCD optical system are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a higher-order cosh-Gaussian in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere are also examined in detail.

  18. Daily Variation Analysis of Atmospheric Turbulence from Inland to Open Sea

    NASA Astrophysics Data System (ADS)

    Shao, S. Y.; Li, X. B.; Li, Y. J.; Zhu, W. Y.; Kang, D. Y.; Fan, C. Y.; Weng, N. Q.

    2016-02-01

    Random fluctuation of turbulence brings random fluctuation of refractive index, which makes atmosphere become a random fluctuation medium and destroys the coherence of light wave especially laser transferring in it. Exploration of atmospheric turbulence is essentially investigation of atmospheric refractive index. The atmospheric structure constant of refractive index is a basic parameter of expressing atmospheric turbulence, and was measured using HTP-2 micro-thermal meter at different areas from inland to open sea. It is analysed that the relation of atmospheric structure constant of refractive index with corresponding temperature and wind speed. The conclusion of turbulence and main influencing factors is to deepen the research in atmospheric optical transmission, and to provide data support for the siting of ship board photoelectric systems.

  19. Energy extraction from atmospheric turbulence to improve flight vehicle performance

    NASA Astrophysics Data System (ADS)

    Patel, Chinmay Karsandas

    Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed

  20. Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty

    NASA Astrophysics Data System (ADS)

    BozorgMagham, Amir E.; Ross, Shane D.

    2015-05-01

    To obtain more realistic approximations of atmospheric Lagrangian coherent structures, the material surfaces which form a template for the Lagrangian transport, two concepts are considered. First, the effect of unresolved turbulent motion due to finite spatiotemporal resolution of velocity field data is studied and the resulting qualitative changes on the FTLE field and LCSs are observed. Stochastic simulations show that these changes depend on the probabilistic distribution of position of released virtual particles after backward or forward time integration. We find that even with diffusion included, the LCSs play a role in structuring and bifurcating the probability distribution. Second, the uncertainty of the forecast FTLE fields is analyzed using ensemble forecasting. Unavoidable errors of the forecast velocity data due to the chaotic dynamics of the atmosphere is the salient reason for errors of the flow maps from which the FTLE fields are determined. The common practice for uncertainty analysis is to apply ensemble forecasting and here this approach is extended to FTLE field calculations. Previous work has shown an association between LCS passage and fluctuations in microbial populations and we find that ensemble FTLE forecasts are sufficient to predict such passages one day ahead of time with an accuracy of about 2 h.

  1. Influence of atmospheric turbulence on optical measurement: a case report and review of literature

    NASA Astrophysics Data System (ADS)

    Yao, Linshen; Shang, Yang; Fu, Dan

    2016-01-01

    When videogammetry (optical measurement) was carried outdoor or under cruel indoor circumstance, the results would be inevitably affected by the atmosphere turbulence. As a result, the precision of surveying was destroyed. The field of air turbulence's impact on optical measurement was neglected by scholars for a long time, the achievements massed about laser optics and optical communications. The mostly adapted method was noise filtration when the pixel wandering could not be rejected in engineering application, which got little improvement on usual conditions. The principle of influence under atmospheric turbulence on optical measurement is presented in this paper. And experiments data and applications are carried out to announce the impact of atmospheric turbulence. Combining with relevant researches, some essential issues and expectations of the atmospheric turbulence research are proposed.

  2. Influence of atmospheric turbulence on OAM-based FSO system with use of realistic link model

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Zhongyuan; Cvijetic, Milorad

    2016-04-01

    We study the influence of atmospheric turbulence on OAM-based free-space optical (FSO) communication by using the Pump turbulence spectrum model which accurately characterizes the realistic FSO link. A comprehensive comparison is made between the Pump and Kolmogorov spectrum models with respect to the turbulence impact. The calculated results show that obtained turbulence-induced crosstalk is lower, which means that a higher channel capacity is projected when the realistic Pump spectrum is used instead of the Kolmogorov spectrum. We believe that our results prove that performance of practical OAM-based FSO is better than one predicted by using the original Kolmogorov turbulence model.

  3. Characters analysis of the atmospheric turbulence vertical distribution profile over desert

    NASA Astrophysics Data System (ADS)

    Hu, Yuehong; Wang, Ke; Zhang, Zhi-gang; Feng, Shuang-lian; Wu, Ming

    2012-10-01

    The atmospheric refractive index structure constant is an important parameter of atmospheric turbulence intensity. It was measured using AZZ10 micro-thermalmeter over desert where is a little or no vegetation cover. The vertical profile were investigated by analysis of experimental data over desert with 0~30km height range. And structure characteristics of atmospheric turbulence were given. Results can supply technological support for laser engineering applications to select suitable testing time and time-interval.

  4. Effect of turbulence on the spectral switches of diffracted spatially and spectrally partially coherent pulsed beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ding, Chaoliang; Pan, Liuzhan; Lü, Baida

    2009-10-01

    Taking the spectrally partially coherent Gaussian Schell-model pulsed (GSMP) beam as a typical example of spatially and spectrally partially coherent pulsed beams, an analytical expression for the spectrum of diffracted spectrally partially coherent GSMP beams propagating through atmospheric turbulence is derived by using the method of the complex Gaussian function expansion, and used to study the spectral switches of spectrally partially coherent GSMP beams in atmospheric turbulence. Numerical calculation results are given to illustrate the dependence of spectral switches on the refraction index structure constant and temporal coherent length. The results are interpreted physically.

  5. Current status and challenges in optical turbulence simulations in various layers of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    He, Ping; Nunalee, Christopher G.; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    In this study, we present a brief review on the existing approaches for optical turbulence estimation in various layers of the Earth's atmosphere. The advantages and disadvantages of these approaches are also discussed. An alternative approach, based on mesoscale modeling with parameterized turbulence, is proposed and tested for the simulation of refractive index structure parameter (C2n ) in the atmospheric boundary layer. The impacts of a few atmospheric flow phenomena (e.g., low-level jets, island wake vortices, gravity waves) on optical turbulence are discussed. Consideration of diverse geographic settings (e.g., flat terrain, coastal region, ocean islands) makes this study distinct.

  6. Atmospheric turbulence power spectral measurements to long wavelengths for several meteorological conditions

    NASA Technical Reports Server (NTRS)

    Rhyne, R. H.; Murrow, H. N.; Sidwell, K.

    1976-01-01

    Use of power spectral design techniques for supersonic transports requires accurate definition of atmospheric turbulence in the long wavelength region below the knee of the power spectral density function curve. Examples are given of data obtained from a current turbulence flight sampling program. These samples are categorized as (1) convective, (2) wind shear, (3) rotor, and (4) mountain-wave turbulence. Time histories, altitudes, root-mean-square values, statistical degrees of freedom, power spectra, and integral scale values are shown and discussed.

  7. Why turbulence dominates the atmosphere and hydrosphere? (Alfred Wegener Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    It is widely recognised that in very stable stratifications, at Richardson numbers (Ri) exceeding the critical value Ric ~ 0.25, turbulence inevitably decays and the flow becomes laminar. This is so, indeed, in the low-Reynolds-number (Re) flows, e.g., in some laboratory experiments; but this is by no means always the case. Air flows in the free atmosphere and water currents in deep ocean are almost always turbulent in spite of the strongly supercritical stratifications, with typical values of Ri varying in the interval 10 < Ri < 102. Until recently, this paradox has remained unexplained. We demonstrate that the key mechanism of the seemingly paradoxical self-preservation of the very-high-Re geophysical turbulence as a loop including (i) conversion of the turbulent kinetic unto potential energy and (ii) self-control of the negative (down-gradient) turbulent heat flux through efficient generation of the positive (counter-gradient) heat transfer by the turbulent potential energy (Zilitinkevich et al., 2007, 2008, 2009, 2013). Thanks to this loop, turbulence is maintained in supercritical stratifications and, moreover, at Ri > Ric the familiar 'strong-mixing turbulence' regime, typical of boundary-layer flows and characterised by the practically invariable turbulent Prandtl number PrT ~ 1 (the so-called 'Reynolds analogy'), gives way to a previously unknown 'wave-like turbulence' regime, wherein PrT sharply increases with increasing Ri (rather than to the laminar regime as is often the case in lab experiments). It is precisely the wave-like turbulence that dominates the free flows in the atmosphere and ocean. Modellers have long been aware that the turbulent heat transfer in the free atmosphere/ocean is much weaker than the momentum transfer. Our theory gives authentic formulation for this heuristic rule and provides physically grounded method for modelling geophysical turbulence up to very stable startifications.

  8. An Analysis of Low-Frequency Maritime Atmospheric Turbulence.

    NASA Astrophysics Data System (ADS)

    Gjerstad, Johannes; Aasen, Svein Erik; Andersson, Helge I.; Brevik, Iver; Løvseth, Jørgen

    1995-08-01

    New data are presented for the spectrum of turbulent wind energy under maritime conditions in the frequency region 1.0-0.03 mHz. The corresponding measurements were made at five levels on a mast 46 m high on a small islet off the coast of central Norway. Twelve time series of length 10 h 40 min have been analyzed. The mean wind speeds of the series are in the range 11-19 m s1, and the wind directions are westerly, which have maritime conditions upwind.Four of the time series were characterized by unstable atmospheric conditions (mean lapse rate T/z in the range 12-20 K/km) and show little or no indication of a spectral gap for heights above 40 m. Four other lime series with stable to neutral conditions (mean lapse rate 3-7 K/km) do show a gap in the wind speed spectra around 0.5 mHz, in agreement with the Kansas (1972) and Minnesota (1978) experiments. The remaining series, with lapse rates fluctuating around the neutral value of 9.8 K/km, show intermediate behavior.The temperature spectra at 45-m height do not show a gap even for stable to neutral conditions.

  9. Analysis of atmospheric turbulence in the upper layers of sea fog

    NASA Astrophysics Data System (ADS)

    Li, Yongping; Zheng, Yunxia

    2015-05-01

    Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However, studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus, the turbulence characteristics of upper fog layers are poorly known. In this paper, we present 4-layers of data, measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy, momentum flux, and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset, high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold, it was crucial to enhancing the cooling rate, and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode, the vertical distribution of sensible heat flux reversed, contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog, than during the fog episode. Turbulence energy was greatest in upper levels, around 430 m and 450 m above mean sea level (AMSL), than in lower levels of the fog (390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer, affecting the underlying fog by decreasing or increasing average wind speed, as well as promoting or demoting air temperature stratification.

  10. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence.

    PubMed

    Zhu, Kaicheng; Li, Shaoxin; Tang, Ying; Yu, Yan; Tang, Huiqin

    2012-03-01

    Based on the integral representation of Bessel function and the extended Huygens-Fresnel principle, an integral expression of the Wigner distribution function (WDF) for partially coherent Bessel-Gaussian beams (PBGBs) propagating through turbulent atmosphere has been obtained. Also, the analytical formulas of the M2-factor for PBGB propagation in such a medium have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The performed numerical results reveal that the M2-factor of a PBGB in turbulent atmosphere depends on the beam parameters of the initial input beam, the structure constants of the turbulent atmosphere, and the propagation distance. These results may be useful in long-distance optical communications in free space or in turbulent atmosphere.

  11. Study on the characteristics of different infrared transmission in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Jing-yuan; Xu, Zhi-yong; Chang, Shuai; Zhao, Ji-yong; Chen, Yi-wang; Wang, Rong; Wei, Yi-mei

    2015-10-01

    It is known theoretically that the long wavelength infrared has better performance when transmitting in atmospheric turbulence. In order to evaluate the influence of the atmospheric turbulence quantificationally, the characteristics of different infrareds transmission in atmospheric turbulence are simulated and studied. A series of time relevant phase screens of atmospheric turbulence are simulated based on Fourier transform method proposed by McGlamery. Wind speed and direction are introduced in the meantime. Wavefront distortion, image spot dancing and spreading, receive loss of different wavelengths (0.85μm, 3.6μm, 10.6μm) are simulated respectively and compared to each other. The results show that the performances of long wavelength infrared (10.6μm) are the best, mid wavelength infrared (3.6μm) takes the second place and short wavelength infrared (0.85μm) is the worst.

  12. Laser beam scintillation beyond the turbulent atmosphere A numerical computation

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Taylor, L. S.

    1976-01-01

    The extended Huygens-Fresnel formulation for propagation through turbulence is used to examine scintillation of a finite laser beam. The method is demonstrated analytically for propagation beyond a weak Gaussian phase screen. A numerical integration technique is used to extend the results to a more realistic turbulence model. Results are compared with existing Gaussian beam propagation theory.

  13. Theory and modeling of atmospheric turbulence, part 2

    NASA Technical Reports Server (NTRS)

    Chen, C. M.

    1984-01-01

    Two dimensional geostrophic turbulence driven by a random force is investigated. Based on the Liouville equation, which simulates the primitive hydrodynamical equations, a group-kinetic theory of turbulence is developed and the kinetic equation of the scaled singlet distribution is derived. The kinetic equation is transformed into an equation of spectral balance in the equilibrium and non-equilibrium states. Comparison is made between the propagators and the Green's functions in the case of the non-asymptotic quasi-linear equation to prove the equivalence of both kinds of approximations used to describe perturbed trajectories of plasma turbulence. The microdynamical state of fluid turbulence is described by a hydrodynamical system and transformed into a master equation analogous to the Vlasov equation for plasma turbulence. The spectral balance for the velocity fluctuations of individual components shows that the scaled pressure strain correlation and the cascade transfer are two transport functions that play the most important roles.

  14. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.

    PubMed

    Nelson, D H; Walters, D L; Mackerrow, E P; Schmitt, M J; Quick, C R; Porch, W M; Petrin, R R

    2000-04-20

    Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level. PMID:18345082

  15. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} lidar

    SciTech Connect

    Nelson, Douglas H.; MacKerrow, Edward P.

    2000-04-20

    Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO{sub 2} lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level. (c) 2000 Optical Society of America.

  16. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.

    PubMed

    Nelson, D H; Walters, D L; Mackerrow, E P; Schmitt, M J; Quick, C R; Porch, W M; Petrin, R R

    2000-04-20

    Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.

  17. Intensity and effective beam width of partially coherent Laguerre-Gaussian beams through a turbulent atmosphere.

    PubMed

    Xu, Yonggen; Li, Yude; Zhao, Xile

    2015-09-01

    Propagation properties of partially coherent elegant Laguerre-Gaussian beam (PC-eLGB) and partially coherent standard Laguerre-Gaussian beam (PC-sLGB) through the turbulent atmosphere are studied. Analytical formulas for the intensity and effective beam width (EBW) of the PC-eLGB and PC-sLGB through the turbulent atmosphere are derived based on the extended Huygens-Fresnel principle. The propagation properties of PC-eLGB and PC-sLGB through the turbulent atmosphere are studied numerically and comparatively. It is shown that the intensities of the PC-eLGB and PC-sLGB are less affected by the turbulent atmosphere than the fully coherent Laguerre-Gaussian beam. The spreading (EBW and divergent angle of the far field) of PC-eLGB and PC-sLGB with the different mode orders (m,n) is slower in the free space than in the turbulent atmosphere, and the PC-sLGB spreads more rapidly than the PC-eLGB through the free space and the turbulent atmosphere. The study results will be useful for free space optical communications.

  18. The Aggregate behavior of branch points--measuring the number and velocity of atmospheric turbulence layers.

    PubMed

    Oesch, Denis W; Sanchez, Darryl J; Matson, Charles L

    2010-10-11

    Optical waves propagating through atmospheric turbulence develop spatial and temporal variations in their phase. For sufficiently strong turbulence, these phase differences can lead to interference in the propagating wave and the formation of branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, we show that these branch points can be used to estimate the number and velocities of atmospheric layers. We describe how to carry out this estimation process and demonstrate its robustness in the presence of sensor noise.

  19. Effect of turbulent atmosphere on the on-axis average intensity of Pearcey–Gaussian beam

    NASA Astrophysics Data System (ADS)

    F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal

    2016-06-01

    The propagation characteristics of the Pearcey–Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens–Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.

  20. Evolution of phase singularities of vortex beams propagating in atmospheric turbulence.

    PubMed

    Ge, Xiao-Lu; Wang, Ben-Yi; Guo, Cheng-Shan

    2015-05-01

    Optical vortex beams propagating through atmospheric turbulence are studied by numerical modeling, and the phase singularities of the vortices existing in the turbulence-distorted beams are calculated. It is found that the algebraic sum of topological charges (TCs) of all the phase singularities existing in test aperture is approximately equal to the TC of the input vortex beam. This property provides us a possible approach for determining the TC of the vortex beam propagating through the atmospheric turbulence, which could have potential application in optical communication using optical vortices.

  1. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere.

    PubMed

    Pors, Bart-Jan; Monken, C H; Eliel, Eric R; Woerdman, J P

    2011-03-28

    We demonstrate experimentally how orbital-angular-momentum entanglement of two photons evolves under the influence of atmospheric turbulence. Experimental results are in excellent agreement with our theoretical model, which combines the formalism of two-photon coincidence detection with a Kolmogorov description of atmospheric turbulence. We express the robustness to turbulence in terms of the dimensionality of the measured correlations. This dimensionality is surprisingly robust: scaling up our system to real-life dimensions, a horizontal propagation distance of 2 km seems viable.

  2. Turbulence strength estimation from an arbitrary set of atmospherically degraded images.

    PubMed

    Zamek, Steve; Yitzhaky, Yitzhak

    2006-12-01

    In remote sensing, atmospheric turbulence and aerosols usually limit the image quality. For many practical cases, turbulence is shown to be dominant, especially for horizontal close-to-earth imaging in hot environments. In a horizontal long-range imaging, it is usually impractical to calculate path-averaged refractive index structure constant C(2)(n) (which characterizes the turbulence strength) with conventional equipment. We propose a method for estimating C(2)(n) from the available atmospherically degraded video sequence by calculating temporal intensity fluctuations in spatially high variance areas. Experimental comparison with C(2)(n) measurements using a scintillometer shows reliable estimation results.

  3. Stellar occultations by turbulent planetary atmospheres. I - A heuristic scattering model. II - The Beta Scorpii events

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Jokipii, J. R.

    1977-01-01

    Effects of atmospheric turbulence on stellar-occultation inversion procedures are investigated using a heuristic scattering model that is believed to reproduce the essential features of turbulence. A quantitative estimate is made of the size of the error in deducing the mean refractivity profile of a planetary atmosphere, taking into account constant as well as exponential scattering. It is shown that ordinary turbulence has no important effect on the average intensity profile in a stellar occultation but could have an important instantaneous effect. A critical examination of possible manifestations of turbulent scattering during occultations of Beta Sco by Jupiter indicates that all observed phenomena during these events can be understood in terms of scintillations produced by turbulence.

  4. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence.

    PubMed

    Ren, Yongxiong; Xie, Guodong; Huang, Hao; Bao, Changjing; Yan, Yan; Ahmed, Nisar; Lavery, Martin P J; Erkmen, Baris I; Dolinar, Samuel; Tur, Moshe; Neifeld, Mark A; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E

    2014-05-15

    We propose an adaptive optics compensation scheme to simultaneously compensate multiple orbital angular momentum (OAM) beams propagating through atmospheric turbulence. A Gaussian beam on one polarization is used to probe the turbulence-induced wavefront distortions and derive the correction pattern for compensating the OAM beams on the orthogonal polarization. By using this scheme, we experimentally demonstrate simultaneous compensation of multiple OAM beams, each carrying a 100  Gbit/s data channel through emulated atmospheric turbulence. The experimental results indicate that the correction pattern obtained from the Gaussian probe beam could be used to simultaneously compensate multiple turbulence-distorted OAM beams with different orders. It is found that the turbulence-induced crosstalk effects on neighboring modes are efficiently reduced by 12.5 dB, and the system power penalty is improved by 11 dB after compensation.

  5. Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.

    PubMed

    Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan

    2014-03-24

    Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.

  6. The performance of heterodyne detection system for partially coherent beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chengqiang, Li; Tingfeng, Wang; Heyong, Zhang; Jingjiang, Xie; Lisheng, Liu; Shuai, Zhao; Jin, Guo

    2015-12-01

    The performance of heterodyne system is discussed for partially coherent beams in turbulent atmosphere by introducing turbulence spectrum of refractive-index fluctuations. Several analytic formulae for the heterodyne detection system using the partially coherent Gaussian Schell-model beam are presented. Based on Tatarskii spectrum model, some numerical results are given for the variation in the heterodyne efficiency with the misalignment angle, detector diameter, turbulence conditions, and parameters of the overlapping beams. According to the numerical results, we find that the turbulent atmosphere degrades the heterodyne efficiency significantly, and the variation in heterodyne efficiency is even slower against the misalignment angle in turbulence. For the deterministic received signal and the detector, the performance of the heterodyne detection can be adjusted by controlling the local oscillator signal parameters.

  7. Characterization of temporal pulse broadening for horizontal propagation in strong anisotropic atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Ren, Bin; Li, Yanfang

    2015-02-23

    The on-axis two-frequency mutual coherence function (MCF) for beam waves propagating along a horizontal path in strong anisotropic atmospheric turbulence is theoretically formulated by making use of the extended Huygens-Fresnel principle. Based on this formulation, a new closed-form expression for the mean square temporal width of Gaussian-beam-wave pulses passing horizontally through strong anisotropic atmospheric turbulence is developed. With the help of this expression, the increments of mean square temporal pulse width due to strong anisotropic atmospheric turbulence under various conditions are further calculated. Results show that the increment of mean square temporal pulse width due to strong anisotropic atmospheric turbulence is basically proportional to the effective anisotropic factor in most situations of interest, with the possible exception of cases in which both the Fresnel ratio and spectral index become relatively small; increasing the effective anisotropic factor can reduce the number of the said exceptions; the turbulence-induced increment of mean square temporal pulse width enlarges as the spectral index increases with a fixed value of the nondimensional turbulence-strength parameter. It is also illustrated that a significant enlargement in the turbulence-induced increment of mean square temporal pulse width occurs by changing the Fresnel ratio from a large to a tiny value if both the effective anisotropic factor and spectral index are relatively small.

  8. Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams.

    PubMed

    Li, Jinhong; Wang, Weiwei; Duan, Meiling; Wei, Jinlin

    2016-09-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function (WDF), the analytical expressions for the propagation factors (M2-factors) and Strehl ratio SR of the Gaussian Schell-model (GSM) vortex beams and GSM non-vortex beams propagation through non-Kolmogorov atmospheric turbulence are derived, and used to study the influence of non-Kolmogorov atmospheric turbulence on beam quality of the GSM vortex beams. It is shown that the smaller the generalized structure constant and the outer scale of turbulence are, and the bigger the inner scale of turbulence is, the smaller the normalized propagation factor is, the bigger the Strehl ratio is, and the better the beam quality of GSM vortex beams in atmospheric turbulence is. The variation of beam quality with the generalized exponent α is nonmonotonic, when α = 3.11, the beam quality of the GSM vortex beams is the poorest through non-Kolmogorov atmospheric turbulence. GSM vortex beams is less affected by turbulence than GSM non-vortex beams under certain condition, and will be useful in long-distance free-space optical communications.

  9. Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams.

    PubMed

    Li, Jinhong; Wang, Weiwei; Duan, Meiling; Wei, Jinlin

    2016-09-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function (WDF), the analytical expressions for the propagation factors (M2-factors) and Strehl ratio SR of the Gaussian Schell-model (GSM) vortex beams and GSM non-vortex beams propagation through non-Kolmogorov atmospheric turbulence are derived, and used to study the influence of non-Kolmogorov atmospheric turbulence on beam quality of the GSM vortex beams. It is shown that the smaller the generalized structure constant and the outer scale of turbulence are, and the bigger the inner scale of turbulence is, the smaller the normalized propagation factor is, the bigger the Strehl ratio is, and the better the beam quality of GSM vortex beams in atmospheric turbulence is. The variation of beam quality with the generalized exponent α is nonmonotonic, when α = 3.11, the beam quality of the GSM vortex beams is the poorest through non-Kolmogorov atmospheric turbulence. GSM vortex beams is less affected by turbulence than GSM non-vortex beams under certain condition, and will be useful in long-distance free-space optical communications. PMID:27607647

  10. Comparison and analysis of atmospheric optical turbulence in coast and over sea

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wu, Xiaoqing; Yang, Yiping

    2016-01-01

    Observation of meteorological parameters in coast and over sea surface layer will be conducive to understand the interaction between ocean and atmosphere, as well as the mechanism that ocean impacts on climate. Compared with the coast, it is more difficult to measure the atmospheric optical turbulence over sea, which includes measurement error caused by the instability of observation platform, instrument damage caused by poor environment and accuracy of measurement caused by the known and unknown factors, and so on. Conventional meteorological parameters and atmospheric optical turbulence in coast and over sea were observed by instruments equipped on the Marine Meteorological Science Experiment Base at Bohe and characteristics of atmospheric optical turbulence in this region were analyzed. By using temperature, humidity and wind speed, the atmospheric refractive-index structure constant in coast were estimated, and then compared with measured values, which verified the feasibility of this method.

  11. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint

    SciTech Connect

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2011-12-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  12. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Haugstad, B. S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements.

  13. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere.

    PubMed

    Chen, Rong; Liu, Lin; Zhu, Shijun; Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-01-27

    Laguerre-Gaussian Schell-model (LGSM) beam was proposed in theory [Opt. Lett.38, 91 (2013 Opt. Lett.38, 1814 (2013)] just recently. In this paper, we study the propagation of a LGSM beam in turbulent atmosphere. Analytical expressions for the cross-spectral density and the second-order moments of the Wigner distribution function of a LGSM beam in turbulent atmosphere are derived. The statistical properties, such as the degree of coherence and the propagation factor, of a LGSM beam in turbulent atmosphere are studied in detail. It is found that a LGSM beam with larger mode order n is less affected by turbulence than a LGSM beam with smaller mode order n or a GSM beam under certain condition, which will be useful in free-space optical communications.

  14. Theory and modeling of atmospheric turbulence, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.

  15. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio

    1990-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  16. Daytime turbulent exchange between the Amazon forest and the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.; Cabral, Osvaldo M. R.; Scolar, Jose; Manzi, Antonio O.; Deabreusa, Leonardo D.

    1989-01-01

    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain.

  17. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  18. Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence.

    PubMed

    Cui, Lin-yan; Xue, Bin-dang; Cao, Xiao-guang; Dong, Jian-kang; Wang, Jie-ning

    2010-09-27

    A generalized exponential spectrum model is derived, which considers finite turbulence inner and outer scales and has a general spectral power law value between the range 3 to 5 instead of standard power law value 11/3. Based on this generalized spectrum model, a new generalized long exposure turbulence modulation transfer function (MTF) is obtained for optical plane and spherical wave propagating through horizontal path in weak fluctuation turbulence. When the inner scale and outer scale are set to zero and infinite, respectively, the new generalized MTF is reduced to the classical generalized MTF derived from the non-Kolmogorov spectrum.

  19. Influence of atmospheric turbulence on the properties of specular and antispecular beams.

    PubMed

    Zhou, Zhaotao; Guo, Mengwen; Zhao, Daomu

    2016-08-20

    A class of optical fields with specular or antispecular properties can be generated by a Gaussian Schell-model beam passing through a wavefront-folding interferometer. Based on the generalized diffraction integral formula, an analytical expression for the cross-spectral density function of such fields propagating through non-Kolmogorov atmospheric turbulence is derived. It is revealed that the specular and antispecular properties of the beams always maintain during propagation in free space. However, the specularity and antispecularity properties of the beams become different in atmosphere, since they are quickly destroyed by the atmospheric turbulence.

  20. Influence of atmospheric turbulence on the properties of specular and antispecular beams.

    PubMed

    Zhou, Zhaotao; Guo, Mengwen; Zhao, Daomu

    2016-08-20

    A class of optical fields with specular or antispecular properties can be generated by a Gaussian Schell-model beam passing through a wavefront-folding interferometer. Based on the generalized diffraction integral formula, an analytical expression for the cross-spectral density function of such fields propagating through non-Kolmogorov atmospheric turbulence is derived. It is revealed that the specular and antispecular properties of the beams always maintain during propagation in free space. However, the specularity and antispecularity properties of the beams become different in atmosphere, since they are quickly destroyed by the atmospheric turbulence. PMID:27557000

  1. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.

    PubMed

    Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong

    2012-10-20

    The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.

  2. Analysis of low altitude atmospheric turbulence data measured in flight

    NASA Technical Reports Server (NTRS)

    Ganzer, V. M.; Joppa, R. G.; Vanderwees, G.

    1977-01-01

    All three components of turbulence were measured simultaneously in flight at each wing tip of a Beech D-18 aircraft. The flights were conducted at low altitude, 30.5 - 61.0 meters (100-200 ft.), over water in the presence of wind driven turbulence. Statistical properties of flight measured turbulence were compared with Gaussian and non-Gaussian turbulence models. Spatial characteristics of the turbulence were analyzed using the data from flight perpendicular and parallel to the wind. The probability density distributions of the vertical gusts show distinctly non-Gaussian characteristics. The distributions of the longitudinal and lateral gusts are generally Gaussian. The power spectra compare in the inertial subrange at some points better with the Dryden spectrum, while at other points the von Karman spectrum is a better approximation. In the low frequency range the data show peaks or dips in the power spectral density. The cross between vertical gusts in the direction of the mean wind were compared with a matched non-Gaussian model. The real component of the cross spectrum is in general close to the non-Gaussian model. The imaginary component, however, indicated a larger phase shift between these two gust components than was found in previous research.

  3. Diffusion of Sound Waves in a Turbulent Atmosphere

    NASA Technical Reports Server (NTRS)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  4. Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere.

    PubMed

    Banakh, Viktor A; Gerasimova, Liliya O

    2016-08-22

    Turbulent fluctuations of the energy density of broadband pulsed Laguerre-Gaussian beams are studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It is shown that in the regime of strong scintillations, the relative variance of energy density of the pulsed beams can take values smaller than unity, in contrast to the strong scintillation index of the continuous-wave beams, which tends to unity with increasing the turbulence strength. The level of residual spatial correlation of the energy density of pulsed beams exceeds that for the continuous-wave beams. It increases with shortening of the pulse duration and increasing of the refractive turbulence strength. PMID:27557206

  5. Modelling atmospheric turbulence effects on ground-based telescope systems

    SciTech Connect

    Bradford, L.W.; Flatte, S.M.; Max, C.E.

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  6. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.

    PubMed

    Lukin, Igor P

    2016-04-20

    The orbital angular momentum of vortex Bessel-Gaussian beams propagating in turbulent atmosphere is studied theoretically. The field of an optical beam is determined through the solution of the paraxial wave equation for a randomly inhomogeneous medium with fluctuations of the refraction index of the turbulent atmosphere. Peculiarities in the behavior of the total power of the vortex Bessel-Gaussian beam at the receiver (or transmitter) are examined. The dependence of the total power of the vortex Bessel-Gaussian beam on optical beam parameters, namely, the transverse wave number of optical radiation, amplitude factor radius, and, especially, topological charge of the optical beam, is analyzed in detail. It turns out that the mean value of the orbital angular momentum of the vortex Bessel-Gaussian beam remains constant during propagation in the turbulent atmosphere. It is shown that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam propagating in turbulent atmosphere calculated with the "mean-intensity" approximation is equal to zero identically. Thus, it is possible to declare confidently that the variance of fluctuations of the orbital angular momentum of the vortex Bessel-Gaussian beam in turbulent atmosphere is not very large.

  7. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  8. Note: A balloon-borne accelerometer technique for measuring atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Marlton, Graeme J.; Giles Harrison, R.; Nicoll, Keri A.; Williams, Paul D.

    2015-01-01

    A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s-2. Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10-3 and 10-2 m2 s-3 to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.

  9. Note: A balloon-borne accelerometer technique for measuring atmospheric turbulence.

    PubMed

    Marlton, Graeme J; Harrison, R Giles; Nicoll, Keri A; Williams, Paul D

    2015-01-01

    A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s(-2). Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10(-3) and 10(-2) m(2) s(-3) to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.

  10. Propagation of spectral Stokes singularities of stochastic electromagnetic beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lü, B.

    2010-06-01

    The propagation of spectral Stokes singularities (vortices) of stochastic electromagnetic vortex beams through atmospheric turbulence is studied, where the electromagnetic Gaussian Schell-model (GSM) vortex beam is taken as an illustrative example. It is shown that the spectral Stokes vortices S 12 ( C-points), S 23 and S 31 introduced to describe the polarization singularities of stochastic electromagnetic beams appear in turbulence. The motion, creation, annihilation and polarization changes of S 12, S 23 and S 31 vortices, as well as the handedness inversion of S 12 vortices may appear as the propagation distance or one beam parameter varies. In the process the topological relationship holds true. In comparison with the free-space propagation, the variation of the refractive index structure constant Cn2 in atmospheric turbulence results in similar effects as above. The dependence of S 12, S 23 and S 31 vortices on the propagation distance and beam and turbulence parameters are illustrated by numerical examples.

  11. A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Optical Turbulence

    NASA Astrophysics Data System (ADS)

    Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.

    2010-01-01

    The Measurement Astrophysics group at UNM designed and built a novel microthermal device for characterizing atmospheric optical turbulence at astronomical observatories. This instrument is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors. The device makes differential temperature measurements which are directly related to the index of refraction structure constant, Cn2, which quantifies the strength of optical turbulence. The device is designed to work in two modes. In horizontal mode temperature differentials are measured between adjacent sensors. Measurements are combined to recover the differences over all pairwise sensor baselines. These measurements result in a spatial spectrum of turbulence. Measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. In vertical mode the device operates with pairs of microthermal sensors distributed vertically, each pair being separated horizontally by approximately one meter. Sensor pairs are suspended at multiple heights above the ground allowing measurement of atmospheric turbulence power as a function of altitude. This device was used to monitor optical turbulence during a site testing campaign at the future LSST site on Cerro Pachón. We present preliminary results from operation in both vertical and horizontal modes from October 2008 to December 2009. The microthermal array remains in operation on Cerro Pachón, and continues to produce valuable atmospheric measurements. Our results support the conclusion that Cerro Pachón is an excellent observatory site. The vertical turbulence profile decreases monotonically with height as expected, and the surface layer does not contribute a significant amount to the overall seeing measured at the site. This work was supported by Air Force Grant No. FA9451-04-2-0355. Instrumentation and travel support was provided in part by

  12. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  13. Enhancement of backscattered intensity for a bistatic lidar operating in atmospheric turbulence.

    PubMed

    Holmes, J F

    1991-06-20

    The extended Huygens-Fresnel formulation is used to calculate the enhanced backscattered intensity as a function of the off-axis receiver distance for a bistatic lidar operating in atmospheric turbulence. The result is simple and compact and allows the regime where there is significant enhancement to be readily identified. In addition, the result depends only on the logamplitude covariance, which implies that the enhancement is due to incoherent turbulence perturbation effects. PMID:20700254

  14. The nature of large-scale turbulence in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.

    1982-01-01

    The energetics and spectral characteristis of quasi-geostrophic turbulence in Jupiter's atmosphere are examined using sequences of Voyager images and infrared temperature soundings. Using global wind measurements momentum transports associated with zonally symmetric stresses and turbulent stresses are quantified. Though a strong up-gradient flux of momentum by eddies was observed, measurements do not preclude the possibility that symmetric stresses play a critical role in maintaining the mean zonal circulation. Strong correlation between the observed meridional distribution of eddy-scale kinetic energy and available potential energy suggests coupling between the observed cloudtop turbulent motions and the upper tropospheric thermodynamics. An Oort energy budget for Jupiter's upper troposphere is formulated.

  15. New Methods for Applying Statistical State Dynamics to Problems in Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Farrell, B.; Ioannou, P. J.

    2015-12-01

    Adopting the perspective of statistical state dynamics (SSD) has led to a number of recent advances inunderstanding and simulating atmospheric turbulence at both boundary layer and planetary scale. Traditionally, realizations have been used to study turbulence and if a statistical quantity was needed it was obtained by averaging. However, it is now becomimg more widely appreciated that there are important advantages to studying the statistical state dynamics (SSD) directly. In turbulent systems statistical quantities are often the most useful and the advantage of obtaining these quantities directly as state variables is obvious. Moreover, quantities such as the probability density function (pdf) are often difficult to obtain accurately by sampling state trajectories. In the event that the pdf is itself time dependent or even chaotic, as is the case in the turbulence of the planetary boundary layer, the pdf can only be obtained as a state variable. However, perhaps the greatest advantage of the SSD approach is that it reveals directly the essential cooperative mechanisms of interaction among spatial and temporal scales that underly the turbulent state. In order to exploit these advantages of the SSD approach to geophysical turbulence, new analytical and computational methods are being developed. Example problems in atmospheric turbulence will be presented in which these new SSD analysis and computational methods are used.

  16. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  17. Numerical simulation research on sodium laser beacon imagings through the atmosphere turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Xiangyuan; Qian, Xianmei; Zhang, Suimeng; Zhao, Minfu; Cui, Chaolong; Huang, Honghua

    2016-01-01

    Based on the relative intensity distributions of Sodium Laser Beacon (SLB) and analysis of the on-axis imaging of incoherent light, considering the effects of atmospheric turbulence and the changes of telescope receiving diameter on the short-exposure SLB imagings on the focal plane, imagings of an extended source SLB are simulated under the three atmospheric turbulence models. Results indicate that sharpness and peak strehl ratio of SLB imagings increase but sharpness radius decrease with the decrease of atmosphere turbulence strengths. Moreover, the changes of telescope diameter from 3.0m to 1.5m cause the decrease of sharpness and peak strehl ratio but the increase of sharpness radius.

  18. Influence of Turbulent Atmosphere on Polarization Properties of Stochastic Electromagnetic Pulsed Beams

    NASA Astrophysics Data System (ADS)

    Ding, Chao-Liang; Zhao, Zhi-Guo; Li, Xiao-Feng; Pan, Liu-Zhan; Yuan, Xiao

    2011-02-01

    Using the coherence theory of non-stationary fields and the characterization of stochastic electromagnetic pulsed beams, the analytical expression for the spectral degree of polarization of stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beams in turbulent atmosphere is derived and is used to study the polarization properties of stochastic electromagnetic GSMP beams propagating through turbulent atmosphere. The results of numerical calculation are given to illustrate the dependence of spectral degree of polarization on the pulse frequency, refraction index structure constant and spatial correlation length. It is shown that, compared with free-space case, in turbulent atmosphere propagation there are two positions at which the on-axis spectral degree of polarization P is equal to zero. The position change depends on the pulse frequency, refraction index structure constant and spatial correlation length.

  19. Laser beam propagation through an atmospheric transitional and turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Katz, Richard A.; Manzur, Tariq

    2015-05-01

    This study investigates laser beam propagation through an atmospheric boundary layer near the ocean surface. Objectives of this research are to ascertain feasibility limits for achieving maximum energy efficiency at extended ranges in the face of atmospheric and other distortions as the laser beam penetrates through transitional (anisotropic) and turbulent (isotropic) boundary layer regimes. Various aspects of turbulence modeling of laser beam propagation near the ocean surface are discussed including: Kolmogorov's model of atmospheric turbulence, parameterized structure functions (e.g., velocity and temperature gradients, gradients in refractive index) and other important factors affecting near surface propagation such as humidity, aerosols, and wave slap. Various preliminary modeled propagation results are shown, and a new methodology is proposed for improving existing model estimates with new time domain measurement procedures.

  20. Reciprocal path scattering due to the combination of atmospheric turbulence and rough surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, Robert A.; Phillips, Ronald L.

    1995-06-01

    The topic of enhanced backscattering (EBS) from random media has generated considerably research interest for the last two decades in Eastern Europe and for the last decade in the West. Two distinct scattering phenomena that are unique to scattering by random media are capable of producing enhanced backscatter: coherent reciprocal path scattering (RPS) and incoherent random focusing events. When coherent RPS is responsible for EBS, the maximum enhancement factor is two. Several theoretical models exist for EBS from random rough surfaces and by atmospheric turbulence individually; however, no theoretical model exists for the EBS due to the combination of rough surface and atmospheric turbulence enhancement. Simple geometrical optics models are presented that illustrate the EBS due to RPS by the combination of saturated atmospheric turbulence and a rough surface target upon a monostatic laser radar system.

  1. Design and implementation of flexible laboratory system for beam propagation study through weak atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Rickenstorff, Carolina; Rodrigo, Jóse A.; Alieva, Tatiana

    2016-04-01

    Different applications such as astronomy, remote optical sensing and free space optical communications, among others, require both numerical and laboratory experimental simulations of beam propagation through turbulent atmosphere prior to an outdoor test. While rotating phase plates or hot chambers can be applied to such studies, they do not allow changing the atmospheric conditions and the propagation distance in situ. In contrast, the spatial light modulators (SLMs) are a flexible alternative for experimental turbulence simulation. In this work we consider an experimental setup comprising two SLMs for studying laser beam propagation in weak atmospheric turbulence. The changes of atmospheric conditions and propagation distances are properly achieved by the adjustment of the phase screens and the focal distances of digital lenses implemented in both SLMs. The proposed system can be completely automatized and all its elements are in fixed positions avoiding mechanical misalignment. Its design, propagation distance and atmospheric condition adjustment are provided. The setup performance is verified by numerical simulation of Gaussian beam propagation in the weak turbulence regime. The obtained parameters: scintillation index, beam wander and spreading are compared to their theoretical counterparts for different propagation distances and atmospheric conditions.

  2. Cross-frequency coherence and pulse propagation in a turbulent atmosphere.

    PubMed

    Ostashev, Vladimir E; Wilson, D Keith; Collier, Sandra L; Cain, Jericho E; Cheinet, Sylvain

    2016-07-01

    Cross-frequency coherence of acoustic signals in a turbulent atmosphere is an important consideration for source localization with acoustic sensor arrays and for remote sensing of the atmosphere with sodars and tomography techniques. This paper takes as a starting point recently derived, closed-form equations for the spatial-temporal correlation function of a broadband acoustic signal propagating in a turbulent atmosphere with coupled spatial-temporal fluctuations in temperature and wind velocity. This theory is employed to calculate, based on the Rytov approximation, the two-point, two-time, two-frequency mutual coherence function of plane and spherical waves in the weak scattering regime. The cross-frequency coherence for these waveforms is then obtained and compared with that in the geometrical acoustics approximation. The coherence bandwidth is calculated and analyzed for typical meteorological regimes of the atmospheric surface layer and parameters of sound propagation. The results obtained are compared with available experimental data. The cross-frequency coherence is also used to study the effect of atmospheric turbulence on the mean intensity of an acoustic pulse propagating in a turbulent atmosphere. PMID:27475189

  3. Prediction of data stream parameters in atmospheric turbulent wireless communication links

    NASA Astrophysics Data System (ADS)

    Tiker, A.; Yarkoni, N.; Blaunstein, N.; Zilberman, A.; Kopeika, N.

    2007-01-01

    A unified approach for calculation of information data stream parameters in the atmospheric optical communication channel is presented based on irradiance fluctuations of optical wave propagation through turbulence and on a generalized Ricean K-parameter distribution. The effects of turbulence are described via the well-known Kolmogorov scheme of turbulent structure relaxation in terms of stochastic scintillation theory described by the gamma-gamma distribution along with measurements of the values of the refractive index structure parameter, Cn 2. The relation between the Ricean parameter K and the signal scintillation parameter σI 2 is considered to develop a unified description of the corresponding probability density function (pdf) of signal fading within an atmospheric wireless communication link. Through the corresponding pdf and parameter K, signal data stream parameters such as the signal-to-noise ratio (SNR), bit error rate (BER), and capacity of the optical atmospheric channel (C) are estimated. Such an approach permits the reliable prediction of the effects of fading caused by different levels of turbulence and agrees with experimental data observed at different atmospheric levels, at the heights of both 100-200 m and above 1-2 km. It is shown that at heights of 100-200 m, effects of fading, caused by turbulence, occur much more frequently than those at the heights of 1-2 km. Data stream parameters such as channel capacity, SNR, and spectral efficiency become stronger at higher altitudes, while at the same time the BER becomes relatively negligible.

  4. Prediction of data stream parameters in atmospheric turbulent wireless communication links.

    PubMed

    Tiker, A; Yarkoni, N; Blaunstein, N; Zilberman, A; Kopeika, N

    2007-01-10

    A unified approach for calculation of information data stream parameters in the atmospheric optical communication channel is presented based on irradiance fluctuations of optical wave propagation through turbulence and on a generalized Ricean K-parameter distribution. The effects of turbulence are described via the well-known Kolmogorov scheme of turbulent structure relaxation in terms of stochastic scintillation theory described by the gamma-gamma distribution along with measurements of the values of the refractive index structure parameter, C(n)(2). The relation between the Ricean parameter K and the signal scintillation parameter sigma(I)(2) is considered to develop a unified description of the corresponding probability density function (pdf) of signal fading within an atmospheric wireless communication link. Through the corresponding pdf and parameter K, signal data stream parameters such as the signal-to-noise ratio (SNR), bit error rate (BER), and capacity of the optical atmospheric channel (C) are estimated. Such an approach permits the reliable prediction of the effects of fading caused by different levels of turbulence and agrees with experimental data observed at different atmospheric levels, at the heights of both 100-200 m and above 1-2 km. It is shown that at heights of 100-200 m, effects of fading, caused by turbulence, occur much more frequently than those at the heights of 1-2 km. Data stream parameters such as channel capacity, SNR, and spectral efficiency become stronger at higher altitudes, while at the same time the BER becomes relatively negligible.

  5. Average capacity for PCB propagation in atmospheric turbulence on Earth-space path

    NASA Astrophysics Data System (ADS)

    Yang, Rui-ke; Hou, Jie; Chen, Yuan; Chen, Hui

    2013-08-01

    In order to analyze the effect of atmospheric turbulence along Earth-space path on the performance of laser communication system, the change of Kolmogorov spectrum with altitude is taken into account on the basis of the relation of turbulence structure constant with altitude. The scintillation index under the condition of the different coherent degree for optical source are discussed from weak to strong turbulence regime for a partially coherent Gaussian beam (PCB) propagating through turbulent atmosphere. The relation of the scintillation index with elevation is analyzed on Earth-space path. The expressions for the Log-normal and the Gamma-Gamma turbulence channel of irradiance fluctuations are given. The mathematical expression for the evaluation of the average capacity is shown for a Kolmogorov turbulent atmosphere channel. The average capacity of a PCB is calculated under the condition of different coherent length, aperture, on the horizontal and Earth-space path, respectively. The results of scintillation index show that the difference among plane, spherical, and beam wave are obvious from weak to moderate turbulence regime, at strong regime, the results tend to saturation. The degradation of optical source coherence causes scintillation depression at weak turbulence regime. At moderate regime, the scintillation is little increase. The effect of source partially coherence on scintillation is disappear at stronger regime. Based on the Log-normal model in weak turbulent fade channel and the Gamma-Gamma model from weak to strong turbulence fade channel, the average capacities for different initial Gaussian beam radius, partially coherent degree beam are estimated, respectively. The results show that at weak turbulence, the difference between the capacities by Log-normal and Gamma-Gamma distribution is small, and from moderate to strong regime, the difference is gradually increase. At weak regime, the average capacity of partially coherent beam is greater than the

  6. THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES

    SciTech Connect

    Youdin, Andrew N.; Mitchell, Jonathan L.

    2010-10-01

    The intense irradiation received by hot Jupiters suppresses convection in the outer layers of their atmospheres and lowers their cooling rates. 'Inflated' hot Jupiters, i.e., those with anomalously large transit radii, require additional sources of heat or suppressed cooling. We consider the effect of forced turbulent mixing in the radiative layer, which could be driven by atmospheric circulation or by another mechanism. Due to stable stratification in the atmosphere, forced turbulence drives a downward flux of heat. Weak turbulent mixing slows the cooling rate by this process, as if the planet were irradiated more intensely. Stronger turbulent mixing buries heat into the convective interior, provided the turbulence extends to the radiative-convective boundary. This inflates the planet until a balance is reached between the heat buried into and radiated from the interior. We also include the direct injection of heat due to the dissipation of turbulence or other effects. Such heating is already known to slow planetary cooling. We find that dissipation also enhances heat burial from mixing by lowering the threshold for turbulent mixing to drive heat into the interior. Strong turbulent mixing of heavy molecular species such as TiO may be necessary to explain stratospheric thermal inversions. We show that the amount of mixing required to loft TiO may overinflate the planet by our mechanism. This possible refutation of the TiO hypothesis deserves further study. Our inflation mechanism requires a deep stratified layer that only exists when the absorbed stellar flux greatly exceeds the intrinsic emitted flux. Thus, it would be less effective for more luminous brown dwarfs and for longer period gas giants, including Jupiter and Saturn.

  7. Generalized modified atmospheric spectral model for optical wave propagating through non-Kolmogorov turbulence.

    PubMed

    Xue, Bindang; Cui, Linyan; Xue, Wenfang; Bai, Xiangzhi; Zhou, Fugen

    2011-05-01

    A new generalized modified atmospheric spectral model is derived theoretically for wave propagating through non-Kolmogorov turbulence, which has been reported recently by increasing experimental evidence and theoretical investigation. The generalized, modified atmospheric spectrum considers finite turbulence inner and outer scales and has a spectral power law value in the range of 3 to 5 instead of the standard power law value of 11/3. When the inner scale and outer scale are set to zero and infinity, respectively, this spectral model is reduced to the classical non-Kolmogorov spectrum.

  8. Two-dimensional simulation of optical wave propagation through atmospheric turbulence.

    PubMed

    Hyde, Milo W; Basu, Santasri; Schmidt, Jason D

    2015-01-15

    A methodology for the two-dimensional simulation of optical wave propagation through atmospheric turbulence is presented. The derivations of common statistical field moments in two dimensions, required for performing and validating simulations, are presented and compared with their traditional three-dimensional counterparts. Wave optics simulations are performed to validate the two-dimensional moments and to demonstrate the utility of performing two-dimensional wave optics simulations so that the results may be scaled to those of computationally prohibitive 3D scenarios. Discussions of the benefits and limitations of two-dimensional atmospheric turbulence simulations are provided throughout.

  9. Using an incoherent target return to adaptively focus through atmospheric turbulence.

    PubMed

    Nelson, W; Palastro, J P; Wu, C; Davis, C C

    2016-03-15

    A laser beam propagating to a remote target through atmospheric turbulence acquires intensity fluctuations. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics, in principle, can correct these fluctuations. Generally, however, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the returned field at a detector. We simulate an adaptive optics system that utilizes this relation to focus a beam through atmospheric turbulence onto a rough surface.

  10. Implications for high speed research: The relationship between sonic boom signature distortion and atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.; Gionfriddo, Thomas A.

    1994-01-01

    In this study there were two primary tasks. The first was to develop an algorithm for quantifying the distortion in a sonic boom. Such an algorithm should be somewhat automatic, with minimal human intervention. Once the algorithm was developed, it was used to test the hypothesis that the cause of a sonic boom distortion was due to atmospheric turbulence. This hypothesis testing was the second task. Using readily available sonic boom data, we statistically tested whether there was a correlation between the sonic boom distortion and the distance a boom traveled through atmospheric turbulence.

  11. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.

    PubMed

    Chan, K P; Killinger, D K; Sugimoto, N

    1991-06-20

    We performed an experimental study on the effect of atmospheric turbulence on heterodyne and direct detection lidar at 1 microm, employing a pulsed Nd:YAG bistatic focused beam lidar that permitted simultaneous heterodyne and direct detection of the same lidar returns. The average carrier-to-noise ratio and statistical fluctuation level in the lidar return signals were measured in various experimental and atmospheric conditions. The results showed that atmospheric turbulence could reduce the effective receiver telescope diameter of the l-microm heterodyne lidar to <5cm at a relatively short range of approximately 450 m near the ground. The observed effective telescope aperture and heterodyne detection efficiency varied during the day as the atmospheric turbulence level changed. At this time, we are not able to compare our experimental lidar data to a rigorous atmospheric turbulence and lidar detection theory which includes independently variable transmitter, receiver, and detector geometry. It is interesting to note, however, that the observed limitation of the effective receiver aperture was similar in functional form with those predictions based on the heterodyne wavefront detection theory by D. L. Fried [Proc. IEEE 55, 57-67 (1967)] and the heterodyne lidar detection theory for a fixed monostatic system by S. F. Clifford and S. Wandzura [Appl. Opt. 20, 514-516 (1981)]. We have also applied such an effective receiver aperture limitation to predict the system performance for a heterodyne Ho lidar operating at 2 microm.

  12. Large-eddy simulations of contrail-to-cirrus transition in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Thouron, Odile; Picot, Joris; Cariolle, Daniel

    2012-11-01

    Contrails are ice clouds that form by condensation of water vapor exhaust from aircraft engines and develop further in the wake as they are entrained by the airplane trailing vortices. When contrails spread to form cirrus clouds, they can persist for hours and become almost indistinguishable from natural cirrus. This talk focuses on the role of atmospheric turbulence in determining the characteristics of these ``contrail cirrus.'' Large-eddy simulations are carried out using the atmospheric model Meso-NH with the goal of identifying the processes driving the contrail-to-cirrus transition as a function of contrail age. To that end, the effects of atmospheric turbulence, microphysics, and radiative transfer are analyzed separately. Turbulent fields are first generated by means of a stochastic forcing technique that reproduces the atmospheric conditions encountered in the upper troposphere. Contrails generated by a model aircraft are then inserted on the top of these fields. Finally, ice microphysics and radiative transfer are activated to find out on which spatial and temporal scales the vertical motion prevails over the essentially horizontal motion induced by atmospheric turbulent diffusion.

  13. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; Poulos, Gregory S.; Schreck, Scott J.

    2016-06-17

    Here, by using detailed upwind and nacelle-based measurements from a General Electric [GE] 1.5 sle model with a 77 m rotor diameter, we calculated power curves and annual energy production (AEP) and explored their sensitivity to different atmospheric parameters. This work provides guidelines for the use of stability and turbulence filters in segregating power curves to gain a clearer picture of the power performance of a turbine. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower and lidar vertical profiles. We calculated power curves for different regimes based on turbulence parameters such as turbulence intensity (TI)more » and turbulence kinetic energy (TKE), as well as atmospheric stability parameters such as Bulk Richardson number (RB). AEP was also calculated with and without these atmospheric filters and differences between these calculations are highlighted in this article. The power curves for different TI and TKE regimes revealed that, at the U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), increased TI and TKE undermined power production at wind speeds near rated, but increased power production at lower wind speeds. Similarly, power curves for different RB regimes revealed that periods of stable conditions produced more power at wind speeds near rated and periods of unstable conditions produced more power at lower wind speeds. AEP results suggest that calculations done without filtering for these atmospheric regimes may be overestimating the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to take atmospheric stability and turbulence across the rotor disk into account.« less

  14. Pulsed single-photon Bessel beams propagation in non-Kolmogorov turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Sheng, Xueli

    2012-06-01

    The analytic expressions are derived for the turbulent broadening, the long-term temporal broadening, the acquisition probability of single-pulse and the transmittance probability density of a pulsed space-time Bessel photon-beam propagating along a slant path in weak non-Kolmogorov atmospheric turbulence, based on the assumption of a pulsed Bessel beam with the initial Gaussian temporal shape of pulse and diffraction-free spatial distribution. It is shown that the turbulent broadening and the long-term temporal broadening are the nolinear-increase functions of the index of non-Kolmogorov turbulence and the effect of non-Kolmogorov index on the acquisition probability of single-pulse can be approximatively described by a Gaussian function with a peak value at non-Kolmogorov index close to 3.7 for the case of the input half-pulse width greater than picosecond (ps). The transmittance of probability density is decreasing as the increasing of the structure constant of the index of refraction, the zenith angle of communication channel, the propagation path and the pulse broadening. There is turbulent diffraction for Bessel beam propagation in turbulent atmosphere, but its free-space diffraction-free characteristic is reservation.

  15. Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approach

    NASA Astrophysics Data System (ADS)

    Buske, Ivo; Riede, Wolfgang; Zoz, Jürgen

    2013-10-01

    High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks. For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by unavoidable atmospheric turbulence. Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the effect of climate or weather condition. It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.

  16. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  17. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  18. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  19. Combined MASS-DIMM instruments for atmospheric turbulence studies

    NASA Astrophysics Data System (ADS)

    Kornilov, V.; Tokovinin, A.; Shatsky, N.; Voziakova, O.; Potanin, S.; Safonov, B.

    2007-12-01

    Several site-testing programmes and observatories currently use combined Multi-Aperture Scintillation Sensor (MASS)-Differential Image Motion Monitor (DIMM) instruments for monitoring parameters of optical turbulence. The instrument is described here. After a short recall of the measured quantities and operational principles, the optics and electronics of MASS-DIMM, interfacing to telescopes and detectors, and operation are covered in some detail. Particular attention is given to the correct measurement and control of instrumental parameters to ensure valid and well-calibrated data, to the data quality and filtering. Examples of MASS-DIMM data are given, followed by the list of present and future applications.

  20. Evidence for supersonic turbulence in the upper atmosphere of Jupiter.

    PubMed

    Emerich, C; Jaffel, L B; Clarke, J T; Prangé, R; Gladstone, G R; Sommeria, J; Ballester, G

    1996-08-23

    Spectra of the hydrogen Lyman alpha (Ly-alpha) emission line profiles of the jovian dayglow, obtained by the Goddard High Resolution Spectrograph on the Hubble Space Telescope, appear complex and variable on time scales of a few minutes. Dramatic changes occur in the Ly-alpha bulge region at low latitudes, where the line profiles exhibit structures that correspond to supersonic velocities of the order of several to tens of kilometers per second. This behavior, unexpected in a planetary atmosphere, is evidence for the particularly stormy jovian upper atmosphere, not unlike a star's atmosphere. PMID:8688090

  1. Extension of a Kolmogorov Atmospheric Turbulence Model for Time-Based Simulation Implementation

    NASA Technical Reports Server (NTRS)

    McMinn, John D.

    1997-01-01

    The development of any super/hypersonic aircraft requires the interaction of a wide variety of technical disciplines to maximize vehicle performance. For flight and engine control system design and development on this class of vehicle, realistic mathematical simulation models of atmospheric turbulence, including winds and the varying thermodynamic properties of the atmosphere, are needed. A model which has been tentatively selected by a government/industry group of flight and engine/inlet controls representatives working on the High Speed Civil Transport is one based on the Kolmogorov spectrum function. This report compares the Dryden and Kolmogorov turbulence forms, and describes enhancements that add functionality to the selected Kolmogorov model. These added features are: an altitude variation of the eddy dissipation rate based on Dryden data, the mapping of the eddy dissipation rate database onto a regular latitude and longitude grid, a method to account for flight at large vehicle attitude angles, and a procedure for transitioning smoothly across turbulence segments.

  2. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    PubMed

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  3. 500  Gb/s free-space optical transmission over strong atmospheric turbulence channels.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2016-07-15

    We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.

  4. Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Li, Ya-Qing; Wu, Zhen-Sen

    2012-05-01

    On the basis of the extended Huygens—Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector, the characteristics of the partially coherent Gaussian Schell-model (GSM) beams propagating in slanted atmospheric turbulence are studied. Using the cross- spectral density function (CSDF), we derive the expressions for the effective beam radius, the spreading angle, and the average intensity. The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically. The influences of the coherence degree, the propagation distance, the propagation height, and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.

  5. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.

    PubMed

    Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang

    2012-04-23

    The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams.

  6. On atmospheric turbulence structure constant measurement by a passive optical method

    NASA Astrophysics Data System (ADS)

    Konyaev, Petr A.; Botygina, Nina N.; Antoshkin, Leonid V.; Emaleev, Oleg N.; Lukin, Vladimir P.

    2015-11-01

    Development of a passive optical method for measuring the strength of atmospheric turbulence (atmospheric air refractive index structure constant Cn2) from image jitter is discussed. A high-rate digital camera and computer processing, including fast parallel 2D image correlation tracking algorithms, are shown to allow for real-time Cn2 measurements. The results obtained by passive and active optical methods together with meteorological station support of the experiment are compared.

  7. Influence of atmospheric turbulence on the uplink propagation in an optical time transfer

    NASA Astrophysics Data System (ADS)

    Fridelance, Patricia

    1997-08-01

    The time transfer by laser link experiment T2L2 aims for a precision of 60 ps, which could be degraded by the atmospheric turbulence because of the strong variations of the photon number received by the satellite detector, from a measurement to another. The light intensity fluctuations in the satellite plane are estimated for the planned situation for which the beam radius at the atmosphere exit is significantly larger than the coherence length. Such speckle-type fluctuations are experimentally studied.

  8. Influence of atmospheric turbulence on the uplink propagation in an optical time transfer.

    PubMed

    Fridelance, P

    1997-08-20

    The time transfer by laser link experiment T2L2 aims for a precision of 60 ps, which could be degraded by the atmospheric turbulence because of the strong variations of the photon number received by the satellite detector, from a measurement to another. The light intensity fluctuations in the satellite plane are estimated for the planned situation for which the beam radius at the atmosphere exit is significantly larger than the coherence length. Such speckle-type fluctuations are experimentally studied.

  9. Experimental investigation into infrasonic emissions from atmospheric turbulence.

    PubMed

    Shams, Qamar A; Zuckerwar, Allan J; Burkett, Cecil G; Weistroffer, George R; Hugo, Derek R

    2013-03-01

    Clear air turbulence (CAT) is the leading cause of in-flight injuries and in severe cases can result in fatalities. The purpose of this work is to design and develop an infrasonic array network for early warning of clear air turbulence. The infrasonic system consists of an infrasonic three-microphone array, compact windscreens, and data management system. Past experimental efforts to detect acoustic emissions from CAT have been limited. An array of three infrasonic microphones, operating in the field at NASA Langley Research Center, on several occasions received signals interpreted as infrasonic emissions from CAT. Following comparison with current lidar and other past methods, the principle of operation, the experimental methods, and experimental data are presented for case studies and confirmed by pilot reports. The power spectral density of the received signals was found to fit a power law having an exponent of -6 to -7, which is found to be characteristics of infrasonic emissions from CAT, in contrast to findings of the past.

  10. ACTIVE TURBULENCE AND SCALAR TRANSPORT NEAR THE FOREST-ATMOSPHERE INTERFACE

    EPA Science Inventory

    Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopy-atmosphere interface of a 13–14-m-tall uniform pine forest and a 33-m-tall nonuniform hardwood forest. These measurements were used to investigate whether the mixing la...

  11. Turbulent Structures and Coherence in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Träumner, K.; Damian, Th.; Stawiarski, Ch.; Wieser, A.

    2015-01-01

    Organized structures in turbulent flow fields are a well-known and still fascinating phenomenon. Although these so-called coherent structures are obvious from visual inspection, quantitative assessment is a challenge and many aspects e.g., formation mechanisms and contribution to turbulent fluxes, are discussed controversially. During the "High Definition Clouds and Precipitation for Advancing Climate Prediction" Observational Prototype Experiment (HOPE) from April to May 2013, an advanced dual Doppler lidar technique was used to image the horizontal wind field near the surface for approximately 300 h. A visual inspection method, as well as a two-dimensional integral length scale analysis, were performed to characterize the observations qualitatively and quantitatively. During situations with forcing due to shear, the wind fields showed characteristic patterns in the form of clearly bordered, elongated areas of enhanced or reduced wind speed, which can be associated with near-surface streaks. During calm situations with strong buoyancy forcing, open cell patterns in the horizontal divergence field were observed. The measurement technique used enables the calculation of integral length scales of both horizontal wind components in the streamwise and cross-stream directions. The individual length scales varied considerably during the observation period but were on average shorter during situations with compared to strongly stable situations. During unstable situations, which were dominated by wind fields with structures, the streamwise length scales increased with increasing wind speed, whereas the cross-stream length scales decreased. Consequently, the anisotropy increased from 1 for calm situations to values of 2-3 for wind speeds of 8-10. During neutral to stable situations, the eddies were on average quite isotropic in the horizontal plane.

  12. Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices

    NASA Astrophysics Data System (ADS)

    Li, Jinhong; Lü, Baida

    2009-04-01

    Taking the Gaussian Schell-model (GSM) vortex beam as a typical example of partially coherent vortex beams, the analytical expressions for the cross-spectral density, average intensity and root mean square (rms) width of a GSM vortex beam with topological charge m = ± 1 propagating through atmospheric turbulence are derived, which enable us to study the propagation properties of GSM vortex beams through atmospheric turbulence and evolution behavior of their coherent vortices. The propagation of GSM vortex beams undergoes several stages of evolution of the intensity profile in both free space and turbulence, and is different from that of GSM non-vortex beams. An increase of the refraction index structure constant Cn2 and a decrease of the spatial correlation length σ0 speed up the evolution process. The beam-width spreading of GSM vortex beams is less than that of GSM non-vortex beams. The smaller the correlation length σ0 is, the less the beam-width spreading of GSM vortex beams is affected by turbulence. The position and number of coherent vortices depend on the structure constant Cn2, correlation length σ0 and topological charge m. The smaller Cn2 and larger σ0 result in a larger propagation distance for the conservation of the topological charge in turbulence.

  13. Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Pei, X.; Ghasemi, M.; Xu, H.; Hasnain, Q.; Wu, S.; Tu, Y.; Lu, X.

    2016-06-01

    In this paper, dynamic characterizations of the turbulent flow field in atmospheric pressure plasma jets (APPJs) are investigated by focusing on the effect of different APPJ parameters, such as gas flow rate, applied voltage, pulse repetition frequency, and time duration of the pulse. We utilize Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate or the applied voltage amplitude. However, the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation shows that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream. It seems that the dominating mechanisms responsible for the formation of turbulent fronts in plasma jets might not be ion momentum transfer.

  14. Scintillation index and bit error rate of hollow Gaussian beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Qiao, Na; Zhang, Bin; Pan, Pingping; Dan, Youquan

    2011-06-01

    Based on the Huygens-Fresnel principle and Rytov method, the on-axis scintillation index is derived for hollow Gaussian beams (HGBs) in weak turbulence. The relationship between bit error rate (BER) and scintillation index is found by only considering the effect of atmosphere turbulence based on the probability distribution of intensity fluctuation, and the expression of the BER is obtained. Furthermore, the scintillation and the BER properties of HGBs in turbulence are discussed in detail. The results show that the scintillation index and BER of HGBs depend on the propagation length, the structure constant of the refractive index fluctuations of turbulence, the wavelength, the beam order and the waist width of the fundamental Gaussian beam. The scintillation index, increasing with the propagation length in turbulence, for the HGB with higher beam order increases more slowly. The BER of the HGBs increases rapidly against the propagation length in turbulence. For propagating the same distance, the BER of the fundamental Gaussian beam is the greatest, and that of the HGB with higher order is smaller.

  15. Complex turbulent flow in the atmospheric boundary layer: Lab and field measurements of embedded canopy wakes

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Carbajo Fuertes, F.; Porte-Agel, F.

    2015-12-01

    Natural and anthropogenic fragmented landscapes are pervasive and this complexity significantly affects the structure of the atmospheric boundary layer, causing classic similarity theories to break down. This is especially true in areas affected by wake turbulence. Steep topography and canopy patches can lead to separation of the boundary layer and delay in the adjustment of turbulence to an adjacent underlying surface. Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the mean and turbulence profiles compared to classic rough to smooth transitions (Markfort et al. 2014, Env. Fluid Mech.). The added turbulence due to wakes delay the development of a new boundary layer and turbulent flux measurements and models that rely on similarity theory to determine surface fluxes exhibit significant errors. Here we compare lab-scale experimental measurements using PIV to field-scale measurements using scanning Doppler wind LiDARs. The measurements provide information on how the wake evolves in space and varies over time. Results from the lab and field show a time-varying recirculation zone downwind of the canopy, enhanced turbulence extending far downwind of the transition and reduced surface fluxes in the wake region. The field measurements show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. The implications of canopy wakes for measurements and modeling of surface fluxes will be discussed.

  16. Sound-wave coherence in atmospheric turbulence with intrinsic and global intermittency.

    PubMed

    Wilson, D Keith; Ostashev, Vladimir E; Goedecke, George H

    2008-08-01

    The coherence function of sound waves propagating through an intermittently turbulent atmosphere is calculated theoretically. Intermittency mechanisms due to both the turbulent energy cascade (intrinsic intermittency) and spatially uneven production (global intermittency) are modeled using ensembles of quasiwavelets (QWs), which are analogous to turbulent eddies. The intrinsic intermittency is associated with decreasing spatial density (packing fraction) of the QWs with decreasing size. Global intermittency is introduced by allowing the local strength of the turbulence, as manifested by the amplitudes of the QWs, to vary in space according to superimposed Markov processes. The resulting turbulence spectrum is then used to evaluate the coherence function of a plane sound wave undergoing line-of-sight propagation. Predictions are made by a general simulation method and by an analytical derivation valid in the limit of Gaussian fluctuations in signal phase. It is shown that the average coherence function increases as a result of both intrinsic and global intermittency. When global intermittency is very strong, signal phase fluctuations become highly non-Gaussian and the average coherence is dominated by episodes with weak turbulence. PMID:18681567

  17. Path-averaged differential meter of atmospheric turbulence parameters

    NASA Astrophysics Data System (ADS)

    Antoshkin, L. V.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Lukin, V. P.

    2010-10-01

    A path-averaged differential meter of the structure constant of the atmospheric refractive index, C {/n 2}, has been developed and tested. The results of a model numerical experiment on measuring C {/n 2} and the horizontal component of average wind velocity transverse to the path are reported.

  18. The status of military specifications with regard to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Moorhouse, David J.; Heffley, Robert K.

    1987-01-01

    The features of atmospheric disturbances that are significant to aircraft flying qualities are discussed. Next follows a survey of proposed models. Lastly, there is a discussion of the content and application of the model contained in the current flying qualities specification and the forthcoming MIL-Standard.

  19. Modeling of Atmospheric Turbulence as Disturbances for Control Design and Evaluation of High Speed Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.

  20. Research on diversity receive technology for wireless optical communication using PPM in weak turbulence atmosphere channel

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Guo-an

    2014-09-01

    In order to mitigate atmospheric turbulence, the free space optical (FSO) system model with spatial diversity is analyzed based on intensity detection pulse position modulation (PPM) in the weak turbulence atmosphere. The slot error rate (SER) calculating formula of the system without diversity is derived under pulse position modulation firstly. Then as a benchmark, independent of identical distribution, the average slot error rates of the three linear combining technologies, which are the maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SelC), are compared. Simulation results show that the performance of system is the best improved by MRC, followed by EGC, and is poor by SelC, but SelC is simpler and more convenient. Spatial diversity is efficient to improve the performance and has strong ability on resistance to atmospheric channel decline. The above scheme is more suitable for optical wireless communication systems.

  1. Alfven Waves and Turbulence in the Solar Atmosphere and Solar Wind

    NASA Technical Reports Server (NTRS)

    Verdini, Andrea; Velli, Marco

    2007-01-01

    We solve the problem of propagation and dissipation of Alfvenic turbulence in a model solar atmosphere consisting of a static photosphere and chromosphere, transition region, and open corona and solar wind using a phenomenological model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave frequency spectrum occurs in the lower corona, and the overall rms amplitude of the fluctuations evolves in a way consistent with observations. The frequency spectrum for a Kolmogorov-like slope is not found to change dramatically from the photosphere to the solar wind; however, it does preserve signatures of transmission throughout the lower atmospheric layers, namely, oscillations in the spectrum at high frequencies reminiscent of the resonances found in the linear case. These may disappear once more realistic couplings for the nonlinear terms are introduced or if time-dependent variability of the lower atmospheric layer is introduced.

  2. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.

  3. Use of a moiré deflectometer on a telescope for atmospheric turbulence measurements.

    PubMed

    Rasouli, Saifollah

    2010-05-01

    An instrument has been built for the study of the atmospheric turbulence by measuring the fluctuation of the angle of arrival across a telescope aperture using moiré deflectometry. A slightly divergent laser beam passes through a turbulent ground level atmosphere and enters the telescope aperture. The laser beam is recollimated behind the telescope's focal point by means of a collimator. The collimated beam passes through a moiré deflectometer. The fluctuating self-image of the first grating is formed on the second grating of the moiré deflectometer and fluctuating moiré fringes are formed. Using moiré fringe fluctuations we have calculated the fluctuations of the angle of arrival, the Fried's parameter r(0), and the atmospheric refractive index structure constant. Because of the magnifications of the telescope and moiré deflectometry, the precision of the technique can potentially be 1 order of magnitude more precise than previous methods.

  4. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter. PMID:27409206

  5. The upper atmosphere of Uranus - A critical test of isotropic turbulence models

    NASA Technical Reports Server (NTRS)

    French, R. G.; Elliot, J. L.; Sicardy, B.; Nicholson, P.; Matthews, K.

    1982-01-01

    Observations of the August 15, 1980, Uranus occultation of KM 12, obtained from Cerro Tololo InterAmerican Observatory, European Southern Observatory, and Cerro Las Campanas Observatory, are used to compare the atmospheric structure at points separated by approximately 140 km along the planetary limb. The results reveal striking, but by no means perfect correlation of the light curves, ruling out isotropic turbulence as the cause of the light curve spikes. The atmosphere is strongly layered, and any acceptable turbulence model must accommodate the axial ratios of greater than about 60 which are observed. The mean temperature of the atmosphere is 150 plus or minus 15 K for the region near number density 10 to the 14th per cu cm. Derived temperature variations of vertical scale approximately 130 km and amplitude plus or minus 5 K are in agreement for all stations, and correlated spikes correspond to low-amplitude temperature variations with a vertical scale of several kilometers.

  6. BER of flat-topped Gaussian beam in slant path turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lu, Fang; Han, Yanyan; Han, Xiang-e.; Yang, Rui-ke

    2013-08-01

    Based on the theory of optical wave propagation in the slant path and the ITU-R turbulence structure constant model which is dependent on altitude, the on-axis scintillation index of the flat-topped Gaussian beam at the receiver plane in slant path turbulence was given by using Kolmogorov atmospheric turbulence power spectrum model. The influences of the link altitudes, atmospheric refractive index structure constant C0 at the ground,the source size and the beam order on scintillation index of the flat-topped Gaussian beam are discussed in detail. The result shows that the scintillation index increased first and then decreased with the increase of the beam order. The advantage of a flat-topped Gaussian beam over a single Gaussian beam is restricted to small source sizes, which is consistent with the case of the horizontal path. To find the average bit error rate under weak slant path turbulence, the log-normal distribution model of the intensity fluctuation was used. The influence of beam order and source size on BER was discussed. The result indicates that the smaller sized flat-topped Gaussian beam will bring average bit error rate advantage over the same size Gaussian beam. Our results correctly reduce to the result of the horizontal path with atmospheric structure constant fixed.

  7. Influence of thermal deformations of resonators on propagation properties of laser annular beams through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Peng, Yufeng; Peng, Fang; Han, Junpeng

    2013-02-01

    Based on the laser field from a positive confocal unstable resonator, considering the influence of thermal distortion of the internal resonator mirror on the annular beam, the propagation characteristics of the annular beam through turbulent atmosphere are investigated by means of the fast Fourier transform algorithm (FFT). The intensity distributions of the output laser far-field are obtained to analyze the propagation characteristics of laser annular beam through the turbulent atmosphere, which is a function about different propagation distances. The results show that the peak intensity of the laser pattern becomes depressed and the spread of the far field diagram patterns is broadened under the increasing of the transmission distance and the thermal distortion of the laser resonator. β-parameter and strehl ratio are introduced to estimate the annular beam quality characteristics. It is found that the annular beam through strong turbulence influences much less obviously than the annular beam through weak turbulence on the quality characteristics with thermal distortion. In the same atmospheric conditions with a certain distance, the greater the mirror thermal distortion is, the worse the annular beam quality characteristics is.

  8. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing.

    PubMed

    Ren, Yongxiong; Huang, Hao; Xie, Guodong; Ahmed, Nisar; Yan, Yan; Erkmen, Baris I; Chandrasekaran, Nivedita; Lavery, Martin P J; Steinhoff, Nicholas K; Tur, Moshe; Dolinar, Samuel; Neifeld, Mark; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E

    2013-10-15

    We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver. The power penalty is found to exceed 10 dB in a weak-to-medium turbulence condition due to the turbulence-induced crosstalk and power fluctuation of the received signal.

  9. The effects of atmospheric turbulence on precision optical measurements used for antenna-pointing compensation

    NASA Technical Reports Server (NTRS)

    Nerheim, N.

    1989-01-01

    Blind pointing of the Deep Space Network (DSN) 70-meter antennas can be improved if distortions of the antenna structure caused by unpredictable environmental loads can be measured in real-time, and the resulting boresight shifts evaluated and incorporated into the pointing control loops. The measurement configuration of a proposed pointing compensation system includes an optical range sensor that measures distances to selected points on the antenna surface. The effect of atmospheric turbulence on the accuracy of optical distance measurements and a method to make in-situ determinations of turbulence-induced measurement errors are discussed.

  10. Statistics of some atmospheric turbulence records relevant to aircraft response calculations

    NASA Technical Reports Server (NTRS)

    Mark, W. D.; Fischer, R. W.

    1981-01-01

    Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.

  11. Atmospheric turbulence in complex terrain: Verifying numerical model results with observations by remote-sensing instruments

    NASA Astrophysics Data System (ADS)

    Chan, P. W.

    2009-03-01

    The Hong Kong International Airport (HKIA) is situated in an area of complex terrain. Turbulent flow due to terrain disruption could occur in the vicinity of HKIA when winds from east to southwest climb over Lantau Island, a mountainous island to the south of the airport. Low-level turbulence is an aviation hazard to the aircraft flying into and out of HKIA. It is closely monitored using remote-sensing instruments including Doppler LIght Detection And Ranging (LIDAR) systems and wind profilers in the airport area. Forecasting of low-level turbulence by numerical weather prediction models would be useful in the provision of timely turbulence warnings to the pilots. The feasibility of forecasting eddy dissipation rate (EDR), a measure of turbulence intensity adopted in the international civil aviation community, is studied in this paper using the Regional Atmospheric Modelling System (RAMS). Super-high resolution simulation (within the regime of large eddy simulation) is performed with a horizontal grid size down to 50 m for some typical cases of turbulent airflow at HKIA, such as spring-time easterly winds in a stable boundary layer and gale-force southeasterly winds associated with a typhoon. Sensitivity of the simulation results with respect to the choice of turbulent kinetic energy (TKE) parameterization scheme in RAMS is also examined. RAMS simulation with Deardorff (1980) TKE scheme is found to give the best result in comparison with actual EDR observations. It has the potential for real-time forecasting of low-level turbulence in short-term aviation applications (viz. for the next several hours).

  12. Interaction of the sonic boom with atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Cole, Julian D.

    1994-01-01

    Theoretical research was carried out to study the effect of free-stream turbulence on sonic boom pressure fields. A new transonic small-disturbance model to analyze the interactions of random disturbances with a weak shock was developed. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. An alternative approach shows that the pressure field may be described by an equation that has an extended form of the classic nonlinear acoustics equation that describes the propagation of sound beams with narrow angular spectrum. The model shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed type elliptic-hyperbolic flows around the shock wave was also developed. Numerical calculations of shock wave interactions with various deterministic and random fluctuations will be presented in a future report.

  13. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  14. Line-of-sight propagation through atmospheric turbulence near the ground

    NASA Astrophysics Data System (ADS)

    Daigle, G. A.; Piercy, J. E.; Embleton, T. F. W.

    1983-11-01

    Line-of-sight measurements of the log-amplitude and phase fluctuations of pure tones between 250 and 4000 Hz propagated over distances between 2 and 300 m in the turbulent atmosphere close to the ground are compared quantitatively with simple theory using simultaneously measured meteorological variables. The theory is based on the assumption of homogeneous and isotropic turbulence and approximates the availability of eddy sizes in the source region of turbulence by a Gaussian spectrum. In particular the transverse or mutual coherence function (the coherence in a plane perpendicular to the direction of propagation) and the coherence in the direction of propagation are also calculated and compared with the measurements. When the measured mean square phase fluctuations are compared with the theory using the meteorological measurements, good agreement is obtained.

  15. Statistical analysis of atmospheric turbulence about a simulated block building

    NASA Technical Reports Server (NTRS)

    Steely, S. L., Jr.

    1981-01-01

    An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.

  16. SWIR sky glow imaging for detection of turbulence in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Dayton, David; Nolasco, Rudy; Allen, Jeff; Myers, Mike; Gonglewski, John; Fertig, Gregory; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band between 0.9 and 1.7 μm wave length. This has been demonstrated as an effective illumination source for night time imaging applications. It addition it has been shown that observation of the spatial and temporal variations of the illumination can be used to characterize atmospheric tidal wave actions in the sky glow region. These spatiotemporal variations manifest themselves as traveling wave patterns whose period and velocity are related to the wind velocity at 85 km as well as the turbulence induced by atmospheric vertical instabilities. Ground to space observation systems especially those employing adaptive optics are adversely affected by high altitude turbulence and winds. In this paper we propose the use of sky glow observations to predict and characterize image system degradation due to upper atmosphere turbulence.

  17. Recovery of image distorted by turbulent atmosphere using phase-conjugate image generated by difference frequency generation

    NASA Astrophysics Data System (ADS)

    Zou, Xingquan; Hong, Pengda; Ding, Yujie J.

    2014-12-01

    We demonstrate dynamic recovery of blurred images caused by atmospheric turbulence. In particular, using a phase-conjugate wave generated by a second-order nonlinear crystal or composite, we restore the original quality of the image after the optical radiation forming the image propagates through the turbulent atmosphere. One of the key elements for our experiment is a rotating phase plate being placed in the beam path for simulating turbulent atmosphere. Using the nonlinear composite, we demonstrate that the image recovery is insensitive to the polarization of the optical radiation forming the image.

  18. Remote sensing of the turbulence characteristics of a planetary atmosphere by radio occultation of a space probe.

    NASA Technical Reports Server (NTRS)

    Woo, R.; Ishimaru, A.

    1973-01-01

    The purpose of this paper is to analyze the effects of small-scale turbulence on radio waves propagating through a planetary atmosphere. The analysis provides a technique for inferring the turbulence characteristics of a planetary atmosphere from the radio signals received from a spacecraft as it is occulted by the planet. The planetary turbulence is assumed to be localized and smoothly varying, with the structure constant varying exponentially with altitude. Rytov's method is used to derive the variance of log-amplitude and phase fluctuations of a wave propagating through the atmosphere.

  19. Atmospheric turbulence reciprocal path scattering effects for a ground-based monostatic laser radar tracking a space target

    NASA Astrophysics Data System (ADS)

    Murphy, Robert A.; Phillips, Ronald L.

    1996-10-01

    A phenomenological model is developed for the strength and spatial width of the backscattered coherent intensity peak produced by reciprocal path scattering through atmospheric turbulence. The model is applied to a ground-based monostatic laser radar tracking a space target under optically saturated atmospheric turbulence conditions. The models for the amplitude and width of the RPS peak are based upon the spatial coherence widths of the propagating fields over the up-link and down-link paths within the atmospheric turbulence as well as the cross-sectional area of the up- link beam.

  20. Recovery of image distorted by turbulent atmosphere using phase-conjugate image generated by difference frequency generation

    SciTech Connect

    Zou, Xingquan; Hong, Pengda; Ding, Yujie J.

    2014-12-15

    We demonstrate dynamic recovery of blurred images caused by atmospheric turbulence. In particular, using a phase-conjugate wave generated by a second-order nonlinear crystal or composite, we restore the original quality of the image after the optical radiation forming the image propagates through the turbulent atmosphere. One of the key elements for our experiment is a rotating phase plate being placed in the beam path for simulating turbulent atmosphere. Using the nonlinear composite, we demonstrate that the image recovery is insensitive to the polarization of the optical radiation forming the image.

  1. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.

    PubMed

    Dan, Youquan; Zhang, Bin

    2008-09-29

    The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.

  2. Measurement and limitations of optical orbital angular momentum through corrected atmospheric turbulence.

    PubMed

    Neo, Richard; Goodwin, Michael; Zheng, Jessica; Lawrence, Jon; Leon-Saval, Sergio; Bland-Hawthorn, Joss; Molina-Terriza, Gabriel

    2016-02-01

    In recent years, there have been a series of proposals to exploit the orbital angular momentum (OAM) of light for astronomical applications. The OAM of light potentially represents a new way in which to probe the universe. The study of this property of light entails the development of new instrumentation and problems which must be addressed. One of the key issues is whether we can overcome the loss of the information carried by OAM due to atmospheric turbulence. We experimentally analyze the effect of atmospheric turbulence on the OAM content of a signal over a range of realistic turbulence strengths typical for astronomical observations. With an adaptive optics system we are able to recover up to 89% power in an initial non-zero OAM mode (ℓ = 1) at low turbulence strengths (0.30" FWHM seeing). However, for poorer seeing conditions (1.1" FWHM seeing), the amount of power recovered is significantly lower (5%), showing that for the terrestrial detection of astronomical OAM, a careful design of the adaptive optics system is needed.

  3. Fourier-series-based phase and amplitude optical field screen generator for weak atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Louthain, James A.; Welsh, Byron M.

    1998-09-01

    A new atmospheric screen generator is developed for use in performance calculations of adaptive optics and imaging systems. The generator is valid over a wide range of atmospheric turbulence parameters and incorporates both phase and amplitude effects. The new screen generator accounts for diffraction effects caused by turbulence and incorporates the phase, amplitude, and cross statistics of a weak turbulence model. The second order statistics of the phase and amplitude perturbations are based on the auto- correlation functions developed by Lee and Harp and the cross-correlation of the phase and amplitude perturbations derived in this paper. The correlations are derived by modeling the turbulence as a number of layers of randomly varying refractivity perpendicular to the propagation path. As the field propagates through the medium, diffraction occurs at each of the layers. A Fourier series expansion of the wavefront phase and amplitude is used. The screen generator uses the power and cross spectral densities of the phase and amplitude perturbations. The mean square value and the structure functions of the wavefront phase and amplitude are calculated in a Monte Carlo experiment and shown to be within 1% of the theoretical value.

  4. Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model

    SciTech Connect

    Zilberman, Arkadi; Golbraikh, Ephim; Kopeika, Norman S

    2008-12-01

    Turbulence properties of communication links (optical and microwave) in terms of log-amplitude variance are studied on the basis of a three-layer model of refractive index fluctuation spectrum in the free atmosphere. We suggest a model of turbulence spectra (Kolmogorov and non-Kolmogorov) changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere.

  5. Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model.

    PubMed

    Zilberman, Arkadi; Golbraikh, Ephim; Kopeika, Norman S

    2008-12-01

    Turbulence properties of communication links (optical and microwave) in terms of log-amplitude variance are studied on the basis of a three-layer model of refractive index fluctuation spectrum in the free atmosphere. We suggest a model of turbulence spectra (Kolmogorov and non-Kolmogorov) changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere.

  6. Deviations from unity of the ratio of the turbulent Schmidt to Prandtl numbers in stratified atmospheric flows over water surfaces

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Li, Dan; Liu, Heping; Assouline, Shmuel

    2016-07-01

    Expressions for the ratio of the turbulent Schmidt (Sct) to Prandtl (Prt) numbers are derived for an idealized atmospheric surface layer flow over water surfaces. Conditions where the ansatz Sct/Prt≈1 are then discussed. It is shown that Sct/Prt≈1 is consistent with the active role of temperature in turbulence generation or destruction even when perfect similarity between turbulent transport of heat and water vapor is absent.

  7. Measurement simulation of spatial coherence and density degree by turbulence of aerosol and CO II in atmospheric environment

    NASA Astrophysics Data System (ADS)

    Okayama, Hiroshi; Li, Wei

    2006-09-01

    Atmopheric turbulence is one of the important correction factors to evaluate the earth's surface using a sinsor on a satellite. CO II and aerosol are selected as factors of turbulence. The effects of turbulence caused by CO II and aerosol on the light reflected from the earth's surface are estimated by measuring the degradation of spatial coherence of light in a chamber in which atmospheric turbulence is generated. Dry ice is used to generate carbon dioxide gas. degradation of spatial coherence is measured in relation to the increase of CO II. Turbulence caused by aerosol is measured by density of smoke cigarettes. The spatial coherence of light in the chamber degrades in relation to the increase of aerosol and as a result the turbulence increases. The relation between the turbulence and the degree of spatial coherence is explained in a formula.

  8. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    NASA Astrophysics Data System (ADS)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  9. Scintillation and aperture averaging for Gaussian beams through non-Kolmogorov maritime atmospheric turbulence channels.

    PubMed

    Cheng, Mingjian; Guo, Lixin; Zhang, Yixin

    2015-12-14

    Analytic expression of the receiver-aperture-averaged scintillation index (SI) was derived for Gaussian-beam waves propagating through non-Kolmogorov maritime atmospheric environment by establishing a generalized maritime atmospheric spectrum model. The error performance of an intensity-modulated and direct-detection (IM/DD) free-space optical (FSO) system was investigated using the derived SI and log-normal distribution. The combined effects of non-Kolmogorov power-law exponent, turbulence inner scale, structure parameter, propagation distance, receiver aperture, and wavelength were also evaluated. Results show that inner scale and power-law exponent obviously affect SI. Large wavelength and receiver aperture can mitigate the effects of turbulence. The proposed model can be evaluated ship-to-ship/shore FSO system performance.

  10. Determining beam properties at an inaccessible plane using the reciprocity of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Nelson, W.; Wu, C.; Davis, C. C.

    2015-09-01

    A turbulent, atmospheric channel can be considered to be reciprocal at any one instance in time. Reciprocity is a powerful property that can be used to compensate for the distortions caused by turbulence such as beam scintillation, spreading, and wander. Here we investigate the use of reciprocity in instances where a beam is propagated to an uncooperative target. Theoretical work [V. P. Lukin and M. I. Charnotskii , Sov. J. Quantum Electron., 12(5), 602 (1982)] has shown that reciprocity principles indicate that properties of the beam incident on a target fluctuate synchronously with the intensity distribution scattered from the target. Here we extend this purely analytical treatment using phase screen simulations. We show that there exists a correlation between the intensity imaged by the receiver and the field incident on the target. Furthermore, we demonstrate that the intensity at a specific location could be used to drive an adaptive optics system that corrects for atmospheric phase distortions.

  11. Diffraction of sound by a noise barrier in the presence of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Daigle, G. A.

    1982-04-01

    Measurements of traffic noise attenuated by a barrier alongside a highway are presented and compared with certain aspects of diffraction theory to reveal discrepancies. A model experiment is conducted using a point source to study the diffraction at a thin barrier erected above a flat asphalt surface in the normally turbulent atmosphere. Discrepancies are found at shorter distances from the barriers, and these more precise measurements are compared with various diffraction theories, revealing a discrepancy at higher frequencies. The amount of sound energy scattered by atmospheric turbulence above the barrier edge is calculated, and the levels calculated from the sum of the scattered energy and the energy diffracted at the barrier edge show better agreement with the measurements than diffraction theory alone.

  12. Adaptive Combining of Coherently Detected PPM Signals in the Presence of Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Fernandez, Michela Munoz; Vilnrotter, Victor A.

    2004-01-01

    Adaptive combining of experimentally obtained heterodyned pulse position modulated (PPM) signals with pulse-to-pulse coherence, in the presence of simulated spatial distortions resembling atmospheric turbulence, is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot-noise. A convergence study of the algorithm is presented, and results with both computer simulated and experimentally obtained PPM signals are presented and analyzed.

  13. Measuring the intensity fluctuation of partially coherent radially polarized beams in atmospheric turbulence.

    PubMed

    Chen, Ziyang; Cui, Shengwei; Zhang, Lei; Sun, Cunzhi; Xiong, Mengsu; Pu, Jixiong

    2014-07-28

    The scintillation index of a Gaussian beam and radially polarized beams in turbulent atmosphere is experimentally investigated. The scintillation index of a Gaussian beam and a completely coherent radially polarized beam increases with increasing propagation distance from 0 to 400m. The influence of the coherence of partially coherent radially polarized beam on the scintillation is studied. The result shows that the scintillation index of a partially coherent radially polarized beam can be smaller than that of a completely coherent beam.

  14. Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Dajun; Wang, Yaochuan; Yin, Hongming

    2016-04-01

    The partially coherent four-petal Gaussian vortex beam is introduced and described by analytical expressions. The analytical propagation equation for partially coherent four-petal Gaussian vortex beam in turbulent atmosphere is derived by using the extended Huygens-Fresnel diffraction integral formula. The influences of refraction index structure, beam order n, topological charge M and the coherence length on the average intensity distributions of beam are investigated by numerical examples.

  15. Monitoring of the atmospheric turbulence profiles for thespecification of ELTs adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Ziad, Aziz; Borgnino, Julien; Martin, François; Maire, Jérôme; Bondoux, Erick; Douet, Richard; Fanteï-Caujolle, Yan; Robini, Alex; Daban, Jean-Baptiste

    2011-09-01

    The futures large telescopes will be certainly equipped with Multi-Conjugate Adaptive Optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these systems. Major of these technical specifications are related to the atmospheric turbulence particularly the structure constante of the refractive index Cn2 and the outer scale L0. New techniques for the monitoring of the Cn2 and L0 profiles with high vertical resolution will be presented.

  16. Scintillation statistics caused by atmospheric turbulence and speckle in satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Iyer, R. S.; Taylor, L. S.

    1977-01-01

    We study the statistics of scintillation at the ground-based receiver for the earth-space-earth retroreflector configuration of satellite laser ranging. These statistics are governed by the joint effects of atmospheric turbulence and speckle produced by the retroreflector array. An expression for the probability density function of scintillation is obtained and evaluated numerically. Comparison of the normalized variance of scintillation calculated by using this function shows good agreement with results obtained by other methods.

  17. A non-gaussian model of continuous atmospheric turbulence for use in aircraft design

    NASA Technical Reports Server (NTRS)

    Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.

    1976-01-01

    A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.

  18. Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.

    PubMed

    Chu, Xiuxiang

    2007-12-24

    The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.

  19. Study of optimum methods of optical communication. [accounting for the effects of the turbulent atmosphere and quantum mechanics

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1974-01-01

    Abstracts are reported relating to the techniques used in the research concerning optical transmission of information. Communication through the turbulent atmosphere, quantum mechanics, and quantum communication theory are discussed along with the results.

  20. Turbulence structure of the marine atmospheric boundary layer observed during the SEMAPHORE experiment

    SciTech Connect

    Durand, P.; Benech, B.; Druilhet, A.; Ferret, B.

    1994-12-31

    The SEMAPHORE experiment was conducted in the Azores region in 1993 and was devoted to mesoscale studies of oceanic and atmospheric circulations, as well as interactions between oceanic and atmospheric boundary layers. From October 4 to November 17, two instrumented aircraft gathered data. One of the major objectives of SEMAPHORE was to study the coupling between the atmospheric and oceanic boundary layers in the vicinity of an oceanic temperature front. This front, associated with the Azores current, was located south of the Santa Maria Island where the aircraft were based. The aim of this paper is to document the turbulent structure of the atmospheric boundary layer, analyzed from aircraft measurements, for two different meteorological situations.

  1. A Non-Incompressible Non-Boussinesq (NINB) framework for studying atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yan, C.; Archer, C. L.; Xie, S.; Ghaisas, N.

    2015-12-01

    The incompressible assumption is widely used for studying the turbulent atmospheric boundary layer (ABL) and is generally accepted when the Mach number < ~0.3 (velocity < ~100 m/s). Since the tips of modern wind turbine blades can reach and exceed this threshold, neglecting air compressibility will introduce errors. In addition, if air incompressibility does not hold, then the Boussinesq approximation, by which air density is treated as a constant except in the gravity term of the Navier-Stokes equation, is also invalidated. Here, we propose a new theoretical framework, called NINB for Non-Incompressible Non-Boussinesq, in which air is not considered incompressible and air density is treated as a non-turbulent 4D variable. First, the NINB mass, momentum, and energy conservation equations are developed using Reynolds averaging. Second, numerical simulations of the NINB equations, coupled with a k-epsilon turbulence model, are performed with the finite-volume method. Wind turbines are modeled with the actuator-line model using SOWFA (Software for Offshore/onshore Wind Farm Applications). Third, NINB results are compared with the traditional incompressible buoyant simulations performed by SOWFA with the same set up. The results show differences between NINB and traditional simulations in the neutral atmosphere with a wind turbine. The largest differences in wind speed (up to 1 m/s), turbulent kinetic energy (~10%), dissipation rate (~5%), and shear stress (~10%) occur near the turbine tip region. The power generation differences are 5-15% (depending on setup). These preliminary results suggest that compressibility effects are non-negligible around wind turbines and should be taken into account when forecasting wind power. Since only a few extra terms are introduced, the NINB framework may be an alternative to the traditional incompressible Boussinesq framework for studying the turbulent ABL in general (i.e., without turbines) in the absence of shock waves.

  2. Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel

    2016-06-01

    Space-geodetic techniques at radio wavelength, such as global navigation satellite systems and very long baseline interferometry (VLBI), suffer from refractivity of the Earth's atmosphere. These highly dynamic processes, particularly refractivity variations in the neutral atmosphere, contribute considerably to the error budget of these space-geodetic techniques. Here, microscale fluctuations in refractivity lead to elevation-dependent uncertainties and induce physical correlations between the observations. However, up to now such correlations are not considered routinely in the stochastic model of space-geodetic observations, which leads to very optimistic standard deviations of the derived target parameters, such as Earth orientation parameters and station positions. In this study, the standard stochastic model of VLBI observations, which only includes, almost exclusively, the uncertainties from the VLBI correlation process, is now augmented by a variance-covariance matrix derived from an atmospheric turbulence model. Thus, atmospheric refractivity fluctuations in space and time can be quantified. One of the main objectives is to realize a suitable stochastic model of VLBI observations in an operational way. In order to validate the new approach, the turbulence model is applied to several VLBI observation campaigns consisting of different network geometries leading the path for the next-generation VLBI campaigns. It is shown that the stochastic model of VLBI observations can be improved by using high-frequency atmospheric variations and, thus, refining the stochastic model leads to far more realistic standard deviations of the target parameters. The baseline length repeatabilities as a general measure of accuracy of baseline length determinations improve for the turbulence-based solution. Further, this method is well suited for routine VLBI data analysis with limited computational costs.

  3. The Canopy Horizontal Array Turbulence Study (CHATS): Influence of canopy density and atmospheric stability on turbulent exchange

    NASA Astrophysics Data System (ADS)

    Patton, E. G.

    2011-12-01

    Understanding the micrometeorology within and above forest canopies is of great interest for many environmental applications such as weather and climate forecasting as well as for vegetation-atmosphere scalar exchanges. Within a canopy, both the ground and the vegetation can act as scalar sources/sinks, where the distribution of canopy sources/sinks depends on the amount and state of the canopy foliage. For deciduous trees, the foliage evolves across a seasonal cycle from bare limbs in winter (no photosynthesis and an open canopy) to rapid growth in spring (increasing photosynthesis and canopy density), to maturity in summer (more constant photosynthesis and canopy density), to senescence and leaf-drop in fall (decreasing photosynthesis and canopy density). Thus a broad spectrum of different conditions occurs through the year, thereby imposing height and seasonal dependence on dynamical and scalar fluxes. The Canopy Horizontal Array Turbulence Study (CHATS) took place in 2007 focusing on a 10 m tall deciduous walnut orchard in Dixon, California (USA). High spatial resolution micrometeorological measurements were deployed aiming to establish the influence of seasonality (prior to, and follwing leaf-out) on canopy exchange. This talk will discuss the sensitivity of velocity, temperature and humidity fields within and above the deciduous walnut orchard at CHATS to the canopy evolution and atmospheric stability.

  4. Turbulence in wind turbine wakes under different atmospheric conditions from static and scanning Doppler LiDARs

    NASA Astrophysics Data System (ADS)

    Kumer, Valerie; Reuder, Joachim

    2016-04-01

    Wake characteristics are of great importance for wind park performances and turbine loads. Wind tunnel experiments helped to validate wake model simulations under neutral atmospheric conditions. However, recent studies show strongest wake characteristics and power losses in stable atmospheric conditions. Considering all three occurring atmospheric conditions this study presents a turbulence analysis of wind turbine wake flows measured by static and scanning Doppler LiDARs at the coast of the Netherlands. We use data collected by three Windcubes v1, a scanning Windcube 100S and sonic anemometers during the Wind Turbine Wake Experiment - Wieringermeer (WINTWEX-W). Turbulence parameters such as Turbulence Intensity (TI) and turbulent kinetic energy (TKE) are retrieved from the collected raw data. Results show highest turbulence on the flanks of the wake where strong wind shear dominates. On average the spatial turbulence distribution becomes more homogeneous with conical areas of enhanced TI. Highest turbulence and strongest wind deficits occur during stable weather conditions. Despite the ongoing research on the reliability of turbulence retrievals of Doppler LiDAR data, the results are consistent with sonic anemometer measurements and show promising opportunities for a qualitative study of wake characteristics such as wake strength and wake peak frequencies.

  5. Large-eddy simulation of contrail evolution in the vortex phase and its interaction with atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Picot, J.; Paoli, R.; Thouron, O.; Cariolle, D.

    2015-07-01

    In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES) coupled to a Lagrangian particle tracking method to treat the ice phase. In this paper, fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere and lower stratosphere. The initial flow field is composed of the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail descent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex breakup dominates over background turbulence until the end of the vortex regime and controls the mixing with ambient air. This results in mean microphysical characteristics such as ice mass and optical depth that are slightly affected by the intensity of atmospheric turbulence. However, the background humidity and temperature have a first-order effect on the survival of ice crystals and particle size distribution, which is in line with recent studies.

  6. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system.

  7. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system. PMID:27409692

  8. MAGNETIC TRANSPORT ON THE SOLAR ATMOSPHERE BY LAMINAR AND TURBULENT AMBIPOLAR DIFFUSION

    SciTech Connect

    Hiraki, Y.; Krishan, V.; Masuda, S.

    2010-09-10

    The lower solar atmosphere consists of partially ionized turbulent plasmas harboring velocity field, magnetic field, and current density fluctuations. The correlations among these small-scale fluctuations give rise to large-scale flows and magnetic fields which decisively affect all transport processes. The three-fluid system consisting of electrons, ions, and neutral particles supports nonideal effects such as the Hall effect and ambipolar diffusion. Here, we study magnetic transport by the laminar- and turbulent-scale ambipolar diffusion processes using a simple model of the magnetic induction equation. Based on a linear analysis of the induction equation, we perform a one-dimensional numerical simulation to study the laminar ambipolar effect on medium-scale magnetic field structures. The nonlinearity of the laminar ambipolar diffusion creates magnetic structures with sharp gradients in the scale of hundreds of kilometers. We expect that these can be amenable to processes such as magnetic reconnection and energy release therefrom for heating and flaring of the solar plasma. Analyzing the characteristic timescales of these processes, we find that the turbulent diffusion timescale is smaller by several orders of magnitude than the laminar diffusion timescale. The effect of the modeled turbulent ambipolar diffusion on the obtained field structures is briefly discussed.

  9. Observation of atmospheric turbulence from high resolution balloon soundings ST radar

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Dalaudier, F.

    2001-08-01

    A field campaign involving balloon borne soundings and a ST radar (PROUST), both allowing high resolution measurements within the lower stratosphere, was conducted during April 1998 in St. Santin (south of France). One objective of this campaign was to characterize the small scale turbulence of the atmosphere from simultaneous and almost co-located observations. The purpose of this communication is to put forward some aspects of the supply of high resolution in situ measurements regarding to the interpretation of the radar data. First, the radar calibration appears correct. Second, the turbulent events seems to be severely under sampled by radar, likely because of the ground echo. On an other hand, high resolution in situ measurements show that classical PTU soundings are not sufficient to characterize the background (or reference) state of the atmosphere (for turbulence studies at least). As a consequence, the Brunt-Väisälä frequencies evaluated by classical soundings (or by model outputs), which are needed to infer tubulence parameters from radar measurements, should be considered in fine as a random parameter.

  10. Spectral and cospectral characteristics of atmospheric turbulence in the marine boundary layer

    SciTech Connect

    Volkov, Yu.A.; Grachev, A.A.; Elagina, L.G.; Matveev, D.T.

    1994-12-31

    The behavior of frequency spectra and cospectra of atmospheric turbulence over the sea surface is described through analysis of data obtained from shipboard in a number of marine expeditions in Atlantic. These data sets have a wide variety of weather conditions. Many cases have demonstrated similarity between spectra of velocity, temperature and humidity fluctuations as well as momentum, heat and water vapor flux cospectra. These cases are characterized by strongly unstable stratification of surface layer, which observed during expedition in winter/spring 1988 in North Atlantic near Newfoundland Island. However, in weak unstable conditions typical for Subtropical (Pre-ASTEX-91 experiment) and Equatorial Atlantic, spectra of temperature and humidity and heat and moisture flux cospectra were often dissimilar. Spectral dissimilarity of turbulent quantities are also related with unsteady cases. For these cases heat flux cospectra often change sign at low frequency and the net sensible heat flux may be close to zero. The turbulent measurements are accompanied by simultaneous remote sensing of sea surface temperature and cloud low boundary. The obtained results indicate that the anomalous behavior of low-frequency cospectra is related to large-scale circulations (coherent structures) in the atmospheric boundary layer (ABL) and oceanic subsurface layer.

  11. 500  Gb/s free-space optical transmission over strong atmospheric turbulence channels.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B

    2016-07-15

    We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated. PMID:27420516

  12. Amplitude Scintillation due to Atmospheric Turbulence for the Deep Space Network Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Fast amplitude variations due to atmospheric scintillation are the main concerns for the Deep Space Network (DSN) Ka-band downlink under clear weather conditions. A theoretical study of the amplitude scintillation variances for a finite aperture antenna is presented. Amplitude variances for weak scattering scenarios are examined using turbulence theory to describe atmospheric irregularities. We first apply the Kolmogorov turbulent spectrum to a point receiver for three different turbulent profile models, especially for an exponential model varying with altitude. These analytic solutions then are extended to a receiver with a finite aperture antenna for the three profile models. Smoothing effects of antenna aperture are expressed by gain factors. A group of scaling factor relations is derived to show the dependences of amplitude variances on signal wavelength, antenna size, and elevation angle. Finally, we use these analytic solutions to estimate the scintillation intensity for a DSN Goldstone 34-m receiving station. We find that the (rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponential model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in telecommunication system design and signal-fading prediction. They also provide a theoretical basis for further comparison with other measurements at Ka-band.

  13. A fast atmospheric turbulent parameters estimation using particle filtering. Application to LIDAR observations

    NASA Astrophysics Data System (ADS)

    Florian, Suzat; Christophe, Baehr; Alain, Dabas

    2011-12-01

    Estimating fast turbulence fluctuations in the boundary layer of the atmosphere, using remote detection instrument is an important scientific issue. Doppler LIDAR, is typically used to get this kind of information because it can make fast, distant, precise, and non-intrusive measurements of the wind field by giving the radial component in any direction. The objective of those measurements is to evaluate as precisely as possible the wind structure using the partial wind information provided, in order to estimate turbulent parameters. The approach presented in this paper, consist in coupling the remote detection system and a stochastic Lagrangian model of the atmosphere. The fluid is represented by a set of interacting particles, evolving according to an evolution system based on S.B Pope work. Data provided by the instrument are assimilated in real time in the model using a particle filtering algorithm. The purpose is to locally correct the properties of particles using measurements, to fit the real fluid observed. A precise real time estimation of the wind field, allows then to estimate turbulent parameters. The methodology has produced convincing results on simulated Doppler LIDAR measurements, in tree-dimensional modeling.

  14. Atmospheric Stability & Turbulence from Temperature Profiles over Sicily During Summer 2002 & 2003 HASI Balloon Campaigns

    NASA Technical Reports Server (NTRS)

    Colombatti, G.; Ferri, F.; Angrilli, F.; Fulchignoni, M.

    2005-01-01

    Experimental results and interpretation of the temperature measurements data retrieved during the balloon campaigns (in 2002 and in 2003) for testing HASI (Huygens Atmospheric Structure Instrument), launched from the Italian Space Agency Base in Trapani (Sicily), are presented. Both ascending and descending phases are analysed; data reveal interesting features near the tropopause (present in the region between 11km-14km), where temperature cooling can be related to layers with strong winds (2002 flight); in the troposphere a multistratified structure of the temperature field is observed and discussed (particularly in the 2003 flight) Finally, stability and turbulence of the atmosphere are analysed; the buoyancy N2 parameters for both the flights show lowers value respect to standard tropospheric values corresponding to a lower stability of the atmosphere; still there is a higher stability above the tropopause. The energy spectrum of temperature data is consistent with the Kolmogorov theory: the characteristic k(sup -5/3) behaviour is reproduced.

  15. Turbulence structure of a cloud-capped marine atmospheric boundary layer analyzed from ASTEX field data

    SciTech Connect

    Tjernstroem, M.

    1994-12-31

    The cloud-capped marine atmospheric boundary layer has gained attention for several reasons, one being the impact marine stratocumulus is believed to have on the climate system. To really understand the sensitivity of the climate system to marine low level clouds, let alone to predict their effect on climate for decades to come, require numerical modeling. Furthermore, in addition to there being several other important processes, e.g., radiative transfer, turbulent mixing and transport, etc., many of these interact in a way not fully understood. Parameterization of such processes in models on all scales is fundamental and cannot be performed without sound knowledge of important scaling and structures. Concerning in-cloud turbulence, such knowledge can today essentially only be gained from analysis of in-situ experimental data. Furthermore, if model parameterizations are successful, models can also be used to increase the understanding of the physics behind observed motion systems and how they interact with the PBL dynamics.

  16. Statistic of a Gaussian beam from an arbitrary rough target in the single passage atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xiang, NingJing; Wu, ZhenSen; Wang, MingJun

    2014-10-01

    The extended Huygens-Fresnel principle and Goodman model was utilized for target surface to derive the mutual coherence function (MCF) of a Gaussian beam reflected from an arbitrary rough target in atmospheric turbulence. According to the MCF, expressions of the mean irradiance and average speckle size at the receiver were obtained. The analysis indicated that the mean intensity is closely related to the ratio of root mean square (rms) height to the lateral correlation length. In addition, the speckle size at the receiver is associated with turbulence strength, propagation distance and roughness of the target. The results can be reduced to the result of a Gaussian beam illuminating rough target and scattering from a target in free space.

  17. Improved BDF relaying scheme using time diversity over atmospheric turbulence and misalignment fading channels.

    PubMed

    García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2014-01-01

    A novel bit-detect-and-forward (BDF) relaying scheme based on repetition coding with the relay is proposed, significantly improving the robustness to impairments proper to free-space optical (FSO) communications such as unsuitable alignment between transmitter and receiver as well as fluctuations in the irradiance of the transmitted optical beam due to the atmospheric turbulence. Closed-form asymptotic bit-error-rate (BER) expressions are derived for a 3-way FSO communication setup. Fully exploiting the potential time-diversity available in the relay turbulent channel, a relevant better performance is achieved, showing a greater robustness to the relay location since a high diversity gain is provided regardless of the source-destination link distance.

  18. The Analyses of Turbulence Characteristics in the Atmospheric Surface Layer Using Arbitrary-Order Hilbert Spectra

    NASA Astrophysics Data System (ADS)

    Wei, W.; Schmitt, F. G.; Huang, Y. X.; Zhang, H. S.

    2016-05-01

    Turbulent characteristics in the atmospheric surface layer are investigated using a data-driven method, Hilbert spectral analysis. The results from empirical mode decomposition display a set of intrinsic mode functions whose characteristic scales suggest a dyadic filter-bank property. It can be concluded from the joint probability density function of the intrinsic mode functions that the turbulent properties are totally different under different stratifications: the amplitudes (or energies) are arranged according to the stability parameter [InlineEquation not available: see fulltext.] for stable conditions, but tend to cluster randomly for unstable cases. The intermittency analyses reveal that second-order Hilbert marginal spectra display a power-law behaviour in the inertial subrange, and that the scaling exponent functions deviate from the theoretical values due to the strong intermittency in the stable boundary layer.

  19. The Analyses of Turbulence Characteristics in the Atmospheric Surface Layer using Arbitrary-order Hilbert Spectra

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Schmitt, François G.; Huang, Yongxiang; Zhang, Hongsheng

    2016-04-01

    Turbulent characteristics in the atmospheric surface layer are investigated using a data-driven method, Hilbert spectral analysis. The results from empirical mode decomposition display a set of intrinsic mode functions whose characteristic scales suggest a dyadic filter-bank property. It can be concluded from the joint probability density function of the intrinsic mode functions that the turbulent properties are totally different under different stratifications: the amplitudes (or energies) are arranged according to the stability parameter z/L for stable conditions, but tend to cluster randomly for unstable cases. The intermittency analyses reveal that second-order Hilbert marginal spectra display a power-law behaviour in the inertial subrange, and that the scaling exponent functions present deviation, from the theoretical values due to the strong intermittency in the stable boundary layer.

  20. Improved BDF Relaying Scheme Using Time Diversity over Atmospheric Turbulence and Misalignment Fading Channels

    PubMed Central

    García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2014-01-01

    A novel bit-detect-and-forward (BDF) relaying scheme based on repetition coding with the relay is proposed, significantly improving the robustness to impairments proper to free-space optical (FSO) communications such as unsuitable alignment between transmitter and receiver as well as fluctuations in the irradiance of the transmitted optical beam due to the atmospheric turbulence. Closed-form asymptotic bit-error-rate (BER) expressions are derived for a 3-way FSO communication setup. Fully exploiting the potential time-diversity available in the relay turbulent channel, a relevant better performance is achieved, showing a greater robustness to the relay location since a high diversity gain is provided regardless of the source-destination link distance. PMID:24587711

  1. Free-space to few-mode-fiber coupling under atmospheric turbulence.

    PubMed

    Zheng, Donghao; Li, Yan; Chen, Erhu; Li, Beibei; Kong, Deming; Li, Wei; Wu, Jian

    2016-08-01

    High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber. PMID:27505836

  2. Free-space to few-mode-fiber coupling under atmospheric turbulence.

    PubMed

    Zheng, Donghao; Li, Yan; Chen, Erhu; Li, Beibei; Kong, Deming; Li, Wei; Wu, Jian

    2016-08-01

    High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber.

  3. Effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Haugstad, B. S.

    1978-01-01

    Four separable effects of atmospheric turbulence on average refraction angles in occultation experiments are derived from a simplified analysis, and related to more general formulations by B. S. Haugstad. The major contributors are shown to be due to gradients in height of the strength of the turbulence, and the sense of the resulting changes in refraction angles is explained in terms of Fermat's principle. Because the results of analyses of such gradient effects by W. B. Hubbard and J. R. Jokipii are expressed in other ways, a special effort is made to compare all of the predictions on a common basis. We conclude that there are fundamental differences, and use arguments based on energy conservation and Fermat's principle to help characterize the discrepancies.

  4. Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.

    PubMed

    Banakh, V A; Smalikho, I N

    2014-09-22

    Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.

  5. Tidal and atmospheric influences on near-surface turbulence in an estuary

    NASA Astrophysics Data System (ADS)

    Orton, Philip M.; Zappa, Christopher J.; McGillis, Wade R.

    2010-12-01

    Estuarine near-surface turbulence is important for transport, mixing, and air-water exchanges of many important constituents but has rarely been studied in detail. Here, we analyze a unique set of estuarine observations of in situ atmospheric and full water column measurements, estimated air-sea exchanges, and acoustic measurements of several terms in the turbulent kinetic energy (TKE) budget. Observations from a 5.1 m deep site in the Hudson River estuary include dissipation at 50 cm depth (ɛ50), as well as profiles of TKE, shear production of TKE (P), and net turbulent vertical TKE transport (TD). Regressions suggest that the principal controlling factor for ɛ50 was wind (through the surface shear velocity, U*) and that the surface heat flux and tidal currents played a secondary role. For ebb spring tides, the TKE budget at 50 cm depth was closed within noise levels. Ebbs had high ɛ50 due to local shear production, which nearly balanced ɛ50. Floods had TD approaching P in the upper water column but generally weak near-surface shear and turbulence. Examining buoyancy fluxes that impact near-surface stratification and can indirectly control turbulence, solar heat input and tidal straining caused similar buoyancy fluxes on a sunny, calm weather day, promoting ebb tide restratification. Wind-driven mixing was found to dominate during a fall season storm event, and strong overnight heat loss after the storm helped delay restratification afterward. These results demonstrate the utility of combining detailed air-sea interaction and physical oceanographic measurements in future estuary studies.

  6. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  7. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  8. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  9. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  10. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 differential absorption lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas H.; Petrin, Roger R.; MacKerrow, Edward P.; Schmitt, Mark J.; Quick, Charles R., Jr.; Zardecki, Andrew; Porch, William M.; Whitehead, Michael C.; Walters, Donald L.

    1998-09-01

    The measurement sensitivity of CO2 differential absorption LIDAR (DIAL) can be affected by a number of different processes. We will address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO2 DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  11. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} differential absorption LIDAR (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.

    1998-09-01

    The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  12. First results of the PML monitor of atmospheric turbulence profile with high vertical resolution

    NASA Astrophysics Data System (ADS)

    Ziad, A.; Blary, F.; Borgnino, J.; Fanteï-Caujolle, Y.; Aristidi, E.; Martin, F.; Lantéri, H.; Douet, R.; Bondoux, E.; Mékarnia, D.

    2013-11-01

    Aims: Future extremely large telescopes will certainly be equipped with wide-field adaptive optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these AO systems. Most of these technical specifications are related to the atmospheric turbulence parameters, particularly the profile of the refractive index structure constant CN2(h). A new monitor called Profiler of Moon Limb (PML) for the extraction of the CN2(h) profile with high vertical resolution and its first results are presented. Methods: The PML instrument uses an optical method based on the observation of the Moon limb through two subapertures. The use of the lunar limb leads to a continuum of double stars allowing a scan of the whole atmosphere with high resolution in altitude. Results: The first prototype of the PML has been installed at Dome C in Antarctica and the first results of the PML are presented and compared to radio-sounding balloon profiles. In addition to the CN2(h) profile obtained with high vertical resolution, PML is also able to provide other atmospheric turbulence parameters such as the outer scale profile, the total seeing, and the isoplanatic and isopistonic angles.

  13. Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models

    NASA Astrophysics Data System (ADS)

    Kitsios, Vassili; Frederiksen, Jorgen S.; Zidikheri, Meelis J.

    2016-04-01

    Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long-standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities) from the subgrid statistics of high-resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy-cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have different scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including weather, seasonal, and climate prediction; transport studies; and understanding natural variability and extreme events.

  14. Towards Improved Turbulence Model Parameterizations of the Stably Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Venayagamoorthy, S. K.

    2014-12-01

    Connecting available field measurements with appropriate model parameters of turbulent mixing in the stably stratified atmospheric boundary layer remains an active research area. The research presented in this study extends the theoretical framework of Mater & Venayagamoorthy (textit{Phys. Fluids}, vol. 26, no. 3, 2014, 036601) on shear- and buoyancy-dominated regimes to the stable atmospheric boundary layer (SABL). Two pertinent length scales can be constructed to directly include the effects of shear and buoyancy, LkS=k1/2/SL_{kS} = k^{1/2} /S and LkN=k1/2/NL_{kN} = k^{1/2}/N, respectively, that are representative of large-scale motions in these two regimes. Model parameters are developed using observations from three field campaigns and further evaluated with an textit{a priori} analysis of large-eddy simulation (LES) data of the SABL vertical structure. Results of this study thoroughly evaluate the pertinent mixing lengths applied to stably stratified turbulence in atmospheric observations and boundary layer models extendable to large-scale numerical weather prediction or global circulation models. *S.K.V. gratefully acknowledges the support of the National Science Foundation under Grant No. OCE-1151838

  15. Turbulence in planetary occultations. II - Effects on atmospheric profiles derived from Doppler measurements. III - Effects on atmospheric profiles derived from intensity measurements

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.

    1978-01-01

    The nature and magnitude of turbulence-induced errors in atmospheric profiles derived from Doppler measurements made during radio occultations are investigated. It is found that turbulence in planetary atmospheres induces both fluctuating and systematic errors in derived profiles, but the errors of both types are very small. Consideration of the occultation of Mariner 10 by Venus and of the Pioneer occultations by Jupiter shows that the rms fractional errors in the atmospheric profiles derived from these observations were less than 0.01 in both temperature and pressure, while the fractional systematic errors were typically of the order of 1 millionth. The extent to which atmospheric profiles derived from radio and optical intensity measurements are affected by turbulence is also examined. The results indicate that turbulence in planetary atmospheres has only a marginal effect on derived profiles in the weak-scattering limit and that the turbulence-induced errors in this case are always much larger than the corresponding errors in profiles derived from radio Doppler measurements.

  16. Operational condition of direct single-mode-fiber coupled FSO terminal under strong atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Arimoto, Yoshinori

    2011-03-01

    This paper discusses the operational condition for direct single-mode-fiber-coupling FSO terminals under the various adverse weather conditions, such as strong atmospheric turbulences and rain falls. A good correlation between the scintillation index of the intensities of beacon receiving power and the signal fading depth has been observed, which allows us to predict the signal link quality based on the beacon scintillation index provided by the classical scintillation theory and concludes that the scintillation index for the beacon beam should be less than 0.1. This paper also reports the effect of performance enhancements provided by the new adaptive controller for the stable and robust terminal operation.

  17. Estimation of Cn² based on scintillation of fixed targets imaged through atmospheric turbulence.

    PubMed

    Gulich, Damián; Funes, Gustavo; Pérez, Darío; Zunino, Luciano

    2015-12-01

    We define a pixel-based scintillation index for dynamic incoherent imaging of fixed high-contrast targets through atmospheric turbulence. We propose a simple setup to study this parameter varying the Cn(2) constant in controlled laboratory conditions (weak fluctuation regime). We find the semi-empirical relationship between the pixel-based scintillation index and the index of refraction structure constant, which we then employ to estimate Cn(2) successfully in an independent case in which this value was not known beforehand.

  18. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  19. Monitoring of the atmospheric turbulence profiles for the specification of ELTs adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Ziad, Aziz; Borgnino, Julien; Martin, François; Maire, Jérôme; Wassila, Dali-Ali; Berdja, Amokrane; Daban, Jean-Baptiste; Fanteï-Caujolle, Yan; Sarazin, Marc; Tokovinin, Andreï

    2010-07-01

    The futures large telescopes will be certainly equipped with Multi-Conjugate Adaptive Optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these systems. Major of these technical specifications are related to the atmospheric turbulence particularly the structure constante of the refractive index C2n(h) and the outer scale L0(h). New techniques based on the moon limb observation for the monitoring of the C2n(h) and L0(h) profiles with high vertical resolution will be presented.

  20. Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics

    SciTech Connect

    Churchfield, M. J.; Lee, S.; Michalakes, J.; Moriarty, P. J.

    2012-01-01

    Although the atmospheric sciences community has been studying the effects of atmospheric stability and surface roughness on the planetary boundary layer for some time, their effects on wind turbine dynamics have not been well studied. In this study, we performed numerical experiments to explore some of the effects of atmospheric stability and surface roughness on wind turbine dynamics. We used large-eddy simulation to create atmospheric winds and compute the wind turbine flows, and we modeled the wind turbines as revolving and flexible actuator lines coupled to a wind turbine structural and system dynamic model. We examined the structural moments about the wind turbine blade, low-speed shaft, and nacelle; power production; and wake evolution when large 5-MW turbines are subjected to winds generated from low- and high-surface roughness levels representative of offshore and onshore conditions, respectively, and also neutral and unstable atmospheric conditions. In addition, we placed a second turbine 7 rotor diameters downwind of the first one so that we could explore wake effects under these different conditions. The results show that the turbulent structures generated within the atmospheric boundary layer wind simulations cause isolated loading events at least as significant as when a turbine is waked by an upwind turbine. The root-mean-square (RMS) turbine loads are consistently larger when the surface roughness is higher. The RMS blade-root out-of-plane bending moment and low-speed shaft torque are higher when the atmospheric boundary layer is unstable as compared with when it is neutral. However, the RMS yaw moments are either equal or reduced in the unstable case as compared with the neutral case. For a given surface roughness, the ratio of power produced by the downwind turbine relative to that of the upwind turbine is 15-20% higher when the conditions are unstable as compared with neutral. For a given atmospheric stability, this power ratio is 10% higher with

  1. Scaling laws of turbulence intermittency in the atmospheric boundary layer: the role of stability

    NASA Astrophysics Data System (ADS)

    Paradisi, Paolo; Cesari, Rita; Allegrini, Paolo

    2015-09-01

    Bursting and intermittent behavior is a fundamental feature of turbulence, especially in the vicinity of solid obstacles. This is associated with the dynamics of turbulent energy production and dissipation, which can be described in terms of coherent motion structures. These structures are generated at random times and remain stable for long times, after which they become suddenly unstable and undergo a rapid decay event. This intermittent behavior is described as a birth-death point process of self-organization, i.e., a sequence of critical events. The Inter-Event Time (IET) distribution, associated with intermittent self-organization, is typically a power-law decay, whose power exponent is known as complexity index and characterizes the complexity of the system, i.e., the ability to develop self-organized, metastable motion structures. We use a method, based on diffusion scaling, for the estimation of system's complexity. The method is applied to turbulence velocity data in the atmospheric boundary layer. A neutral condition is compared with a stable one, finding that the complexity index is lower in the neutral case with respect to the stable one. As a consequence, the crucial birth-death events are more rare in the stable case, and this could be associated with a less efficient transport dynamics.

  2. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts.

    PubMed

    Piacsek, Andrew A

    2002-01-01

    The propagation and subsequent distortion of sonic booms with rippled wave fronts are investigated theoretically using a nonlinear time-domain finite-difference scheme. This work seeks to validate the rippled wave front approach as a method for explaining the significant effects of turbulence on sonic booms [A. S. Pierce and D. J. Maglieri, J. Acoust. Soc. Am. 51, 702-721 (1971)]. A very simple description of turbulence is employed in which velocity perturbations within a shallow layer of the atmosphere form strings of vortices characterized by their size and speed. Passage of a steady-state plane shock front through such a vortex layer produces a periodically rippled wave front which, for the purposes of the present investigation, serves as the initial condition for a finite-difference propagation scheme. Results show that shock strength and ripple curvature determine whether ensuing propagation leads to wave front folding. High resolution images of the computed full wave field provide insights into the spiked and rounded features seen in sonic booms that have propagated through turbulence. PMID:11837957

  3. Temporal decorrelation of optical turbulence as a function of altitude in the atmosphere

    NASA Astrophysics Data System (ADS)

    Avilés, J. L.; Avila, R.; Carrasco, E.; Sánchez, L. J.; Chun, M.; Butterley, T.; Wilson, R.; Urbiola, F. J.

    2016-05-01

    Here, we propose a new method to evaluate the Taylor's frozen-flow hypothesis with the Generalized SCIntillation Detection And Ranging technique (G-SCIDAR). Unlike the work previously reported in the literature, we take into consideration the wind-speed fluctuation effects when examining the spatiotemporal cross-covariance functions computed according to the G-SCIDAR method. We show that under the assumption of having turbulent layers driven by fluctuating wind-velocity vectors, it is correct examining the encircled volume of smeared cross-covariance peaks. The method was used to process 60 spatiotemporal cross-covariance functions of the stellar scintillation patterns retrieved at the 2.2 m telescope of the University of Hawaii along a two hours observation run. We found that most of the time the structure of atmospheric refraction-index inhomogeneities decorrelates linearly with time for individual turbulent layers. Moreover, contrary to the behaviour expected under the assumption of having a slowly evolving structure of turbulent eddies, being translated by a much greater wind-velocity vector, which should strengthen the hypothesis of a frozen flow, we found that the temporal decorrelation of such structure increases as the overall layer displacement velocity increases.

  4. A low cost, low power, S-band radar for atmospheric turbulence studies

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2015-05-01

    We present a frequency modulated continuous wave (FMCW) radar capable of measuring atmospheric turbulence profiles within the Earth's surface layer. Due to the low cost and easily automated design, a number of units may be built and deployed to sites of interest around the world. Each unit would be capable of collecting turbulence strength, as a function of altitude, with a range of about 50 meters above the antenna plane. Such data is valuable to developers of directed energy, laser communications, imaging, and other optical systems, where good engineering design is based on an understanding of the details of the turbulence in which those systems will have to operate. The radar is based on the MIT "coffee can" design1,2. It is FCC compliant, operating in the 2.4 GHz instrumentation, science, and medical (ISM) band with less than 1 watt effective isotropic radiated power (EIRP). It is expected to cost less than $1000 per unit and is built from commercial off the shelf parts, along with easily constructed horn antennas. Major modifications to the design in 1,2 are the inclusion of horn antennas for directivity, and a straight forward processing software change that increases integration times to the order of tens of seconds to a minute. Here, a prototype system is described and preliminary data is presented.

  5. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  6. Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence.

    PubMed

    Li, Jinhong; Zeng, Jun; Duan, Meiling

    2015-05-01

    The analytical expressions for the cross-spectral density function of partially coherent sinh-Gaussian (ShG) vortex beams propagating through free space and non-Kolmogorov atmospheric turbulence are derived, and used to study the classification of coherent vortices creation and distance of topological charge conservation. With the increment of the general structure constant and the waist width, as well as the decrement of the general exponent, the inner scale of turbulence and spatial correlation length, the distance of topological charge conservation will decrease, whereas the outer scale of turbulence and the Sh-part parameter have no effect on the distance of topological charge conservation. According to the creation, the coherent vortices are grouped into three classes: the first is the inherent coherent vortices of the vortex beams, the second is created by the vortex beams when propagating through free space, and the third is created by the atmospheric turbulence inducing the vortex beams.

  7. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence.

    PubMed

    Mei, Zhangrong; Schchepakina, Elena; Korotkova, Olga

    2013-07-29

    A stochastic beam generated by a recently introduced source of Schell type with cosine-Gaussian spectral degree of coherence is shown to possess interesting novel features on propagation in isotropic and homogeneous atmospheric turbulence with general non-Kolmogorov power spectrum. It is shown that while at small distances from the source the beam's intensity exhibits annular profile with adjustable area of the dark region, the center disappears at sufficiently large distances and the beam's intensity tends to Gaussian form. Hence the 3D bottle beam is produced by the cumulative effect of the random source and the atmosphere. The distances at which the on-axis beam intensity has local minima and maxima are shown to have analytic dependence on the source and the atmospheric parameters. And the influence of the fractal constant of the atmospheric power spectrum and refractive-index structure constant on beam characteristics is analyzed in depth. The novel double-cycle qualitative change in the degree of coherence is shown to occur on atmospheric propagation which was not previously known for any other beams.

  8. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  9. Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence.

    PubMed

    Mei, Zhangrong; Korotkova, Olga

    2013-11-01

    A recently introduced class of scalar cosine-Gaussian Schell-Model [CGSM] beams is generalized to electromagnetic theory. The realizability conditions and the beam conditions on the source parameters are derived. Analytical formulas for the cross-spectral density matrix elements of the electromagnetic cosine-Gaussian Schell-model [EM CGSM] beams propagating in isotropic random medium are derived. It is found that the EM CGSM beams possess single-ring or double-ring intensity profiles, depending of source parameters. As two examples, the statistical characteristics of the EM CGSM beams propagating in free space and non-Kolmogorov turbulent atmosphere are studied numerically. The effects of the fractal constant of the atmospheric spectrum and the refractive-index structure constant on such characteristics are analyzed in detail.

  10. Turbulence effects on high energy laser beam propagation in the atmosphere.

    PubMed

    Yahel, R Z

    1990-07-20

    A simple phenomenological model for the interaction of a high energy laser (HEL) beam with atmospheric turbulence is presented. According to this model the temperature power spectrum becomes non-Kolmogorov. The refractive index structure constant C(2)(n) is replaced by another quantity C(2)(n,eff) which is space dependent, C(2)(n,eff) = C(2)(n) (1 + mid R:nablaT/ partial differentialtheta / partial differentialzmid R:(2)) (provided ( partial differentialtheta )/( partial differentialz) not equal 0). Here DeltaT is the local temperature gradient in the crosswind direction, while ( partial differentialtheta )/( partial differentialz) is the vertical potential temperature gradient in the atmosphere. Numerical simulations of HEL beam propagation were performed including effects of this model. Implications of the results are discussed.

  11. The vertical turbulence structure of the coastal marine atmospheric boundary layer

    SciTech Connect

    Tjernstroem, M.; Smedman, A.S. )

    1993-03-15

    The vertical turbulence structure in the marine atmosphere along a shoreline has been investigated using data from tower and aircraft measurements performed along the Baltic coast in the southeast of Sweden. Two properties make the Baltic Sea particularly interesting. It is surrounded by land in all directions within moderate advection distances, and it features a significant annual lag in sea surface temperature as compared with inland surface temperature. The present data were collected mostly during spring or early summer, when the water is cool, i.e., with a stably or neutrally stratified marine boundary layer usually capped by an inversion. Substantial daytime heating over the land area results in a considerable horizontal thermal contrast. Measurements were made on a small island, on a tower with a good sea fetch, and with an airborne instrument package. The profile data from the aircraft is from 25 slant soundings performed in connection to low level boundary layer flights. The results from the profiles are extracted through filtering techniques on individual time (space) series (individual profiles), applying different normalization and finally averaging over all or over groups of profiles. The land-based data are from a low tower situated on the shoreline of a small island with a wide sector of unobstructed sea fetch. Several factors are found that add to the apparent complexity of the coastal marine environment: the state of the sea appears to have a major impact on the turbulence structure of the surface layer, jet-shaped wind speed profiles were very common at the top of the boundary layer (in about 50% of the cases) and distinct layers with increased turbulence were frequently found well above the boundary layer (in about 80% of the cases). The present paper will concentrate on a description of the experiment, the analysis methods, and a general description of the boundary layer turbulence structure over the Baltic Sea. 40 refs., 16 figs., 2 tabs.

  12. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  13. Diffractive propagation and recovery of modulated (including chaotic) electromagnetic waves through uniform atmosphere and modified von Karman phase turbulence

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Mohamed, Fathi H. A.

    2016-05-01

    In a parallel approach to recently-used transfer function formalism, a study involving diffraction of modulated electromagnetic (EM) waves through uniform and phase-turbulent atmospheres is reported in this paper. Specifically, the input wave is treated as a modulated optical carrier, represented by use of a sinusoidal phasor with a slowly timevarying envelope. Using phasors and (spatial) Fourier transforms, the complex phasor wave is transmitted across a uniform or turbulent medium using the Kirchhoff-Fresnel integral and the random phase screen. Some preliminary results are presented comparing non-chaotic and chaotic information transmission through turbulence, outlining possible improvement in performance utilizing the robust features of chaos.

  14. Investigation of anisoplanatic effect in adaptive optics for atmospheric turbulence correction

    NASA Astrophysics Data System (ADS)

    Li, Xinyang; Shao, Li; Hu, Shijie; Huang, Kui

    2015-02-01

    Laser Guide Star (LGS) is an artificial atmospheric turbulence probing source of adaptive optics (AO) for compensating for the wave-front error of interested object in real time, and for providing approximate diffraction-limited resolution recovery. Actually the unavoidable anisoplanatic error resulting from different light experience between the LGS and the object of interest through turbulent atmosphere will lead to an incomplete wave-front distortion compensation of the object. In this paper the statistics of anisoplanatic errors and their associated Zernike-modal variances have been systematically investigated for different LGS sources by means of numerical simulation, including Rayleigh LGS and Sodium LGS. The numerical results show that the probed wave-front expanded Zernike-modal decorrelation versus angular deviation between the LGS and the object of interest becomes much more sensitive for the higher altitude LGS. For minor angular deviations with LGS focal spots being still within the ray path from the object to the telescope, the reduction of the error from turbulence above the LGS altitude is still a leading cause to decrease the residual error variance after AO correction. However, for the greater angular deviations with LGS focal spots moving on the outside of the ray path from the object to the telescope, higher-altitude LGS could lead to an increasing residual error variance after AO complete correction with its wave-front as reference. At this point the adopted LGS operation mode and the AO system modal correction optimization should be taken into account for achieving a desired residual wave-front error.

  15. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  16. Fiber-coupling efficiency of Gaussian Schell model for optical communication through atmospheric turbulence.

    PubMed

    Tan, Liying; Li, Mengnan; Yang, Qingbo; Ma, Jing

    2015-03-20

    In practice, due to the laser device and the inevitable error of the processing technique, the laser source emitted from the communication terminal is partially coherent, and is represented as a Gaussian Schell model (GSM). The cross-spectral density function based on the Gaussian model in previous research is replaced by the GSM. Thus the fiber-coupling efficiency equation of the GSM laser source through atmospheric turbulence is deduced. The GSM equation presents the effect of the source coherent parameter ζ on the fiber-coupling efficiency, which was not included previously. The effects of the source coherent parameter ζ on the spatial coherent radius and the fiber-coupling efficiency through atmospheric turbulence are numerically simulated and analyzed. The result manifests that the fiber-coupling efficiency invariably degrades with increasing ζ. The work in this paper is aimed to improve the redundancy design of fiber-coupling receiver systems by analyzing the fiber-coupling efficiency with the source coherent parameters.

  17. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  18. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km. PMID:25404349

  19. Polarization of radiation of point-like source reflected from turbulent magnetized atmosphere

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Yu. N.

    2008-04-01

    We consider the multiple scattering of the light from a point-like source located above the semi-infinite electron, turbulent, and magnetized atmospheres. The frozen magnetic field has both the regular B0 and stochastic B' components (B= B_0+ B'). The stochastic Faraday rotations due to fluctuations B' decrease the intensity of each separate polarized beam (the extinction factor is proportional to λ^4< B'^2>). This decrease at large λ dominates the usual decrease (∝λ^2B_0 cosΘ_0) caused by summing beams with very different Faraday's rotation angles. This effect changes the spectrum of polarization degree as compared with what is influenced by the regular magnetic field. We calculated the integral (observed) polarization of the reflected radiation with the inclusion of unpolarized radiation going directly from the point-like source. We present the observed polarization for various degrees of true absorption of the radiation into the atmosphere and the values of magnetic energy fluctuations. The spectra of polarization in the optical (λ =0-1 μm), infrared (λ =1-5 μ m), and X-ray (E=1-50 keV) regions of the wavelengths are presented. We discuss the possibility of estimating parameters of magnetic field fluctuations from the observation of the spectra of polarization in AGNs with the X-ray excesses and in the turbulent accretion disk in NGC 4258.

  20. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-08-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  1. On the origin of jets and vortices in turbulent planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Jougla, Thibault; Dritschel, David G.

    2016-04-01

    Stratified rotating fluids tend to form large scale coherent structures. These structures are present in many different geophysical fluids, for example jet streams in the Earth's atmosphere, the famous and conspicuous jets in the Jovian atmosphere, and oceanic jets like the latent jets and the well-known main currents including the Gulf stream and Kuroshio. Observations, numerical models, and laboratory experiments have sought to explain their origins and their evolutions. To investigate the coexistence, evolution and vertical structure of jets and vortices in turbulent planetary atmospheres, we make use of the widely studied two-layer quasi-geostrophic shallow water model on the β-plane. Numerical simulations at ultra-high resolution are carried out with the Combined Lagrangian Advection Method [1]. Following Panetta 1988 [2], to characterise the pole to equator heating variation on a planet, a vertical shear is imposed and maintained by thermal damping. To crudely represent convection from the bottom layer to the top layer, hetons are constantly added to the flow. Many numerical simulations covering a large range of parameters have been run. The thermal damping and vertical shear dependence has been widely studied and analysed. The baroclinicity of the flow is clearly evident in all cases studied. Moreover, the flow is strongly dependent on thermal damping. There is a competition between baroclinic instabilities trying to reduce the imposed vertical shear and thermal damping trying to maintain the vertical shear. Without any thermal damping, the imposed vertical shear quickly erodes. On the other hand if the thermal damping is very high, the flow is mainly dominated by incoherent, small-scale turbulence. For weaker thermal damping, the competition between baroclinic instability and thermal damping may lead to oscillations between stable and turbulent phases. However, thermal damping does not have a significant impact on the number of homogeneous regions and jets

  2. Dissipation rates of turbulence kinetic energy in the free atmosphere: MST radar and radiosondes

    NASA Astrophysics Data System (ADS)

    Kantha, L.; Hocking, W.

    2011-06-01

    Our knowledge of the spatio-temporal variability of the dissipation rates of turbulence kinetic energy (TKE) in the free atmosphere is severely limited because of the difficulty and expense of making these measurements globally. A few MST/ST radar facilities that are still in operation around the globe have provided us with valuable data on temporal variability of the dissipation rate in the atmospheric column above the radars but the data covers an extremely tiny fraction of the global free atmosphere. Moreover, there are limitations to these data also, since restrictive hypotheses are necessary for making these measurements. It appears that simple radiosondes launched from the existing global sonde network might be able to provide a much wider coverage, provided the technique for deducing the dissipation rates from overturns detected by the sondes can be calibrated and validated against existing techniques. An intensive field campaign conducted over the Harrow ST radar site located in western Ontario, Canada, during the summer of 2007 provided precisely such an opportunity. In this paper, we report on the comparison of the TKE dissipation rates derived from the PTU measurements made by ozonesondes launched during the campaign with those obtained from direct ST radar measurements. We find encouraging agreement between the two, which suggests that routine measurements of TKE dissipation rates by radiosondes in the global free atmosphere might indeed be feasible.

  3. Can we estimate the fog-top height from atmospheric turbulent measurements at surface?

    NASA Astrophysics Data System (ADS)

    Román-Cascón, Carlos; Yagüe, Carlos; Steeneveld, Gert-Jan; Sastre, Mariano; Arrillaga, Jon A.; Maqueda, Gregorio

    2016-04-01

    The knowledge of the fog-top height (fog thickness) can be very meaningful for aircraft maneuvers, data assimilation/validation of Numerical Weather Prediction models or nowcasting of fog dissipation. However, its value is usually difficult to determine and it is sometimes approximated with satellite data, ground remote-sensing instruments or atmospheric soundings. These instruments are expensive and their data not always available. In this work, we show how the fog-top height shows a linear correlation with atmospheric turbulent variables measured close to the surface. This relation is statistically calculated from observational data of several radiation-fog events at two research sites: The Research Centre for the Lower Atmosphere (CIBA) in Spain and the Cabauw Experimental Site for Atmospheric Research (CESAR) in The Netherlands. Thus, surface friction velocity and buoyancy heat flux are presented as potential indicators of fog thickness. These methods are also evaluated over a long-lasting radiation-fog event at CESAR. The proposed methods could be operationally implemented for providing a continuous estimation of fog-top height through the deployment of a sonic anemometer close to the surface.

  4. Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Paradisi, P.; Cesari, R.; Donateo, A.; Contini, D.; Allegrini, P.

    2012-02-01

    We investigate the time intermittency of turbulent transport associated with the birth-death of self-organized coherent structures in the atmospheric boundary layer. We apply a threshold analysis on the increments of turbulent fluctuations to extract sequences of rapid acceleration events, which is a marker of the transition between self-organized structures. The inter-event time distributions show a power-law decay ψ(τ) ~ 1/τμ, with a strong dependence of the power-law index μ on the threshold. A recently developed method based on the application of event-driven walking rules to generate different diffusion processes is applied to the experimental event sequences. At variance with the power-law index μ estimated from the inter-event time distributions, the diffusion scaling H, defined by ⟨ X2⟩ ~ t2H, is independent from the threshold. From the analysis of the diffusion scaling it can also be inferred the presence of different kind of events, i.e. genuinely transition events and spurious events, which all contribute to the diffusion process but over different time scales. The great advantage of event-driven diffusion lies in the ability of separating different regimes of the scaling H. In fact, the greatest H, corresponding to the most anomalous diffusion process, emerges in the long time range, whereas the smallest H can be seen in the short time range if the time resolution of the data is sufficiently accurate. The estimated diffusion scaling is also robust under the change of the definition of turbulent fluctuations and, under the assumption of statistically independent events, it corresponds to a self-similar point process with a well-defined power-law index μD ~ 2.1, where D denotes that μD is derived from the diffusion scaling. We argue that this renewal point process can be associated to birth and death of coherent structures and to turbulent transport near the ground, where the contribution of turbulent coherent structures becomes dominant.

  5. Using Dynamically Coupled Turbine/Wind Simulations to Investigate the Influence of Atmospheric Turbulence in Turbine Wake Recovery

    NASA Astrophysics Data System (ADS)

    Koo, E.; Linn, R.; Bossert, J. A.; Kelley, N. D.; Lundquist, J. K.

    2011-12-01

    Ambient atmospheric turbulence interacts with spinning turbines, which modify the intensity and spectra of the turbulence. This turbine-influenced turbulent wind field creates the environment surrounding downstream turbines in a wind farm, thus controlling the amount of wind energy available for harvesting as well as the nature of aerodynamic loads on the blades which cause wear-and-tear of the wind turbines. The conditions to which downstream turbines are exposed, their productivity, and potentially their lifespan is a function of their position within the turbulent wake of upstream turbines. In order to increase our efficiency of energy capture in wind farms and optimize turbine arrangements for both off-shore and terrestrial settings where the wind conditions can be very different, it is essential to understand the influences that various environmental conditions have on the turbulence within wind farms. It is important to find ways of studying the evolution of turbulence as it interacts with turbines and as it advects downstream. It is also important to connect properties of the turbulence with the dynamic and heterogeneous nature of the loads that are applied to turbine blades. Unfortunately, full-scale wind turbine experiments are costly and it is extremely difficult to analyze the dynamic evolution of the full three-dimensional flow field upwind and downwind of wind turbines for a broad set of operating conditions. Numerical simulation tools can be used to perform preliminary investigation of turbine wake flow fields, thus guiding and helping interpret measurement schemes for the limited number of experiments that will be performed. By using numerical models to study the influence of different ambient conditions for different turbine spacing it is possible to develop a better understanding of how terrestrial experiments might relate to off-shore conditions where experiments are more difficult. A numerical technique, WindBlade, has been developed for

  6. Dynamics of the middle atmosphere in winter (Dynamics). Interrelation between the different variations of turbulent diffusion and ionospheric absorption originating in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Bencze, P.

    1989-01-01

    The turbulent diffusion coefficient was computed from the parameters of sporadic E layers using the wind shear theory of midlatitude sporadic E and models of the ionosphere as well as that of the neutral upper atmosphere. The turbulent diffusion coefficient obtained for the period of circulation disturbances associated with stratospheric warmings and for the intervals of the winter anomaly indicate changes similar to the ionospheric absorption of radio waves, in the former case decreased, in the latter case increased values. This may hit at the role of turbulent transport in the formation of these anomalies. On the basis of these findings, a seasonal variation of the turbulent diffusion coefficient having a minimum in summer and an increase of this parameter with increasing geomagnetic activity are anticipated.

  7. Using Dynamically Coupled Turbine/Wind Simulations to Investigate the Influence of Atmospheric Turbulence in Turbine Wake Recovery

    NASA Astrophysics Data System (ADS)

    Linn, R.; Koo, E.; Kelley, N. D.; Jonkman, B.; Lundquist, J. K.; Canfield, J.

    2010-12-01

    In order to increase our efficiency of energy capture in wind farms, optimize turbine arrangements, and adapt wind-turbine technology to optimal performance in common atmospheric conditions such as low level jets (LLJ), it is critical to understand the dynamic interactions between turbulence and multiple wind turbines. Ambient atmospheric turbulence interacts with spinning turbines producing the critical mechanism for the recovery of the wind field behind a wind turbine. This turbine-influenced turbulent wind field creates the environment surrounding downstream turbines in a wind farm, thus controlling the amount of wind energy available for harvesting as well as the nature of the wear and tear that downwind turbines endure. The strength of the turbulent structures and their length-scales evolve downstream. Thus, the conditions to which downstream turbines are exposed, their productivity, and potentially their lifespan is a function of their position within the turbulent wake of upstream turbines. A numerical technique, WindBlade, has been developed for characterizing the interaction of spinning wind turbines and unsteady/heterogeneous atmospheric boundary layers at length scales ranging from blade-chord-scale (meters) to turbine-array-scale (multiple kilometers). This implementation of this technique combines an R&D100 winning numerical tool, HIGRAD/FIRETEC, a fully-compressible atmospheric hydrodynamics model with novel techniques to capture forces exchanged between the atmosphere and turbine as it rotates. The blade-induced forces on the wind field over the along the span of spinning turbine blades interacts with any oncoming atmospheric turbulence or shear, thus producing turbine wakes which are functions of turbine blade geometry and pitch, rotation speed, topographic and vegetation influences, and of course ambient wind speed, direction, shear, and turbulence. TurbSim, which creates vertical planes of three-dimensional turbulent wind fields based on empirical

  8. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2016-08-22

    The changes in the radial content of orbital-angular-momentum (OAM) photonic states described by Laguerre-Gaussian (LG) modes with a radial index of zero, suffering from turbulence-induced distortions, are explored by numerical simulations. For a single-photon field with a given LG mode propagating through weak-to-strong atmospheric turbulence, both the average LG and OAM mode densities are dependent only on two nondimensional parameters, i.e., the Fresnel ratio and coherence-width-to-beam-radius (CWBR) ratio. It is found that atmospheric turbulence causes the radially-adjacent-mode mixing, besides the azimuthally-adjacent-mode mixing, in the propagated photonic states; the former is relatively slighter than the latter. With the same Fresnel ratio, the probabilities that a photon can be found in the zero-index radial mode of intended OAM states in terms of the relative turbulence strength behave very similarly; a smaller Fresnel ratio leads to a slower decrease in the probabilities as the relative turbulence strength increases. A photon can be found in various radial modes with approximately equal probability when the relative turbulence strength turns great enough. The use of a single-mode fiber in OAM measurements can result in photon loss and hence alter the observed transition probability between various OAM states. The bit error probability in OAM-based free-space optical communication systems that transmit photonic modes belonging to the same orthogonal LG basis may depend on what digit is sent.

  9. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2016-08-22

    The changes in the radial content of orbital-angular-momentum (OAM) photonic states described by Laguerre-Gaussian (LG) modes with a radial index of zero, suffering from turbulence-induced distortions, are explored by numerical simulations. For a single-photon field with a given LG mode propagating through weak-to-strong atmospheric turbulence, both the average LG and OAM mode densities are dependent only on two nondimensional parameters, i.e., the Fresnel ratio and coherence-width-to-beam-radius (CWBR) ratio. It is found that atmospheric turbulence causes the radially-adjacent-mode mixing, besides the azimuthally-adjacent-mode mixing, in the propagated photonic states; the former is relatively slighter than the latter. With the same Fresnel ratio, the probabilities that a photon can be found in the zero-index radial mode of intended OAM states in terms of the relative turbulence strength behave very similarly; a smaller Fresnel ratio leads to a slower decrease in the probabilities as the relative turbulence strength increases. A photon can be found in various radial modes with approximately equal probability when the relative turbulence strength turns great enough. The use of a single-mode fiber in OAM measurements can result in photon loss and hence alter the observed transition probability between various OAM states. The bit error probability in OAM-based free-space optical communication systems that transmit photonic modes belonging to the same orthogonal LG basis may depend on what digit is sent. PMID:27557248

  10. Propagation based on second-order moments for partially coherent Laguerre-Gaussian beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian

    2016-07-01

    The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.

  11. Propagation based on second-order moments for partially coherent Laguerre–Gaussian beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian

    2016-07-01

    The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.

  12. Study on Atmospheric Optical Turbulence above Mount Shatdzhatmaz in 2007-2013

    NASA Astrophysics Data System (ADS)

    Kornilov, V.; Safonov, B.; Kornilov, M.; Shatsky, N.; Voziakova, O.; Potanin, S.; Gorbunov, I.; Senik, V.; Cheryasov, D.

    2014-05-01

    We present the results of the atmospheric optical turbulence (OT) measurements performed atop Mount Shatdzhatmaz at the installation site of new 2.5 m telescope of the Sternberg Astronomical Institute. Nearly 300,000 vertical OT profiles from the ground up to an altitude of 23 km were obtained in the period of 2007 November-2013 June 2 with the combined multiaperture scintillation sensor (MASS) and differential image motion monitor (DIMM) instrument. The medians of the main OT characteristics, computed over the whole dataset are as follows: the integral seeing β0 = 0.96'', the free-atmosphere seeing βFA = 0.43'', and the isoplanatic angle θ0 = 2.07''. The median atmospheric time constant is τ0 = 6.57 ms. The revealed long-term variability of these parameters on scales of months and years implies the need to take it into account in astroclimatic campaign planning. For example, the annual variation in the monthly θ0 estimate amounts to 30%, while the time constant τ0 changes by a factor of 2.5. Evaluation of the potential of Mount Shatdzhatmaz in terms of high angular resolution observations indicates that in October-November, this site is as good as the best of studied summits in the world.

  13. Tomographic reconstruction of atmospheric turbulence with the use of time-dependent stochastic inversion.

    PubMed

    Vecherin, Sergey N; Ostashev, Vladimir E; Ziemann, A; Wilson, D Keith; Arnold, K; Barth, M

    2007-09-01

    Acoustic travel-time tomography allows one to reconstruct temperature and wind velocity fields in the atmosphere. In a recently published paper [S. Vecherin et al., J. Acoust. Soc. Am. 119, 2579 (2006)], a time-dependent stochastic inversion (TDSI) was developed for the reconstruction of these fields from travel times of sound propagation between sources and receivers in a tomography array. TDSI accounts for the correlation of temperature and wind velocity fluctuations both in space and time and therefore yields more accurate reconstruction of these fields in comparison with algebraic techniques and regular stochastic inversion. To use TDSI, one needs to estimate spatial-temporal covariance functions of temperature and wind velocity fluctuations. In this paper, these spatial-temporal covariance functions are derived for locally frozen turbulence which is a more general concept than a widely used hypothesis of frozen turbulence. The developed theory is applied to reconstruction of temperature and wind velocity fields in the acoustic tomography experiment carried out by University of Leipzig, Germany. The reconstructed temperature and velocity fields are presented and errors in reconstruction of these fields are studied.

  14. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    PubMed

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  15. Reduced-order FSI simulation of NREL 5 MW wind turbine in atmospheric boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Motta-Mena, Javier; Campbell, Robert; Lavely, Adam; Jha, Pankaj

    2015-11-01

    A partitioned fluid-structure interaction (FSI) solver based on an actuator-line method solver and a finite-element modal-dynamic structural solver is used to evaluate the effect of blade deformation in the presence of a day-time, moderately convective atmospheric boundary layer (ABL). The solver components were validated separately and the integrated solver was partially validated against FAST. An overview of the solver is provided in addition to results of the validation study. A finite element model of the NREL 5 MW rotor was developed for use in the present simulations. The effect of blade pitching moment and the inherent bend/twist coupling of the rotor blades are assessed for both uniform inflow and the ABL turbulence cases. The results suggest that blade twisting in response to pitching moment and the bend/twist coupling can have a significant impact on rotor out-of-plane bending moment and power generated for both the uniform inflow and the ABL turbulence cases.

  16. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  17. Distorted-wave born approximation calculations for turbulence scattering in an upward-refracting atmosphere

    NASA Technical Reports Server (NTRS)

    Gilbert, Kenneth E.; Di, Xiao; Wang, Lintao

    1990-01-01

    Weiner and Keast observed that in an upward-refracting atmosphere, the relative sound pressure level versus range follows a characteristic 'step' function. The observed step function has recently been predicted qualitatively and quantitatively by including the effects of small-scale turbulence in a parabolic equation (PE) calculation. (Gilbert et al., J. Acoust. Soc. Am. 87, 2428-2437 (1990)). The PE results to single-scattering calculations based on the distorted-wave Born approximation (DWBA) are compared. The purpose is to obtain a better understanding of the physical mechanisms that produce the step-function. The PE calculations and DWBA calculations are compared to each other and to the data of Weiner and Keast for upwind propagation (strong upward refraction) and crosswind propagation (weak upward refraction) at frequencies of 424 Hz and 848 Hz. The DWBA calculations, which include only single scattering from turbulence, agree with the PE calculations and with the data in all cases except for upwind propagation at 848 Hz. Consequently, it appears that in all cases except one, the observed step function can be understood in terms of single scattering from an upward-refracted 'skywave' into the refractive shadow zone. For upwind propagation at 848 Hz, the DWBA calculation gives levels in the shadow zone that are much below both the PE and the data.

  18. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    PubMed

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-01

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  19. Characterization of the temporal phase fluctuations in a weak atmospheric turbulence regime as a random bit-stream generator.

    PubMed

    Font, Carlos; Gilbreath, G Charmaine; Restaino, Sergio; Bonanno, David; Bajramaj, Blerta; Nock, Kristen

    2015-11-01

    This paper investigates the extent to which atmospheric turbulence can be exploited as a random bit generator. Atmospheric turbulence is considered an inherently random process due to the complex inhomogeneous system composition and its sensitivity to changes in pressure, temperature, humidity, and wind conditions. A self-calibrating Mach-Zehnder interferometer was used to collect phase fluctuations in the temporal domain introduced to an optical beam propagating through the atmosphere. The recorded phase fluctuations were converted into bit streams that were further analyzed in order to search for evidence of randomness. Empirical data and results that characterize the degree of randomness produced in the temporal phase component of an optical wave propagating through the atmosphere are presented.

  20. MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich

    In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.

  1. Measurements of optical turbulence in the free atmosphere above Mount Maidanak in 2005-2007

    NASA Astrophysics Data System (ADS)

    Kornilov, V.; Ilyasov, S.; Vozyakova, O.; Tillaev, Yu.; Safonov, B.; Ibragimov, M.; Shatsky, N.; Egamberdiev, Sh.

    2009-08-01

    We present the results of our 2005-2007 campaign to measure the vertical distribution of optical turbulence above Mount Maidanak. The measurements were performed with the MASS instrument, a multi-aperture scintillation sensor that has been widely used for such studies in recent years at many observatories worldwide. Analysis of the data shows that the median seeing in the free atmosphere (at an altitude of 0.5 km and higher) is 0 ″46, while the isoplanatic angle is 2″.47. Given the large time constant (about 7 ms at good seeing), such conditions are favorable for using adaptive optics and interferometric measurements in the visible and near-infrared spectral ranges.

  2. The K-Gill - A twin propeller-vane anemometer for measurements of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Atakturk, Serhad S.; Katsaros, Kristina B.

    1989-01-01

    A twin propeller-vane anemometer developed at the University of British Columbia was successfully used for unattended measurement of atmospheric turbulence over extended periods of time during moderate to high winds in the presence of sea spray. In this paper, a new design in twin propeller-vane anemometers is introduced. The instrument consists of two Gill anemometers mounted on a vane. The propeller shafts, one pointing up and the other pointing down, make an angle of 45 deg with the horizontal (hence, the name K-Gill). In addition to the desirable characteristics of the earlier design the K-Gill has symmetry, so that updraft and downdraft winds are measured with equal sensitivity. An algorithm for obtaining the vertical and downstream horizontal components of the wind velocity is described. Various sources of error and their magnitudes are discussed.

  3. Fluctuations of light intensity scattered from multiple glints in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Li, Yaqing; Gao, Ming; Lei, Gong

    2016-01-01

    As targets in space are usually very far from the ground, some targets containing smooth reflecting components can be seen to be composed of a single or multiple glints when they are detected by a Lidar (laser radar) system located on the ground. The received intensity of the detector fluctuates, which caused significant noise on the system, for two reasons. One is the randomness of positions of the glints and the other is the perturbations of the atmospheric turbulence. The formulation of the scintillation index of the reflected intensity is derived by using incoherent superposition of the reflected field. The results show that the scintillation index can be divided into two parts, corresponding to the two sources that cause the intensity fluctuations. The results show that the target composed by multiple glints has two different effects on the fluctuation of the reflected intensity, one is the amplification effect of the incoherent superposition, and the other is some similar aperture averaging effect.

  4. Circular polarization shift keying with homodyne coherent detection in gamma-gamma atmospheric turbulence channel

    NASA Astrophysics Data System (ADS)

    Hong, Yan; Yuan, Xueguang; Zhang, Yangan; Zhang, Yue; Wang, Limeng; Ma, Huihui

    2015-08-01

    We propose a communication system of Circular Polarization Shift Keying (CPolSK) with homodyne coherent detection in free-space optical (FSO) communication with Gamma-Gamma atmospheric turbulence channel. The system need no polarization coordinate alignment, thus the complexity is reduced. Meanwhile, we derived the closed bit error rate (BER) expression of the system compared with the coherent on-off keying (OOK) system. Simulation results show that CPolSK with homodyne system is highly insensitive to the phase noise and BER performance is greatly promoted compared to OOK modulation, the signal-to-noise ratio (SNR) of receiving is reduced about 8dB when the system has the same BER performance under same conditions.

  5. Analysis of bit error rate for modified T-APPM under weak atmospheric turbulence channel

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Zhang, Qi; Wang, Yong-jun; Liu, Bo; Zhang, Li-jia; Wang, Kai-min; Xiao, Fei; Deng, Chao-gong

    2013-12-01

    T-APPM is combined of TCM (trellis-coded modulation) and APPM (Amplitude-Pulse-position modulation) and has broad application prospects in space optical communication. Set partitioning in standard T-APPM algorithm has the optimal performance in a multi-carrier system, but whether this method has the optimal performance in APPM which is a single-carrier system is unknown. To solve this problem, we first research the atmospheric channel model with weak turbulence; then a modified T-APPM algorithm was proposed, compared to the standard T-APPM algorithm, modified algorithm uses Gray code mapping instead of set partitioning mapping; finally, simulate the two algorithms with Monte-Carlo method. Simulation results showed that, when bit error rate at 10-4, the modified T-APPM algorithm achieved 0.4dB in SNR, effectively improve the system error performance.

  6. Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    SciTech Connect

    Berman, Gennady P; Gorshkov, V. N.; Torous, S. V.

    2010-12-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres, The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described, This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.

  7. A reevaluaion of data on atmospheric turbulence and airplane gust loads for application in spectral calculations

    NASA Technical Reports Server (NTRS)

    Press, Harry; Meadows, May T; Hadlock, Ivan

    1956-01-01

    The available information on the spectrum of atmospheric turbulence is first briefly reviewed. On the basis of these results, methods are developed for the conversion of available gust statistics normally given in terms of counts of gusts or acceleration peaks into a form appropriate for use in spectral calculations. The fundamental quantity for this purpose appears to be the probability distribution of the root-mean-square gust velocity. Estimates of this distribution are derived from data for a number of load histories of transport operations; also, estimates of the variation of this distribution with altitude and weather condition are derived from available data and the method of applying these results to the calculation of airplane gust-response histories in operations is also outlined. (author)

  8. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    PubMed

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-01

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  9. Characteristics of annular beams propagating through atmospheric turbulence along a downlink path and an uplink path

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoling; Chen, Hong; Ji, Guangming

    2016-08-01

    Characteristics of annular beams propagating through atmospheric turbulence along a downlink path and an uplink path are studied in detail by using numerical simulation method. It is found that in downlink the influence of atmospheric turbulence on the characteristics is quite different from that in uplink because of the altitude-dependent index structure constant. It is shown that, when the zenith angle θ is not large enough, it is always σ_{{I {{up}}}}2 > σ_{{I {{down}}}}2 on propagation whatever the value of the obscure ratio ɛ is, where σ_{{I {{up}}}}2 and σ_{{I {{down}}}}2 are the on-axis scintillation index in uplink and downlink, respectively. However, when θ is large enough, σ_{{I {{down}}}}2 is close to σ_{{I {{up}}}}2 as the propagation distance z increases, and σ_{{I {{up}}}}2 and σ_{{I {{down}}}}2 overlap each other as ɛ increases. Furthermore, as z increases, σ_{{I {{up}}}}2 approaches an asymptotical value when θ is not large enough, and the saturation phenomenon of σ_{{I {{up}}}}2 appears when θ is large enough. But the asymptotical value and the saturation phenomenon of σ_{{I {{down}}}}2 never appear. On the other hand, the energy focusability in downlink is better than that in uplink, and the difference of energy focusability between a downlink and an uplink increases with increasing θ or decreasing ɛ. In addition, in downlink there may exist sidelobes of intensity distributions when θ is not large enough, but the sidelobes never appear in uplink.

  10. PML/PBL: A new generalized monitor of atmospheric turbulence profiles

    NASA Astrophysics Data System (ADS)

    Ziad, Aziz; Blary, Flavien; Borgnino, Julien; Fanteï-Caujolle, Yan; Aristidi, Eric; Martin, François; Lantéri, Henri; Douet, Richard; Bondoux, Erick; Mekarnia, Djamel

    2013-12-01

    The futures large telescopes will be certainly equipped with Multi-Conjugate Adaptive Optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these systems. Major of these technical specifications are related to the atmospheric turbulence particularly the structure constante of the refractive index Cn2(h) and the outer scale L0(h). New techniques based on the moon limb observation for the monitoring of the Cn2(h) and L0(h) profiles with high vertical resolution will be presented. A new monitor PBL (Profileur Bord Lunaire) for the extraction of the Cn2(h) profile with high vertical resolution has been developed. This instrument uses an optical method based on observation of the moon limb with a DIMM configuration (Differential Image Motion Monitor). Indeed, in the PBL the lunar limb is observed through two sub-apertures of 6cm separated by a base of ~30cm. The moon limb offers a continuum of stars at different angular separations allowing the scan the atmosphere with a very high resolution. The angular correlation along the lunar limb between of the differential distance between the two images of the lunar edge leads to the Cn2(h) profile. The other parameters of turbulence are also accessible from this instrument as the profile of outer scale, the seeing and isoplanatic & isopistonicdomains. The PBL succeeded to our first moon limb profiler MOSP (Monitor of Outer Scale Profile) which was developed mainly for outer scale profile extraction. Several campaigns have been carried out with MOSP particularly at Mauna Kea Observatory (Hawaii) and Cerro Paranal in Chile. The PBL instrument has been installed at Dome C in Antarctica since January 2011. In addition to this winterized PBL for Dome C, a second copy of this instrument has been developed for mid-latitude sites. A first campaign with this light version of PBL, was carried out at the South African Large Telescope (SALT) Observatory in

  11. Formation of extreme surface turbulent heat fluxes from the ocean to the atmosphere in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Tilinina, N. D.; Gulev, S. K.; Gavrikov, A. V.

    2016-01-01

    The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean-atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone-anticyclone interaction zones.

  12. PIV Measurements of Atmospheric Turbulence and Pollen Dispersal Above a Corn Canopy

    NASA Astrophysics Data System (ADS)

    Zhu, W.; van Hout, R.; Luznik, L.; Katz, J.

    2003-12-01

    Dispersal of pollen grains by wind and gravity (Anemophilous) is one of the oldest means of plant fertilization available in nature. Recently, the growth of genetically modified foods has raised questions on the range of pollen dispersal in order to limit cross-fertilization between organically grown and transgenic crops. The distance that a pollen grain can travel once released from the anther is determined, among others, by the aerodynamic parameters of the pollen and the characteristics of turbulence in the atmosphere in which it is released. Turbulence characteristics of the flow above a pollinating corn field were measured using Particle Image Velocimetry (PIV). The measurements were performed on the eastern shore of the Chesapeake Bay, in Maryland, during July 2003. Two PIV systems were used simultaneously, each with an overall sample area of 18x18 cm. The spacing between samples was about equal to the field of view. The PIV instrumentation, including CCD cameras, power supply and laser sheets forming optics were mounted on a measurement platform, consisting of a hydraulic telescopic arm that could be extended up to 10m. The whole system could be rotated in order to align it with the flow. The flow was seeded with smoke generated about 30m upstream of the sample areas. Measurements were carried out at several elevations, from just below canopy height up to 1m above canopy. The local meteorological conditions around the test site were monitored by other sensors including sonic anemometers, Rotorod pollen counters and temperature sensors. Each processed PIV image provides an instantaneous velocity distribution containing 64x64 vectors with a vector spacing of ~3mm. The pollen grains (~100mm) can be clearly distinguished from the smoke particles (~1mm) based on their size difference. The acquired PIV data enables calculation of the mean flow and turbulence characteristics including Reynolds stresses, spectra, turbulent kinetic energy and dissipation rate. Data

  13. Vertical variations in the turbulent structure of the surface boundary layer over vineyards under unstable atmospheric conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those typically exhibited by other agricultural and natural ecosystems. Using data collected as a part of the Grape Remote sensing and Atmospheric Profiling and Evapotranspiration Experime...

  14. Venera-11 and Venera 12: Preliminary estimates for the wind speed and turbulence in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kerzhanovich, V. V.; Makarov, M. Y.; Marov, F.; Roshdestvenskiy, M. K.; Sorokin, V. P.

    1979-01-01

    The methods and results of measurements for wind speed and atmospheric turbulence in the clouds of Venus are described, and compared with earlier results. The distribution of wind speed obtained from the data of Venera 12 is in good conformity with the data of the preceding Venera and Pioneer probes, indicating the existence of a constant and powerful zonal movement of the troposphere.

  15. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    NASA Technical Reports Server (NTRS)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  16. Solar seeing monitor MISOLFA: A new method for estimating atmospheric turbulence parameters

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Borgnino, J.; Djafer, D.; Damé, L.; Keckhut, P.

    2016-07-01

    Aims: Daily observation conditions are needed when observing the Sun at high angular resolution. MISOLFA is a daytime seeing monitor developed for this purpose that allows the estimation of the spatial and temporal parameters of atmospheric turbulence. This information is necessary, for instance, for astrometric measurements of the solar radius performed at Calern Observatory (France) with SODISM II, the ground-based version of the SODISM instrument of the PICARD mission. Methods: We present a new way to estimate the spatial parameters of atmospheric turbulence for daily observations. This method is less sensitive to vibrations and guiding defaults of the telescope since it uses short-exposure images. It is based on the comparison of the optical transfer function obtained from solar data and the theoretical values deduced from the Kolmogorov and Von Kàrmàn models. This method, previously tested on simulated solar images, is applied to real data recorded at Calern Observatory in July 2013 with the MISOLFA monitor. Results: First, we use data recorded in the pupil plane mode of MISOLFA and evaluate the turbulence characteristic times of angle-of-arrival fluctuations: between 5 and 16 ms. Second, we use the focal plane mode of MISOLFA to simultaneously record solar images to obtain isoplanatic angles: ranging from 1 to 5 arcsec (in agreement with previously published values). These images and our new method allow Fried's parameter to be measured; it ranges from 0.5 cm to 4.7 cm with a mean value of 1.5 cm when Kolmogorov's model is considered, and from less than 0.5 to 2.6 cm with a mean value of 1.3 cm for the Von Kàrmàn model. Measurements of the spatial coherence outer scale parameter are also obtained when using the Von Kàrmàn model; it ranges from 0.25 to 13 m with a mean value of 3.4 m for the four days of observation that we analyzed. We found that its value can undergo large variations in only a few hours and that more data analysis is needed to better

  17. Concept and realization of measuring spatial structure of atmospheric optical turbulence by the fiber optical turbulence sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Mei, Haiping; Rao, Ruizhong

    2015-04-01

    In this article, a high quality fiber optical turbulence sensing array contains several sensors is proposed to obtain time series of air refractive index fluctuations. A fixed sensor is supposed to be set as the origin and others to be arranged in Cartesian coordinates respectively. Under the spatial configurations above, two-point correlation algorithm is used to give two order structure parameters and multipoint correlation algorithm for more structure information about scalar turbulence. For each direction, two-point spatial correlation coefficients varying with distance are provided. Meanwhile spatial power spectrum and outer-scales according to the data are introduced. Multipoint correlations can give more structure information such as the interactions between scales and the spatial structure of relevant fluctuations. In the one-dimension circumstance for instance the x-axis, spatial correlation coefficient tends to take oscillation. After a short-time averaging, it tends to decrease with the increase of spatial displacement, and then tends to zero after outer scale. Further study show that within the limit of outer scale, diurnal variation of the spatial correlation coefficient and intensity reveal a higher similarity, the relevancy is about 60% and keeps stable; once the distance goes across the outer scale, they are uncorrelated. In short, utilizing the fiber optical turbulence sensing array is a new method for measuring spatial correlation of optical turbulence. It can overcome some problems from single-point measurement, especially when using Taylor's frozen-turbulence hypothesis. Some structural information of optical turbulence not only makes the theory of scalar field more abundant, but also in favor of some problems about optical propagation.

  18. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  19. Additional research on instabilities in atmospheric flow systems associated with clear air turbulence

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1972-01-01

    Analytical and experimental fluid mechanics studies were conducted to investigate instabilities in atmospheric flow systems associated with clear air turbulence. The experimental portion of the program was conducted using an open water channel which allows investigation of flows having wide ranges of shear and density stratification. The program was primarily directed toward studies of the stability of straight, stratified shear flows with particular emphasis on the effects of velocity profile on stability; on studies of three-dimensional effects on the breakdown region in shear layers; on the the interaction of shear flows with long-wave length internal waves; and on the stability of shear flows consisting of adjacent stable layers. The results of these studies were used to evaluate methods used in analyses of CAT encounters in the atmosphere involving wave-induced shear layer instabilities of the Kelvin-Helmholta type. A computer program was developed for predicting shear-layer instability and CAT induced by mountain waves. This technique predicts specific altitudes and locations where CAT would be expected.

  20. Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument

    NASA Astrophysics Data System (ADS)

    Blary, F.; Ziad, A.; Borgnino, J.; Fantéï-Caujolle, Y.; Aristidi, Eric; Lantéri, H.

    2014-07-01

    Wide-Field Adaptive Optics (WFAO) have been proposed for the next generation of telescopes. In order to be efficient, correction using WFAO require knowledge of atmospheric turbulence parameters. The structure constant of index-of-refraction fluctuations (C2 N ) being one of them. Indirect methods implemented in instruments as SCIDAR, MASS, SLODAR, CO-SLIDAR and MOSP have been proposed to measure C2 N (h) pro le through different layers of the atmosphere. A new monitor called the Profiler of Moon Limb (PML) is presented. In this instrument, C2 N (h) pro les are retrieved from the transverse covariance via minimization of a maximum likelihood criterion under positivity constraint using an iterative gradient method. An other approach using a regularization method (RM) is also studied. Instrument errors are mainly related to the detection of the Moon limb position and are mostly due to photon noise. Numerical simulations have been used to evaluate the error on the extracted pro le and its propagation from the detection to the inverse technique.

  1. On a quasi-wavelet model of refractive index fluctuations due to atmospheric turbulence.

    PubMed

    Pérez, Darío G; Funes, Gustavo

    2015-12-14

    When studying light propagation through the atmosphere, it is usual to rely on widely used spectra such as the modified von Kármán or Andrews-Hill. These are relatively tractable models for the fluctuations of the refractive index, and are primarily used because of their mathematical convenience. They correctly describe the fluctuations behaviour at the inertial range yet lack any physical basis outside this range. In recent years, deviations from the Obukhov-Kolmogorov theory (e. g. interminttency, partially developed turbulence, etc.) have been built upon these models through the introduction of arbitrary spectral power laws. Here we introduce a quasi-wavelet model for the refractive index fluctuations which is based on a phenomenological representation of the Richardson cascade. Under this model, the atmospheric refractive index has a correct spectral representation for the inertial range, behaves as expected outside it, and even accounts for non-Kolmogorov behaviour; moreover, it has non-Gaussian statistics. Finally, we are able to produce second order moments under the Rytov approximation for the complex phase; we estimate the angle-of-arrival as an example of application.

  2. Validation of the Actuator Line Model with coarse resolution in atmospheric sheared and turbulent inflow

    NASA Astrophysics Data System (ADS)

    Draper, M.; Guggeri, A.; Usera, G.

    2016-09-01

    Wind energy has become cost competitive in recent years for several reasons. Among them, wind turbines have become more efficient, increasing its size, both rotor diameter and tower height. This growth in size makes the prediction of the wind flow through wind turbines more challenging. To avoid the computational cost related to resolve the blade boundary layer as well as the atmospheric boundary layer, actuator models have been proposed in the past few years. Among them, the Actuator Line Model (ALM) has shown to reproduce with reasonable accuracy the wind flow in the wake of a wind turbine with moderately computational cost. However, its use to simulate the flow through wind farms requires a spatial resolution and a time step that makes it unaffordable in some cases. The present paper aims to assess the ALM with coarser resolution and larger time step than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition and comparing the results with the Actuator Disk Model with Rotation (ADM-R) and experimental data. To accomplish this, a well known wind tunnel campaign is considered as validation case.

  3. Propagation properties of quantized Laguerre-Gaussian beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Saito, Aya; Tanabe, Ayano; Kurihara, Makoto; Hashimoto, Nobuyuki; Ogawa, Kayo

    2016-03-01

    Effect of scintillations is serious problems in optical systems which require the atmospheric propagation, the optimization of optical system to minimize the effects of scintillation have been examined using the simulation of propagation in atmospheric turbulence. The analytic studies of scintillation index of LG beams show that LG beams have less scintillation than Gaussian beams. However, in these researches, the diameter of receiving aperture was set as point receiver without considering the effects of aperture averaging, which is phenomenon that reduced scintillations over finite aperture. In this paper, considering size of a receiving aperture, the propagation losses and the scintillation index of LG beams are simulated. Also, for practical applications, propagation properties of "quantized" LG(5,1) beams simulated. As a result of the examination, the propagation losses and the scintillation index of LG beams is smaller than those of Gaussian beams. By applying LG beams for optical wireless communications, it is expected to improve better the effect of scintillations than using Gaussian beams. The result is that the scintillation index of quantized LG beams is equal to those of LG beams, and it suggested that quantized LG beams can be treat the quantized LG beams the same as LG beams.

  4. Stability and Turbulence in the Atmospheric Boundary Layer: A Comparison of Remote Sensing and Tower Observations

    SciTech Connect

    Friedrich, K.; Lundquist, J. K.; Aitken, M.; Kalina, E. A.; Marshall, R. F.

    2012-01-01

    When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Vaisala frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

  5. Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2016-04-01

    The radial average-power distribution and normalized average power of orbital-angular-momentum (OAM) modes in a vortex Gaussian beam after passing through weak-to-strong atmospheric turbulence are theoretically formulated. Based on numerical calculations, the role of the intrinsic mode index, initial beam radius and turbulence strength in OAM-mode variations of a propagated vortex Gaussian beam is explored, and the validity of the pure-phase-perturbation approximation employed in existing theoretical studies is examined. Comparison between turbulence-induced OAM-mode scrambling of vortex Gaussian beams and that of either Laguerre-Gaussian (LG) beams or pure vortex beams has been made. Analysis shows that the normalized average power of OAM modes changes with increasing receiver-aperture size until it approaches a nearly stable value. For a receiver-aperture size of practical interest, OAM-mode scrambling is severer with a larger mode index or smaller initial beam radius besides stronger turbulence. Under moderate-to-strong turbulence condition, for two symmetrically-neighboring extrinsic OAM modes, the normalized average power of the one with an index closer to zero may be greater than that of the other one. The validity of the pure-phase-perturbation approximation is determined by the intrinsic mode index, initial beam radius and turbulence strength. It makes sense to jointly control the amplitude and phase of a fundamental Gaussian beam for producing an OAM-carrying beam.

  6. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    NASA Astrophysics Data System (ADS)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  7. Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550  nm operation.

    PubMed

    El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H

    2016-09-10

    In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.

  8. Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550  nm operation.

    PubMed

    El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H

    2016-09-10

    In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence. PMID:27661363

  9. Estimates of the error caused by atmospheric turbulence in optical determination of the orientation angle of a series of reflectors

    NASA Astrophysics Data System (ADS)

    Valley, M. T.; Dudorov, V. V.; Kolosov, V. V.; Filimonov, G. A.

    2006-11-01

    The error caused by atmospheric turbulence, in determining the orientation angle of an object (a series of reflectors) has been studied. The orientation angle was determined by studying the image of the object. Numerical modeling was performed involving construction of the image of a series of reflectors as if they were observed through a turbulent medium, calculation of the coordinates of reflector mass centers, finding of the line closest to the reflector mass centers, and determination of its slope angle. Variance of the slope angle fluctuations is calculated.

  10. Temporal spectrum of beam wander for Gaussian Shell-model beams propagating in atmospheric turbulence with finite outer scale.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2013-06-01

    The temporal spectrum of beam wander is formulated by considering a Gaussian Schell-model beam passing through atmospheric turbulence with a finite outer scale. Two simpler asymptotic formulas for the temporal spectrum of beam wander within the high- and low-frequency ranges are derived, respectively. Based on the formulations, the effects of the initial partial coherence of the beam, finite outer scale of turbulence, initial beam radius, and initial phase front radius of curvature on the temporal spectrum of beam wander are analyzed by numerical examples.

  11. Reconstruction of the wind velocity profile from the intensity fluctuations of a reflected spherical wave in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Marakasov, D. A.

    2009-12-01

    The problem of reconstructing the wind velocity profile from the spatiotemporal statistics of turbulent reflected optical radiation intensity fluctuations is considered in the article. Expressions for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of the wave scattered on a diffusive screen are derived. An algorithm for reconstructing the wind velocity profile from the spatiotemporal spectra of the intensity of a reflected spherical wave in the turbulent atmosphere is suggested. The results of closed numerical experiments are presented that confirm the efficiency of the suggested algorithm.

  12. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    NASA Astrophysics Data System (ADS)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original

  13. Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar

    Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability

  14. Statistical distribution of the OAM states of Bessel-Gaussian-Schell infrared beams in strong turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Yixin; Wang, Donglin; Shan, Lei; Xia, Mingchao; Zhao, Yuanhang

    2016-05-01

    The effects of strong turbulence on the orbital angular momentum (OAM) states of infrared and non-diffraction beam propagation in a terrestrial atmosphere are investigated. A new probability density model for OAM states of Bessel-Gaussian-Schell beam in the paraxial and strong turbulent channel is modeled based on the modified Rytov approximation. We find that the normalization energy weight of signal OAM modes at each OAM level is approximate equivalence in strong turbulence regime, one can constitute multiple mode channels by choosing OAM modes with large energy level difference between modes to reduce mode interference, and one can utilize BGS beam with OAM modes increasing the channel capacity of optical communications.

  15. A wavelet-based approach to detect climate change on the coherent and turbulent component of the atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Defrance, Dimitri

    2016-06-01

    The modifications of atmospheric circulation induced by anthropogenic effects are difficult to capture because wind fields feature a complex spectrum where the signal of large-scale coherent structures (planetary, baroclinic waves and other long-term oscillations) is mixed up with turbulence. Our purpose is to study the effects of climate changes on these two components separately by applying a wavelet analysis to the 700 hPa wind fields obtained in climate simulations for different forcing scenarios. We study the coherent component of the signal via a correlation analysis to detect the persistence of large-scale or long-lasting structures, whereas we use the theory of autoregressive moving-average stochastic processes to measure the spectral complexity of the turbulent component. Under strong anthropogenic forcing, we detect a significant climate change signal. The analysis suggests that coherent structures will play a dominant role in future climate, whereas turbulent spectra will approach a classical Kolmogorov behaviour.

  16. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels.

    PubMed

    García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2010-03-15

    Atmospheric turbulence produces fluctuations in the irradiance of the transmitted optical beam, which is known as atmospheric scintillation, severely degrading the link performance. In this paper, a scheme combining transmit laser selection (TLS) and space-time trellis code (STTC) for multiple-input-single-output (MISO) free-space optical (FSO) communication systems with intensity modulation and direct detection (IM/DD) over strong atmospheric turbulence channels is analyzed. Assuming channel state information at the transmitter and receiver, we propose the transmit diversity technique based on the selection of two out of the available L lasers corresponding to the optical paths with greater values of scintillation to transmit the baseline STTCs designed for two transmit antennas. Based on a pairwise error probability (PEP) analysis, results in terms of bit error rate are presented when the scintillation follows negative exponential and K distributions, which cover a wide range of strong atmospheric turbulence conditions. Obtained results show a diversity order of 2L-1 when L transmit lasers are available and a simple two-state STTC with rate 1 bit/(s .Hz) is used. Simulation results are further demonstrated to confirm the analytical results.

  17. On the wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.; Eshleman, V. R.

    1979-01-01

    The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.

  18. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan M.

    This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces

  19. The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Churchfield, M. J.; Moriarty, P. J.; Lundquist, J. K.; Oxley, G. S.; Hahn, S.; Pryor, S. C.

    2015-06-01

    The aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity [1]. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as a whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds (Figure 2). The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.

  20. CLASSICAL AREAS OF PHENOMENOLOGY: Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, En-Tao; Ji, Xiao-Ling; Lü, Bai-Da

    2009-02-01

    The propagation properties of the off-axis superposition of partially coherent beams through atmospheric turbulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB) are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity Imax and the PIB decrease and w(z) increases as the refraction index structure constant Cn2 increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance xd and beam number M is less affected by the turbulence than that with a larger value of γ and smaller values of xd and M. The main results obtained in this paper are explained physically.

  1. The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Cava, Daniela; Katul, Gabriel George; Molini, Annalisa; Elefante, Cosimo

    2012-01-01

    Clustering and intermittency in atmospheric turbulent flows above different natural surfaces are investigated with reference to their dependency on surface roughness and thermal stratification. The dualism between active and quiescent phases within measured time series is isolated by using the telegraphic approximation (TA), which is able to eliminate the contributions to intermittency originating from amplitude variability associated with the energetic states. The presence of linear correlation relating the scaling exponents of energy spectra for the original series (n) and its TA counterpart (m) within the inertial sub-range (ISR) suggests that amplitude variability acts as a de-correlation factor for the series. Clustering exponents α estimated from velocity and scalar time series exhibit a weak dependence on the Taylor micro-scale Reynolds number (Reλ). The average values of intermittency exponents for the original (μs) and the TA series (μTA) are linearly correlated to α for longitudinal velocity and scalars. The derived relationships shows that in the atmospheric surface layer (ASL), amplitude intermittency plays a smoothing role on the clusterization of events. On the other hand, within the canopy sublayer (CSL) above canopies, scalars are more clustered and amplitude excursions tend to amplify (or not alter) clusterization. Moreover, reducing surface roughness results in a de-correlation between α and μTA for the vertical velocity component. Additionally, the probability density functions of inter-pulse periods (Ip) were shown to be well approximated by the law p(Ip) ˜ Ip-γ for Ip within the ISR when γ ≈ 3 - m, which also holds for sand pile models of self organized criticality in the large pile limit.

  2. Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2015-06-20

    A theoretical formulation of the spherical-wave two-frequency mutual coherence function (MCF) for a propagation path characterized by a complex ABCD matrix with anisotropic atmospheric turbulence existing somewhere is developed. A specialization of this formulation leads to an expression for the two-frequency MCF of an equivalent pulsed Gaussian beam propagating in weak anisotropic atmospheric turbulence along a horizontal line-of-sight path; relevant closed-form analytical solutions under both near- and far-field conditions are obtained. The small- and large-scale solutions for both the plane- and spherical-wave spatial-coherence radii in either horizontal or vertical direction are derived. Analysis shows that the formula for the on-axis two-frequency MCF of a pulsed Gaussian beam under the weak-turbulence condition in both the near- and far-field regions is distinguished from that applicable in the strong-turbulence limit only by whether the turbulence-induced beam broadening can be thought of as negligible. Under both the near- and far-field conditions, the turbulence-induced increment of the mean-square temporal-pulse half-width is proportional to the effective anisotropy factor of turbulence. The MCF becomes statistically anisotropic due to the anisotropy of turbulence. For the spatial coherence radius of either a plane or spherical wave propagating along a horizontal line-of-sight path in anisotropic atmospheric turbulence, the corresponding small-scale solution is proportional to that for the plane-wave spatial-coherence radius in the isotropic-turbulence case with a proportionality coefficient depending only on the effective anisotropy factor of turbulence. The corresponding large-scale solution is proportional to that for the plane-wave spatial-coherence radius in the isotropic-turbulence case with a proportionality coefficient that depends on both the effective anisotropy factor and spectral index of turbulence.

  3. Geometric correction of atmospheric turbulence-degraded video containing moving objects.

    PubMed

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G

    2015-02-23

    Long-distance surveillance is a challenging task because of atmospheric turbulence that causes time-varying image shifts and blurs in images. These distortions become more significant as the imaging distance increases. This paper presents a new method for compensating image shifting in a video sequence while keeping real moving objects in the video unharmed. In this approach, firstly, a highly accurate and fast optical flow technique is applied to estimate the motion vector maps of the input frames and a centroid algorithm is employed to generate a geometrically correct frame in which there is no moving object. The second step involves applying an algorithm for detecting real moving objects in the video sequence and then restoring it with those objects unaffected. The performance of the proposed method is verified by comparing it with that of a state-of-the-art approach. Simulation experiments using both synthetic and real-life surveillance videos demonstrate that this method significantly improves the accuracy of image restoration while preserving moving objects.

  4. Neural Partial Differentiation for Aircraft Parameter Estimation Under Turbulent Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Kuttieri, R. A.; Sinha, M.

    2012-07-01

    An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.

  5. Atmospheric turbulence as a function of height above various surface materials

    NASA Astrophysics Data System (ADS)

    Garcia, D. H.

    1981-09-01

    The atmospheric refractive-index structure parameter C 2 sub n was determined at heights 0.5 to 5 meters above open-field grass, blacktop, concrete, and aluminized-Mylar sheets attached to plywood. Measurements were made of the temperature structure parameter with twin fast-response, temperature-sensing probes made of 2-micrometer diameter platinum wire which were separated 10 cm and optimally excited at 10 microwatts. The RMS value of the temperature difference between the probes was determined with R. W. Harris double-AC bridge/log-meter system. Probe height was changed approximately every 30 minutes. The differential temperature and the meteorological parameters comprising air temperature, dew point, wind speed and direction, solar insolation and barometric pressure were sampled at 1-second intervals. Results indicate a height dependence of the form C 2 sub n = KH to the minus M, where K is a function of the surface (0.84 < or = K/10 to the minus 13th power m to the minus 2/3 power < or = 1.8) and M = - 1.2 + or - 0.5, with the wide variation in M due to changing meteorological conditions, most importantly solar insolation and wind speed. In this experiment, no significant differences in average value of C 2 sub n could be determined for the four surfaces. Additionally, the anticipated reduction in turbulence over aluminized Mylar was not observed.

  6. Power coupling of a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path.

    PubMed

    Chu, Xiuxiang; Zhou, Guoquan

    2007-06-11

    The characteristics of dark hollow beams passing through a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path have been investigated. The distribution of the average intensity at the receiver telescope and the efficiency of power coupling with respect to propagation distance with different parameters are derived and numerically calculated. These studies illuminate that the power of the dark hollow beams is concentrated on a narrow annular aperture at the source plane and its power coupling with a transmitter Cassegrain telescope can remain quite high. For short distance between the two Cassegrain telescopes, the normalized average intensity distribution at receiver plane holds shape similar to that at the source plane, and the two Cassegrain telescopes keep high efficiency of the power coupling. But with the increment in the propagation distance, the power of the dark hollow beams gradually converges to the central and the spot spreads. The central obscuration of the receiver telescope blocks more of the power; meanwhile more of the power moves out beyond the edge of the receiving aperture. Therefore, the efficiency of the power coupling decreases with the increment in the propagation distance. In addition, the relations between the efficiency of power coupling and wavelength of laser beams are also numerically calculated and discussed.

  7. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence.

    PubMed

    Ma, Jing; Li, Kangning; Tan, Liying; Yu, Siyuan; Cao, Yubin

    2015-09-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity. Maximum ratio combining (MRC) and selection combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence. Bit-error rate (BER) performances for binary phase-shift keying modulated coherent detection and outage probabilities are analyzed and compared for SC diversity using analytical results and for MRC diversity through an approximation method with different numbers of receiving aperture each with the same aperture area. To show the net diversity gain of a multiple aperture receiver system, BER performances and outage probabilities of MRC and SC multiple aperture receiver systems are compared with a single monolithic aperture with the same total aperture area (same total average incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are verified by Monte-Carlo simulations. PMID:26368880

  8. SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi

    2015-12-01

    The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.

  9. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence.

    PubMed

    Ma, Jing; Li, Kangning; Tan, Liying; Yu, Siyuan; Cao, Yubin

    2015-09-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity. Maximum ratio combining (MRC) and selection combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence. Bit-error rate (BER) performances for binary phase-shift keying modulated coherent detection and outage probabilities are analyzed and compared for SC diversity using analytical results and for MRC diversity through an approximation method with different numbers of receiving aperture each with the same aperture area. To show the net diversity gain of a multiple aperture receiver system, BER performances and outage probabilities of MRC and SC multiple aperture receiver systems are compared with a single monolithic aperture with the same total aperture area (same total average incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are verified by Monte-Carlo simulations.

  10. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2006-09-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that 222Rn short-lived daughters, e.g. 218Po and 214Pb, have relevant radioactive decaying contributions acting as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a discrepancy in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations collapse due to the rapid growth

  11. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2007-02-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that the relevant radioactive decaying contributions of 222Rn short-lived daughters (218Po and 214Pb) act as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a variation in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations decrease due to the rapid growth of the

  12. An experimental study of high Reynolds number turbulence in the atmosphere

    NASA Astrophysics Data System (ADS)

    Dhruva, Brindesh R.

    2000-11-01

    High Reynolds number turbulence in the atmospheric boundary layer has been investigated using constant temperature hot-wire anemometry. The Taylor microscale Reynolds numbers (Rλ) were typically between 5 × 103 at 2 meters in the salt flats of Western Utah and 2 × 104 at 35 meters on the meterological tower of Brookhaven National Laboratory in Long Island. The measurements were used to study the statistical properties of inertial range quantities, Reynolds stress and wind direction. The identification of possible self- similar behavior in the inertial range is a primary goal in turbulence research. To motivate the need for high Reynolds number measurements we demonstrate the Reynolds number effect on the existence and extent of the inertial range. We find that the inertial range is non-existent at typical laboratory Reynolds numbers. We thus turn to high Reynolds numbers and analyze the asymmetry in the probability distribution function (pdf) of the longitudinal velocity increment. We compute the scaling exponents of the positive and negative structure functions and find that the negative exponents are more anomalous than the positive ones. Furthermore, we quantify the contribution to the asymmetry-or the skewness-from different regions of the pdf. We find that the core region of the pdf is more or less symmetric and the skewness comes primarily from the rare large amplitude events contained in the tails of the pdf. We discuss this result in the context of the down-scale cascade of energy. Next it is shown that even at Rλ ~ 20,000 the structure functions do not scale unambiguously-although the situation is far better than that at low Reynolds numbers. By applying various filtering techniques and conditional sampling it is shown that this lack of strict scaling even at very high Reynolds numbers is due to large scale ``corrupting effects'' on the inertial range. We propose a plausible scheme to remove the large scale effects. Next, we characterize the

  13. Measurements of laser phase fluctuations induced by atmospheric turbulence over 2 km and 17.5 km distances.

    PubMed

    Ridley, Kevin D

    2011-09-10

    A laser heterodyne system was used to measure the phase fluctuations imposed on a 1.5 μm wavelength laser beam when double-passed over long atmospheric paths. Two distances were used: 2 and 17.5 km. Results are given for intensity scintillation, phase fluctuation time series and spectra, and phase structure function. The results are found to agree well with theory: the spectrum of phase fluctuations follows the 8/3 power law predicted for Kolmogorov turbulence over 3 orders of magnitude in frequency. The methods reported here could be used to investigate large-scale temperature variations in the atmosphere. PMID:21946989

  14. Spatial light coupled into a single-mode fiber by a Maksutov-Cassegrain antenna through atmospheric turbulence.

    PubMed

    Ke, Xizheng; Lei, Sichen

    2016-05-20

    Maksutov-Cassegrains are widely used in free-space optical communication. The coupling efficiency and variance of a Maksutov-Cassegrain fiber (single-mode) system distorted by atmospheric turbulence are numerically evaluated using second-order and fourth-order moments under a Von Karman spectrum. Considering the limited cost and size of the equipment, the Maksutov-Cassegrain aperture should satisfy DAS≈7 (ρS approximates the characteristic atmospheric coherence length), and the obscuration ratio should be no more than 0.2.

  15. A study of turbulence in an evolving stable atmospheric boundary layer using large-eddy simulation

    SciTech Connect

    Cederwall, R; Street, R L

    1999-05-01

    A study is made of the effects of stable stratification on the fine-scale features of the flow in an evolving stable boundary layer (SBL). Large-eddy simulation (LES) techniques are used so that spatially and temporally varying and intermittent features of the turbulence can be resolved; traditional Reynolds-averaging approaches are not well suited to this. The LES model employs a subgrid turbulence model that allows upscale energy transfer (backscatter) and incorporates the effects of buoyancy. The afternoon, evening transition, and nighttime periods are simulated. Highly anisotropic turbulence is found in the developed SBL, with occasional periods of enhanced turbulence. Energy backscatter occurs in a fashion similar to that found in DNS, and is an important capability in LES of the SBL. Coherent structures are dominant in the SBL, as the damping of turbulent energy occurs more at the smaller, less organized scales.

  16. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    PubMed

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links.

  17. Statistical structure of the atmospheric optical turbulence at Teide Observatory from recalibrated generalized SCIDAR data

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; Fuensalida, J. J.

    2011-01-01

    The characterization of the optical turbulence structure at an astronomical site requires a proper data base of the refractive-index structure constant, ?. Our team has been obtaining generalized SCIntillation Detection and Ranging (SCIDAR) observations to monitor ? from 2002 November-2009 January at Teide Observatory (Tenerife, Canary Islands, Spain). The Teide ? data base includes useful data from 153 nights of generalized SCIDAR measurements obtained at the 1.5-m Calos Sánchez Telescope. The overestimation of the turbulence strength as a consequence of generalized SCIDAR data processing has been analysed for all double stars and analysis-plane combinations used in our observations. If this overestimation of the turbulence is not taken into account, the median total seeing and isoplanatic angle derived from the turbulence profiles in the data base are 0.70 and 2.47 arcsec, respectively. We have recalibrated all the derived ?, correcting for this overestimation. The statistical optical turbulence structure above Teide Observatory is derived by combining the 93 662 individual ? that constitute the data base at this site. More than 85 per cent of the total optical turbulence is concentrated in low-altitude layers (<5 km above sea level). The optical turbulence structure presents an evolution of the layers in both strength and altitude. Only the turbulence concentration at the observatory level shows a similar turbulence strength over a standard year. The median values of total seeing and isoplanatic angle of ɛ0= 0.64 arcsec and θ0= 2.83 arcsec demonstrate the excellent quality of the Teide Observatory astronomical site for the implementation of adaptive optics systems.

  18. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    PubMed

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  19. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  20. Estimates of the error caused by atmospheric turbulence in determining object's motion speed using a digital camera

    NASA Astrophysics Data System (ADS)

    Valley, M. T.; Dudorov, V. V.; Kolosov, V. V.; Filimonov, G. A.

    2006-11-01

    The paper considers the error caused by atmospheric turbulence, in determining the motion speed of an object by using its successive images recorded on a matrix of a digital camera. Numerical modeling of the image of a moving object in successive time moments is performed. Fluctuation variance of the image mass centre affecting the measurement error is calculated. Error dependences on the distance to the object and path slope angle are obtained for different turbulence models. Considered are the situations, when the angular displacement of the object between two immediate shots of the digital camera is greater than the isoplanatism angle as well as the situations when the angular displacement is smaller than this angle.

  1. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Aksenov, V. P.; Dudorov, V. V.; Kolosov, V. V.

    2016-08-01

    Using a numerical simulation, we investigate the possibility of synthesising vortex laser beams with a variable orbital angular momentum by a hexagonal array of fibre lasers under a phase control of individual subapertures of the array. We report the requirements to the parameters of the device generating a vortex beam (number and size of subapertures, as well as their mutual arrangement). The propagation dynamics of synthesised vortex beams is compared with that of conventional Laguerre-Gaussian beams in free space and in a turbulent atmosphere. The spectral properties of the synthesised beam, represented as a superposition of different azimuthal modes, are determined during its propagation in free space. The energy and statistical parameters of the synthesised and Laguerre-Gaussian vortex beams are shown to coincide with increasing propagation distance in a turbulent medium.

  2. Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels.

    PubMed

    García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2010-09-13

    A new upper bound on the capacity of power- and bandwidth-constrained optical wireless links using selection transmit diversity over exponential atmospheric turbulence channels with intensity modulation and direct detection is derived when non-uniform on-off keying (OOK) formats are used. In this strong turbulence free-space optical (FSO) scenario, average capacity is investigated subject to an average optical power constraint and not only to an average electrical power constraint when the transmit diversity technique assumed is based on the selection of the optical path with a greater value of irradiance. Simulation results for the mutual information are further demonstrated to confirm the analytical results for different diversity orders.

  3. Polarization of quantization Gaussian Schell-beams through anisotropic non-Kolmogorov turbulence of marine-atmosphere

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhang; Zhang, Yixin; Hu, Zhengda; Li, Ye; Wang, Donglin

    2016-07-01

    Polarization and spatial coherence of quantization Gaussian Schell-beams propagating through the anisotropic non-Kolmogorov turbulence of marine-atmosphere channel are studied based on the quantized Huygens-Fresnel principle and the degree of quantum polarization. The spatial coherence length and the polarization degree of linearly polarization quantization Gaussian Schell-beams are developed. The effects of outer scale on the lateral coherence length are not obvious as same as the effects of wavelength on the degree of polarization. The degree of polarization decreases as the source transverse coherent width, anisotropic factor, the number of received photons, spectral index, the inner scale of turbulent eddies and source transverse radius decrease or generalized refractive-index structure parameter increases. The refractive-index structure parameter, spectral index and inner scale have also effect on the changes of lateral coherence length. Those results can be used to improve the performance of a polarization-encoded quantum communication system.

  4. Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere.

    PubMed

    Roggemann, M C; Lee, D J

    1998-07-20

    A two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere is presented. This system uses a deformable mirror and a Fourier-transforming mirror to adjust the amplitude of the wave front in the telescope pupil, similar to kinoforms used in laser beam shaping. A second deformable mirror is used to correct the phase of the wave front before it leaves the aperture. The phase applied to the deformable mirror used for controlling the beam amplitude is obtained with a technique based on the Fienup phase-retrieval algorithm. Simulations of propagation through a single turbulent layer sufficiently distant from the beacon observation and laser beam transmission aperture to cause scintillation shows that, for an ideal deformable-mirror system, this field-conjugation approach improves the on-axis field amplitude by a factor of approximately 1.4 to 1.5 compared with a conventional phase-only correction system.

  5. The effect of clear-air turbulence on a model of the general circulation of the atmosphere

    NASA Technical Reports Server (NTRS)

    Heck, W. J.; Panofsky, H. A.; Bender, M. A.

    1977-01-01

    Mixing coefficients due to clear-air turbulence are estimated from turbulence observations from aircraft, and from large-scale dissipation estimates from the large-scale energy budgets. Maximum coefficients occur near middle-latitude jet streams, and eddy viscosity there is of order of 10 sq m/sec; eddy conductivity is estimated to be about ten times smaller. These coefficients are introduced into the 12-layer general circulation model of the National Center of Atmospheric Research. They produce an apparently significant, though small reduction in maximum speed of the jet, and a reduction in eddy energy. Further, the stratospheric polar-night jet is produced at about the correct location with about the correct intensity.

  6. Performance analysis of satellite-to-ground downlink optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Li, Kangning; Ma, Jing; Belmonte, Aniceto; Tan, Liying; Yu, Siyuan

    2015-12-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for a multiple-aperture receiver system. Equal gain-combining (EGC) and selection-combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence under thermal-noise-limited conditions. Bit-error rate (BER) performances for on-off keying-modulated direct detection and outage probabilities are analyzed and compared for SC diversity receptions using analytical results and for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple-aperture receiver system, BER performances and outage probabilities of EGC and SC receiver systems are compared with a single monolithic-aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo simulations.

  7. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    NASA Astrophysics Data System (ADS)

    Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (~0.4 μs) CO2 Doppler lidar (λ=10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertically velocity from the vertical pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to +/-0.7 ms-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the ``raw'' measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  8. Rate-adaptive FSO links over atmospheric turbulence channels by jointly using repetition coding and silence periods.

    PubMed

    García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2010-11-22

    In this paper, a new and simple rate-adaptive transmission scheme for free-space optical (FSO) communication systems with intensity modulation and direct detection (IM/DD) over atmospheric turbulence channels is analyzed. This scheme is based on the joint use of repetition coding and variable silence periods, exploiting the potential time-diversity order (TDO) available in the turbulent channel as well as allowing the increase of the peak-to-average optical power ratio (PAOPR). Here, repetition coding is firstly used in order to accommodate the transmission rate to the channel conditions until the whole time diversity order available in the turbulent channel by interleaving is exploited. Then, once no more diversity gain is available, the rate reduction can be increased by using variable silence periods in order to increase the PAOPR. Novel closed-form expressions for the average bit-error rate (BER) as well as their corresponding asymptotic expressions are presented when the irradiance of the transmitted optical beam follows negative exponential and gamma-gamma distributions, covering a wide range of atmospheric turbulence conditions. Obtained results show a diversity order as in the corresponding rate-adaptive transmission scheme only based on repetition codes but providing a relevant improvement in coding gain. Simulation results are further demonstrated to confirm the analytical results. Here, not only rectangular pulses are considered but also OOK formats with any pulse shape, corroborating the advantage of using pulses with high PAOPR, such as gaussian or squared hyperbolic secant pulses. We also determine the achievable information rate for the rate-adaptive transmission schemes here analyzed.

  9. Spiral spectrum of Airy beams propagation through moderate-to-strong turbulence of maritime atmosphere.

    PubMed

    Zhu, Yun; Zhang, Yixin; Hu, Zhengda

    2016-05-16

    The spatial coherence radius in moderate-to-strong maritime turbulence is derived on the basis of the modified Rytov approximation. Models are developed to simulate the spiral spectrum of Airy beams propagating through moderate-to-strong maritime turbulence. In the moderate-to-strong irradiance fluctuation region, we analyze the effects of maritime turbulence on the spread of the spiral spectrum of Airy beams in a horizontal propagation path. Results indicate that the increment in the inner-scale significantly increases the received power. By contrast, the outer-scale elicits a negligible effect on the received power if the ratio of the inner-scale to the outer-scale is less than 0.01. The outer-scale affects the received power only if the ratio is greater than 0.01. The performance of a light source is essential for the received power of Airy beams carrying orbital angular momentum (OAM) through moderate-to-strong maritime turbulence. Airy beams with longer wavelengths, smaller OAM numbers, larger radii of the main ring, and smaller diameters of the circular aperture are less affected by maritime turbulence. Autofocusing of Airy beams is beneficial for the propagation of the spiral spectrum in a certain propagation distance. These results contribute to the design of optical communication systems with OAM encoding for moderate-to-strong maritime turbulence.

  10. Representation of the grey zone of turbulence in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Honnert, Rachel

    2016-04-01

    Numerical weather prediction model forecasts at horizontal grid lengths in the range of 100 to 1 km are now possible. This range of scales is the "grey zone of turbulence". Previous studies, based on large-eddy simulation (LES) analysis from the MésoNH model, showed that some assumptions of some turbulence schemes on boundary-layer structures are not valid. Indeed, boundary-layer thermals are now partly resolved, and the subgrid remaining part of the thermals is possibly largely or completely absent from the model columns. First, some modifications of the equations of the shallow convection scheme have been tested in the MésoNH model and in an idealized version of the operational AROME model at resolutions coarser than 500 m. Secondly, although the turbulence is mainly vertical at mesoscale (> 2 km resolution), it is isotropic in LES (< 100 m resolution). It has been proved by LES analysis that, in convective boundary layers, the horizontal production of turbulence cannot be neglected at resolutions finer than half of the boundary-layer height. Thus, in the grey zone, fully unidirectional turbulence scheme should become tridirectional around 500 m resolution. At Météo-France, the dynamical turbulence is modelled by a K-gradient in LES as well as at mesoscale in both MésoNH and AROME, which needs mixing lengths in the formulation. Vertical and horizontal mixing lengths have been calculated from LES of neutral and convective cases at resolutions in the grey zone.

  11. Spiral spectrum of Airy beams propagation through moderate-to-strong turbulence of maritime atmosphere.

    PubMed

    Zhu, Yun; Zhang, Yixin; Hu, Zhengda

    2016-05-16

    The spatial coherence radius in moderate-to-strong maritime turbulence is derived on the basis of the modified Rytov approximation. Models are developed to simulate the spiral spectrum of Airy beams propagating through moderate-to-strong maritime turbulence. In the moderate-to-strong irradiance fluctuation region, we analyze the effects of maritime turbulence on the spread of the spiral spectrum of Airy beams in a horizontal propagation path. Results indicate that the increment in the inner-scale significantly increases the received power. By contrast, the outer-scale elicits a negligible effect on the received power if the ratio of the inner-scale to the outer-scale is less than 0.01. The outer-scale affects the received power only if the ratio is greater than 0.01. The performance of a light source is essential for the received power of Airy beams carrying orbital angular momentum (OAM) through moderate-to-strong maritime turbulence. Airy beams with longer wavelengths, smaller OAM numbers, larger radii of the main ring, and smaller diameters of the circular aperture are less affected by maritime turbulence. Autofocusing of Airy beams is beneficial for the propagation of the spiral spectrum in a certain propagation distance. These results contribute to the design of optical communication systems with OAM encoding for moderate-to-strong maritime turbulence. PMID:27409905

  12. The flux tube paradigm and its role in MHD turbulence in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.

    2011-12-01

    Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these

  13. Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Andreas, Edgar; Fairall, Christopher; Guest, Peter; Persson, P.

    2008-03-01

    This paper surveys results of the comprehensive turbulent measurements in the stable boundary layer (SBL) made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) in the Beaufort Gyre from October 1997 through September 1998. Turbulent fluxes and mean meteorological data were continuously measured and reported hourly at five levels on a 20-m main SHEBA tower. Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification, and allow studying the SBL in detail. A brief overview of the SBL regimes, the flux-profile relationships, the turbulent Prandtl number, and other parameters obtained during SHEBA is given. The traditional Monin—Obukhov approach, z-less scaling, and gradient-based scaling are evaluated and discussed based on the data from SHEBA.

  14. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    NASA Astrophysics Data System (ADS)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  15. Transmission analysis of CPolM-based OFDM FSO system in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Su, Yuwei; Bai, Fan; Sato, Takuro

    2016-06-01

    In this paper, we propose to implement a consecutive polarization modulation (CPolM) scheme to transmit orthogonal frequency division multiplexing (OFDM) signal over the turbulent free-space optical (FSO) links. We analyze the fluctuation of polarization states of an optical wave while propagating through the turbulence channel of which the refractive-index property is described by Kolmogorov spectrum. The transmission performance in terms of signal-to-noise-ratio (SNR), symbol-error-ratio (SER) and outage probability of the proposed system are evaluated. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the intensity modulation (IM) based OFDM FSO system under a varying degrees of turbulence strength regimes.

  16. Structure of atmospheric turbulence in the friction layer below 500 meters

    NASA Technical Reports Server (NTRS)

    Maas, S. J.; Scoggins, J. R.

    1976-01-01

    Measurements of wind direction and speed, vertical velocity, and temperature were made from several levels of the 444 m tower near Oklahoma City. Turbulence quantities were calculated from the covariances between observed variables over periods ranging from 5 min to 1 hr. It was found that in some cases parameters such as mean wind speed, shearing stress, and vertical heat flux could be expressed by simple equations for periods of 15 min to 1 hr. Changes in these quantities with time are related to changes in vertical motion and stability. Power spectra were calculated for sequential 15 min, 30 min, and 1 hr periods. The effects of stability, wind speed, and surface roughness on the spectra of longitudinal and lateral velocity were examined, along with the effect of height on the spectrum of vertical velocity. This region was shown to be composed of a lower region in which mechanical turbulence dominates and an upper region dominated by convective turbulence.

  17. Spectral expansion method in problems of laser-beam propagation in the turbulent atmosphere.

    PubMed

    Aksenov, V P; Mironov, V L

    1978-11-01

    A mixed spectral expansion over elementary spherical and plane waves is suggested for use as an approximate solution of the stochastic wave equation describing propagation of optical waves in a turbulent medium. In this case, the complex amplitude of an elementary plane wave is calculated as a solution of a shortened equation, considering only the phase fluctuations of this wave. It is shown that such an approximate solution uniformly approximates statistical moments of the field (up to the fourth order, inclusive) under arbitrary conditions of wave propagationin a turbulent medium and conditions of wave diffraction on the transmitting aperture.

  18. Experiment tests of atmospheric turbulence effects on the infrared thermal imagers performance

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Zhang, Zhijie; Hong, Pu; Wang, Qun

    2010-11-01

    This research indicated the experiment method to analyze and predict the effect of turbulence on the performance of IR thermal imagers. First, the values of structure constant of refractive index, Cn 2, were measured. The Cn 2 model used in engineering applications is also introduced. And the calculated values were compared to the experiment data, so that the model can be modified. Meanwhile, two IR thermal imagers in MWIR and LWIR bands were installed to provide the data on the range performance. After that, the range values as a function of varying turbulence were calculated utilizing the simulation tool. Finally, this paper analyzed the range values in different groups.

  19. Remote sensing of turbulence in the clear atmosphere with 2-micron lidars

    NASA Technical Reports Server (NTRS)

    Martinson, Robert J.; Flint, John H.

    1994-01-01

    The development of an eye-safe, airborne LIDAR that exploits the decorrelation of the heterodyne signal to detect clear air turbulence is reported. A one watt average power transmitter is capable of detecting clear air turbulence to over 20 km is subvisual cirrus (an environment highly correlated with instabilities of sratified shear layers). In the absence of subvisual cirrus, a 4 km detection range is maintained. A table depicting the warning time in seconds with respect to the aircraft speed and instrument range (in kilometers) is presented.

  20. Atmospheric spectral model and theoretical expressions of irradiance scintillation index for optical wave propagating through moderate-to-strong non-Kolmogorov turbulence.

    PubMed

    Cui, Linyan; Xue, Bindang; Zheng, Shiling; Xue, Wenfang; Bai, Xiangzhi; Cao, Xiaoguang; Zhou, Fugen

    2012-06-01

    A new atmospheric spectral model and expressions of irradiance scintillation index are derived theoretically for optical wave propagating through moderate-to-strong non-Kolmogorov turbulence. They are developed under Andrews' assumption that small-scale irradiance fluctuations are modulated by large-scale irradiance fluctuations of the wave, and the geometrical optics approximation is adopted for mathematical development. A wide range of turbulence strength is considered instead of a limited range for weak turbulence. The atmospheric spectral model has a spectral power law value in the range of 3 to 4 instead of the standard power law value of 11/3. Numerical calculations are conducted to analyze the influences of spectral power law and turbulence strength.

  1. Gravity waves and turbulence in the middle atmosphere program (GRATMAP): An overview of gravity wave studies during MAP/MAC

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1989-01-01

    Considerable progress was made in understanding gravity waves and their effects in the middle atmosphere during the MAP and MAC periods. During this time, gravity waves were recognized to play a central role in controlling the large scale circulation and the thermal and constituent structure of this region through wave transports of energy and momentum, a significant induced meridional circulation, and through the action of wave induced turbulence. Both theoretical and observational studies also have contributed to the understanding of the gravity wave spectrum, its temporal and spatial variability, and the processes responsible for wave saturation. As a result, the propagation, interactions, and detailed effects of such motions in the middle atmosphere are beginning to be understood. An overview is provided.

  2. Statistical analysis of turbulence data from the NASA Marshall Space Flight Center atmospheric boundary layer tower array facility. [statistical correlations for aircraft design

    NASA Technical Reports Server (NTRS)

    Frost, W.; Lin, M. C.

    1983-01-01

    Statistical properties of atmospheric turbulence near the Earth's surface are presented. Emphasis is placed on the probability density distribution two point spatial correlation, length scale, and two point and single point spectrum. Comparison of the data with isotropic homogeneous models is made. In general, agreement with the models is poor. For the design of aircraft during operations in the lower levels associated with approach, takeoff, and terrain following, it appears necessary to improve existing models or develop new nonisotropic turbulence models.

  3. Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B

    NASA Astrophysics Data System (ADS)

    Kopeć, Jacek M.; Kwiatkowski, Kamil; de Haan, Siebren; Malinowski, Szymon P.

    2016-05-01

    Navigational information broadcast by commercial aircraft in the form of Mode-S EHS (Mode-S Enhanced Surveillance) and ADS-B (Automatic Dependent Surveillance-Broadcast) messages can be considered a new source of upper tropospheric and lower stratospheric turbulence estimates. A set of three processing methods is proposed and analysed using a quality record of turbulence encounters made by a research aircraft.The proposed methods are based on processing the vertical acceleration or the background wind into the eddy dissipation rate. Turbulence intensity can be estimated using the standard content of the Mode-S EHS/ADS-B.The results are based on a Mode-S EHS/ADS-B data set generated synthetically based on the transmissions from the research aircraft. This data set was validated using the overlapping record of the Mode-S EHS/ADS-B received from the same research aircraft. The turbulence intensity, meaning the eddy dissipation rate, obtained from the proposed methods based on the Mode-S EHS/ADS-B is compared with the value obtained using on-board accelerometer. The results of the comparison indicate the potential of the methods. The advantages and limitation of the presented approaches are discussed.

  4. Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis

    PubMed Central

    Reynolds, Kate V.; Thomas, Adrian L. R.; Taylor, Graham K.

    2014-01-01

    Turbulent atmospheric conditions represent a challenge to stable flight in soaring birds, which are often seen to drop their wings in a transient motion that we call a tuck. Here, we investigate the mechanics, occurrence and causation of wing tucking in a captive steppe eagle Aquila nipalensis, using ground-based video and onboard inertial instrumentation. Statistical analysis of 2594 tucks, identified automatically from 45 flights, reveals that wing tucks occur more frequently under conditions of higher atmospheric turbulence. Furthermore, wing tucks are usually preceded by transient increases in airspeed, load factor and pitch rate, consistent with the bird encountering a headwind gust. The tuck itself immediately follows a rapid drop in angle of attack, caused by a downdraft or nose-down pitch motion, which produces a rapid drop in load factor. Positive aerodynamic loading acts to elevate the wings, and the resulting aerodynamic moment must therefore be balanced in soaring by an opposing musculoskeletal moment. Wing tucking presumably occurs when the reduction in the aerodynamic moment caused by a drop in load factor is not met by an equivalent reduction in the applied musculoskeletal moment. We conclude that wing tucks represent a gust response precipitated by a transient drop in aerodynamic loading. PMID:25320064

  5. Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis.

    PubMed

    Reynolds, Kate V; Thomas, Adrian L R; Taylor, Graham K

    2014-12-01

    Turbulent atmospheric conditions represent a challenge to stable flight in soaring birds, which are often seen to drop their wings in a transient motion that we call a tuck. Here, we investigate the mechanics, occurrence and causation of wing tucking in a captive steppe eagle Aquila nipalensis, using ground-based video and onboard inertial instrumentation. Statistical analysis of 2594 tucks, identified automatically from 45 flights, reveals that wing tucks occur more frequently under conditions of higher atmospheric turbulence. Furthermore, wing tucks are usually preceded by transient increases in airspeed, load factor and pitch rate, consistent with the bird encountering a headwind gust. The tuck itself immediately follows a rapid drop in angle of attack, caused by a downdraft or nose-down pitch motion, which produces a rapid drop in load factor. Positive aerodynamic loading acts to elevate the wings, and the resulting aerodynamic moment must therefore be balanced in soaring by an opposing musculoskeletal moment. Wing tucking presumably occurs when the reduction in the aerodynamic moment caused by a drop in load factor is not met by an equivalent reduction in the applied musculoskeletal moment. We conclude that wing tucks represent a gust response precipitated by a transient drop in aerodynamic loading.

  6. Transverse-longitudinal coherence function of a sound field for line-of-sight propagation in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Collier, Sandra L.; Keith Wilson, D.

    Using the narrow-angle and Markov approximations, a formula for the transverse-longitudinal coherence function of a sound field propagating in a turbulent atmosphere with temperature and wind velocity fluctuations is derived. This function, which applies to observation points that are arbitrarily located in space, generalizes the transverse coherence function (coherence when the observation points are in a plane perpendicular to the sound propagation path), which has been studied extensively. The new result is expressed in terms of the transverse coherence function and the extinction coefficient of the mean sound field. The transverse-longitudinal coherence function of a plane sound wave is then calculated and studied in detail for the Gaussian and von Kármán spectra of temperature and wind velocity fluctuations. It is shown, for relatively small propagation distances, that the magnitude of the coherence function decreases in the longitudinal direction but remains almost constant in the transverse direction. On the other hand, for moderate and large propagation distances, the magnitude of the coherence decreases faster in the transverse direction than in the longitudinal. For some parameters of the problem, the coherence function has relatively large local maxima and minima as the transverse and longitudinal coordinates are varied. With small modifications, many results obtained in the paper can be applied to studies of electromagnetic wave propagation in a turbulent atmosphere.

  7. Average BER performance of FSO SIM-QAM systems in the presence of atmospheric turbulence and pointing errors

    NASA Astrophysics Data System (ADS)

    Djordjevic, Goran T.; Petkovic, Milica I.

    2016-04-01

    This paper presents the exact average bit error rate (BER) analysis of the free-space optical system employing subcarrier intensity modulation (SIM) with Gray-coded quadrature amplitude modulation (QAM). The intensity fluctuations of the received optical signal are caused by the path loss, atmospheric turbulence and pointing errors. The exact closed-form analytical expressions for the average BER are derived assuming the SIM-QAM with arbitrary constellation size in the presence of the Gamma-Gamma scintillation. The simple approximate average BER expressions are also provided, considering only the dominant term in the finite summations of obtained expressions. Derived expressions are reduced to the special case when optical signal transmission is affected only by the atmospheric turbulence. Numerical results are presented in order to illustrate usefulness of the derived expressions and also to give insights into the effects of different modulation, channel and receiver parameters on the average BER performance. The results show that the misalignment between the transmitter laser and receiver detector has the strong effect on the average BER value, especially in the range of the high values of the average electrical signal-to-noise ratio.

  8. Turbulent Atmosphere-Based Dominant Management Behavior of the Head Nurses in Clinical Wards: A Qualitative Study

    PubMed Central

    Salar, Ali Reza; Ahmadi, Fazlollah; Navipour, Hassan

    2016-01-01

    Background: Nursing management is the most important aspect for providing high-quality nursing care. Therefore, skillful nursing managers, such as head nurses, are required to accomplish this goal. High-quality nursing care is one of the most important principles of health organizations to ensure society’s health. Objectives: The goal of the conventional content analysis is to explain the dominant experienced-based behavior of the head nurses in clinical wards. Materials and Methods: This study was conducted by applying a quality study approach with a common content analysis model (Granheim and Lundmen). The participants were 25 head nurses who were working in the wards of various hospitals in Zahedan City. They were selected via the purposeful sampling method. The data were collected thoroughly and continued until a saturation stage was reached. Results: The result of data analysis was the theme “turbulent atmosphere-based management,” which consists of five categories as follows: the work culture of the ward, job burnout, negligent evaluation, job conflict, and decision making with limited effects. Conclusions: The analysis of the findings of the present study through considering the defined categories demonstrated that, to modify and correct the turbulent atmosphere-based management, several important measures are required and need to be continually monitored. PMID:27186386

  9. Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis.

    PubMed

    Reynolds, Kate V; Thomas, Adrian L R; Taylor, Graham K

    2014-12-01

    Turbulent atmospheric conditions represent a challenge to stable flight in soaring birds, which are often seen to drop their wings in a transient motion that we call a tuck. Here, we investigate the mechanics, occurrence and causation of wing tucking in a captive steppe eagle Aquila nipalensis, using ground-based video and onboard inertial instrumentation. Statistical analysis of 2594 tucks, identified automatically from 45 flights, reveals that wing tucks occur more frequently under conditions of higher atmospheric turbulence. Furthermore, wing tucks are usually preceded by transient increases in airspeed, load factor and pitch rate, consistent with the bird encountering a headwind gust. The tuck itself immediately follows a rapid drop in angle of attack, caused by a downdraft or nose-down pitch motion, which produces a rapid drop in load factor. Positive aerodynamic loading acts to elevate the wings, and the resulting aerodynamic moment must therefore be balanced in soaring by an opposing musculoskeletal moment. Wing tucking presumably occurs when the reduction in the aerodynamic moment caused by a drop in load factor is not met by an equivalent reduction in the applied musculoskeletal moment. We conclude that wing tucks represent a gust response precipitated by a transient drop in aerodynamic loading. PMID:25320064

  10. Computed and observed turbulent heat fluxes during an extreme Bora event in the Adriatic using atmosphere-ocean coupling

    NASA Astrophysics Data System (ADS)

    Ličer, Matjaž; Smerkol, Peter; Fettich, Anja; Ravdas, Michalis; Papapostolou, Alexandros; Mantziafou, Anneta; Strajnar, Benedikt; Cedilnik, Jure; Jeromel, Maja; Jerman, Jure; Petan, Sašo; Benetazzo, Alvise; Carniel, Sandro; Malačič, Vlado; Sofianos, Sarantis

    2016-04-01

    We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic Bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (4.4 km resolution) on the atmosphere side and Adriatic setup of POM (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes (computed using modified Louis scheme) and sea temperatures from both setups to platform and CTD measurements of fluxes (computed using COARE scheme) and temperatures from three observational platforms (Vida, Paloma, Acqua Alta) in the Northern Adriatic. We show that turbulent fluxes from both setups differ up to 20% during the Bora but not significantly before and after the event. The impact of the coupling on the ocean is significant while the impact on the atmosphere is less pronounced. When compared to observations, two way coupling ocean temperatures exhibit a four times lower RMSE than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss.

  11. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode.

    PubMed

    Sapir, Nir; Horvitz, Nir; Wikelski, Martin; Avissar, Roni; Mahrer, Yitzhak; Nathan, Ran

    2011-11-22

    Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring-gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m(2). We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring-gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration.

  12. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOEpatents

    Veligdan, James T.

    1993-01-01

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  13. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2015-09-21

    The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.

  14. Quantum polarization fluctuations of partially coherent dark hollow beams in non-Kolmogorov turbulence atmosphere

    NASA Astrophysics Data System (ADS)

    Yan, Xiang; Zhang, Peng-Fei; Zhang, Jing-Hui; Qiao, Chun-Hong; Fan, Cheng-Yu

    2016-08-01

    Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollow beams is obtained. It is found that the polarization fluctuations of the quantization partially coherent dark hollow beams are dependent on the turbulence factors and beam parameters with the detection photon numbers. Furthermore, an investigation of the changes in the on-axis propagation point and off-axis propagation point shows that the polarization degree of the quantization partially coherent dark hollow beams presents oscillation for a short propagation distance and gradually returns to zero for a sufficiently long distance. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 61405205).

  15. Toward Understanding Wake Vortices and Atmospheric Turbulence Interactions Using Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    DeCroix, David; Lin, Yuh-Lang; Arya, S. Pal; Kao, C.-T.; Shen, S.

    1997-01-01

    The vortices produced by an aircraft in flight are a complex phenomena created from a 'sheet of vorticity' leaving the trailing edge of the aircraft surfaces. This sheet tends to roll-up into two counter-rotating vortices. After a few spans downstream of the aircraft, the roll-up process is complete and the vortex pair may be characterized in a simple manner for modeling purposes. Our research will focus on what happens to these post roll-up vortices in the vicinity of an airport terminal. As the aircraft wake vortices descend, they are transported by the air mass which they are embedded and are decayed by both internal and external processes. In the vicinity of the airport, these external influences are usually due to planetary boundary layer (PBL) turbulence. Using large-eddy simulation (LES), one may simulate a variety of PBL conditions. In the LES method, turbulence is generated in the PBL as a response to surface heat flux, horizontal pressure gradient, wind shear, and/or stratification, and may produce convective or unstably stratified, neutral, or stably stratified PBL's. Each of these PBL types can occur during a typical diurnal cycle of the PBL. Thus it is important to be able to characterize these conditions with the LES method. Once this turbulent environment has been generated, a vortex pair will be introduced and the interactions are observed. The objective is to be able to quantify the PBL turbulence vortex interaction and be able to draw some conclusions of vortex behavior from the various scale interactions. This research is ongoing, and we will focus on what has been accomplished to date and the future direction of this research. We will discuss the model being used, show results that validate its use in the PBL, and present a nested-grid method proposed to analyze the entire PBL and vortex pair simultaneously.

  16. Venusian atmospheric turbulence evaluated from cloud brightness distribution in VEX UV images

    NASA Astrophysics Data System (ADS)

    Teraguchi, T.; Kasaba, Y.; Hoshino, N.; Sato, T. M.; Takahashi, Y.; Watanabe, S.; Yamada, M.; Matsuda, Y.; Kouyama, T.; Titov, D.; Markiewicz, W.

    2011-10-01

    This study suggested following points: (1) The power spectra mostly contained the inflection. The slope at lower wavenumbers was steeper than that at higher wavenumbers. Such a feature agrees with the characteristics in the kinetic energy spectra shon Earth (Nastrom et al., 1984; Nastrom and Gage, 1985). (2) The slopes at planetary wavenumbers K < 50 (0.001 /km at the latitude of 20S) had intermediate value between the theoretical ones, -3 and -5/3. It agrees well with the previous Venusian studies (e.g. Peralta et al., 2007). This feature was common over three years. (3) We first derived the slope at higher wavenumbers, 0.002 - 0.01 /km, which was due to the high spatial resolution of VMC. However, it was sometimes close to 0, which might be affected by instrumental noise. We are doing further checks. (4) We found some temporal and spatial changes of the slopes in short interval as several hours. This result also suggests that the PSD slope has a large variability in the individual latitude. (5) The wavenumbers at the inflection point were 0.001 - 0.003 /km. Kitamura and Matsuda (2006) suggested that the inflection point at 330 - 1000km can be a border between 2D and 3D turbulences. Our result indicates a possibility to have enstrophy forward cascade in 2D turbulence at lower wavenumbers and the energy forward cascade in 3D turbulence at higher wavenumbers.

  17. Atmospheric turbulence chamber for optical transmission experiment: characterization by thermal method.

    PubMed

    Gamo, H; Majumdar, A K

    1978-12-01

    A turbulence chamber (0.78 x 0.23 x 2.59 m(3)) consisting of ten small electric heater/blowers with an aluminum foil screen and three screens of 2-mm aluminum wire meshes can generate the nearly homogeneous isotropic turbulence within the 0.5 x 0.05 x 2-m(3) region at the 0.11-m height of optical measurements. The temperature structure constant squared C(2)(T) = 52.9 K(2) m(-?) was obtained from the temperature structure function measurements measured by using a differential microthermocouple system. The refractive-index structure constant squared C(2)nat the 632.8-nm wavelength was calculated from C(2)(T):C(2)(n) = 3.00 x 10(-11)m(-?). The average wind velocity and temperature were 0.41 m/sec and 53 degrees C, respectively. From the power spectrum of temperature fluctuations, the inner and outer scales of turbulence are determined: l(o) = 5.0 mm and L(0) = 6.5 cm. The measured temperature structure function and power spectrum of temperature fluctuations satisfy the ? and -5/3 power similarity laws in the inertial subrange, respectively.

  18. Adaptive selective relaying in cooperative free-space optical systems over atmospheric turbulence and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2014-06-30

    In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results. PMID:24977911

  19. Adaptive selective relaying in cooperative free-space optical systems over atmospheric turbulence and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2014-06-30

    In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.

  20. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    PubMed

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  1. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  2. MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Prabu, K.; Kumar, D. Sriram

    2015-05-01

    An optical wireless communication system is an alternative to radio frequency communication, but atmospheric turbulence induced fading and misalignment fading are the main impairments affecting an optical signal when propagating through the turbulence channel. The resultant of misalignment fading is the pointing errors, it degrades the bit error rate (BER) performance of the free space optics (FSO) system. In this paper, we study the BER performance of the multiple-input multiple-output (MIMO) FSO system employing coherent binary polarization shift keying (BPOLSK) in gamma-gamma (G-G) channel with pointing errors. The BER performance of the BPOLSK based MIMO FSO system is compared with the single-input single-output (SISO) system. Also, the average BER performance of the systems is analyzed and compared with and without pointing errors. A novel closed form expressions of BER are derived for MIMO FSO system with maximal ratio combining (MRC) and equal gain combining (EGC) diversity techniques. The analytical results show that the pointing errors can severely degrade the performance of the system.

  3. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens–Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  4. Turbulent Helicity and Potential Vorticity in Lower 25 meters of Atmosphere

    NASA Astrophysics Data System (ADS)

    Koprov, B.; Koprov, V.; Kurganskiy, M. V.; Chkhetiani, O.

    2015-12-01

    The measuring procedure developed and results obtained as related to turbulent flux of vorticity and to covariation <ωiGj> between vorticity and temperature gradient Gi=∂T/∂xi.The sum of the diagonal element of this matrix in Boussinesq approximation is proportional to potential vorticity. The main instrument used was set of 4 acoustical anemometer-termometer Gill as situated in the corners of rectangular tetrahedron. It was placed at the top of mast of variable height (3.5-25m).The base distance between sensors was equal to 0.7 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2014). The correlation-covariation matrix was calculated between 10 parameters: ui,ωj,Gk,T. It turned out that sum of horizontal components of helicity has negative sign, but for the vertical helicity - positive. As a rule the absolute value of correlation coefficients related to all terms of the sum uiωi do not exceed 0.1. Correlations related to all other elements of turbulent flux of vorticity are few times more (in absolute value). The cospectra related to turbulent flux of vorticity and to all other mentioned above variables have been calculated in the frequency band of 10-3-10 Hz. The maximal contribution into integral covariations supplies frequency band around 10-1 Hz. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  5. Atmospheric lateral and longitudinal turbulent length scales (measured at 600 to 800 meters above grade level)

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.

    1987-01-01

    NASA's Airborne Doppler Lidar System has been used to obtain a detailed 'instantaneous' mapping of horizontal spatial wind fields at 600-800 m elevations on the east side of the San Gorgonio Pass in California, in the form of checkerboard-fashion horizontal wind vectors spaced at 300 m intervals along and normal to the flight path. Spatial autocorrelations for the lateral and longitudinal components are ensemble-averaged, and integral turbulent length scales are computed for the wind fields' longitudinal and lateral directions. The flow in the region studied does not appear to be isotropic.

  6. Optimization of structures undergoing harmonic or stochastic excitation. Ph.D. Thesis; [atmospheric turbulence and white noise

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1975-01-01

    The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.

  7. An adaptation method to improve secret key rates of time-frequency QKD in atmospheric turbulence channels

    NASA Astrophysics Data System (ADS)

    Sun, Xiaole; Djordjevic, Ivan B.; Neifeld, Mark A.

    2016-03-01

    Free-space optical (FSO) channels can be characterized by random power fluctuations due to atmospheric turbulence, which is known as scintillation. Weak coherent source based FSO quantum key distribution (QKD) systems suffer from the scintillation effect because during the deep channel fading the expected detection rate drops, which then gives an eavesdropper opportunity to get additional information about protocol by performing photon number splitting (PNS) attack and blocking single-photon pulses without changing QBER. To overcome this problem, in this paper, we study a large-alphabet QKD protocol, which is achieved by using pulse-position modulation (PPM)-like approach that utilizes the time-frequency uncertainty relation of the weak coherent photon state, called here TF-PPM-QKD protocol. We first complete finite size analysis for TF-PPM-QKD protocol to give practical bounds against non-negligible statistical fluctuation due to finite resources in practical implementations. The impact of scintillation under strong atmospheric turbulence regime is studied then. To overcome the secure key rate performance degradation of TF-PPM-QKD caused by scintillation, we propose an adaptation method for compensating the scintillation impact. By changing source intensity according to the channel state information (CSI), obtained by classical channel, the adaptation method improves the performance of QKD system with respect to the secret key rate. The CSI of a time-varying channel can be predicted using stochastic models, such as autoregressive (AR) models. Based on the channel state predictions, we change the source intensity to the optimal value to achieve a higher secret key rate. We demonstrate that the improvement of the adaptation method is dependent on the prediction accuracy.

  8. Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere.

    PubMed

    Elperin, T; Kleeorin, N; Krasovitov, B; Kulmala, M; Liberman, M; Rogachevskii, I; Zilitinkevich, S

    2015-07-01

    Condensation of water vapor on active cloud condensation nuclei produces micron-size water droplets. To form rain, they must grow rapidly into at least 50- to 100-μm droplets. Observations show that this process takes only 15-20 min. The unexplained physical mechanism of such fast growth is crucial for understanding and modeling of rain and known as "condensation-coalescence bottleneck in rain formation." We show that the recently discovered phenomenon of the tangling clustering instability of small droplets in temperature-stratified turbulence [Phys. Fluids 25, 085104 (2013)] results in the formation of droplet clusters with drastically increased droplet number densities. The mechanism of the tangling clustering instability is much more effective than the previously considered by us the inertial clustering instability caused by the centrifugal effect of turbulent vortices. This is the reason of strong enhancement of the collision-coalescence rate inside the clusters. The mean-field theory of the droplet growth developed in this study can be useful for explanation of the observed fast growth of cloud droplets in warm clouds from the initial 1-μm-size droplets to 40- to 50-μm-size droplets within 15-20 min. PMID:26274274

  9. Influence of a stratospheric turbulence layer on the penetration of mountain waves into the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Doernbrack, A.; Bramberger, M.; Rapp, M.; Wagner, J.; Kaifler, B.; Kaifler, N.

    2015-12-01

    During the DEEPWAVE campaign, large-amplitude mesospheric temperaturefluctuations were observed by the ground-based Rayleigh lidar at Lauder,NZ on July 4 2014. For the same day, coordinated aircraft observations ofthe DLR Falcon and the NSF/NCAR GV report one of the largest wave eventsmeasured by both aircraft with vertical velocity amplitudes in excess of6 m/s around the tropopause level at around 11 km altitude.Mesoscale numerical simulations indicate the existence of breakinghydrostatic gravity waves between about 15 km to 25 km altitudeabove the southern island. In most cases, the breaking regionsare linked with individual orographic peaks. As time evolves, theygenerate a stratospheric turbulent layer extending over the wholeisland. Nevertheless, the wave attenuation in this layer cannot preventthe penetration of mountain waves to higher altitudes and the simulationsreveal a boost of wave amplitudes above about 30 km altitude. Furthermore,the mesoscale numerical model simulates the excitation of secondarygravity waves from the turbulent layer.Obviously, the small-scale dynamics in this stratospheric turbulencelayer influences the momentum deposition and the spatial scales of thewaves. Therefore, this layer plays a central role in defining the spectrumof gravity waves penetrating to the mesosphere. By a combination of amultitude of ground-based and airborne measurements, mesoscale (ECMWF'sIFS, WRF and Unified Model of UK MetOffice) as well as idealized numericalsimulations we investigate the role of the breaking region on the deeppropagation of mountain waves over New Zealand.

  10. Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere.

    PubMed

    Elperin, T; Kleeorin, N; Krasovitov, B; Kulmala, M; Liberman, M; Rogachevskii, I; Zilitinkevich, S

    2015-07-01

    Condensation of water vapor on active cloud condensation nuclei produces micron-size water droplets. To form rain, they must grow rapidly into at least 50- to 100-μm droplets. Observations show that this process takes only 15-20 min. The unexplained physical mechanism of such fast growth is crucial for understanding and modeling of rain and known as "condensation-coalescence bottleneck in rain formation." We show that the recently discovered phenomenon of the tangling clustering instability of small droplets in temperature-stratified turbulence [Phys. Fluids 25, 085104 (2013)] results in the formation of droplet clusters with drastically increased droplet number densities. The mechanism of the tangling clustering instability is much more effective than the previously considered by us the inertial clustering instability caused by the centrifugal effect of turbulent vortices. This is the reason of strong enhancement of the collision-coalescence rate inside the clusters. The mean-field theory of the droplet growth developed in this study can be useful for explanation of the observed fast growth of cloud droplets in warm clouds from the initial 1-μm-size droplets to 40- to 50-μm-size droplets within 15-20 min.

  11. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    NASA Astrophysics Data System (ADS)

    Braendholt, Andreas; Steenberg Larsen, Klaus; Ibrom, Andreas; Pilegaard, Kim

    2016-04-01

    Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic effect of low atmospheric turbulence on continuous hourly Rs measurements with closed chambers throughout one year in a temperate Danish beech forest. Using friction velocity (u⋆) measured at the site above the canopy, we filtered out chamber flux data measured at low atmospheric turbulence. The non-filtered data showed a clear diurnal pattern of Rs across all seasons with highest fluxes during night time suggesting an implausible negative temperature sensitivity of Rs. When filtering out data at low turbulence, the annually averaged diurnal pattern changed, such that the highest Rs fluxes were seen during day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when including all data and it decreased with an increasing u⋆ filter threshold. Our results show that Rs was overestimated at low atmospheric turbulence throughout the year and that this overestimation considerably biased the diurnal pattern of Rs and led to an overestimation of the annual Rs budget. Thus we recommend that that any analysis of the diurnal pattern of Rs must consider overestimation of Rs at low atmospheric turbulence, to yield unbiased diurnal patterns. This is crucial when investigating temperature responses and potential links between CO2 production and Rs on a short time scale, but also for correct estimation of annual Rs budgets. Acknowledgements: This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research

  12. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu

    2013-12-01

    The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.

  13. Huygens-Fresnel Wave-Optics Simulation of Atmosphere Optical Turbulence and Reflective Speckle in CO{sub 2} Differential Absorption Lidar (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Foy, B.R.; Koskelo, A.C.; McVey, B.D.; Quick, C.R.; Porch, W.M.; Tiee, J.J.; Fite, C.B.; Archuleta, F.A.; Whitehead, M.C.; Walters, D.L.

    1999-03-23

    The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. We have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these process: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, we briefly review a description of our model including the limitations along with previous simulation s of individual effects. The performance of our modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, advanced studies have been performed to demonstrate the utility of our model in assessing the effects for different lidar geometries on RMS noise and correlation ''size'' in the receiver plane.

  14. Huygens-Fresnel wave-optics simulation of atmospheric optical turbulence and reflective speckle in CO{sub 2} differential absorption lidar (DIAL)

    SciTech Connect

    Nelson, D.; Petrin, R.; MacKerrow, E.; Schmitt, M.; Foy, B.; Koskelo, A.; McVey, B.; Quick, C.; Porch, W.; Fite, C.; Archuleta, F.; Whitehead, M.; Tiee, J.; Walters, D.

    1999-04-01

    The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. The authors have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these processes: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. The performance of the modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements. The limitations of the model are also discussed. In addition, studies have been performed to determine the importance of key parameters in the simulation. The results of these studies and their impact on the overall results will be presented.

  15. Application of moiré technique to the measurement of the atmospheric turbulence parameters related to the angle of arrival fluctuations.

    PubMed

    Rasouli, Saifollah; Tavassoly, M Taghi

    2006-11-15

    There are several methods for measuring ground-level atmospheric turbulence parameters, such as the refractive index profile and its fluctuations, correlations of the fluctuations in space and time, and the atmospheric refractive-index structure constant. These methods are based mainly on the measurement of fluctuations in intensity and location of an image formed by light propagating in the turbulent atmosphere or the fluctuations in impinging points of narrow light beams traversing the ground-level atmosphere. Exploiting the moiré technique, we suggest a high-precision approach for determining fluctuaions in the angle of arrival. When a low-frequency grating (carrier grating) is installed at a suitable distance from a telescope, its image, practically, forms on the focal plane of the telescope objective. Superimposing a physical grating (probe grating) of the same pitch as the image grating on the image forms the moiré pattern. The atmospheric turbulence distorts the image grating. Processing the fluctuations of successive moiré fringes can yield the mentioned parameters across a rather large cross section of the atmosphere with high accuracy, because of the moiré technique's magnifying character and access to a large volume of data, and does so in a comparatively simple and reliable manner.

  16. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  17. Characteristics of layers, waves and turbulence in the atmosphere and ionosphere as estimated by GPS space radio-holography

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Gubenko, Vladimir; Matyugov, Stanislav; Pavelyev, Alexey

    The spatial, seasonal and geographical distrubutions of the intensity of layers, turbulence and internal waves at different altitudes in the atmosphere and ionosphere of the Earth are presented. The results have been obtained on the base of locality principle using a new phase acceleration-intensity method for analysis of the GPS radio occultation signals. This methodology has been applied to mesearements of the inclination and altitude of ionospheric layers. Obtained information has been used for estimation of the front orientation, internal frequency and phase speed of the internal waves in the ionosphere and neutral atmosphere. A new index of the ionospheric activity as measured from the phase of radio waves passed through the ionosphere is introduced and its high correlation with S4 scintillation index is established. This correlation indicates the significant influence of ionospheric layers on variations of characteristics of radio waves in transionospheric communication links. Specially for the troposphere the geographical distribution of the weak total absorption (about of 1-2 db) of the radio waves at GPS frequencies in the Earth atmosphere corresponding to influence of the oxygen and water vapor in the troposphere is measured with accuracy better than 0.1 db. Obtained results expanded the applicable domain of the GPS space radio-holography for global investigation of the natural processes in the atmosphere and ionosphere as function of solar activity and space weather effects. The new phase acceleration-intensity method is also a basic tool which can be applied for data analysis of future planetary radio occultation missions

  18. Emerging flux, magnetic reconnection, plasma turbulence and waves in the transition zone of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Brueckner, G. E.

    1987-01-01

    Ultraviolet spectroscopy of the solar transition zone, especially Spacelab 2 results, is reviewed. Emerging magnetic flux is considered as the energy source of the solar corona and the solar wind. The conversion of magnetic into kinetic energy is facilitated in the transition zone because of unique conditions. Radiation losses are sufficient to create fast instabilities. Observed nonthermal velocities in spectra of the transition zone indicate the existence of strong plasma oscillations and turbulence. The small filling factor of the transition zone indicates a highly filamentary structure of density, magnetic field strength, and currents, which results in rapid reconnection time scales. Particle acceleration and the heating of the corona are placed in the areas of strong plasma oscillations of the transition zone.

  19. Software-based mitigation of image degradation due to atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.; Scheifling, Corinne

    2010-10-01

    Motion-Compensated Averaging (MCA) with blind deconvolution has proven successful in mitigating turbulence effects like image dancing and blurring. In this paper an image quality control according to the "Lucky Imaging" principle is combined with the MCA-procedure, weighting good frames more heavily than bad ones, skipping a given percentage of extremely degraded frames entirely. To account for local isoplanatism, when image dancing will effect local displacements between consecutive frames rather than global shifts only, a locally operating MCA variant with block matching, proposed in earlier work, is employed. In order to reduce loss of detail due to normal averaging, various combinations of temporal mode, median and mean are tested as reference image. The respective restoration results by means of a weighted blind deconvolution algorithm are presented and evaluated.

  20. Influence of leads widths distribution on turbulent heat transfer between the ocean and the atmosphere

    NASA Astrophysics Data System (ADS)

    Marcq, S.; Weiss, J.

    2011-10-01

    Leads are linear-like structures of open water within the sea ice cover that develop as the result of fracturing due to divergence or shear. Through leads, air and water come into contact and directly exchange latent and sensible heat through convective processes driven by the large temperature and moisture differences between them. In the central Arctic, leads only cover 1 to 2% of the ocean during winter, but account for more than 80% of the heat fluxes. Furthermore, narrow leads (several meters) are more than twice as efficient at transmitting turbulent heat than larger ones (several hundreds of meters). We show that lead widths are power law distributed, P(X)~X-a with a>1, down to very small spatial scales (20 m or below). This implies that the open water fraction is by far dominated by very small leads. Using two classical formulations, which provide first order turbulence closure for the fetch-dependence of heat fluxes, we find that the mean heat fluxes (sensible and latent) over open water are up to 55 % larger when considering the lead width distribution obtained from a SPOT satellite image of the ice cover, compared to the situation where the open water fraction constitutes one unique large lead and the rest of the area is covered by ice, as it is usually considered in climate models at the grid scale. This difference may be even larger if we assume that the power law scaling of lead widths extents down to smaller (~1 m) scales. Such estimations may be a first step towards a subgrid scale parameterization of the spatial distribution of open water for heat fluxes calculations in ocean/sea ice coupled models.

  1. Correlation of velocity and velocity-density turbulence in the exhaust of an atmospheric burner

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1985-01-01

    In the experiment described herein, temperature (density) and velocity are measured separately but simultaneously as functions of time so that it is possible to determine the relationships among velocity, density, and the product of density and velocity. An atmospheric burner rig was used to provide the flow for the experiment.

  2. Atmospheric Turbulence Measurements With the Automatic Mini UAV 'M2AV Carolo'

    NASA Astrophysics Data System (ADS)

    Bange, J.; van den Kroonenberg, A. C.; Spieß, T.; Buschmann, M.; Krüger, L.; Heindorf, A.; Vörsmann, P.

    2007-05-01

    The limitations of manned airborne meteorological measurements led to the development of an autonomously operating mini aircraft, the Meteorological Mini-UAV (M2AV), at the Institute of Aerospace Systems, Technical University of Braunschweig, Germany. The task was to develop, test and verify a meteorological sensor package as payload for an already available automatic carrier aircraft, the UAV 'Carolo T200', which operates autonomously i.e. without remote control. The M2AV is a self constructed model aircraft with two electrically powered engines and a wingspan of two meters. The maximum take-off weight is 4.5~kg (the M2AV is therefore classified as an model plane which simplifies authority issues), including 1.5~kg of payload. It is hand-launched which makes operation of the aircraft easy. With an endurance of approximately 50 minutes, the range accounts for 60 km at a cruising speed of 20~m/s. The M2AV is capable of performing turbulence measurements (wind vector, temperature and humidity) within the troposphere and offers an economic component during meteorological campaigns. The meteorological sensors are mounted on a noseboom to minimise the aircraft's influence on the measurements and to position the sensors closely to each other. Wind is measured via a small five-hole probe, an inertia measurement unit and GPS. The flight mission (waypoints, altitudes, airspeed) is planned and assigned to the aircraft before the semi- automatic launch. The flight is only controlled by the on-board autopilot system which only communicates with a ground station (laptop PC) for the exchange of measured data and command updates like new waypoints etc. The talk gives details on the technical items, calibration and first missions. Results from first field experiments like the LAUNCH-2005 campaign near Berlin are used for data quality assessment by comparison with simultaneous lidar and sodar measurements. An in situ comparison with the highly accurate helicopter-borne turbulence

  3. Simulation and modeling of the turbulent katabatic flow along a hyperbolic tangent slope for stably stratified atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Brun, Ch.; Chollet, J. P.

    2009-04-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow (Doran and Horst 1983, Monti et al. 2002). This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered (Baines 2005). A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Smith and Skyllingstad 2005) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a hyperbolic tangent slope with stable stratification. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations with a Boussinesq approximation. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the surface, with a special refinement in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency N=0.013. At the surface two sets of boundary conditions have been considered, first a rough surface condition, second an ideal case with slip conditions. A constant surface cooling q_w=-30 W/m2 is applied on the stably stratified fluid initially at rest

  4. The balloon ring: a high-performance low-cost instrumentation platform for measuring atmospheric turbulence profiles

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.; Eaton, Frank D.; Black, Don G.; Black, Wiley T.; Black, Alastair

    2009-08-01

    Balloons, similar to those used for meteorological observations, are commonly used to carry a small instrumentation package for measuring optical turbulence in the atmosphere as a function of altitude. Two temperature sensors, one meter apart, measure a single point of the temperature structure function. The raw data is processed to provided the value of CT2, and the results transmitted to a ground receiving site. These data are converted to the index of refraction structure constant, Cn2. The validity of these measurements depend on the correctness of a number of assumptions. These include local isotropy of the turbulence and the existence of the Kolmogorov inertial subrange, and that the data is not contaminated by the wake of the ascending balloon. A variety of experiments on other platforms, and in the laboratory, demonstrate that the assumptions upon which these balloon measurements are made are not valid for a large percentage of the above described flights. In order to collect data whose interpretation did not require preconceived assumptions, the balloon ring instrumentation system was developed. The ring is 8.69 meters in diameter, with a cross-sectional diameter of 14 cm. The ring is hung just below the balloon, so that the wake goes through the center of the ring, and the sensors are mounted tangent to the circumference of the ring. The raw data is transmitted to the ground with a bandwidth extending to 1.25 kHz. A sample of the measurements taken during a flight at Vandenberg Air Force Base, Calif. is presented.

  5. Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Yuan, B.; Mauldin, R. L.; Cantrell, C. A.; Guenther, A. B.; Patton, E. G.; Weinheimer, A. J.; Knote, C.; Orlando, J.; Emmons, L.; Apel, E.; Hornbrook, R.; Shertz, S.; Ullmann, K.; Hall, S.; Graus, M.; Gouw, J.; Zhou, X.; Ye, C.

    2015-12-01

    The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.

  6. Effects of precipitation on sonic anemometer measurements of turbulent fluxes in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei

    2016-06-01

    Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.

  7. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers

    SciTech Connect

    Muñoz-Esparza, D.; Kosović, B.; Beeck, J. van; Mirocha, J.

    2015-03-15

    Despite the variety of existing methods, efficient generation of turbulent inflow conditions for large-eddy simulation (LES) models remains a challenging and active research area. Herein, we extend our previous research on the cell perturbation method, which uses a novel stochastic approach based upon finite amplitude perturbations of the potential temperature field applied within a region near the inflow boundaries of the LES domain [Muñoz-Esparza et al., “Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models,” Boundary-Layer Meteorol., 153, 409–440 (2014)]. The objective was twofold: (i) to identify the governing parameters of the method and their optimum values and (ii) to generalize the results over a broad range of atmospheric large-scale forcing conditions, U{sub g} = 5 − 25 m s{sup −1}, where U{sub g} is the geostrophic wind. We identified the perturbation Eckert number, Ec=U{sub g}{sup 2}/ρc{sub p}θ{sup ~}{sub pm}, to be the parameter governing the flow transition to turbulence in neutrally stratified boundary layers. Here, θ{sup ~}{sub pm} is the maximum perturbation amplitude applied, c{sub p} is the specific heat capacity at constant pressure, and ρ is the density. The optimal Eckert number was found for nonlinear perturbations allowed by Ec ≈ 0.16, which instigate formation of hairpin-like vortices that most rapidly transition to a developed turbulent state. Larger Ec numbers (linear small-amplitude perturbations) result in streaky structures requiring larger fetches to reach the quasi-equilibrium solution, while smaller Ec numbers lead to buoyancy dominated perturbations exhibiting difficulties for hairpin-like vortices to emerge. Cell perturbations with wavelengths within the inertial range of three-dimensional turbulence achieved identical quasi-equilibrium values of resolved turbulent kinetic energy, q, and Reynolds-shear stress, . In contrast, large-scale perturbations

  8. Large-Actuator-Number Horizontal Path Correction of Atmospheric Turbulence utilizing an Interferometric Phase Conjugate Engine

    SciTech Connect

    Baker, K L; Stappaerts, E A; Gavel, D; Tucker, J; Silva, D A; Wilks, S C; Olivier, S S; Olsen, J

    2004-08-25

    An adaptive optical system used to correct horizontal beam propagation paths has been demonstrated. This system utilizes an interferometric wave-front sensor and a large-actuator-number MEMS-based spatial light modulator to correct the aberrations incurred by the beam after propagation along the path. Horizontal path correction presents a severe challenge to adaptive optics systems due to the short atmospheric transverse coherence length and the high degree of scintillation incurred by laser propagation along these paths. Unlike wave-front sensors that detect phase gradients, however, the interferometric wave-front sensor measures the wrapped phase directly. Because the system operates with nearly monochromatic light and uses a segmented spatial light modulator, it does not require that the phase be unwrapped to provide a correction and it also does not require a global reconstruction of the wave-front to determine the phase as required by gradient detecting wave-front sensors. As a result, issues with branch points are eliminated. Because the atmospheric probe beam is mixed with a large amplitude reference beam, it can be made to operate in a photon noise limited regime making its performance relatively unaffected by scintillation. The MEMS-based spatial light modulator in the system contains 1024 pixels and is controlled to speeds in excess of 800 Hz, enabling its use for correction of horizontal path beam propagation. In this article results are shown of both atmospheric characterization with the system and open loop horizontal path correction of a 1.53 micron laser by the system. To date Strehl ratios of greater than 0.5 have been achieved.

  9. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization.

    PubMed

    Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Willner, Asher J; Cao, Yinwen; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Willner, Alan E

    2016-06-01

    We explore the mitigation of atmospheric turbulence effects for orbital angular momentum (OAM)-based free-space optical (FSO) communications with multiple-input multiple-output (MIMO) architecture. Such a system employs multiple spatially separated aperture elements at the transmitter/receiver, and each transmitter aperture contains multiplexed data-carrying OAM beams. We propose to use spatial diversity combined with MIMO equalization to mitigate both weak and strong turbulence distortions. In a 2×2 FSO link with each transmitter aperture containing two multiplexed OAM modes of ℓ=+1 and ℓ=+3, we experimentally show that at least two OAM data channels could be recovered under both weak and strong turbulence distortions using selection diversity assisted with MIMO equalization.

  10. Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence.

    PubMed

    Guérit, G; Drobinski, P; Flamant, P H; Augère, B

    2001-08-20

    There have been many analyses of the reduction of lidar system efficiency in bistatic geometry caused by beam spreading and by fluctuations along the two paths generated by refractive-index turbulence. Although these studies have led to simple, approximate results that provide a reliable basis for preliminary assessment of lidar performance, they do not apply to monostatic lidars. For such systems, calculations and numerical simulations predict an enhanced coherence for the backscattered field. However, to the authors' knowledge, a simple analytical mathematical framework for diagnosing the effects of refractive-index turbulence on the performance of both bistatic and monostatic coherent lidars does not exist. Here analytical empirical expressions for the transverse coherence variables and the heterodyne intensity are derived for bistatic and monostatic lidars as a function of moderate atmospheric refractive-index turbulence within the framework of the Gaussian-beam approximation.

  11. The marine atmospheric boundary layer during the HyMeX-ASICS-MED campaign: characterization of coherent structures and impact on turbulent flux estimates

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Canut, Guylaine; Durand, Pierre

    2015-04-01

    During winter, the North Western Mediterranean Sea is characterised by intense air-sea exchanges linked to regional strong winds (Mistral or Tramontana) which bring cold and dry continental air over a warmer sea. The HyMeX-ASICS-MED field campaign, devoted to intense sea-atmosphere exchange and deep oceanic convection analysis took place in the Gulf of Lion during winter 2013. The French ATR42 aircraft was operated to document the mean and turbulent structure of the atmospheric boundary layer (ABL) during strong wind conditions. The aircraft was equipped to measure turbulence fluctuations, thus allowing the computation of turbulence parameters. The flight strategy consisted of stacked horizontal legs oriented along and across the wind direction, in order to obtain information about the isotropy of the turbulent field and about coherent structures. Strong wind events were documented with 11 flights during which latent heat flux up to 600 W.m-2 were observed. The structure of the turbulent field is analysed through the integral length scale and the wavelength of the spectrum peak of the vertical velocity which represent the size of the large and the most energetic eddies, respectively. It reveals a stretching of turbulent eddies along the mean wind. This kind of organized structures plays a major role by modulating the transfers inside the ABL. In particular, this non-isotropic behaviour alters the flux estimates from along-wind samples. This last point is critical because surface and entrainment fluxes, deduced from extrapolation of the flux profiles, are essential parameters to characterise the coupling between air-sea exchanges and the ABL structure.

  12. The influence of vegetation and relief heterogeneity on turbulent exchange of CO2 between land surface and the atmosphere

    NASA Astrophysics Data System (ADS)

    Mukhartova, Juliya; Levashova, Natalia; Volkova, Elena; Olchev, Alexander

    2016-04-01

    vegetation and land-use types are situated far enough from the domain boundaries. It enabled us to assume that near these boundaries the values of vertical and horizontal wind components are independent on x coordinate. To quantify the possible effects of relief and vegetation heterogeneity on CO2 fluxes the three transects crossing the study area were chosen. For each transect the 2D patterns of wind speed components, turbulent exchange coefficients, CO2 concentrations and fluxes were calculated. The modeled vertical CO2 fluxes were compared with the fluxes calculated without allowing for turbulent disturbances due to relief and vegetation heterogeneity. All modeling experiments were provided for different weather conditions. The results of modeling experiments for different transects under various meteorological conditions showed that relief and vegetation heterogeneity have a significant impact on CO2 fluxes within the atmospheric surface layer and their ignoring can results in uncertainties in flux estimations. This study was supported by the Russian Science Foundation (Grant 14-14-00956).

  13. MULTIRESOLUTION FEATURE ANALYSIS AND OTHER TECHNIQUES FOR UNDERSTANDING AND MODELING TURBULENCE IN STABLE ATMOSPHERES Final Report

    SciTech Connect

    R. L. Street; F. L. Ludwig; Y. Chen

    2005-04-11

    Our DOE project is one of the efforts comprising the Vertical Transport and Mixing Program of the Environmental Sciences Division of the Office of Biological and Environmental Research in Department of Energy. We used ARPS to simulate flow in the Salt Lake Valley. We simulated the physical processes more accurately so that we can better understand the physics of flow in complex terrain and its effects at larger scales. The simulations provided evidence that atmospheric forcing interacts with the Jordan Narrows, the Traverse Range and other complex mountain terrain at the south end of the Salt Lake Valley to produce lee rotors, hydraulic jumps and other effects. While we have successfully used ARPS to simulate VTMX 2000 flows, we have also used observed data to test the model and identify some of its weaknesses. Those are being addressed in a continuation project supported by DOE.

  14. Mitigation of beam fluctuation due to atmospheric turbulence and prediction of control quality using intelligent decision-making tools.

    PubMed

    Raj, A Arockia Bazil; Selvi, J Arputha Vijaya; Kumar, D; Sivakumaran, N

    2014-06-10

    In free-space optical link (FSOL), atmospheric turbulence causes fluctuations in both intensity and phase of the received beam and impairing link performance. The beam motion is one of the main causes for major power loss. This paper presents an investigation on the performance of two types of controller designed for aiming a laser beam to be at a particular spot under dynamic disturbances. The multiple experiment observability nonlinear input-output data mapping is used as the principal components for controllers design. The first design is based on the Taguchi method while the second is artificial neural network method. These controllers process the beam location information from a static linear map of 2D plane: optoelectronic position detector, as observer, and then generate the necessary outputs to steer the beam with a microelectromechanical mirror: fast steering mirror. The beam centroid is computed using monopulse algorithm. Evidence of suitability and effectiveness of the proposed controllers are comprehensively assessed and quantitatively measured in terms of coefficient of correlation, correction speed, control exactness, centroid displacement, and stability of the receiver signal through the experimental results from the FSO link setup established for the horizontal range of 0.5 km at an altitude of 15.25 m. The test field type is open flat terrain, grass, and few isolated obstacles.

  15. Fixed-wing MAV attitude stability in atmospheric turbulence-Part 2: Investigating biologically-inspired sensors

    NASA Astrophysics Data System (ADS)

    Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R.

    2014-11-01

    Challenges associated with flight control of agile fixed-wing Micro Air Vehicles (MAVs) operating in complex environments is significantly different to any larger scale vehicle. The micro-scale of MAVs can make them particularly sensitive to atmospheric disturbances thus limiting their operation. As described in Part 1, current conventional reactive attitude sensing systems lack the necessary response times for attitude control in high turbulence environments. This paper reviews in greater detail novel and emerging biologically inspired sensors, which can sense the disturbances before a perturbation is induced. A number of biological mechanoreceptors used by flying animals are explored for their utility in MAVs. Man-made attempts of replicating mechanoreceptors have thus been reviewed. Bio-inspired flow and pressure-based sensors were found to be the most promising for complementing or replacing current inertial-based reactive attitude sensors. Achieving practical implementations that meet the size, weight and power constraints of MAVs remains a significant challenge. Biological systems were found to rely on multiple sensors, potentially implying a number of research opportunities in the exploration of heterogeneous bio-inspired sensing solutions.

  16. Atmospheric Flow over a Mountainous Region by a One-Way Coupled Approach Based on Reynolds-Averaged Turbulence Modelling

    NASA Astrophysics Data System (ADS)

    Rodrigues, C. Veiga; Palma, J. M. L. M.; Rodrigues, Á. H.

    2016-05-01

    The atmospheric flow over a mountainous region has been simulated using a model-chain approach, whereby the flow in a larger region was simulated using a mesoscale model with three nesting levels, down to a 3-km horizontal resolution, within which a fourth nesting level was set with a microscale flow solver and a domain with varying horizontal resolution, around 300 m at the site of interest. Two periods in the summer (July) and autumn (November-December) 2005, each with a duration of two weeks, were selected to test the present approach. Two sites were chosen, comprising a total of seven meteorological masts with wind vanes and anemometers at two heights. The microscale solver improved the wind-speed prediction of the mesoscale model in 10 of the 14 anemometers and replicated the high wind speeds, which were under-predicted in the mesoscale model. The wind conditions in summer varied with the daily cycle, related to regional-scale sea breezes and their interaction with local circulations induced by the topography. Regarding the turbulence intensity, the predicted decay with wind-speed increase was in agreement with the measurements. This study shows the need of both models: the microscale model captures the details of the boundary-layer physics, which would not be possible without the boundary conditions provided by the mesoscale model.

  17. Influence and impact of the parametrization of the turbulent air-sea fluxes on atmospheric moisture and convection in the tropics

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Gainusa-Bogdan, Alina; Hourdin, Frédéric; Marti, Olivier; Pelletier, Charles

    2016-04-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation and are also responsible for various phenomena like the water supply to the atmospheric column, which itself is extremely important for atmospheric convection. Although the representation of these fluxes has been the subject of major studies, it still remains a very challenging problem. Our aim is to better understand the role of these fluxes in climate change experiments and in the equator-pole redistribution of heat and water by the oceanic and atmospheric circulation. For this, we are developing a methodology starting from idealized 1D experiments and going all the way up to fully coupled ocean-atmosphere simulations of past and future climates. The poster will propose a synthesis of different simulations we have performed with a 1D version of the LMDz atmosphere model towards a first objective of understanding how different parameterizations of the turbulent fluxes affect the moisture content of the atmosphere and the feedback with the atmospheric boundary layer and convection schemes. Air-sea fluxes are not directly resolved by the models because they are subgrid-scale phenomena and are therefore represented by parametrizations. We investigate the differences between several 1D simulations of the TOGA-COARE campaign (1992-1993, Pacific warm pool region), for which 1D boundary conditions and observations are available to test the results of atmospheric models. Each simulation considers a different version of the LMDz model in terms of bulk formula (four) used to compute the turbulent fluxes. We also consider how the representation of gustiness in these parameterizations affects the results. The use of this LMDz test case (very constrained within an idealized framework) allows us to determine how the response of surface fluxes helps to reinforce or damp the atmospheric water vapor content or cloud feedbacks

  18. Evaluation of atmospheric turbulence, energy exchanges and structure of convective cores during the occurrence of mesoscale convective systems using MST radar facility at Gadanki

    NASA Astrophysics Data System (ADS)

    Satyanarayana, A. N. V.; Sultana, Sabiha; Narayana Rao, T.; Satheesh Kumar, S.

    2014-06-01

    Mesoscale convective systems (MCSs) wreak lots of havoc and severe damage to life and property due to associated strong gusty winds, rainfall and hailstorms even though they last for an hour or so. Planetary boundary layer (PBL) plays an important role in the transportation of energy such as momentum, heat and moisture through turbulence into the upper layers of the atmosphere and acts as a feedback mechanism in the generation and sustenance of MCS. In the present study, three severe thunderstorms that occurred over mesosphere-stratosphere-troposphere (MST) radar facility at National Atmospheric Research Laboratory (NARL), Gadanki, India, have been considered to understand turbulence, energy exchanges and wind structure during the different epochs such as pre-, during and after the occurrence of these convective episodes. Significant changes in the turbulence structure are noticed in the upper layers of the atmosphere during the thunderstorm activity. Identified strong convective cores with varying magnitudes of intensity in terms of vertical velocity at different heights in the atmosphere discern the presence of shallow as well as deep convection during initial, mature and dissipative stages of the thunderstorm. Qualitative assessments of these convective cores are verified using available Doppler Weather Radar imageries in terms of reflectivity. The MST radar derived horizontal wind profiles are in good comparison with observed radiosonde winds. Significant variations in the surface meteorological parameters, sensible heat flux and turbulent kinetic energy as well as horizontal wind profiles are noticed during the different epochs of the convective activity. This work is useful in evaluating the performance of PBL schemes of mesoscale models in simulating MCS.

  19. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the heat fluxes are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the heat fluxes and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the heat flux changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature, and moisture. These, combined with sea surface warming trends, produce trends in wintertime sensible and latent heat fluxes.

  20. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  1. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  2. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; Weber, J. K.; Larson, V. E.; Wyant, M. C.; Wang, M.; Guo, Z.; Ghan, S. J.

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.

  3. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; Weber, J. K.; Larson, V. E.; Wyant, M. C.; Wang, M.; Guo, Z.; Ghan, S. J.

    2015-06-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.

  4. Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence.

    PubMed

    Gudimetla, V S Rao; Holmes, Richard B; Smith, Carey; Needham, Gregory

    2012-05-01

    The effect of anisotropic Kolmogorov turbulence on the log-amplitude correlation function for plane-wave fields is investigated using analysis, numerical integration, and simulation. A new analytical expression for the log-amplitude correlation function is derived for anisotropic Kolmogorov turbulence. The analytic results, based on the Rytov approximation, agree well with a more general wave-optics simulation based on the Fresnel approximation as well as with numerical evaluations, for low and moderate strengths of turbulence. The new expression reduces correctly to previously published analytic expressions for isotropic turbulence. The final results indicate that, as asymmetry becomes greater, the Rytov variance deviates from that given by the standard formula. This deviation becomes greater with stronger turbulence, up to moderate turbulence strengths. The anisotropic effects on the log-amplitude correlation function are dominant when the separation of the points is within the Fresnel length. In the direction of stronger turbulence, there is an enhanced dip in the correlation function at a separation close to the Fresnel length. The dip is diminished in the weak-turbulence axis, suggesting that energy redistribution via focusing and defocusing is dominated by the strong-turbulence axis. The new analytical expression is useful when anisotropy is observed in relevant experiments.

  5. Preliminary evaluation and comparison of atmospheric turbulence rejection performance for infinite and receding horizon control in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.; De Dona, Jose

    2014-07-01

    disturbance rejection performance in the unconstrained case is the same for LQG and RHC, while RHC clearly outperforms the saturated LQG control in terms of atmospheric turbulence rejection. More importantly, RHC can be used in high-gain mode, unlike LQG, providing better atmospheric disturbance rejection in the constrained case.

  6. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2016-03-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  7. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang

    2016-04-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.

  8. Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors.

    PubMed

    García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2012-01-30

    Since free-space optical (FSO) systems are usually installed on high buildings and building sway may cause vibrations in the transmitted beam, an unsuitable alignment between transmitter and receiver together with fluctuations in the irradiance of the transmitted optical beam due to the atmospheric turbulence can severely degrade the performance of optical wireless communication systems. In this paper, asymptotic bit error-rate (BER) performance for FSO communication systems using transmit laser selection over atmospheric turbulence channels with pointing errors is analyzed. Novel closed-form asymptotic expressions are derived when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions (weak to strong), following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results provide significant insight into the impact of various system and channel parameters, showing that the diversity order is independent of the pointing error when the equivalent beam radius at the receiver is at least 2(min{α,β})(1/2) times the value of the pointing error displacement standard deviation at the receiver. Moreover, since proper FSO transmission requires transmitters with accurate control of their beamwidth, asymptotic expressions are used to find the optimum beamwidth that minimizes the BER at different turbulence conditions. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results, showing that asymptotic expressions here obtained lead to simple bounds on the bit error probability that get tighter over a wider range of signal-to-noise ratio (SNR) as the turbulence strength increases.

  9. Influence of atmospheric turbulence on the transmission of orbital angular momentum for Whittaker-Gaussian laser beams.

    PubMed

    Zhang, Yixin; Cheng, Mingjian; Zhu, Yun; Gao, Jie; Dan, Weiyi; Hu, Zhengda; Zhao, Fengsheng

    2014-09-01

    We analyze the effects of turbulence on the detection probability spectrum and the mode weight of the orbital angular momentum (OAM) for Whittaker-Gaussian (WG) laser beams in weak non-Kolmogorov turbulence channels. Our numerical results show that WG beam is a better light source for mitigating the effects of turbulence with several adjustable parameters. The real parameters of WG beams γ and W0, which have significant effects on the mode weight, have no influence on the detection probability spectrum. Larger signal OAM quantum number, shorter wavelength, smaller beamwidth and coherence length will lead to the lower detection probability of the signal OAM mode.

  10. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence.

    PubMed

    Zhu, Yu; Liu, Xiaojun; Gao, Jie; Zhang, Yixin; Zhao, Fengsheng

    2014-04-01

    We develop a novel model of the probability density of the orbital angular momentum (OAM) modes for Hankel-Bessel beams in paraxial turbulence channel based on the Rytov approximation. The results show that there are multi-peaks of the mode probability density along the radial direction. The peak position of the mode probability density moves to beam center with the increasing of non-Kolmogorov turbulence-parameters and the generalized refractive-index structure parameters and with the decreasing of OAM quantum number, propagation distance and wavelength of the beams. Additionally, larger OAM quantum number and smaller non-Kolmogorov turbulence-parameter can be selected in order to obtain larger mode probability density. The probability density of the OAM mode crosstalk is increasing with the decreasing of the quantum number deviation and the wavelength. Because of the focusing properties of Hankel-Bessel beams in turbulence channel, compared with the Laguerre-Gaussian beams, Hankel-Bessel beams are a good light source for weakening turbulence spreading of the beams and mitigating the effects of turbulence on the probability density of the OAM mode.

  11. Tactical missile turbulence problems

    NASA Technical Reports Server (NTRS)

    Dickson, Richard E.

    1987-01-01

    Of particular interest is atmospheric turbulence in the atmospheric boundary layer, since this affects both the launch and terminal phase of flight, and the total flight for direct fire systems. Brief discussions are presented on rocket artillery boost wind problems, mean wind correction, turbulent boost wind correction, the Dynamically Aimed Free Flight Rocket (DAFFR) wind filter, the DAFFR test, and rocket wake turbulence problems. It is concluded that many of the turbulence problems of rockets and missiles are common to those of aircraft, such as structural loading and control system design. However, these problems have not been solved at this time.

  12. Design of a nonsingular Level 2.5 second-order closure model for the prediction of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.; Labraga, J. C.

    1988-01-01

    The suitability of applying the Mellor and Yamada (1974, 1982) Level 2.5 second-order turbulence closure model to general circulation models is investigated by examining not only the scheme's simulation of fully (or nearly fully) developed turbulence, but also its simulation of rapidly growing or strongly decaying turbulence. The behavior of the model is presented over its entire domain of definition, with special consideration given to the pathologies of the model. The model is then modified for the case of growing turbulence to rectify some of its physical shortcomings for that case, and to remove the pathologies that prohibit its use in a general circulation model. The performance of the modified Level 2.5 model is compared to the performance of various other modified versions through the numerical simulation for a growing convective PBL. The results show that the modified Level 2.5 model is a viable candidate for the prediction of turbulence and the simulation of the PBL in general circulation models.

  13. Application of radiative image transfer theory to the assessment of the overall OTF and contrast degradation of an image in an inhomogeneous turbulent and turbid atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    A perturbation-theoretic approximation of the radiative transfer equation which neglects photon dispersion is used as a modeling basis for the propagation of the image of a self-luminous target through a turbulent atmosphere which also possesses inhomogeneously distributed turbidity along the propagation path. A contrast ratio is then introduced which provides an indicator of the relative contribution of the unscattered or coherent image component to that of the scattered or incoherent image component. Analytical expressions are then derived for the contrast ratio from the approximate form of the radiative transfer equation in the case of an inhomogeneously dispersed Joss thunderstorm rain distribution in the presence of turbulence. The case is clearly demonstrated for the need to consider a measure of the points of demarcation at which the dominant roles of the scattering processes due to turbidity and turbulence are exchanged. Such a measure can provide a performance parameter for the application of adaptive optics methods that are specific to the particular dominant scattering mechanism given the prevailing target size, total propagation length and overall propagation parameters.

  14. Fourth-moment calculation of optical propagation in a turbulent atmosphere with use of the split-step method. I. Plane wave

    SciTech Connect

    Jenu, M.Z.M.; Bebbington, D.H.O.

    1994-11-01

    The split-step method was used to derive the full spatial dependence of the fourth moment of a plane-wave propagating in a two-dimensional turbulent atmosphere with a power-law spectrum for two values of the scattering parameter {gamma}{sub {ital k}} = 0 and 1 [J. Opt. Soc. Am. A {bold 2}, 2133 (1985)]. The changes in {gamma}{sub {ital k}} were obtained by the use of two different values of the inner scale of turbulence {ital l}{sub 0} while the operating wavelength and turbulent strength were kept constant. In this way the influence of {ital l}{sub 0} on the field statistics can be obtained. The results of intensity scintillation index {sigma}{sub {ital I}}{sup 2} and covariance function {ital b}{sub {ital I}} are also presented. The agreement of {sigma}{sub {ital I}}{sup 2} with the results of the reference cited above especially for {gamma}{sub {ital k}} = 0 is good. We also used the results of {ital b}{sub {ital I}} to study the asymptotic dependence of the characteristic correlation length on {zeta}, where {zeta} is the propagation-range scale.

  15. Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Millimeter- Wavelength Cloud Radars

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.; Childers, M.E.; Donner, K.M.

    2005-03-18

    Numerous observational studies of marine stratocumulus have demonstrated a pronounced diurnal cycle. At night, longwave flux divergence at the top of the cloud drives negatively buoyant eddies that tend to keep the boundary layer well mixed. During the day, solar absorption by the cloud tends to reduce the turbulent intensity and often decouples the planetary boundary layer (PBL) into cloud- and sub-cloud circulations. The delicate balance between turbulent intensity, entrainment, and fluxes dictates cloud geometry and persistence, which can significantly impact the shortwave radiation budget. Millimeter-wavelength cloud radars (MMCRs) have been used to study the turbulent structure of boundary layer stratocumulus (e.g. Frisch et al. 1995; Kollias and Albrecht 2000). Analysis is confined to nondrizzling or lightly drizzling cloud systems for which precipitation contamination is negligible. Under such assumptions the Doppler velocity field becomes a proxy for vertical velocity. Prior research has mainly consisted of a few case studies of specific cloud systems using radar scan strategies optimized for this particular cloud type. The MMCR operating at the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility is broadly configured to be able to detect many different cloud types over a broad range of reflectivities and altitudes, so it is not specifically optimized for PBL clouds. Being in more-or-less continuous operation since the end of 1996, it does, however, have the advantage of long data coverage, which suggests that statistically significant measures of the diurnal cycle of turbulence should be attainable. This abstract summarizes the first few steps toward this goal, using 7 months of cold season MMCR data.

  16. Diurnal variation of atmospheric stability and turbulence during different seasons in the troposphere and lower stratosphere derived from simultaneous radiosonde observations at two tropical stations, in the Indian Peninsula

    NASA Astrophysics Data System (ADS)

    Muhsin, M.; Sunilkumar, S. V.; Ratnam, M. Venkat; Parameswaran, K.; Murthy, B. V. Krishna; Ramkumar, Geetha; Rajeev, K.

    2016-11-01

    Diurnal variability of atmospheric stability as well as the occurrence and strength of turbulence in the troposphere and lower stratosphere at two tropical stations, Trivandrum (8.5°N, 76.9°E) and Gadanki (13.5°N, 79.2°E), situated in the Indian Peninsula is studied. For the analysis three years of GPS-radiosonde data, collected as a part of the Tropical Tropopause Dynamics (TTD) Experiment under the CAWSES-India program, has been used. Thorpe method is adopted to estimate the turbulent parameters from radiosonde observations. This study shows that in the atmospheric boundary layer, both stability and turbulence parameters depict a pronounced diurnal variation. Over Trivandrum, the occurrence of turbulence as well as its strength peaks during night and falls off during the day, while at Gadanki it shows an opposite pattern. At both the stations, in the 3-10 km altitude layer, the occurrence and strength of turbulence are relatively high during night compared to day. Although the turbulence strength in the 10-15 km altitude layer is rather weak at both the stations, the occurrence of turbulence shows a clear diurnal pattern (high during the day), especially over Trivandrum. In the 3-15 km altitude layer, while the occurrence of convective instability is fairly the same at both the stations, the wind shear is significantly large at Trivandrum compared to Gadanki, with high values during night compared to the day. This shows that in this altitude region, while convective instability is mainly responsible for the generation of turbulence at Gadanki, wind shear induced dynamic instability is also responsible for the generation of turbulence at Trivandrum especially during night. Above 15 km, where wind shear driven instability leads the convective instability, turbulence at both the stations does not show any significant diurnal variability.

  17. Real time mitigation of atmospheric turbulence in long distance imaging using the lucky region fusion algorithm with FPGA and GPU hardware acceleration

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher Robert

    "Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.

  18. Using Historic Models of Cn2 to predict r0 and regimes affected by atmospheric turbulence for horizontal, slant and topological paths

    SciTech Connect

    Lawson, J K; Carrano, C J

    2006-06-20

    Image data collected near the ground, in the boundary layer, or from low altitude planes must contend with the detrimental effects of atmospheric turbulence on the image quality. So it is useful to predict operating regimes (wavelength, height of target, height of detector, total path distance, day vs. night viewing, etc.) where atmospheric turbulence is expected to play a significant role in image degradation. In these regimes, image enhancement techniques such as speckle processing, deconvolution and Wiener filtering methods can be utilized to recover near instrument-limited resolution in degraded images. We conducted a literature survey of various boundary layer and lower troposphere models for the structure coefficient of the index of refraction (C{sub n}{sup 2}). Using these models, we constructed a spreadsheet tool to estimate the Fried parameter (r{sub 0}) for different scenarios, including slant and horizontal path trajectories. We also created a tool for scenarios where the height along the path crudely accounted for the topology of the path. This would be of particular interest in mountain-based viewing platforms surveying ground targets. The tools that we developed utilized Visual Basic{reg_sign} programming in an Excel{reg_sign} spreadsheet environment for accessibility and ease of use. In this paper, we will discuss the C{sub n}{sup 2} profile models used, describe the tools developed and compare the results obtained for the Fried parameter with those estimated from experimental data.

  19. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    NASA Astrophysics Data System (ADS)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.


  20. Fine-Scale Characteristics of Temperature, Wind, and Turbulence in the Lower Atmosphere (0-1,300 m) Over the South Peruvian Coast

    NASA Astrophysics Data System (ADS)

    Balsley, Ben B.; Lawrence, Dale A.; Woodman, Ronald F.; Fritts, David C.

    2013-04-01

    We report results of preliminary high-resolution in situ atmospheric measurements through the boundary layer and lower atmosphere over the southern coast of Perú. This region of the coast is of particular interest because it lies adjacent to the northern coastal edge of the sub-tropical south-eastern Pacific, a very large area of ocean having a persistent stratus deck located just below the marine boundary layer (MBL) inversion. Typically, the boundary layer in this region during winter is topped by a quasi-permanent, well-defined, and very large temperature gradient. The data presented herein examine fine-scale details of the coastal atmosphere at a point where the edge of this MBL extends over the coastline as a result of persistent onshore flow. Atmospheric data were gathered using a recently-developed in-house constructed, GPS-controlled, micro-autonomous-vehicle aircraft (the DataHawk). Measured quantities include high-resolution profiles of temperature, wind, and turbulence structure from the surface to 1,300 m.