Science.gov

Sample records for atmospheric water vapour

  1. What you always wanted to know about Atmospheric Water Vapour

    NASA Astrophysics Data System (ADS)

    Hocke, K.; Martin, L.; Kämpfer, N.

    2009-04-01

    An interactive database for networking, collaboration, sharing, and archiving of studies on atmospheric water vapour has been founded in the framework of the COST WaVaCS and ISSI working groups on atmospheric water vapour and is hosted by the Institute of Applied Physics at University of Bern (http://www.iapmw.unibe.ch/research/collaboration/h2odb/). Scientists and students interested in atmospheric water vapour can actively contribute to the database or may passively use the literature archive. The article collection comprises technical reports, theses, book chapters, and journal articles on water vapour from the troposphere to the mesosphere. Various classification groups (modeling, spectroscopy, methods and techniques, validation, ...) and search functions (word in title, author name, year, ...) ease the access to the articles. As examples we present rare material of the literature database concerning historical hygrometers and early intercomparison studies of water vapour measurements. Research of the wide area of atmospheric water vapour steeply increases. The interactive literature database helps us to be informed, to save time, and to enlarge our horizons.

  2. Water Vapour Abundance and Distribution in the Lower Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Chamberlain, S.; Bailey, J.

    2012-04-01

    We present ground-based observations and modelling studies of water vapour abundance and distribution in the Venusian lower atmosphere through analysis of absorption band depths within the 1.18 μm window. The lower atmosphere of Venus is difficult to study by both in situ and remote instruments. This is due to the planet wide cloud cover that obscures visual wavelengths and surface pressures approaching 100 times that of the Earth. In 1984 ground based observations resulted in the discovery of atmospheric windows on the Venusian nightside (Allen and Crawford, 1984). Here, near infrared radiation originating at the surface and lower atmosphere, pass relatively unimpeded through the Venus clouds. This discovery enabled remote studies of the Venusian subcloud region. Determining the abundance and distribution of water vapour is key to understanding the development, maintenance and links between major radiative and dynamical features of the Venus atmosphere. Water vapour in the lower atmosphere plays an important role in heat transfer and is pertinent to the runaway greenhouse effect and dynamical superrotation observed on Venus. Detailed studies of water vapour abundance and distribution throughout the lower atmosphere of Venus are therefore needed in order to develop accurate chemical, radiative and dynamical models. Ground-based spatially resolved near infrared spectroscopic observations of the Venusian nightside have been obtained from Siding Spring Observatory at each inferior conjunction since 2002. Observations have been made using the IRIS2 instrument on the Anglo-Australian Telescope and CASPIR on the 2.3m ANU telescope. The model VSTAR (Bailey and Kedziora-Chudczer 2012) is used to simulate the observed Venus spectra as seen through the Earth's atmosphere and best fit water vapour abundances are found for approximately 300 locations across the Venus nightside disk. Recent improvements in ground-based near-infrared instruments allow a substantial improvement

  3. Water Vapour In The Atmosphere Of An Extrasolar Planet

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Liang, M.; Beaulieu, J.; Yung, Y. L.; Carey, S.; Ribas, I.; Tennyson, J.; Barber, B.; Allard, N.; Ballester, G.; Sing, D.; Selsis, F.

    2007-10-01

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (`hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes.

  4. Arctic warming induced by atmospheric transport of water vapour

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune

    2015-04-01

    The atmospheric northward energy transport plays a crucial role for the Arctic climate; the transport brings to the Arctic an amount of energy comparable to that provided directly by the sun. During recent decades warming of the Arctic surface air has been more than twice as large as the warming averaged over the Northern Hemisphere. This is known as Arctic amplification. Climate models predict that Arctic amplification will continue during the 21st century. The models also show that the atmospheric energy transport to the Arctic will remain almost unchanged or will even decrease in the future. This has led to the conclusion that atmospheric energy transport does not contribute but rather opposes Arctic amplification. Here we show that the atmospheric energy transport will indeed contribute to Arctic amplification even while decreasing. A split of the transport into latent and dry-static components reveals that a change of the latent transport compared to a change of the dry-static has a much larger effect on the Arctic climate. This is because the latent transport brings not only energy, but also water vapour into the Arctic. This water vapour enhances the local greenhouse effect, both in itself and through the formation of clouds. An increase of the latent transport at the Arctic boundary therefore causes Arctic warming, both directly due to latent heat release, and indirectly due to an enhancement of the local greenhouse effect. Climate models tend to agree that the latent energy transport will increase on the expense of the dry-static transport in future simulations. Our results imply that the Arctic cooling caused by the reduction of the dry-static transport is more than compensated for by the warming induced by the latent transport.

  5. Water vapour in the atmosphere of a transiting extrasolar planet

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J.; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E.; Sing, David K.; Selsis, Franck

    2007-07-01

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (`hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6μm, 5.8μm (both ref. 7) and 8μm (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  6. Water vapour in the atmosphere of a transiting extrasolar planet.

    PubMed

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E; Sing, David K; Selsis, Franck

    2007-07-12

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets ('hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 mum, 5.8 mum (both ref. 7) and 8 mum (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  7. Passive remote sensing of the atmospheric water vapour content above land surfaces

    NASA Astrophysics Data System (ADS)

    Bartsch, B.; Bakan, S.; Fischer, J.

    The global distribution of the atmospheric water vapour content plays an important role in the weather forecast and climate research. Nowadays there exist various methods dealing with remote sensing of the atmospheric water vapour content. Unfortunately, most of them are restricted to ocean areas, since, in general, the emission of land surfaces is not known well enough. Therefore, a new method is developed which allows the detection of the atmospheric total water vapour content from aircraft or satellite with the aid of backscattered solar radiation in the near infrared above land surfaces. The Matrix-Operator-Method has been used to simulate backscattered solar radiances, including various atmospheric profiles of temperature, pressure, water vapour, and aerosols of various types, several sun zenith angles, and different types of land surfaces. From these calculations it can be concluded, that the detection of water vapour content in cloudless atmospheres is possible with an error of < 10 % even for higher aerosol contents. In addition to the theoretical results first comparisons with aircraft measurements of the backscattered solar radiances are shown. These measurements have been carried out with the aid of OVID (Optical Visible and near Infrared Detector), a new multichannel array spectrometer, in 1993.

  8. Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures

    NASA Astrophysics Data System (ADS)

    Delattre, H.; Vallet-Coulomb, C.; Sonzogni, C.

    2015-09-01

    Stable isotopes of water vapour represent a powerful tool for tracing atmospheric vapour origin and mixing processes. Laser spectrometry recently allowed high time-resolution measurements, but despite an increasing number of experimental studies, there is still a need for a better understanding of the isotopic signal variability at different time scales. We present results of in situ measurements of δ18O and δD during 36 consecutive days in summer 2011 in atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation (Camargue, Rhône River delta, France). The mean composition of atmospheric vapour (δv) is δ18O = -14.66 ‰ and δD = - 95.4 ‰, with data plotting clearly above the local meteoric water line on a δ18O-δD plot, and an average deuterium excess (d) of 21.9 ‰. Important diurnal d variations are observed, and an hourly time scale analysis is necessary to interpret the main processes involved in its variability. After having classified the data according to air mass back trajectories, we analyse the average daily cycles relating to the two main meteorological situations, i.e. air masses originating from North Atlantic Ocean and Mediterranean Sea. In both situations, we show that diurnal fluctuations are driven by (1) the influence of local evaporation, culminating during daytime, and leading to an increase in absolute water vapour concentration associated to a δv enrichment and d increase; (2) vertical air mass redistribution when the Planetary Boundary Layer collapses in the evening, leading to a d decrease, and (3) dew formation during the night, producing a δv depletion with d remaining stable. Using a two-component mixing model, we calculate the average composition of the locally evaporated vapour (δE). We find higher d(E) under North Atlantic air mass conditions, which is consistent with lower humidity conditions. We also suggest that δv measured when the PBL collapses is the most representative of a regional signal

  9. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    NASA Astrophysics Data System (ADS)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  10. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  11. First results of the tomographic reconstruction of atmospheric water vapour using GNSS observations in Hungary

    NASA Astrophysics Data System (ADS)

    Rozsa, Szabolcs; Horvath, Tivadar

    2013-04-01

    The continuously operating GNSS networks play an important role not only in surveying but in geodesy and other geosciences, too. Using the precise coordinates of these stations, the tropospheric delay of the GNSS signals can be estimated. This shows a strong correlation with the integrated water vapour in the atmosphere. Nowadays the vertically intergated water vapour is routinely estimated from 52 GNSS stations over the territory of Hungary on an hourly basis. A more detailed model of the distribution of atmospheric water vapour can be created using the slant tropospheric delays estimated along the propagation path of the satellite signals. In this paper a four-dimensional tomographic model is introduced based on modeled and observed slant tropospheric delays. The modeled slant delays are computed using the estimated vertical delays and the Niell-mapping function. Since the real distribution of the atmospheric water vapour may not follow the isotropic Niell-mapping function, slant tropospheric delays are estimated from the double-difference residuals of the GNSS observations using a zero-mean assumption. The first results of the tomographic reconstruction are presented in the paper and they are validated with radiosonde observations at both of the Hungarian Radiosonde launching sites.

  12. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus.

  13. Coordinated Remote Sounding and Local Measurements of Water Vapour in the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Stegman, J.; Khaplanov, M.; Gumbel, J.; Witt, G.; Lautie, N.; Murtagh, D. P.; Kirkwood, S.; Stebel, K.; Schmidlin, F. J.; Fricke, K. H.; Blum, U.

    2003-12-01

    A complete snapshot of the water vapour distribution from the tropopause to the mesopause has been obtained from simultaneous in-situ rocket and balloon measurements conducted from Esrange on the morning of December 16, 2001 within the Odin validation programme. An active optical technique based on the dissociation of water molecules by Lyman alpha radiation generated by an on-board multicapillary Ly-alpha lamp and the subsequent detection of the optical emission from the resulting electronically excited OH radical produced outside the rocket shock front was used by the rocket borne payload Hygrosonde-II. A similar instrument was carried on the stratospheric SKERRIES balloon. A continuous vertical water vapour profile extending from 8 km to about 80 km has been compiled from the combined up- and downleg rocket measurement and the balloon sounding. Meteorological rockets (falling spheres) provided by NASA were flown before and after the Hygrosonde-II and SKERRIES flights to provide temperature, density and wind profiles in the upper stratosphere and mesosphere. Additional information on the density profile is available from the Rayleigh lidar at Esrange operated by Bonn University. The lidar provides a mean state profile in the stratosphere and mesosphere up to 95 km altitude for the Hygrosonde-II campaign period as well as profiles before and after the rocket and balloon flights. Meteorological data for the stratospheric analysis have also been obtained from the ECMWF analysis. An analysis of the obtained distribution of middle atmospheric water relates its details to the large-scale motions and the dynamics of the region (Khaplanov et al., Middle Atmospheric Water Vapour and Dynamics During the Hygrosonde-2 Campaign, 16th ESA-PAC Symposium, 2003). At the time of the Hygrosonde-II measurements the Odin satellite was configured in aeronomy mode and provided continuous water measurements using sub-mm limb sounding. A comparison of these remotely sensed measurements

  14. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    PubMed

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  15. A rapid method for the sampling of atmospheric water vapour for isotopic analysis.

    PubMed

    Peters, Leon I; Yakir, Dan

    2010-01-01

    Analysis of the stable isotopic composition of atmospheric moisture is widely applied in the environmental sciences. Traditional methods for obtaining isotopic compositional data from ambient moisture have required complicated sampling procedures, expensive and sophisticated distillation lines, hazardous consumables, and lengthy treatments prior to analysis. Newer laser-based techniques are expensive and usually not suitable for large-scale field campaigns, especially in cases where access to mains power is not feasible or high spatial coverage is required. Here we outline the construction and usage of a novel vapour-sampling system based on a battery-operated Stirling cycle cooler, which is simple to operate, does not require any consumables, or post-collection distillation, and is light-weight and highly portable. We demonstrate the ability of this system to reproduce delta(18)O isotopic compositions of ambient water vapour, with samples taken simultaneously by a traditional cryogenic collection technique. Samples were collected over 1 h directly into autosampler vials and were analysed by mass spectrometry after pyrolysis of 1 microL aliquots to CO. This yielded an average error of < +/-0.5 per thousand, approximately equal to the signal-to-noise ratio of traditional approaches. This new system provides a rapid and reliable alternative to conventional cryogenic techniques, particularly in cases requiring high sample throughput or where access to distillation lines, slurry maintenance or mains power is not feasible.

  16. The summer 2012 Greenland heat wave: monitoring water vapour isotopic composition along an atmospheric river event

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie; Sodemann, Harald; Lacour, Jean-Lionel; Risi, Camille; Werner, Martin; Clerbaux, Cathy; Fettweis, Xavier

    2014-05-01

    In July 2012, an extreme warm event occurred in Greenland, leading to surface melt over almost all the ice sheet. This event was recorded in the isotopic composition of water vapour measured by the IASI satellite along the transport pathway and at two sites where continuous in situ surface vapour isotopic measurements were conducted, situated at a coastal station of South Greenland (Ivittuut) and further North on top of the ice sheet (NEEM, NW Greenland). These observations allowed us to monitor the isotopic composition of the air mass at different stages of its advection towards Greenland, which can inform on processes along this trajectory, such as cloud properties and moisture sources. In addition, two simulations of this event, using the atmospheric general circulation models LMDZiso and ECHAM5wiso equipped with water stable isotopes and nudged towards large scale wind fields, are investigated. Furthermore, a regional high-resolution model was used to study the moisture transport to Greenland during this event using tagged water tracers of the North Atlantic ocean and coastal land evaporation. Using moisture source diagnostic based on the Lagrangian particle dispersion model Flexpart, we show that this 2012 heat wave event corresponds to moisture sources located over the subtropical Atlantic Ocean, where intense evaporation was caused by dry air masses associated with the US intense summer drought. This moisture was then advected northward along a narrow band, due to a very stationary surface cyclone southwest of Greenland, reached southern Greenland and Ivittuut coastal station on July 9th, travelled along the west coast of Greenland, continued eastwards above the ice sheet and arrived above the NEEM deep drilling camp on July 11th. Surface isotopic observations during the event show larger variations at NEEM than in Ivittuut, strongly reducing the isotopic and deuterium excess latitudinal gradient usually observed between South and North Greenland. This

  17. Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour

    SciTech Connect

    Kiselev, A M; Ponomarev, Yu N; Stepanov, A N; Tikhomirov, A B; Tikhomirov, B A

    2011-11-30

    Quantitative data on the nonlinear absorption cross sections of femtosecond Ti : Sapphire laser pulses in air and water vapour have been obtained. A photoacoustic spectrometer calibrated based on the calculated value of linear absorption of laser pulses with a wavelength of 800 nm and a spectral width of 17.7 nm is used to find the nonlinear absorption cross sections of water vapour and air: {sigma}{sub 2}{sup w} = (2.6{+-}0.4) Multiplication-Sign 10{sup -55} cm{sup 4} s and {sigma}{sub 2}{sup a} = (8.7{+-}1.0) Multiplication-Sign 10{sup -56} cm{sup 4} s, respectively. Based on measuring the absorption of femtosecond Ti : Sapphire laser pulses with a photoacoustic detector calibrated with the known linear absorption of ruby laser radiation by water vapour in air, the air nonlinear absorption cross section is found to be (8.2{+-}0.9) Multiplication-Sign 10{sup -56} cm{sup 4} s.

  18. Co-ordinated Remote Sounding and Local Measurements of Water Vapour In The Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Stegman, J.; Hygrosonde-Ii Team; Odin Team

    A complete snapshot of the water vapour distribution from the tropopause to the mesopause has been obtained from simultaneous in-situ rocket and balloon measure- ments conducted from Esrange on the morning of December 16, 2001 within the Odin validation programme. An active optical technique based on the dissociation of wa- ter molecules by Lyman-alpha radiation generated by an on-board multicapillary Ly­ alpha lamp and the subsequent detection of the optical emission from the resulting electronically excited OH-radical produced outside the rocket shock front was used by the rocket borne payload Hygrosonde-II. A similar instrument was carried on the stratospheric SKERRIES balloon. Meteorological rockets (falling spheres) provided by NASA were flown before and after the Hygrosonde-II and SKERRIES flights to provide temperature, density and wind profiles in the upper stratosphere and mesosphere. Additional information on the density profile is available from the Rayleigh lidar at Esrange operated by Bonn University. The lidar provides a mean state profile in the stratosphere and mesosphere up to 95 km altitude for the Hygrosonde-II campaign period as well as profiles before and after the rocket and balloon flights. Water vapour measurements were conducted by Hygrosonde-II from 46 to 90 km on the upleg and from 90 to 23 km on the downleg. From these measurements we expect to be able to retrieve a water vapour profile extending from 23 km to about 80 km. SKERRIES reached a floating level of 26 km and provided measurements from 8 km to 26 km on both up- and downleg. At the time of the Hygrosonde-II measurements the Odin satellite was configured in aeronomy mode and provided continuous water measurements using sub-mm limb sounding. A comparison of these remotely sensed measurements during Odin passes over Esrange with the local Hygrosonde-II/SKERRIES measurements will be pre- sented.

  19. Measuring fast variations of δ^{18}O and δ^2H in atmospheric water vapour using laser spectroscopy: an instrument inter-comparison and characterisation study

    NASA Astrophysics Data System (ADS)

    Aemisegger, F.; Sturm, P.; Graf, P.; Sodemann, H.; Pfahl, S.; Knohl, A.; Wernli, H.

    2012-04-01

    Fast variations of stable water isotopes in water vapour have become measurable lately using novel laser spectroscopic techniques. This allows us to perform process-based investigations of the atmospheric water cycle at the time scales of significant weather events. An important prerequisite for such studies implying automatic field measurements lasting for several weeks or even months is a detailed knowledge about sources of uncertainty and instrument properties. We present a comprehensive characterisation and comparison study of two commercial laser spectroscopic systems based on cavity ring-down spectroscopy (Picarro) and off-axis integrated cavity output spectroscopy (Los Gatos Resarch). The old versions (L1115-i, WVIA) and the new versions (L2130-i, WVIA-EP) of both systems were tested. The uncertainty components of the measurements were assessed in laboratory experiments, focussing on effects of (i) water vapour mixing ratio, (ii) measurement stability, (iii) uncertainties due to calibration and (iv) response times of the isotope measurements due to adsorption-desorption processes on the tubing and measurement cavity walls. Knowledge from our laboratory experiments was used to setup a one-week field campaign for comparing measurements of the ambient isotope signals from the L1115-i and WVIA systems. The optimal calibration strategy determined for both instruments was applied as well as the correction functions for water vapour mixing ratio effects. Using this field measurement data we address the question of how well the deuterium excess (d=δ2H-8δ18O) of atmospheric water vapour can be determined with laser spectroscopy. The deuterium excess is an interesting parameter for process-based atmospheric water cycle studies, which depends on humidity and temperature conditions at source location of water vapour. Up to now only very few high-time-resolution measurements of deuterium excess exist. Our concurrent measurements of atmospheric isotopes in water vapour

  20. Introducing VESPA-22: a ground-based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes

    NASA Astrophysics Data System (ADS)

    Bertagnolio, P. P.; Muscari, G.; Fiorucci, I.; Mari, M.

    2012-04-01

    We present the latest updates on the project VESPA-22 (water Vapour Emission Spectrometer for Polar Atmospheres at 22 GHz), a ground-based microwave instrument developed for long-term observations of water vapour in the polar stratosphere and mesosphere (SMWV). The short- and long-term change in water vapour concentration from the lower stratosphere to the mesosphere is one of the main areas of interest for atmospheric composition studies in the current decade. In fact, SMWV influences the temperature of the stratosphere by radiative processes, the concentration of several chemical species (also through the production of OH) and the formation of aerosols. Recent studies showed that in the last 30 years mid-latitude SMWV has been changing for mechanisms not yet fully understood. Model studies indicate that these changes could have had a significant impact (25-30%) on the tropospheric radiative forcing and surface temperature trends observed since 1980. Moreover, at polar regions, changes in SMWV strongly affect the formation rate of polar stratospheric clouds, both directly (how much is available for uptake on PSC particles) and indirectly (impact on stratospheric temperature). This is especially critical in the Arctic stratosphere where temperatures are not as cold they are over Antarctica and, for the purpose of denitrification and ozone depletion processes, an increase in SMWV of 1 ppmv is modelled to be equivalent to a 1 K decrease in temperature. In the past decade, satellite-based instruments have provided accurate and global measurements of SMWV, but a similar coverage is not expected in this decade. Conversely, the ground-based microwave spectrometers currently active provide both the long-time series necessary for decadal scale monitoring and the high time resolution (a few hours) needed to understand fast dynamical processes. Today, none of these sustained SMWV measurements are being carried out at polar regions. Our observation technique is based on the

  1. Comparison of atmospheric water vapour content with GNSS, Radiosonde, Microwave radiometer, and Lidar

    NASA Astrophysics Data System (ADS)

    Sohn, D.; Park, K.

    2012-12-01

    The increased amount of saturated water vapor due to the Earth's temperature rise frequently causes abnormal meteorological phenomena such as local severe rainfall in Korea. The National Institute of Meteorological Research of Korea Meteorological Administration (KMA) conducted observation experiments using a variety of water-vapor measuring equipments to improve the accuracy of weather forecasts and accurately measure the precipitable water vapor in the atmosphere. Equipments used were GNSS, water vapor radiometers (WVR), radiosonde, and LiDAR. For GNSS measurements we used two receivers that can collect not only GPS but also GLONASS signals: Trimble NetR5 and Septentrio PolaRx4. The two WVR makers are Raidometrics and RPG. For radiosonde observations, KMA launched Vaisala GPSondes every 6 hours during the experiment period. The LiDAR system was made locally by Hanbat University in Daejeon. Thus, we could obtain collocation experiment results from 6 different kinds of water vapor measurement and analyze the characteristics of each device.

  2. The δ18O of Atmospheric Water Vapour is Recorded in the Oxygen Isotope Ratios of Leaf water and Organic Molecules at High Relative Humidity

    NASA Astrophysics Data System (ADS)

    Lehmann, M. M.; Goldsmith, G. R.; Schmid, L.; Siegwolf, R. T.; Gessler, A.; Saurer, M.

    2016-12-01

    The oxygen stable isotope ratios (δ18O) of water and organic molecules in plants hold information about plant physiology, ecohydrology, and environmental conditions. For instance, the δ18O ratio of leaf water reflects both the δ18O ratios of water in the soil and in the atmosphere. This water, which is incorporated into organic molecules at the time of synthesis, thus serves to record the environment in which the plant was growing. However, how δ18O of atmospheric water vapour affects the δ18O ratio of organic molecules remains poorly understood. In order to investigate the effects of fog and rain (e.g. high atmospheric water availability) on δ18O ratios of leaf water and organic molecules, we exposed oak tree saplings (Quercus robur) in wet and dry soil treatments to 18O-depleted water vapour at ca. 90% relative humidity for 5 h. We harvested plant material over 24 h to trace the movement of the isotopic label in water and organics throughout the plant from the leaves to the stem. The atmospheric water vapour caused a strong 18O-depletion in leaf and xylem water, as well as in leaf carbohydrates, with the most negative ratios observed at the end of the fogging. Moreover, the label was clearly observed in twig and stem phloem carbohydrates following a short delay. A detailed compound-specific isotope analysis of the leaf carbohydrates revealed that the label caused an 18O-depletion in fructose, glucose, and sucrose. Quercitol, an oak-specific alditol, did not show 18O-depletion. Clear soil moisture treatment effects were only observed for twig phloem carbohydrates, with a stronger 18O-depletion in wet plants than in dry plants, suggesting retarded leaf-to-phloem sugar export in trees under drought. We demonstrate that labelling with 18O-depleted water is a potential tool to trace the movement and incorporation of oxygen stable isotopes in plants. We clearly show that changes in δ18O of atmospheric water vapour are quickly imprinted on leaf water and

  3. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 μm spectra

    NASA Astrophysics Data System (ADS)

    Ryde, N.; Lambert, J.; Farzone, M.; Richter, M. J.; Josselin, E.; Harper, G. M.; Eriksson, K.; Greathouse, T. K.

    2015-01-01

    Context. The structures of the outer atmospheres of red giants are very complex. Recent interpretations of a range of different observations have led to contradictory views of these regions. It is clear, however, that classical model photospheres are inadequate to describe the nature of the outer atmospheres. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain spectro-interferometric observations and low- and high-resolution spectra. On the other hand high-resolution spectra in the mid-IR do not easily fit into this picture because they rule out any large sphere of water vapour in LTE surrounding red giants. Aims: In order to approach a unified scenario for these outer regions of red giants, more empirical evidence from different diagnostics are needed. Our aim here is to investigate high-resolution, mid-IR spectra for a range of red giants, spanning spectral types from early K to mid M. We want to study how the pure rotational lines of water vapour change with effective temperature, and whether we can find common properties that can put new constraints on the modelling of these regions, so that we can gain new insights. Methods: We have recorded mid-IR spectra at 12.2 - 12.4 μm at high spectral resolution of ten well-studied bright red giants, with TEXES mounted on the IRTF on Mauna Kea. These stars span effective temperatures from 3450 K to 4850 K. Results: We find that all red giants in our study cooler than 4300 K, spanning a wide range of effective temperatures (down to 3450 K), show water absorption lines stronger than expected and none are detected in emission, in line with what has been previously observed for a few stars. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that are undoubtedly formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperatures, in the

  4. Analysis of middle atmospheric ozone and water vapour measurements and SD-WACCM simulations of the last two winters at Ny-Ålesund/Svalbard

    NASA Astrophysics Data System (ADS)

    Schranz, Franziska; Fernandez, Susana; Tschanz, Brigitte; Kämpfer, Niklaus; Palm, Mathias

    2017-04-01

    The microwave radiometers GROMOS-C (GRound based Ozone MOnitoring System for Campaigns) and MIAWARA-C (MIddle Atmospheric WAter vapour RAdiometer for Campaigns) are located at the Arctic research base AWIPEV at Ny-Ålesund/Svalbard (79° N/12° E) and continuously monitor the middle atmospheric ozone and water vapour profiles above Ny-Ålesund since September 2015. Both instruments were built at the University of Bern, Switzerland. Microwave radiometry is ideal to study photochemical and dynamical processes on a diurnal time scale due to its high time resolution but it is also indispensable for long term observations and trend analyses. GROMOS-C is able to retrieve hourly ozone profiles where for MIAWARA-C the retrieval of two to four hourly water vapour profiles is realistic depending on tropospheric opacity. GROMOS-C is capable of measuring in the four cardinal directions (N-E-S-W) and therefore can provide measurements inside and outside of the polar vortex if the vortex edge is close to Ny-Ålesund. We present the analysis of the diurnal cycle of ozone and the tertiary ozone maximum at an altitude of 70 km as observed by GROMOS-C. In the water vapour data of MIAWARA-C signs of two and five day wave activity have been identified and the descent rate within the polar vortex has been analysed. Special emphasis is given to the link between ozone and water vapour concentrations in the mesosphere. The simulations with the specified dynamics version of the whole atmosphere community climate model (SD-WACCM) are used to better understand and characterize processes in the arctic middle atmosphere. Inter-comparisons of the data from our instruments are performed with OZORAM, the ozone radiometer of the University of Bremen which is also located at Ny-Ålesund, and with satellite and ozone sonde data.

  5. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    PubMed

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE.

  6. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, L.; Backman, L.; Kivi, R.; Karpechko, A.

    2015-08-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry climate model simulation covering years 1990-2013 is compared to observations (satellite and frostpoint hygrometer soundings) and the sources of stratospheric water vapour are studied. According to observations and the simulations the water vapour concentration in the Arctic stratosphere started to increase after year 2006, but around 2011 the concentration started to decrease. Model calculations suggest that the increase in water vapour during 2006-2011 (at 56 hPa) is mostly explained by transport related processes, while the photochemically produced water vapour plays a relatively smaller role. The water vapour trend in the stratosphere may have contributed to increased ICE PSC occurrence. The increase of water vapour in the precense of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ICE PSCs in the Arctic vortex. The polar vortex was unusually cold in early 2010 and allowed large scale formation of the polar stratospheric clouds. The cold pool in the stratosphere over the Northern polar latitudes was large and stable and a large scale persistent dehydration was observed. Polar stratospheric ice clouds and dehydration were observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT atmospheric sounding campaign. The observed changes in water vapour were reproduced by the model. Both the observed and simulated decrease of the water vapour in the dehydration layer was up to 1.5 ppm.

  7. Variability of water vapour in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Backman, Leif; Kivi, Rigel; Karpechko, Alexey Yu.

    2016-04-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990-2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere-Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.

  8. A Physical Experiment to determine the Impact of Atmospheric Condensation of Water Vapour on Surface Air Movement

    NASA Astrophysics Data System (ADS)

    Bunyard, Peter

    2014-05-01

    A physical experiment, in which atmospheric air is enclosed in two interconnecting 4.8-metre high insulated PVC columns, consistently gives results showing that the condensation of water vapor, precipitated by means of refrigeration coils, gives rise to detectable air movements, with air speeds of up to 0.1 m/s. Once the compressor, sited well away from the two columns, is shut down, heavy drops of precipitated water are obtained which funnel into a flask for collection and measurement. The results in kg.m-2 (mm) from the 20 m3 volume of enclosed air accord well (>90%) with the physical calculations based on water vapour as an ideal gas. Air flow, resulting from the highly localized condensation, is measured through the movement of light-weight gauzes and an anemometer. It has a circulation time of some two minutes, such that both columns show cooling and a significant reduction in specific humidity from 0.01 to 0.005 (kg water vapour to kg dry air, r) with a drop in relative humidity of up to 40 per cent. Air flow is minimal during the control, non-refrigeration period of the experiment but becomes substantial within a minute of the compressor being switched on. The negative partial pressure change peaks at as much as 0.4 Pa/s during the first 30 minutes but reduces to approx.0.08 Pa/s during the latter part of the 110 minute-long experiment. Airflow displays an inverse relationship to the partial pressure change, initially rising rapidly and then reducing before returning to zero once refrigeration has been switched off. Inverse correlations of up to 0.8 or higher between the partial pressure reduction and the airflow are obtained routinely. Semi-aquatic vegetation from the nearby marshland enhances precipitation, suggesting that evapotranspiration adds significantly to humidity. Without vegetation the condensation rate is 0.06 to 0.07 millimol.m-3.s-1 on average compared with 0.11 when vegetation is present. Cooling, by some 2°C, combined with a reduction in

  9. Water vapour variability and trends in the Arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Thölix, Laura; Kivi, Rigel; Backman, Leif; Karpechko, Alexey

    2014-05-01

    Water vapour in the upper troposphere-lower stratosphere (UTLS) is a radiatively and chemically important trace gas. Stratospheric water vapour also affects ozone chemistry through odd-hydrogen chemistry and formation of polar stratospheric clouds (PSC). Both transport and chemistry contribute to the extratropical lower stratospheric water vapour distribution and trends. The main sources of stratospheric water vapour are intrusion through the tropical tropopause and production from oxidation of methane. Accurate observations of UTLS water vapour are difficult to obtain due to the strong gradient in the water vapour profile over the tropopause. However, modelling the stratospheric water vapour distribution is challenging and accurate measurements are needed for model validation. Trends in Arctic water vapour will be analysed and explained in terms of contribution from different processes (transport and chemistry), using observations and chemistry transport model (CTM) simulations. Accurate water vapour soundings from Sodankylä will be used to study water vapour within the Arctic polar vortex, including process studies on formation of PSCs and dehydration. Water vapour profiles measured during the LAPBIAT atmospheric sounding campaign in Sodankylä in January 2010 indicated formation of ice clouds and dehydration. Effects on ozone chemistry will also be studied. Global middle atmospheric simulations have been performed with the FinROSE-ctm using ERA-Interim winds and temperatures. The FinROSE-ctm is a global middle atmosphere model that produces the distribution of 30 long-lived species and tracers and 14 short-lived species. The chemistry describes around 110 gas phase reactions, 37 photodissociation processes and the main heterogeneous reactions related to aerosols and polar stratospheric clouds.

  10. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  11. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; hide

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  12. Water Vapour Mixing Ratio Measurements in Potenza in the Frame of the International Network for the Detection of Atmospheric Composition Change - NDACC

    NASA Astrophysics Data System (ADS)

    De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio

    2016-06-01

    In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.

  13. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen D.; McCabe, Matthew F.; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G.; Strauss, Josiah; Element, Adrian

    2017-01-01

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (dv = δ2H - 8 × δ18O) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the D-excess in water vapour (dv). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (dET) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime dv values. The low dET observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime dv and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime dv variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d

  14. SI-traceable and dynamic reference gas mixtures for water vapour at polar and high troposphere atmospheric levels

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard

    2017-04-01

    In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.

  15. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10-3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10-27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  16. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study

    NASA Astrophysics Data System (ADS)

    Aemisegger, F.; Sturm, P.; Graf, P.; Sodemann, H.; Pfahl, S.; Knohl, A.; Wernli, H.

    2012-07-01

    Variations of stable water isotopes in water vapour have become measurable at a measurement frequency of about 1 Hz in recent years using novel laser spectroscopic techniques. This enables us to perform continuous measurements for process-based investigations of the atmospheric water cycle at the time scales relevant for synoptic and mesoscale meteorology. An important prerequisite for the interpretation of data from automated field measurements lasting for several weeks or months is a detailed knowledge about instrument properties and the sources of measurement uncertainty. We present here a comprehensive characterisation and comparison study of two commercial laser spectroscopic systems based on cavity ring-down spectroscopy (Picarro) and off-axis integrated cavity output spectroscopy (Los Gatos Research). The uncertainty components of the measurements were first assessed in laboratory experiments, focussing on the effects of (i) water vapour mixing ratio, (ii) measurement stability, (iii) uncertainties due to calibration and (iv) response times of the isotope measurements due to adsorption-desorption processes on the tubing and measurement cavity walls. Based on the experience from our laboratory experiments, we set up a one-week field campaign for comparing measurements of the ambient isotope signals from the two laser spectroscopic systems. The optimal calibration strategy determined for both instruments was applied as well as the correction functions for water vapour mixing ratio effects. The root mean square difference between the isotope signals from the two instruments during the field deployment was 2.3‰ for δ2H, 0.5‰ for δ18O and 3.1‰ for deuterium excess. These uncertainty estimates from field measurements compare well to those found in the laboratory experiments. The present quality of measurements from laser spectroscopic instruments combined with a calibration system opens new possibilities for investigating the atmospheric water cycle and

  17. Electron Transport in Water Vapour

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoru; Satoh, Kohki; Itoh, Hidenori

    2015-09-01

    Sets of electron collision cross sections for water vapour previously reported are examined by comparing calculated electron swarm parameters with measured parameters. Further, reliable cross section set of water vapour is estimated by the electron swarm method using Monte Carlo simulation to ensure the accuracy of the swarm parameter calculation. The values of an electron drift velocity, a longitudinal diffusion coefficient, and an effective ionisation coefficient calculated from Yousfi and Benabdessadok's set and those calculated from Itikawa and Mason's set do not necessarily agree with measured data. A new cross section set of water vapour, which consists of three kinds of rotational excitation, two kinds of vibrational excitation, three kinds of electron attachment, twenty-six kinds of electronic excitation, and six kinds of ionisation cross sections, and an elastic collision cross section, is estimated, and an anisotropic electron scattering for elastic and rotational excitation collision is considered. The swarm parameters calculated from the estimated cross section set is in good agreement with measured data in a wide range of reduced electric field.

  18. Is there a solar signal in lower stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  19. Is there a solar signal in lower stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Schieferdecker, T.; Lossow, S.; Stiller, G. P.; von Clarmann, T.

    2015-09-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  20. A water vapour monitor at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  1. Simulation of stable isotopic pools and fluxes by a land-surface scheme forced with observed isotopic ratios in precipitation and atmospheric water vapour.

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Griffith, D.; Irannejad, P.; Williams, A.; Stone, D.

    2004-12-01

    Stable isotopes provide independent tools for evaluating key components of the hydrological and carbon cycles as simulated by land-surface schemes (LSS). The Project for Intercomparison of Land-surface Parameterisation Schemes (PILPS http://www.pilps.mq.edu.au) is initiating a new type of experiment (IPILPS) to assess the ability of LSSs to reproduce isotopic components of water and mass (carbon) budgets. The project aims to intercompare LSS simulations of diurnal and annual cycles of isotopic pools and fluxes, and to evaluate the performance of isotope-enabled LSSs under varying environmental conditions. The need for evaluation data is driving a new experimental effort concentrating on the measurement of stable water isotopes (SWI), in precipitation, atmospheric and canopy water vapour, soil water and leaf/stem water, on annual and diurnal time scales at three sites in the GEWEX CSE Amazon, Murray-Darling and Baltic Sea basins. We present diurnal and annual cycles of stable isotopes in the ecosystem as simulated by an isotope enabled LSS (ISOLSM)1 over an agricultural pasture in Wagga Wagga (SE Australia). Climatological values of SWI in precipitation and water vapour, as well as continuous in situ D/H ratios of atmospheric water vapour obtained during a three-week field campaign, are used to force the LSS. The D/H ratio was measured using a fully automated and mobile Fourier Transform Infrared (FTIR)2 spectrometer. The sensitivity of simulated isotopes (in soil water, plants and canopy air space, as well as isotopic exchanges between the land surface and the atmosphere) to the atmospheric forcing is analysed. The results highlight the importance of intensive field campaigns for measuring SWI in the environment as both forcing and evaluation data for land surface simulations. 1. A. Henderson-Sellers et al., 2004, Using stable water isotopes to evaluate basin-scale simulations of surface water budgets, in press, J. Hydrometeorol. 2. D.W.T. Griffith et al., 2002

  2. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta18O of water vapour in Pacific Northwest coniferous forests.

    PubMed

    Lai, Chun-Ta; Ehleringer, James R; Bond, Barbara J; Paw U, Kyaw Tha

    2006-01-01

    Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (delta 18O) as high as 4% per hundred were observed for water vapour (delta (18)Ovp) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values of delta 18Ovp decreased in the morning, reached a minimum at midday, and recovered to early-morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2-d period by considering the 18O-isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do delta 18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of delta 18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O-isoflux in the morning of day 1, causing values of delta 18Ovp, to decrease. An isotopically enriched 18O-isoflux resulting from transpiration then offset this decreased delta 18Ovp later during the day. Contributions of 18O-isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H2(16)O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas-fir trees as approximately 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non-steady state model for predicting delta 18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of

  3. Advances in the GNSS Based Estimation of Atmospheric Water Vapour and its Application in Numerical Weather Prediction in Hungary

    NASA Astrophysics Data System (ADS)

    Juni, I.

    2015-12-01

    In the last decade a CORS network (GNSSnet.hu) has been established in Hungary by FÖMI, incorporating stations from the neighbouring countries as well. The availability of this network enabled us to develop and realize a processing facility to estimate the tropospheric zenith delays from the observations in near real time within the frames of a research project funded by the Hungarian National Research Fund. An automated near-realtime processing facility was established to collect and process the GNSS observations from 54 GNSSnet.hu stations with spatial resolution of approximately 60 kilometres, and it estimates the zenith wet delays (ZWD) and the precipitable water vapour (PW) and validate these values using radiosonde observations. Recently we updated the operational Bernese processing software from version 5.0 to 5.2. The estimation of precipitable water vapour from the zenith wet delays was also further refined and new methods were implemented. The GNSS based zenith total delay and precipitable water vapour estimates are transmitted to EUMETNET's E-GVAP project. Currently the real-time processing of GNSS observations using the PPP technique is experimented to enable the exploitation of GNSS observations for nowcasting applications. The first results and comparisons with the near-realtime estimations are presented on this poster. We contribute to a dedicated project, concentrating around the Transcarpathian region, which targets the real-time monitoring of severe weather events based on GNSS analysis. The first results may expected by the end of this year. The Hungarian Meteorological Service has also conducted the first tests of the zenith total delay assimilation in their AROME numerical weather prediction model. The data assimilation diagnostics showed that the zenit total delays originated from nearly 70 stations have important contribution to AROME analysis (especially to humidity analysis). The verification results of the first test conducted in January

  4. The July 2016 Study of the water VApour in the polar AtmosPhere (SVAAP) campaign at Thule, Greenland: surface radiation budget and role of clouds

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Pace, Giandomenico; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco; Gröbner, Julian

    2017-04-01

    The Study of the water VApour in the polar AtmosPhere (SVAAP) project, funded by the Italian Programme for Antarctic Research, is aimed at investigating the surface radiation budget (SRB), the variability of atmospheric water vapour, and the long-term variations in stratospheric composition and structure at Thule, Greenland, in the framework of the international Network for Detection of Atmospheric Composition Change (NDACC). Thule High Arctic Atmospheric Observatory (THAAO, 76.5° N, 68.8° W) is devoted to study climate change and has been operational since 1990, with the contribution of different international institutions: DMI, NCAR, ENEA, INGV, Universities of Roma and Firenze (http://www.thuleatmos-it.it). As part of SVAAP an intensive field campaign was held at Thule from 5 to 28 July 2016. The campaign was also aimed at supporting the installation of VESPA-22, a new microwave radiometer for water vapour profiling in the upper atmosphere and integrated water vapour (IWV), and offered the possibility to study the cloud physical and optical properties and their impact on the SRB. Measurements of downward shortwave (SW) and longwave (LW) irradiance were already available since 2009. Additional observations were added to obtain the SRB and to characterize the atmospheric state: upward SW and LW irradiance, upwelling and downwelling photosynthetically active radiation (PAR), downward irradiance in the 8-14 µm infrared window, temperature and relative humidity tropospheric profiles, IWV, liquid water path (LWP), lidar tropospheric backscattering profiles, sky brightness temperature (BT) in the 9.6-11.5 µm spectral range, visible and infrared sky images, surface meteorological parameters. Moreover, 23 radiosonde were launched during the campaign. Data from the period 14-28 July are presented in this study. The first part of the campaign was characterized by stable cloud-free conditions, while alternation of cloudy and cloud-free sky occurred after 18 July. The

  5. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  6. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  7. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  8. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012–2015

    PubMed Central

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B.; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J.; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-01

    The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10–20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements. PMID:28094798

  9. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012-2015

    NASA Astrophysics Data System (ADS)

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B.; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J.; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-01

    The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

  10. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012-2015.

    PubMed

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-17

    The water vapour isotopic composition ((1)H2(16)O, H2(18)O and (1)H(2)H(16)O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

  11. Retrieving mesospheric water vapour from observations of volume scattering radiances

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Shepherd, M. G.

    2009-02-01

    This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC) using satellite observations of Volume Scattering Radiances (VSR) obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  12. Global trends and variability in integrated water vapour from ground-based GPS data and atmospheric models

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia

    2016-04-01

    A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  13. Water vapour in the UT/LS

    NASA Astrophysics Data System (ADS)

    Schiller, C.

    2003-04-01

    The water vapour abundance increased at all levels in the stratosphere during the last decades. Though the observed increase cannot be explained quantitatively, the water vapour distribution and underlying processes seem to be sufficiently understood in the overworld. In the lowermost stratosphere and in the tropical tropopause layer, however, the complex transport and temperature patterns on different scales result in a high variability and strong gradients of the water vapour distribution. The long-term increase of water vapour seems to be apparent also in the lowermost stratosphere, but its significance is decreasing towards the tropopause. In this presentation, measurements of water vapour in the extratropical UT/LS from several airborne campaigns are discussed and compared to distribution patterns obtained from satellite data sets. A mixing layer with H2O mixing ratios up to 100 ppmv is found above the tropopause, frequently resulting in saturation of these air masses. A seasonal cycle of the water content with a late spring and summer maximum is apparent in the LS. The role of jet streams moistening the lowermost stratosphere will be discussed. In a second part, water vapour distributions in the tropics as the stratospheric source region are presented. As an example, measurements over the Indian ocean are discussed where temperatures and water vapour mixing ratios as low as in the classical 'fountain' region over Micronesia occurred. Frequently, ongoing dehydration was observed in the TTL up to the tropopause, independent on deep convection cells.

  14. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  15. Cluster formation in rarefied water vapour plume

    NASA Astrophysics Data System (ADS)

    Bykov, Nikolay Y.; Gorbachev, Yuriy E.

    2017-07-01

    Mathematical model of water cluster formation has been developed and applied for the Direct Simulation Monte Carlo of water vapour expansion from the reservoir with constant stagnation parameters. The influence of flow rarefaction on plume parameters and on peculiarities of cluster formation process are analyzed. Comparison of simulation results with experimental data is performed.

  16. Evidence for a link between global lightning activity and upper tropospheric water vapour

    PubMed

    Price

    2000-07-20

    Tropospheric water vapour is a key element of the Earth's climate, which has direct effects as a greenhouse gas, as well as indirect effects through interaction with clouds, aerosols and tropospheric chemistry. Small changes in upper-tropospheric water vapour have a much larger impact on the greenhouse effect than small changes in water vapour in the lower atmosphere, but whether this impact is a positive or negative feedback remains uncertain. The main challenge in addressing this question is the difficulty in monitoring upper-tropospheric water vapour globally over long timescales. Here I show that upper-tropospheric water-vapour variability and global lightning activity are closely linked, suggesting that upper-tropospheric water-vapour changes can be inferred from records of global lightning activity, readily obtained from observations at a single location on the Earth's surface. This correlation reflects the fact that continental deep-convective thunderstorms transport large amounts of water vapour into the upper troposphere and thereby dominate the variations of global upper-tropospheric water vapour while producing most of the lightning on Earth. As global lightning induces Schumann resonances, an electromagnetic phenomenon in the atmosphere that can be observed easily at low cost, monitoring of these resonances might provide a convenient method for tracking upper-tropospheric water-vapour variability and hence contribute to a better understanding of the processes affecting climate change.

  17. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  18. On the vapour trail of an atmospheric imprint in insects

    PubMed Central

    Ellwood, M. D. Farnon; Northfield, Roger G. W.; Mejia-Chang, Monica; Griffiths, Howard

    2011-01-01

    Terrestrial arthropods, at constant risk from desiccation, are highly sensitive to atmospheric temperature and humidity. A physiological marker of these abiotic conditions could highlight phenotypic adaptations, indicate niche partitioning, and predict responses to climate change for a group representing three-quarters of the Earth's animal species. We show that the 18O composition of insect haemolymph is such a measure, providing a dynamic and quantitatively predictable signal for respiratory gas exchange and inputs from atmospheric humidity. Using American cockroaches (Periplaneta americana) under defined experimental conditions, we show that insects respiring at low humidity demonstrate the expected enrichment in the 18O composition of haemolymph because of evaporation. At high humidity, however, diffusional influx of atmospheric water vapour into the animal forces haemolymph to become depleted in 18O. Additionally, using cockroaches sampled from natural habitats, we show that the haemolymph 18O signature is transferred to the organic material of the insect's exoskeleton. Insect cuticle, therefore, exhibits the mean atmospheric conditions surrounding the animals prior to moulting. This discovery will help to define the climatic tolerances of species and their habitat preferences, and offers a means of quantifying the balance between niche partitioning and ‘neutral’ processes in shaping complex tropical forest communities. PMID:21325310

  19. Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region

    NASA Astrophysics Data System (ADS)

    Mammez, Dominique; Cadiou, Erwan; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Gorju, Guillaume; Pelon, Jacques; Lefebvre, Michel

    2015-10-01

    Integrated-path differential absorption lidar (IPDIAL) is an attractive technique to monitor greenhouse gases from space. For that purpose, suitable absorption lines have been identified as good candidates around 2.05 μm for CO2, 2.29 μm for CH4, and 2.06 μm for H2O. In this context, we have developed a high energy transmitter around 2 μm based on frequency conversion in a nested cavity doubly resonant optical parametric oscillator (NesCOPO) followed by high energy parametric amplification. This master oscillator power amplifier (MOPA) architecture enables the generation of tunable single-frequency high energy nanosecond pulses (tens of mJ) suitable for atmospheric DIAL applications. Moreover, taking advantage of the wide spectral coverage capability of the NesCOPO, we demonstrate the potential for this single emitter to address the aforementioned spectral lines, without the use of additional seeding devices. The emitter provides energies up to 20 mJ for the signal waves in the vicinity of CO2 and H2O lines, and 16 mJ at 2290 nm for the CH4 line. By implementing a control loop based on a wavemeter frequency measurement, the signal fluctuations can be maintained below 1 MHz rms for 10 s averaging time. Finally, from optical heterodyne analysis of the beat note between our emitter and a stabilized laser diode, the optical parametric source linewidth was estimated to be better than 60 MHz (Full width at half maximum).

  20. A new portable generator to dynamically produce SI-traceable reference gas mixtures for VOCs and water vapour at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Ackermann, Andreas; Leuenberger, Daiana; Niederhauser, Bernhard

    2016-04-01

    In the framework of the KEY-VOCs and AtmoChem-ECV projects, we are currently developing new facilities to dynamically generate reference gas mixtures for a variety of reactive compounds, at concentrations measured in the atmosphere and in a SI-traceable way (i.e. the amount of substance fraction in mole per mole is traceable to SI-units). Here we present the realisation of such standards for water vapour in the range 1-10 μmol/mol and for volatile organic compounds (VOCs) such as limonene, alpha-pinene, MVK, MEK, in the nmol/mol range. The matrix gas can be nitrogen or synthetic air. Further development in gas purification techniques could make possible to use purified atmospheric air as carrier gas. The method is based on permeation and dynamic dilution: one permeator containing a pure substance (either water, limonene, MVK, MEK or α-pinene) is kept into a permeation chamber with a constant gas flow. The mass loss is precisely calibrated using a magnetic suspension balance. The carrier gas is purified beforehand from the compounds of interest to the required level, using commercially available purification cartridges. This primary mixture is then diluted to reach the required amount of substance fraction. All flows are piloted by mass flow controllers which makes the production process flexible and easily adaptable to generate the required concentration. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. Two setups are currently developed: one already built and fixed in our laboratory in Bern as well as a portable generator that is still under construction and that could be used anywhere in the field. The permeation chamber of the portable generator has multiple individual cells allowing the generation of mixtures up to 5 different components if needed. Moreover the presented technique can be adapted and applied to a large variety of molecules (e.g., NO2, BTEX, CFCs

  1. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  2. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  3. The Water Vapour Radiometer at Effelsberg

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Teuber, U.; Keller, R.

    We have installed a scanning 18 GHz to 26 GHz water vapour radiometer on the focus cabin of the Effelsberg 100 m telescope for tropospheric phase, delay and opacity correction during high-frequency VLBI observations. It is based on the design by Tahmoush & Rogers (2000) but with noise injection for calibration, weather-proof housing, and temperature stabilization. The radiometer is delivering data into an archive since July 2003, from which they are available for download. The data will be delivered automatically to PIs of EVN experiments in a calibration table attached by the EVN calibration pipeline. This paper describes the radiometer and its performance.

  4. A novel experimental setup to study the nucleation of atmospheric vapours on small nanoparticles

    NASA Astrophysics Data System (ADS)

    Nachbar, M.; Duft, D.; Leisner, T.

    2015-10-01

    We present a novel supersaturation chamber which allows us to expose nanoscale particles to supersaturated vapors in the wide range of temperatures occurring in planetary atmospheres. This chamber, the molecular flow ice cell (MICE), is integrated in the vacuum setup TRAPS and enables us to study adsorption, nucleation and growth processes of condensable vapours as for instance water vapour and carbon dioxide. We will present the experimental setup with focus on MICE. The general function principal of MICE and its limitations will be highlighted and we will elaborate that this new device is able to study adsorption, ice nucleation and growth processes exemplified with CO2 nucleation experiments in the mesosphere of Mars.

  5. On the connection between stratospheric water vapour changes and widespread severe denitrification in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Jo; Lossow, Stefan; Stiller, Gabi; Murtagh, Donal

    2013-04-01

    Water vapour is one of the most important greenhouse gases and plays a key role in the chemistry of the upper troposphere and lower stratosphere (UT/LS). Any changes in atmospheric water vapour bring important implications for the global climate. Long-term ground-based and satellite measurements indicate an increase of stratospheric water vapour abundance by an average of 1 ppmv during the last 30 years (1980-2010). Increases in stratospheric water vapour cool the stratosphere but warm the troposphere. Both the cooling of the stratosphere and the increase in water vapour enhance the potential for the formation of polar stratospheric clouds. More than a decade ago it already was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapor could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud particles. In fact, during the two recent Arctic winter 2009/2010 and 2010/2011 the strongest denitrification in the recent decade was measured by Odin/SMR. In the latter winter denitrification lead also to severe ozone depletion with similar extensions as the Antarctic "ozone hole". In this study, the correlation between observed water vapour trends and the recent temperature evolution in the Arctic together with trace gas measurements and PSC observations are considered to investigate a possible connection between the increase in stratospheric water vapour and polar stratospheric cloud formation/denitrification.

  6. Intercomparison of Water Vapour Detectors under field and defined Conditions

    NASA Astrophysics Data System (ADS)

    Mangold, A.; Wodca Team

    2003-04-01

    Accurate and fast response water vapour detection is an important part of most scientific payloads on atmospheric research aircrafts and balloon platforms. For this purpose, different measuring techniques and types of instruments are used to detect water vapour in field and laboratory experiments. During several joint field and laboratory campaigns under UTLS conditions, the following institutes and instruments were involved: (a) the fast response Lyman-(-fluorescence hygrometer (FLASH) for aircraft or balloon experiments of CAO, Russia; (b) the fast in-situ stratospheric Lyman-(-fluorescence hygrometer (FISH) for aircraft measurements of FZJ, ICG-I, Germany, (c) the photoacoustic sensor of the University of Szeged, Hungary; (d) the fast response chilled mirror hygrometer 'CR-2' (Buck Research Instr., USA) used for airborne measurements of DLR, IPA, Germany; (e) the tuneable diode laser of University of Heidelberg and IMK-AAF, which directly measures the absorption of water vapour at 1370nm. Additionally two highly precise, commercial frost point hygrometers (MBW Elektronik AG, CH) were used as calibration standards: (f) the 'DP30' of FZJ, ICG-I and (g) the '373' of IMK-AAF. Here, we will discuss the results of the laboratory intercomparison campaign WODCA (Water Vapour Detectors Intercomparison and Calibration) at the FZJ, ICG-I in March 2002, in which the instruments (a,b,c,d) and (f,g) took part. In order to cover UTLS conditions the water vapour mixing ratio and total gas pressure was varied from 1.0 ppmv up to 700 ppmv and from 50 mbar up to 400 mbar, respectively. We will also present results of field and laboratory experiments, whereby only a part of the above mentioned instruments participated in the respective campaigns. These campaigns include flights of the research aircrafts Falcon 20E D-CMET of DLR, Germany in October 2001 and the "Geophysica-M55" of CAO, Russia, in October 2002. A third set of intercomparison data was obtained during ice nucleation

  7. The ESA-ANISAP Study: Retrieval Of Tropospheric Water Vapour Fields By Using Co-Rotating LEO Satellites

    NASA Astrophysics Data System (ADS)

    Argenti, F.; Facheris, L.; Cuccoli, F.; Lapini, A.

    2013-12-01

    This paper presents a preliminary study for the estimation of 2-D maps of atmospheric water vapour content from integrated water vapour measurements carried out by a constellation of co-rotating low earth orbit satellites. The proposed method uses the normalised differential spectral attenuation (NDSA) approachable to achieve integrated water vapour content information from attenuations measurements over microwave links among the satellites - and tomographic techniques to solve the inverse problem of atmospheric water vapour field reconstruction. This study is undertaken as a task of the on-going research developed under the ESA-ANISAP project. Some simulation results demonstrating the feasibility of the reconstruction of 2-D maps of atmospheric water vapour content are presented.

  8. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    PubMed

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  9. A solar signal in lower stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Schieferdecker, T.; Lossow, S.; Stiller, G. P.; von Clarmann, T.

    2015-04-01

    A merged time series of stratospheric water vapour built from HALOE and MIPAS data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analyzed by multivariate linear regression including an 11 year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy positive water wapour trends in the lowermost stratosphere were found. We conclude from these results that a solar signal generated at the tropical tropopause is imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air is also governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can solve the water vapour conundrum of increasing stratospheric water vapour abundances at constant or even decreasing tropopause temperatures.

  10. GPS tomographic experiment on water vapour dynamics in the troposphere over Lisbon

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Miranda, Pedro

    2015-04-01

    Quantification of the water vapour variability on the atmosphere remains a difficult task, affecting the weather prediction. Coarse water vapour resolution measurements in space and time affect the numerical weather prediction solution models causing artifacts in the prediction of severe weather phenomena. The GNSS atmospheric processing has been developed in the past years providing integrated water vapour estimates comparable with the meteorological sensor measurements, with studies registering 1 to 2 kg/m2 bias, but lack a vertical determination of the atmospheric processes. The GNSS tomography in the troposphere is one of the most promising techniques for sensing the three-dimensional water vapour state of the atmosphere. The determination of the integrated water vapour profile by means of the widely accepted GNSS meteorology techniques, allows the reconstruction of several slant path delay rays in the satellite line of view, providing an opportunity to sense the troposphere at tree-dimensions plus time. The tomographic system can estimate an image solution of the water vapour but impositions have to be introduced to the system of equations inversion because of the non-optimal GNSS observation geometry. Application of this technique on atmospheric processes like large convective precipitation or mesoscale water vapour circulation have been able to describe its local dynamic vertical variation. A 3D tomographic experiment was developed over an area of 60x60 km2 around Lisbon (Portugal). The GNSS network available composed by 9 receivers was used for an experiment of densification of the permanent network using 8 temporarily installed GPS receivers (totalling 17 stations). This study was performed during several weeks in July 2013, where a radiosonde campaign was also held in order to validate the tomographic inversion solution. 2D integrated water vapour maps directly obtained from the GNSS processing were also evaluated and local coastal breeze circulation

  11. Calibration of the Purple Crow Lidar vibrational Raman water-vapour mixing ratio and temperature measurements

    NASA Astrophysics Data System (ADS)

    Argall, P. S.; Sica, R. J.; Bryant, C. R.; Algara-Siller, M.; Schijns, H.

    2007-02-01

    Purple Crow Lidar (PCL) measurements of the vibrational Raman-shifted backscatter from water vapour and nitrogen molecules allows height profiles of the water-vapour mixing ratio to be measured from 500 m up into the lower stratosphere. In addition, the Raman nitrogen measurements allow the determination of temperature profiles from about 10 to 40 km altitude. However, external calibration of these measurements is necessary to compensate for instrumental effects, uncertainties in our knowledge of the relevant molecular cross sections, and atmospheric transmission. A comparison of the PCL-derived water-vapour concentration and temperature profiles with routine radiosonde measurements from Detroit and Buffalo on 37 and 141 nights, respectively, was undertaken to provide this calibration. The calibration is then applied to the measurements and monthly mean-temperature and water-vapour profiles are determined.

  12. [CO2-gas exchange of mosses following water vapour uptake].

    PubMed

    Lange, O L

    1969-03-01

    The CO2-gas exchange of dry mosses which were exposed to air of high water vapour content has been followed. Some moss species behave as do lichens and aerophilic green algae: they are able to take up enough water vapour to make a rather high photosynthetic activity possible. Other species lack this ability. They need liquid water for reactivation of photosynthesis, as do poikilohydric ferns and phanerogams. In this respect too the mosses are located between the real thallophytes and the cormophytes. From this point of view they are useful objects for studying the relationships between water vapour reactivation, morphological organisation and ecological capability.

  13. The millennium water vapour drop in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Jöckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2016-07-01

    This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop") and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM) EMAC (ECHAM/MESSy Atmospheric Chemistry Model). The model simulations differ with respect to the prescribed sea surface temperatures (SSTs) and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer-Dobson circulation (BDC). We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST) changes due to a coincidence with a preceding strong El Niño-Southern Oscillation event (1997/1998) followed by a strong La Niña event (1999/2000) and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) in 2000. Correct (observed) SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution) is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics. Our free

  14. Observations and recent evolution of stratospheric water vapour isotopologues derived from satellite measurements

    NASA Astrophysics Data System (ADS)

    Urban, Joachim; Jones, Ashley; Lossow, Stefan; Murtagh, Donal

    Water vapour, a strong greenhouse gas and source gas of the HOx family, plays an essential role for dynamics and chemistry of the middle atmosphere. Global measurements of isotopologues of water vapour have been made by the Odin Sub-Millimetre Radiometer (SMR) during nearly nine years since 2001. The long-term evolution of stratospheric water vapour has been studied by extending the historical satellite time-series from SAGE and HALOE, available until 2005, to present day by using data from Odin and other more recently launched satellites (Envisat, ACE). The recent evolution and variability of the water vapour isotopologues H2O-17, H2O-18, and HDO, as well as related trace gases and temperature has also been analysed and results of this study will be presented. Comparison and combination of various stratospheric water vapour time-series moreover provides a critical test of the quality of the different new satellite water vapour data sets. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Fin-land (TEKES), and France (CNES), with support by the 3rd party mission programme of the European Space Agency (ESA).

  15. Ground-based near-infrared observations of water vapour in the Venus troposphere

    NASA Astrophysics Data System (ADS)

    Chamberlain, Sarah; Bailey, Jeremy; Crisp, David; Meadows, Vikki

    2013-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ˜ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173-183) using VEX/SPICAV (R ˜ 1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508-511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R ˜ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.

  16. Contributions of Organic Vapours to Atmospheric Nanoparticle Growth

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, W.; Khalizov, A. F.; Zhang, R.

    2010-12-01

    Atmospheric aerosol particles alter radiative balance of the earth-atmosphere system, impact the regional and global climate, and pose negative effects on human health. Aerosol nucleation events have been frequently observed under various tropospheric conditions and account for a major fraction of the total aerosol population. Although a number of studies suggest that organics are involved in both new particle formation and their subsequent growth, the fundamental chemical processes responsible for organic vapours’ contribution remain poorly understood. This work will focus on laboratory studies on the role of various organic vapours in sulphuric acid nanoparticles growth. Sulfuric acid nanoparticles of 4-20 nm diameter size are generated from homogeneous binary nucleation of H2SO4 and H2O vapors in a laminar flow reactor. The growth factor of H2SO4 nanoparticles exposed to organics including methyglyoxal, ethanol, 1-butanol, 1-heptanol, 1-decanol, and cis-pinonic acid is measured using a nano-tandem differential mobility analyzer (nano-TDMA). Also studied is the potential synergistic effect in the presence of two or more organic vapours to which sulphuric acid nanoparticles are exposed. The chemical compositions of H2SO4 particles exposed to the organics are analyzed by a thermal desorption-ion drift-chemical ionization mass spectrometer (TD-ID-CIMS), and the spectroscopic evolution of functional groups in H2SO4 particles of ~40 nm diameter size, deposited on ZnSe crystal and subsequently exposed to organics, is studied using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The combined techniques are used to elucidate the key factors in controlling atmospheric nanoparticle growth.

  17. Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results

    NASA Astrophysics Data System (ADS)

    Bloch, Magdalena; Karasiński, Grzegorz

    2014-04-01

    Since October 2009, a ground-based Raman lidar system has been deployed to perform a regular, night-time, vertical sounding of a water vapour content in the lower and middle troposphere above Polish Polar Station at Hornsund (77.00°N, 15.55°E, 10 m a.s.l.) in the Arctic. The water vapour mixing ratio profiles were obtained for the atmosphere up to 6 km altitude, based on analysis of inelastic Raman backscattering signals from nitrogen molecules (at 387 nm) and water vapour particles (at 407 nm), calibrated with the data from a local Vaisala's automatic meteorological station. The results obtained for winter seasons in the years 2009-2012 are in a good general agreement with the results obtained from the atmospheric infrared sounder (AIRS) on the Aqua satellite.

  18. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Masson-Delmotte, Valérie; Genthon, Christophe; Kerstel, Erik; Kassi, Samir; Arnaud, Laurent; Picard, Ghislain; Prie, Frederic; Cattani, Olivier; Steen-Larsen, Hans-Christian; Vignon, Etienne; Cermak, Peter

    2016-07-01

    Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014-January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying a unique origin leading

  19. Radiative forcing due to trends in stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Smith, Claire A.; Haigh, Joanna D.; Toumi, Ralf

    Trends derived from the latest version of Halogen Occultation Experiment (HALOE) data are used in a two-dimensional atmospheric model to estimate their radiative effects over the last decade. The results show a stratospheric cooling in regions of H2O increase, of magnitude similar to that due to stratospheric ozone loss indicating a significant additional cause of observed stratospheric temperature decreases. Radiative forcings are derived and it is found that global average radiative forcing due to stratospheric water vapour changes probably lies in the range 0.12 to 0.20 Wm-2 decade-1. This could have more than compensated for the negative radiative forcing due to decadal ozone loss.

  20. Atmospheric pressure vapour phase decomposition: a proof of principle.

    PubMed

    Cinosi, Amedeo; Andriollo, Nunzio; Tibaldi, Francesca; Monticelli, Damiano

    2012-11-15

    In the present work we demonstrated that the digestion of difficult matrices (high boiling petrochemical fractions and distillation bottoms) can be achieved by oxidation with nitric acid vapours at atmospheric pressure employing simple laboratory glassware. The application of this procedure as a digestion method prior to Total Reflection X-Ray Fluorescence (TXRF) is presented, although the employment of other detection techniques may be foreseen. The method ensured a fast, less than half an hour, treatment time and detection limits in the range 20-100 μg/kg for As, Bi, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Zn, whereas higher values were obtained for Ba, Ca, K, P, Rh, Ti and V (0.3-3 mg/kg). The potentialities and limitations of this procedure were discussed: the application to a broad range of matrices may be foreseen. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A preliminary zonal mean climatology of water vapour in the stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Pumphrey, Hugh C.; Rind, D.; Russell, J. M.; Harries, J. E.

    The Microwave Limb Sounder on the UARS satellite measures water vapour concentration in the stratosphere and mesosphere. Water vapour profiles are retrieved from radiance measurements using a version of the optimal estimation algorithm. This requires an a priori profile which is obtained from a climatology. The MLS retrieval currently uses the standard UARS pre-launch climatology, which contains water vapour based on a 2-D model constrained to LIMS data in the stratosphere. This climatology has several defects which affect the ability of MLS to retrieve water vapour. This paper presents a new climatology constructed from the HALOE (HALogen Occultation Experiment) and SAGE II (Stratospheric Aerosol and Gas Experiment) data, which have become available recently. The new climatology is more realistic in several ways, particularly in the mesosphere and near the tropopause. It is proving to be an improvement as an a priori for MLS retrievals and might also have other uses. The paper will present the climatology, show how it was constructed, and compare it to the UARS pre-launch climatology and to various other data. As it stands, this climatology is not suitable for a reference atmosphere, but it is an improvement on CIRA part III in some way simply because it contains more accurate data and shows a number of new features. Suggestions are made for constructing an improved reference climatology for middle atmosphere water vapour.

  2. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.; Urban, J.; Murtagh, D.; Hultgren, K.; Gumbel, J.

    2014-11-01

    A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC) brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode has been activated during June, July and August of 2010, 2011 and 2014, and for latitudes between 50 and 82° N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR). The tomographic retrieval approach used provides water vapour and temperature between 75-90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.5 ppm for water vapour and 3 K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppm) in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE) on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS) on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 20 K) and water vapour (> 1 ppm), while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data are provided by the OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits are considered. For these orbits

  3. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.; Urban, J.; Murtagh, D.; Hultgren, K.; Gumbel, J.

    2015-05-01

    A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC) brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode was activated during June, July and August of 2010 and 2011, and for latitudes between 50 and 82° N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR). The tomographic retrieval approach used provides water vapour and temperature between 75 and 90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.2 ppmv for water vapour and 2 K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppmv) in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE) on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS) on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 15 K) and water vapour (> 0.5 ppmv), while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data is provided by OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits is considered. For these orbits, effects of

  4. A new approach to the water vapour feedback

    NASA Astrophysics Data System (ADS)

    Ingram, W.

    2012-12-01

    Climate sensitivity is often said to be doubled by water vapour feedback. From simple physical arguments, confirmed by GCMs, and consistent with the limited observational evidence, we expect the distribution of RH to change little under climate change. This implies a substantial positive feedback on climate change - but why about a doubling? And why is this value so robust even to major modelling errors and approximations? And why do GCMs never give a run-away water vapour greenhouse effect, plausible though extrapolation can make it seem? Considering the "paradox" of Simpson (1928) leads to a simple model that explains all these. The "partly-Simpsonian" model for the water vapour feedback on climate change implies a very simple constraint - that the component of OLR radiated by water vapour does not change as climate changes, while that radiated by everything else (surface, clouds, CO2, etc.) increases following Planck's Law. This does not predict the actual non-cloud LW response λCSLW of GCMs quantitatively accurately, but gives the general size. It also explains why a run-away water vapour greenhouse effect is not possible in Earth-like conditions: the partly-Simpsonian water vapour feedback can do no more than cancel part of the basic Planck's-Law negative feedback - less than 100% as long as some OLR is not from water vapour. The robustness of the GCMs' water vapour feedbacks, even if they simulate the water vapour distribution very badly, also follows: the fraction of emission by water vapour is both innately computationally robust (even large errors in water vapour amounts can only affect those limited parts of the spectrum of intermediate optical depth: most of the spectrum will be effectively opaque or effectively transparent at any given location), and closely related to the surface downward LW flux, which is verifiable and tunable. In addition, the partly-Simpsonian model provides a physical explanation for the long-known fact that LW radiances or OLR

  5. Water vapour variability in the high-latitude upper troposphere - Part 2: Impact of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Zou, Jason; McElroy, C. Thomas; Boone, Chris D.; Sheese, Patrick E.; Bernath, Peter F.

    2016-02-01

    The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12) % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of ˜ 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.

  6. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption.

  7. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space

  8. Circulation response to warming shaped by radiative changes of clouds and water vapour

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Shaw, Tiffany A.

    2015-02-01

    The atmospheric circulation controls how global climate change will be expressed regionally. Substantial circulation changes are expected under global warming, including a narrowing of the intertropical convergence zone, a slow down and poleward expansion of the tropical circulation, and a poleward shift of mid-latitude stormtracks and jets. Yet, climate model projections of the circulation response to climate change remain uncertain. Here we present simulations with two different aquaplanet climate models and analyse these simulations using the cloud and water-vapour locking method. We find that radiative changes of clouds and water vapour are key to the regional response of precipitation and circulation to global warming. Model disagreement in the response of key characteristics of the atmospheric circulation--the intertropical convergence zone, the strength of the Hadley circulation, and the trade winds--arises from disagreement between the models in radiative changes of tropical ice clouds and their coupling to the circulation. We find that cloud changes amplify a poleward shift of the extratropical jet, whereas water vapour changes oppose such a shift, but the degree of compensation is model-dependent. We conclude that radiative changes of clouds and water vapour are not only integral to the magnitude of future global-mean warming but also determine patterns of regional climate change.

  9. Preparing a 20µm Water Vapour Monitor (IRMA) for Operations at Dome C

    NASA Astrophysics Data System (ADS)

    Phillips, R. R.; Naylor, D. A.; Knee, L. B.; Dahl, R. E.; Sirbu, D.

    2006-08-01

    The Infrared Radiometer for Millimetre Astronomy (IRMA) is a compact, relatively low cost, 20 µm water vapour monitor. By carefully choosing a 2 µm band that contains only water vapour molecule transitions it is possible to use a simple infrared detector chip to measure the total flux emitted by a column of atmosphere and hence, via an atmospheric model, to determine the total precipitable water vapour. Since February 2005, an IRMA has been measuring precipitable water vapour levels in Chile at the Gemini South site on Cerro Pachon with a second unit added at the nearby Las Campanas observatories site in August 2005. In early 2006 data collection started with three new build IRMA units at three locations for the Thirty Meter Telescope (TMT) project site testing effort. Additionally, an IRMA unit is in the process of being modified to prepare it for operations at Dome C in Antarctica as an addition to the suite of instruments on the University of New South Wales' AASTINO site monitoring facility. We present here a description of the features of the TMT IRMA units that enable them to run in a remote, unattended location in the Chilean desert that are relevant to the similarly remote Dome C operations. In addition we describe the modifications that have been undertaken and that are currently being tested in order to enable the units to operate with minimal redesign at the extremely low Antarctic winter temperatures.

  10. All-sky homogeneity of precipitable water vapour over Paranal

    NASA Astrophysics Data System (ADS)

    Querel, Richard R.; Kerber, Florian

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be

  11. Upper tropospheric water vapour variability at high latitudes - Part 1: Influence of the annular modes

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Zou, J.; Plummer, D. A.; Boone, C. D.; McElroy, C. T.; Sheese, P. E.; Moeini, O.; Bernath, P. F.

    2015-08-01

    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90 and 60-90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in eight of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high-latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March 2004-2013). Using a seasonal timestep and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.

  12. Upper tropospheric water vapour variability at high latitudes - Part 1: Influence of the annular modes

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Zou, Jason; Plummer, David A.; Boone, Chris D.; McElroy, C. Thomas; Sheese, Patrick E.; Moeini, Omid; Bernath, Peter F.

    2016-03-01

    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.

  13. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, M.; Brinkop, S.; Jöckel, P.

    2015-12-01

    Volcanic eruptions can have significant impact on the earth's weather and climate system. Besides the subsequent tropospheric changes also the stratosphere is influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour after the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on the tropospheric water vapour and ENSO are evident.

  14. Comparison of precipitable water vapour measurements made with an optical echelle spectrograph and an infrared radiometer at Las Campanas Observatory

    NASA Astrophysics Data System (ADS)

    Querel, Richard R.; Naylor, David A.; Thomas-Osip, Joanna; Prieto, Gabriel; McWilliam, Andrew

    2008-07-01

    We present simultaneous precipitable water vapour (PWV) measurements made at the Las Campanas Observatory in late 2007 using an Infrared Radiometer for Millimetre Astronomy (IRMA) and the Magellan Inamori Kyocera Echelle (MIKE) optical spectrograph. Opacity due to water vapour is the primary concern for ground based infrared astronomy. IRMA has been developed to measure the emission of rotational transitions of water vapour across a narrow spectral region centred around 20 μm, using a 0.1 m off-axis parabolic mirror and a sophisticated atmospheric model to retrieve PWV. In contrast, the MIKE instrument is used in conjunction with the 6.5 m Magellan Clay telescope, and determines the PWV through absorption measurements of water vapour lines in the spectra of telluric standard stars. With its high spectral resolution, MIKE is able to measure absorption from optically thin water vapour lines and can derive PWV values using a simple, single layer atmospheric model. In an attempt to improve the MIKE derived PWV measurements, we explore the potential of fitting a series of MIKE water vapour line measurements, having different opacities.

  15. On GPS Water Vapour estimation and related errors

    NASA Astrophysics Data System (ADS)

    Antonini, Andrea; Ortolani, Alberto; Rovai, Luca; Benedetti, Riccardo; Melani, Samantha

    2010-05-01

    Water vapour (WV) is one of the most important constituents of the atmosphere: it plays a crucial role in the earth's radiation budget in the absorption processes both of the incoming shortwave and the outgoing longwave radiation; it is one of the main greenhouse gases of the atmosphere, by far the one with higher concentration. In addition moisture and latent heat are transported through the WV phase, which is one of the driving factor of the weather dynamics, feeding the cloud systems evolution. An accurate, dense and frequent sampling of WV at different scales, is consequently of great importance for climatology and meteorology research as well as operational weather forecasting. Since the development of the satellite positioning systems, it has been clear that the troposphere and its WV content were a source of delay in the positioning signal, in other words a source of error in the positioning process or in turn a source of information in meteorology. The use of the GPS (Global Positioning System) signal for WV estimation has increased in recent years, starting from measurements collected from a ground-fixed dual frequency GPS geodetic station. This technique for processing the GPS data is based on measuring the signal travel time in the satellite-receiver path and then processing such signal to filter out all delay contributions except the tropospheric one. Once the troposheric delay is computed, the wet and dry part are decoupled under some hypotheses on the tropospheric structure and/or through ancillary information on pressure and temperature. The processing chain normally aims at producing a vertical Integrated Water Vapour (IWV) value. The other non troposheric delays are due to ionospheric free electrons, relativistic effects, multipath effects, transmitter and receiver instrumental biases, signal bending. The total effect is a delay in the signal travel time with respect to the geometrical straight path. The GPS signal has the advantage to be nearly

  16. Uptake and reaction of atmospheric organic vapours on organic films.

    PubMed

    Donaldson, D J; Mmereki, Baagi T; Chaudhuri, Sri R; Handley, Susannah; Oh, Megan

    2005-01-01

    Films composed in whole or in part of organic compounds represent an important atmospheric interface. Urban surfaces are now known to be coated with a film ("grime") whose chemical composition somewhat resembles that of urban atmospheric aerosols. Such films may act as media in which atmospheric trace gases may be sequestered (leading to their removal from the gas phase); they may also act as reactive media, either as a "solvent" or as a source of reagents. Organic coatings on aqueous surfaces are also important, not just on ocean and lake surfaces ("biofilms") but also on the surfaces of fogwaters and atmospheric aerosol particles. We have initiated experimental uptake studies of trace gases into simple proxies for urban organic films using two techniques: a Knudsen cell effusion reactor and a laser-induced fluorescence method. We will discuss our first results on non-reactive uptake of organic compounds by organic films we use as proxies for urban grime coatings. In general, the measured uptake coefficients appear to track the octanol-air partition coefficients, at least qualitiatively. We have also measured the kinetics of reactions between gas-phase ozone and small polycyclic aromatic hydrocarbons (PAHs), when these are adsorbed at the air-aqueous interface or incorporated into an organic film. Reactions at the "clean" air-water interface and at a coated interface consisting of a monolayer of various amphiphilic organic compounds all follow a Langmuir-Hinshelwood mechanism, in which ozone first adsorbs to the air-aqueous interface, then reacts with already adsorbed PAH. By contrast, the reaction in the pure organic film occurs in the bulk phase. Under some circumstances, heterogeneous oxidation of PAHs by ozone may be as important in the atmosphere as their gas phase oxidation by OH.

  17. Land cover change and water vapour flows: learning from Australia.

    PubMed Central

    Gordon, Line; Dunlop, Michael; Foran, Barney

    2003-01-01

    Australia is faced with large-scale dryland salinization problems, largely as a consequence of the clearing of native vegetation for cropland and grassland. We estimate the change in continental water vapour flow (evapotranspiration) of Australia during the past 200 years. During this period there has been a substantial decrease in woody vegetation and a corresponding increase in croplands and grasslands. The shift in land use has caused a ca. 10% decrease in water vapour flows from the continent. This reduction corresponds to an annual freshwater flow of almost 340 km(3). The society-induced alteration of freshwater flows is estimated at more than 15 times the volume of run-off freshwater that is diverted and actively managed in the Australian society. These substantial water vapour flow alterations were previously not addressed in water management but are now causing serious impacts on the Australian society and local economies. Global and continental freshwater assessments and policy often neglects the interplay between freshwater flows and landscape dynamics. Freshwater issues on both regional and global levels must be rethought and the interplay between terrestrial ecosystems and freshwater better incorporated in freshwater and ecosystem management. PMID:14728792

  18. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2007-03-01

    In this study, we evaluate the ability of the BRAMS (Brazilian Regional Atmospheric Modeling System) mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to the ECMWF analysis. The observations exhibit fine scale vertical structures of water vapour of a few hundred meters height. The ECMWF vertical resolution (~1 km) is too coarse to capture these vertical structures in the UTLS. With a vertical resolution similar to ECMWF, the mesoscale model performs better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The BRAMS model with 250 m vertical resolution is able to capture more of the observed fine scale vertical variations of water vapour compared to runs with a coarser vertical resolution. This is mainly related to: (i) the enhanced vertical resolution in the UTLS and (ii) to the more detailed microphysical parameterization providing ice supersaturations as in the observations. In near saturated or supersaturated layers, the mesoscale model predicted relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, the ECMWF analysis gives good results partly attributed to data assimilation. The analysis of the mesoscale model results showed that the vertical variations of the water vapour profile depends on the dynamics in unsaturated layer while the microphysical processes play a major role in saturated/supersaturated layers. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour

  19. Troposphere-stratosphere exchange - constraints from water vapour

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Fueglistaler, S.; Haynes, P. H.

    2009-04-01

    Troposphere-to-stratosphere transport involves both cross-isentropic transport across the tropical tropopause to the stratospheric 'overworld' and quasi-horizontal transport into the lowermost stratosphere. The distribution of stratospheric water vapour is sensitively dependent on the detailed temperature history of air parcels entering the stratosphere, which can be used to constrain troposphere-stratosphere exchange pathways. We carry out trajectory calculations for the years 2001 and 2005-2008 with winds and diabatic heating rates from the ECMWF 40-year reanalysis project (ERA-40) and the new interim reanalysis project (ERA-Interim). Trajectories are either kinematic, where the vertical velocity is calculated from mass continuity, or diabatic, where diabatic heating rates are used to drive cross-isentropic motion. Water vapour is estimated using a simple dehydration model, and results are compared with measurements from HALOE and the Microwave Limb Sounder (MLS) on board the AURA satellite. In general diabatic trajectories yield spatial and temporal variations in water vapour that are in better agreement with observations, but for the ERA-Interim dataset the differences between kinematic and diabatic trajectories are small. Diabatic trajectories, which give the best estimate in seasonal variation of water vapour, show a consistent dry bias for the stratospheric overworld of 0.5 ppmv compared to previously published ERA-40 trajectory results and observations. The results suggest that trajectories calculated using ERA-40 winds show excessive vertical dispersion which overestimates troposphere-to-stratosphere exchange, an effect also seen in the lowermost stratosphere. The new results suggest that moistening processes in addition to the instantaneous dehydration to large-scale saturation mixing ratio could contribute up to 0.5 ppmv to stratospheric H2O.

  20. A new test method for measuring the water vapour permeability of fabrics

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua; Qian, Xiaoming

    2007-09-01

    The water vapour permeability of textile fabrics is a critical determinant of wearer comfort. Existing test methods are either time consuming or require large amounts of material. A new test apparatus was developed for characterizing the water vapour permeability of fabrics. An aluminium cylinder covered with waterproof and vapour permeable PTFE laminate is used for generating water vapour source on one side of the sample. A dry nitrogen sweep gas stream is used to carry water vapour away. The calculation of the rate of water vapour transmission across the fabric is based on the measurement of the relative humidity of the outgoing nitrogen stream. This new measuring apparatus offers a short test time and calls for a small sample size. The comparison measurements show that the test results correlated well with those obtained from ISO 11092 and ASTM E96. Therefore, this test method provides a new technique to accurately and precisely characterize the water vapour transport properties of fabrics.

  1. Pan-derived isotopic composition of atmospheric vapour in a Mediterranean wetland (Rhône River Delta, France).

    PubMed

    Vallet-Coulomb, Christine; Cartapanis, Olivier; Radakovitch, Olivier; Sonzogni, Corinne; Pichaud, Marc

    2010-03-01

    A continuous record of atmospheric vapour isotopic composition (delta(A)) can be derived from the isotope mass balance of a water body submitted to natural evaporation. In this paper, we present preliminary results of the application of this method to a drying evaporation pan, located in a Mediterranean wetland, during a two-month summer period. Results seem consistent with few atmospheric vapour data based on the assumption of isotopic equilibrium with precipitation, but we observed a shift between pan-derived delta(A) and the composition of vapour samples collected by cold trapping. These results suggest that further investigations are necessary to evaluate the effect of diurnal variations of atmospheric conditions on the applicability of the pan-evaporation method, and on the representative of grab atmospheric samples. We also propose a sensitivity analysis for evaluating the impact of the different measured components on delta(A) calculation, and show an improvement in the method efficiency as the pan is drying.

  2. The CM SAF ATOVS tropospheric water vapour and temperature data record: overview of methodology and evaluation

    NASA Astrophysics Data System (ADS)

    Courcoux, N.; Schröder, M.

    2015-02-01

    Recently, the reprocessed Advanced Television Infrared Observation Satellite (TIROS)-N Operational Vertical Sounder (ATOVS) tropospheric water vapour and temperature data record has been released by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF). ATOVS observations from the National Oceanic and Atmospheric Agency (NOAA)-15 through NOAA-19 and EUMETSAT's Meteorological operational (Metop-A) satellites have been consistently reprocessed to generate 13 years (1999-2011) of global water vapour and temperature daily and monthly means with a spatial resolution of 90 km × 90 km. After pre-processing, an optimal estimation scheme has been applied to the observations to simultaneously infer temperature and water vapour profiles. In a post-processing step an objective interpolation method (Kriging) has been applied to allow for gap filling. The product suite includes total precipitable water vapour (TPW), layer integrated water vapour (LPW) and layer mean temperature for five tropospheric layers, as well as specific humidity and temperature at six tropospheric levels and is referenced under doi:10.5676/EUM_SAF_CM/WVT_ATOVS/V001. To our knowledge this is the first time that the ATOVS record (1998-now) has been consistently reprocessed (1999-2011) to retrieve water vapour and temperature products. TPW and LPW products were compared to corresponding products from the Global Climate Observing System (GCOS) Upper-Air Network (GUAN) radiosonde observations and from the Atmospheric InfraRed Sounder (AIRS) version 5 satellite data record. The TPW shows a good agreement with the GUAN radiosonde data: average bias and root mean square error (RMSE) are -0.2 and 3.3 kg m-2, respectively. The maximum absolute (relative) bias and RMSE values decrease (increase) strongly with height. While the RMSE relative to AIRS is

  3. Reduction of false alarms in forest fire surveillance using water vapour concentration measurements

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2009-06-01

    In this work a theoretical model to evaluate the capabilities of our lidar system in forest fire detection is reported. In particular, a new idea of minimization of false alarm is shown. In a forest fire, in fact, a lot of ashes and in the first stage a large amount of water vapour are emitted. Measurements of water vapour increase with respect to standard humidity in the atmosphere due to a forest fire event, by means of Raman analysis, permit to minimize the false alarm. A simulation of one case of study permits to estimate the maximum range of detection and minimum sensibility of our lidar system. In this paper the theoretical results are shown.

  4. Transport of water vapour over the Tibetan Plateau as inferred from the model simulations

    NASA Astrophysics Data System (ADS)

    Jain, S.; Kar, S. C.

    2017-08-01

    This paper discusses the transport of water vapour in the tropopause region over the Tibetan Plateau, where high water vapour mixing ratio is observed during the Northern Hemisphere (NH) summer-monsoon period. The Weather Research and Forecasting (WRF) model has been used to study the two contrasting cases i.e. when water vapour is high and low at 100 hPa (close to tropopause). The composite distribution of water vapour shows two key results (a) the water vapour appears be transported to the Tibetan plateau region from the extra-tropics under the influence of stronger northwesterly winds and (b) the vertical water vapour flux is relatively higher over the Tibetan Plateau region during the period when water vapour amount at this level is higher. This suggests that in addition to the horizontal transport from the extra-tropics, the local convection occurring over the Tibetan Plateau also contributes to the increase in the water vapour over this region. The differences in the circulation during high and low water vapour cases suggest that a cyclonic circulation difference over the central Indian region limit the transport of water vapour from the Bay of Bengal to the Tibetan Plateau region.

  5. Simulations of Troposphere Scintillation Impacts on Water Vapour Retrieval Using the Satellite-to-Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Hoeg, P.; Lohmann, M. S.; Olsen, L.; Benzon, H.; Nielsen, A. S.

    2003-12-01

    The radio occultation technique is using signals from the Global Positioning System (GPS) to measure phase and amplitude changes caused by the atmosphere. The observations are done from low Earth orbiting (LEO) satellites. The retrieved vertical profiles of the refractive index are used to extract the information of temperature, pressure, and humidity as a function of height in the troposphere and stratosphere. In order to improve the separation of the contributions of water vapour and temperature in the lower troposphere, without using external data, the ESA Earth Explorer satellite mission ACE+ will actively sound the atmosphere using LEO-to-LEO signal transmission at three frequencies around the 22 GHz water vapour absorption line (10, 17, and 23 GHz). The new and novel observations will focus on measuring amplitude and phase at the different frequencies in order to resolve the main terms for intensity changes in the received signals. The combination of the three frequencies removes the effect of liquid water droplets in clouds from the process of estimating the profile of tropospheric water vapour. The transmission of coded signals between LEOs (with similar signal structure as GPS) is the key observable for monitoring the global distribution of atmospheric water vapour. In the lower troposphere, where water vapour is abundant, the less strongly absorbed 10 and 17 GHz signals are employed. Transmitted power and receiver antennae gains are sized to achieve a worst-case moisture concentration of 20 g/kg at the bottom of the troposphere in the tropics. In the upper troposphere, where the moisture concentration can be lower by 4 orders of magnitude, the overriding consideration is detecting the relatively weak effect with sufficient precision in order to achieve accurate moisture measurements. We will present end-to-end simulations of the measurements, consisting of a forward propagation of the signals and a retrieval theory for the estimated complex refractivity

  6. Parametric Reconstruction of Water Vapour Accumulation Modes in the Western and the Eastern Mediterranean Basins

    NASA Astrophysics Data System (ADS)

    Palau, J. L.; Rovira, F.; Millan, M.

    2009-09-01

    The Mediterranean Sea acts as a source of heat and moisture for the surrounding regions, but not only because it is a closed and warm sea. The Mediterranean Basin is located in the mid-latitudes (i.e., high solar insolation), and it is almost completely surrounded by mountains. Moreover, from a meteorological point of view, the Mediterranean Basin can be regarded as two well-differentiated sub-basins: The Western Mediterranean Basin, where the prevailing synoptic conditions are associated with the Azores High Pressure system; and the Eastern Mediterranean Basin, which is under the influence of the Middle-East monsoon low-pressure system. The combination of all these features enables strong evapotranspiration with lower ventilation conditions (especially on the Western side) than in other geographical areas of the world (e.g., areas under the direct influence of the Atlantic Ocean). As a result, there are different water vapour "accumulation modes” on both sides of the Mediterranean Basin. The determination of the main atmospheric accumulation modes and their seasonal variability on both sides of the Mediterranean Basin is a relevant issue for integrating some of the feedbacks driving climate change, e.g., precipitation regimes, secondary pollutant production, ventilation conditions, etc. This study focuses on the total water vapour accumulation modes found on both sides of the Mediterranean Basin throughout the year. The data used in this study come from the most recent EOS satellite missions. Specifically, this investigation analyses the nine-year time series of water vapour data measured by the MODIS instrument (MODerate Resolution Imaging Spectroradiometer) on board the TERRA (EOS AM-1) satellite. Annual evolution (2000-2008) and seasonality of the total precipitable water column are analysed in both the Western and the Eastern Mediterranean Basins. After carrying out the parametric reconstruction of the water vapour time series, we have obtained their

  7. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    NASA Astrophysics Data System (ADS)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  8. Water vapour jets inside the plume of gas leaving Enceladus.

    PubMed

    Hansen, C J; Esposito, L W; Stewart, A I F; Meinke, B; Wallis, B; Colwell, J E; Hendrix, A R; Larsen, K; Pryor, W; Tian, F

    2008-11-27

    A plume of water vapour escapes from fissures crossing the south polar region of the Saturnian moon Enceladus. Tidal deformation of a thin surface crust above an internal ocean could result in tensile and compressive stresses that would affect the width of the fissures; therefore, the quantity of water vapour released at different locations in Enceladus' eccentric orbit is a crucial measurement of tidal control of venting. Here we report observations of an occultation of a star by the plume on 24 October 2007 that revealed four high-density gas jets superimposed on the background plume. The gas jet positions coincide with those of dust jets reported elsewhere inside the plume. The maximum water column density in the plume is about twice the density reported earlier. The density ratio does not agree with predictions-we should have seen less water than was observed in 2005. The ratio of the jets' bulk vertical velocities to their thermal velocities is 1.5 +/- 0.2, which supports the hypothesis that the source of the plume is liquid water, with gas accelerated to supersonic velocity in nozzle-like channels.

  9. Comparison of independent integrated water vapour estimates from GPS and sun photometer measurements and a meteorological model

    NASA Astrophysics Data System (ADS)

    Pugnaghi, S.; Boccolari, M.; Fazlagić, S.; Pacione, R.; Santangelo, R.; Vedel, H.; Vespe, F.

    Measurements using the Global Positioning System (GPS) are affected by the so-called tropospheric delay. Of this, the so-called wet delay is related mainly to the amount of water vapour along the path of the GPS signal through the troposphere. Precise knowledge of the abundance of water vapour, in space and time, is important for meteorology, both in forecasting and now-casting as well as in climate studies. Both because water vapour is the predecessor of precipitation, which is a forecast product, and because a very significant fraction of the energy released to the atmosphere comes from latent heat via water vapour. Despite the high variability of water vapour compared to other meteorological fields, like pressure and wind, water vapour observations are scarce; wherefore additional measurements of water vapour are expected to benefit meteorology. Water vapour is crucial for the development of the small scale, but sometimes very severe,precipitation events which are often seen at mid latitudes, and which are very hard to predict. In this work a comparison between radiometric (sun photometer) and GPS integrated water vapour (IWV) is presented. A sun photometer has been installed at the ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiente) base of Lampedusa Island. The sun photometer is quite close (less then 4 km) to an ASI (Agenzia Spaziale Italiana) GPS permanent receiver. In Venezia an ASI GPS permanent receiver is collocated with another sun photometer. Both sun photometers are installed as part of the AERONET (AErosol and RObotic NETwork) program. A long record of sun photometric measurements, GPS data, and meteorological data is available for the Venezia site. A shorter record (summer period of the year 2000) is available for the station at Lampedusa. The comparison among the three different methods for water vapour delay estimation is presented. We find that the GPS and sun photometric data are better correlated (S.D. about 10 mm for the wet delay

  10. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  11. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data

    NASA Astrophysics Data System (ADS)

    Herbin, H.; Hurtmans, D.; Turquety, S.; Wespes, C.; Barret, B.; Hadji-Lazaro, J.; Clerbaux, C.; Coheur, P.-F.

    2007-07-01

    The isotopologic composition of water vapour in the atmosphere provides valuable information on many climate, chemical and dynamical processes. The accurate measurements of the water isotopologues by remote-sensing techniques remains a challenge, due to the large spatial and temporal variations. Simultaneous profile retrievals of the main water isotopologues (i.e. H216O, H218O and HDO) and their ratios are presented here for the first time, along their retrieved global distributions. The results are obtained by exploiting the high resolution infrared spectra recorded by the Interferometric Monitor for Greenhouse gases (IMG) instrument, which has operated in the nadir geometry onboard the ADEOS satellite between 1996 and 1997. The retrievals are performed on cloud-free radiances, measured during ten days of April 1997, considering two atmospheric windows (1205-1228 cm-1; 2004-2032 cm-1) and using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM). Characterizations in terms of vertical sensitivity and error budget are provided. We show that a relatively high vertical resolution is achieved for H216O (~4-5 km), and that the retrieved profiles are in fair agreement with local sonde measurements, at different latitudes. The retrieved global distributions of H216O, H218O, HDO and their ratios are presented and found to be consistent with previous experimental studies and models. The Ocean-Continent difference, the latitudinal and vertical dependence of the water vapour amount and the isotopologic depletion are notably well reproduced. Others trends, possibly related to small-scale variations in the vertical profiles are also discussed. Despite the difficulties encountered for computing accurately the isotopologic ratios, our results demonstrate the ability of infrared nadir sounding for monitoring atmospheric isotopologic water vapour distributions on a global scale.

  12. The seasonal cycle of water vapour on Mars from assimilation of Thermal Emission Spectrometer data

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, François; Smith, Michael D.

    2014-07-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr μm depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around LS=240-260°. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  13. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  14. Southern Greenland water vapour isotopic composition at the crossroads of Atlantic and Arctic moisture

    NASA Astrophysics Data System (ADS)

    Bonne, J. L.; Steen-Larsen, H. C.; Risi, C. M.; Werner, M.; Sodemann, H.; Lacour, J. L.; Fettweis, X.; Cesana, G.; Delmotte, M.; Cattani, O.; Clerbaux, C.; Sveinbjörnsdottir, A. E.; Masson-Delmotte, V.

    2014-12-01

    , depicting the northward propagation of an isotopic signal inherited from the meteorological conditions during evaporation. Overall, our observations provide valuable information for interpreting Greenland ice core records as well as for evaluating water vapour isotopic simulations in atmospheric models.

  15. Detecting vapour bubbles in simulations of metastable water

    SciTech Connect

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal E-mail: cvaleriani@quim.ucm.es; Menzl, Georg; Geiger, Philipp; Dellago, Christoph E-mail: cvaleriani@quim.ucm.es; Aragones, Juan L.; Caupin, Frederic

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  16. Detecting vapour bubbles in simulations of metastable water

    NASA Astrophysics Data System (ADS)

    González, Miguel A.; Menzl, Georg; Aragones, Juan L.; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L. F.; Dellago, Christoph; Valeriani, Chantal

    2014-11-01

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  17. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  18. Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

    NASA Astrophysics Data System (ADS)

    Foth, Andreas; Pospichal, Bernhard

    2017-09-01

    In this work, a two-step algorithm to obtain water vapour profiles from a combination of Raman lidar and microwave radiometer is presented. Both instruments were applied during an intensive 2-month measurement campaign (HOPE) close to Jülich, western Germany, during spring 2013. To retrieve reliable water vapour information from inside or above the cloud a two-step algorithm is applied. The first step is a Kalman filter that extends the profiles, truncated at cloud base, to the full height range (up to 10 km) by combining previous information and current measurement. Then the complete water vapour profile serves as input to the one-dimensional variational (1D-VAR) method, also known as optimal estimation. A forward model simulates the brightness temperatures which would be observed by the microwave radiometer for the given atmospheric state. The profile is iteratively modified according to its error bars until the modelled and the actually measured brightness temperatures sufficiently agree. The functionality of the retrieval is presented in detail by means of case studies under different conditions. A statistical analysis shows that the availability of Raman lidar data (night) improves the accuracy of the profiles even under cloudy conditions. During the day, the absence of lidar data results in larger differences in comparison to reference radiosondes. The data availability of the full-height water vapour lidar profiles of 17 % during the 2-month campaign is significantly enhanced to 60 % by applying the retrieval. The bias with respect to radiosonde and the retrieved a posteriori uncertainty of the retrieved profiles clearly show that the application of the Kalman filter considerably improves the accuracy and quality of the retrieved mixing ratio profiles.

  19. Quantification of uncertainties of water vapour column retrievals using future instruments

    NASA Astrophysics Data System (ADS)

    Diedrich, H.; Preusker, R.; Lindstrot, R.; Fischer, J.

    2013-02-01

    This study presents a quantification of uncertainties of total column water vapour retrievals based on simulated near-infrared measurements of upcoming instruments. The concepts of three scheduled spectrometers were taken into account: OLCI (Ocean and Land Color Instrument) on Sentinel-3, METimage on an EPS-SG (EUMETSAT Polar System - Second Generation) satellite and FCI (Flexible Combined Imager) on MTG (Meteosat Third Generation). Optimal estimation theory was used to estimate the error of a hypothetical total water vapour column retrieval for 27 different atmospheric cases. The errors range from 100% in very dry cases to 2% in humid cases with a very high surface albedo. Generally, the absolute uncertainties increase with higher water vapour column content due to H2O-saturation and decrease with a brighter surface albedo. Uncertainties increase with higher aerosol optical thickness, apart from very dark cases. Overall, the METimage channel setting enables the most accurate retrievals. The retrieval using the MTG-FCI build-up has the highest uncertainties apart from very bright cases. On the one hand, a retrieval using two absorption channels increases the accuracy, in some cases by one order of magnitude, in comparison to a retrieval using just one absorption channel. On the other hand, a retrieval using three absorption channels has no significant advantage over a two-absorption channel retrieval. Furthermore, the optimal position of the absorption channels was determined using the concept of the "information content". For a single channel retrieval, a channel at 900 or 915 nm has the highest mean information content over all cases. The second absorption channel is ideally weakly correlated with the first one, and therefore positioned at 935 nm, in a region with stronger water vapour absorption.

  20. Water Vapour Bias in Measuring Interseismic Strain Accumulation With InSAR for the Altyn Tagh Fault, N. Tibet

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Biggs, J.; Li, Z.; Parsons, B.; Wright, T.

    2007-12-01

    The slip rate of the left-lateral Altyn Tagh Fault (ATF) of Northern Tibet is poorly known and controversial. Geologic rates from Holocene and long-term offsets range from 10 to 30 mm/yr. Geodetic rates from GPS are towards the low end of this range (around 10 mm/yr). SAR data have been acquired over this region by the ERS satellites through the nineties and continue today with the ENVISAT platform. These datasets provide an opportunity to measure interseismic strain accumulation on faults. However, InSAR measurements vary from 5 mm/yr for the western ATF (Wright et al., 2004) to 17 mm/yr for the central ATF (Peltzer et al., AGU Fall Meeting 2006). An ongoing challenge for the accuracy of this geodetic technique is the variability of tropospheric water vapour, which induces unwanted phase delays. This is particularly pronounced in the case of the Altyn Tagh Fault system, which exhibits a 2-4 km step in relief between the Tarim Basin and Tibetan Plateau. We investigate the effects of water vapour on the inferred slip rate. An analysis of ERS data has highlighted a bias from the non-uniform distribution of SAR acquisitions through the year. Due to the lack of contemporaneous independent measurements of water vapour for ERS data, we attempt to mitigate tropospheric water vapour errors by solving for a linear fit with topography. A network of 59 interferograms is used to correct for orbital errors and water vapour, before inverting for a slip rate. We invert for a buried fault using a simple elastic dislocation model and assume pure strike-slip motion with no component of uplift. To determine the error in the calculated slip rate, 100 synthetic datasets are created and perturbed with characteristic orbital and atmospheric noise. Using ERS data at 85°E we find a slip rate of 10 ±1σ 5 mm/yr with the water vapour correction, and 35 ±1σ 9 mm/yr without. Because of the large impact of the water vapour on the result, we tested for the effect of the temporal distribution

  1. Infra-red measurements of stratospheric composition. I - The balloon instrument and water vapour measurements

    NASA Technical Reports Server (NTRS)

    Chaloner, C. P.; Drummond, J. R.; Houghton, J. T.; Roscoe, H. K.; Jarnot, R. F.

    1978-01-01

    The design and construction of a balloon-borne instrument for remote-sensing of stratospheric composition is described. Thermal emission from the constituents is detected and the spectral selectivity of the instrument is tailored to a specific gas by the use of a cell of the same gas in the optical path of the radiometer. The pressure of the gas in the cell is cycled and the resultant transmission function is shown to be highly selective to radiation from the same gas in the atmosphere. The first flight of the instrument and the retrieval of a water vapour profile in the range 15-40 km is described.

  2. The role of methane in projections of 21st century stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Revell, Laura E.; Stenke, Andrea; Rozanov, Eugene; Ball, William; Lossow, Stefan; Peter, Thomas

    2016-10-01

    Stratospheric water vapour (SWV) is an important component of the Earth's atmosphere as it affects both radiative balance and the chemistry of the atmosphere. Key processes driving changes in SWV include dehydration of air masses transiting the cold-point tropopause (CPT) and methane oxidation. We use a chemistry-climate model to simulate changes in SWV through the 21st century following the four canonical representative concentration pathways (RCPs). Furthermore, we quantify the contribution that methane oxidation makes to SWV following each of the RCPs. Although the methane contribution to SWV maximizes in the upper stratosphere, modelled SWV trends are found to be driven predominantly by warming of the CPT rather than by increasing methane oxidation. SWV changes by -5 to 60 % (depending on the location in the atmosphere and emissions scenario) and increases in the lower stratosphere in all RCPs through the 21st century. Because the lower stratosphere is where water vapour radiative forcing maximizes, SWV's influence on surface climate is also expected to increase through the 21st century.

  3. Direct evidence for a substantive reaction between the Criegee intermediate, CH2OO, and the water vapour dimer.

    PubMed

    Lewis, Tom R; Blitz, Mark A; Heard, Dwayne E; Seakins, Paul W

    2015-02-21

    The C1 Criegee intermediate, CH2OO, reaction with water vapour has been studied. The removal rate constant shows a quadratic dependence on [H2O], implying reaction with the water dimer, (H2O)2. The rate constant, kCH2OO+(H2O)2 = (4.0 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1), is such that this is the major atmospheric sink for CH2OO.

  4. Generation of High Resolution Water Vapour Fields from GPS Observations and Integration With ECMWF and MODIS

    NASA Astrophysics Data System (ADS)

    Yu, C.; Li, Z.; Penna, N. T.

    2016-12-01

    Precipitable water vapour (PWV) can be routinely retrieved from ground-based GPS arrays in all-weather conditions and also in real-time. But to provide dense spatial coverage maps, for example for calibrating SAR images, for correcting atmospheric effects in Network RTK GPS positioning and which may be used for numerical weather prediction, the pointwise GPS PWV measurements must be interpolated. Several previous interpolation studies have addressed the importance of the elevation dependency of water vapour, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. We present a tropospheric turbulence iterative decomposition model that decouples the total PWV into (i) a stratified component highly correlated with topography which therefore delineates the vertical troposphere profile, and (ii) a turbulent component resulting from disturbance processes (e.g., severe weather) in the troposphere which trigger uncertain patterns in space and time. We will demonstrate that the iterative decoupled interpolation model generates improved dense tropospheric water vapour fields compared with elevation dependent models, with similar accuracies obtained over both flat and mountainous terrain, as well as for both inland and coastal areas. We will also show that our GPS-based model may be enhanced with ECMWF zenith tropospheric delay and MODIS PWV, producing multi-data sources high temporal-spatial resolution PWV fields. These fields were applied to Sentinel-1 SAR interferograms over the Los Angeles region, for which a maximum noise reduction due to atmosphere artifacts reached 85%. The results reveal that the turbulent troposphere noise, especially those in a SAR image, often occupy more than 50% of the total zenith tropospheric delay and exert systematic, rather than random patterns.

  5. The millennium water vapour drop in the stratosphere in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Joeckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2015-04-01

    This study investigates the millennium water vapour drop, the abrupt and severe water vapour decline in the stratosphere beginning in year 2000, by means of various simulations using the Chemistry-Climate Model (CCM) EMAC. Since the beginning 1980s, balloon borne stratospheric water vapour measurements and corresponding satellite measurements starting in the early 1990s indicated a long-term steady increase of water vapour concentrations. However, the multi-year data sets also show significant fluctuations on different time scales. In the year 2000, an extraordinary sudden drop of stratospheric water vapour concentration has been observed followed by persistent low values for several years. Solomon et al. (2010) showed that this drop slowed down the rate of increase in global surface temperature over the following decade by about 25%. So far, the stratospheric water vapour variations observed by satellite from 1992 to 2012 are not reproduced by CCM simulations forced by observed changes in sea surface temperatures, greenhouse gases and ozone-depleting substances (Gettelman et al., 2010, Randel and Jensen, 2013). However, the CCM EMAC is able to reproduce the signature and pattern of the water vapour disturbances in agreement with those derived from observations. In this paper we present results of a hierarchy of simulations with the CCM EMAC, demonstrating that it is possible to retrace the observed water vapour fluctuations in the stratosphere (incl. the millennium drop), if suitable inner and outer boundary conditions are applied.

  6. Troposphere-stratosphere exchange - constraints from water vapour

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Du, J.; Fueglistaler, S.; Haynes, P. H.

    2008-12-01

    Transport into the stratospheric 'overworld' is thought to occur predominantly across the tropical tropopause, whereas transport into the lowermost stratosphere may also occur through quasi-horizontal transport on isentropic levels between 300 and 380K potential temperature. The distribution of stratospheric water vapour is sensitively dependent upon the detailed temperature history of air parcel trajectories, and combined with a Lagrangian study can be used as a tracer for quantifying the relative importance of cross-isentropic mass flux and quasi-isentropic mass flux into the stratosphere. Here we combine measurements from the Microwave Limb Sounder on board of AURA satellite, with trajectory calculations to diagnose the pathways of troposphere-stratosphere exchange. Trajectories are calculated using winds and diabatic heating rates from the new interim reanalysis currently carried out at the European Centre for Medium-range Weather Forecast.

  7. Condensation of water vapour on moss-dominated biological soil crust, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Ya-Feng; Zhang, Hao

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3◦C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4◦C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  8. Atmospheric pressure chemical vapour deposition of vanadium oxides

    NASA Astrophysics Data System (ADS)

    Manning, Troy Darrell

    The APCVD of vanadium(IV) oxide thin films from halide precursors was investigated. It was found that the phase of vanadium oxide obtained could be controlled by the reactor temperature and precursor ratio. For vanadium(IV) chloride and water, reactor temperatures > 550 °C and an excess of water over VCI4 was required to produce VO2 thin films. For vanadium(V) oxytrichloride and water, reactor temperatures > 550 °C and an excess of water over VOCI3 also produced VO2 but required low total gas flow rates (< 1 L min 1) for complete coverage of the substrate. Vanadium(IV) oxide thin films doped with metal ions (W, Cr, Nb, Ti, Mo or Sn) were also prepared by the APCVD process in order to reduce the thermochromic transition temperature (TC) from 68 °C for the undoped material to < 30 °C. The most successful dopant was tungsten, introduced into the VOCl3, and water system as WCI6, which lowered T to 5 °C for a 3 atom% tungsten doped thin film. Tungsten (VI) ethoxide was introduced into the VCI4 and water system and reduced TC, of VO2, to 42 °C for a 1 atom% tungsten doped thin film. Chromium, introduced as CrCO2Cl2, formed a chromium vanadium oxide that did not display any thermochromic properties. Niobium, introduced as NbCl5 into the VOCl3 system, reduced TC of VO2, but the amount of niobium introduced could not be easily controlled. Molybdenum, introduced as MoCI5, also reduced TC of VO2, but the form of the molybdenum appeared to be different from that required for complete control of TC, Titanium, introduced as TiCl4, produced phase segregated films of VO2 and TiO2, with interesting multifunctional properties and a reduced TC. Tin, introduced as SnCl4, also formed a phase segregated material of VO2, and SnO2, with a slightly reduced TC.

  9. Water Vapour, Ozone and Cirrus In The Tropical Lower Stratosphere Observed By Uars

    NASA Astrophysics Data System (ADS)

    Clark, H. L.; Harwood, R. S.; Pumphrey, H. C.

    The Upper Atmosphere Research Satellite (UARS) was launched on 19th September 1991 to make measurements of a variety of atmospheric constituents. The Microwave Limb Sounder (MLS), an instrument on UARS, is sensitive to water vapour and ozone in the lower stratosphere and made coincident, daily measurements of the two species in the tropical region until April 1993. The Cryogenic Limb Array Etalon Spectrom- eter (CLAES), another of the instruments on UARS has a similar spatial and tempo- ral coverage to that of MLS and can be used to indicate the presence of cirrus. We use measurements of water vapour and ozone and data from the European Centre for Medium Range Weather Forecasts to investigate the transport of air in the regions of cirrus formation and describe the chemical and physical environment in which they are found. Ozone mixing ratios have a tendency to be lower in such regions suggesting that the air has entered the stratosphere relatively recently. The importance of cirrus in dehydrating the lower stratosphere and the consequences of cirrus formation within the context of stratosphere-troposphere exchange are discussed.

  10. Estimation of upper tropospheric humidity from water vapour channel of very high-resolution radiometer onboard INSAT-3A and Kalpana satellites

    NASA Astrophysics Data System (ADS)

    Thapliyal, P. K.; Vinayak, M.; Ajil, K. S.; Shah, S.; Pal, P. K.; Joshi, P. C.

    2006-12-01

    Present study describes a methodology to establish an empirical expression to estimate the upper tropospheric humidity (UTH) from brightness temperature observations in water vapour channel of Very High Resolution Radiometer (VHRR) onboard Indian geostationary satellites INSAT-3A and Kalpana. Radiative transfer simulations for VHRR water vapour channel were made using SBDART model for tropical atmosphere with different upper tropospheric relative humidity values and varying zenith angles. INSAT-3A and Kalpana VHRR sensor response functions (SRF) for water vapour channel were used to simulate the convolved radiances. Estimated UTH values have been compared with corresponding Meteosat-5 observations. Comparison of retrieved UTH is also made with radiosonde observations of relative humidity weighted by water vapour channel weighting function.

  11. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    NASA Astrophysics Data System (ADS)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard

  12. Influence of atmospheric vapour pressure deficit on ozone responses of snap bean (Phaseolus vulgaris L.) genotypes

    PubMed Central

    Fiscus, Edwin L.; Booker, Fitzgerald L.; Sadok, Walid; Burkey, Kent O.

    2012-01-01

    Environmental conditions influence plant responses to ozone (O3), but few studies have evaluated individual factors directly. In this study, the effect of O3 at high and low atmospheric vapour pressure deficit (VPD) was evaluated in two genotypes of snap bean (Phaseolus vulgaris L.) (R123 and S156) used as O3 bioindicator plants. Plants were grown in outdoor controlled-environment chambers in charcoal-filtered air containing 0 or 60 nl l−1 O3 (12 h average) at two VPDs (1.26 and 1.96 kPa) and sampled for biomass, leaf area, daily water loss, and seed yield. VPD clearly influenced O3 effects. At low VPD, O3 reduced biomass, leaf area, and seed yield substantially in both genotypes, while at high VPD, O3 had no significant effect on these components. In clean air, high VPD reduced biomass and yield by similar fractions in both genotypes compared with low VPD. Data suggest that a stomatal response to VPD per se may be lacking in both genotypes and it is hypothesized that the high VPD resulted in unsustainable transpiration and water deficits that resulted in reduced growth and yield. High VPD- and water-stress-induced stomatal responses may have reduced the O3 flux into the leaves, which contributed to a higher yield compared to the low VPD treatment in both genotypes. At low VPD, transpiration increased in the O3 treatment relative to the clean air treatment, suggesting that whole-plant conductance was increased by O3 exposure. Ozone-related biomass reductions at low VPD were proportionally higher in S156 than in R123, indicating that differential O3 sensitivity of these bioindicator plants remained evident when environmental conditions were conducive for O3 effects. Assessments of potential O3 impacts on vegetation should incorporate interacting factors such as VPD. PMID:22268148

  13. Stable isotope ratios in rainfall and water vapour at Bangalore, Southern India during the monsoon period of 2013

    NASA Astrophysics Data System (ADS)

    Peethambaran, Rahul; Ghosh, Prosenjit

    2015-04-01

    Rainwater and water vapour were collected during monsoon rainfall from Bangalore station to identifying the signature of moisture sources. Moisture responsible for the rainfall originates from Arabian Sea and Bay of Bengal and advected to the station together with vapour generated from the local . Total no of samples includes 72 for water vapour and 81 for rainwater respectively. The mean difference between water vapour and rainwater was found to be -13.27±2.5 ‰ for δ18O, -100±9 ‰ for δD, which was calculated from monthly mean values of water vapour and rainwater. The most enriched samples of rainwater and water vapour were found during the pre monsoon months which correspond to temperature maximum at the study location. Lighter isotopic ratios were recorded in samples collected during the starting of monsoon showers which goes to further depletion in δ18O during the period of post monsoon. This was mainly due to the change in the prevailing wind direction from southwest to northeast. Local Meteoric Water Line (LMWL) generated for rainwater (d = 7.49 δ 18O + 5.2555, R² = 0.93) equation suggesting enrichment due to evaporation. Local Vapour Line (LVL) (d = 7.5248 δ 18O + 6.6534,R² = 0.8957) indicates the dominance of vapor from local source. The time series of d-xcess of rainwater and water vapor reveals large variability, coinciding with the presence of transported and local sources. It was observed that rainwater and water vapor exhibits higher values indicating re-evaporation from the region. Repetition of this feature demonstrated pattern of moisture recycling in the atmosphere and the contribution of continental evaporation and transpiration. The sensitivity of isotopes to the sudden change in wind direction was documented by an abrupt variations in the isotope values. Such changes in wind patterns were mostly associated with the prevalence of low pressure depression systems during the monsoon periods. Detailed analysis on role of wind patterns and

  14. Influence of collisional rate coefficients on water vapour excitation

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Goicoechea, J. R.; Cernicharo, J.; Dubernet, M.-L.; Faure, A.

    2012-11-01

    Context. Water is a key molecule in many astrophysical studies that deal with star or planet forming regions, evolved stars, and galaxies. Its high dipole moment makes this molecule subthermally populated under the typical conditions of most astrophysical objects. This motivated calculation of various sets of collisional rate coefficients (CRC) for H2O (with He or H2), which are needed to model its rotational excitation and line emission. Aims: The most accurate set of CRC are the quantum rates that involve H2. However, they have been published only recently, and less accurate CRC (quantum with He or quantum classical trajectory (QCT) with H2) were used in many studies before that. This work aims to underline the impact that the new available set of CRC have on interpretations of water vapour observations. Methods: We performed accurate non-local, non-LTE radiative transfer calculations using different sets of CRC to predict the line intensities from transitions that involve the lowest energy levels of H2O (E < 900 K). The results obtained from the different CRC sets were then compared using line intensity ratio statistics. Results: For the whole range of physical conditions considered in this work, we find that the intensities based on the quantum and QCT CRC are in good agreement. However, at relatively low H2 volume density (n(H2) < 107 cm-3) and low water abundance (χ(H2O) < 10-6), which corresponds to physical conditions relevant when describing most molecular clouds, we find differences in the predicted line intensities of up to a factor of ~3 for the bulk of the lines. Most of the recent studies interpreting early Herschel Space Observatory spectra have used the QCT CRC. Our results show that, although the global conclusions from those studies will not be drastically changed, each case has to be considered individually, since depending on the physical conditions, the use of the QCT CRC may lead to a mis-estimate of the water vapour abundance of up to a

  15. [CO2-exchange of some lichens after absorption of water vapour].

    PubMed

    Bertsch, A

    1966-06-01

    The relation between CO2-exchange and water content of the lichens Evernia divaricata, E. prunastri, Ramalina thrausta and R. farinacea was investigated. The dry thalli absorb water vapour up to 70% of their dry weight. This uptake of water vapour is sufficient to reactivate the CO2-exchange. In equilibrium with the vapour pressure of the nearly saturated air the apparent CO2-uptake amounts to 90% of the value obtained after imbibition with liquid water. Even in unsaturated air the CO2-exchange is reactivated and the compensation point is reached between 80 and 85% relative humidity (saturation deficit at 10°C: 1,85-1,38 mm Hg).

  16. GPS-derived Precipitable Water Vapour in Antarctica and validation with radiosoundings

    NASA Astrophysics Data System (ADS)

    Negusini, M.; Sarti, P.; Tomasi, C.; Petkov, B.

    2012-12-01

    The capability of the GPS in retrieving the precipitable water vapour (PWV) content at low- and mid-latitudes has been amply investigated by several studies. In Polar Regions, beyond the classical positioning application, the use of GPS observations for sensing the atmosphere is of particular interest due to its easy and unmanned operability. It is well known that, in those areas, the atmospheric water vapour content is approximately one third or less than that present at mid latitudes and that on the Antarctic Plateau the PWV drops down to less than a few mm. As a consequence, the use of GPS data in sensing the atmosphere can be reliably applied only on coastal areas, were the PWV is large enough to exceed the sensitivity of the method. Radio-soundings are periodically performed at several coastal Antarctic stations, where permanent GPS equipments are also installed. The co-location of GPS and radio-soundings allows a validation of the PWV derived from the geodetic data. In this investigation we present the results of the analysis of continuous long time series of GPS data acquired at Mawson (MAW1), Casey (CAS1), Davis (DAV1), McMurdo (MCM4) and Mario Zucchelli (TNB1) stations during twelve years spanning 1999-2010. Particularly, at each site, the PWV is determined with GPS data and the same parameter derived from the analysis of the radio-sounding is used for validation. The GPS analysis is optimized for Antarctic data, using specific atmospheric models (e.g. the Vienna Mapping Function) and particular care in the data screening and elimination. The sites to be analyzed were selected according to the radiosonde equipment: the Vaisala sensors' readings were corrected specifically with ad hoc models.

  17. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.

  18. Retrieval of Temperature and Water Vapour from Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2016-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  19. Retrieval of Temperature and Water Vapour From Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2015-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  20. The effect of coherent stirring on the advection–condensation of water vapour

    PubMed Central

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  1. The effect of coherent stirring on the advection-condensation of water vapour

    NASA Astrophysics Data System (ADS)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  2. WAVE-E: The WAter Vapour European-Explorer Mission

    NASA Astrophysics Data System (ADS)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  3. Pressure effects on water vapour lines: beyond the Voigt profile.

    PubMed

    Ngo, N H; Tran, H; Gamache, R R; Hartmann, J M

    2012-06-13

    A short overview of recent results on the effects of pressure (collisions) regarding the shape of isolated infrared lines of water vapour is presented. The first part of this study considers the basic collisional quantities, which are the pressure-broadening and -shifting coefficients, central parameters of the Lorentzian (and Voigt) profile and thus of any sophisticated line-shape model. Through comparisons of measured values with semi-classical calculations, the influences of the molecular states (both rotational and vibrational) involved and of the temperature are analysed. This shows the relatively unusual behaviour of H(2)O broadening, with evidence of a significant vibrational dependence and the fact that the broadening coefficient (in cm(-1) atm(-1)) of some lines increases with temperature. In the second part of this study, line shapes beyond the Voigt model are considered, thus now taking 'velocity effects' into account. These include both the influence of collisionally induced velocity changes that lead to the so-called Dicke narrowing and the influence of the dependence of collisional parameters on the speed of the radiating molecule. Experimental evidence of deviations from the Voigt shape is presented and analysed. The interest of classical molecular dynamics simulations, to model velocity changes, together with semi-classical calculations of the speed-dependent collisional parameters for line-shape predictions from 'first principles', are discussed.

  4. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    NASA Astrophysics Data System (ADS)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  5. Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Marécal, V.; Durry, G.; Longo, K.; Freitas, S.; Rivière, E. D.; Pirre, M.

    2006-08-01

    In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis. The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles. In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale

  6. A decrease in mesospheric water vapour detected in South-Korea in February 2008; from observation to interpretation.

    NASA Astrophysics Data System (ADS)

    de Wachter, Evelyn; Kaempfer, Niklaus; Flury, Thomas; Ka, Soohyun; Oh, Jung Jin

    Since November 2006, the University of Bern in Switzerland has been operating a ground-based microwave [GBMW] radiometer in Seoul, S-Korea [37.32N, 126.57E]. At the end of February 2008 we observed a significant decrease in mesospheric water vapour of more than 2 ppmv [around 40Trajectories were calculated and the temperature and wind field distribution in the northern hemisphere was analyzed. We validated the trajectory model results by a match tech-nique with other GBMW radiometer data from stations of the Network for the Detection of Atmospheric Composition Change [NDACC]. In addition, we investigated the possible impact of the major sudden stratospheric warming [SSW], which occured in February 2008 at midlat-itudes, to the mesospheric region, leaving signatures in the water vapour distribution at the observation site in Seoul.

  7. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    PubMed Central

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  8. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer.

    PubMed

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-03-07

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system.

  9. Thermal consolidation process of multiphase medium consisting of elastic skeleton, water, and water vapour

    NASA Astrophysics Data System (ADS)

    Strzelecki, Tomasz; Uciechowska, Anna

    2014-10-01

    In the process of coal gasification, the phase transition from water to water vapour takes place as a result of high temperature. Thus, the parameters of the fluid flowing through the pores of the elastic skeleton change in a significant way. The goal of this work is to calculate the fluid flow process at a variable temperature using Finite Element Method and to determine the soil consolidation process taking place under its own weight and temperature changes. The mathematical model of thermal consolidation for a Biot body accounts for the phase transition of a liquid. Numerical calculations for a homogeneous and isotropic porous medium, consisting of two conventionally accepted layers, were carried out using the FlexPDE v. 6 software. The obtained results are a first approximation of the actual processes taking place under complex geological conditions. They make it possible to determine, in approximation, the range of the phase transition and the influence of water vapour filtration on soil consolidation.

  10. GNSS-Derived Water Vapour for Riyadh from SOLA IGS Station

    NASA Astrophysics Data System (ADS)

    Maghrabi, Abdullrahman; Alothman, Abdulaziz; Fernandes, Rui; Aodah, Souad

    2017-04-01

    Water vapor is the most abundant and highly variable component of the important gases in the atmosphere. It influences many physical and thermodynamical processes in the atmosphere and plays an important role in the hydrological cycle and has effects on our climate and weather systems. Water vapour affects the electromagnetic radiation through the atmosphere, which is of significance in fields of astronomy, radar, communications and remote sensing. Precipitable water vapor (PWV) is the amount of water obtained if all the water vapor in the atmosphere were to be compressed to the point at which it condenses into liquid. PWV is difficult to measure adequately due to its variable distribution both spatially and temporally. Most of the current techniques (e.g., radiosondes or satellites) are only available at few locations and not continuously (few observations per day at most). However, in the last decades, GPS observations have been proven to accurately measure the ZTD (Zenith Tropospheric Delay) at high frequencies (normally every 5 minutes) above the station. This quantity can be converted to PWV if temperature and pressure is know at the station location. In early 2004, King Abdulaziz City for Science and Technology (KACST) established a GPS network for geodetic and geophysical applications to contribute to the International GNSS Service IGS. In this study, we will present the first PWV measurements obtained from Global Navigation Satellite System GNSS receiver at the Solar Village (SOLA), 60 km from Riyadh. GNSS observations for the period between 2004-2006 are used to study the daily and seasonal variations of ZTD, and consequently of PWV in SOLA. In addition, we also compare the GNSS-derived PWV with sunphotometer and radiosonde estimates at SOLA in order to evaluate the compatibility of these techniques in a dry climate as the one in Riyadh.

  11. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  12. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  13. Regolith-atmosphere exchange of water in Mars' recent past

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.

    2017-03-01

    We investigate the exchange of water vapour between the regolith and atmosphere of Mars, and how it varies with different orbital parameters, atmospheric dust contents and surface water ice reservoirs. This is achieved through the coupling of a global circulation model (GCM) and a regolith diffusion model. GCM simulations are performed for hundreds of Mars years, with additional one-dimensional simulations performed for 50 kyr. At obliquities ɛ =15∘ and 30°, the thermal inertia and albedo of the regolith have more control on the subsurface water distribution than changes to the eccentricity or solar longitude of perihelion. At ɛ =45∘ , atmospheric water vapour abundances become much larger, allowing stable subsurface ice to form in the tropics and mid-latitudes. The circulation of the atmosphere is important in producing the subsurface water distribution, with increased water content in various locations due to vapour transport by topographically-steered flows and stationary waves. As these circulation patterns are due to topographic features, it is likely the same regions will also experience locally large amounts of subsurface water at different epochs. The dustiness of the atmosphere plays an important role in the distribution of subsurface water, with a dusty atmosphere resulting in a wetter water cycle and increased stability of subsurface ice deposits.

  14. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    NASA Astrophysics Data System (ADS)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  15. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  16. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Joshi, M. M.; Jones, G. S.

    2009-08-01

    We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions and examine its impact with a coupled ocean-atmosphere climate model. If sufficiently large amounts of water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the tropospheric climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer than the residence time of aerosol in the stratosphere. In particular, northern hemisphere high latitude cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883. We hypothesize that moist coignimbrite plumes caused by pyroclastic flows travelling over ocean rather than land, resulting from an eruption close enough to the ocean, might provide the additional source of stratospheric water vapour.

  17. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in

  18. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  19. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  20. Isothermal vapour flow in extremely dry soils

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapour flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapour pressure of the surrounding air, thus temperature or solute gradients can drive vapour flows. However, in extremely dry soils where water is retained by adsorptive forces rather than capillarity, vapour flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapour pressure in the soil, and hence small differences in water content can initiate vapour pressure gradients. In many field conditions this effect may be negligible compared to vapour flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapour phase. Experiments were performed in laboratory conditions using marine sand that had previously been oven dried and cooled. This dry sand was used to represent the desert conditions in which this irrigation system is intended for use. Experimental results show that isothermal vapour flows can significantly affect the performance of such irrigation systems due to the rapid transport of water through the soil via the vapour phase. When the irrigation pipe was buried at a depth of 10cm a vapour flow from the soil surface was observed in less than 2 hours. These flows therefore affect the loss of mass into the atmosphere and thus must be considered when evaluating the availability of water for the irrigated crop. The experiments also provide a rare opportunity to observe isothermal vapour flows initiating from a subsurface source. Such experiments allow the significance of these flows to be quantified and potentially applied to other areas of arid zone hydrology.

  1. Water vapour-treated hydroxyapatite coatings after plasma spraying and their characteristics.

    PubMed

    Cao, Y; Weng, J; Chen, J; Feng, J; Yang, Z; Zhang, X

    1996-02-01

    A novel way to enhance the ability of hydroxyapatite (HA) coatings in resisting degradation was revealed. The as-received plasma sprayed HA coatings were kept in water vapour at 125 degrees C, with a pressure of 0.15 MPa for 6 h; most of the amorphous phase in the coating was converted into crystalline HA and enhanced the crystallinity significantly. Meanwhile, the alpha-tricalcium phosphate, tetracalcium phosphate and CaO which decomposed from HA during plasma spraying were also transformed into crystalline HA. The dissolution experiment in distilled water at room temperature showed that the post-water vapour-treated coatings were more stable than post-heat-treated ones. The average interfacial tensile bond strength between HA and substrate before and after water vapour treatment was 45.0 and 39.1 MPa, respectively.

  2. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  3. Plasma formation in water vapour layers in high conductivity liquids

    NASA Astrophysics Data System (ADS)

    Kelsey, C. P.; Schaper, L.; Stalder, K. R.; Graham, W. G.

    2011-10-01

    The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current

  4. Influence of sea ice cover on evaporation and water vapour isotopic composition in the Arctic

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen-Larsen, Hans Christian

    2017-04-01

    Since July 2015, water stable isotopes (HDO and H218O) have been measured at two Arctic facilities: during the summer on board of the research vessel Polarstern, and year-round at the Siberian coastal site of Samoylov, situated in the Lena delta (N 72°22', E 126°29'), close to the Laptev Sea. In both places, the isotopic composition of water vapour is analysed continuously in surface air. Additional isotopic measurements are performed on a daily basis in ocean surface water samples taken on Polarstern and on an event basis from precipitation sampled in Samoylov. The two Polarstern summer campaigns cover a large region of the western Artic Ocean, including a one-month campaign in the central and eastern Arctic crossing the North Pole in September 2015, with very cold conditions (up to -20°C). Combining ocean and atmospheric observations from Polarstern allows an evaluation of local surface water evaporation and its isotopic fingerprint relative to the oceanic and meteorological conditions as well as the partial sea ice cover. In the central and eastern Arctic, a large area of complete sea ice cover also revealed a strong impact on the advected moisture above the ice cap under very cold conditions. A first year of Siberian observations at Samoylov depicted a large seasonal variability, with extremely dry and isotopically depleted winter values. Contrasted seasonal isotopic regimes might be utilized for identifying moisture sources changes in the region, such as ocean surface closure by sea ice, or freezing of the Lena River. Besides documenting the present meteorology and changes in the Arctic, our measurements will contribute to a better interpretation of regional paleoclimate records based on water isotopes and to the evaluation of climate models in the Arctic. A first model-data comparison of our measurements with simulation results by the isotope-enabled atmospheric general circulation model ECHAM5-wiso have revealed relevant model biases in the Arctic realm.

  5. The measurement of water vapour transfer rate through clothing system with air gap between layers

    NASA Astrophysics Data System (ADS)

    Oh, Ae-Gyeong

    2008-02-01

    The experiments described in this paper are designed to test the water vapour transfer rates through outdoor clothing system with air gap between layers under conditions more closely actual wear. It was adopted distance of 5 mm to ensure no disturbance of the air gap thickness between layers throughout the measurement period with all fabrics. The results have indicated that the water vapour transfer rates of clothing system decrease very slightly with time, it is shown that they approached nearly equilibrium state throughout the experiment. It is revealed that the water vapour transfer rates of the clothing system were ordered into groups determined by the type of waterproof breathable fabric as a shell layer being ordered.

  6. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    NASA Astrophysics Data System (ADS)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  7. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra

    NASA Astrophysics Data System (ADS)

    Barthlott, Sabine; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas; Kiel, Matthäus; Dubravica, Darko; García, Omaira E.; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Grutter, Michel; Plaza-Medina, Eddy F.; Stremme, Wolfgang; Strong, Kim; Weaver, Dan; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Mahieu, Emmanuel; Servais, Christian; Jones, Nicholas; Griffith, David W. T.; Smale, Dan; Robinson, John

    2017-01-01

    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, δD-pair distributions.

  8. Simulation of Discharge Production in a Water Vapour Layer on an Electrode

    NASA Astrophysics Data System (ADS)

    Karim, Mohammad; Evans, Benjamin; Asimakoulas, Leonidas; Stalder, Kenneth; Field, Thomas; Graham, Bill; Murakami, Tomoyuki

    2016-09-01

    Electrical discharges in water are receiving increasing attention because of chemical, environmental and biomedical applications.The work to be presented focuses on plasmas created directly in high conductivity water, saline solution. Here the plasma is produced at low voltage ( 200V) and is clearly associated with an initial vapour layer on the electrode surface that isolates the electrode from the liquid. In a previous paper a finite element multi-physics program, incorporating all relevant electrical and thermal properties of the solution was shown to reproduce the experimentally observed pre-plasma vapour layer behaviour. The results of a simulation of the plasma production in vapour layers of the same size and shape as predicted in will be presented, At present inert gas fills the ``vapour layer''. However this produces spatial distributions of the electron parameters that are consistent with the electric fields predicted in the original simulations. The water plasma simulation recently developed by Murakami is currently being included. It is anticipated that results of the coupled codes, showing the temporal and 2-D spatial development of the vapour and plasma, will be presented.

  9. Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study

    NASA Astrophysics Data System (ADS)

    Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera

    2016-04-01

    A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http

  10. The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Deng, San-Xi; Cheng, Cheng; Ni, Guo-Hua; Meng, Yue-Dong; Chen, Hua

    2010-10-01

    This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.

  11. On the representativity of water vapour measurements at Boulder for global stratospheric trends

    NASA Astrophysics Data System (ADS)

    Lossow, S.

    2016-12-01

    Long-term changes of water vapour in the lower stratosphere inevitably affect the surface climate. Thus understanding such changes is of primary importance. The longest continuous data set is based on balloon-borne frost point hygrometer observations at Boulder. Overall this data set shows an increase in water vapour since the 1980s accompanied by large variability on short time scales (Hurst et al., 2011). Recently a merged satellite data set, covering the time period between 1988 and 2010, has been analysed showing a decrease of water vapour in the lower stratosphere (Hegglin et al., 2014). This discrepancy is difficult to reconcile. There might be problems with one data set or even with both. Also the local behaviour at Boulder might not be representative for the zonal mean behaviour, which is represented by the satellite observations. So far this has been assumed and the Boulder changes have even been considered to be globally representative. Here I present investigations of this aspect using both model simulations and observations. References: Hegglin et al. (2014), "Vertical structure of stratospheric water vapour trends derived from merged satellite data", Nature Geoscience, 7, 768 - 776, doi:10.1038/ngeo2236. Hurst et al. (2011), "Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record", Journal of Geophysical Research, 116, D02,306, doi:10.1029/2010JD015065.

  12. Water vapour fluxes trends on different time scales and their relationship with weather and soil drivers: a case study from a dehesa site in South Spain

    NASA Astrophysics Data System (ADS)

    Polo, María José; Egüen, Marta; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; Patrocinio González-Dugo, María

    2017-04-01

    Water vapour fluxes between the soil surface and the atmosphere constitute one of the most important components of the water cycle in the continental areas. Their regime directly affect the availability of water to plants, water storage in surface bodies, air humidity in the boundary layer, snow persistence… among others, and the list of indirectly affected processes comprises a large number of components. Water potential or wetness gradients are some of the main drivers of water vapour fluxes to the atmosphere; soil humidity is usually monitored as key variable in many hydrological and environmental studies, and its estimated series are used to calibrate and validate the modelling of certain hydrological processes. However, such results may differ when water fluxes are used instead of water state variables, such as humidity. This work shows the analysis of high resolution water vapour fluxes series from a dehesa area in South Spain where a complete energy and water fluxes/variables monitoring site has been operating for the last four years. The results include pasture and tree vegetated control points. The daily water budget calculation on both types of sites has been performed from weather and energy fluxes measurements, and soil moisture measurements, and the results have been aggregated on a weekly, monthly and seasonal basis. Comparison between observed trends of soil moisture and calculated trends of water vapour fluxes is included to show the differences arising in terms of the regime of the dominant weather variables in this type of ecosystems. The results identify significant thresholds for each weather variable driver and highlight the importance of the wind regime, which is the somehow forgotten variable in future climate impacts on hydrology. Further work is being carried out to assess water cycle potential trends under future climate conditions and their impacts on the vegetation in dehesa ecosystems.

  13. Temperature-dependent transport mechanisms through PE-CVD coatings: comparison of oxygen and water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, D.; Wilski, S.; Jaritz, M.; Mitschker, F.; Gebhard, M.; Brochhagen, M.; Böke, M.; Benedikt, Jan; Awakowicz, P.; Devi, A.; Hopmann, Ch; Dahlmann, R.

    2017-10-01

    When it comes to thin coatings such as plasma-enhanced chemical vapour deposition or plasma-enhanced atomic layer deposition coatings on substrates of polymeric material, existing models often describe transport through these thin coatings as mainly driven by transport through defects of different sizes. However, temperature-dependent measurements of permeation could not confirm this hypothesis and instead gaseous transport through these thin coatings was found to more likely to occur through the molecular structure. This paper correlates existing transport models with data from oxygen transmission experiments and puts recent investigations for water vapour transmission mechanisms into context for a better understanding of gaseous transport through thin coatings.

  14. GPS sensing of precipitable water vapour during the March 2010 Melbourne storm

    NASA Astrophysics Data System (ADS)

    Choy, S.; Wang, C.; Zhang, K.; Kuleshov, Y.

    2013-11-01

    The March 2010 Melbourne storm is used as a case study to examine the potential of using Global Positioning System (GPS) observations for studying the precipitable water vapour (PWV) field. The Victorian statewide GPS infrastructure network, i.e. GPSnet, was used in this study. GPSnet is currently the only statewide and densest GPS infrastructure network in Australia, which provides an excellent opportunity to examine the distribution of water vapour as the severe weather system passed over the state. Data from 15 GPSnet stations were processed over a one-week period, i.e. a few days prior to and after the storm passage, during which the course of the storm extended from the west to the southeast corner of the state. In addition, data from two radiosonde sites of the Australian Bureau of Meteorology Upper Air Network were used to compare and validate the GPS derived PWV measurements. The findings demonstrate that there is strong spatial and temporal correlation between variations of the ground-based GPS-PWV estimates and the passage of the storm over the state. This is encouraging as the ground-based GPS water vapour sensing technique can be considered as a supplemental meteorological sensor in studying severe weather events. The advantage of using ground-based GPS-PWV technique is that it is capable of providing continuous observation of the storm passage with high temporal resolution. The spatial resolution of the distribution of water vapour is dependent on the geographical location and density of the GPS stations.

  15. The radiative impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-04-01

    Volcanic eruptions can have significant impact on the earth's weather and climate system. Besides the subsequent tropospheric changes also the stratosphere is influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour after the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on the tropospheric water vapour and ENSO are evident.

  16. Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE

    NASA Astrophysics Data System (ADS)

    Foth, A.; Baars, H.; Di Girolamo, P.; Pospichal, B.

    2015-07-01

    In this paper, we present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour (IWV) from a collocated microwave radiometer during the intense observation campaign HOPE in the frame of the HD(CP)2 initiative. The simultaneous observation of a microwave radiometer and a Raman lidar allowed an operational and continuous measurement of water vapour profiles also during cloudy conditions. The calibration method provides results which are in a good agreement with conventional methods based on radiosondes. The calibration factor derived from the proposed IWV method is very stable with a relative uncertainty of 5 %. This stability allows for the calibration of the lidar even in the presence of clouds using the calibration factor determined during the most recent clear sky interval. Based on the application of this approach, it is possible to retrieve water vapour profiles during all non-precipitating conditions. A statistical analysis shows a good agreement between the lidar measurements and collocated radiosondes. The relative biases amount to less than 6.7 % below 2 km.

  17. Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE

    NASA Astrophysics Data System (ADS)

    Foth, A.; Baars, H.; Di Girolamo, P.; Pospichal, B.

    2015-03-01

    In this paper, we present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour (IWV) from a collocated microwave radiometer during the intense observation campaign HOPE in the frame of the HD(CP)2 initiative. The simultaneous observation of a microwave radiometer and a Raman lidar allowed an operational and continuous measurement of water vapour profiles also during cloudy conditions. The calibration method provides results in a good agreement with conventional methods based on radiosondes. The calibration factor derived from the proposed IWV method is very stable with a relative uncertainty of 6%. This stability allows to calibrate the lidar even in the presence of clouds using the calibration factor determined during the closest in time clear sky interval. Based on the application of this approach, it is possible to retrieve water vapour profiles during all non-precipitating conditions. A statistical analysis shows a good agreement between the lidar measurements and collocated radiosondes. The relative biases amount to less than 6.7% below 2 km.

  18. GPS-derived Precipitable Water Vapour in Antarctica and validation with radiosoundings

    NASA Astrophysics Data System (ADS)

    Negusini, Monia; Sarti, Pierguido; Tomasi, Claudio; Petkov, Boyan; Capra, Alessandro

    2013-04-01

    In Polar regions, the atmospheric precipitable water vapour (PWV) content is approximately one third or less than that present at mid latitudes. On the Antarctic Plateau, it drops down to less than a few mm. As a consequence, the use of GPS data in sensing the atmosphere can be reliably applied only on coastal areas, were the PWV is large enough to exceed the sensitivity of the method. Radio-soundings (RS) are periodically performed at several coastal Antarctic stations, where permanent GPS equipments are also installed. The sites to be analyzed were selected according to the radiosonde equipment: the Vaisala sensors' readings were corrected specifically with ad hoc models. The co-location of GPS and radio-soundings allows us to validate the PWV content with totally independent techniques. In this investigation we present the results of the analysis of continuous long time series of GPS data acquired at Mawson (MAW1), Casey (CAS1), Davis (DAV1), McMurdo (MCM4) and Mario Zucchelli (TNB1) stations over twelve years (1999-2010). Particularly, at each site, the PWV is determined with GPS data and the same parameter derived from the analysis of the radio-sounding is used for validation. The GPS analysis is optimized for Antarctic data, using specific atmospheric models (e.g. the Vienna Mapping Function) and particular care in the data screening and elimination. The ZHD values are extracted from a grid model provided by the TU Wien (http://ggosatm.hg.tuwien.ac.at/DELAY/GRID) and bilienarly interpolated at the site location. At MZS, surface met parameters are available and used to compute the ZHD which is compared with the corresponding grid-derived ZHD series. We find discrepancies and a seasonal signal that straightforwardly impact the PW time series.

  19. Onsager heat of transport for water vapour at the surface of water and ice: thermal accommodation coefficients for water vapour on a stainless-steel surface.

    PubMed

    Pursell, Christopher J; Phillips, Leon F

    2006-10-28

    The Onsager heat of transport Q* has been measured for water vapour at the surface of water, supercooled water, and ice, over the temperature range -8 to +10 degrees C. For liquid water, Q* is constant at -24.7 +/- 3.6 kJ mol(-1) (two standard deviations) over the pressure range 4-9.5 Torr. Provided the ice is suitably aged, the |Q*| values are very similar for water and ice, a result which is consistent with the presence of a liquid-like layer at the surface of ice. The values are slightly larger for ice, in proportion to the ratio of the heat of sublimation of ice to the heat of vaporization of the liquid. Departures from linearity of plots of P against DeltaT are attributed to temperature jumps at the surface of the dry upper plate. Hence jump coefficients and thermal accommodation coefficients have been derived as a function of temperature for collisions of water molecules with type-304 stainless steel.

  20. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2015-07-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Although in the polar regions no significant trend is found in the lower stratosphere, we found from the observations a correlation between cold winters and enhanced water vapour mixing ratios.

  1. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  2. Surface water vapour density and tropospheric radio refractivity linkage over three stations in Nigeria

    NASA Astrophysics Data System (ADS)

    Adeyemi, B.

    2006-06-01

    Relationships of the form Y=α+βX and Y=αX (α, β, constants) have been established between radio refractivity aloft and surface water vapour density (SWVD), in g/m3 over three radiosonde stations in Nigeria using an analysis of variance (ANOVA) technique on upper air climatological data spanning over a decade (1975 1990). Owing to the difference in the climatological patterns of precipitation at the three stations viz. Oshodi, a coastal station, Minna, a midland station and Kano located in the sub-sahelian region of Nigeria, different values of α and β have been obtained for the stations at the different atmospheric levels considered. Initial tests carried out on the models using monthly mean data of the soundings made over the region in 1993 gave encouraging results. On applying the Kolmogorov Smirnov test, the upper-level refractivity (Nu) models for all the stations and the low-level refractivity (NL) model for Minna were found to be adequate during the dry season. During the rainy season, only the Nu models for Oshodi and Kano were found to be adequate, others are inadequate.

  3. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    NASA Astrophysics Data System (ADS)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we

  4. Water vapour variability during Indian monsoon over Trivandrum observed using Microwave Radiometer and GPS

    NASA Astrophysics Data System (ADS)

    Raju, Suresh C.; Krishna Moorthy, K.; Ramachandran Pillai, Renju; Uma, K. N.; Saha, Korak

    2012-07-01

    The Indian summer monsoon is a highly regular synoptic event, providing most of the annual rainfall received over the sub-continent. Trivandrum, at the southwestern tip of Indian peninsula, is considered as the gate way of Indian monsoon, with its climatological onset on June 01. During this season, the region, experiences large seasonal variation in water vapor, rain fall and wind (speed and direction) in the troposphere. The variability in water vapor and wind information are the vital parameters in forecasting the onset of monsoon. This study focuses on water vapor measurements over the tropical coastal station Trivandrum (8.5oN & 76.9oE) using microwave techniques and the analyses with an effort to link the seasonal variability of water vapor with the onset of monsoon. At Trivandrum a hyper-spectral microwave radiometer profiler (MRP) and a Triple-frequency global positioning system receiver (GPS) have been in regular operation since April 2010. A station-dependent simple empirical relation suitable for the equatorial atmospheric condition is formulated to map the nonhydrostatic component of GPS tropospheric delay to the PWV, based on the columnar water vapor estimated from the multi-year daily radiosonde ascends from Trivandrum. A trained artificial neural network (ANN) with climatological atmospheric data of Trivandrum, is employed to derive the water vapor from the MRP brightness temperature measurements. The accuracy, reliability and consistency of PWV measurements over the tropical coastal station from these two independent instruments are assessed by comparing PWV derived from MRP and GPS measurements which resulted an rms deviation of <1.2mm (with correlation coefficient of ~0.98). This confirms the PWV derived over Trivandrum from microwave measurements are accurate even during the monsoon period in the presence of clouds and rain. PWV from microwave radiometer measurements for more than two years are used to study the water vapour variability during

  5. TMAE vapour of CsI layers as photocathodes in a multiwire proportional counter working at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Guerard, B.; Bruyndonckx, P.; Tavernier, S.; Shuping, Zhang

    1991-12-01

    A multiwire proportional counter (MWPC) coupled to a BaF 2 crystal has been tested at atmospheric pressure for the detection of 511 keV photons. If TMAE is used as a photosensitive agent, we found that addition of H 2O vapour to the chamber gas is very well suited for the detection of single-photoelectrons. Encouraging first results were also obtained with caesium iodide photocathodes.

  6. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  7. Phase correction for ALMA. Investigating water vapour radiometer scaling: The long-baseline science verification data case study

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Tilanus, R. P. J.; van Kempen, T. A.; Hogerheijde, M. R.; Schmalzl, M.; Yoon, I.; Contreras, Y.; Toribio, M. C.; Asaki, Y.; Dent, W. R. F.; Fomalont, E.; Matsushita, S.

    2017-09-01

    The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to 30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1 mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5 km) observations. These inherently have poorer phase stability and are taken in low PWV (<1 mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.

  8. Estimating water vapour along the radio path between two LEO satellites through multifrequency differential power measurements

    NASA Astrophysics Data System (ADS)

    Facheris, Luca; Cuccoli, Fabrizio

    2013-04-01

    The Normalized Differential Spectral Attenuation (NDSA) concept was proposed in 2002 by the authors for tropospheric water vapour sounding by means of a couple of LEO (Low Earth Orbit) satellites (one carrying a transmitter, the other a receiver and operating in the Ku/K bands) in limb geometry. In those years, in the course of the ACE+ mission studies (second call for proposal of the ESA Earth Explorer Opportunity Mission), the problem arose of the severe impact of scintillation due to tropospheric turbulence on the water vapour estimates provided by radio occultation measurements made in limb mode between two LEO satellites. In following ESA studies (AlmetLeo - 2004, ACTLIMB -2009) it was demonstrated that NDSA, thanks to its normalised differential approach, is effective for limiting scintillation and for estimating the Integrated Water Vapor (IWV) along the propagation path between the two LEO satellites. NDSA relies on the conversion of a spectral parameter (the spectral sensitivity S), into the IWV through IWV-S relationships. S is a finite-difference approximation of the derivative of the spectral attenuation at a given frequency fo, normalized to the spectral attenuation itself. To measure Sat fo,it is required that two tone signals with equal power at relatively close frequencies f1 and f2 (f1 > f2) symmetrically placed around fo are simultaneously transmitted. The two pertinent received powers P1 and P2 are simultaneously measured and S is provided by: S = -P2--P1- (f1 - f2 )P2 From the very beginning of the NDSA studies, it was evident that in ideal measurement conditions (no disturbance at the receiver nor propagation impairments) S is tightly correlated to the IWV. To verify this, we accounted for natural variations of the atmospheric conditions by generating simulated spherically symmetric atmospheres using real radiosonde profiles. We computed IWV along the radio path and simulated S separately obtaining IWV-S relationships at various altitudes

  9. Observing water vapour and ozone in the tropical UTLS with the MIPAS instrument on ENVISAT

    NASA Astrophysics Data System (ADS)

    Sembhi, Harjinder

    In this thesis, the potential to observe the distribution of water vapour (H2O) and ozone (O3) in the tropical upper troposphere and lower stratosphere (UTLS) from an atmospheric limb sounding spectrometer is assessed. Vertical profile data retrieved operationally from observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) are examined under "clear sky" and thin cloud conditions. In the tropical UTLS, the distributions of these two naturally occurring important climate gases are characterised by sharp gradients through a cold tropopause. This in combination with the high occurrence of cirrus clouds in this region, makes accurate "clear sky" satellite observations difficult to achieve. The impact of clouds on MIPAS measurements is quantified by simulating the effects of tropical UTLS cirrus clouds into MIPAS H2O and O 3 retrievals. It is found that clouds in the MIPAS line of sight can lead to a systematic positive bias in MIPAS H2O measurements and an increase in random retrieval error for both H2O and O3 . It was also found that cloud errors can propagate into the "clear sky" profile above the cloud altitude. Recommendation for improvements to the operational cloud filtering methods of tropical MIPAS H2O and O3 are proposed. Comparisons of MIPAS H2O and O3 screened with the proposed cloud filtering schemes, to correlative in situ and solar occultation data suggest that improved filtering improves the agreement. However, MIPAS H2O and O3 data quality remain limited by the increased retrieval uncertainty near the tropopause. Finally, the seasonal variability of the tropical cloud filtered MIPAS H2O and O3 through the tropical UTLS is examined. Regional analysis reveals possible evidence of upper tropospheric O3 enhancements and monsoon effects. The results show that MIPAS can sufficiently sound the tropical UTLS region.

  10. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise

    Treesearch

    Trevor F. Keenan; David Y. Hollinger; Gil Boher; Danilo Dragoni; J. William Munger; Hans Peter. Schmid

    2013-01-01

    Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct,...

  11. Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals.

    PubMed

    Reyes-García, Casandra; Mejia-Chang, Monica; Jones, Glyn D; Griffiths, Howard

    2008-06-01

    The 18O signals in leaf water (delta18O(lw)) and organic material were dominated by atmospheric water vapour 18O signals (delta18O(vap)) in tank and atmospheric life forms of epiphytic bromeliads with crassulacean acid metabolism (CAM), from a seasonally dry forest in Mexico. Under field conditions, the mean delta18O(lw) for all species was constant during the course of the day and systematically increased from wet to dry seasons (from 0 to +6 per thousand), when relative water content (RWC) diminished from 70 to 30%. In the greenhouse, progressive enrichment from base to leaf tip was observed at low night-time humidity; under high humidity, the leaf tip equilibrated faster with delta18O(vap) than the other leaf sections. Laboratory manipulations using an isotopically depleted water source showed that delta18O(vap) was more rapidly incorporated than liquid water. Our data were consistent with a Craig-Gordon (C-G) model as modified by Helliker and Griffiths predicting that the influx and exchange of delta18O(vap) control delta18O(lw) in certain epiphytic life forms, despite progressive tissue water loss. We use delta18O(lw) signals to define water-use strategies for the coexisting species which are consistent with habitat preference under natural conditions and life form. Bulk organic matter (delta18O(org)) is used to predict the deltaO18(vap) signal at the time of leaf expansion.

  12. Tropospheric water vapour over Antarctia from 12 years of globally reprocessed GPS data.

    NASA Astrophysics Data System (ADS)

    Thomas, I. D.; King, M. A.; Clarke, P. J.

    2008-12-01

    Atmospheric water vapour - a natural greenhouse gas of importance in the climate system - remains poorly monitored for some regions of the Earth. This paper presents an analysis of Global Positioning System (GPS) data that results in a new precipitable water (PW) dataset for Antarctica. We have undertaken a global reprocessing of a 60 station GPS network for the 1995-2006 period. In order to obtain optimal and homogeneous estimates of PW, emphasis has been placed on using the latest and most up-to-date GPS observation models in a consistent manner. These models include the VMF1 tropospheric mapping function and absolute antenna phase centre variations. Zenith delays, estimated at two-hourly intervals, were converted to PW for twelve, mainly coastal, Antarctic locations. Comparison with radiosonde derived PW time series shows that the reprocessed GPS measurement technique exhibits good temporal stability. GPS / radiosonde biases are small, at the sub-millimetre level; correlations are of the order of 0.95. Comparison with PW datasets obtained from MODIS, AIRS and AMSR-E satellite instruments shows the AIRS instrument to give the best agreement with the GPS derived time series, again with sub-millimetre biases. The PW time series capture the extremely dry climate of Antarctica. Periodic signals in the PW time series were also observed, including a strong annual signal at all locations, and a semiannual signal at coastal East Antarctic locations. A 12-hourly (S1) periodic variation is observed in summer PW measurements at many sites. There is also a possible increase in summertime PW over the 1995- 2006 period in coastal East Antarctica and at the South Pole. We conclude that globally reprocessed GPS solutions can provide accurate measurements of PW that will become increasingly useful for meteorological and climatological applications, provided that the GPS data are (re)processed consistently and homogeneously.

  13. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  14. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO/H2O variations

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2014-11-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during the recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes, which determine the patterns in the stratospheric water isotope composition and in the water vapour budget, itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21 year time series. The two quantities depend on the same processes, however, are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane has a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal summer tape recorder signal in the lower stratosphere reveals isotopically enriched water vapour crossing the tropopause over the subtropical Western Pacific. A correlation analysis confirms this link, which identifies the Asian Summer Monsoon as the major contributor for the intrusion of isotopically enriched water vapour into the stratosphere during boreal summer. Furthermore, convective ice lofting is shown to have a substantial impact on the isotope ratios of water vapour in the upper troposphere and lower stratosphere.

  15. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    NASA Astrophysics Data System (ADS)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  16. Switchable changes in the conductance of single-walled carbon nanotube networks on exposure to water vapour.

    PubMed

    Evans, Gwyn P; Buckley, David J; Skipper, Neal T; Parkin, Ivan P

    2017-08-10

    We have discovered that wrapping single-walled carbon nanotubes (SWCNTs) with ionic surfactants induces a switch in the conductance-humidity behaviour of SWCNT networks. Residual cationic vs. anionic surfactant induces a respective increase or decrease in the measured conductance across the SWCNT networks when exposed to water vapour. The magnitude of this effect was found to be dependent on the thickness of the deposited SWCNT films. Previously, chemical sensors, field effect transistors (FETs) and transparent conductive films (TCFs) have been fabricated from aqueous dispersions of surfactant functionalised SWCNTs. The results reported here confirm that the electrical properties of such components, based on randomly orientated SWCNT networks, can be significantly altered by the presence of surfactant in the SWCNT layer. A mechanism for the observed behaviour is proposed based on electrical measurements, Raman and UV-Vis-NIR spectroscopy. Additionally, the potential for manipulating the sensitivity of the surfactant functionalised SWCNTs to water vapour for atmospheric humidity sensing was evaluated. The study also presents a simple method to establish the effectiveness of surfactant removal techniques, and highlights the importance of characterising the electrical properties of SWCNT-based devices in both dry and humid operating environments for practical applications.

  17. Influence of water vapour on the height distribution of positive ions, effective recombination coefficient and ionisation balance in the quiet lower ionosphere

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Osepian, A.; Dalin, P.

    2014-03-01

    concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl2+ and Cl1+, the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H2O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS). The electron density modelled using the H2O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.

  18. Diffusion of Water Vapour Through Cold Gore-Tex(trademark)

    DTIC Science & Technology

    1993-07-01

    van Beest and Wittgen (8). The samples were placed directly onto the wet surface with the equivalent of a ten-millimetre air gap between the sample and...046 (1992). 8. van Beest , C. A. and P. P. M. M. Wittgen. A simple apparatus to measure water vapor resistance of textiles. Text. Res. J., Vol 56, 9, p

  19. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    PubMed Central

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W; Scott, T.; Moody, M. P.

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638

  20. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    NASA Astrophysics Data System (ADS)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  1. Computational implementation of interfacial kinetic transport theory for water vapour transport in porous media.

    PubMed

    Albaalbaki, Bashar; Hill, Reghan J

    2014-01-08

    A computational framework is developed for applying interfacial kinetic transport theory to predict water vapour permeability of porous media. Modified conservation equations furnish spatially periodic disturbances from which the average flux and, thus, the effective diffusivity is obtained. The equations are solved exactly for a model porous medium comprising parallel layers of gas and solid with arbitrary solid volume fraction. From the microscale effective diffusivity, a two-point boundary-value problem is solved at the macroscale to furnish the water vapour transport rate in membranes subjected to a finite RH differential. Then, the microscale model is implemented using a computational framework (extended finite-element method) to examine the role of particle size, aspect ratio and positioning for periodic arrays of aligned super-ellipses (model particles that pack with high density). We show that the transverse water vapour permeability can be reduced by an order of magnitude only when fibres with a high-aspect ratio cross section are packed in a periodic staggered configuration. Maximum permeability is achieved at intermediate micro-structural length scales, where gas-phase diffusion is enhanced by surface diffusion, but not limited by interfacial-exchange kinetics. The two-dimensional computations demonstrated here are intended to motivate further efforts to develop efficient computational solutions for realistic three-dimensional microstructures.

  2. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    PubMed

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  3. Assessment of contribution of greenhouse gases, water vapour and cloudiness to global surface air temperature changes

    NASA Astrophysics Data System (ADS)

    Gusakova, Maria; Karlin, Lev N.

    2013-04-01

    A contribution of the basic greenhouse effect components to the changes of global surface air temperature (SAT) has been assessed. The Earth's energy budget and the longwave energy transformation, in particular, were considered to investigate the mechanism of the influence of greenhouse effect (GHE) on global SAT. As is known, some part of the outgoing terrestrial radiation is retained in the atmosphere by greenhouse gases (GHGs) such as CO2, CH4, N2O, water vapour (WV) and cloudiness. The analysis of the changes in global SAT, GHGs and WV concentrations for the period 1984 - 2010 has shown that these parameters have a trend to increase. The research into global cloudiness and the vertical distribution of cloud layers made it possible to trace both positive and negative trends, namely the increase of availability of middle and high clouds has a positive trend while the increase of availability of global clouds and low clouds have a negative trend. Making use of the regression analysis relationships between global SAT and the components of greenhouse effect were obtained. It is shown, that the availability of total clouds and low clouds result in climate cooling, while the availability of middle and high clouds cause the increase of global SAT. The analysis of these parameters made it possible to carry out parameterization of GHE. To identify non-anthropogenic possible reasons of global SAT changes the influence of GHE on global SAT has been analyzed, with El-Nino phenomenon being one of the possible reasons. It has been shown that the GHGs role in global SAT changes is not dominant.

  4. Atmospheric Water Vapour Differential Absorption Measurements with an Infrared Sounder.

    DTIC Science & Technology

    1982-03-01

    such as amonia . As the differential absorption was only of the order of 2 dB for the above measurements (at 450 m range), the measurements were repeated...frequent(ref.7), and most seriously affect surface based radio frequency sensors and communications systems. Further development and refinement of the

  5. The water cycle and regolith-atmosphere interaction at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.; Spiga, Aymeric

    2017-06-01

    We perform mesoscale simulations of the water cycle in a region around Gale crater, including the diffusion of water vapour in and out of the regolith, and compare our results with measurements from the REMS instrument on board the Curiosity rover. Simulations are performed at three times of year, and show that diffusion in and out of the regolith and adsorption/desorption needs to be taken into account in order to match the diurnal variation of relative humidity measured by REMS. During the evening and night, local downslope flows transport water vapour down the walls of Gale crater. When including regolith-atmosphere interaction, the amount of vapour reaching the crater floor is reduced (by factors of 2-3 depending on season) due to vapour diffusing into the regolith along the crater walls. The transport of vapour into Gale crater is also affected by the regional katabatic flow over the dichotomy boundary, with the largest flux of vapour into the regolith initially occurring on the northern crater wall, and moving to the southern wall by early morning. Upslope winds during the day transport vapour desorbing and mixing out of the regolith up crater walls, where it can then be transported a few hundred metres into the atmosphere at convergence boundaries. Regolith-atmosphere interaction limits the formation of surface ice by reducing water vapour abundances in the lower atmosphere, though in some seasons ice can still form in the early morning on eastern crater walls. Subsurface ice amounts are small in all seasons, with ice only existing in the upper few millimetres of regolith during the night. The results at Gale crater are representative of the behaviour at other craters in the mesoscale domain.

  6. A new method of thermoablation with hot water vapour for localized tumours.

    PubMed

    Hiltbrand, E; Belenger, J; Binzoni, T; Buchegger, F; Costa, M; Mehier, H

    2004-01-01

    A new method of thermoablation with hot water vapour based on a new type of microtube was developed. This approach allows tumours, with volume and anatomical positions not accessible to other techniques (cryoablation, radiofrequency ablation, laser ablation) to be treated. The method was tested on a human colon carcinoma grafted subcutaneously in Swiss nude mice and the experiment monitored under magnetic resonance imaging. It was found that 2.52 cal s(-1) per cm3 of tumour were necessary to reduce tumour size. The microtube is built to withstand a large range of temperatures and pressures and is biocompatible. A specific feature of this technique is that, besides hot vapour, several types of drugs can be delivered through the same microtube depending of the location, type or size of the tumour. These properties make it a unique device for multi-therapeutic treatments.

  7. Isotopes in the Arctic atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  8. Warm water vapour in the sooty outflow from a luminous carbon star.

    PubMed

    Decin, L; Agúndez, M; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guélin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C

    2010-09-02

    The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.

  9. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    SciTech Connect

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-07-07

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered.

  10. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Richards, Keith

    2016-09-01

    Understanding climate variations over the Qinghai-Tibetan plateau has become essential because the high plateau sustains various ecosystems and water sources, and impacts on the Asian monsoon system. This paper provides new information from isotopic signals in meteoric water and atmospheric water vapour on the Qinghai-Tibetan Plateau using high frequency observation data over a relatively short period. The aim is to explore temporal moisture changes and annual variations at the onset and during the summer monsoon season at a transitional site with respect to the monsoon influence. Data show that high frequency and short period observations can reveal typical moisture changes from the pre-monsoon to the monsoon seasons (2010), and the large variation in isotopic signals in different years with respect to active/inactive periods during a mature phase of the monsoon (2011), especially inferring from the temporal changes in the d-excess of precipitation and its relationship with δ18O values, when higher d-excess is found in the pre-monsoon precipitation. In this transition zone on a daily basis, δ18O values in precipitation are controlled mainly by the amount of rainfall during the monsoon season, while temperature seems more important before the onset of monsoon. Furthermore, the ;amount effect; is significant for night-time rain events. From comparison of signals in both the precipitation and water vapour, an inconsistent relationship between d-excess values suggests various moisture fluxes are active in a short period. The temporal pattern of isotopic signal change from the onset of the monsoon to the mature monsoon phase provides information about the larger circulation dynamics of the Asian monsoon.

  11. Water Vapour Content and Its Effect on CABA Regulator Freeze-Up

    DTIC Science & Technology

    1990-07-01

    content of gas between 3 -5 ppm/v). Regulators with the suffix "s" were Scubapro Mk V S.P.E.C. and those with "c" were U.S. Divers Conshelf XIV Supremes... experimental , that supported their claims. An informal experiment , performed by CF Clearance Divers, involved partially filling a gas cylinder with water...vacuum. The cylinders were pressurized to 3000 psig with dry gas (no more than 5 ml/m 3 by volume water vapour). In the experimental condition one litre of

  12. Fitting of different models for water vapour sorption on potato starch granules

    NASA Astrophysics Data System (ADS)

    Czepirski, L.; Komorowska-Czepirska, E.; Szymońska, J.

    2002-08-01

    Water vapour adsorption isotherms for native and modified potato starch were investigated. To obtain the best fit for the experimental data several models based on the BET approach were evaluated. The hypothesis that water is adsorbed on the starch granules at the primary and secondary adsorption sites as well as a concept considering the adsorbent fractality were also tested. It was found, that the equilibrium adsorption points in the examined range of relative humidity (0.03-0.90) were most accurately predicted by using a three-parameter model proposed by Kats and Kutarov.

  13. Combined Raman Lidar and DIAL Sounding of Water Vapour and Temperature at the NDACC Station Zugspitze

    NASA Astrophysics Data System (ADS)

    Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2010-05-01

    The primary greenhouse gas water vapour has moved into the focus of lidar sounding within the Network for the Detection of Atmosperhic Compostion Change (NDACC). Lidar systems with an operating range reaching at least the tropopause region are asked for, with some future extension into the stratosphere. As a first step, we installed in 2003 a powerful differential-absorption lidar (DIAL) at the Schneefernerhaus high-altitude station next to the Zugspitze summit (Germany) [Vogelmann and Trickl, 2008]. This lidar system, located at 2675 m a.s.l., provides water-vapour profiles in the entire free troposphere above 3 km with high vertical resolution and an accuracy of about 5 % up to 8 km without observable bias. Most importantly, due to the high sensitivity of the DIAL technique this wide operating range is also achieved during daytime and under dry conditions. In a parallel contribution we present examples from the routine measurements of this lidar system during the past three years. The results reflect the extreme variability of the free-tropospheric water-vapour concentration, caused by the rich tropospheric dynamics. The system is capable of quantititatively detecting relative humidities of 0 to 2 % in layers of stratospheric origin even just 300 m wide. Due to the very low stratospheric water-vapour mixing ratio of about 5 ppm an extension of the lidar sounding of H2O into the stratosphere is a highly demanding task. Our solution is a particularly big Raman lidar system, which is currently under development at the Schneefernerhaus. By using a 350-W xenon-chloride laser system and a 1.5-m-diameter receiver we hope to extend for the first time the humidity measurements to almost 30 km during nighttime (as extrapolated from results by Leblanc et al. [2004], Whiteman et al. [2008]). We expect that this system is going to fill the existing gap for accurate vertically resolved ground-based routine measurements of water vapour in the lower stratosphere. At the same

  14. Influence of water and water vapour on the characteristics of KI treated HgI 2 detectors

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.; Sieskind, M.

    After being cleaned using a potassium iodide solution in water followed by a water rinse, the surface of mercuric iodide is covered by a chemical complex identified as being KHgI 3·H 2O. This compound can adsorb large quantities of water and its electrical properties are strongly sensitive to water and water vapour. The consequences on the manufacturing and storing conditions (especially the relative humidity), of mercuric iodide-based devices are therefore of great concern. They are illustrated by the study of the electrical and spectrometric properties of HgI 2 nuclear radiation detectors.

  15. Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest

    NASA Astrophysics Data System (ADS)

    Arain, M. A.; Black, T. A.; Barr, A. G.; Griffis, T. J.; Morgenstern, K.; Nesic, Z.

    2003-12-01

    Fluxes of energy and water vapour were measured continuously over an 120-year-old black spruce (Picea mariana (Mill.) B.S.P.) forest in northern Saskatchewan, Canada, from 6 May 1999 to 5 May 2001 using the eddy covariance technique as part of the Boreal Ecosystem Research and Monitoring Sites (BERMS) program. These results demonstrate that long-term eddy covariance fluxes can reliably be measured during the harsh boreal winter. Typical daytime bulk surface conductance values were about 5-8 mm s-1 during the growing season. Surface conductance sharply declined after midday in response to increasing vapour pressure deficit. The monthly mean values of energy balance components showed that, in spring (March-June), partitioning of available energy flux was mainly in the form of sensible heat, which changed to almost equal proportions of sensible and latent heat in the summer (July-October). In winter (November-February), most of the net radiation was balanced by sensible heat flux. The monthly mean values of net radiation, sensible heat and latent heat flux were about -20 to 20 W m-2, -10 to 25 W m-2 and 5 to 10 W m-2 respectively in winter. The average mid-day Bowen ratios were approximately 3·5, 1·7 and 5·2 in the spring, summer and winter seasons respectively. The maximum daily evaporation was about 3·5 mm day-1 in summer and 0·1-0·25 mm day-1 in winter. Over the 2 year period, the accumulated precipitation was 835 mm; this compared with 711 +/- 70 mm of evapotranspiration, which showed that more than 85% of water was returned to the atmosphere through evapotranspiration. This study reports the first complete annual cycles of energy and water vapour fluxes at this black spruce site. Since black spruce is the dominant tree species in the North American boreal forest, these results have significance for regional and global energy and water cycles. Copyright

  16. Water vapour is a pre-oviposition attractant for the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2013-01-01

    Background To date no semiochemicals affecting the pre-oviposition behaviour of the malaria vector Anopheles gambiae sensu lato have been described. Water vapour must be the major chemical signal emanating from a potential larval habitat, and although one might expect that gravid An. gambiae s.l. detect and respond to water vapour in their search for an aquatic habitat, this has never been experimentally confirmed for this species. This study aimed to investigate the role of relative humidity or water vapour as a general cue for inducing gravid An. gambiae sensu stricto to make orientated movements towards the source. Methods Three experiments were carried out with insectary-reared An. gambiae s.s. One with unfed females and two with gravid females during their peak oviposition time in the early evening. First, unfed females and gravid females were tested separately in still air where a humidity difference was established between opposite ends of a WHO bioassay tube and mosquitoes released individually in the centre of the tube. Movement of mosquitoes to either low or high humidity was recorded. Additionally, gravid mosquitoes were released into a larger air-flow olfactometer and responses measured towards collection chambers that contained cups filled with water or empty cups. Results Unfed females equally dispersed in the small bioassay tubes to areas of high and low humidity (mean 50% (95% confidence interval (CI) 38-62%). In contrast, gravid females were 2.4 times (95% CI 1.3-4.7) more likely to move towards high humidity than unfed females. The results were even more pronounced in the airflow olfactometer. Gravid females were 10.6 times (95% CI 5.4-20.8) more likely to enter the chamber with water than a dry chamber. Conclusions Water vapour is a strong pre-oviposition attractant to gravid An. gambiae s.s. in still and moving air and is likely to be a general cue used by mosquitoes for locating aquatic habitats. PMID:24120083

  17. Localized sources of water vapour on the dwarf planet (1) Ceres

    NASA Astrophysics Data System (ADS)

    Küppers, M.; O'Rourke, L.; Bockelée-Morvan, D.; Zakharov, V.; Lee, S.; von Allmen, P.; Carry, B.; Teyssier, D.; Marston, A.; Müller, T.; Crovisier, J.; Barucci, A.; Moreno, R.

    2014-07-01

    We report the detection of water vapour on (1) Ceres, the first unambiguous discovery of water on an object in the asteroid main belt. Most of the water vapour stems from localized regions at low latitude, possibly from surface features known from adaptive-optics observations. We suggest either cometary-type sublimation from the near surface or cryovolcanism as the origin of the waver vapour [1]. The snowline conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Recently, the detection of dust emission from ''main-belt comets'' [2] and of hydration features and possible water ice absorption on some main-belt asteroids [3], together with theories of migration of small bodies in the solar system [4], cast some doubts on the classical picture. Ceres is thought to be differentiated into an icy core and a silicate mantle [5] and hydrated minerals were found on infrared spectra of its surface [6]. A marginal detection of OH, a photodissociation product of water was reported in 1991 [7], but questioned by later, more sensitive observations [8]. We observed Ceres with the Heterodyne Instrument for the Far Infrared (HIFI) [9] on the Herschel Space Observatory [10] in the context of the MACH 11 guaranteed time program and with a follow-up DDT program. The observations took place in Nov. 2011, Oct. 2012, and March 2013. We searched for the signature of water in the ground state line of ortho-water at 556.936 GHz. After a non- detection in the first observation, an absorption line is clearly visible in all other observations. In March 2013, water is detected in emission as well (at 3 sigma level). The production rate of water on Ceres is a few times 10^{26} s^{-1}. The signal from the water vapour from Ceres was found to be linearly polarized during some of the observations, with the absorption being stronger in the horizontal branch. The measured line-area ratio of up to 2.5 between H and V

  18. Experimental determination and theoretical framework of kinetic fractionation at the water vapour-ice interface at low temperature

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Cauquoin, Alexandre; Landais, Amaelle; Israel, Dan; Orsi, Anaïs; Pangui, Edouard; Landsberg, Janek; Kerstel, Erik; Prie, Frederic; Doussin, Jean-François

    2016-02-01

    Water isotopes are commonly used for climate reconstruction from ice cores. The different heavy isotopes of water such as H218O, H217O or HDO give information about local temperature but also temperature and humidity of water vapour sources. Quantification of these parameters relies on the good knowledge of equilibrium and kinetic isotopic fractionation at each step of the water cycle. One of the strongest limitations when interpreting water isotopes in remote Antarctic ice cores is the formulation of the isotopic fractionation at solid condensation (vapour to ice). This classical formulation also implies a good knowledge of coefficients for equilibrium fractionation and water vapour diffusion in air as well as supersaturation in clouds. The uncertainties associated with these different parameters make the formulation of isotopic fractionation at solid condensation only empirical. Here, we make use (1) of recent development in the measurements of water isotopes in the water vapour through infra-red spectroscopy and (2) of the possibility to measure accurately 17O-excess of water to test the classical formulation and parameterization of isotopic fractionation at solid condensation. A first experiment involving very strong supersaturation evidences a strong kinetic effect on 17O-excess at solid condensation, similar to d-excess. It also shows the limits of the classical formulation of water isotopic fractionation during solid condensation estimation at very low temperature. A second experiment performed in a cloud chamber under controlled conditions uses cavity ring down spectrometers (CRDS) to determine the spatial variability of water vapour isotopic composition due to diffusion (kinetic effect) during solid condensation. The spatial variability of water vapour isotopic composition can be relatively well reproduced by the resolution of diffusion toward a cold plate. This preliminary study opens new perspectives to revisit the classical formulation of water isotopic

  19. A multi-site intercomparison of integrated water vapour observations for climate change analysis

    NASA Astrophysics Data System (ADS)

    Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C.

    2014-08-01

    Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. On one hand, networks of ground-based instruments able to retrieve homogeneous integrated water vapour (IWV) data sets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ years, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 years (e.g. AIRS) or are being merged to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). This study performs an intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess their use in water vapour trends analysis. To this end, we selected 28 sites world-wide for which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. The mean biases of the different techniques compared to the GPS estimates vary only between -0.3 to 0.5 mm of IWV. Nevertheless these small biases are accompanied by large standard deviations (SD), especially for the satellite instruments. In particular, we analysed the impact of clouds on the IWV agreement. The influence of specific issues for each instrument on the intercomparison is also investigated (e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences). Furthermore, we checked if the properties of

  20. A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis

    NASA Astrophysics Data System (ADS)

    Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C.

    2014-02-01

    Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV) datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS) or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in-situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between -0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS) values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan

  1. Source apportionment of atmospheric water over East Asia - a source tracer study in CAM5.1

    NASA Astrophysics Data System (ADS)

    Pan, Chen; Zhu, Bin; Gao, Jinhui; Kang, Hanqing

    2017-02-01

    The atmospheric water tracer (AWT) method is implemented in the Community Atmosphere Model version 5.1 (CAM5.1) to quantitatively identify the contributions of various source regions to precipitation and water vapour over East Asia. Compared to other source apportionment methods, the AWT method was developed based on detailed physical parameterisations, and can therefore trace the behaviour of atmospheric water substances directly and exactly. According to the simulation, the northern Indian Ocean (NIO) is the dominant oceanic moisture source region for precipitation over the Yangtze River valley (YRV) and southern China (SCN) in summer, while the north-western Pacific (NWP) dominates during other seasons. Evaporation over the South China Sea (SCS) is responsible for only 2.7-3.7 % of summer precipitation over the YRV and SCN. In addition, the Indo-China Peninsula is an important terrestrial moisture source region (annual contribution of ˜ 10 %). The overall relative contribution of each source region to the water vapour amount is similar to the corresponding contribution to precipitation over the YRV and SCN. A case study for the SCS shows that only a small part ( ≤ 5.5 %) of water vapour originates from local evaporation, whereas much more water vapour is supplied by the NWP and NIO. In addition, because evaporation from the SCS represents only a small contribution to the water vapour over the YRV and SCN in summer, the SCS mainly acts as a water vapour transport pathway where moisture from the NIO and NWP meet.

  2. Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles.

    PubMed

    Paul, Geo; Musso, Giorgia Elena; Bottinelli, Emanuela; Cossi, Maurizio; Marchese, Leonardo; Berlier, Gloria

    2017-04-05

    The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by (29) Si, (1) H and (13) C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH3(+) groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches.

  3. A novel mission concept for upper air water vapour observations: active limb sounding with a constellation of retroreflectors

    NASA Astrophysics Data System (ADS)

    Clifford, D.; Hoffmann, A.; Weitnauer, C.; Topham, R.; Romano, P.; Lohrey, S.; Kox, S.; Krings, T.; Krejci, D.; Kern, K.; Huesing, J.; Esen, B.; Deconinck, F.; Carton, J. G.; Aulinas, J.

    2011-12-01

    The topic for the Alpbach summer school 2010 was "Missions for Understanding Climate Change''. Early career scientists and engineers from many countries formed working groups to devise new space missions to tackle this challenging subject. Following the summer school, one mission concept was chosen for further development at a subsequent workshop in Obergurgl, which is described in this paper. At the core of the mission chosen for further study was a novel active limb-sounding instrument, used as part of a multi-instrument measurement approach to observing upper air water vapour. The concept combines a LiDAR in nadir-viewing mode with a LiDAR in limb sounding by occultation geometry, designed to operate as a multiple discrete wavelength, very long path system for intergrated path differential absorption measurements. This is achieved using a monostatic transmitter-receiver spacecraft flown in formation with multiple spaceborne retroreflectors. Looking through the limb of the atmosphere, this system will sample the upper troposphere-lower stratosphere and above at high vertical resolution, with a long integration path allowing detection of the low concentrations of water vapour at this height. A secondary payload of a medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. Active limb sounding has not yet been attempted in space, and this novel concept presents significant challenges, including the performance of the lasers in space, the tracking and locking procedure between the main spacecraft and the retroreflectors, and the design of the telescopes to achieve a high enough signal-to-noise ratio for the high precision measurements. These issues are addressed in this preliminary feasibility study, which shows promising results.

  4. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk.

    PubMed

    Eisner, J A

    2007-05-31

    Planetary systems (ours included) formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner-disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. Although the inner regions of protoplanetary disks in nearby star-forming regions subtend only a few nano-radians, near-infrared interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-infrared emission. Here I report spectrally dispersed near-infrared interferometric observations that probe the gas (which dominates the mass and dynamics of the inner disk), in addition to the dust, within one astronomical unit (1 au, the Sun-Earth distance) of the young star MWC 480. I resolve gas, including water vapour and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapour is probably produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets.

  5. Density-functional theory of the water liquid-vapour interface

    NASA Astrophysics Data System (ADS)

    Yang, B.; Sullivan, D. E.; Tjipto-Margo, B.; Gray, C. G.

    An extended mean-field density-functional theory of the liquid-vapour interface of water is described. The theory generalizes standard mean-field theories of inhomogeneous molecular fluids by including quadratic orders of the anisotropic component of the intermolecular pair potential in the free energy functional. The pair interaction is modelled by an isotropic plus point dipolar and quadrupolar potential. Analysis shows that dipole-quadrupole coupling terms in the potential are responsible for inducing spontaneous polarization at the liquid-vapour interface. The direction of the surface polarization is determined by the sign of the axial component of the molecular quadrupole tensor, as in the earlier phenomenological theory of Stillinger and Ben-Naim. Explicit calculations are performed using molecular interaction parameters given by the TIP4P potential model for water, employed in recent computer simulations of the water interface by Wilson, Pohorille and Pratt. The preferred molecular orientations at the interface predicted by the theory are analysed in detail and compared with previous simulation results.

  6. A comparison of standard methods for measuring water vapour permeability of fabrics

    NASA Astrophysics Data System (ADS)

    McCullough, Elizabeth A.; Kwon, Myoungsook; Shim, Huensup

    2003-08-01

    It is difficult for outdoor apparel manufacturers to interpret the technical information provided by fabric suppliers concerning fabric 'breathability' properties because different methods and test conditions are used. In addition, fabrics with hydrophilic components change their properties under different humidity conditions. The purpose of this study was to measure the water vapour permeability and evaporative resistance of 26 different waterproof, windproof and breathable shell fabrics using five standard test methods. The water vapour transmission rate (WVTR) was measured using the ASTM E 96 upright and inverted cup tests with water, the JIS L 1099 desiccant inverted cup test and the new ASTM F 2298 standard using the dynamic moisture permeation cell (DMPC). The evaporative resistance was measured using the ISO 11092 sweating hot plate test. The WVTRs were consistently highest when measured with the desiccant inverted cup, followed by the inverted cup, DMPC and upright cup. The upright cup was significantly correlated with the DMPC (0.97), and the desiccant inverted cup was correlated to the sweating hot plate (-0.91).

  7. Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model

    NASA Astrophysics Data System (ADS)

    Duan, Z.; Thomas, N. L.

    2014-02-01

    The water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial poly(lactic acid) (PLA) were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0% to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38 °C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0% to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the "Tortuous Path Model." The model was also successfully used to explain published data on water permeability of polyethylene terephthalate.

  8. In situ measurement of CO2 and water vapour isotopic compositions at a forest site using mid-infrared laser absorption spectroscopy.

    PubMed

    Wada, Ryuichi; Matsumi, Yutaka; Takanashi, Satoru; Nakai, Yuichiro; Nakayama, Tomoki; Ouchi, Mai; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Nakano, Takashi; Kurita, Naoyuki; Muramoto, Kenichiro; Kodama, Naomi

    2016-12-01

    We conducted continuous, high time-resolution measurements of CO2 and water vapour isotopologues ((16)O(12)C(16)O, (16)O(13)C(16)O and (18)O(12)C(16)O for CO2, and H2(18)O for water vapour) in a red pine forest at the foot of Mt. Fuji for 9 days from the end of July 2010 using in situ absorption laser spectroscopy. The δ(18)O values in water vapour were estimated using the δ(2)H-δ(18)O relationship. At a scale of several days, the temporal variations in δ(18)O-CO2 and δ(18)O-H2O are similar. The orders of the daily Keeling plots are almost identical. A possible reason for the similar behaviour of δ(18)O-CO2 and δ(18)O-H2O is considered to be that the air masses with different water vapour isotopic ratios moved into the forest, and changed the atmosphere of the forest. A significant correlation was observed between δ(18)O-CO2 and δ(13)C-CO2 values at nighttime (r(2)≈0.9) due to mixing between soil (and/or leaf) respiration and tropospheric CO2. The ratios of the discrimination coefficients (Δa/Δ) for oxygen (Δa) and carbon (Δ) isotopes during photosynthesis were estimated in the range of 0.7-1.2 from the daytime correlations between δ(18)O-CO2 and δ(13)C-CO2 values.

  9. Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax.

    PubMed

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-30

    In order to overcome the deficiencies of single layer coating, bilayer coated papers were prepared by two separate coating procedures using various combinations of proteins or polysaccharides with beeswax. Among those combinations, chitosan-beeswax bilayer coated paper showed the best water vapour barrier property. It was observed that as the concentration of chitosan solution increased from 1.0 to 3.0 wt%, its water vapour transport rate (WVTR) decreased from 171.6 to 52.8 g/m(2)/d but using reduced beeswax coating weight (from 10.1 to 4.9 g/m(2)). It also displayed an enhanced performance of grease resistance. Scanning electron microscopy (SEM) showed that beeswax layer was fitted to chitosan layer so closely that these two layers are indistinguishable. Confocal laser scanning microscope (CLSM) further confirmed the existence of an integrated chitosan film between beeswax layer and paper base and a thin composite layer consisting of chitosan and beeswax. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A model study on the influence of overshooting convection on TTL water vapour

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.

    2010-10-01

    Overshooting deep convection that penetrates into the Tropical Tropopause Layer (TTL) is thought to have an important role in regulating the water vapour content of this region. Yet, the net effect of such convection and the dominant mechanisms remain unclear. This study uses two idealised three-dimensional cloud-resolving model simulations to examine the influence of overshooting convection on water vapour when it penetrates into two different TTL environments, one supersaturated and the other subsaturated with respect to ice. These simulations show that the overshooting convection plays a direct role in driving the ambient environment towards ice saturation through either net moistening (subsaturated TTL) or net dehydration (supersaturated TTL). Moreover, in these cases the extent of dehydration in supersaturated conditions is greater than the moistening in subsaturated conditions. With the aid of modelled passive tracers, the relative roles of transport, mixing and ice microphysics are assessed; ultimately, ice sublimation and scavenging processes play the most important role in defining the different TTL relative humidity tendencies. In addition, significant moistening in both cases is modelled well into the subsaturated tropical lower stratosphere (up to 450 K), even though the overshooting turrets only reach approximately 420 K. It is shown that this moistening is the result of jumping cirrus, which is induced by the localised upward transport and mixing of TTL air following the collapse of the overshooting turret.

  11. A model study on the influence of overshooting convection on TTL water vapour

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.

    2010-07-01

    Overshooting deep convection that penetrates into the Tropical Tropopause Layer (TTL) is thought to have an important role in regulating the water vapour content of this region. Yet, the net effect of such convection and the dominant mechanisms remain unclear. This study uses two idealised three-dimensional cloud-resolving model simulations to examine the influence of overshooting convection on water vapour when it penetrates into two different TTL environments, one supersaturated and the other subsaturated with respect to ice. These simulations show that the overshooting convection plays a direct role in driving the ambient environment towards ice saturation through either net moistening (subsaturated TTL) or net dehydration (supersaturated TTL). Moreover, in these cases the extent of dehydration in supersaturated conditions is greater than the moistening in subsaturated conditions. With the aid of modelled passive tracers, the relative roles of transport, mixing and ice microphysics are assessed; ultimately, ice sublimation and scavenging processes play the most important role in defining the different TTL relative humidity tendencies. In addition, significant moistening in both cases is modelled well into the subsaturated tropical lower stratosphere (up to 450 K), even though the overshooting turrets only reach approximately 420 K. It is shown that this moistening is the result of jumping cirrus, which is induced by the localised upward transport and mixing of TTL air following the collapse of the overshooting turret.

  12. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  13. High mean water vapour pressure promotes the transmission of bacillary dysentery.

    PubMed

    Li, Guo-Zheng; Shao, Feng-Feng; Zhang, Hao; Zou, Chun-Pu; Li, Hui-Hui; Jin, Jue

    2015-01-01

    Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA) model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.

  14. High Mean Water Vapour Pressure Promotes the Transmission of Bacillary Dysentery

    PubMed Central

    Li, Guo-Zheng; Shao, Feng-Feng; Zhang, Hao; Zou, Chun-Pu; Li, Hui-Hui; Jin, Jue

    2015-01-01

    Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA) model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery. PMID:25946209

  15. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Dick, Galina; Ge, Maorong; Deng, Zhiguo; Wickert, Jens; Kahle, Hans-Gert; Raabe, Armin; Tetzlaff, Gerd

    2011-05-01

    A GNSS water vapour tomography system developed to reconstruct spatially resolved humidity fields in the troposphere is described. The tomography system was designed to process the slant path delays of about 270 German GNSS stations in near real-time with a temporal resolution of 30 min, a horizontal resolution of 40 km and a vertical resolution of 500 m or better. After a short introduction to the GPS slant delay processing the framework of the GNSS tomography is described in detail. Different implementations of the iterative algebraic reconstruction techniques (ART) used to invert the linear inverse problem are discussed. It was found that the multiplicative techniques (MART) provide the best results with least processing time, i.e., a tomographic reconstruction of about 26,000 slant delays on a 8280 cell grid can be obtained in less than 10 min. Different iterative reconstruction techniques are compared with respect to their convergence behaviour and some numerical parameters. The inversion can be considerably stabilized by using additional non-GNSS observations and implementing various constraints. Different strategies for initialising the tomography and utilizing extra information are discussed. At last an example of a reconstructed field of the wet refractivity is presented and compared to the corresponding distribution of the integrated water vapour, an analysis of a numerical weather model (COSMO-DE) and some radiosonde profiles.

  16. A simulation study of diurnal soil evaporation dynamics using a coupled water, vapour and heat flux model.

    NASA Astrophysics Data System (ADS)

    Vanderborght, Jan; Graf, Alexander; Shahraeeni, Ebrahim; Vereecken, Harry

    2013-04-01

    The Richards equation is often used to simulate water flow in soils considering only isothermal liquid water flow. This implies the assumption that evaporation only takes place at the soil surface. When the soil surface is (partially) wet, the vapour pressure at the soil surface is assumed to be uniform and equal to the saturated vapour pressure so that the evaporation rate can be calculated directly from solving the soil surface energy balance and imposed as a flux boundary condition. For a dry soil surface, a certain threshold pressure head at the soil surface is used as a Dirichlet boundary condition so that the water flux in the soil to the evaporating surface can be calculated. In this contribution we compared simulations of soil evaporation by the Richards equation with a more physically based approach that considers coupled heat, vapour, and liquid fluxes in the soil. The parameterisation of diffusive vapour flux in the soil and through a boundary air layer at the soil surface in these coupled models is, however, strongly debated. Therefore, we investigated the effect of: (i) the enhancement of thermal vapour fluxes that is attributed to thermal non-equilibrium in the soil, (ii) the enhancement of vapour diffusion by turbulent pumping in the upper soil layer, and (iii) the resistance to vapour transfer in the air layer above a partially wet soil surface on simulated evaporation and its diurnal dynamics. For partially wet soil surfaces, the resistance of vapour transfer through the boundary air layer as a function of its thickness and the distance between evaporating surfaces leads to smaller evaporation rates than simulations that assume a uniform vapour pressure in the air at the soil surface. Since 1-D models cannot resolve spatial variations in vapour pressure at the soil surface, this effect cannot be simulated by these models but needs to be parameterized in their boundary conditions. For dry soil surfaces, the simulated diurnal dynamics of soil

  17. Scale effects on the controls on mountain grassland leaf stomatal and ecosystem surface conductance to water vapour

    NASA Astrophysics Data System (ADS)

    Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg

    2010-05-01

    Stomata are the major pathway by which plants exert control on the exchange of trace gases and water vapour with the aerial environment and thus provide a key link between the functioning of terrestrial ecosystems and the state and composition of the atmosphere. Understanding the nature of this control, i.e. how stomatal conductance differs between plant species and ecosystems and how it varies in response to external and internal forcings, is key to predicting feedbacks plants may be providing to changing climatic conditions. Despite a long history of research on stomatal functioning, a fully mechanistic understanding of how stomata function in response to biotic and abiotic controls is still elusive which has led to the development of a large number of (semi-)empirical models of varying complexity. Two of the most widely used models go back to Jarvis (1976) and Ball, Woodrow and Berry (1987), termed J-model and BWB-model, respectively, in the following. The J-model simulates stomatal conductance as some maximal value attenuated by a series of multiplicative functions which are bound between zero and unity, while the BWB-model predicts stomatal conductance as a linear function of photosynthesis, relative humidity and carbon dioxide concentration in the leaf boundary layer. Both models were developed for the prediction of leaf-scale stomatal conductance to water vapour, but have been applied for simulating ecosystem-scale surface conductance as well. The objective of the present paper is to compare leaf- and ecosystem-scale conductances to water vapour and to assess the respective controls using the two above-mentioned models as analysis frameworks. To this end leaf-level stomatal conductance has been measured by means of leaf-gas exchange methods and ecosystem-scale surface conductance by inverting eddy covariance evapotranspiration estimates at a mountain grassland site in Austria. Our major findings are that the proportionality parameter in the BWB-model is

  18. Evaluation of balloon and satellite water vapour measurements in the Southern tropical UTLS during the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Durry, G.; Morel, B.; Jones, R. L.; Lefèvre, F.; Bencherif, H.

    2007-05-01

    Among the objectives of the HIBISCUS campaign was the study of water vapour in the tropical upper troposphere and lower stratosphere (UTLS) by balloon borne in situ and remote sensing, offering a unique opportunity for evaluating the performances of balloon and satellite water vapour data available at the southern tropics in February-April 2004. Instruments evaluated include balloon borne in situ tunable diode laser spectrometer (μ SDLA) and surface acoustic wave hygrometer (SAW), and remote sensing with a near IR spectrometer (SAOZ) flown on a circumnavigating long duration balloon. The satellite systems available are those of AIRS/AMSU (v4), SAGE-II (v6.2), HALOE (v19), MIPAS (v4.62) and GOMOS (v6.0). In the stratosphere between 20-25 km, three satellite instruments, HALOE, SAGE-II and MIPAS, are showing very consistent results (nearly constant mixing ratios), while AIRS, GOMOS and the SAOZ balloon are displaying a slight increase with altitude. Considering the previous studies, the first three appear the most precise at this level, HALOE being the less variable (5%), close to the atmospheric variability shown by the REPROBUS/ECMWF Chemistry-Transport model. The three others are showing significantly larger variability, AIRS being the most variable (35%), followed by GOMOS (25%) and SAOZ (20%). Lower down in the Tropical Tropopause Layer between 14-20 km, HALOE and SAGE-II are showing marked minimum mixing ratios around 17-19 km, not seen by all others. For HALOE, this might be related to an altitude registration error already identified on ozone, while for SAGE-II, a possible explanation could be the persistence of the dry bias displayed by previous retrieval versions, not completely removed in version 6.2. On average, MIPAS is consistent with AIRS, GOMOS and SAOZ, not displaying the dry bias observed in past versions, but a fast degradation of precision below 20 km. Compared to satellites, the μ SDLA measurements shows systematically larger humidity although

  19. The relative importance of water vapour and dust in controlling the variability in radiative heating of the summertime Saharan heat low

    NASA Astrophysics Data System (ADS)

    Marsham, John H.; Parker, Douglas J.; Todd, Martin C.; Banks, Jamie R.; Brindley, Helen E.; Garcia-Carreras, Luis; Roberts, Alexander J.; Ryder, Claire L.

    2017-04-01

    The summertime Sahara heat low (SHL) is a key component of the West African monsoon (WAM) system but is a key source of uncertainty in global models. There is considerable uncertainty over the relative importance of water vapour and dust concentrations in controlling the radiation budget over the Sahara. This limits our ability to explain the variability and trends in the SHL and WAM systems, and so hampers our ability to reduce model biases. Here we use in situ observations from Fennec supersite-1 in the central Sahara from June 2011 and 2012, as well as satellite retrievals from GERB, to quantify how total column water vapour (TCWV) and dust aerosols control day-to-day variability in the energy balance in observations and ECMWF reanalyses (ERA-I). Results show that the earth-atmosphere system is radiatively heated in June 2011 and 2012. While we are not able to completely disentangle the roles of water vapour, clouds and dust from the observations, the analysis demonstrates that TCWV provides a far stronger control on TOA net radiation, and so the net heating of the earth-atmosphere system, than AOD does. Variations in dust provide a much stronger control on surface heating, but the reduction in surface heating associated with high dust loadings are largely compensated by associated increases in atmospheric heating, and so dust control on net TOA radiation is weak. Dust and TCWV are both important for direct atmospheric heating. ERA-I assimilated radiosondes from the Fennec campaign but uses a monthly dust climatology, and so cannot capture the impact of daily variations in dustiness. Despite this, ERA-I managed to capture the control of TOA net flux by TCWV, with a positive correlation (r = 0.6) between observed and modelled TOA net radiation. Variations in surface net radiation, and so the vertical profile of radiative heating, are not captured in ERA-I, given it does not capture variations in dust. Results show that ventilation of the SHL by cool moist air

  20. Stratospheric temperatures in Antarctic winter: Does the 40-year record confirm midlatitude trends in stratospheric water vapour?

    NASA Astrophysics Data System (ADS)

    Roscoe, H. K.; Colwell, S. R.; Shanklin, J. D.

    2003-04-01

    Water vapour is a potent greenhouse gas, and the observed increases in water vapour in the stratosphere act to cool it. Possible changes in stratospheric temperatures are important for future ozone loss because colder temperatures in the edge region of the Antarctic ozone hole act to increase polar stratospheric clouds there, and so delay recovery of the ozone hole. Trends in lower-stratospheric temperature within the core of the Antarctic vortex in winter should be a unique indicator of trends in stratospheric water vapour, because neither changes in CO2 nor in ozone have a large effect on temperature in the lower stratosphere in the dark. Here, measured stratospheric temperatures southward of 70°S in winter are presented and their quality and corrections discussed. The character and magnitude of the long-term changes at Halley (76°S) are similar from 100 to 70 hPa and at 50 hPa, whether corrected for sonde changes or not, and are also similar to those at other Antarctic sites. We found no significant trend in temperatures at Halley between 1960 and 2000, which is inconsistent with the change calculated from the trend in lower-stratospheric water vapour in northern hemisphere midlatitudes between 1960 and 2000. Over the shorter interval between 1980 and 2000 at Halley, the change in temperature was-1.8 ± 0.6 K, in agreement with the change calculated from the trend in stratospheric water vapour in northern hemisphere midlatitudes between 1980 and 2000. The differences between these periods are discussed in terms of: possible fortuitous agreement between 1980 and 2000; the poorer representation and quality of the measurements of stratospheric water vapour between 1960 and 1980; and a possible large variation in the rate of oxidation of CH4 to H2O in the upper stratosphere between 1960 and 1980. Such a variation in oxidation rate was observed by satellite between 1992 and 1999.

  1. Volcanic ash cloud detection from space: a preliminary comparison between RST approach and water vapour corrected BTD procedure

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Marchese, Francesco; Merucci, Luca; Pergola, Nicola; Corradini, Stefano; Tramutoli, Valerio

    2010-05-01

    Volcanic eruptions can inject large amounts (Tg) of gas and particles into the troposphere and, sometimes, into the stratosphere. Besides the main gases (H2O, CO2 , SO2 and HCl), volcanic clouds contain a mix of silicate ash particles in the size range 0.1μm to mm or larger. Interest in the ash presence detection is high in particular because it represents a serious hazard for air traffic. Particles with dimension of several millimeters can damage the aircraft structure (windows, wings, ailerons), while particles less than 10μm may be extremely dangerous for the jet engines and are undetectable by the pilots during night or in low visibility conditions. Satellite data are useful for measuring volcanic clouds because of the large vertical range of these emissions and their likely large horizontal spread. Moreover, since volcanoes are globally distributed and inherently dangerous, satellite measurements offer a practical and safe platform from which to make observations. Two different techniques used to detect volcanic clouds from satellite data are considered here for a preliminary comparison, with possible implications on quantitative retrievals of plume parameters. In particular, the Robust Satellite Techniques (RST) approach and a water vapour corrected version of the Brightness Temperature Difference (BTD) procedure, will be compared. The RST approach is based on the multi-temporal analysis of historical, long-term satellite records, devoted to a former characterization of the measured signal, in terms of expected value and natural variability and a further recognition of signal anomalies by an automatic, unsupervised change detection step. The BTD method is based on the difference between the brightness temperature measured in two channels centered around 11 and 12 mm. To take into account the atmospheric water vapour differential absorption in the 11-12 μm spectral range that tends to reduce (and in some cases completely mask) the BTD signal, a water vapor

  2. Water vapour, clouds, and the UV absorber near the cloud tops of Venus from VIRTIS and VMC / Venus Express data

    NASA Astrophysics Data System (ADS)

    Ignatiev, N. I.; Piccioni, G.; Drossart, P.; Cottini, V.; Markiewicz, W. J.

    2012-09-01

    Observations of the dayside of Venus with VIRTIS [1] and VMC [2] instruments on board Venus Express have been used to measure the cloud top altitude and water vapour abundance near this level and search for their possible correlation with the UV absorption. An extended analysis of these measurements by Cottini et al. [3] was limited by a northern hemisphere due to geometry of observations on first 1000 orbits of the mission. Further measurements significantly improve the latitudinal coverage and demonstrated symmetric behaviour of clouds and water vapour in both hemispheres.

  3. The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites

    NASA Astrophysics Data System (ADS)

    Lossow, Stefan; Khosrawi, Farahnaz; Nedoluha, Gerald E.; Azam, Faiza; Bramstedt, Klaus; Burrows, John. P.; Dinelli, Bianca M.; Eriksson, Patrick; Espy, Patrick J.; García-Comas, Maya; Gille, John C.; Kiefer, Michael; Noël, Stefan; Raspollini, Piera; Read, William G.; Rosenlof, Karen H.; Rozanov, Alexei; Sioris, Christopher E.; Stiller, Gabriele P.; Walker, Kaley A.; Weigel, Katja

    2017-03-01

    In the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), the amplitudes and phases of the annual, semi-annual and quasi-biennial variation in stratospheric and lower mesospheric water were compared using 30 data sets from 13 different satellite instruments. These comparisons aimed to provide a comprehensive overview of the typical uncertainties in the observational database which can be considered in subsequent observational and modelling studies. For the amplitudes, a good agreement of their latitude and altitude distribution was found. Quantitatively there were differences in particular at high latitudes, close to the tropopause and in the lower mesosphere. In these regions, the standard deviation over all data sets typically exceeded 0.2 ppmv for the annual variation and 0.1 ppmv for the semi-annual and quasi-biennial variation. For the phase, larger differences between the data sets were found in the lower mesosphere. Generally the smallest phase uncertainties can be observed in regions where the amplitude of the variability is large. The standard deviations of the phases for all data sets were typically smaller than a month for the annual and semi-annual variation and smaller than 5 months for the quasi-biennial variation. The amplitude and phase differences among the data sets are caused by a combination of factors. In general, differences in the temporal variation of systematic errors and in the observational sampling play a dominant role. In addition, differences in the vertical resolution of the data, the considered time periods and influences of clouds, aerosols as well as non-local thermodynamic equilibrium (NLTE) effects cause differences between the individual data sets.

  4. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    NASA Astrophysics Data System (ADS)

    Ren, C.; MacKenzie, A. R.; Schiller, C.; Shur, G.; Yushkov, V.

    2007-04-01

    We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels

  5. Atmospheric drivers of storage water use in Scots pine

    NASA Astrophysics Data System (ADS)

    Verbeeck, H.; Steppe, K.; Nadezhdina, N.; de Beeck, M. Op; Deckmyn, G.; Meiresonne, L.; Lemeur, R.; Čermák, J.; Ceulemans, R.; Janssens, I. A.

    2007-02-01

    In this study we determined the microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L.) growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and - storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May-18 October). Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation was the main driver of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed, mainly driven by vapour pressure deficit (VPD). During dry atmospheric conditions (high VPD) storage water use was reduced. This reduction was disproportionally higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. A third important factor was the tree water deficit. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water deficit.

  6. Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?

    NASA Astrophysics Data System (ADS)

    Belmonte, T.; Gries, T.; Cardoso, R. P.; Arnoult, G.; Kosior, F.; Henrion, G.

    2011-04-01

    This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of μm h-1) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO2 nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O2 micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (~500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (~1 µm), and for relatively high content in HMDSO, SiO2 walls forming hexagonal cells are obtained.

  7. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    NASA Astrophysics Data System (ADS)

    Ren, C.; MacKenzie, A. R.; Schiller, C.; Shur, G.; Yushkov, V.

    2007-10-01

    We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripy" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding

  8. Height-resolved Scaling Properties of Tropospheric Water Vapour based on Airborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Fischer, Lucas; Craig, George C.

    2013-04-01

    Two-dimensional vertical water vapour cross sections of the free troposphere between altitudes of 2 and 10 km, measured by nadir-viewing airborne differential-absorption lidar with high spatial resolution, were analyzed using structure functions up to the fifth order. We found scale invariance, i.e. a power-law dependency of structure function on length scale, for scales between 5 and 100 km, for the horizontal time series of water vapour mixing ratio. In contrast to one-dimensional in situ measurements, the two-dimensional water vapor lidar observations allow height-resolved analyses of power-law scaling exponents at a vertical resolution of 200 m. The data reveal significantly different scaling properties above and below an air-mass boundary. They stem from three very dissimilar aircraft campaigns: COPS/ETReC over middle and southern Europe in summer 2007, T-PARC around Japan mostly over sea in late summer 2008, and T-IPY around Spitsbergen over sea in winter 2008. After discarding flight segments with low lidar signals or large data gaps, and after averaging horizontally to a resolution of between 1 and 5 km to obtain a high signal to noise ratio, structure functions were computed for 20 flights at various heights, adding up to a length of more than 300,000 km. The power-law scaling exponents of the structure functions do not show significant latitudinal, seasonal or land/sea dependency, but they do differ between air masses influenced by moist convection and air masses aloft, not influenced. A classification of the horizontal water vapour time series into two groups according to whether the series occurred above or below the level of nearby convective cloud tops could be performed by detecting the cloud top height from the lidar backscatter signal in the corresponding flight segment. We found that the scaling exponents can be divided into two groups depending on the respective air mass: The smoothness of the time series, expressed by the first-order scaling

  9. On the consequences of the energy imbalance for calculating surface conductance to water vapour

    PubMed Central

    Wohlfahrt, Georg; Haslwanter, Alois; Hörtnagl, Lukas; Jasoni, Richard L.; Fenstermaker, Lynn F.; Arnone, John A.; Hammerle, Albin

    2014-01-01

    The Penman-Monteith combination equation, which is most frequently used to derive the surface conductance to water vapour (Gs), implicitly assumes the energy balance to be closed. Any energy imbalance (positive or negative) will thus affect the calculated Gs. Using eddy covariance energy flux data from a temperate grassland and a desert shrub ecosystem we explored five possible approaches of closing the energy imbalance and show that calculated Gs may differ considerably between these five approaches depending on the relative magnitudes of sensible and latent heat fluxes, and the magnitude and sign of the energy imbalance. Based on our limited understanding of the nature of the energy imbalance, we tend to favour an approach which preserves the Bowen-ratio and closes the energy balance on a larger time scale. PMID:24465070

  10. OT1_dneufeld_2: The puzzle of water vapour in carbon-rich stars

    NASA Astrophysics Data System (ADS)

    Neufeld, D.

    2010-07-01

    Using the HIFI instrument, we will address the puzzling - but widespread - appearance of water vapour in carbon-rich stars. Following up on detections of water in ALL SIX carbon-rich AGB stars observed to date in a pilot study performed in the HIFISTARS Key Program, we will target additional water transitions in four stars already observed or expected to show the most luminous water emissions. The target stars are CIT6, IRAC 15194-5155, V Cygni, and S Cep, and the additional transitions are the 4(22)-3(31) and 3(12) - 2(21) transitions at 916 GHz and 1153 GHz. Combined with spectra already obtained for the low-lying water transitions, and interpreted in the context of water excitation models, the proposed observations will place strong constraints upon the location of the emitting water. We will therefore be able to distinguish between various hypotheses that have been proposed for the origin of the observed water: the vaporization of orbiting comets or dwarf planets; catalytic formation on dust grains; or chemical processes initiated by the photodissociation of CO. In addition, we will carry out deep integrations to observe the lowest 1(11) - 0(00) transition of para-water at 1113 GHz in two carbon-rich AGB stars: IRAS+40540 and V Hya; here, ortho-water has been securely detected but existing observations of the 1113 GHz para-water line yield weak detections that lack the signal-to-noise ratio needed to constrain the ortho-to-para ratio.

  11. Representativeness of total column water vapour retrievals from instruments on polar orbiting satellites

    NASA Astrophysics Data System (ADS)

    Diedrich, Hannes; Wittchen, Falco; Preusker, René; Fischer, Jürgen

    2016-07-01

    The remote sensing of total column water vapour (TCWV) from polar orbiting, sun-synchronous satellite spectrometers such as the Medium Resolution Imaging Spectrometer (MERIS) on board of ENVISAT and the Moderate Imaging Spectroradiometer (MODIS) on board of Aqua and Terra enables observations on a high spatial resolution and a high accuracy over land surfaces. The observations serve studies about small-scale variations of water vapour as well as the detection of local and global trends. However, depending on the swath width of the sensor, the temporal sampling is low and the observations of TCWV are limited to cloud-free land scenes. This study quantifies the representativeness of a single TCWV observation at the time of the satellite overpass under cloud-free conditions by investigating the diurnal cycle of TCWV using 9 years of a 2-hourly TCWV data set from global GNSS (Global Navigation Satellite Systems) stations. It turns out that the TCWV observed at 10:30 local time (LT) is generally lower than the daily mean TCWV by 0.65 mm (4 %) on average for cloud-free cases. Averaging over all GNSS stations, the monthly mean TCWV at 10:30 LT, constrained to cases that are cloud-free, is 5 mm (25 %) lower than the monthly mean TCWV at 10:30 LT of all cases. Additionally, the diurnal variability of TCWV is assessed. For the majority of GNSS stations, the amplitude of the averaged diurnal cycle ranges between 1 and 5 % of the daily mean with a minimum between 06:00 and 10:00 LT and maximum between 16:00 and 20:00 LT. However, a high variability of TCWV on an individual day is detected. On average, the TCWV standard deviation is about 15 % regarding the daily mean.

  12. Water vapour intercomparison effort in the frame of HyMeX-SOP1

    NASA Astrophysics Data System (ADS)

    Summa, Donato; Di Girolamo, Paolo; Stelitano, Dario; Cacciani, Marco; Flamant, Cyrille; Chazette, Patrick; Ducrocq, Véronique; Nuret, Mathieu; Fourié, Nadia; Richard, Evelyne

    2014-05-01

    A water vapour intercomparison effort, involving airborne and ground-based water vapour lidar systems and mesoscale models, was carried out in the framework of the international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. Within HyMeX, a major field campaign was dedicated to heavy precipitation and flash flood events from 5 September to 6 November 2012. The 2 month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The main objective of this work is to provide accurate error estimates for the lidar systems i.e. the ground-based Raman lidar BASIL and the CNRS DIAL Leandre 2 on board the ATR42, as well as use BASIL data to validate mesoscale model results from the MESO NH and Arome WMED. The effort will benefit from the few dedicated ATR42 flights in the frame of the EUFAR Project "WaLiTemp". In the present work our attention was focused on two specific case studies: 13 September and 2 October in the altitude region 0.5 - 5.5 km. Comparisons between the ground-based Raman lidar BASIL and the airborne CNRS DIAL indicate a mean relative bias between the two sensors of 6.5%, while comparisons between BASIL and CNRS DIAL vs. the radiosondes indicate a bias of 2.6 and -3.5 %, respectively. The bias of BASIL vs. the ATR insitu sensor indicate a bias of -20.4 %. Specific attention will also be dedicated to the WALI/BASIL intercomparison effort which took place in Candillargues on 30 October 2012. Specific results from this intercomparison effort and from the intercomparison between BASIL and Meso-NH/AROME-WMed will be illustrated and discussed at the Conference.

  13. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer

    2017-03-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.

  14. Large anomalies in lower stratospheric water vapour and ice during the 2015-2016 El Niño

    NASA Astrophysics Data System (ADS)

    Avery, Melody A.; Davis, Sean M.; Rosenlof, Karen H.; Ye, Hao; Dessler, Andrew E.

    2017-06-01

    The strong and unusual El Niño of 2015-2016 produced a remarkable perturbation to the hydrologic budget of the tropical tropopause layer (14-19 km). This region regulates stratospheric water vapour, which has a direct radiative impact on surface temperatures. To first order, the coldest tropical tropopause temperature regulates the amount of water vapour entering the stratosphere by controlling the amount of dehydration in the rising air. Here we show that tropical convective cloud ice and associated cirrus sublimating at unusually high altitudes might also have a role in stratospheric hydration. The 2015-2016 El Niño produced decadal record water vapour amounts in the tropical Western Pacific, coincident with warm tropopause temperature anomalies. In the Central Pacific, convective cloud ice was observed 2 km above the anomalously cold tropopause. A trajectory-based dehydration model based on two reanalysis temperature and wind fields can account for only about 0.5-0.6 ppmv of the ~0.9 ppmv tropical lower stratospheric moistening observed during this event. This suggests that unresolved convective dynamics and/or associated sublimation of lofted ice particles also contributed to lower stratospheric moistening. These observations suggest that convective moistening could contribute to future climate change-induced stratospheric water vapour increases.

  15. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  16. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  17. Observations of cross-Saharan transport of water vapour via cycle of cold pools and moist convection

    NASA Astrophysics Data System (ADS)

    Trzeciak, Tomasz; Garcia-Carreras, Luis; Marsham, John H.

    2017-04-01

    Very limited observational data has previously limited our ability to study meteorological processes in the Sahara. The Sahara is a key component of the West African monsoon and the world's largest dust source, but its representation is a major uncertainty in global models. Past studies have shown that there is a persistent warm and dry model bias throughout the Sahara, and this has been attributed to the lack of convectively-generated cold pools in the model, which can ventilate the central Sahara from its margins. Here we present an observed case from June 2012 which explains how cold pools are able to transport water vapour across a large area of the Sahara over a period of several days. A daily cycle is found to occur, where deep convection in the evening generates moist cold pools that then feed the next day's convection; the new convection in turn generates new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses can capture the general direction of transport, but not its full extent, especially at night when cold pools are most active, highlighting the difficulties for models to capture these processes. These results show the importance of cold pools for moisture transport, dust and clouds in the region, and demonstrate the need to include these processes in models to improve the representation of the Saharan atmosphere.

  18. The injection of water into and extraction of vapour from bounded geothermal reservoirs

    SciTech Connect

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1993-01-28

    When liquid is injected into a geothermal reservoir, a fraction of the liquid may vaporise if the reservoir is sufficiently hot. The vapour forms at an approximately planar liquid-vapour interface and diffuses towards the far boundary of the reservoir. If vapour is extracted from the far boundary, then once the new vapour has diffused across the reservoir, the rate of production of vapour at the liquid-vapour interface approximately balances the rate of extraction. We find that if the pressure at the injection pump and extraction well is fixed, then the fraction of the liquid which vaporises and the rate of extraction of vapour from the reservoir increase with time. However, the rate at which liquid is pumped into the reservoir inay initially decrease but subsequently increases with time, if a sufficient fraction of the liquid vaporises. If the mass flux of liquid injected into the reservoir is fixed, then again both the fraction of the liquid which vaporises and the mass flux of vapour which may be extracted increase with time. In this case, the pressure at the injection pump may increase but subsequently decreases with time, again if a sufficient fraction of the liquid vaporises.

  19. Influence of atmospheric vapour pressure deficit on ozone responses of snap bean (Phaseolus vulgaris L.) genotypes

    USDA-ARS?s Scientific Manuscript database

    Two genotypes of snapbean (Phaseolus vulgaris L.), one known to be sensitive to ozone and the other resistant, were examined to determine their response to atmospheric vapor pressure deficit (VPD) in the presence and absence of ozone. Plants were grown in Outdoor Plant Environment Chambers in combin...

  20. An evaluation of materials and methods for vapour measurement of the isotopic composition of pore water in deep, unsaturated zones.

    PubMed

    Pratt, Dyan L; Lu, Mengna; Lee Barbour, S; Jim Hendry, M

    2016-01-01

    The development of in situ vapour sampling methods to measure δ(2)H and δ(18)O in pore water of deep, unsaturated soil profiles, including mine tailings and waste rock, is required to improve our ability to track water migration through these deposits. To develop appropriate field sampling methods, a laboratory study was first undertaken to evaluate potential materials and sampling methods to collect and analyse vapour samples from unsaturated mine waste. Field methods were developed based on these findings and tested at two mine sites using either on-site analyses with a portable isotope laser spectrometer or sample collection and storage prior to laboratory analyses. The field sites included a series of deep (>50 m) multiport profiles within a coal waste rock dump and open wells installed in a sand tailings dyke at an oil sands mine. Laboratory results show that memory effects in sample bags and tubing require 3-5 pore volumes of vapour flushing prior to sample collection and sample storage times are limited to 24 h. Field sampling highlighted a number of challenges including the need to correct for sample humidity and in situ temperature. Best results were obtained when a portable laser spectrometer was used to measure vapour samples in situ.

  1. The radiative role of ozone and water vapour in the temperature annual cycle in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Ming, Alison; Maycock, Amanda; Hitchcock, Peter; Haynes, Peter

    2017-04-01

    The prominent annual cycle in temperatures (with maximum peak to peak amplitude of 8 K around 70 hPa and 6 K at 90 hPa) is a key feature of the tropical tropopause layer (TTL). There is also a strong annual cycle observed in both ozone and water vapour in the TTL, with the latter understood as a consequence of the temperature annual cycle. The radiative contributions of the annual cycle in ozone and water vapour to the temperature annual cycle are studied, first with a seasonally evolving fixed dynamical heating calculation (SEFDH) where the dynamical heating is assumed to be unaffected by the radiative heating. In this framework, the variations in ozone and water vapour derived from satellite data lead to variations in temperature that are respectively in phase and out of phase with the observed annual cycle. The ozone contribution is at the upper range of previous calculations. This difference in phasing can be understood from the fact that an increase in water vapour cools the TTL, predominantly through enhanced local emission, whereas an increase in ozone warms the TTL, mostly through enhanced absorption of upwelling longwave radiation from the troposphere. The relative phasing of the water vapour and ozone effects on temperature is further influenced by the fact that for water vapour there is a strong non-local effect on temperatures from variations in concentrations occurring in lower layers of the TTL. In contrast, for ozone it is the local variations in concentration that have the strongest impact on local temperature variations. The factors that determine the vertical structure of the annual cycle in temperature are also examined. Radiative damping time scales are shown to maximize over a broad layer centred on the cold point. Non-radiative processes in the upper troposphere are inferred to impose a strong constraint on temperature perturbations below 130 hPa. These effects, combined with the annual cycles in dynamical and radiative heating, which both

  2. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.

    2014-09-01

    Water vapour is one of the most important green house gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a green house gas but also because of its role in amplifying other feedbacks in general circulation models. In recent decades, monitoring of water vapour on regular and continuous basis is becoming possible as a result of increase in the number of deployed Global Positioning Satellite (GPS) ground-based receivers at a faster pace. However, Horn of Africa region remains a data void region in this regard until recently when some GPS ground-receiver stations have been deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of Fourier Transform Infrared Spectrometer (FTIR) at Addis Ababa to assess the quality and comparability of Precipitable Water Vapour (PWV) from GPS, FTIR, radiosonde and ERA-Interim over Ethiopia. The PWVs from the three instruments and reanalysis show good correlation in the range from 0.83 to 0.92. The radiosonde PWV shows dry bias with respect to other observations and reanalysis. ERA-Interim PWV shows wet bias with respect to all while GPS PWV exhibits wet bias with respect to FTIR. The intercomparison between GPS and ERA-Interim is extended to seven other GPS stations in the country. Despite the sensitivity of GPS PWV to uncertainty in surface pressure in general, observed surface pressure is used only at four GPS stations. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. In contrast to comparison at Addis Ababa, the comparison between GPS and ERA-Interim PWVs over seven other GPS stations shows difference in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This variation is also visible across different seasons. The main cause of the

  3. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    PubMed

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  4. Frontal bodies: novel structures involved in water vapour absorption by the desert burrowing cockroach, Arenivaga investigata.

    PubMed

    O'Donnell, M J

    1981-01-01

    Above 83% relative humidity, nymphs and adult females of the desert cockroach can condense water vapour on to a fluid layer covering protruded hypopharyngeal bladders. This fluid is produced by a pair of spheroidal bodies situated beneath the frons. Each such frontal body is connected by to the corresponding bladder by a groove in the epipharynx. During absorption, contraction of muscles connecting the frontal bodies to the frons causes them to move dorsally from the mandibles. Oscillation frequency increases with relative humidity or the application of nanoliter quantities of water to the bladders. Frontal bodies appear to be derived from invaginations of the integument, and consist of a mass of tough fibres containing protein and chitin. Fibres embed in a permeable plate which gives rise to the epipharyngeal groove. Tonofibrillae connect the fibres to elongate epidermal cells which are composed primarily of microtubules. The myoepidermal junction is characterized by fascia adherens. Frontal bodies resist tensile forces, but undergo changes in shape as they oscillate. Accompanying changes in hydrostatic pressure may move extracellular fluid across the plate and into the epipharyngeal groove. Possible roles of the fluid in the absorption process are discussed.

  5. Kinetics of the gas phase HO2 self-reaction: effects of temperature, pressure, water and methanol vapours.

    PubMed

    Stone, Daniel; Rowley, David M

    2005-05-21

    The kinetics of the gas phase HO2 self-reaction have been studied using flash photolysis of Cl2/CH3OH/O2/N2 mixtures coupled with time-resolved broadband UV absorption spectroscopy. The HO2 self-reaction rate coefficient (HO2 + HO2 --> H2O2 + O2 (R1)) has been determined as a function of temperature (236 < T < 309 K, at 760 Torr) and pressure (100 < p < 760 Torr, at 296 K). In addition, the effects of water vapour ((0-6.0) x 10(17) molecules cm(-3), 254 < T < 309 K at 760 Torr, 400 < p < 760 Torr at 296 K) and methanol vapour ((0.06-4.7) x 10(17) molecules cm(-3), 254 < T < 309 K, at 760 Torr) on the rate coefficient have been characterised. The observed rate coefficient, k1, was found to exhibit a negative temperature dependence with both pressure dependent and pressure independent components, in agreement with previous studies. Furthermore, the rate coefficient k1 was found to be enhanced in the presence of elevated H2O or CH3OH concentrations, as reported previously. This study reports the most extensive characterisation of the rate coefficient k1 as a function of T, p, [H2O] and [CH3OH]. The present results indicate that k1 is higher at low temperatures, and that enhancement of k1 by H2O is greater, than has been reported previously. The pressure dependence of k1 at ambient temperature is in good agreement with previous studies. The rate enhancement by CH3OH reported here is in good agreement with previous studies at ambient temperatures but is smaller at low temperatures than the most recent previous investigation suggests. The rate coefficient k1 is adequately parameterised by: k1(760 Torr) = {(1.8 +/- 0.8) x 10(-14) exp((1500 +/- 120)/T/K)} x {1 + (2.0 +/- 4.9) x 10(-25) [H2O] exp((4670 +/- 690)/T/K)} x (1 + (0.56 +/- 1.00) x 10(-21) [CH3OH] exp((2550 +/- 500)/T/K)} cm(-3) molecule(-1) s(-1), where [H2O] and [CH3OH] are in molecules cm(-3). Errors are 1 sigma, and statistical only. The atmospheric implications of these results are briefly discussed.

  6. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Joshi, M. M.; Jones, G. S.

    2009-03-01

    We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions. The proximity of oceans to some volcanoes can cause significant entrainment of water into coignimbrite clouds during the eruption. If sufficiently large amounts of this entrained water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer that the residence time of aerosol in the stratosphere. In particular, Northern Hemisphere cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883.

  7. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  8. The role of water vapour in the orientation behaviour of the blood-sucking bug Triatoma infestans (Hemiptera, Reduviidae).

    PubMed

    Barrozo, R B; Manrique, G; Lazzari, C R

    2003-04-01

    The behavioural response to water vapour of the haematophagous bug Triatoma infestans was analysed. Dry or humid discrete sources at different temperatures were used as stimuli for insects walking on a locomotion compensator. Humidity significantly increased the tendency of these bugs to orientate towards thermal sources. Furthermore, humid sources at room temperature were attractive to T. infestans, but this effect was limited to short-range distances. On the other hand, dynamic sources, i.e. airstreams carrying different water vapour contents did not affect the spontaneous anemotactic behaviour of this species, neither in sign (positive) nor in intensity. The anemotactic behaviour was also not influenced by the physiological water balance state of the bugs. Results are discussed in relation to the cues released by living hosts of triatomine bugs and in relation to their responses to air-currents.

  9. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    PubMed

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Mass-independent fractionation of oxygen isotopes during H2O2 formation by gas-phase discharge from water vapour

    NASA Astrophysics Data System (ADS)

    Velivetskaya, Tatiana A.; Ignatiev, Alexander V.; Budnitskiy, Sergey Y.; Yakovenko, Victoria V.; Vysotskiy, Sergey V.

    2016-11-01

    Hydrogen peroxide is an important atmospheric component involved in various gas-phase and aqueous-phase transformation processes in the Earth's atmosphere. A study of mass-independent 17O anomalies in H2O2 can provide additional insights into the chemistry of the modern atmosphere and, possibly, of the ancient atmosphere. Here, we report the results of laboratory experiments to study the fractionation of three oxygen isotopes (16O, 17O, and 18O) during H2O2 formation from products of water vapour dissociation. The experiments were carried out by passing an electrical discharge through a gaseous mixture of helium and water at atmospheric pressure. The effect of the presence of O2 in the gas mixture on the isotopic composition of H2O2 was also investigated. All of the experiments showed that H2O2 produced under two different conditions (with or without O2 added in the gas mixtures) was mass-independently fractionated (MIF). We found a positive MIF signal (∼1.4‰) in the no-O2 added experiments, and this signal increased to ∼2.5‰ once O2 was added (1.6% mixing ratio). We suggest that if O2 concentrations are very low, the hydroxyl radical recombination reaction is the dominant pathway for H2O2 formation and is the source of MIF in H2O2. Although H2O2 formation via a hydroxyl radical recombination process is limited in the modern atmosphere, it would be possible in the Archean atmosphere when O2 was a trace constituent, and H2O2 would be mass-independently fractionated. The anomalous 17O excess, which was observed in H2O2 produced by spark discharge experiments, may provide useful information about the radical chemistry of the ancient atmosphere and the role of H2O2 in maintaining and controlling the atmospheric composition.

  11. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes

    PubMed Central

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-01-01

    Background and Aims Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Methods Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. Key Results There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below −1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Conclusions Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for

  12. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    PubMed

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  13. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water.

    PubMed

    Lau, Gabriel V; Ford, Ian J; Hunt, Patricia A; Müller, Erich A; Jackson, George

    2015-03-21

    The test-area (TA) perturbation approach has been gaining popularity as a methodology for the direct computation of the interfacial tension in molecular simulation. Though originally implemented for planar interfaces, the TA approach has also been used to analyze the interfacial properties of curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it corresponds to the change in free energy under a transformation of the spatial metric for an affine distortion. By expressing the change in configurational energy of a molecular configuration as a Taylor expansion in the distortion parameter, compact relations are derived for the interfacial tension and its energetic and entropic components for three different geometries: planar, cylindrical, and spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are characterized by first-order changes in the energy, that of the spherical interface depends on second-order contributions. We show that a greater statistical uncertainty is to be expected when calculating the thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and the evaluation of the separate entropic and energetic contributions poses a greater computational challenge than the tension itself. The methodology is employed to determine the vapour-liquid interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar, cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below which the tension is found to decrease again. In the case of spherical drops, a marked decrease in the tension from the planar limit is found for radii below ∼ 15 Å; there is no indication of a maximum in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the planar limit for large

  14. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    NASA Astrophysics Data System (ADS)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  15. An Alternative Approach for CO2 Flux Correction Caused by Heat and Water Vapour Transfer

    NASA Astrophysics Data System (ADS)

    Liu, Heping

    2005-04-01

    Energy and CO2 fluxes are commonly measured above plant canopies using an eddy covariance system that consists of a three-dimensional sonic anemometer and an H2O/CO2 infrared gas analyzer. By assuming that the dry air is conserved and inducing mean vertical velocity, Webb et al. ( Quart. J. Roy. Meteorol. Soc. 106, 85-100, 1980) obtained two equations to account for density effects due to heat and water vapour transfer on H2O/CO2 fluxes. In this paper, directly starting with physical consideration of air-parcel expansion/compression, we derive two alternative equations to correct for these effects that do not require the assumption that dry air is conserved and the use of the mean vertical velocity. We then applied these equations to eddy flux observations from a black spruce forest in interior Alaska during the summer of 2002. In this ecosystem, the equations developed here led to increased estimates of CO2 uptake by the vegetation during the day (up to about 20%), and decreased estimates of CO2 respiration by the ecosystem during the night (approximately 4%) as compared with estimates obtained using the Webb et al. approach.

  16. Study of water vapour permeability of protein and gum-based edible films by a photothermal method

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Saavedra, R.; Cruz, A.; Pedroza-Islas, R.; San Martín, E.

    2005-06-01

    The water vapour permeability of protein and gum-based edible films was studied by means of a photothermal method. The films were prepared with two basic ingredients, whey protein concentrate and mesquite gum, according to the proportions 75:25, 50:50, 25:75, and 0:100 (weight:weight). The water vapour diffusion coefficient of the analyzed films was found within the interval 0.37 × 10-6 to 2.04 × 10-6 cm^2/s, increasing linearly by increasing the mesquite gum composition in the films. The incorporation of mesquite gum in films produces less effective moisture barriers due to its highly hydrophilic property.

  17. SIGNAL : Water vapour flux variability and local wind field investigations within five differently managed agroforestry sites across Germany

    NASA Astrophysics Data System (ADS)

    Markwitz, Christian; Siebicke, Lukas; Knohl, Alexander

    2016-04-01

    Optimising soil water uptake and ground water consumption in mono-specific agricultural systems plays an important role for sustainable land management. By including tree alleys into the agricultural landscape, called agroforestry (AF), the wind flow is modified leading to a presumably favourable microclimate behind the tree alleys. We expect that this zone is characterized by increased air temperature and atmospheric water vapour content, compared to mono-specific fields. This would extend the growing season and increase the yield production behind the tree alleys. Within the SIGNAL (Sustainable Intensification of Agriculture through Agroforestry) project the evapotranspiration (ET) variability and the local wind field of agroforestry sites compared to mono-specific agricultural systems is investigated. Our study is based on the comparison of five differently managed agroforestry sites across Germany. All site feature one agroforestry plot and one reference plot, which represents a mono-specific cropped system. Each plot is equipped with an eddy-covariance tower, including a high frequency 3D SONIC anemometer and instruments gathering standard meteorological parameter as pressure, temperature, relative humidity, precipitation, ground heat flux, net- and global radiation. The Surface Energy Budget (SEB) method will be used to calculate evapotranspiration QE as QE = - QN - QH - QG - Res by measuring the sensible heat flux, QH, with the eddy covariance method, the radiation balance, QN and the ground heat flux, QG. QH and QN will be measured continuously long-term. We will quantify site specific energy balance non-closure, Res, by temporarily measuring QE, using eddy covariance and a roving tower and then solving the SEB equation for Res. The short term Res will be used to then continuously derive QE from the SEB method. We will compare measured evapotranspiration rates from the SEB method to modelled evapotranspiration of the agroforestry systems through upscaling

  18. Stratospheric water vapour and temperature variability and their effect on polar stratospheric cloud formation and existence in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Lossow, Stefan; Stiller, Gabriele; Weigel, Katja; Braesicke, Peter; Pitts, Michael C.; Murtagh, Donal

    2015-04-01

    Based on more than 10-years of satellite measurements from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS and SciSat/ACE-FTS we investigate water vapour (H2O) variability in the northern hemisphere polar regions. We find from the observations a connection between cold winters and enhanced water vapour mixing ratios in the lower polar stratosphere (475 to 525 K). We perform a sensitivity study along air parcel trajectories to test how an increase of stratospheric water vapour of 1 ppmv or a temperature decrease of 1 K affects the time period during which polar stratospheric clouds (PSCs) can be formed and exist. Air parcel trajectories were calculated 6-days backward in time. The trajectories were started at the time and locations where PSCs were observed by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations) during the Arctic winter 2010/2011. We test the sensitivity of PSCs formation and existence to changes in H2O and temperature based on PSC observations during this winter since it was one of the coldest Arctic winters in the last decade. The polar vortex persisted over a period of four months, thus leading to extensive PSC formation. During this winter PSCs were detected by CALIPSO on 42 days. In total, 738 trajectories were calculated and analysed. The resulting statistic derived from the air parcel trajectories shows a clear prolongation of the time period where PSCs can be formed and exist when the temperature in the stratosphere is decreased by 1 K and H2O is increased by 1 ppmv. We derive an increase in time where the stratospheric air is exposed to temperatures below Tice and TNAT, respectively, by ~6000 h. Thus, changes in stratospheric water vapour and temperature can prolong PSC formation and existence and thus have a significant influence on the chemistry of the polar stratosphere.

  19. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado.

    PubMed

    Sellamuthu, Periyar Selvam; Mafune, Mpho; Sivakumar, Dharini; Soundy, Puffy

    2013-09-01

    Postharvest application of prochloraz fungicide is commercially practiced to control anthracnose, a postharvest disease in avocado. Increasing consumer concern regarding food safety and demand for organically produced fruits make it necessary to search for natural environmentally friendly alternative products and processes for the fruit industry. A combination of modified atmosphere packaging (MAP; ∼8% CO₂, 2% O₂) plus thyme oil (TO) was evaluated on the incidence and severity of anthracnose, physiological disorders (grey pulp, vascular browning), fruit quality parameters (L*, h°, firmness, weight loss) and sensory parameters (taste, texture, flavour and overall acceptance), phenylalanine ammonia-lyase (PAL) enzyme activity, total phenolic compounds, flavonoid contents and antioxidant activity in avocados ('Fuerte' and 'Hass' cultivars) held at 10 °C cold storage for 18 days and thereafter, ripened at 25 °C for 5-10 days. Stand-alone MAP, commercial treatment (prochloraz 0.05%) and untreated (control) fruit were included for comparison. MAP + TO treatment significantly (P < 0.05) reduced the incidence and severity of anthracnose, grey pulp, vascular browning, weight loss and loss of fruit firmness, and showed acceptable taste, flavour, texture and higher overall acceptance, increased PAL activity, total phenolic compounds, flavonoid contents and antioxidant activity, after ripening at 25 °C followed by cold storage at 10 °C. This investigation recommends MAP + TO combination treatment as a suitable alternative to the currently adopted prochloraz application. © 2013 Society of Chemical Industry.

  20. The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Rempel, K. U.; Migdisov, A. A.; Williams-Jones, A. E.

    2006-02-01

    The solubility of molybdenum trioxide in liquid-undersaturated water vapour has been investigated experimentally at 300, 320, and 360 °C and 39-154 bars. Results of these experiments show that the solubility of MoO 3 in water vapour is between 1 and 29 ppm, which is 19-20 orders of magnitude higher than the vapour pressure of MoO 3(g). Molybdenum solubility increases exponentially with f, suggesting the formation of a gaseous hydrated complex of the type MoO 3· nH 2O by the reaction: MoO3(g)+nH2O⇔MoO3·nH2O(g) The hydration number, n, is interpreted to have a value of 2.0 ± 1.0 at 300 °C, 2.4 ± 0.6 at 320 °C, and 3.1 ± 0.3 at 360 °C. Values of log K for this reaction are 18 ± 5 at 300 °C, 16 ± 3 at 320 °C, and 12 ± 1 at 360 °C. Comparison with data from the literature shows that the solubility of MoO 3· nH 2O increases non-linearly with increasing f, and that the hydration number is equal to the slope of the tangent to a function inferred from a plot of logf versus logf.The predominant species in water vapour at f≈1 bar is MoO 3·H 2O, whereas at the conditions of the present experiments it is MoO 3·2-3H 2O. Calculations based on the solubility of MoO 3 in equilibrium with molybdenite at 600 °C and 500 bars, using average H 2O and total S fluxes of actively degassing volcanoes, with f and f controlled by the assemblage hematite-magnetite-pyrite, indicate that the vapour phase can transport sufficient Mo in about 115,000 years (within the life of geothermal systems) to form a deposit of 336 Mt, with an average grade of 0.087% Mo (e.g., the Endako Mo-porphyry deposit, Canada). This suggests that vapour-phase transport of Mo is far more important than previously thought and should be given further consideration in modelling the formation of porphyry molybdenum deposits.

  1. High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

    2013-04-01

    The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532

  2. Applications II: Water Vapor and Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Demoz, Belay

    2004-01-01

    Contents include the following: 1. Introduction. A case for using lidars in atmospheric dynamics will be made. 2. Scales of motion. Will discuss atmospheric scales of motion and lidar role in probing this various events. 3. Examples. We will discuss applications of lidars into atmospheric dynamics using data from case studies that illustrate different atmospheric phenomenon. Concluding statement. Water Vapor and Atmospheric Dynamics.

  3. Competitive reaction of CH2OO with SO2 and water vapour and the thermal lifetime of CH2OO at 293 K

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Junninen, Heikki; Mauldin, Roy L., III; Herrmann, Hartmut; Kulmala, Markku; Sipilä, Mikko

    2014-05-01

    Competitive reaction of CH2OO with SO2 and water vapour and the thermal lifetime of CH2OO at 293 K T. Berndt (1), H. Junninen (2), R. L. Mauldin III (2,3), H. Herrmann (1), M. Kulmala (2), and M. Sipilä (2) (1) Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany; (2) University of Helsinki, Department of Physics, 00014 Helsinki, Finland; (3) University of Colorado at Boulder, Department of Atmospheric and Oceanic Sciences, Boulder, Colorado 80309, USA H2SO4 represents a key substance in the process of atmospheric nucleation. The importance of gas-phase products from olefin ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCIs), for the process of atmospheric SO2 oxidation to H2SO4 has recently been discovered. Subject of this work are investigations on H2SO4 formation from CH2OO + SO2 as a function of the water vapour content and the measurement of the CH2OO steady state concentration starting from the ozonolysis of ethylene used for formaldehyde oxide generation. Measurements have been conducted in an atmospheric pressure flow tube at 293 K using NO3--CI-APi-TOF mass spectrometry for H2SO4 detection. The experiments show a square-dependence in H2O for the kinetics of the reaction CH2OO + H2O indicating that likely the water dimer (H2O)2 governs the reaction with CH2OO rather than the water monomer. This finding is in line with results from quantum chemistry. Furthermore, a sCI yield (CH2OO) of 0.40 ± 0.18 can be deduced from the H2SO4 measurements in accordance with results from other experimental techniques. A CH2OO thermal lifetime > 1s was found as a result of CH2OO steady state measurements for different reactant concentrations at 293 K. The importance of H2SO4 formation from CH2OO + SO2 for atmospheric conditions is discussed based on kinetic parameters obtained in this study.

  4. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  5. Evaluation of water vapour assimilation in the tropical upper troposphere and lower stratosphere by a chemical transport model

    NASA Astrophysics Data System (ADS)

    Payra, Swagata; Ricaud, Philippe; Abida, Rachid; El Amraoui, Laaziz; Attié, Jean-Luc; Rivière, Emmanuel; Carminati, Fabien; von Clarmann, Thomas

    2016-09-01

    The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project "Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics" (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316-5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the

  6. From GNSS and meteorological data to NRT 4D water vapour distribution - GNSS meteorology activities at WUELS

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw; Kaplon, Jan; Rohm, Witold; Sierny, Jan; Wilgan, Karina; Hadas, Tomasz; Hordyniec, Pawel

    2014-05-01

    The GNSS and Meteo group at Wroclaw University of Environmental and Life Sciences (WUELS), Poland is continuously working on GNSS meteorology since 2010. Currently group maintain real-time (RT) service collecting GNSS and meteorological data and near real-time (NRT) services for estimation of Zenith Troposphere Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Integrated Water Vapour (IWV) and GNSS tomography over the territory of Poland. Data are obtained with high resolution from EUREF Permanent Network (EPN) stations and Ground Base Augmentation System (GBAS) called ASG-EUPOS (www.asgeupos.pl). The GNSS data are available from 124 reference stations located in Poland and neighbour countries, with the average 70km distance between stations. The ground meteorological observations in the area of Poland and neighbour countries are available from: ASG-EUPOS stations included in EUREF Permanent Network (EPN), airport meteorological stations (METAR messages stations) and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). The first part of the paper presents the methodology of ASG-EUPOS GNSS data processing for NRT ZTD and ZTD horizontal gradients estimation in double-differenced mode (under Bernese GNSS Software V5.0) as well as new results from PPP mode (under Bernese GNSS Software V5.2) and their validation with respect to Rapid and Final troposphere products. The second part is describing the quality assessment of meteorological parameters interpolation methods for determination of ZHD at GNSS sites performed on GNSS stations equipped with meteorological sensors. The third part concerns on the comparisons of ZTD from GNSS data and meteorological parameters from SYNOP stations with data from COAMPS numerical weather prediction system (NWP) and IWV calculation. The fourth part presents the development of GNSS tomography model TOMO2. The last part describes methods of above products validation and visualization over the

  7. The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Ming, Alison; Maycock, Amanda C.; Hitchcock, Peter; Haynes, Peter

    2017-05-01

    The structure and amplitude of the radiative contributions of the annual cycles in ozone and water vapour to the prominent annual cycle in temperatures in the tropical tropopause layer (TTL) are considered. This is done initially through a seasonally evolving fixed dynamical heating (SEFDH) calculation. The annual cycle in ozone is found to drive significant temperature changes predominantly locally (in the vertical) and roughly in phase with the observed TTL annual cycle. In contrast, temperature changes driven by the annual cycle in water vapour are out of phase with the latter. The effects are weaker than those of ozone but still quantitatively significant, particularly near the cold point (100 to 90 hPa) where there are substantial non-local effects from variations in water vapour in lower layers of the TTL. The combined radiative heating effect of the annual cycles in ozone and water vapour maximizes above the cold point and is one factor contributing to the vertical structure of the amplitude of the annual cycle in lower-stratospheric temperatures, which has a relatively localized maximum around 70 hPa. Other important factors are identified here: radiative damping timescales, which are shown to maximize over a deep layer centred on the cold point; the vertical structure of the dynamical heating; and non-radiative processes in the upper troposphere that are inferred to impose a strong constraint on tropical temperature perturbations below 130 hPa. The latitudinal structure of the radiative contributions to the annual cycle in temperatures is found to be substantially modified when the SEFDH assumption is relaxed and the dynamical response, as represented by a zonally symmetric calculation, is taken into account. The effect of the dynamical response is to reduce the strong latitudinal gradients and inter-hemispheric asymmetry seen in the purely radiative SEFDH temperature

  8. Coupled Oxygen and Hydrogen Isotope Analysis of Water Along the Soil-Plant- Atmosphere Continuum

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Webb, E. A.; Longstaffe, F. J.

    2008-12-01

    The oxygen and hydrogen isotope compositions of water within a plant vary with transpiration rates and the isotopic composition of soil water. Both of these parameters are affected by temperature and relative humidity. A controlled-temperature, growth-chamber experiment was conducted to determine the relationships among temperature, relative humidity, soil water evaporation and plant-water isotope composition in cattails and horsetails. Typha, a cattail species that grows in wetland conditions, and Equisetum, a horsetail species that prefers dry soils, were each grown in four chambers at 15, 20, 25 and 30 degrees Celsius. The oxygen and hydrogen isotope compositions of watering water, soil water, vapour in the growth chambers and plant water from the leaves and stems were analyzed throughout the eight-month long artificial growing season. Although the oxygen isotope composition of the watering water remained constant, the soil water, atmospheric vapour and plant water were progressively enriched in oxygen-18 and deuterium in each of the four chambers from low to high temperatures as a result of increasing evaporation. The oxygen isotope composition of plant water along the length of a single stem or leaf was increasingly enriched in the heavier isotopes towards the apex. There was no significant difference in the magnitude of this trend between species. These results indicate that the isotopic composition of plant water is primarily controlled by environmental conditions. The oxygen isotope composition of the water vapour in the growing chamber increased with temperature, consistent with equilibration between the vapour and the oxygen-18 enriched soil and plant water reservoirs. The magnitude and interaction of these variables, as measured for these modern samples of cattails and horsetails, should be useful in calibrating paleoclimate proxies based on fossilized plant materials (e.g., cellulose, phytoliths).

  9. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  10. A study of the crystallisation of amorphous salbutamol sulphate using water vapour sorption and near infrared spectroscopy.

    PubMed

    Columbano, Angela; Buckton, Graham; Wikeley, Philip

    2002-04-26

    The crystallisation of amorphous salbutamol sulphate prepared by spray drying was monitored using a humidity controlled microbalance (Dynamic Vapour Sorption apparatus, Surface Measurement Systems) combined with a near-infrared probe. Amorphous salbutamol sulphate was prepared by spray drying from a solution in water. The particles were then analysed using scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, isothermal microcalorimetry and water vapour sorption analysis combined with near-infrared spectroscopy (NIR). Isothermal microcalorimetry and water vapour sorption combined with NIR spectroscopy were able to detect the transition from the amorphous to crystalline state. However while the isothermal microcalorimeter showed only a classic crystallisation exotherm when the material was exposed at 75% RH, the DVS-NIR results at the same humidity highlighted a more complex process. When exposed at 75% RH, the uptake of water was followed by crystallisation that was detected using NIR. The expulsion of water after crystallisation was very slow and at a constant rate whether the material was exposed to 75 or 0% RH. The NIR and DVS studies indicated that the material had crystallised very soon after exposure to high RH. The water that was expelled during crystallisation was not displaced from the particles and remained associated with the particles for many days. This study showed that the use of gravimetric analysis together with NIR spectroscopy provided valuable information on the dynamics of the crystallisation of salbutamol sulphate. The retention of water within recently crystallised salbutamol is potentially important to the behaviour of dosage forms containing the amorphous (or partially amorphous) form of this drug.

  11. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    NASA Astrophysics Data System (ADS)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  12. The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere

    NASA Technical Reports Server (NTRS)

    Le Texier, H.; Solomon, S.; Garcia, R. R.

    1988-01-01

    The detailed photochemistry of methane oxidation has been studied in a coupled chemical/dynamical model of the middle atmosphere. The photochemistry of formaldehyde plays an important role in determining the production of water vapor from methane oxidation. At high latitudes, the production and transport of molecular hydrogen is particularly important in determining the water vapor distribution. It is shown that the ratio of the methane vertical gradient to the water vapor vertical gradient at any particular latitude should not be expected to be precisely 2, due both to photochemical and dynamical effects. Modeled H2O profiles are compared with measurements from the Limb Infrared Monitor of the Stratosphere (LIMS) experiment at various latitudes. Molecular hydrogen is shown to be responsible for the formation of a secondary maximum displayed by the model water vapor profiles in high latitude summer, a feature also found in the LIMS data.

  13. Effects of ultraviolet irradiation, pulsed electric field, hot water and ethanol vapours treatment on functional properties of mung bean sprouts.

    PubMed

    Goyal, Ankit; Siddiqui, Saleem; Upadhyay, Neelam; Soni, Jyoti

    2014-04-01

    The present investigation was conducted with the objective to study the effects of various treatments and storage conditions on ascorbic acid, total phenols, antioxidant activity and polyphenol oxidase activity of mung bean sprouts. The sprouts subjected to various treatments viz., pulsed electric field (PEF) (10,000 V for 10 s), hot water dip (HWD) (50 °C for 2 min), ethanol vapours (1 h) and UV-Irradiation (10 kJm(-2) in laminar flow chamber for 1 h); and then stored at room (25 ± 1 °C) and low (7 ± 1 °C) temperature conditions. The sprouts were analyzed regularly at 24 h interval till end of shelf life. Different treatments given to sprouts resulted in differential effect on various parameters. The ascorbic acid, total phenols and antioxidant activity were highest in ethanol vapours treated sprouts. There was a general decrease in polyphenol oxidase activity by various treatments. During storage ascorbic acid, total phenols and antioxidant activity of sprouts first increased and then decreased significantly, however, for polyphenol oxidase activity a progressive increase with increase in storage period was observed. The trends were similar at room and low temperature storage conditions. Thus, it can be concluded that the ethanol vapours significantly improved the ascorbic acid content, total phenols and antioxidant activity of mung bean sprouts, both at room as well as low temperature conditions of storage.

  14. SHORT COMMUNICATION: An expression for the uncertainty in the water vapour pressure enhancement factor for moist air

    NASA Astrophysics Data System (ADS)

    Lovell-Smith, Jeremy

    2007-12-01

    Uncertainty in the empirically derived vapour pressure formulations must be incorporated in uncertainty budgets for a laboratory's humidity calibration and measurement capabilities and must be considered in any traceable humidity calibration. Uncertainty associated with the water vapour pressure enhancement factor is a strong function of pressure and temperature and may not be accurately reported since it is usually given in the form of a look-up table or as a single value that generally overestimates the true uncertainty. To facilitate automatic calculation and accurate reporting of uncertainty, an expression for the uncertainty in the vapour pressure enhancement factor for moist air is presented here. The expression is based on the analysis of Wexler and Hyland in their work for ASHRAE Project RP-216 and is valid from -100 °C to 200 °C and from 0.01 MPa to 10 MPa. Some implications of possible significant systematic error in the Wexler and Hyland values of the enhancement factor are discussed briefly.

  15. Evaluation of Trichloroethylene vapour fluxes using measurements at the soil-air interface and in the atmosphere close to the soil surface

    NASA Astrophysics Data System (ADS)

    Cotel, Solenn; Nagel, Vincent; Schäfer, Gerhard; Marzougui, Salsabil; Razakarisoa, Olivier; Millet, Maurice

    2013-04-01

    Industrialization during the 19th and 20th century led to the use of chemical products such as chlorinated solvents, e.g., trichloroethylene (TCE). At locations where volatile organic compounds were accidentally spilled on the soil during transport or leaked from their storage places, they could have migrated vertically through the unsaturated zone towards the underlying groundwater. As a result of their high volatility a large vapour plume is consequently formed. Understanding when, at which concentrations and how long, these pollutants will be present in soil, groundwater, atmosphere or indoor air, still remains a challenge up to date. This study was conducted as part of a broader experiment of TCE multiphase mass transfer in a large (25m×12m×3m) well-instrumented artificial basin. TCE was injected as liquid phase in the vadose zone and experiments were conducted during several months. Firstly, TCE vapour fluxes were experimentally determined in two different ways: (a) direct measurements at the soil-air interface using a flux chamber and (b) evaluations based on measurements of TCE concentrations in the air above the soil surface using a modular experimental flume (5m×1m×1m) with a fixed air flow. Secondly, numerical simulations were conducted to analyse the differences between these two types of fluxes. Several positions of the flume on the soil surface were tested. Based on the TCE concentrations measured in the air, vapour fluxes were determined with the aerodynamic method using the modified Thornthwaite-Holzmann equation. It assumes that the concentrations and velocities are temporally and spatially constant in horizontal planes and requires data on the gradients of concentration, horizontal wind velocity and temperature. TCE vapour fluxes measured at the soil-air interface decrease with distance from the source zone. However, this decrease was either high, at the first stage of experiment (120μg/(m2s) near the source zone compared to 1,1μg/(m2s) 2m

  16. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    NASA Technical Reports Server (NTRS)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  17. Positive water vapour feedback in climate models confirmed by satellite data

    NASA Technical Reports Server (NTRS)

    Rind, D.; Lerner, J.; Chiou, E.-W.; Chu, W.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1991-01-01

    It has recently been suggested that GCMs used to evaluate climate change overestimate the greenhouse effect due to increased concentrations of trace gases in the atmosphere. Here, new satellite-generated water vapor data are used to compare summer and winter moisture values in regions of the middle and upper troposphere that have previously been difficult to observe with confidence. It is found that, as the hemispheres warm, increased convection leads to increased water vapor above 500 mbar in approximate quantitative agreement with results from current climate models. The same conclusion is reached by comparing the tropical western and eastern Pacific regions. Thus, water vapor feedback is not overestimated in models and should amplify the climate response to increased trace-gas concentrations.

  18. Positive water vapour feedback in climate models confirmed by satellite data

    NASA Technical Reports Server (NTRS)

    Rind, D.; Lerner, J.; Chiou, E.-W.; Chu, W.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1991-01-01

    It has recently been suggested that GCMs used to evaluate climate change overestimate the greenhouse effect due to increased concentrations of trace gases in the atmosphere. Here, new satellite-generated water vapor data are used to compare summer and winter moisture values in regions of the middle and upper troposphere that have previously been difficult to observe with confidence. It is found that, as the hemispheres warm, increased convection leads to increased water vapor above 500 mbar in approximate quantitative agreement with results from current climate models. The same conclusion is reached by comparing the tropical western and eastern Pacific regions. Thus, water vapor feedback is not overestimated in models and should amplify the climate response to increased trace-gas concentrations.

  19. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  20. Assessment of small-scale integrated water vapour variability during HOPE

    NASA Astrophysics Data System (ADS)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2014-09-01

    The spatio-temporal variability of integrated water vapour (IWV) on small-scales of less than 10 km and hours is assessed with data from the two months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sunphotometer, radiosondes, Raman Lidar, infrared and near infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of standard deviation (≤ 1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Non-hydrostatic modelling framework (ICON) which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities in the order of 4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is sufficient to capture the

  1. Assessment of small-scale integrated water vapour variability during HOPE

    NASA Astrophysics Data System (ADS)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2015-03-01

    The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities on the order of 0.4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is

  2. Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA).

    PubMed

    Behari, Jai Raj; Prakash, Rajiv

    2006-03-01

    Analysis of arsenic in water is important in view of contamination of ground water with arsenic in some parts of the world including West Bengal in India and neighboring country Bangladesh. WHO has fixed the threshold for arsenic in drinking water to 10ppb (microg/l) level, hence the methodology for determination of arsenic is required to be sensitive at ppb level. Atomic absorption spectrophotometry with vapour generation assembly (AAS-VGA) is well known technique for the trace analysis of arsenic. However, total arsenic analysis [As(III)+As(V)] is very crucial and it requires reduction of As(V) to As(III) for correct analysis. As(III) is reduced to AsH3 vapours and finally to free As atoms, which are responsible for absorption signal in AAS. To accomplish this the vapour generation assembly attached to AAS has acid channel filled with 10 M HCl and the reduction channel with sodium borohydride. Further sample can be reduced either before aspiration for analysis, using potassium iodide (KI) or the sample can be introduced in the instrument directly and KI can be added in the reduction channel along with the sodium borohydride. The present work shows that samples prepared in 3 M HCl can be reduced with KI for 30 min before introduction in the instrument. Alternatively samples can be prepared in 6 M HCl and directly aspirated in AAS using KI in VGA reduction channel. The latter methodology is more useful when the sample size is large and time cycle is difficult to maintain. It is observed that the acid concentration of the sample in both the situations plays an important role. Further reduction in acid concentration and analysis time is achieved for the arsenic analysis by using modified method. Analysis in both the methods is sensitive at ppb level.

  3. THE VAPOUR PRESSURES OF AQUEOUS SOLUTIONS WITH SPECIAL REFERENCE TO THE PROBLEM OF THE STATE OF WATER IN BIOLOGICAL FLUIDS.

    PubMed

    Grollman, A

    1931-05-20

    DATA FOR THE DEPRESSION OF VAPOUR PRESSURE ARE PRESENTED FOR THE FOLLOWING AQUEOUS SOLUTIONS: NaCl (0.03 to 0.1 molar), KCl (0.03 to 0.1 molar), urea (0.05 to 0.5 molar), sucrose (0.05 to 0.10 molar), lactic and succinic acids, creatine, CaCl(2) (0.05 molar), and mixtures of these substances with one another and with certain other solutions (gelatin, gum acacia, sea water, LiCl, etc.). The relation of the depression of vapour pressure of a mixed solution to that of solutions of the individual constituents was investigated in order to ascertain to what extent such studies may be used for the determination of the degree of hydration, or of the state of water, in solutions. Organic substances (urea, sucrose, etc.) showed anomalous results which were markedly affected and unpredictable in mixed solutions. They are, therefore, unsuited for the study of water binding. In the case of solutions of inorganic substances-LiCl and CaCl(2)-the principle of the additive nature of colligative properties is also only approximately true-except perhaps in very dilute solutions. The limitations of the colligative method for determining the degree of hydration have been defined in accord with the above findings. Studies of the vapour pressures of mixtures of gelatin or gum acacia with NaCl or KCl demonstrated that hydration in gelatin is relatively small at pH = 7 and undetectable in gum acacia solutions. The view, therefore, that hydrophilic colloids are strongly hydrated has not been substantiated. The passage from the sol to the gel state also was not accompanied in gelatin or in blood by any appreciable change in the degree of hydration of the hydrophilic colloids present in these substances.

  4. THE VAPOUR PRESSURES OF AQUEOUS SOLUTIONS WITH SPECIAL REFERENCE TO THE PROBLEM OF THE STATE OF WATER IN BIOLOGICAL FLUIDS

    PubMed Central

    Grollman, Arthur

    1931-01-01

    Data for the depression of vapour pressure are presented for the following aqueous solutions: NaCl (0.03 to 0.1 molar), KCl (0.03 to 0.1 molar), urea (0.05 to 0.5 molar), sucrose (0.05 to 0.10 molar), lactic and succinic acids, creatine, CaCl2 (0.05 molar), and mixtures of these substances with one another and with certain other solutions (gelatin, gum acacia, sea water, LiCl, etc.). The relation of the depression of vapour pressure of a mixed solution to that of solutions of the individual constituents was investigated in order to ascertain to what extent such studies may be used for the determination of the degree of hydration, or of the state of water, in solutions. Organic substances (urea, sucrose, etc.) showed anomalous results which were markedly affected and unpredictable in mixed solutions. They are, therefore, unsuited for the study of water binding. In the case of solutions of inorganic substances—LiCl and CaCl2—the principle of the additive nature of colligative properties is also only approximately true—except perhaps in very dilute solutions. The limitations of the colligative method for determining the degree of hydration have been defined in accord with the above findings. Studies of the vapour pressures of mixtures of gelatin or gum acacia with NaCl or KCl demonstrated that hydration in gelatin is relatively small at pH = 7 and undetectable in gum acacia solutions. The view, therefore, that hydrophilic colloids are strongly hydrated has not been substantiated. The passage from the sol to the gel state also was not accompanied in gelatin or in blood by any appreciable change in the degree of hydration of the hydrophilic colloids present in these substances. PMID:19872614

  5. On the vertical distribution of carbon monoxide over Bay of Bengal during winter: Role of water vapour and vertical updrafts

    NASA Astrophysics Data System (ADS)

    Girach, I. A.; Nair, Prabha R.

    2014-09-01

    The differences in the spatial pattern of column carbon monoxide (CO) and in-situ measured near-surface CO over Bay of Bengal (BoB) during winter were examined in the light of vertical distribution of CO as retrieved from MOPITT (Measurements Of Pollution In The Troposphere) on board Terra spacecraft. The column CO showed relatively high values over southern-BoB whereas the near-surface CO showed low mixing ratio indicating the existence of significant amount of CO at higher altitudes. The vertical profiles of CO over the BoB region retrieved from MOPITT exhibit a high altitude peak around ~9 km altitude region. The role of water vapour and convective activity/vertical updrafts in establishing the observed vertical profile of CO was investigated. It is found that CO got uplifted to the higher altitude due to updrafts and water vapour caused depletion of CO at lower altitudes which appeared as an apparent high in CO mixing ratio at higher altitude relative to that over lower altitude. The role of water vapour in the destruction of CO was confirmed by box model simulations. Airmass back-trajectory analysis showed that the long range transport from lower troposphere/boundary layer was also partially responsible for higher mixing ratios at higher altitude. In addition, a comparison of in-situ measured near-surface CO and those retrieved from MOPITT using retrieval algorithm Versions 4 and 5 showed that the points of discrepancy have reduced in the Version 5. Biomass burning and anthropogenic activities taking place over the Myanmar landmass was found to be responsible for the hot spots of near-surface-CO over the northeast-BoB.

  6. In situ measurements of nitric oxide, water vapour and ozone from an aircraft

    NASA Technical Reports Server (NTRS)

    Briehl, D. C.; Hilsenrath, E.; Ridley, B. A.; Schiff, H. I.

    1974-01-01

    This paper describes flight tests of prototype instruments for the NASA global atmospheric sampling program (GASP). Three gas sampling instruments were included in the installation: (1) a chemiluminescent nitric oxide monitor; (2) an ultraviolet absorption ozone monitor; and (3) an aluminum oxide water vapor hygrometer. Results indicate the range and kind of variability in NO, H2O, and O3 that can be expected in routine tropospheric air sampling. They have also demonstrated the need for increasing instrument sensitivities, particularly in NO measurement.

  7. In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour.

    PubMed

    Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Davenport, A; Street, S; Scott, T B

    2017-08-11

    Uranium encapsulated in grout was exposed to water vapour for extended periods of time. Through synchrotron x-ray powder diffraction and tomography measurements, uranium dioxide was determined the dominant corrosion product over a 50-week time period. The oxide growth rate initiated rapidly, with rates comparable to the U + H2O reaction. Over time, the reaction rate decreased and eventually plateaued to a rate similar to the U + H2O + O2 reaction. This behaviour was not attributed to oxygen ingress, but instead the decreasing permeability of the grout, limiting oxidising species access to the metal surface.

  8. Precipitable water vapour contents at "local" scale: a comparative study on GNSS-derived data versus modelled ones from ECMWF operational models

    NASA Astrophysics Data System (ADS)

    Riccardi, Umberto; Tammaro, Umberto; Boy, Jean-Paul; Masson, Frederic; Capuano, Paolo

    2016-04-01

    We present a comparative study between GNSS-derived precipitable water (PW) contents and modelled data from ECMWF operational models. Nearly 4 years of PW contents derived from meteorological and GNSS data are analyzed. We use GNSS data from a geodetic monitoring network of the Neapolitan active volcanoes managed by INGV as well as from some GPS stations installed on purpose. We compare PW time series retrieved from GNSS observations with those coming from models. The total water vapour content of the atmosphere can be derived by modelling from the vertical profile of the specific humidity. We use ECMWF operational models available at a horizontal resolution of about 15 km, 3-hourly samples. The number of vertical model levels is 91 up to mid 2013 and 137 afterwards. We recomputed the surface pressure on the real Earth surface, which differs from the orography, i.e. the smooth surface of the atmospheric model, by propagating the pressure from the orography to the surface. A very good agreement is achieved between PW retrieved from GNSS observations and computed from models using the highest time and space resolution (0.15 degree, 3-hourly 91-137 layers) operational models. We even focus our analysis on the occasion of some extreme raining events hitting Campania region (Italy).

  9. The GEWEX water vapour assessment (G-VAP) - first results from inter-comparisons and stability analysis.

    NASA Astrophysics Data System (ADS)

    Schröder, Marc; Lockhoff, Maarit; Shi, Lei; Fennig, Karsten

    2014-05-01

    In a Joint Letter from the Global Climate Observing System (GCOS) and the World Climate Research Programme (WCRP) the general need for coordinated international assessments of climate products was formulated. Such assessments are important mechanisms for improvements and to enhance and promote utilisation. The GEWEX Radiation Panel (GRP, renamed to GEWEX Data and Assessment Panel - GDAP) has initiated a Water Vapor Assessment in 2011, further on referred to as G-VAP. The major purpose of G-VAP is to: • Quantify the state of the art in water vapour products being constructed for climate applications, and by this; • Support the selection process of suitable water vapour products by GDAP for its production of globally consistent water and energy cycle products. The usage of products within GDAP activities essentially implies to study long-term data records. Since the start of G-VAP in 2011 two workshops have been conducted. The results of these workshops together with feedback from the first GDAP meeting were used for setting up the G-VAP assessment plan. This plan (available at www.gewex-vap.org) summarizes scope and goals of the assessement, introduces science questions and provides details on the planned technical and scientific activities. Major elements of G-VAP are: • All three parts of the GCOS Essential Climate Variables (ECV) on water vapour and their consistency are considered: Total Column Water Vapour, Upper Tropospheric Humidity as well as water vapour profiles and their related temperature profiles; • The assessment focuses on overall characteristics of participating satellite data records and reanalyses as determined from inter-comparison and comparisons against in situ observations as well as against ground-based products; • In this characterisation process the data records are not ranked according to their quality. Rather, the application areas and requirements of the individual data records as well as the GEWEX requirements are documented

  10. Lagrangian and Eulerian Methods for the Identification of Water Vapour Sources and Transport

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Schwierz, C.; Wernli, H.

    2006-12-01

    Diagnostics of the hydrological cycle are an important component of detection and attribution of climate variability. The hydrological cycle is a key component of the climate system, but due to the scale of evaporation and condensation processes, NWP models rely heavily on parameterizations. Evaluations of reanalysis datasets show biases of the hydrological cycle that are created during data assimilation, rendering these data one of the less reliable components of reanalysis products. We present two novel approaches to identify the sources and transport paths of atmospheric water vapor from analysis or reanalysis data, one of Lagrangian, and one of Eulerian nature. The Lagrangian method is based on back-trajectories, and diagnoses the evaporative sources of water vapor in high spatial detail. The method is exemplified with an examination of the inter-annual variability of the moisture sources for winter-time precipitation in Greenland, and the seasonality of the moisture sources for Alpine precipitation, based on ECMWF's ERA-40 reanalysis data. The Eulerian method makes use of a regional climate model that has been fitted with a mass-conservative water vapor tracer. This provides a novel possibility to evaluate the representation of the model's hydrological cycle in detail, and on a regional scale. The capabilities of the Eulerian method are exemplified with an identification of the moisture sources of the August 2002 flood, one of the strongest flood events in Central Europe in recent decades. A comparison of the two method indicates different preferential areas of application: the Lagrangian method being more suitable for gaining a large-scale picture, while the Eulerian method could provide detailed process understanding and be useful for NWP model evaluation. This in turn implies that a complementary view could potentially be gained when using such methods for evaluation purposes in combination with new observational data of the atmospheric hydrological cycle.

  11. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  12. Determination of permeation parameters of experimental PET films coated with SiOx to ethyl acetate, oxygen and water vapour.

    PubMed

    Adamantiadi, A; Badeka, A; Kontominas, M G

    2001-11-01

    The permeation parameters of conventional PET films, films coated with SiOx and SiOx-coated films laminated to LDPE were determined for ethyl acetate using the permeation cell/gas chromatography method. Permeation to O2 and water vapour was also determined to monitor overall changes in the barrier properties of the experimental films. Coating of the PET film was achieved by a 'directed evaporation' method that increased the yield of the coating process from 30-35 to > 70%. It was shown that the SiOx coating increased the film barrier to ethyl acetate by approximately 20-30 times. Permeation values showed low reproducibility, indicating the need for further development and standardization of the 'directed evaporation' web-coating process. The barrier to oxygen and water vapour increased by 20-25 and 12-14 times respectively after coating. The web-coating speed did not seem to influence the barrier properties of the films. Permeation coefficients, diffusion coefficients and solubility coefficients were calculated for all samples.

  13. Radiometric Investigation of Water Vapour Movement in Wood-based Composites by Means of Cold and Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Solbrig, K.; Frühwald, K.; Ressel, J. B.; Mannes, D.; Schillinger, B.; Schulz, M.

    Wood-based composites are industrially produced panels made of resin-blended wood furnish material consolidated by hot pressing. Precise knowledge of the physical interrelations, such as heat and mass transfer induced densification and curing, are inevitable to control process performance and final product properties. Neutron radiography is able to distinguish between moisture and wood matter movement and thus to provide quantitative information considering the hot pressing process where only models exist. To this end, preliminary experiments were carried out utilising both cold and thermal neutrons to visualise and to quantify the water vapour movement within wood-based composites heated under sealing within a simplified mimicry of the hot pressing process conditions. Neutron radiography of this rather fast process was found to be feasible in general. The evaluation of the time-resolved image data maps the relative water content distribution within the sample during 9 min process time. A presumed wavefront-like vapour movement was confirmed. Hence, the results enhance the understanding of heat and mass transfer inside consolidated resin-blended wood furnish. These preliminary experiments prove neutron radiography as viable method for further comprehensive in-situ investigations of the hot pressing process of wood-based composites.

  14. Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture.

    PubMed Central

    Rockström, Johan

    2003-01-01

    This paper quantifies the eco-hydrological challenge up until 2050 of producing food in balance with goods and services generated by water-dependent ecosystems in nature. Particular focus is given to the savannah zone, covering 40% of the land area in the world, where water scarcity constitutes a serious constraint to sustainable development. The analysis indicates an urgent need for a new green revolution, which focuses on upgrading rain-fed agriculture. Water requirements to produce adequate diets for humans are shown to be relatively generic irrespective of hydro-climate, amounting to a global average of 1,300 m(3) cap(-1) yr(-1). Present food production requires an estimated 6,800 km(3) yr(-1) of consumptive green water (5,000 km(3) yr(-1) in rain-fed agriculture and 1,800 km(3) yr(-1) from irrigated crops). Without considering water productivity gains, an additional 5,800 km(3) yr(-1) of water is needed to feed a growing population in 2,050 and eradicate malnutrition. It is shown that the bulk of this water will be used in rain-fed agriculture. A dynamic analysis of water productivity and management options indicates that large 'crop per drop' improvements can be achieved at the farm level. Vapour shift in favour of productive green water flow as crop transpiration could result in relative water savings of 500 km(3) yr(-1) in semi-arid rain-fed agriculture. PMID:14728794

  15. Profiling Atmospheric Water Vapor by Microwave Radiometry.

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; King, J. L.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.

    1983-05-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended Kaiman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  16. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  17. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  18. Global satellite measurements of water vapour, wind speed and wave height

    NASA Technical Reports Server (NTRS)

    Chelton, D. B.; Hussey, K. J.; Parke, M. E.

    1981-01-01

    The results of global measurements of atmospheric water vapor by the Seasat Scanning Multichannel Microwave Radiometer and wave height and wind speed by the Seasat altimeter (ALT) are reported. The 13.5 GHz ALT has a 3.125 ns pulsewidth and 1022 Hz repetition rate, and measures surface height to a resolution exceeding 10 cm celative to a reference ellipsoid. Full ALT data comprise 135 km equatorial groundtracks, with about a 50 cm difference of sea wave height compared to buoy reference measurements, and windspeed accuracy to within 0.25-1.58 m/sec up to 20 m/sec. Highest water vapor concentrations were observed in the tropics and the lowest at high latitudes. Wind speeds were highest for the north-east and south-east tradewinds in both the Atlantic and Pacific oceans. Average wave height is small in the summer North Hemisphere and the largest waves are in the winter Southern ocean, and lowest in western Atlantic and Pacific ocean areas where winds are lightest.

  19. Raman water vapour concentration measurements for reduction of false alarms in forest fire detection

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Malizia, A.; Richetta, M.; Ventura, P.

    2009-09-01

    Forest fires can be the cause of environmental catastrophe, with the natural outcomes of serious ecological and economic damages, together with the possibility to endanger human safety. At the aim to reduce this catastrophe several author have been shown that the Laser light scattering can be uses to reveals the particulate emitted in the smoke. Infact experimental and theoretical investigations have shown that lidar is a powerful tool to detect the tenuous smoke plumes produced by forest fires at an early stage. In early 90's Arbolino and Andreucci have shown the theoretical possibility to detect the particulate emitted in atmosphere from smoke forest fire. Vilar at all have shown experimentally the possibility to measure the density variation in atmosphere due to plume emitted in forest fire event. Gaudio at all. have already shown that it is possible to evaluate water vapor emitted in smoke of vegetable fuel using a CO2 dial system. In this paper a theoretical model to evaluate the capabilities of a lidar system in fire surveillance of wooded areas will be presented. In particular we intend propose a technique to minimizing the false alarm in the detection of forest fire by lidar based on a measurement of second components emitted in a combustion process. Usually to detect a fire alarm a rapid increase of aerosol amount is measured. If the backscattering signal report a peak, the presences of a forest fire will be probable. Our idea to confirm this hypothesis is measure the second components emitted in a forest fire at the aim to minimize the false alarm. The simulated measurements of the humidity amount within the smoke plume will be carried out by means of Raman analysis. Fixing the burning rate of the vegetable-fuels, the maximum range of detection will be evaluated.

  20. Tagging Water Sources in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  1. High water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain)

    NASA Astrophysics Data System (ADS)

    Núñez, L.; Plaza, J.; Pérez-Pastor, R.; Pujadas, M.; Gimeno, B. S.; Bermejo, V.; García-Alonso, S.

    The results of a field study carried out in September-October 2000 near Madrid, regarding Quercus ilex and Pinus pinea monoterpene emission and its relation to ambient and physiological parameters, are presented in this paper. The major compounds in diurnal Q. ilex emission were limonene, α-pinene and β-pinene. Emission rates during warm days fitted reasonably well to the temperature and light-dependent model of Guenther ( ES=13.4 μg g DW-1 h -1). However, during hot days at mid-day and afternoon hours, dramatic decreases of monoterpene emission, photosynthetic activity and stomatal conductance were observed. The poor soil-water availability combined with low relative humidity and high temperature is likely to be responsible for the observed emission drop. A parameterisation of emission, based on ambient atmospheric water vapour pressure deficit (WVPD), has been attempted in this study. Monoterpene diurnal emission from P. pinea was lower than that of Mediterranean oak ( ES=1.5 μg g DW-1 h -1). A reduction in the total emission during the hottest hours of the day was not observed in this monoterpene storing species. Limonene emission rates, accounting on average for nearly half of the emission, were well described by the temperature-dependent model of Tingey. The rest of the emission was comprised of several compounds (cineole, myrcene, α-pinene, linalool) and was reduced at high WVPD values.

  2. Single-frequency Nd:YGG laser at 935 nm for future water-vapour DIAL systems

    NASA Astrophysics Data System (ADS)

    Löhring, Jens; Meissner, Ansgar; Morasch, Valentin; Becker, Peter; Heddrich, Wolfgang; Hoffmann, Dieter

    2009-02-01

    For future satellite based water vapour DIAL systems, efficient and rugged laser sources are required preferably around 935 nm. The quasi 4-level transition from R2 to Z5 in Nd:YGG is a promising candidate for its direct generation. Q-switch operation at 100 Hz with pulse energies up to 7.7 mJ is reported as well as single frequency operation with an injection seeded system stabilized by ramp-and-fire-method. The pulse energy of a 4.5 mJ oscillator was scaled to 32 mJ with an InnoSlab-based amplifier at nearly diffraction limited beam quality of M2 < 1.4. Heterodyne measurements show a line width of less than 28 MHz.

  3. Detection of free oxygen and water vapour in fertilized and unfertilized eggs by diode laser spectroscopy - Exploration of diagnostics possibilities.

    PubMed

    Li, Wansha; Lin, Huiying; Zhang, Hao; Svanberg, Katarina; Svanberg, Sune

    2017-08-24

    Non-intrusive methods for characterizing food products are of increasing interest related to the greater awareness of food safety issues. Hen eggs are an important part in food consumption in most parts of the world. We have investigated an optical method utilizing tunable diode lasers for monitoring free gas in eggs. We show that oxygen signals, recorded around 760 nm, increase steadily as eggs become older. Further, we investigated fertilized eggs, which show a quite different temporal behavior during the hatching time. The oxygen signal decreases here with time, while water vapour, recorded around 937 nm, shows a steady increase. Conclusions regarding the size of the air cell and the oxygen availability in fertilized eggs are drawn. The technique might be developed for automatic control of egg freshness, as well as for assessing if eggs are fertilized or not. This article is protected by copyright. All rights reserved.

  4. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  5. Lidar Observations of Low-level Wind Reversals over the Gulf of Lion and Characterization of Their Impact on the Water Vapour Variability

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Mancini, Ignazio; Richard, Evelyne; Ducrocq, Véronique; Nuret, Mathieu; Said, Frédérique

    2016-06-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  6. Assessment of adequate quality and collocation of reference measurements with space borne hyperspectral infrared instruments to validate retrievals of temperature and water vapour

    NASA Astrophysics Data System (ADS)

    Calbet, X.

    2015-06-01

    A method is presented to assess whether a given reference ground based point observation, typically a radiosonde measurement, is adequately collocated and sufficiently representative of space borne hyperspectral infrared instrument measurements. Once this assessment is made, the ground based data can be used to validate and potentially calibrate, with a high degree of accuracy, the hyperspectral retrievals of temperature and water vapour.

  7. Developing and testing a low cost method for high resolution measurements of volcanic water vapour emissions at Vulcano and Mt. Etna

    NASA Astrophysics Data System (ADS)

    Pering, Tom D.; McGonigle, Andrew J. S.; Tamburello, Giancarlo; Aiuppa, Alessandro; Bitetto, Marcello; Rubino, Cosimo

    2015-04-01

    The most voluminous of emissions from volcanoes are from water vapour (H2O) (Carroll and Holloway, 1994), however, measurements of this species receive little focus due to the difficulty of independent measurement, largely a result of high atmospheric background concentrations which often undergo rapid fluctuations. A feasible method of measuring H2O emissions at high temporal and spatial resolutions would therefore be highly valuable. We describe a new and low-cost method combining modified web cameras (i.e. with infrared filters removed) with measurements of temperature and relative humidity to produce high resolution measurements (≈ 0.25 Hz) of H2O emissions. The cameras are affixed with near-infrared filters at points where water vapour absorbs (940 nm) and doesn't absorb (850 nm) incident light. Absorption of H2O is then determined by using Lambert-Beer's law on a pixel by pixel basis, producing a high spatial resolution image. The system is then calibrated by placing a Multi-GAS unit within the gas source and camera field-of-view, which measures; SO2, CO2, H2S and relative humidity. By combining the point measurements of the Multi-GAS unit with pixel values for absorption, first correcting for the width of the gas source (generally a Gaussian distribution), a calibration curve is produced which allows the conversion of absorption values to mass of water within a pixel. In combination with relative humidity measurements made outside of the plume it is then possible to subtract the non-volcanic background H2O concentration to produce a high resolution calibrated volcanic H2O flux. This technique is demonstrated in detail at the active fumarolic system on Vulcano (Aeolian Islands, Italy). Data processing and image acquisition was completed in Matlab® using a purpose built code. The technique is also demonstrated for the plume of the North-East Crater of Mt. Etna (Sicily, Italy). Here, contemporaneously acquired measurements of SO2 using a UV camera, combined

  8. Radical-water complexes in Earth's atmosphere.

    PubMed

    Aloisio, S; Francisco, J S

    2000-12-01

    In the atmosphere, many chemical processes are controlled by open-shell radical species. While these species are present in relatively small number densities, they initiate many of the cycles that control the chemistry of the atmosphere. The purpose of this Account is to examine recent studies of radical-water complexes that are composed of atmospherically important species. We hope this Account will provide a report on the status of this topical field, while encouraging new research directions.

  9. Metabolic changes associated with active water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae): a microcalorimetric study.

    PubMed

    Hansen, Lars L; Westh, Peter; Wright, Jonathan C; Ramløv, Hans

    2006-03-01

    Water vapour absorption (WVA) is an important mechanism for water gain in several xeric insects. Theoretical calculations indicate that the energetic cost of WVA should be small (5-10% of standard metabolic rate) assuming realistic efficiencies. In this study we explored the relationship between WVA, metabolic heat flux (HFmet.) and CO2 release in larvae of Tenebrio molitor using microcalorimetry. By comparing metabolic heat flux with the catabolic rate estimated from VCO2 , we were able to differentiate anabolic and catabolic rates prior to and during WVA, while simultaneously monitoring water exchange. Three to four hours before the onset of WVA, larvae showed clear increases in HFmet. and catabolic flux, and a simultaneous decrease in anabolic flux. Following the onset of WVA, HFmet. decreased again until indistinguishable from control (non-absorbing) values. Possible factors contributing to the "preparatory phase" are discussed, including mobilization of Malpighian tubule transporters and muscular activity in the rectum. Absorbing larvae reduced the water activity of the calorimetric cell to 0.906, agreeing with gravimetric estimates of the critical equilibrium activity. Periods of movement during WVA coincided with decreased uptake fluxes, consistent with the animal's hydrostatic skeleton and the need to close the anus to generate pressure increases in the haemocoel.

  10. Design of a fused optical fibre bundle-based receiver for low-altitude profiling of water vapour using Raman lidar

    NASA Astrophysics Data System (ADS)

    Sangeetha, N.; Yellapragada, Bhavani Kumar; Machavaram, Venkata Rajanikanth

    2016-05-01

    Water vapour profiling of surface layer, which constitutes the lowest hundred meters from earth's surface, can aid in the understanding of spatial variability of atmospheric turbulence and the dynamics of boundary layer. In lidars, the effective area of an optical fiber-based receiver, also called the aperture stop diameter, controls the field of view of the telescope which in turn governs the overlap function. We determined overlap function vs altitude for different aperture stop diameters which showed that lower altitude profiling requires fibre receivers of larger effective area positioned at the location of blur disk or the position of maximum capture of back scattered light. We report on the design of a receiver which comprises of a converging lens system in conjunction with a commercially available fibre bundle of fused hexagonal shaped fibres of adequate numerical aperture and enhanced effective light capturing area. For a specified biaxial Raman lidar system with an excitation laser emitting at 532 nm, placing a one inch diameter lens at the plane of blur disk of diameter 21 mm and the aforesaid fibre bundle of diameter 7.3 mm at the image plane of the blur disk was found to be suitable for relatively efficient light capture to enable profiling from an altitude of 8m and above. The light capturing efficiency of the system was determined and compared with that of a conventional circular fibre-based bundle of same diameter. The proposed receiver design offers potential solution for low altitude profiling with reduced central obscuration.

  11. Determination of The Carbon and Water Vapour Net Ecosystem Exchange Rates In The Swiss Pre-alps - A Contribution To The Carbomont Project

    NASA Astrophysics Data System (ADS)

    Furger, M.; Siegwolf, R. T. W.; Eugster, W.

    A major objective of the Carbomont project is the analysis of the source/sink re- lationship of various biogenic and anthropogenic species in European mountainous ecosystems. PSI contributes to these studies with two sub-projects. The first one de- termines the carbon and water vapour net ecosystem exchange (NEE) rates of selected ecosystem segments, while the other one investigates the partitioning of the NEE into its carbon dioxide source and sink components. The NEE will be determined with eddy covariance (EC) methods for two different ecosystems (abandoned versus in- tensively managed pasture) and shall provide information on their long-term carbon source or sink relation. By analysing the stable isotope 13C/12C and 18O/16O ratio in the carbon dioxide from the soil, the canopy, and the atmosphere above the canopy, the ecosystem carbon dioxide flux can be quantitatively partitioned. In combination with the EC method, the sink and source strength of different flux components can be quantified. The field measurements will take place in Seebodenalp in Central Switzer- land. The site is located at an altitude of about 1000 m above sea level. Measurements are planned for the growing seasons of 2002, 2003 and 2004.

  12. Evaluation of ERA-Interim for tropospheric delay and water vapour estimation in different climate zones using ground-based GNSS observations

    NASA Astrophysics Data System (ADS)

    Ahmed, Furqan; Hunegnaw, Addisu; Teferle, Norman; Bingley, Richard

    2017-04-01

    Tropospheric delay and integrated water vapour (IWV) derived from climate reanalysis models, such as that of the European Centre for Medium-range Weather Forecasts (ECMWF) namely the ECMWF ReAnalysis-Interim (ERA-Interim), are widely used in many geodetic and atmospheric applications. Therefore, it is of interest to assess the quality of these reanalysis products using available observations. Observations from Global Navigation Satellite Systems (GNSS) are, as of now, available for a period of over 2 decades and their global availability make it possible to validate the zenith total delay (ZTD) and IWV obtained from climate reanalysis models in different geographical and climatic regions. In this study, a 5-year long homogeneously reprocessed GNSS data set based on double differenced positioning strategy and containing over 400 globally distributed ground-based GNSS stations has been used as a reference to validate the ZTD estimates obtained from the ERA-Interim climate reanalysis model in 25 different climate zones. It has been studied how the difference between the ERA-Interim ZTD and the GNSS-derived ZTD varies with respect to the different climate zones as well as the topographic variations in a particular climate zone. Periodicity in the ZTD residuals in different climate zones has been analyzed. Furthermore, the variation of the ZTD differences with respect to latitude has been presented. Finally, for one GNSS station in each of the 25 climate zones, IWV derived from ERA-Interim has been compared to the IWV derived using GNSS observations.

  13. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  14. Assessing Atmospheric Water Injection from Oceanic Impacts

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.

    2005-01-01

    Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

  15. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  16. Liquid water production from atmospheric sources

    NASA Astrophysics Data System (ADS)

    Matthews, John D.; Clarke, Norman P.

    1991-02-01

    The purpose of this effort was to assess the feasibility of developing a desiccant system to produce potable water from atmospheric sources that is compatible with military constraints. Goals were: (1) to examine desiccant technology, investigate methods of using available desiccants to collect atmospheric moisture, (2) develop a conceptual model of a desiccant water production system, and (3) develop a mathematical model to simulate the operation of the conceptual model. Results show that a desiccant system can produce large quantities of potable water using relatively small amounts of fuel for heat and fan power. The focus of this project was using a liquid desiccant (such as triethylene glycol) in an absorption-distillation cycle. This report documents the theoretical analysis of a hypothetical liquid desiccant based system for producing liquid water through collection of atmospheric moisture. Estimates are made of cost, weight and water production rate for the hypothetical system.

  17. Rosetta Alice/VIRTIS observations of the water vapour UV electroglow emissions around comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Bockelée-Morvan, D.; Bertaux, J.-L.; Erard, S.; Feldman, P. D.; Capaccioni, F.; Schindhelm, E.; Leyrat, C.; Parker, J.; Filacchione, G.; A'Hearn, M. F.; Feaga, L. M.; Noonan, J.; Keeney, B.; Steffl, A. J.; Stern, S. A.; Weaver, H. A.; Broiles, T.; Burch, J.; Clark, G.; Samara, M.

    2017-07-01

    Several UV emission lines of the coma of 67P/Churyumov-Gerasimenko have been observed by Alice/Rosetta before the 67P/CG perihelion. The H and O emissions are mainly produced by impact dissociation of water molecules by suprathermal electrons. In this paper, we explore further the electron dissociative excitation of H2O to produce the UV emissions by using simultaneous observations of water and H Lyman β done by the VIRTIS-H and Alice instruments during four periods of time in 2014 December, 2015 March and 2015 May. We used simple theoretical considerations to link the UV brightness to the water vapour column density. Two cases are studied. In the first case, we assume the suprathermal electron density is decreasing radially as the thermal electron population; in the second case, we assume the suprathermal electron density does not vary radially. The second case seems more consistent with the Rosetta Plasma Consortium Ion and Electron Sensor measurements during 2015 March and May. The efficiency of the electron dissociative excitation of H2O is lower during the three last periods of time studied compared to the first period in 2014 December. The variability of the efficiency of the electron dissociative excitation between the four studied periods is not simply inversely proportional to the square of the comet-Sun distance but is most likely associated with the variability of the suprathermal electron distribution.

  18. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not.

    PubMed

    Warren, C R

    2008-01-01

    The internal conductance to CO2 supply from substomatal cavities to sites of carboxylation poses a large limitation to photosynthesis. It is known that internal conductance is decreased by soil water deficits, but it is not known if it is affected by atmospheric water deficits (i.e. leaf to air vapour pressure deficit, VPD). The aim of this paper was to examine the responses of internal conductance to atmospheric and soil water deficits in seedlings of the evergreen perennial Eucalyptus regnans F. Muell and the herbaceous plants Solanum lycopersicum (formerly Lycopersicon esculentum) Mill. and Phaseolus vulgaris L. Internal conductance was estimated with the variable J method from concurrent measurements of gas exchange and fluorescence. In all three species steady-state stomatal conductance decreased by approximately 30% as VPD increased from 1 kPa to 2 kPa. In no species was internal conductance affected by VPD despite large effects on stomatal conductance. In contrast, soil water deficits decreased stomatal conductance and internal conductance of all three species. Decreases in stomatal and internal conductance under water deficit were proportional, but this proportionality differed among species, and thus the relationship between stomatal and internal conductance differed among species. These findings indicate that soil water deficits affect internal conductance while atmospheric water deficits do not. The reasons for this distinction are unknown but are consistent with soil and atmospheric water deficits having differing effects on leaf physiology and/or root-shoot communication.

  19. Perspective: Water cluster mediated atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Vaida, Veronica

    2011-07-01

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  20. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  1. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations.

    PubMed

    Petzold, Andreas; Krämer, Martina; Neis, Patrick; Rolf, Christian; Rohs, Susanne; Berkes, Florian; Smit, Herman G J; Gallagher, Martin; Beswick, Karl; Lloyd, Gary; Baumgardner, Darrel; Spichtinger, Peter; Nédélec, Philippe; Ebert, Volker; Buchholz, Bernhard; Riese, Martin; Wahner, Andreas

    2017-08-24

    IAGOS (In-service Aircraft for a Global Observing System) performs long-term routine in situ observations of atmospheric chemical composition (O3, CO, NOx, NOy, CO2, CH4), water vapour, aerosols, clouds, and temperature on a global scale by operating compact instruments on board of passenger aircraft. The unique characteristics of the IAGOS data set originate from the global scale sampling on air traffic routes with similar instrumentation such that the observations are truly comparable and well suited for atmospheric research on a statistical basis. Here, we present the analysis of 15 months of simultaneous observations of relative humidity with respect to ice (RHice) and ice crystal number concentration in cirrus (Nice) from July 2014 to October 2015. The joint data set of 360 hours of RHice-Nice observations in the global upper troposphere and tropopause region is analysed with respect to the in-cloud distribution of RHice and related cirrus properties. The majority of the observed cirrus is thin with Nice < 0.1 cm(-3). The respective fractions of all cloud observations range from 90% over the mid-latitude North Atlantic Ocean and the Eurasian Continent to 67% over the subtropical and tropical Pacific Ocean. The in-cloud RHice distributions do not depend on the geographical region of sampling. Types of cirrus origin (in situ origin, liquid origin) are inferred for different Nice regimes and geographical regions. Most importantly, we found that in-cloud RHice shows a strong correlation to Nice with slightly supersaturated dynamic equilibrium RHice associated with higher Nice values in stronger updrafts.

  2. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in-situ observations

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Krämer, Martina; Neis, Patrick; Rolf, Christian; Rohs, Susanne; Berkes, Florian; Smit, Herman G. J.; Gallagher, Martin; Beswick, Karl; Lloyd, Gary; Baumgardner, Darrel; Spichtinger, Peter; Nédélec, Philippe; Ebert, Volker; Buchholz, Bernhard; Riese, Martin; Wahner, Andreas

    2017-04-01

    IAGOS (In-service Aircraft for a Global Observing System) performs long-term routine in-situ observations of atmospheric chemical composition (ozone, CO, NOx, NOy, CO2, CH4), water vapour, aerosols, clouds and temperature on a global scale by operating compact instruments on board of passenger aircraft. The unique characteristics of the IAGOS data set originate from the global-scale sampling on air traffic routes with similar instrumentation such that the observations are truly comparable and well suited for atmospheric research on a statistical basis. Here, we present the analysis of 15 months of simultaneous observations of relative humidity with respect to ice (RHice) and ice crystal number concentration in cirrus (Nice) from July 2014 to October 2015. The joint data set of 360 hours of RHice - Nice observations in the global upper troposphere and tropopause region is analysed with respect to the in-cloud distribution of RHice and related cirrus properties. The majority of the observed cirrus is thin with Nice < 0.1 cm-3. The respective fractions of all cloud observations range from 90% over the mid-latitude North Atlantic Ocean and the Eurasian continent to 67% over the subtropical and tropical Pacific Ocean. The in-cloud RHice distributions do not depend on the geographical region of sampling. Types of cirrus origin (in situ origin, liquid origin) are inferred for different Nice regimes and geographical regions. Most important, we found that in-cloud RHice shows a strong correlation to Nice with slightly supersaturated dynamic equilibrium RHice associated to higher Nice values in stronger updrafts.

  3. The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, Christopher O.; Eck, T. F.; Tanre, Didier; Holben, B. N.

    1991-01-01

    The near-infrared channel of the NOAA advanced very high resolution radiometer (AVHRR) contains a water vapor absorption band that affects the determination of the normalized difference vegetation index (NDVI). Daily and seasonal variations in atmospheric water vapor within the Sahel are shown to affect the use of the NDVI for the estimation of primary production. This water vapor effect is quantified for the Sahel by radiative transfer modeling and empirically using observations made in Mali in 1986.

  4. Pressure-dependent water absorption cross sections for exoplanets and other atmospheres

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Hill, C.; Yurchenko, Sergei N.; Tennyson, Jonathan; Dudaryonok, Anna S.; Lavrentieva, Nina N.

    2017-01-01

    Many atmospheres (cool stars, brown dwarfs, giant planets, extrasolar planets) are predominately composed of molecular hydrogen and helium. H216O is one of the best measured molecules in extrasolar planetary atmospheres to date and a major compound in the atmospheres of brown-dwarfs and oxygen-rich cool stars, yet the scope of experimental and theoretical studies on the pressure broadening of water vapour lines by collision with hydrogen and helium remains limited. Theoretical H2- and He-broadening parameters of water vapour lines (rotational quantum number J up to 50) are obtained for temperatures in the range 300-2000 K. Two approaches for calculation of line widths were used: (i) the averaged energy difference method and (ii) the empirical expression for J ‧ J ″ -dependence. Voigt profiles based on these widths and the BT2 line list are used to generate high resolution (Δ ν ˜ = 0.01cm-1) pressure broadened cross sections for a fixed range of temperatures and pressures between 300 and 2000 K and 0.001-10 bar. An interpolation procedure which can be used to determine cross sections at intermediate temperature and pressure is described. Pressure broadening parameters and cross sections are presented in new ExoMol format.

  5. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine

    NASA Astrophysics Data System (ADS)

    Verbeeck, H.; Steppe, K.; Nadezhdina, N.; de Beeck, M. Op; Deckmyn, G.; Meiresonne, L.; Lemeur, R.; Čermák, J.; Ceulemans, R.; Janssens, I. A.

    2007-08-01

    Storage water use is an indirect consequence of the interplay between different meteorological drivers through their effect on water flow and water potential in trees. We studied these microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L.) growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and - storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May-18 October). Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation and vapour pressure deficit (VPD) were the main atmospheric drivers of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed. VPD was determined to be one of the main drivers of these differences. During dry atmospheric conditions (high VPD) storage water use was reduced. This reduction was higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. The daily minimum tree water content was lower in periods of high VPD, but the reserves were not completely depleted after the first day of high VPD, due to refilling during the night. Nevertheless, the tree water content deficit was a third important factor influencing storage water use. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water content deficit.

  6. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    NASA Astrophysics Data System (ADS)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  7. Water vapor in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Larson, H. P.; Kunde, V. G.

    1986-01-01

    High spectral resolution observations of Jupiter at 2.7 and 5 microns acquired from the Kuiper Airborne Observatory were used to infer the vertical distribution of H2O between 0.7 and 6 bars. The H2O mole fraction, qH2O, is saturated for P<2 bars, qH2O = 4x.000001 in the 2 to 4 bar range and it increases to 3x.00001 at 6 bars where T = 288 K. The base of the 5 micron line formation region is determined by pressure-induced H2 opacity. At this deepest accessible level, the O/H ratio in Jupiter is depleted by a factor of 50 with respect to the solar atmosphere. High spatial resolution Voyager IRIS spectra of Jupiter's North Tropical Zone, Equatorial Zone, and Hot Spots in the North and South Equatorial Belt were analyzed to determine the spatial variation of H2O across the planet. The column abundance of H2O above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amgt. A cloud model for Jupiter's belts and zones was developed in order to fit the IRIS 5 micron spectra. An absorbing cloud located at 2 bars whose 5 micron optical thickness varies between 1 in the Hot Spots and 4 in the coldest zones satisfactorily matches the IRIS data.

  8. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    NASA Astrophysics Data System (ADS)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  9. Effects of different doses of gamma irradiation on oxygen and water vapour transmission rate of preserved human amniotic membrane.

    PubMed

    Zahari, Nor Kamalia; Sheikh Ab Hamid, Suzina; Yusof, Norimah

    2015-03-01

    Preserved human amniotic membrane either air dried or glycerol preserved has been used effectively to treat superficial and partial thickness wounds without leaving any obvious hypertrophic scar. The preserved amnion, sterilised by ionising radiation, is known as an effective barrier for heat, fluid and protein loss while adheres nicely on wound. Air drying slightly reduced the oxygen transmission rate (OTR) of the amnion and the value significantly dropped after 15 kGy (p < 0.05). Glycerol preservation significantly reduced (p < 0.05) the OTR indicating less oxygen transmitted through the well structured cells of the amnion. Increase in the OTR with the increasing radiation doses up to 35 kGy possibly due to direct effects of radiation that resulted in large intercellular gaps. Both preservation methods significantly increased (p < 0.05) the water vapour transmission rate (WVTR). However, the low WVTR in the air dried amnion at 15 and 25 kGy was postulated due to cross-linking of collagen. Changes in the biophysical properties can be linked to direct and indirect effects of radiation on collagen bundles. The radiation dose of 25 kGy caused no adverse effect on biophysical properties hence it is still acceptable to sterilize both the air dried and the glycerol preserved amnions.

  10. The effect of the low-level jet on the poleward water vapour transport in the central region of South America

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Inzunza, Juan B.

    The low-level jet (LLJ) in the central region of South America is studied. This LLJ is generated by the daily cycle of convergence and divergence east of the Andes Mountains. We use the 1973-1974 radiosonde and pilot balloon data set from the upper air weather stations, Salta and Resistencia, in northern Argentina to select 10 LLJ cases and another 10 NoLLJ cases (when the LLJ is not present). We use the University of Utah Mesoscale Model to simulate these situations in order to obtain a high-resolution low-level wind field. These model predictions are then used to calculate the meridional water vapour transport across a vertical cross-section, along 26°S in central South America. The results reveal that the LLJs are a very effective mechanism for the poleward water vapour transport.

  11. Balloon-borne cryogenic frost-point hygrometer observations of water vapour in the tropical upper troposphere and lower stratosphere over India: First results

    NASA Astrophysics Data System (ADS)

    Sunilkumar, S. V.; Muhsin, M.; Emmanuel, Maria; Ramkumar, Geetha; Rajeev, K.; Sijikumar, S.

    2016-03-01

    Balloon-borne cryogenic frost-point hygrometer (CFH) observations of water vapour in the upper troposphere and lower stratosphere (UTLS) region carried out over India, from Trivandrum [8.5°N, 76.9°E] and Hyderabad [17.5°N, 78.6°E], were compared with that obtained from quasi-collocated Aura-Microwave Limb Sounder (MLS) satellite observations. Comparisons show a small dry bias for MLS in the stratosphere. Saturated or super-saturation layers observed near the base of tropical tropopause layer (TTL) are consistent with the quasi-collocated space-based observations of tropical cirrus from KALPANA-1 and CALIPSO. Disturbance of large scale waves in the upper troposphere appears to modulate the water vapour and cirrus distribution.

  12. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    NASA Astrophysics Data System (ADS)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  13. Water, vapour and heat transport in concrete cells for storing radioactive waste

    NASA Astrophysics Data System (ADS)

    Carme Chaparro, M.; W. Saaltink, Maarten

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  14. Molecular dynamics simulation of vapour-liquid nucleation of water with constant energy

    NASA Astrophysics Data System (ADS)

    Duška, Michal; Němec, Tomáš; Hrubý, Jan; Vinš, Václav; Planková, Barbora

    2015-05-01

    The paper describes molecular dynamics study of nucleation of water in NVE ensemble. The numerical simulation was performed with the DL_POLY. The metastable steam consisting of 10976 water molecules with TIP4P/2005 potential was driven on the desired energy level by a simulation at constant temperature, and then the nucleation at constant energy was studied for several tens of nanoseconds, which was sufficient for clusters to evolve at hundred molecules size. The results were compared with the previously published results and the classical nucleation theory predictions.

  15. Assessment of adequate quality and collocation of reference measurements with space-borne hyperspectral infrared instruments to validate retrievals of temperature and water vapour

    NASA Astrophysics Data System (ADS)

    Calbet, X.

    2016-01-01

    A method is presented to assess whether a given reference ground-based point observation, typically a radiosonde measurement, is adequately collocated and sufficiently representative of space-borne hyperspectral infrared instrument measurements. Once this assessment is made, the ground-based data can be used to validate and potentially calibrate, with a high degree of accuracy, the hyperspectral retrievals of temperature and water vapour.

  16. Study of growth rate and composition variations in metalorganic vapour phase selective area epitaxy at atmospheric pressure and application to the growth of strained layer DBR lasers

    NASA Astrophysics Data System (ADS)

    Silvestre, L.; Ougazzaden, A.; Delprat, D.; Ramdane, A.; Daguet, C.; Patriarche, G.

    1997-01-01

    In selective area epitaxy (SAE), a lateral variation of thickness accompanied by a variation of composition occurs because of the presence of dielectric masks on the substrate surface. To take advantage of these behaviours for monolithic integration of electronic devices, a good control of growth rate and composition is necessary. For this aim, different bulk materials InP, InGaAs and InGaAsP have been systematically investigated as a function of the geometry of dielectric masks specially designed for this work. All growths were performed by metalorganic vapour phase epitaxy (MOVPE) at atmospheric pressure. An estimation of growth rate enhancement and composition variation between the open regions in dielectric masks and the unmasked region has been established, allowing the choice of specific mask geometry for each application. Following this study, a strained multiple quantum well (MQW) structure for a distributed Bragg reflector (DBR) laser has been selectively grown. The standard buried ridge structure (BRS) processed presents good characteristics (8 mA threshold current) and we obtained a 7 nm tuning range with a ridge structure, which constitutes the best value reported with SAE.

  17. Development of a capillary plasma pump with vapour bubble for water purification: experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Uehara, S.; Ishihata, K.; Nishiyama, H.

    2016-10-01

    This paper describes the development of a small-sized reactive plasma pump driven by capillary bubble discharge for the purification of treated water. The apparatus we developed decomposes the pollutants in the water by using chemical species generated by the plasma discharge. The resulting stream of bubbles obviates the need for an external gas supply or pump to transport the water. A high-speed camera was used to investigate the bubble dynamics responsible for the pumping effect, which is achieved by selecting the shape of the capillary such that the bubble ejections within enhance the ‘self-repetition’ action required for the pumping motion. Our experiments showed that optimal bubble generation requires a consumed power of 17.8 W. A theoretical model was developed to investigate the pumping mechanism. We solve the problems associated with liquid oscillations in the U-shaped water reservoir by employing a non-uniform cross-sectional area in our model. The chemical reactivity of the device was confirmed by using emission spectroscopy of OH radical and by measuring the decomposition of methylene blue.

  18. A water-vapour giga-maser in the active galaxy TXFS2226-184.

    PubMed

    Koekemoer, A M; Henkel, C; Greenhill, L J; Dey, A; van Breugel, W; Codella, C; Antonucci, R

    1995-12-14

    Active galactic nuclei are thought to be powered by gas falling into a massive black hole; the different types of active galaxy may arise because we view them through a thick torus of molecular gas at varying angles of inclination. One way to determine whether the black hole is surrounded by a torus, which would obscure the accretion disk around the black hole along certain lines of sight, is to search for water masers, as these exist only in regions with plentiful molecular gas. Since the first detection of an extra-galactic water maser in 1979, they have come to be associated primarily with active galaxies, and have even been used to probe the mass of the central engine. Here we report the detection of a water giga-maser in the radio galaxy TXFS2226-184. The strength of the emission supports a recently proposed theory of maser pumping that allows for even more powerful masers, which might be detectable at cosmological distances. Water masers may accordingly provide a way to determine distances to galaxies outside the usual distance ladder, providing an independent calibration of the Hubble constant.

  19. Chemistry of neutral species in the effluent of the micro atmospheric pressure plasma jet in water-helium admixture

    NASA Astrophysics Data System (ADS)

    Willems, Gert; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    A thorough understanding and good control of produced neutral and charged species by cold atmospheric plasmas is essential for potential environmental and/or bio-medical applications. In this study we use the COST reference micro plasma jet (µ-APPJ), which is a radio-frequency capacitive coupled plasma source with 1 mm electrode distance, which has been operated in helium-water vapour mixture and has been studied as a potential source of hydroxyl radicals and hydrogen peroxide molecules. The water vapour concentration was up to 1.2%. Molecular Beam mass spectrometry is used as diagnostic tool. An absolute calibration of hydrogen peroxide was conducted using a double bubbler concept, because the ionization cross section for hydrogen peroxide is not available. Additionally the effluent chemistry was investigated by use of a 0D and 2D model. Absolute densities of hydrogen peroxide and hydroxyl radicals from atmospheric plasma will be presented. Their dependency on water vapour concentration in the carrier gas as well as distance to target have been investigated. The measured density is between 5E-13 cm-3 (2.4ppm) and 1.5E-14 cm-3 (7.2ppm) for both hydrogen peroxide molecules and hydroxyl radicals. The achieved results are in good agreement with other experiments.

  20. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Culpin, Barry; Peters, Ken

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions.

  1. Springtime stratospheric water vapour in the Southern Hemisphere as measured by MLS. [Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Harwood, R. S.; Carr, E. S.; Froidevaux, L.; Jarnot, R. F.; Lahoz, W. A.; Lau, C. L.; Peckham, G. E.; Read, W. G.; Ricaud, P. D.; Suttie, R. A.

    1993-01-01

    The effects of the break-up of the Antarctic vortex on the water vapor distribution are studied using MLS measurements of water vapor made during September 1991 and November 1991. In early November at 22 hPa a moist area is found within the polar vortex, consistent with an observed descent of order 10 km and strong radiative cooling. As the vortex erodes (beginning of November 1991), parcels of moist air become detached from the edge of the vortex and mix rapidly (within 2-3 days) with drier mid-latitude air. When the vortex breaks up (mid-November), larger parcels of moist air from both the edge and the inner vortex migrate to mid-latitudes. These parcels have a longer lifetime than those produced by vortex erosion, probably because they are correlated with higher potential vorticity gradients. The break-up of the vortex is accompanied by a mean adiabatic equatorward transport resulting in a significant increase in midstratospheric water vapor values at mid-latitudes in late spring.

  2. Measurement of the combined heat and water-vapour flow through clothing under transient conditions

    NASA Astrophysics Data System (ADS)

    Farnworth, B.; Nordli, B.

    1982-03-01

    A sweating hot plate for the study of combined heat and water-vapor flow through clothing under Transient conditions is described. The results are in good agreement with the mathematical model reported in a previous paper for several model clothing systems. The heat loss through wool clothing was found to be smaller than that through similar polyester clothing during periods of sweating and larger during subsequent periods of drying, because of the effects of absorption of water vapor by hygroscopic materials. A comparison was made of the heat and vapor transmission of the clothing systems by incorporating a vapor-impermeable fabric or the waterproof but vapor-permeable fabric Gore-TEx. Liquid water was observed to condence on the inner surface of both fabrics during periods of sweating but the Gore-TEx dried within a few minutes of the end of the sweating period. Gore-TEx was found to be vapor permeable even at temperatures below 0 degrees C when frost was forming on its inner surface.

  3. H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Jokinen, Tuija; Sipilä, Mikko; Mauldin, Roy L.; Herrmann, Hartmut; Stratmann, Frank; Junninen, Heikki; Kulmala, Markku

    2014-06-01

    The importance of gas-phase products from alkene ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCI), for the process of atmospheric SO2 oxidation to H2SO4 has been recently discovered. Subjects of this work are investigations on H2SO4 formation as a function of water vapour content (RH = 2-65%) and temperature (278-343 K) starting from the ozonolysis of trans-2-butene and 2,3-dimethyl-2-butene (TME). H2SO4 production other than via the OH radical reaction was attributed to the reaction of SO2 with sCI, i.e. acetaldehyde oxide arising from trans-2-butene ozonolysis and acetone oxide from TME. Measurements have been conducted in an atmospheric pressure flow tube using NO3--CI-APi-TOF mass spectrometry for H2SO4 detection. The sCI yields derived from H2SO4 measurements at 293 K were 0.49 ± 0.22 for acetaldehyde oxide and 0.45 ± 0.20 for acetone oxide. Our findings indicate a H2SO4 yield from sCI + SO2 of unity or close to unity. The deduced rate coefficient ratio for the reaction of sCI with H2O and SO2, k(sCI + H2O)/k(sCI + SO2), was found to be strongly dependent on the structure of the Criegee Intermediate, for acetaldehyde oxide at 293 K: (8.8 ± 0.4)·10-5 (syn- and anti-conformer in total) and for acetone oxide: <4·10-6. H2SO4 formation from sCI was pushed back with rising temperature in both reaction systems most probably due to an enhancement of sCI decomposition. The ratio k(dec)/k(sCI + SO2) increased by a factor of 34 (acetone oxide) increasing the temperature from 278 to 343 K. In the case of acetaldehyde oxide the temperature effect is less pronounced. The relevance of atmospheric H2SO4 formation via sCI + SO2 is discussed in view of its dependence on the structure of the Criegee Intermediate.

  4. Electronic properties and structure of vanadia ultra-thin films grown on TiO 2( 1 1 0 ) in a water vapour ambient

    NASA Astrophysics Data System (ADS)

    Della Negra, Michela; Sambi, Mauro; Granozzi, Gaetano

    2001-12-01

    This paper reports on the deposition of a vanadium oxide ultra-thin film on TiO 2(1 1 0) by means of e-beam evaporation in an atmosphere of water vapour at room temperature. Photoelectron, X-ray excited Auger and valence band spectra have shown features very similar to those reported in the literature for vanadia ultra-thin films on TiO 2(1 1 0) identified as V 2O 3. An X-ray photoelectron diffraction analysis has been performed as a function of the overlayer thickness and after annealing treatments. It demonstrates that the overlayer grows ordered on the short range, pseudomorphic to the substrate, with a defective rutile crystal structure. The epitaxial relationship is maintained, with an approximately linear decrease in anisotropy, up to at least a coverage of 16 monolayers (ML); short annealing treatments are sufficient to restore the ordered structure, even on 20 ML thick films. Although in the bulk phase V 2O 3 is characterised by the corundum structure, which is also found when depositing vanadium oxide under similar experimental conditions on other substrates, such as Al 2O 3(0 0 0 1) and Pd(1 1 1), it appears that TiO 2(1 1 0) stabilises the isomorphic rutile lattice, which pertains to bulk VO 2 in its metallic phase, as well as to Magnéli phases of general formula V nO 2 n-1 . This particular behaviour of vanadia ultra-thin films grown on TiO 2 could be a key to understanding the catalytic activity and selectivity of the vanadia/titania systems in several chemical reactions.

  5. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  6. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  7. On the in-situ detectability of Europa's water vapour plumes from a flyby mission

    NASA Astrophysics Data System (ADS)

    Huybrighs, Hans L. F.; Futaana, Yoshifumi; Barabash, Stanislav; Wieser, Martin; Wurz, Peter; Krupp, Norbert; Glassmeier, Karl-Heinz; Vermeersen, Bert

    2017-06-01

    We investigate the feasibility of detecting water molecules (H2O) and water ions (H2O+) from the Europa plumes from a flyby mission. A Monte Carlo particle tracing method is used to simulate the trajectories of neutral particles under the influence of Europa's gravity field and ionized particles under the influence of Jupiter's magnetic field and the convectional electric field. As an example mission case we investigate the detection of neutral and ionized molecules using the Particle Environment Package (PEP), which is part of the scientific payload of the future JUpiter ICy moon Explorer mission (JUICE). We consider plumes that have a mass flux that is three orders of magnitude lower than what has been inferred from recent Hubble observations (Roth et al., 2014a). We demonstrate that the in-situ detection of H2O and H2O+ from these low mass flux plumes is possible by the instruments with large margins with respect to background and instrument noise. The signal to noise ratio for neutrals is up to ∼5700 and ∼33 for ions. We also show that the geometry of the plume source, either a point source or 1000 km-long crack, does not influence the density distributions, and thus, their detectability. Furthermore, we discuss how to separate the plume-originating H2O and H2O+ from exospheric H2O and H2O+. The separation depends strongly on knowledge of the density distribution of Europa's exosphere.

  8. Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere over the Tibetan Plateau during boreal summer

    NASA Astrophysics Data System (ADS)

    Yan, Xiaolu; Wright, Jonathon S.; Zheng, Xiangdong; Livesey, Nathaniel J.; Vömel, Holger; Zhou, Xiuji

    2016-08-01

    We validate Aura Microwave Limb Sounder (MLS) version 3 (v3) and version 4 (v4) retrievals of summertime temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere (UTLS; 10-316 hPa) against balloon soundings collected during the Study of Ozone, Aerosols and Radiation over the Tibetan Plateau (SOAR-TP). Mean v3 and v4 profiles of temperature, water vapour and ozone in this region during the measurement campaigns are almost identical through most of the stratosphere (10-68 hPa), but differ in several respects in the upper troposphere and tropopause layer. Differences in v4 relative to v3 include slightly colder mean temperatures from 100 to 316 hPa, smaller mean water vapour mixing ratios in the upper troposphere (215-316 hPa) and a more vertically homogeneous profile of mean ozone mixing ratios below the climatological tropopause (100-316 hPa). These changes substantially improve agreement between ozonesondes and MLS ozone retrievals in the upper troposphere, but slightly worsen existing cold and dry biases at these levels. Aura MLS temperature profiles contain significant cold biases relative to collocated temperature measurements in several layers of the lower-middle stratosphere and in the upper troposphere. MLS retrievals of water vapour volume mixing ratio generally compare well with collocated measurements, excepting a substantial dry bias (-32 ± 11 % in v4) that extends through most of the upper troposphere (121-261 hPa). MLS retrievals of ozone volume mixing ratio are biased high relative to collocated ozonesondes in the stratosphere (18-83 hPa), but are biased low at 100 hPa. The largest relative biases in ozone retrievals (approximately +70 %) are located at 83 hPa. MLS v4 offers substantial benefits relative to v3, particularly with respect to water vapour and ozone. Key improvements include larger data yields, reduced noise in the upper troposphere and smaller fluctuations in the bias profile at pressures larger than 100

  9. Modelling binary homogeneous nucleation of water-sulfuric acid vapours: parameterisation for high temperature emissions.

    PubMed

    Vehkamäki, H; Kulmala, M; Lehtinen, K E J; Noppel, M

    2003-08-01

    Particles formed in the automobile exhaust might form a significant fraction of fine particles in urban air. We have developed a model and produced parametrizations for predicting the particle formation rate at exhaust conditions. We studied the formation in the mixture of water and sulfuric acid vapors and at temperatures between 300 and 400 K. A thermodynamically consistent version of the classical binary homogeneous nucleation model was used. The needed thermodynamical input data (vapor pressures, chemical activities, surface tensions, densities) are carefully investigated and utilized in thermodynamically consistent way. The obtained nucleation rates are parametrized in order to be able to use this nucleation model in aerosol dynamic models, exhaust models, or other process models. The parametrization reduces computational time at least by a factor of 500.

  10. Electrochromic and optical study of atmospheric pressure chemical vapour deposition MoO3-Cr2O3 films.

    PubMed

    Ivanova, T; Gesheva, K A; Kozlov, M; Abrashev, M

    2011-09-01

    Electrochromism (EC) is a phenomenon in which materials are able to change their optical properties in a reversible and persistent way under the action of a voltage pulse. The studied MoO3-Cr2O3 films are obtained by atmospheric pressure CVD. Mixing MoO3 films with Cr2O3 is expected to enhance optical transparency and to modulate electrochromic properties of MoO3 films. In the present work, the study is focused on the morphological, structural and optical properties of MoO3-Cr2O3 films as a function of annealing temperatures. Raman spectroscopy and optical spectrophotometry are used for the film characterization. The mixed oxide films obtained on ordinary glass substrates show transmittance values in the range of 70-80%. Surface morphology is analyzed by SEM and AFM methods. The microanalysis of MoO3-Cr2O3 films reveals uniform distribution of the elements, which is a sign of homogeneous structure.

  11. Estimation of precipitable water vapour using kinematic GNSS precise point positioning over an altitude range of 1 km

    NASA Astrophysics Data System (ADS)

    Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.

    2013-12-01

    The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.

  12. Turbulent Humidity Fluctuations in the Convective Boundary Layer: Case Studies Using Water Vapour Differential Absorption Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Muppa, Shravan Kumar; Behrendt, Andreas; Späth, Florian; Wulfmeyer, Volker; Metzendorf, Simon; Riede, Andrea

    2016-01-01

    Turbulent humidity fluctuations in the convective boundary layer (CBL) under clear-sky conditions were investigated by deriving moments up to fourth-order. High-resolution humidity measurements were collected with a water vapour differential absorption lidar system during the HD(CP)}2 Observational Prototype Experiment (HOPE). Two cases, both representing a well-developed CBL around local noon, are discussed. While the first case (from the intensive observation period (IOP) 5 on 20 April 2013) compares well with what is considered typical CBL behaviour, the second case (from IOP 6 on 24 April 2013) shows a number of non-typical characteristics. Both cases show similar capping inversions and wind shear across the CBL top. However, a major difference between both cases is the advection of a humid layer above the CBL top during IOP 6. While the variance profile of IOP 5 shows a maximum at the interfacial layer, two variance peaks are observed near the CBL top for IOP 6. A marked difference can also be seen in the third-order moment and skewness profiles: while both are negative (positive) below (above) the CBL top for IOP 5, the structure is more complex for IOP 6. Kurtosis is about three for IOP 5, whereas for IOP 6, the distribution is slightly platykurtic. We believe that the entrainment of an elevated moist layer into the CBL is responsible for the unusual findings for IOP 6, which suggests that it is important to consider the structure of residual humidity layers entrained into the CBL.

  13. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    NASA Astrophysics Data System (ADS)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm-3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  14. The importance of the poikilohydric nature of lichens as natural tracers for delta18O of ambient vapour

    NASA Astrophysics Data System (ADS)

    Hartard, Britta; Cuntz, Matthias; Lakatos, Michael; Máguas, Cristina

    2010-05-01

    The stable isotope composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in poikilohydric organisms (i.e. lichens and bryophytes), where relative water content equilibrate with the surrounding humidity conditions and that are able to use distinct water sources such as precipitation, dew, fog and also water vapour. Moreover, lichens are ubiquitous organisms, and on a global scale, they are found in nearly all terrestrial ecosystems and also within these ecosystems they inhabit many microhabitats. As poikilohydric. especially green algal lichens are known to photosynthetically reactivate solely upon uptake of atmospheric moisture, even at non-saturated ambient humidity conditions. To understand basic isotope exchange processes on non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrates with the isotopic composition of surrounding water vapour. We found that the thallus water of lichens exposed to high relative humidity shows fast isotopic equilibration with the surrounding vapour regardless of whether the lichen experiences water loss or vapour uptake. The time until isotopic equilibrium is achieved depends on the initial water status as well as on the lichen's specific morphology. It ranged from 5 to 12h in previously dried lichens to approximately 40h in lichens previously rehydrated with liquid water of distinct isotopic composition. Even though markedly slower, isotopic equilibration between leaf water and ambient vapour may also occur in homoiohydric plants exposed to high relative humidity. At low relative humidity, however, the apparent vapour pressure deficit between the evaporative sites and the ambient air and the increased stomatal diffusion resistance generally causes leaf water enrichment. In contrast, poikilohydric lichens lack

  15. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-06-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm) and H2O (443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7×10-7 cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere), and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction at 477 nm and 443 nm. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation

  16. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    SciTech Connect

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N.; Oliphant, C. J.; Jordaan, W. A.; Fabiane, M.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  17. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  18. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  19. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise.

    PubMed

    Keenan, Trevor F; Hollinger, David Y; Bohrer, Gil; Dragoni, Danilo; Munger, J William; Schmid, Hans Peter; Richardson, Andrew D

    2013-07-18

    Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata-small pores on the leaf surface that regulate gas exchange-to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  20. Low-cost and easy experiments about water in the atmosphere

    NASA Astrophysics Data System (ADS)

    Costa, M.; Mazon, J.

    2012-04-01

    Atmospheric water represents only the 0,001% of the total water in the hydrosphere. Despite this tiny percentage, the physical changes water experiences in the atmosphere are essential for the conservation of this substance in our planet. Often, the understanding of the presence of water in the Earth's atmosphere and its physical changes inside this gas layer are difficult for most secondary and primary school students. We present 5 examples of simple practical activities that will facilitate students to think about and understand some important concepts about atmospheric water. Two of the basic principles to bear in mind when designing these activities are the use of cheap and easy to find materials and the simplicity of the construction and development of each activity. This simplicity makes it possible for the students to easily carry the experiments in the classroom or in the laboratory, using only a part of a class session. We think that the use of these kinds of activities enables us to work some basic concepts about atmospheric water with the students which lead to a more meaningful understanding, not only of these concepts but also of many other processes related to this part of the hydrosphere, such as meteorological phenomena, erosion, floods, etc. Here we present a brief description of the five experiments we suggest: 1- a crazy thermometer? Using water at the same temperature of the air, a piece of paper and two thermometers, we can easily "build" a dry and a wet bulb thermometer. Making questions about the differences between the temperatures of both thermometers we can understand what the air's humidity is and how we can calculate it. 2- what are clouds made of? Most of people think that clouds are made of water vapour. Observing what happens with the air above a small container filled with warm water when we approach a tray containing ice, we can conduct a Socratic dialogue that allows us to understand that clouds are made of ice or liquid water

  1. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network

    NASA Astrophysics Data System (ADS)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.

    2014-09-01

    The main goal of this article is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Center (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2) of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term) of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA) dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between -5 and +3%) are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA) and cloud top pressure (CTP)) on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to -20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values, changing from

  2. Adding constraints by in situ informations to optimal estimation retrievals of tropospheric water vapour profiles from microwave radiometry

    NASA Astrophysics Data System (ADS)

    Bleisch, R.; Kämpfer, N.

    2012-11-01

    The optimal estimation method is a widely used method to invert species profiles from spectra observed by a microwave radiometer. The classical retrieval is constrained by the a priori profile and the corresponding covariance matrix, which is a “soft” constraining of the retrieved profile to a certain range of values. However, in some cases a “hard” constraining of the profile to a fixed value known from other measurements would be desirable.This work presents an approach to introduce such “hard” retrieval constraints (fixed-points) into optimal estimation retrievals by adapting the a priori covariance matrix.Its application is tested on the example of the retrieval of tropospheric water vapour volume mixing ratio (vmr) profiles from spectra of the MIAWARA radiometer operated by the Institute of Applied Physics, University of Bern. Thereby the cloud base height is one candidate to deliver a fixed-point, as the corresponding vmr value can be determined by assuming a relative humidity of 100%.As a test, the approach is applied to spectra simulated from balloon soundings. The cloud base height is derived from these same balloon soundings. The results show a significant improvement of the retrieval performance for all cases with liquid clouds except for fog.Afterwards the approach is also applied to real MIAWARA data. Thereby the measurements of a ceilometer and an infrared sensor (both installed close to the instrument) are used to derive a fixed-point.In principle, the application on real data also works. However the retrieval performance is limited, because we are currently not able to determine the vmr value at fixed-point altitude with suitable precision. The cloud base temperature, needed for the calculation of the vmr value at fixed-point altitude, is determined indirectly from measurements of an infrared sensor attached to the instruments or by for example interpolating data from ECMWF-reanalysis. In both cases the precision is not very high, with

  3. Water soluble heptakis(6-deoxy-6-thio)cyclomaltoheptaose capped gold nanoparticles via metal vapour synthesis: NMR structural characterization and complexation properties.

    PubMed

    Uccello-Barretta, Gloria; Evangelisti, Claudio; Balzano, Federica; Vanni, Letizia; Aiello, Federica; Jicsinszky, Laszlo

    2011-05-01

    The complexation of heptakis(6-deoxy-6-thio)cyclomaltoheptaose to gold nanoparticles prepared by using the Metal Vapour Synthesis (MVS) led to water soluble gold nanoaggregates, thermally stable at 25°C. The role of gold concentration in the MVS-derived starting solution as well as of the cyclodextrin to gold molar ratio on the size of cyclodextrin-capped gold nanoparticles were investigated. The ability of cyclodextrin bonded to gold nanoparticles to include deoxycytidine was also probed in comparison with that of 1-thio-β-D-glucose sodium salt. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Modeling of Revitalization of Atmospheric Water

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  5. A new long-term total column water vapour product from ESA's GOME Evolution project: results from comparisons to ground-based and in-situ observations

    NASA Astrophysics Data System (ADS)

    Danielczok, Anja; Schröder, Marc; Beirle, Steffen; Wagner, Thomas; Loyola, Diego; Hollmann, Rainer

    2017-04-01

    The objective of ESA's GOME Evolution project is to provide the EO user community with improved GOME Level 1 data products, based on updated GOME calibration algorithms and improved in-flight calibration characterization for the complete mission. In addition an improved Level 2 water vapour algorithm was developed and corresponding Level 2 and Level 3 H2O data products of the full mission were reprocessed and - together with the Level 1 data - distributed to the EO user community. The GOME Evolution total column water vapour (TCWV) data products were compared to radiosonde observations from Analysed RadioSoundings Archive (ARSA) and to ground-based data from the Global Navigation Satellite System (GNSS) data provided by NCAR. The quality of the GOME Evolution TCWV data record is assessed in terms of bias, RMSD and stability. Here we focus on results from the comparisons to ARSA and GNSS and discuss associated results in terms of GCOS requirements and results from the GEWEX water vapor assessment (G-VAP, http://www.gewex-vap.org).

  6. Effect of densifying the GNSS GBAS network on monitoring the troposphere zenith total delay and precipitable water vapour content during severe weather events

    NASA Astrophysics Data System (ADS)

    Kapłon, Jan; Stankunavicius, Gintautas

    2016-04-01

    The dense ground based augmentation networks can provide the important information for monitoring the state of neutral atmosphere. The GNSS&METEO research group at Wroclaw University of Environmental and Life Sciences (WUELS) is operating the self-developed near real-time service estimating the troposphere parameters from GNSS data for the area of Poland. The service is operational since December 2012 and it's results calculated from ASG-EUPOS GBAS network (120 stations) data are supporting the EGVAP (http://egvap.dmi.dk) project. At first the zenith troposphere delays (ZTD) were calculated in hourly intervals, but since September 2015 the service was upgraded to include SmartNet GBAS network (Leica Geosystems Polska - 150 stations). The upgrade included as well: increasing the result interval to 30 minutes, upgrade from Bernese GPS Software v. 5.0 to Bernese GNSS Software v. 5.2 and estimation of the ZTD and it's horizontal gradients. Processing includes nowadays 270 stations. The densification of network from 70 km of mean distance between stations to 40 km created the opportunity to investigate on it's impact on resolution of estimated ZTD and integrated water vapour content (IWV) fields during the weather events of high intensity. Increase in density of ZTD measurements allows to define better the meso-scale features within different synoptic systems (e.g. frontal waves, meso-scale convective systems, squall lines etc). These meso-scale structures, as a rule are short living but fast developing and hardly predictable by numerical models. Even so, such limited size systems can produce very hazardous phenomena - like widespread squalls and thunderstorms, tornadoes, heavy rains, snowfalls, hail etc. because of prevalence of Cb clouds with high concentration of IWV. Study deals with two meteorological events: 2015-09-01 with the devastating squalls and rainfall bringing 2M Euro loss of property in northern Poland and 2015-10-12 with the very active front bringing

  7. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    NASA Astrophysics Data System (ADS)

    Thalman, R.; Volkamer, R.

    2010-12-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light-Emitting Diodes, LEDs) lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490 nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), methyl glyoxal (CH3COCHO), iodine oxide (IO), water vapour (H2O) and oxygen dimers (O4). We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm) and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3-7 × 10-7cm-1). Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype LED-CE-DOAS provides a low cost, yet research grade innovative instrument for applications in simulation chambers and in the open atmosphere.

  8. Effects of ultraviolet irradiation, pulsed electric field, hot water dip and ethanol vapours treatment on keeping and sensory quality of mung bean (Vigna radiata L. Wilczek) sprouts.

    PubMed

    Goyal, Ankit; Siddiqui, Saleem

    2014-10-01

    The objective of this research work was to evaluate the effects of UV- irradiation, pulsed electric field (PEF), hot water dip (HWD) and ethanol vapours on the quality and storage life of mung bean sprouts (Vigna radiata L. Wilczek). The sprouts were subjected to various treatments viz., UV-Irradiation (10 kJm(-2) in laminar flow chamber for 1 h), PEF (10,000 V for 10s), HWD (50 °C for 2 min) and ethanol vapours (1 h); and then stored in thermocol cups wrapped with perforated cling films at room (25 ± 1 °C) and low (7 ± 1 °C) temperature conditions. The sprouts were analyzed regularly at 24 h interval for sprout length, sprout weight, total soluble solids (TSS), titratable acidity, non-enzymatic browning, total plate count and overall acceptability. Sprout length and weight increased during storage. There was no significant effect of various treatments on sprout length and weight, except in ethanol treatment, where suppression was observed. HWD showed higher TSS and acidity than that of control. The least browning was observed in ethanol treatment. The total plate count was not significantly affected by various treatments. Overall acceptability under various treatments decreased during storage period both at room and low temperature. Hot water and ethanol vapour treated sprouts showed higher acceptability than other treatments. However, the acceptability scores for sprouts remained within the acceptable range (≥6) up to 72 h at room temperature and 120 h at low temperature conditions.

  9. When do Acacia mellifera trees use water? Responses of sap velocity to soil water availability, vapour pressure deficit and global radiation.

    NASA Astrophysics Data System (ADS)

    de Blécourt, Marleen; Thomsen, Simon; Gröngröft, Alexander; Eschenbach, Annette

    2017-04-01

    Acacia mellifera (multi-stem deciduous tree) is one of the dominant woody species responsible for bush encroachment in southern African savannahs. However, very little is known on water use, transpiration or xylem sap flow of A. mellifera. We analyzed the responses of sap velocity in A. mellifera to soil moisture, vapour pressure deficit and global radiation. This knowledge is necessary to improve hydrological modelling and will as such contribute to our understanding of the impacts of bush encroachment in (semi) arid savannahs on the soil water balance. We monitored sap velocities at two sites that differed in tree density in a semi-arid thornbush savannah in central Namibia (mean annual precipitation = 346 mm). Sap velocities were derived using the Heat Ratio Method. Measurements were done in four periods of 3-4 months between November 2014 and September 2016. The measurement periods covered the transitions between the dry and rainy season and vice versa, and the dry season. In two of these periods we did measurements at all stems of three trees per site (a total of 17-19 stems), while in the other two periods sap velocities were measured on one stem per tree for six to eight trees per site. The study was done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management) granted by the German Federal Ministry of Education and Research (BMBF). Preliminary results indicate that the day-to-day fluctuations in cumulative daily sap velocity showed a three-phase interaction with soil water tension (minimum soil water tension of four sensors to 1-m depth). Phase I: At soil water tension < pF 2.5, soil water tension had little influence on sap velocities, and fluctuations in sapflow seemed to be related to VPD and global radiation. Phase II: At soil water tensions between pF 2.5 and pF 3.2, sap velocities were negatively related to soil water tension. Phase III: At soil water tensions > pF 3.2 no sap flow could be

  10. Escape of atmospheres and loss of water

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  11. Escape of atmospheres and loss of water

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  12. MIR Measurements of Atmospheric Water Vapor Profiles

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Chang, L. A.

    1997-01-01

    Three subjects related to atmospheric water vapor profiling using the 183.3 GHz absorption line are discussed in this paper. First, data acquired by an airborne millimeter-wave imaging radiometer (MIR) over ocean surface in the western Pacific are used to estimate three-dimensional (3-D) distribution of atmospheric water vapor. The instrument's radiometric measurements with mixed vertical and horizontal polarizations require modifications to the retrieval algorithm used in the past. It is demonstrated that, after the modifications, the new algorithm can provide adequate retrieval of water vapor profiles, even though the measured data are of mixed polarizations. Next, the retrieved profiles, in terms of water vapor mixing ratio rho (g/kg), are compared with those measured in near concurrence by dropsondes from a research aircraft in the western Pacific and by a ground-based Raman lidar at Wallops Island, Virginia. The ratio of the standard deviation to the mean rho is found to be 0.12 at 0.25 km altitude and gradually degraded to 0.67 at the highest altitude of the retrieval of 10.25 km. Finally, the effect of the "initial guess" relative humidity profile on the final retrieved product is analyzed with respect to the condition for the convergent retrieval. It is found that the effect is minimal if the initial profile is not unrealistically different from the true one. If the initial profile is very different from the true one, the final retrieved product could be subject to a substantial error. Tightening of the convergent condition in the retrieval helped reduce magnitude of the error, but not remove it totally. It is concluded that an initial profile based on climatology is likely to provide most reliable retrieval results.

  13. Leaf Stomatal Responses to Vapour Pressure Deficit Under Current and CO2- Enriched Atmosphere Explained by the Economics of gas Exchange

    NASA Astrophysics Data System (ADS)

    Palmroth, S.; Katul, G. G.; Oren, R.

    2008-12-01

    Climate models predict that warming caused by increasing atmospheric greenhouse gases will not be accompanied with a change in atmospheric relative humidity (RH) but will cause an exponential increase in vapor pressure deficit (D). Predictions of water cycling in future climates are sensitive to the response of stomatal conductance (g) to all these changes. In currently used ecosystem models, the simulation of CO2 and water vapor exchange through stomata is typically based on empirical or semi-empirical stomatal responses to environmental stimuli. Depending on the formulation, stomata respond to either D or RH and, consequently, g predicted under future climate scenarios will greatly differ. In difference to the semi- empirical formulations of g, the tradeoffs between leaf-level carbon gain in photosynthesis and water loss in transpiration can be analyzed using the economics of gas exchange. First presented by Cowan (1977) and Cowan and Farquhar (1977; hereafter CF77) and reformulated by Berninger and Hari (1993; hereafter BH93), the cost (water loss) to benefit (carbon gain) analysis was framed as an economic optimization where the daily carbon gain is maximized for a given loss of water. While the assumptions on the form of the underlying functions differ between CF77 and BH93, we show that the optimal solutions can be made identical where the solution is independent of the time scale of flux integration. The stomatal control over gas exchange is described through a concept of invariant 'cost of water', without a priori specification of stomatal response to D or atmospheric CO2. The expressions are "emergent properties" of the optimization theory. These emergent responses are compared with data from studies from a wide range of conditions and are shown to be consistent with (1) the onset of an apparent "feed-forward" mechanism, (2) the sensitivity of stomatal conductance to D, and (3) the nonlinear variation in intercellular CO2 concentration with increasing D

  14. Vapour pressures, aqueous solubility, Henry's law constants and air/water partition coefficients of 1,8-dichlorooctane and 1,8-dibromooctane.

    PubMed

    Sarraute, Sabine; Mokbel, Ilham; Costa Gomes, Margarida F; Majer, Vladimir; Delepine, Hervé; Jose, Jacques

    2006-09-01

    New data on the vapour pressures and aqueous solubility of 1,8-dichlorooctane and 1,8-dibromooctane are reported as a function of temperature between 20 degrees C and 80 degrees C and 1 degrees C and 40 degrees C, respectively. For the vapour pressures, a static method was used during the measurements which have an estimated uncertainty between 3% and 5%. The aqueous solubilities were determined using a dynamic saturation column method and the values are accurate to within +/-10%. 1,8-Dichlorooctane is more volatile than 1,8-dibromooctane in the temperature range covered (p(sat) varies from 3 to 250 Pa and from 0.53 to 62 Pa, respectively) and is also approximately three times more soluble in water (mole fraction solubilities at 25 degrees C of 5.95 x 10(-7) and 1.92 x 10(-7), respectively). A combination of the two sets of data allowed the calculation of the Henry's law constants and the air water partition coefficients. A simple group contribution concept was used to rationalize the data obtained.

  15. Water vapour in the Sarahan Heat Low : A new theory of interannual to decadal scale variability in the summertime circulation over West Africa

    NASA Astrophysics Data System (ADS)

    Evan, Amato; Flamant, Cyrille; Lavaysse, Christophe; Kocha, Cécile

    2013-04-01

    The Saharan Heat Low (HL) is a region of summertime high surface and boundary layer temperature that is a key dynamical element of the West African monsoon system. Variations in the temperature and thickness of the boundary layer air over the HL region have been shown to modulate the characteristics of the monsoonal circulation, including the intensity and location of monsoon precipitation. Although the importance of the HL in shaping the intraseasonal variability of the monsoon has been established, no study has investigated the interannual to decadal scale variability of the HL, nor determined how such changes in the HL may have affected precipitation across West Africa on such time scales. Via analysis of observations, reanalysis data, coupled model output, and an idealized linear model, we suggest that the noted intraseasonal relationship between HL temperatures and monsoonal circulation holds on interannual to decadal time scales. In addition, the year-to-year variations in the intensity of the HL are radiatively forced by changes of water vapour within the HL region, and, as such, small changes in water vapour advected into the HL may alter the summertime circulation over West Africa. Based on these results we propose a new theory for explaining observed interannual to decadal-scale variability of the West African monsoon and summertime precipitation that is based on positive feedbacks between evaporation associated with vegetation changes in the Sahel, dust emission from West Africa, tropical Atlantic Ocean temperature anomalies, and the dynamics of the HL.

  16. Water vapour in the Sarahan Heat Low: A new theory of interannual to decadal scale variability in the summertime circulation over West Africa

    NASA Astrophysics Data System (ADS)

    Evan, A. T.; Flamant, C.; Lavaysse, C.

    2013-12-01

    The Saharan Heat Low (HL) is a region of summertime high surface and boundary layer temperature that is a key dynamical element of the West African monsoon system. Variations in the temperature and thickness of the boundary layer air over the HL region have been shown to modulate the characteristics of the monsoonal circulation, including the intensity and location of monsoon precipitation. Although the importance of the HL in shaping the intraseasonal variability of the monsoon has been established, no study has investigated the interannual to decadal scale variability of the HL, nor determined how such changes in the HL may have affected precipitation across West Africa on such time scales. Via analysis of observations, reanalysis data, coupled model output, and an idealized linear model, we suggest that the noted intraseasonal relationship between HL temperatures and monsoonal circulation holds on interannual to decadal time scales. In addition, the year-to-year variations in the intensity of the HL are radiatively forced by changes of water vapour within the HL region, and, as such, small changes in water vapour advected into the HL may alter the summertime circulation over West Africa. Based on these results we propose a new theory for explaining observed interannual to decadal-scale variability of the West African monsoon and summertime precipitation that is based on positive feedbacks between evaporation associated with vegetation changes in the Sahel, dust emission from West Africa, tropical Atlantic Ocean temperature anomalies, and the dynamics of the HL.

  17. Impact of water vapour and carbon dioxide on surface composition of C{sub 3}A polymorphs studied by X-ray photoelectron spectroscopy

    SciTech Connect

    Dubina, E.; Plank, J.; Black, L.

    2015-07-15

    The surface specific analytical method, X-ray photoelectron spectroscopy (XPS), has been used to study the effects of water vapour and CO{sub 2} on the cubic and orthorhombic polymorphs of C{sub 3}A. Significant differences between the two polymorphs were observed in the XPS spectra. Upon exposure to water vapour, both polymorphs produced C{sub 4}AH{sub 13} on their surfaces. Additionally, the sodium-doped o-C{sub 3}A developed NaOH and traces of C{sub 3}AH{sub 6} on its surface. Subsequent carbonation yielded mono carboaluminate on both polymorphs. Large amounts of Na{sub 2}CO{sub 3} also formed on the surface of o-C{sub 3}A as a result of carbonation of NaOH. Furthermore, the extent of carbonation was much more pronounced for o-C{sub 3}A{sub o} than for c-C{sub 3}A.

  18. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    PubMed

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  19. OT2_dneufeld_6: Probing the mystery of water vapour in carbon-rich stars: a search for the H2-17O and H2-18O isotopologues of water toward IRC+10216

    NASA Astrophysics Data System (ADS)

    Neufeld, D.

    2011-09-01

    Using the HIFI instrument, we propose to investigate further the puzzling - but widespread appearance of water vapour in carbon-rich stars. Following up on our discovery that water vapour is present in the warm inner envelope of the carbon rich AGB star IRC+10216, we will carry out a sensitive search for the minor isotopologues, H2-17O and H2-18O. The abundances of these species will provide a critical test of competing models for the origin of the water vapour present in the inner envelope. If the production of water vapor is initiated by the photodissociation of CO by UV radiation, as proposed by Decin et al. (2010) and Agndez et al. (2010), then enhancements in the H2-17O/H2-16O and H2-18O/H2-16O ratios are expected; however, if non-equilibrium chemistry initiated by pulsationally-driven shock waves is responsible - an alternative mechanism proposed recently by Cherchneff (2011) - then no such enhancement will be observed.

  20. The solar vacuum water pump

    SciTech Connect

    Ryduchowski, K.W.

    1983-12-01

    In this paper the conception of the solar vacuum water pump is presented. The working medium of the pump consists of the water vapour with temperature about 100/sup 0/C, which is produced by solar energy Fresnel-lens collector. The pressure difference between the condensing chamber /3/ and ambient atmosphere caused by the direct condensation of the water vapour at the surface of the pumped water, creates the necessary pumping force.

  1. Atmospheric water on Mars, energy estimates for extraction

    NASA Technical Reports Server (NTRS)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  2. Atmospheric water on Mars, energy estimates for extraction

    NASA Technical Reports Server (NTRS)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  3. Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements

    NASA Astrophysics Data System (ADS)

    Löhring, J.; Nicklaus, K.; Kujath, N.; Hoffmann, D.

    2007-02-01

    A resonator setup applying a double-sided diode end-pumped configuration and an electro-optical Q-switch for efficient generation of 4 mJ pulses (< 60 ns fwhm) at 935 nm from Nd:YGG is presented, to our knowledge for the first time. The optical-optical efficiency is 9 % (absorbed pump light to laser out). High quality crystals have been investigated, showing high damage threshold, high efficiency and good optical properties permitting Q-switched mode of operation. Experimental small signal gain data coincide with spectroscopic measurements. For vapour detection frequency stable single mode operation is required. Injection seeding with a single frequency cw-signal has been successfully achieved. Frequency control mechanisms are currently under investigation. The direct generation of 935 nm radiation simplifies future LIDAR systems significantly compared to current approaches based on OPO, Raman or Ti:Sapphire technology.

  4. Eddy transport of water vapor in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Murphy, J. R.; Haberle, Robert M.

    1993-01-01

    Viking orbiter measurements of the Martian atmosphere suggest that the residual north polar water-ice cap is the primary source of atmospheric water vapor, which appears at successively lower northern latitudes as the summer season progresses. Zonally symmetric studies of water vapor transport indicate that the zonal mean meridional circulation is incapable of transporting from north polar regions to low latitudes the quantity of water vapor observed. This result has been interpreted as implying the presence of nonpolar sources of water. Another possibility is the ability of atmospheric wave motions, which are not accounted for in a zonally symmetric framework, to efficiently accomplish the transport from a north polar source to the entirety of the Northern Hemisphere. The ability or inability of the full range of atmospheric motions to accomplish this transport has important implications regarding the questions of water sources and sinks on Mars: if the full spectrum of atmospheric motions proves to be incapable of accomplishing the transport, it strengthens arguments in favor of additional water sources. Preliminary results from a three dimensional atmospheric dynamical/water vapor transport numerical model are presented. The model accounts for the physics of a subliming water-ice cap, but does not yet incorporate recondensation of this sublimed water. Transport of vapor away from this water-ice cap in this three dimensional framework is compared with previously obtained zonally symmetric (two dimensional) results to quantify effects of water vapor transport by atmospheric eddies.

  5. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  6. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  7. The calibration of the spectroscopic diode laser sensor for the water vapour diagnostics at output of singlet oxygen generator for COIL

    NASA Astrophysics Data System (ADS)

    Megenin, A. V.; Chernyshov, A. K.; Azyazov, V. N.

    2005-06-01

    A1GaAs/GaAs quantum-well diode laser (824 nm) with the short external cavity was used for water diagnostics in the pumped out gas cell. The laser provided the 63 GHz continuous tuning of the optical frequency by the scanning of a pump current and a spectral linewidth of oscillation was less than 0,2 GHz. The experimentally obtained dependence of a second derivative amplitude on the vapour pressure coincides well with the calculated curve in the range of 0,4-20 Torr. The change of output signal close to linear was recorded at a pressure in the sample gas cell less than 5 Ton. The minimum concentration of H20, which is still measured by the diode laser sensor is estimated at a level 1,5x1015 molecule/cm3.

  8. Initial operations of an water vapour monitor (IRMA) at Gemini South, Las Campanas Observatories, and in the TMT site testing role

    NASA Astrophysics Data System (ADS)

    Phillips, Robin R.; Naylor, David A.

    2006-06-01

    Since February 2005, an Infrared Radiometer for Millimeter Astronomy (IRMA) has been measuring precipitable water vapour levels in Chile at the Gemini South site on Cerro Pachon with a second unit added at the Las Campanas observatories site in August 2005. We have also started data collection with three additional IRMA units at three locations for the TMT site testing effort. After a number of technical modifications to ensure reliable operations at much lower sites than IRMA was designed for, 6 months of near continuous pwv data have been collected at both existing telescope sites and several months of data at TMT candidate locations. These data are enabling us to compare the sites on diurnal as well as seasonal timescales.

  9. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  10. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification.

    PubMed

    Su, Ren; Forde, Michael M; He, Qian; Shen, Yanbin; Wang, Xueqin; Dimitratos, Nikolaos; Wendt, Stefan; Huang, Yudong; Iversen, Bo B; Kiely, Christopher J; Besenbacher, Flemming; Hutchings, Graham J

    2014-10-28

    As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structured metal co-catalysts onto the TiO2 photocatalyst. The as-synthesised metal NPs are highly dispersed on the support and show narrow size distributions, which suit photocatalysis applications. More importantly, the surfaces of the as-synthesised metal NPs are free of protecting ligands, enabling the photocatalysts to be ready to use without further treatment. The effect of the metal identity, the alloy chemical composition, and the microstructure on the photocatalytic performance has been investigated for hydrogen production and phenol decomposition. Whilst the photocatalytic H2 production performance can be greatly enhanced by using the core-shell structured co-catalyst (Pdshell-Aucore and Ptshell-Aucore), the Ptshell-Aucore modified TiO2 yields enhanced quantum efficiency but a reduced effective decomposition of phenol to CO2 compared to that of the monometallic counterparts. We consider the CVI approach provides a feasible and elegant process for the decoration of photocatalyst materials.

  11. Modelling vapour transport in Surtseyan bombs

    NASA Astrophysics Data System (ADS)

    McGuinness, Mark J.; Greenbank, Emma; Schipper, C. Ian

    2016-05-01

    We address questions that arise if a slurry containing liquid water is enclosed in a ball of hot viscous vesicular magma ejected as a bomb in the context of a Surtseyan eruption. We derive a mathematical model for transient changes in temperature and pressure due to flashing of liquid water to vapour inside the bomb. The magnitude of the transient pressure changes that are typically generated are calculated together with their dependence on material properties. A single criterion to determine whether the bomb will fragment as a result of the pressure changes is derived. Timescales for ejection of water vapour from a bomb that remains intact are also revealed.

  12. The residence time of water in the atmosphere revisited

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud J.; Tuinenburg, Obbe A.

    2017-02-01

    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9 ± 0.4 days (uncertainty given as 1 standard deviation). We use two different atmospheric moisture tracking models (WAM-2layers and 3D-T) to obtain atmospheric residence time characteristics in time and space. The tracking models estimate the global average residence time to be around 8.5 days based on ERA-Interim data. We conclude that the statement of a recent study that the global average residence time of water in the atmosphere is 4-5 days, is not correct. We derive spatial maps of residence time, attributed to evaporation and precipitation, and age of atmospheric water, showing that there are different ways of looking at temporal characteristics of atmospheric water. Longer evaporation residence times often indicate larger distances towards areas of high precipitation. From our analysis we find that the residence time over the ocean is about 2 days less than over land. It can be seen that in winter, the age of atmospheric moisture tends to be much lower than in summer. In the Northern Hemisphere, due to the contrast in ocean-to-land temperature and associated evaporation rates, the age of atmospheric moisture increases following atmospheric moisture flow inland in winter, and decreases in summer. Looking at the probability density functions of atmospheric residence time for precipitation and evaporation, we find long-tailed distributions with the median around 5 days. Overall, our research confirms the 8-10-day traditional estimate for the global mean residence time of atmospheric water, and our research contributes to a more complete view of the characteristics of the turnover of water in the atmosphere in time and space.

  13. Water vapor in Titan's atmosphere observed by Cassini/CIRS data

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Teanby, N. A.; Anderson, C. M.; Irwin, P. G.; Flasar, F. M.

    2011-12-01

    Water vapor in Titan's atmosphere has only been detected by whole-disk observations from the Infrared Space Observatory [1]. In fact an earlier attempt to measure water vapor with NASA's Cassini Composite Infrared Spectrometer (CIRS, [2]) was unsuccessful, due to poor signal-to-noise in early versions of the calibration pipeline. In this paper we show the detection of the water vapor in Titan's atmosphere through the analysis of the emission lines present in the spectral range (60 - 300 cm-1) observed by the far-IR Focal Plane 1 (FP1) detector. We model high spectral resolution (0.5 cm-1) disk versus limb data to determine the water mixing ratio as a function of latitude and time (using data acquired from December 2004 to late 2011), also exploring differences between the leading and trailing side of Saturn's moon. The opacity sources in the atmospheric model include thermal emission from the moon, collision-induced absorption (CIA) from pairs of Titan's main atmospheric molecules, the stratospheric aerosol and emission lines from atmospheric gases across the FP1 spectral range (see Cottini et al., 2011 [3] for description of the model). The radiative transfer model and retrieval code (NEMESIS) is based on the method of optimal estimation to perform a correlated-k computation of synthetic spectra.Our determination of the atmospheric abundance of water vapor yields a value of ~0.14 ppb assuming a constant vertical profile, which corresponds to a column abundance of 4.3x1014 molecules/cm2. Preliminary results suggest a change in the atmospheric water vapour abundance during northern winter into early northern spring. We also detected water in CIRS high resolution limb spectra. Modeling these limb observations, mainly centered on two tangent heights, 125 and 225 km, allows us to constrain the water vapor abundance vertical profile; utilizing the limb data allows us to retrieve the water vapor from disk observations using a water vapor mixing ratio that varies in

  14. Lunar absorption spectrophotometer for measuring atmospheric water vapor.

    PubMed

    Querel, Richard R; Naylor, David A

    2011-02-01

    A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

  15. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    PubMed

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg(+)), ethylmercury (EtHg(+)) and inorganic mercury (Hg(2+)) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL(-1) for EtHg(+) and 5-450ngL(-1) for MeHg(+) and Hg(2+). Limits of detection were 3.0ngL(-1) for EtHg(+) and 1.5ngL(-1) for MeHg(+) and Hg(2+). Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%.

  16. Seasonal variation of and the influence of land use on carbon and water vapour fluxes at the Swiss Carbomont field site

    NASA Astrophysics Data System (ADS)

    Rogiers, N.; Eugster, W.; Furger, M.; Bantelmann, E.; Siegwolf, R.

    2003-04-01

    Within the EU project CARBOMONT the carbon dioxide and water vapour budget as well as the energy budgets over an Alpine grassland ecosystem are quantified. The goal of our continuous measurements of ecosystem fluxes can improve the understanding of the global carbon and water budgets. PSI has equipped a site at Rigi-Seebodenalp in Central Switzerland. The site is divided into different compartments with different land-use and management: an abandoned wet area, and a pasture for cow and horse foraging with two annual grass cuts. The net ecosystem exchange (NEE = photosynthesis + respiration) is determined with the eddy covariance method. These measurements are supplemented by conventional micrometeorological measurements. Here we try to quantify the fluxes of CO2 and H2O over the vegetation period starting in June 2002 till the end of October. The CO2 and H2O fluxes vary considerably over the course of the vegetation period. The seasonal variation of these fluxes can be explained by a change in the duration of the photosynthetically active period, a change in temperature and in leaf area index. Snow at the end of September reduced the CO2 uptake clearly. Further, the factors influencing the seasonal variation of canopy evaporation (latent heat flux) are determined. The influence of the land use on the turbulent exchange of CO2 is investigated. The cutting of the vegetation resulted in a decreased CO2 uptake during the day.

  17. Atmospheric water budget over the South Asian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.

    2017-02-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (<500 mm/year). Similar result is observed in in NASA GLDAS data (1980-2014). The atmospheric water budget shows annual, seasonal, and intra-seasonal variations. Evapotranspiration does not show a high intra-seasonal variability as compared to other water budget components. The coupling among the water budget anomalies is investigated. The results show that regional inter-annual evapotranspiration anomalies are not exactly in phase with rainfall anomalies; it is strongly influenced by the surface conditions and other atmospheric forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  18. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  19. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    SciTech Connect

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  20. FORMATION OF WATER IN THE WARM ATMOSPHERES OF PROTOPLANETARY DISKS

    SciTech Connect

    Glassgold, A. E.; Meijerink, R.; Najita, J. R. E-mail: rowin@gps.caltech.edu

    2009-08-10

    The gas-phase chemistry of water in protoplanetary disks is analyzed with a model based on X-ray heating and ionization of the disk atmosphere. Several uncertain processes appear to play critical roles in generating the column densities of warm water that are detected from disks at infrared wavelengths. The dominant factors are the reactions that form molecular hydrogen, including formation on warm grains, and the ionization and heating of the atmosphere. All of these can work together to produce a region of high water abundances in the molecular transition layer of the inner disk atmosphere, where atoms are transformed into molecules, the temperature drops from thousands to hundreds of Kelvins, and the ionization begins to be dominated by the heavy elements. Grain formation of molecular hydrogen and mechanical heating of the atmosphere can play important roles in this region and directly affect the amount of warm water in protoplanetary disk atmospheres. Thus, it may be possible to account for the existing measurements of water emission from T Tauri disks without invoking transport of water from cooler to warmer regions. The hydroxyl radical OH is underabundant in this model of disk atmospheres and requires consideration of additional production and excitation processes.

  1. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-11-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapour equilibration and laser spectrometry (DVE-LS) was first described in 2008, and has since been rapidly adopted. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement, as well as accuracy, is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g. water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g. clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g. sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents > 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas-sampling bags were determined to be as good as, if not better than, other, more expensive specialty bags. Sample storage in sample bags provides acceptable results for up to 10 days of storage; however, measurable water loss, as well as evaporitic isotopic enrichment, occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high-resolution pore water

  2. The Residence Time of Water in the Atmosphere Revisited

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; Tuinenburg, Obbe

    2017-04-01

    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9±0.4 days (uncertainty given as one standard deviation). We use two different atmospheric moisture tracking models (WAM-2layers and 3D-Trajectories) to obtain atmospheric residence time characteristics in time and space. The tracking models estimate the global average residence time to be around 8.5 days based on ERA-Interim data. We conclude that the statement of a recent study that the global average residence time of water in the atmosphere is 4-5 days, is not correct. We derive spatial maps of residence time, attributed to evaporation and precipitation, and age of atmospheric water, showing that there are different ways of looking at temporal characteristics of atmospheric water. Longer evaporation residence times often indicate larger distances towards areas of high precipitation. From our analysis we find that the residence time over the ocean is about 2 days lower than over land. It can be seen that in winter, the age of atmospheric moisture tends to be much lower than in summer. On the Northern Hemisphere, due to the contrast in ocean-to-land temperature and associated evaporation rates, the age of atmospheric moisture increases following atmospheric moisture flow inland in winter, and decreases in summer. Looking at the probability density functions of atmospheric residence time for precipitation and evaporation we find long-tailed distributions with the median around 5 days. Overall, our research confirms the 8-10 days traditional estimate for the global mean residence time of atmospheric water, and our research contributes to a more complete view on the characteristics of the turnover of water in the atmosphere in time and space. In the light of this session, our results show that the turnover of water is relatively fast, but water travels quite far, which explains

  3. Atmospheric corrections for satellite water quality studies

    NASA Technical Reports Server (NTRS)

    Piech, K. R.; Schott, J. R.

    1975-01-01

    Variations in the relative value of the blue and green reflectances of a lake can be correlated with important optical and biological parameters measured from surface vessels. Measurement of the relative reflectance values from color film imagery requires removal of atmospheric effects. Data processing is particularly crucial because: (1) lakes are the darkest objects in a scene; (2) minor reflectance changes can correspond to important physical changes; (3) lake systems extend over broad areas in which atmospheric conditions may fluctuate; (4) seasonal changes are of importance; and, (5) effects of weather are important, precluding flights under only ideal weather conditions. Data processing can be accomplished through microdensitometry of scene shadow areas. Measurements of reflectance ratios can be made to an accuracy of plus or minus 12%, sufficient to permit monitoring of important eutrophication indices.

  4. Factors governing water condensation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Colburn, David S.; Pollack, J. B.; Haberle, Robert M.

    1988-01-01

    Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation.

  5. Modelling of the vapour-liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kazdal, Timur J.; Lang, Sebastian; Kühl, Frank; Hampe, Manfred J.

    2014-03-01

    The fuel cell technology is a key element for the hydrogen energy economy and therefore crucial for sustainable development. High temperature proton exchange membrane (HT-PEM) fuel cells (FC) can be operated with reformate gas and thus represent an important bridging technology for the energy transition to a renewable energy based system. HT-PEM FCs based on phosphoric acid (PA) are still subject to intense research, investigating the electrolyte behaviour. By enhancing state of the art 2D FEM simulations of FCs with the vapour liquid equilibrium of water-phosphoric acid and evaporation kinetics, a model was created in which the local concentration of PA can be calculated. Knowledge of the concentration field yields the basis for calculating the locally varying ionic conductivity and other physical properties. By describing the volume expansion behaviour of PA it was possible to predict the catalyst particle deactivation due to the swelling of PA. The in situ concentration predicted by the simulation ranges from 96 to 111 wt%. The model was validated using measured data of a single cell design for different temperatures and pressures. By varying the PA content flooding of the simulated fuel cell could be observed and was linked to humidification effects.

  6. Effect of water vapour condensation on the radon content in subsurface air in a hypogeal inactive-volcanic environment in Galdar cave, Spain

    NASA Astrophysics Data System (ADS)

    Fernandez-Cortes, A.; Benavente, D.; Cuezva, S.; Cañaveras, J. C.; Alvarez-Gallego, M.; Garcia-Anton, E.; Soler, V.; Sanchez-Moral, S.

    2013-08-01

    Fluctuations of trace gas activity as a response to variations in weather and microclimat