Final Technical Report of Project DE-FG02-96ER14647
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundeen, Stephen R.
This is the final technical report of work completed under DOE support over the period Sept. 1, 1996 until May 31, 2015. The title of the project was "Ion/Excited Atom Collision Studies with a Rydberg Target and a CO2 Laser" from 9/1/96 to 10/31/06, and "Properties of Actinide Ions from Measurements of Rydberg Ion Fine Structure" from 11/1/06 until 5/31/15. The primary technical results were a detailed experimental study of resonant charge transfer between Rydberg atoms and highly-charged ions, and unique measurements of many properties of multiply-charged Thorium ions.
Sixteenth International Conference on the physics of electronic and atomic collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalgarno, A.; Freund, R.S.; Lubell, M.S.
1989-01-01
This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard, P.
The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describemore » inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.« less
Ultracold collisions between Rb atoms and a Sr+ ion
NASA Astrophysics Data System (ADS)
Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee
2015-05-01
In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.
Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency
NASA Technical Reports Server (NTRS)
Crampton, S. B.
1979-01-01
Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.
NASA Astrophysics Data System (ADS)
Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.
The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.
NASA Astrophysics Data System (ADS)
Araki, Samuel J.
2016-11-01
In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.
Cooling of trapped ions by resonant charge exchange
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Rangwala, S. A.
2018-04-01
The two most widely used ion cooling methods are laser cooling and sympathetic cooling by elastic collisions (ECs). Here, we demonstrate another method of cooling ions that is based on resonant charge exchange (RCE) between the trapped ion and the ultracold parent atom. Specifically, trapped C s+ ions are cooled by collisions with cotrapped, ultracold Cs atoms and, separately, by collisions with cotrapped, ultracold Rb atoms. We observe that the cooling of C s+ ions by Cs atoms is more efficient than the cooling of C s+ ions by Rb atoms. This signals the presence of a cooling mechanism apart from the elastic ion-atom collision channel for the Cs-C s+ case, which is cooling by RCE. The efficiency of cooling by RCE is experimentally determined and the per-collision cooling is found to be two orders of magnitude higher than cooling by EC. The result provides the experimental basis for future studies on charge transport by electron hopping in atom-ion hybrid systems.
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
ERIC Educational Resources Information Center
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions
NASA Astrophysics Data System (ADS)
Beijerinck, H. C. W.
2000-12-01
Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, E.W.; Flannery, M.R.; Thomas, E.W.
This bibliography deals mainly with binary and ternary collisions involving electrons, photons, and heavy particles (i.e., atoms, molecules, and ions). The energy range covered for each kind of collision is such that the interactions might be described as electronic, atomic, or chemical--higher-energy collisions involving nuclear forces are not treated. Also covered are particle and photon impact on surfaces, the passage of particles and radiation through bulk matter, and transport phenomena in gases. Practically all of the references cited are data compilations, other bibliographies, review articles, or books. The main objective is to provide easy access to atomic collision data, althoughmore » some references are included principally for their tutorial value.« less
Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions
2016-06-06
Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular
NASA Technical Reports Server (NTRS)
Green, S.
1984-01-01
The stability of HOC(+) ions under conditions in interstellar molecular clouds is considered. In particular, the possibility that collisions with helium or hydrogen will induce isomerization to the stable HCO(+) form is examined theoretically. Portions of the electronic potential energy surfaces for interaction with He and H atoms are obtained from standard quantum mechanical calculations. Collisions with He atoms are found to be totally ineffective for inducing isomerization. Collisions with H atoms are found to be ineffective at low interstellar temperatures owing to a small (about 500 K) barrier in the entrance channel; at higher temperatures where this barrier can be overcome, however, collisions with hydrogen atoms do result in conversion to the stable HCO(+) form. Although detailed calculations are not presented, it is argued that low-energy collisions with H2 molecules are also ineffective in destroying the metastable ion.
Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms
NASA Astrophysics Data System (ADS)
Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr
2016-05-01
We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.
Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions
NASA Technical Reports Server (NTRS)
King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.
1993-01-01
We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.
Martinazzo, Rocco; Tantardini, Gian Franco
2006-03-28
Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.
Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas
NASA Technical Reports Server (NTRS)
Braun, C. G.; Kunc, J. A.
1989-01-01
A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.
Electron-Atom Collisions in Gases
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2013-01-01
Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
NASA Astrophysics Data System (ADS)
Korol, Andrey V.; Solov'yov, Andrey
2013-01-01
Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.
Collisional transfer of population and orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Bai, J.; Beser, B.; Ahmed, E. H.; Lyyra, A. M.; Huennekens, J.
2011-05-01
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb2 molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)1Σ+(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 31Π ← 2(A)1Σ+spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Collisional transfer of population and orientation in NaK.
Wolfe, C M; Ashman, S; Bai, J; Beser, B; Ahmed, E H; Lyyra, A M; Huennekens, J
2011-05-07
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb(2) molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)(1)Σ(+)(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 3(1)Π ← 2(A)(1)Σ(+)spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Minton, T. K.; Cline, J. A.; Braunstein, M.
2002-01-01
Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam obtained from separate measurements. These computations use basic engineering models for the gas-gas and gas-surface scattering and focus on the influence of multi-collision effects. These simulations characterize many important quantities of interest including the actual flux of atoms that reach the surface, the energy distribution of this flux, as well as the direction of the velocity of the flux that strikes the surface. These quantities are important in characterizing the conditions which give rise to measured surface erosion. The calculations also yield time- snapshots of the pulse as it impacts and flows around the surface. These snapshots reveal the local environment of gas near the surface for the duration of the pulse. We are also able to compute the flux of molecules that travel downstream and reach the spectrometer, and we characterize their velocity distribution. The number of atoms that reach the spectrometer can in fact be influenced by the presence of the surface due to gas-gas collisions from atoms scattered h m the surface, and it will generally be less than that with the surface absent. This amounts to an overall normalization factor in computing erosion yields. We discuss these quantities and their relationship to the gas-surf$ce interaction parameters. We have also performed similar calculations corresponding to conditions (number densities, temperatures, and velocities) of low-earth orbit. The steady-state nature and lower overall flux of the actual space environment give rise to differences in the nature of the gas-impacts on the surface from those of the ground-based measurements using a pulsed source.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.; Mildebrath, Mark E.
1983-12-01
The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.
Kinematic cooling of molecules in a magneto-optical trap
NASA Astrophysics Data System (ADS)
Takase, Ken; Chandler, David W.; Strecker, Kevin E.
2008-05-01
We will present our current progress on a new experimental technique aimed at slowing and cooling hot molecules using a single collision with magneto-optically trapped atoms. Kinematic cooling, unlike buffer gas and sympathetic cooling, relies only on a single collision between the molecule and atom to stop the molecule in the laboratory frame. This technique has recently been demonstrated in a crossed atomic and molecular beam machine to produce 35mK samples of nitric oxide via a single collision with argon [1]. In this technique we replace the atomic beam with a sample magneto-optically trapped atoms. We are currently designing and building a new apparatus to attempt these experiments. [1] Kevin E. Strecker and David W. Chandler (to be published)
Computational chemistry research
NASA Technical Reports Server (NTRS)
Levin, Eugene
1987-01-01
Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.
The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research.
Radics, B; Nagata, Y; Yamazaki, Y; Ishikawa, S; Kuroda, N; Matsuda, Y; Anfreville, M; Aune, S; Boyer, M; Chateau, F; Combet, M; Granelli, R; Legou, P; Mandjavidze, I; Procureur, S; Riallot, M; Vallage, B; Vandenbroucke, M
2015-08-01
The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.
The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radics, B., E-mail: balint.radics@riken.jp; Nagata, Y.; Yamazaki, Y.
2015-08-15
The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.
Guide to bibliographies, books, reviews and compendia of data on atomic collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, E.W.; Mansky, E.J.
In 1985, the Atlanta atomic physics group published an extensive bibliography on atomic collisions. It differed from the usual in that it contained few references to individual research papers, but instead concentrated on data collections, bibliographies, review articles and books. The present work updates the 1985 from August 1984 to September 1992.
Observation of correlated excitations in bimolecular collisions
NASA Astrophysics Data System (ADS)
Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.
2018-02-01
Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.
Collisions between ultracold metastable He atoms
NASA Astrophysics Data System (ADS)
Woestenenk, G.; Mastwijk, H. C.; Thomsen, J. W.; vna der Straten, P.; Pieksma, M.; van Rijnbach, M.; Niehaus, A.
1999-06-01
We present experimental data on collisions between excited He-atoms occurring in a magneto-optical trap (MOT) at a temperature of 1.1 mK. He(2 3S)-atoms produced in a discharge are pre-cooled and trapped using the He(2 3S)-He(2 3P 2) transition for laser manipulation. Measurements of the Penning ionization rate as a function of the MOT-laser frequency are presented and theoretically analyzed. The analysis, based on a model which is presented in detail for the first time, leads to a good understanding of the complex nature of optical collisions. Further, first and preliminary measurements of the kinetic energy distributions of He 2+- and He +-ions formed by Penning ionization in optical collisions are presented.
NASA Astrophysics Data System (ADS)
Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.
2013-05-01
Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.
Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod
2017-03-16
We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(2 3 S 1 ) + ortho/para-H 2 → He(1s 2 ) + ortho/para-H 2 + + e - resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.
Jones, J; Richter, K; Price, T J; Ross, A J; Crozet, P; Faust, C; Malenda, R F; Carlus, S; Hickman, A P; Huennekens, J
2017-10-14
We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A) 1 Σ + electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A) 1 Σ + state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A) 1 Σ + molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A) 1 Σ + with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A) 1 Σ + with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.
2017-10-01
We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.
Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui
2017-11-01
Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.
Collision Dynamics of Rydberg Atoms and Molecules at Ultralow Energies
2005-12-31
body recombination between electrons, ions and neural gas atoms. We wish to study the interaction and collisions between two Rydberg atoms in the...transitions, Exact solutions of Stark mixing in atomic hydro- where Ekjn is the Levi - Civita antisymmetric symbol gen induced by the time-dependent...L and U do not close under commutation to form a Lie algebra because [Ui, Uj] = (-2g)iCijkLk, where cijk is the Levi - Civita antisymmetric symbol for
V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions
NASA Astrophysics Data System (ADS)
Mewe, R.
1999-07-01
This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.
Matter-wave entanglement and teleportation by molecular dissociation and collisions.
Opatrný, T; Kurizki, G
2001-04-02
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions
NASA Astrophysics Data System (ADS)
Opatrný, T.; Kurizki, G.
2001-04-01
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
NASA Astrophysics Data System (ADS)
Liao, P. F.; Bjorkholm, J. E.; Berman, P. R.
1980-06-01
We report the results of an experimental study of the effects of velocity-changing collisions on two-photon and stepwise-absorption line shapes. Excitation spectra for the 3S12-->3P12-->4D12 transitions of sodium atoms undergoing collisions with foreign gas perturbers are obtained. These spectra are obtained with two cw dye lasers. One laser, the pump laser, is tuned 1.6 GHz below the 3S12-->3P12 transition frequency and excites a nonthermal longitudinal velocity distribution of excited 3P12 atoms in the vapor. Absorption of the second (probe) laser is used to monitor the steady-state excited-state distribution which is a result of collisions with rare gas atoms. The spectra are obtained for various pressures of He, Ne, and Kr gases and are fit to a theoretical model which utilizes either the phenomenological Keilson-Störer or the classical hardsphere collision kernel. The theoretical model includes the effects of collisionally aided excitation of the 3P12 state as well as effects due to fine-structure state-changing collisions. Although both kernels are found to predict line shapes which are in reasonable agreement with the experimental results, the hard-sphere kernel is found superior as it gives a better description of the effects of large-angle scattering for heavy perturbers. Neither kernel provides a fully adequate description over the entire line profile. The experimental data is used to extract effective hard-sphere collision cross sections for collisions between sodium 3P12 atoms and helium, neon, and krypton perturbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumder, A.; Dikshit, B.; Bhatia, M. S.
2008-09-15
State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean valuemore » of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.« less
NASA Astrophysics Data System (ADS)
Kelley, M.; Buathong, S.; Dunning, F. B.
2017-05-01
Collisions between K(12p) Rydberg atoms and CH3NO2 target molecules are studied. Whereas CH3NO2 can form long-lived valence-bound CH3NO2-ions, the data provide no evidence for production of long-lived K+⋯ CH3
Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics
ERIC Educational Resources Information Center
Mahan, Bruce H.
1974-01-01
Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)
On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions
NASA Astrophysics Data System (ADS)
Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.
2017-11-01
Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.
Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A
2001-02-05
Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.
Division B Commission 14 Working Group: Collision Processes
NASA Astrophysics Data System (ADS)
Peach, Gillian; Dimitrijevic, Milan S.; Barklem, Paul S.
2016-04-01
Since our last report (Peach & Dimitrijević 2012), a large number of new publications on the results of research in atomic and molecular collision processes and spectral line broadening have been published. Due to the limited space available, we have only included work of importance for astrophysics. Additional relevant papers, not included in this report, can be found in the databases at the web addresses provided in Section 6. Elastic and inelastic collisions between electrons, atoms, ions, and molecules are included, as well as charge transfer in collisions between heavy particles which can be very important.
Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.
Ki, Dae-Han; Jung, Young-Dae
2013-04-21
The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.
Horio, Takuya; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi
2006-09-28
Ionic-state-resolved collision energy dependence of Penning ionization cross sections for OCS with He*(2(3)S) metastable atoms was measured in a wide collision energy range from 20 to 350 meV. Anisotropic interaction potential for the OCS-He*(2(3)S) system was obtained by comparison of the experimental data with classical trajectory simulations. It has been found that attractive potential wells around the O and S atoms are clearly different in their directions. Around the O atom, the collinear approach is preferred (the well depth is ca. 90 meV), while the perpendicular approach is favored around the S atom (the well depth is ca. 40 meV). On the basis of the optimized potential energy surface and theoretical simulations, stereo reactivity around the O and S atoms was also investigated. The results were discussed in terms of anisotropy of the potential energy surface and the electron density distribution of molecular orbitals to be ionized.
PREFACE: XXV International Conference on Photonic, Electronic and Atomic Collisions
NASA Astrophysics Data System (ADS)
Becker, Uwe; Moshammer, Robert; Mokler, Paul; Ullrich, Joachim
2007-07-01
The XXVth ICPEAC in Freiburg marked a notable anniversary in collision physics: half a century ago the first conference in the series of International Conferences on the Physics of Electronic and Atomic Collisions (ICPEAC) was held in New York (1958). Since then, the development of electronic and atomic collision physics has seen tremendous progress. Starting during a time, when this field was regarded as somehow out-of-date, certainly not being in the main stream compared to particle and high-energy physics, it has expanded in a rather exceptional and unforeseen way. Over the years the original scope on electronic, atomic and heavy-ion collision physics was extended substantially to include upcoming expanding fields like synchrotron-radiation and strong-field laser-based atomic and molecular physics giving rise to a change of name to 'Photonic', Electronic and Atomic Collisions (ICPEAC) being used for the first time for the ICPEAC in Santa Fee in 2001. Nowadays, the ICPEAC has opened its agenda even more widely to other fields of atomic and molecular physics, such as interactions with clusters, bio-molecules and surfaces, to cold collisions, coherent control, femto- and attosecond physics and, with the Freiburg conference, to the application of free-electron lasers in the vacuum ultraviolet and soft x-ray regime, a field of potentially huge future impact in essentially all areas of science. In this larger context the XXVth ICPEAC in Freiburg with more than 800 participants set new standards. Representatives from all fields of Atomic, Molecular and Photon-based science came together and had very fruitful, inter-disciplinary discussions. This new forum of collision-based AMP physics will serve as a showcase example of future conferences, bridging not only the gap between different fields of collision physics but also, equally important, between different continents and cultures. The next ICPEAC is going to take place in Kalamazoo in North America, the one after that in Belfast back in Europe, and the subsequent one, 2013 in Lanzhou, will be the first one ever held in China. A great perspective for this ever-growing field of science! Uwe Becker (Fritz-Haber-Institut, Berlin) Robert Moshammer (Max-Planck-Institut für Kernphysik, Heidelberg) Paul Mokler (Gesellschaft für Schwerionenforschung, Darmstadt) Joachim Ullrich (Max-Planck-Institut für Kernphysik, Heidelberg) Editors
Relaxed atmosphere for discussions during coffee breaks at ICPEAC XXV in Freiburg. The PDF file contains details of previous conferences, sponsors, exhibitors and committees.
n l -> n' l' transition rates in electron and proton - Rydberg atom collision
NASA Astrophysics Data System (ADS)
Vrinceanu, Daniel
2017-04-01
Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The influence of quantum shielding on the Ramsauer-Townsend phenomena for the total electron-atom polarisation collision cross-section is investigated in partially ionised strongly coupled semiclassic plasmas. The result shows that the quantum shielding effect changes the position of the Ramsauer energy in partially ionised strongly coupled plasmas. It is also found that the quantum shielding effect enhances the total electron-atom collision cross-section when the collision energy is greater than the Ramsauer energy; however, it suppresses the collision cross-section when the collision energy is smaller than the Ramsauer energy. In addition, it is shown that the plasma screening effect significantly changes the position of the Ramsauer energy and the influence of plasma screening on the magnitude of the collision cross-section is more significant near the Ramsauer energy domain. The variations of the Ramsauer energy and the collision cross-section due to the quantum shielding effect are also discussed.
Studies of Rotationally and Vibrationally Inelastic Collisions of NaK with Atomic Perturbers
NASA Astrophysics Data System (ADS)
Richter, Kara M.
This dissertation discusses investigations of vibrationally and rotationally inelastic collisions of NaK with argon, helium and potassium as collision partners. We have investigated collisions of NaK molecules in the 2(A) 1Sigma+, state with argon and helium collision partners in a laser-induced fluorescence (LIF) experiment. The pump laser prepares the molecules in particular ro-vibrational (v, J) levels in the 2(A) 1Sigma+, state. These excited molecules then emit fluorescence as they make transitions back to the ground [2(X)1Sigma +] state, and this fluorescence is collected by a Bomem Fourier-transform spectrometer. Weak collisional satellite lines appear flanking strong, direct lines in the recorded spectra. These satellite lines are due to collisions of the NaK molecule in the 2(A)1Sigma+, state with noble gas and alkali atom perturbers, which carry population to nearby rotational levels [(v, J) →(v, J + DeltaJ)] or to various rotational levels of nearby vibrational levels, [(v, J)→ (v + Deltav, J + DeltaJ)]. Ratios of the intensity of each collisional line to the intensity of the direct line then yields information pertaining to the transfer of population in the collision. Our results show a propensity for DeltaJ = even collisions of NaK with noble gas atoms, which is slightly more pronounced for collisions with helium than with argon. Such a DeltaJ = even propensity was not observed in the vibrationally inelastic collisions. Although it would be desirable to operate in the single collision regime, practical considerations make that difficult to achieve. Therefore, we have developed a method to estimate the effects of multiple collisions on our measured rate coefficients and have obtained approximate corrected values.
Cold Collisions in a Molecular Synchrotron
NASA Astrophysics Data System (ADS)
van der Poel, Aernout P. P.; Zieger, Peter C.; van de Meerakker, Sebastiaan Y. T.; Loreau, Jérôme; van der Avoird, Ad; Bethlem, Hendrick L.
2018-01-01
We study collisions between neutral, deuterated ammonia molecules (ND3 ) stored in a 50 cm diameter synchrotron and argon atoms in copropagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) the collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross section for ND3+Ar collisions in the energy range of 40 - 140 cm-1 , with a resolution of 5 - 10 cm-1 and an uncertainty of 7%-15%. Our measurements are in good agreement with theoretical scattering calculations.
Modeling of Elastic Collisions between High Energy and Slow Neutral Atoms
2015-07-01
cylindrical test cell, and the currents on the four different electrodes-Inner Cylinder , Exit Plate, Back Aperture, and Collector Plat~were measured...Inner Cylinder electrode. Nevertheless, the neutral atom current to the Inner Cylinder electrode predicted by the VHS model is comparable to the...Figure 9. Normalized curre nt at the Inner Cylinder e lectrode. the point of collision. T he discrepancy in the Exit Plate neutral atom current is due to
ITFITS model for vibration--translation energy partitioning in atom-- polyatomic molecule collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shobatake, K.; Rice, S.A.; Lee, Y.T.
1973-09-01
A model for vibration-translation energy partitioning in the collinear collision of an atom and an axially symmetric polyatonaic molecule is proposed. The model is based on an extension of the ideas of Mahan and Heidrich, Wilson, and Rapp. Comparison of energy transfers computed from classical trajesctory calculations and the model proposed indicate good agreement when the mass of the free atom is small relative to the mass of the bound atom it strikes. The agreement is less satisfactory when that mass ratio becomes large. (auth)
Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment
NASA Astrophysics Data System (ADS)
Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan
2015-05-01
Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coombe, D.A.; Snider, R.F.
1979-12-01
Rotational invariance is applied to the description of atom--diatom collisions in a translational--internal coupling scheme, to obtain energy sudden (ES), centrifugal sudden (CS), and infinite order sudden (IOS) approximations to the reduced scattering S matrix S (j-barlambda-bar;L;jlambda). The method of presentation emphasizes that the translational--internal coupling scheme is actually the more natural description of collision processes in which one or more directions are assumed to be conserved.
2016-07-10
Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1
Non-Evaporative Cooling Using Spin-Exchange Collision in an Optical Trap
2009-02-03
transit time of the atoms across the optical trap should damp the atoms’ motion significantly. These processes are described in detail in Ref. [ 18]. The...potentials. Finally, since the optical trap was very shallow compared to a MOT, any light-assisted collision that resulted in almost any net acceleration...EXCHANGE COLLISION IN AN OPTICAL TRAP 5a. CONTRACT NUMBER FA9550-06-1-0190 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang
2013-09-01
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
Study of inelastic e-Cd and e-Zn collisions
NASA Astrophysics Data System (ADS)
Piwinski, Mariusz; Klosowski, Lukasz; Dziczek, Darek; Chwirot, Stanislaw
2016-09-01
Electron-photon coincidence experiments are well known for providing more detailed information about electron-atom collision than any other technique. The Electron Impact Coherence Parameters (EICP) values obtained in such studies deliver the most complete characterization of the inelastic collision and allow for a verification of proposed theoretical models. We present the results of Stokes and EICP parameters characterising electronic excitation of the lowest singlet P-state of cadmium and zinc atoms for various collision energies. The experiments were performed using electron-photon coincidence technique in the coherence analysis version. The obtained data are presented and compared with existing CCC and RDWA theoretical predictions.
Collective emission of matter-wave jets from driven Bose-Einstein condensates.
Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng
2017-11-16
Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.
The Russian effort in establishing large atomic and molecular databases
NASA Astrophysics Data System (ADS)
Presnyakov, Leonid P.
1998-07-01
The database activities in Russia have been developed in connection with UV and soft X-ray spectroscopic studies of extraterrestrial and laboratory (magnetically confined and laser-produced) plasmas. Two forms of database production are used: i) a set of computer programs to calculate radiative and collisional data for the general atom or ion, and ii) development of numeric database systems with the data stored in the computer. The first form is preferable for collisional data. At the Lebedev Physical Institute, an appropriate set of the codes has been developed. It includes all electronic processes at collision energies from the threshold up to the relativistic limit. The ion -atom (and -ion) collisional data are calculated with the methods developed recently. The program for the calculations of the level populations and line intensities is used for spectrical diagnostics of transparent plasmas. The second form of database production is widely used at the Institute of Physico-Technical Measurements (VNIIFTRI), and the Troitsk Center: the Institute of Spectroscopy and TRINITI. The main results obtained at the centers above are reviewed. Plans for future developments jointly with international collaborations are discussed.
Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.
Dutta, Sourav; Sawant, Rahul; Rangwala, S A
2017-03-17
We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.
The hyperfine excitation of OH radicals by He
NASA Astrophysics Data System (ADS)
Marinakis, Sarantos; Kalugina, Yulia; Lique, François
2016-04-01
Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Ion-Atom Cold Collisions and Atomic Clocks
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.
1997-01-01
Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.
Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress
NASA Astrophysics Data System (ADS)
Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor
2016-09-01
There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.
NASA Astrophysics Data System (ADS)
M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier
2012-11-01
We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.
Manipulating ion-atom collisions with coherent electromagnetic radiation.
Kirchner, Tom
2002-08-26
Laser-assisted ion-atom collisions are considered in terms of a nonperturbative quantum mechanical description of the electronic motion. It is shown for the system He(2+) - H at 2 keV/amu that the collision dynamics depend strongly on the initial phase of the laser field and the applied wavelength. Whereas electronic transitions are caused by the concurrent action of the field and the projectile ion at relatively low frequencies, they can be separated into modified collisional capture and field ionization events in the region above the one-photon ionization threshold.
Optical characterization of antirelaxation coatings
NASA Astrophysics Data System (ADS)
Tsvetkov, S.; Gateva, S.; Cartaleva, S.; Mariotti, E.; Nasyrov, K.
2018-03-01
Antirelaxation coatings (ARC) are used in optical cells containing alkali metal vapor to reduce the depolarization of alkali atoms after collisions with the cell walls. The long-lived ground state polarization is a basis for development of atomic clocks, magnetometers, quantum memory, slow light experiments, precision measurements of fundamental symmetries etc. In this work, a simple method for measuring the number of collisions of the alkali atoms with the cell walls without atomic spin randomization (Nasyrov et al., Proc. SPIE (2015)) was applied to characterize the AR properties of two PDMS coatings prepared from different solutions in ether (PDMS 2% and PDMS 5%). We observed influence of the light-induced atomic desorption (LIAD) on the AR properties of coatings.
NASA Astrophysics Data System (ADS)
Hall, Felix H. J.; Eberle, Pascal; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan
2013-08-01
Cold chemical reactions between laser-cooled Ca+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies ⟨E coll⟩/k B=20 mK-20 K. The lowest energies were achieved in experiments using single localised Ca+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb+ molecular ions) have been analysed using high-level quantum-chemical calculations of the potential energy curves of CaRb+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only weakly depend on the asymptotic energy. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral reactive collisions.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1993-01-01
Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.
Relativistic Collisions of Highly-Charged Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu, Dorin; Belkacem, Ali
1998-11-19
The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less
Understanding the quantum nature of low-energy C(3P j ) + He inelastic collisions.
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C( 3 P j=0 ) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.2 and 0.5 kJ mol -1 )-that result in spin-orbit excitation to C( 3 P j=1 ) and C( 3 P j=2 ). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C( 3 P j=0 ) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
NASA Astrophysics Data System (ADS)
Kharchenko, V. A.; Lewkow, N.; Gacesa, M.
2014-12-01
Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).
On the Treatment of l-changing Proton-hydrogen Rydberg Atom Collisions
NASA Astrophysics Data System (ADS)
Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein
2018-01-01
Energy-conserving, angular momentum-changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing collisions used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.
Bartschat, Klaus; Kushner, Mark J.
2016-01-01
Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society. PMID:27317740
NASA Astrophysics Data System (ADS)
Ren, Jieru; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Wang, Xing; Xu, Ge; Wang, Yuyu; Liu, Shidong; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Xu, Zhongfeng; Xiao, Guoqing
2013-09-01
X-ray yields for the projectile L-shell have been measured for collisions between Xe20+ and thick solid targets throughout the periodic table with incident energies near the Bohr velocity. The yields show a very pronounced cyclic dependence on the target atomic number. This result indicates that Xe L x-ray emission intensity is greatly enhanced either in near-symmetric collisions or if the binding energy of the Xe M-shell matches the L- or N-shell binding energy of the target.
NASA Astrophysics Data System (ADS)
Lyashchenko, K. N.; Andreev, O. Yu; Voitkiv, A. B.
2018-03-01
We consider electron loss from a hydrogen-like highly charged ion (HCI) in relativistic collisions with hydrogen and helium in the range of impact velocities v min ≤ v ≤ v max (v min and v max correspond to the threshold energy ε th for electron loss in collisions with a free electron and to ≈5 ε th, respectively) where any reliable data for loss cross sections are absent. In this range, where the loss process is characterized by large momentum transfers, we express it in terms of electron loss in collisions with equivelocity protons and electrons and explore by performing a detailed comparative study of these subprocesses. Our results, in particular, show that: (i) compared to equivelocity electrons protons are more effective in inducing electron loss, (ii) the relative effectiveness of electron projectiles grows with increase in the atomic number of a HCI, (iii) collisions with protons and electrons lead to a qualitatively different population of the final-state-electron momentum space and even when the total loss cross sections in these collisions become already equal the spectra of the outgoing electrons still remain quite different in almost the entire volume of the final-state-electron momentum space, (iv) in collisions with hydrogen and helium the contributions to the loss process from the interactions with the nucleus and the electron(s) of the atom could be rather well separated in a substantial part of the final-state-electron momentum space.
Controlling interactions between highly magnetic atoms with Feshbach resonances.
Kotochigova, Svetlana
2014-09-01
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
Magnetic trapping of cold bromine atoms.
Rennick, C J; Lam, J; Doherty, W G; Softley, T P
2014-01-17
Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.
NASA Technical Reports Server (NTRS)
Burnett, K.; Cooper, J.
1980-01-01
The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti M.; Keenan, Francis P.
2013-04-01
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Super-Maxwellian helium evaporation from pure and salty water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.
2016-01-28
Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the densitymore » profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.« less
Electron collisions with coherently prepared atomic targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trajmar, S.; Kanik, I.; LeClair, L.R.
1998-02-01
The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less
Hyperfine excitation of CH in collisions with atomic and molecular hydrogen
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-04-01
We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Energy transfer in O collisions with He isotopes and helium escape from Mars
NASA Astrophysics Data System (ADS)
Bovino, S.; Zhang, P.; Kharchenko, V.; Dalgarno, A.
2010-12-01
Helium is one of the dominant constituents in the upper atmosphere of Mars [1]. Thermal (Jeans’) escape of He is negligible on Mars [2] and major mechanism of escape is related to the collisional ejection of He atoms by energetic oxygen. Collisional ejection dominates over ion-related mechanisms [3] and evaluation of the escape flux of neutral He becomes an important issue. The dissociative recombination of O2+ is considered to be the major source of energetic oxygen atoms [4]. We report accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas. Angular dependent scattering cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation, describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O + He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere at different solar conditions. We have identified atmospheric layers mostly responsible for production of the He escape flux. Our results are consistent with recent data from Monte Carlo simulations of the escape of O atoms: strong angular anisotropy of atomic cross sections leads to an increased transparency of the upper atmosphere for escaping O flux [5] and stimulate the collisional ejection of He atoms. References [1] Krasnopolsky, V. A., and G. R. Gladstone (2005), Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395. [2] Chassefiere E. and F. Leblanc (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52, 1039 [3] Krasnopolsky, V. (2010), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmoshpere, Icarus, 207, 638. [4] Fox, J. L. (1995), On the escape of oxygen and hydrogen from Mars, Geophy. Rev. Lett., 20, 1847. [5] Krestyanikova, M. A. and V. I. Shematovich (2006), Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars, Solar System Research, 40, 384.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) Units AGENCY... certain Aviation Communication & Surveillance Systems (ACSS) traffic alert and collision avoidance system...) traffic alert and collision avoidance system (TCAS) units with part numbers identified in ACSS Technical...
New parameter-free polarization potentials in low-energy positron collisions
NASA Technical Reports Server (NTRS)
Jain, Ashok
1990-01-01
The polarization potential plays a decisive role in shaping up the cross sections in low energy positron collisions with atoms and molecules. However, its inclusion without involving any adjustable parameter, is still a challenge. Various other techniques employed so far for positron collisions are summarized, and a new, nonadjustable and very simple form of the polarization potential for positron-atom (molecule) collisions below the threshold of positronium formation is discussed. This new recently proposed potential is based on the correlation energy of a single positron in a homogeneous electron gas. The correlation energy was calculated by solving the Schrodinger equation of the positron-electron system and fitted to an analytical form in various ranges of the density parameter. In the outside region, the correlation energy is joined smoothly with the correct asymptotic form. This new positron correlation polarization (PCOP) potential was tested on several atomic and molecular targets such as the Ar, CO, and CH4. The results on the total and differential cross sections on these targets are shown along with the experimental data where available.
Fine-structure excitation of Fe II and Fe III due to collisions with electrons
NASA Astrophysics Data System (ADS)
Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan
2018-06-01
Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.
Polarization Spectroscopy and Collisions in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.
2009-05-01
We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.
A quasi-classical study of energy transfer in collisions of hyperthermal H atoms with SO2 molecules.
da Silva, Ramon S; Garrido, Juan D; Ballester, Maikel Y
2017-08-28
A deep understanding of energy transfer processes in molecular collisions is at central attention in physical chemistry. Particularly vibrational excitation of small molecules colliding with hot light atoms, via a metastable complex formation, has shown to be an efficient manner of enhancing reactivity. A quasi-classical trajectory study of translation-to-vibration energy transfer (T-V ET) in collisions of hyperthermal H( 2 S) atoms with SO 2 (X̃ 1 A ' ) molecules is presented here. For such a study, a double many-body expansion potential energy surface previously reported for HSO 2 ( 2 A) is used. This work was motivated by recent experiments by Ma et al. studying collisions of H + SO 2 at the translational energy of 59 kcal/mol [J. Ma et al., Phys. Rev. A 93, 040702 (2016)]. Calculations reproduce the experimental evidence that during majority of inelastic non-reactive collision processes, there is a metastable intermediate formation (HOSO or HSO 2 ). Nevertheless, the analysis of the trajectories shows that there are two distinct mechanisms in the T-V ET process: direct and indirect. Direct T-V processes are responsible for the high population of SO 2 with relatively low vibrational excitation energy, while indirect ones dominate the conversion from translational energy to high values of the vibrational counterpart.
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
Properties of atomic pairs produced in the collision of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Ziń, Paweł; Wasak, Tomasz
2018-04-01
During a collision of Bose-Einstein condensates correlated pairs of atoms are emitted. The scattered massive particles, in analogy to photon pairs in quantum optics, might be used in the violation of Bell's inequalities, demonstration of Einstein-Podolsky-Rosen correlations, or sub-shot-noise atomic interferometry. Usually, a theoretical description of the collision relies either on stochastic numerical methods or on analytical treatments involving various approximations. Here, we investigate elastic scattering of atoms from colliding elongated Bose-Einstein condensates within the Bogoliubov method, carefully controlling performed approximations at every stage of the analysis. We derive expressions for the one- and two-particle correlation functions. The obtained formulas, which relate the correlation functions to the condensate wave function, are convenient for numerical calculations. We employ the variational approach for condensate wave functions to obtain analytical expressions for the correlation functions, whose properties we analyze in detail. We also present a useful semiclassical model of the process and compare its results with the quantum one. The results are relevant for recent experiments with excited helium atoms, as well as for planned experiments aimed at investigating the nonclassicality of the system.
Guo, Y; Gu, X; Zhang, F; Sun, B J; Tsai, M F; Chang, A H H; Kaiser, R I
2007-05-03
The reaction between ground state carbon atoms, C(3P(j)), and phosphine, PH3(X(1)A1), was investigated at two collision energies of 21.1 and 42.5 kJ mol(-1) using the crossed molecular beam technique. The chemical dynamics extracted from the time-of-flight spectra and laboratory angular distributions combined with ab initio calculations propose that the reaction proceeds on the triplet surface via an addition of atomic carbon to the phosphorus atom. This leads to a triplet CPH3 complex. A successive hydrogen shift forms an HCPH2 intermediate. The latter was found to decompose through atomic hydrogen emission leading to the cis/trans-HCPH(X(2)A') reaction products. The identification of cis/trans-HCPH(X(2)A') molecules under single collision conditions presents a potential pathway to form the very first carbon-phosphorus bond in extraterrestrial environments like molecular clouds and circumstellar envelopes, and even in the postplume chemistry of the collision of comet Shoemaker-Levy 9 with Jupiter.
Electronic excitation of ground state atoms by collision with heavy gas particles
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1993-01-01
Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey, G.C.; Alexander, M.H.
1986-11-15
A new derivation is presented of the infinite order sudden (IOS) approximation for rotationally inelastic collisions of a diatomic molecule in a Pi electronic state with a closed shell atom. This derivation clearly demonstrates the connection between the two sudden S functions for scattering off the adiabatic potential surface of A' and A symmetry, which would arise from an ab initio calculation on an atom + Pi-state molecule system, and the S matrix elements in diabatic basis, which are required in the quantum treatment of the collision dynamics. Coupled states and IOS calculations were carried out for collisions of NImore » X 2 Pi with helium and argon, based on a electron gas potential surface at total energies of 63, 150, and 300 meV. The IOS approximation is not reliable for collisions of NO with Ar, even at the highest collision energy considered here. However, for collisions with He at 150 and 300 meV, the IOS approximation is nearly quantitative for transitions both within and between the Omega = 1/2 and Omega = 3/2 manifolds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, T.G.; Alston, S.G.
The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during themore » collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.« less
NASA Technical Reports Server (NTRS)
Green, S.; Truhlar, D. G.
1979-01-01
Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.
Two-body loss rates for reactive collisions of cold atoms
NASA Astrophysics Data System (ADS)
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.; Gatchell, M.; Stockett, M. H.
2014-06-14
We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effectivemore » initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.« less
Collinear collision chemistry. II. Energy disposition in reactive collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, B.H.
1974-06-01
A model describing the mechanics of collinear atom-diatom collisions and previously reported by the author is extended to describe reactive collisions. The model indicates the effects of such factors as the mass distribution and potential energy barriers and wells on the reaction probability and on the distribution of energy among the modes of motion of the products. Simple geometry and trigonometry are sufficient to solve the model.
Applications of beam-foil spectroscopy to atomic collisions in solids
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1976-01-01
Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru
2013-10-15
Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n andmore » for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.« less
Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring
NASA Astrophysics Data System (ADS)
Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.
2017-10-01
In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.
Crampton, Neal; Bonass, William A.; Kirkham, Jennifer; Rivetti, Claudio; Thomson, Neil H.
2006-01-01
Atomic force microscopy (AFM) has been used to image, at single molecule resolution, transcription events by Escherichia coli RNA polymerase (RNAP) on a linear DNA template with two convergently aligned λpr promoters. For the first time experimentally, the outcome of collision events during convergent transcription by two identical RNAP has been studied. Measurement of the positions of the RNAP on the DNA, allows distinction of open promoter complexes (OPCs) and elongating complexes (EC) and collided complexes (CC). This discontinuous time-course enables subsequent analysis of collision events where both RNAP remain bound on the DNA. After collision, the elongating RNAP has caused the other (usually stalled) RNAP to back-track along the template. The final positions of the two RNAP indicate that these are collisions between an EC and a stalled EC (SEC) or OPC (previously referred to as sitting-ducks). Interestingly, the distances between the two RNAP show that they are not always at closest approach after ‘collision’ has caused their arrest. PMID:17012275
NASA Astrophysics Data System (ADS)
Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu
2018-07-01
In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.
Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination
NASA Astrophysics Data System (ADS)
Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.
2016-05-01
We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.
2018-04-01
The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.
Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon
2017-06-01
We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.
NASA Astrophysics Data System (ADS)
Romano, S. L.; Guillen, C. I.; Andrianarijaona, V. M.; Havener, C. C.
2011-10-01
The hydrogen - hydrogen (deuterium) molecular ion is the most fundamental ion-molecule two-electron system. Charge transfer (CT) for H2+ on H, which is one of the possible reaction paths for the (H-H2)+ system, is of special interest because of its contribution to H2 formation in the early universe, its exoergicity, and rich collision dynamics. Due to technical difficulty in making an atomic H target, the direct experimental investigations of CT for H2+ on H are sparse and generally limited to higher collision energies. The measurements of the absolute cross section of different CT paths for H2+ on H over a large range of collision energy are needed to benchmark theoretical calculations, especially the ones at low energies. The rate coefficient of CT at low energy is not known but may be comparable to other reaction rate coefficients in cold plasmas with H, H+, H2+, and H3+ as constituents. For instance, CT for H2+ on H and the following H3+ formation reaction H2+ + H2 → H + H3+ are clearly rate interdependent although it was always assumed that every ionization of H2 will lead to the formation of H3+. CT proceeds through dynamically coupled electronic, vibrational and rotational degrees of freedom. One can depict three paths, electronic CT, CT with nuclear substitution, and CT with dissociation. Electronic CT and CT with nuclear substitution in the H2+ on H collisions are not distinguishable by any quantum theory. Here we use the isotopic system (D2+ - H) to measure without ambiguity the electronic CT cross section by observing the H+ products. Using the ion-atom merged-beam apparatus at Oak Ridge National Laboratory, the absolute direct CT cross sections for D2+ + H from keV/u to meV/u collision energies have been measured. The molecular ions are extracted from an Electron-Cyclotron Resonance (ECR) ion source with a vibrational state distribution which is most likely determined by Frank-Condon transitions between ground state D2 and D2+. A ground-state H beam is obtained by photo-detachment of H-. Our first measurements are presented in Fig. 1 along with the theories and previous experiments. The collision is rovibrationally frozen at high energy where our measurements are seen to be in good agreement with the high energy theory. Both measurements and low energy theory increase toward low energies where the collision times are long enough to sample vibrational and rotational modes. This research is supported by the National Science Foundation through grant PHY-1068877 and by the Office of Fusion Energy Sciences and the Office of Basic Energy Sciences, U.S. DOE, Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Effect of inelastic electron-atom collisions on the Balmer decrement
NASA Technical Reports Server (NTRS)
Adams, W. M.; Petrosian, V.
1974-01-01
Calculation of the Balmer decrement in radiatively ionized hydrogen gas as a function of temperature and density, taking into account the effect of electron-atom collisions. It is found that once the electron density exceeds 10 to the 10th power per cu cm significant deviations from the normal radiative recombination decrement begin to occur. Implications of these results for the physical conditions in the line-emitting region of the Seyfert galaxy NGC 4151 are discussed briefly.
NASA Technical Reports Server (NTRS)
Devries, P. L.; George, T. F.
1982-01-01
A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.
Reaction dynamics of H + O2 at 1.6 eV collision energy
NASA Technical Reports Server (NTRS)
Bronikowski, Michael J.; Zhang, Rong; Rakestraw, David J.; Zare, Richard N.
1989-01-01
The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0)/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.
Reaction dynamics of H + O2 at 1.6 eV collision energy
NASA Technical Reports Server (NTRS)
Bronikowski, Michael J.; Rong, Zhang; Rakestraw, David J.; Zare, Richard N.
1989-01-01
The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.
Low-energy charge transfer for collisions of Si3+ with atomic hydrogen
NASA Astrophysics Data System (ADS)
Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.
2008-06-01
Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.
Communication: Site-selective bond excision of adenine upon electron transfer
NASA Astrophysics Data System (ADS)
Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.
2018-01-01
This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.
a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions
NASA Astrophysics Data System (ADS)
Runge, Keith
A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.
NASA Astrophysics Data System (ADS)
Gearhart, Clayton A.
2014-09-01
In 1911, James Franck and Gustav Hertz began a collaboration to investigate the nature of collisions of slow electrons with gas molecules that led to a series of carefully planned and executed experiments, culminating in their discovery of inelastic collisions of electrons with mercury vapor atoms in 1914. This paper tells the story of their collaboration and the eventual reinterpretation of their results as a confirmation of Niels Bohr's new atomic theory, largely as a result of experiments done in North America during the Great War.
Direct pair production in heavy-ion--atom collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anholt, R.; Jakubassa-Amundsen, D.H.; Amundsen, P.A.
1983-02-01
Direct pair production in approx.5-MeV/amu heavy-ion--atom collisions with uranium target atoms is calculated with the plane-wave Born approximation and the semiclassical approximation. Briggs's approximation is used to obtain the electron and positron wave functions. Since pair production involves high momentum transfer q from the moving projectile to the vacuum, use is made of a high-q approximation to greatly simplify the numerical computations. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec- tronic wave functions, and the energy loss by the projectile exciting the pair are all taken into account in these calculations.
A review of tags anti-collision and localization protocols in RFID networks.
Ullah, S; Alsalih, W; Alsehaim, A; Alsadhan, N
2012-12-01
Radio Frequency IDentification (RFID) has allowed the realization of ubiquitous tracking and monitoring of physical objects wirelessly with minimum human interactions. It plays a key role in a wide range of applications including asset tracking, contactless payment, access control, transportation and logistics, and other industrial applications. On the other side, RFID systems face several technical challenges that need to be overcome in order to achieve their potential benefits; tags collisions and localization of tagged objects are two important challenges. Numerous anti-collision and localization protocols have been proposed to address these challenges. This paper reviews the state-of-art tags' anti-collision and localization protocols, and provides a deep insight into technical issues of these protocols. The probabilistic and deterministic anti-collision protocols are critically studied and compared in terms of different parameters. We further review distance estimation, scene analysis, and proximity localization schemes and provide useful suggestions. We also introduce a new hybrid direction that utilizes power control to spatially partition the interrogation range of a reader for more efficient anti-collision and localization. Finally, we present the applications of RFID systems in healthcare sectors.
Alignment relaxation of Ne*(2pi[J=1]) atoms due to collisions with He(1s^2) atoms
NASA Astrophysics Data System (ADS)
Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro; Bahrim, Cristian
2008-10-01
Alignment relaxation of atoms induced by collisions offers accurate information regarding the anisotropic atom-atom potentials and has many applications in atomic and plasma physics. Here we report the energy-averaged cross sections for destruction of alignment σ^(2) and the rate coefficients for disalignment KDA of Ne^*(2p^5 3p; 2pi [J=1]) atoms due to He atom collisions using a many-channels close-coupling method based on a modified model potential for the HeNe^*(2p^5 3p) system [1]. Comparison with measurements using laser-induced fluorescence spectroscopy (LIFS) [2] and Hanle signals [3] is reported. The LIFS method measures KDA due to intra-multiplet transitions, while the analysis of Hanle signals gives σ^(2), which incorporates both the intra- and inter-multiplet transitions. Good agreement between theory and experiments was found for the 2p2, 2p5, and 2p7 states at 77 K < T < 350 K when a static polarizability for each Ne^*(2pi) state is added to the long-range potentials of the HeNe^*(2p^5 3p) system given in Ref.[4]. [1] Bahrim C and Khadilkar V 2008 J. Phys. B 41 035203 [2] Seo M, Shimamura T, Furatani T, Hasuo M, Bahrim C and Fujimoto T 2003 J. Phys. B 36 1885 [3] Carrington C G and Corney A 1971 J. Phys. B 4 869 [4] Bahrim C, Kucal H and Masnou-Seeuws F 1997 Phys. Rev. A 56 1305
Impact of Short-Range Forces on Defect Production from High-Energy Collisions
Stoller, R. E.; Tamm, A.; Béland, L. K.; ...
2016-04-25
Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. The distance between two colliding atoms can approach 0.05 nm during these collisions. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. But, there is nomore » accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.« less
Collision-spike sputtering of Au nanoparticles
Sandoval, Luis; Urbassek, Herbert M.
2015-08-06
Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less
Collisional and radiative processes in high-pressure discharge plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
An apparatus for immersing trapped ions into an ultracold gas of neutral atoms
NASA Astrophysics Data System (ADS)
Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker
2012-05-01
We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.
Polarized internal target apparatus
Holt, Roy J.
1986-01-01
A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.
Defect-free atomic array formation using the Hungarian matching algorithm
NASA Astrophysics Data System (ADS)
Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-05-01
Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 ×7 lattice to a 3 ×3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.
Electron capture in collisions of N^+ with H and H^+ with N
NASA Astrophysics Data System (ADS)
Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.
2004-05-01
Charge transfer processes due to collisions of N^+ with atomic hydrogen and H^+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1-500 eV/u will be presented and compared with existing experimental and theoretical data.
The pair-production channel in atomic processes
NASA Astrophysics Data System (ADS)
Belkacem, Ali; Sørensen, Allan H.
2006-06-01
Assisted by the creation of electron-positron pairs, new channels for ionization, excitation, and charge transfer open in atomic collisions when the energy is raised to relativistic values. At extreme energies these pair-production channels usually dominate the "traditional" contributions to cross sections that involve only "positive-energy" electrons. An extensive body of theoretical and experimental work has been performed over the last two decades to investigate charge-changing processes catalyzed by pair production in relativistic heavy ion collisions. We review some of these studies.
Studies of Inelastic Collisions of NaK and NaCs Molecules with Atomic Perturbers
NASA Astrophysics Data System (ADS)
Jones, Joshua A.
We have investigated collisions of NaK molecules in the first excited state [2(A)1Sigma+], with Ar and He collision partners using laser-induced fluorescence spectroscopy (LIF) and polarization-labeling (PL) spectroscopy in a two-step excitation scheme. Additionally, we have investigated collisions of NaCs molecules in the first excited state [2(A)1Sigma +] with Ar and He perturbers using the LIF technique. We use a pump-probe, two-step excitation process. The pump laser prepares the molecule in a particular ro-vibrational (v, J) level in the A state. The probe laser frequency is scanned over transitions to the 31Π in NaK or to the 53Π in NaCs. In addition to observing strong direct lines, we also see weak collisional satellite lines that arise from collisions in the intermediate state that take the molecule from the prepared level (v, J) to level (v, J + Delta J). The ratio of the intensity of the collisional line to the intensity of the direct line in LIF and PL yield information about population and orientation transfer. Our results show a propensity for DeltaJ=even collisions of NaK with Ar and an even stronger propensity for collisions with He. Collisions of NaCs with Ar do not show any such J=even propensity. Preliminary investigations of collisions of NaCs with He seem to indicate a slight J=even propensity. In addition, we observe that rotationally inelastic collisions of excited NaK molecules with potassium atoms destroy almost all of the orientation, while collisions with argon destroy about one third to two thirds and collisions with helium destroy only about zero to one third of the initial orientation.
Quantum chaos in ultracold collisions of gas-phase erbium atoms.
Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana
2014-03-27
Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.
Molecular vibrational states during a collision
NASA Technical Reports Server (NTRS)
Recamier, Jose A.; Jauregui, Rocio
1995-01-01
Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.
Detailed numerical simulations of laser cooling processes
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
Optimization of Automobile Crush Characteristics: Technical Report
DOT National Transportation Integrated Search
1975-10-01
A methodology is developed for the evaluation and optimization of societal costs of two-vehicle automobile collisions. Costs considered in a Figure of Merit include costs of injury/mortality, occupant compartment penetration, collision damage repairs...
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.; Murad, E.
1990-01-01
Collisions of low-energy (5-20 eV), ground-state oxygen atoms with H2O and CO2 in a crossed-beams geometry lead to chemical reaction in the case of H2O to produce OH (A2Sigma+ - X2Pi) emissions; and to inelastic electronic excitation in the case of CO2 to produce CO2 flame bands. Species identifications are made through known wavelengths and emission intensities in the range 300-400 nm. The measured difference in threshold energies for the two processes confirm the channels involved. These are the first measurements in this energy range of optical emissions through collisions of fast neutral species.
NASA Technical Reports Server (NTRS)
Green, S.
1976-01-01
The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.
NASA Astrophysics Data System (ADS)
Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.
2017-09-01
The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.
Charge exchange collisions of slow C6 + with atomic and molecular H
NASA Astrophysics Data System (ADS)
Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve
2016-04-01
Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.
NASA Astrophysics Data System (ADS)
Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu
2016-05-01
We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.
Wagatsuma, Kazuaki
2015-01-01
This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen-oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen molecule.
Configuration interaction in charge exchange spectra of tin and xenon
NASA Astrophysics Data System (ADS)
D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.
2011-06-01
Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.
NASA Astrophysics Data System (ADS)
Azizan, Sh; Shojaei, F.; Fathi, R.
2016-04-01
The post version of the four-body Born distorted wave method (BDW-4B) is applied to calculate the total cross section for single electron exchange in the collision of hydrogen-like projectiles with hydrogen atom. The post form of transition amplitude is obtained in terms of two-dimensional real integrals which can be computed numerically. This second-order theory which satisfies the correct boundary conditions is used for the collision of {{H}}, {{H}}{{{e}}}+, {{L}}{{{i}}}2+, {{{B}}}4+, {{{C}}}5+ with hydrogen atoms at intermediate and high impact energies. The validity of our results is assessed in comparison with available experimental data and other theories.
NASA Technical Reports Server (NTRS)
Burnett, K.; Cooper, J.
1980-01-01
Computations were made of the scattering of monochromatic radiation by a degenerate atom in the binary-collision approximation for field strengths whose products of the Rabi frequency for atomic transition and the duration of a strong collision are much less than 1. An expression of motion for the correlation function is derived which does not exclude the region where thermal correlations may be neglected; the equation is valid outside the quantum-regression regime, and has a straightforward solution for practical cases. Solutions for the weak-field linear response regime are presented in terms of generalized absorption and emission profiles which depend on the indices of the atomic multipoles.
Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states
NASA Astrophysics Data System (ADS)
Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.
2018-04-01
The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.
Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.
Siems, William F; Viehland, Larry A; Hill, Herbert H
2012-11-20
For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.
Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.
Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels
2017-09-06
Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-02-01
Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data
De-Excitation of High-Rydberg Antihydrogen in a Strongly Magnetized Pure Positron Plasma
NASA Astrophysics Data System (ADS)
Bass, E. M.
2005-10-01
The rate at which highly excited atoms relax to deeper binding is found with classical theories and simulations. This rate relates to antihydrogen formation experiments where such atoms are formed in pure-positron, Penning trap plasmas.ootnotetextG.Gabrielse, N.S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002); M. Amoretti, C. Amsler, G. Bonomi, et al., Nature (London) 419, 456 (2002). The analysis concerns atoms that have passed the kinetic bottleneck at binding energy ɛ 4kT.ootnotetextM.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991). Energy loss caused by collisions between atoms and plasma positrons is calculated in two ways: For close collisions, a molecular dynamics simulation gives the energy loss; for large-impact parameter collisions, theoretical expressions based on Fokker-Planck theory are employed.ootnotetextEric M. Bass and Daniel H.E. Dubin, Phys. Plasmas 11, 1240 (2004). For a finite magnetic field, the energy loss rate scales as 1/ɛ, just as for infinite field,^2 but with a larger coefficient. A statistical description of energy loss by radiation and Stark mixing will also be discussed.
Polarized internal target apparatus
Holt, R.J.
1984-10-10
A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.
Glenn T. Seaborg - Contributions to Advancing Science
. Documents: The First Weighing of Plutonium (Atomic Number 94); DOE Technical Report; September 1967 The New Element Americium (Atomic Number 95); DOE Technical Report; January 1948 The New Element Curium (Atomic Number 96); DOE Technical Report; January 1948 Frontiers of Chemistry for Americium and Curium; DOE
Approach to thermal equilibrium in atomic collisions.
Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K
2008-03-14
The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.
Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions
NASA Technical Reports Server (NTRS)
Shortt, Brian; Chutjian, Ara; Orient, Otto
2008-01-01
A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.
NASA Astrophysics Data System (ADS)
Barghouthi, I. A.
2005-06-01
We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F- region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ionneutral, O+-O collisions (resonant charge exchange and polarization interaction) as well as O+-O+ Coulomb self-collisions. At high altitudes, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and consequently, the influence of O+-O+ Coulomb collisions becomes significant. In this study we consider the effect of O+-O+ Coulomb collisions on the incoherent radar spectra in the presence of large electric field (100 mVm-1). As altitude increases (i.e. the ion-to-neutral density ratio increases) the role of O+-O+ Coulomb self-collisions becomes significant, therefore, the one-dimensional, 1-D, O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+-O+ Coulomb self-collisions act to isotropize the 1-D O+ velocity distribution by transferring thermal energy from the perpendicular direction to the parallel direction, however the convection electric field acts to drive the O+ ions away from equilibrium and consequently, non-Maxwellian O+ ion velocity distributions appeared. Therefore, neglecting O+-O+ Coulomb self-collisions overestimates the effect of convection electric field.
Six decades of atomic collisions in solids
NASA Astrophysics Data System (ADS)
Sigmund, Peter
2017-09-01
In response to an invitation by the organizers of the 27th international conference on atomic collisions in solids, a brief survey is presented, starting from the roots of the field in the 1950s and 1960s, of some major discoveries, longstanding problems, surprising findings and memorable controversies in topics covered by the conference. Considering the breadth of the field, the selection of topics is necessarily subjective, but with the emphasis on channeling, stopping and sputtering, three topical areas are discussed which have been active from the early 1960s until now.
Electron removal from H and He atoms in collisions with C q+ , O q+ ions
NASA Astrophysics Data System (ADS)
Janev, R. K.; McDowell, M. R. C.
1984-06-01
Cross sections for electron capture and ionisation in collision of partially and completely stripped C q+ , N q+ and O q+ ions with hydrogen and helium atoms have been calculated at selected energies. The classical trajectory Monte Carlo method was used with a variable-charge pseudopotential to describe the interaction of the active electron with the projectile ion. A scalling relationship has been derived for the electron removal (capture and ionisation) cross section which allows a unifield representation of the data.
1985-01-01
Vukstich, A. M. Solomon Electron-Electron Coincidence Spectrometer for the Study of Relative Triple Differential 709 Cross Sections for Autoionizing...wavelengths depen~eat three- and four -photon ionization spectra v v ., v VVvVvVV (V of Bi and Bi (2) The ionizatign of"Bi2 is studied by various one &(I...the observed energetic protons must arise from at least four repulsive states. The lower energy group consists of protons arising from" . excitation
Viscosity of high-temperature iodine
NASA Technical Reports Server (NTRS)
Kang, Steve H.; Kunc, Joseph A.
1991-01-01
The viscosity coefficient of iodine in the temperature range 500 - 3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I + I2 and I + I collisions must be taken into account in calculation of viscosity at temperatures greater than 1000 deg. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Nordlund, Kai; Melerba, L
The processes that give rise to changes in the microstructure and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.Radiation-inducedmore » changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
NASA Astrophysics Data System (ADS)
Domínguez-Gutiérrez, F. Javier; Cabrera-Trujillo, R.
2014-05-01
Total, n = 2 , and 3 charge transfer and n = 2 target excitation probabilities for collision of Li+ with ground state atomic hydrogen are calculated numerically, in the impact energy collision range 0.25-5 keV. The total wave function at the end of the dynamics of the collision is obtained by solving the time-dependent Schrödinger equation by means the finite-difference method. We use a pseudo-potential method to model the electronic structure of the Li+ ion. The n = 2 , and 3 charge transfer and n = 2 target excitation probabilities are obtained by projecting the stationary states of Lithium and Hydrogen neutral atoms to the total wave function of the collision, respectively; the stationary states of Li and H are obtained numerically. To assess the validity of our method, our numerical results have been compared with those obtained experimentally and by other theoretical methods found in the literature. We study the laser-assited collision by using a short (3 fs at FWHM) and intense (3.15 ×12 W/cm2) Gaussian laser pulse. We consider a wavelength range between 400 - 1000 nm in steps of 100 nm. Finally, we analyze the laser assisted collision by a qualitatively way with a two level approach. We acknowledge support from grant PAPIIT IN 110-714 and CONACyT (Ph.D. scholarship).
Asymptotic form of the charge exchange cross section in the three body rearrangement collisions
NASA Technical Reports Server (NTRS)
Omidvar, K.
1975-01-01
A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.
NASA Astrophysics Data System (ADS)
Ohno, Koichi; Yamazaki, Masakazu; Kishimoto, Naoki; Ogawa, Tetsuji; Takeshita, Kouichi
2000-12-01
Ionization cross-sections of N 2 in collision with He* 2 3S as functions of the collision energy and the ejected electron kinetic energy (two-dimensional Penning ionization electron spectra, 2D-PIES) have been evaluated by trajectory calculations based on quantum chemical potential surfaces of both entrance and exit channels as well as on the transition widths for producing X, A, and B states of N 2+. The present approach using a Li atom for He * and an overlap approximation for Γ has given theoretical 2D-PIES in good agreement with the observation and a promise for its application to the study of dynamics in collisional ionization involving highly anisotropic target systems.
NASA Astrophysics Data System (ADS)
Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.; Johnson, R. E.; Tully, C.
2016-12-01
The recent observations of the Martian geomorphology suggest that water has played a critical role in forming the present status of the Martian atmosphere and environment. The inventory of water has been depleted throughout the planet's geologic time via various mechanisms from the surface to the uppermost atmosphere where the Sun-Mars interaction occurs. During the current epoch, dissociative recombination of O2+ is suggested as the main nonthermal mechanism that regulates the escape of atomic O, forming the hot O corona. A nascent hot O atom produced deep in the thermosphere undergoes collisions with the background thermal species, where the particle can lose energy and become thermalized before it reaches the collisionless regime and escape. The major hot O collisions with the background species that contribute to the thermalization of hot O are Ohot-Ocold, Ohot-CO2,cold, Ohot-COcold, and Ohot-N2,cold. In order to describe these collisions, there have been different collisions schemes used by the previous models. One of the most realistic descriptions involves using angular differential cross sections, and the simplest approach is using isotropic collision cross sections. Here, we present a comparison between the 3D model results using two different collision schemes to find equivalent hard sphere collision cross sections that satisfy the effects from using forward scattering cross sections. We adapted the newly calculated angular differential cross sections to the major hot O collisions. The hot O corona is simulated by coupling our Mars application of the 3D Adaptive Mesh Particle Simulator (M-AMPS) [Tenishev et al., 2008, 2013] and the Mars Global Ionosphere-Thermosphere Model (M-GITM) [Bougher et al., 2015].
Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo
2014-06-20
Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000more » K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.« less
Asymptotic form for the cross section for the Coulomb interacting rearrangement collisions.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1973-01-01
It is shown that in a rearrangement collision leading to the formation of highly excited hydrogenlike states the cross section at high energies behaves as 1/n-squared, with n the principal quantum number, thus invalidating the Brinkman-Kramers approximation for large n. Similarly, in high-energy inelastic electron-hydrogenlike-atom collisions the exchange cross section for sufficiently large n dominates the direct excitation cross section.
NASA Astrophysics Data System (ADS)
Krems, R. V.; Buchachenko, A. A.
2005-09-01
Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlenko, E. V., E-mail: eorlenko@mail.ru; Evstafev, A. V.; Orlenko, F. E.
A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithiummore » atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.« less
Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap.
Tscherbul, T V; Yu, H-G; Dalgarno, A
2011-02-18
We present a rigorous theoretical study of low-temperature collisions of polyatomic molecular radicals with (1)S(0) atoms in the presence of an external magnetic field. Accurate quantum scattering calculations based on ab initio and scaled interaction potentials show that collision-induced spin relaxation of the prototypical organic molecule CH(2)(X(3)B(1)) (methylene) and nine other triatomic radicals in cold (3)He gas occurs at a slow rate, demonstrating that cryogenic buffer-gas cooling and magnetic trapping of these molecules is feasible with current technology. Our calculations further suggest that it may be possible to create ultracold gases of polyatomic molecules by sympathetic cooling with alkaline-earth atoms in a magnetic trap.
Collision avoidance system cost-benefit analysis : volume I - technical manual
DOT National Transportation Integrated Search
1981-09-01
Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...
Liquefied natural gas tender crashworthiness in train-to-train collisions
DOT National Transportation Integrated Search
2016-04-12
This paper focuses on technical information to help support : development of alternative static requirements for the train-to-train : collision scenario. The goal of the static requirements is to : provide the same level of crashworthiness as the dyn...
Magnetic-field gradiometer based on ultracold collisions
NASA Astrophysics Data System (ADS)
Wasak, Tomasz; Jachymski, Krzysztof; Calarco, Tommaso; Negretti, Antonio
2018-05-01
We present a detailed analysis of the usefulness of ultracold atomic collisions for sensing the strength of an external magnetic field as well as its spatial gradient. The core idea of the sensor, which we recently proposed in Jachymski et al. [Phys. Rev. Lett. 120, 013401 (2018), 10.1103/PhysRevLett.120.013401], is to probe the transmission of the atoms through a set of quasi-one-dimensional waveguides that contain an impurity. Magnetic-field-dependent interactions between the incoming atoms and the impurity naturally lead to narrow resonances that can act as sensitive field probes since they strongly affect the transmission. We illustrate our findings with concrete examples of experimental relevance, demonstrating that for large atom fluences N a sensitivity of the order of 1 nT/√{N } for the field strength and 100 nT/(mm √{N }) for the gradient can be reached with our scheme.
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
Theory of the stopping power of fast multicharged ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, G.L.
1991-12-01
The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less
Understanding the quantum nature of low-energy C(3Pj) + He inelastic collisions
NASA Astrophysics Data System (ADS)
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B.; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C(3Pj=0) and helium atoms—at collision energies in the vicinity of spin-orbit excitation thresholds ( 0.2 and 0.5 kJ mol-1)—that result in spin-orbit excitation to C(3Pj=1) and C(3Pj=2). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C(3Pj=0) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.
2011-05-01
Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.
Ohoyama, H; Matsuura, Y
2011-10-13
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.
Asymptotic form for the cross section for the Coulomb interacting rearrangement collisions
NASA Technical Reports Server (NTRS)
Omidvar, K.
1973-01-01
It is shown that in a rearrangement collision leading to the formation of the highly excited hydrogenlike states the cross section in all orders of the Born approximation behaves as 1/n sq, with n the principal quantum number, thus invalidating the Brinkman-Kramers approximation for large n. Similarly, in high energy inelastic electron-hydrogenlike atom collisions the exchange cross section for sufficiently large n dominates the direct excitation cross section.
Mg line formation in late-type stellar atmospheres. I. The model atom
NASA Astrophysics Data System (ADS)
Osorio, Y.; Barklem, P. S.; Lind, K.; Belyaev, A. K.; Spielfiedel, A.; Guitou, M.; Feautrier, N.
2015-07-01
Context. Magnesium is an element of significant astrophysical importance, often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from local thermodynamic equilibrium (LTE). The importance of Mg , together with the unique range of spectral features in late-type stars probing different parts of the atom, as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. Previous non-LTE modelling of spectral line formation has, however, been subject to uncertainties due to lack of accurate data for inelastic collisions with electrons and hydrogen atoms. Aims: In this paper we build and test a Mg model atom for spectral line formation in late-type stars with new or recent inelastic collision data and no associated free parameters. We aim to reduce these uncertainties and thereby improve the accuracy of Mg non-LTE modelling in late-type stars. Methods: For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Hydrogen collision data, including charge transfer processes, were taken from recent calculations by some of us. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. This model was then employed in the context of standard non-LTE modelling in 1D (including average 3D) model atmospheres in a small set of stellar atmosphere models. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. Results: The modelled spectra agree well with observed spectra from benchmark stars, showing much better agreement with line profile shapes than with LTE modelling. The line-to-line scatter in the derived abundances shows some improvements compared to LTE (where the cores of strong lines must often be ignored), particularly when coupled with averaged 3D models. The observed Mg emission features at 7 and 12 μm in the spectra of the Sun and Arcturus, which are sensitive to the collision data, are reasonably well reproduced. Charge transfer with H is generally important as a thermalising mechanism in dwarfs, but less so in giants. Excitation due to collisions with H is found to be quite important in both giants and dwarfs. The R-matrix calculations for electron collisions also lead to significant differences compared to when approximate formulas are employed. The modelling predicts non-LTE abundance corrections ΔA(Mg )NLTE-LTE in dwarfs, both solar metallicity and metal-poor, to be very small (of order 0.01 dex), even smaller than found in previous studies. In giants, corrections vary greatly between lines, but can be as large as 0.4 dex. Conclusions: Our results emphasise the need for accurate data of Mg collisions with both electrons and H atoms for precise non-LTE predictions of stellar spectra, but demonstrate that such data can be calculated and that ab initio non-LTE modelling without resort to free parameters is possible. In contrast to Li and Na, where only the introduction of charge transfer processes has led to differences with respect to earlier non-LTE modelling, the more complex case of Mg finds changes due to improvements in the data for collisional excitation by electrons and hydrogen atoms, as well as due to the charge transfer processes. Grids of departure coefficients and abundance corrections for a range of stellar parameters are planned for a forthcoming paper.
NASA Astrophysics Data System (ADS)
Dean, Timothy C.; Ventrice, Carl A.
1995-05-01
As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.
Statistical Analysis For Nucleus/Nucleus Collisions
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1989-01-01
Report describes use of several statistical techniques to charactertize angular distributions of secondary particles emitted in collisions of atomic nuclei in energy range of 24 to 61 GeV per nucleon. Purpose of statistical analysis to determine correlations between intensities of emitted particles and angles comfirming existence of quark/gluon plasma.
Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2017-06-01
We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.
CS and IOS approximations for fine structure transitions in Na(/sup 2/P)--He(/sup 1/S) collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitz, D.E.; Kouri, D.J.
1980-11-15
The l-average CS and IOS approximations are extended to treat fine structure transitions in /sup 2/P atom--/sup 1/S atom scattering. Calculations of degeneracy averaged probabilities and differential cross sections for Na(/sup 2/P)+He(/sup 1/S) collisions in the CS and IOS methods agree well with the CC results. The present nonunitarized form of the CS approximation fails to properly predict all of the jm..-->..j'm' sections and in particular leads to a selection rule forbidding jm..-->..j--m transitions for j=half-odd integer values.
Quantum mechanical models for the Fermi shuttle
NASA Astrophysics Data System (ADS)
Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.
2009-05-01
Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)
NASA Astrophysics Data System (ADS)
Kozhedub, Y. S.; Bondarev, A. I.; Cai, X.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Maltsev, I. A.; Plunien, G.; Shabaev, V. M.; Shao, C.; Stöhlker, Th.; Tupitsyn, I. I.; Yang, B.; Yu, D.
2017-10-01
Non-perturbative calculations of the relativistic quantum dynamics of electrons in the Bi83+-Xe collisions at 70 AMeV are performed. A method of calculation employs an independent particle model with effective single-electron Dirac-Kohn-Sham operator. Solving of the single-electron equations is based on the coupled-channel approach with atomic-like Dirac-Sturm-Fock orbitals, localized at the ions (atoms). Special attention is paid to the inner-shell processes. Intensities of the K satellite and hypersatellite target radiation are evaluated. The role of the relativistic effects is studied.
Background of the completed research; relevances to solar physics
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1973-01-01
Research activities reported consider the atomic structures of highly stripped heavy ions and their modes of formation and destruction in collisions. The lifetime of the metastable 2 3p1 state of the two electron ion F-7(+) was determined by measuring the radiative decay of an excited helium-like fluorine beam, Metastable state quenching measurements were performed on a helium-like ion to obtain the 1 1S0 to 2 3p2 transition probability. Exponential exchange state dependence of X-ray production cross sections was studied in heavy target atoms during collisions with light charged particles.
NASA Astrophysics Data System (ADS)
Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom
2018-05-01
We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.
Nogueira, Juan J; Vázquez, Saulo A; Mazyar, Oleg A; Hase, William L; Perkins, Bradford G; Nesbitt, David J; Martínez-Núñez, Emilio
2009-04-23
The dynamics of collisions of CO2 with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) on gold were investigated by classical trajectory calculations using explicit atom (EA) and united atom (UA) models to represent the F-SAM surface. The CO2 molecule was directed perpendicularly to the surface at initial collision energies of 1.6, 4.7, 7.7, and 10.6 kcal/mol. Rotational distributions of the scattered CO2 molecules are in agreement with experimental distributions determined for collisions of CO2 with liquid surfaces of perfluoropolyether. The agreement is especially good for the EA model. The role of the mass in the efficiency of the energy transfer was investigated in separate simulations in which the mass of the F atoms was replaced by either that of hydrogen or chlorine, while keeping the potential energy function unchanged. The calculations predict the observed trend that less energy is transferred to the surface as the mass of the alkyl chains increases. Significant discrepancies were found between results obtained with the EA and UA models. The UA surface leads to an enhancement of the energy transfer efficiency in comparison with the EA surface. The reason for this is in the softer structure of the UA surface, which facilitates transfer from translation to interchain vibrational modes.
Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure
NASA Astrophysics Data System (ADS)
Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier
2015-10-01
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.
Use of dc Ar microdischarge with nonlocal plasma for identification of metal samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryavtsev, A. A., E-mail: akud@ak2138.spb.edu; Stefanova, M. S.; Pramatarov, P. M.
2015-04-07
The possibility of using the collisional electron spectroscopy (CES) method for the detection of atoms from metal samples is experimentally verified. The detection and identification of metal atoms from a Pt sample in the nonlocal plasma of short (without positive column) dc Ar microdischarge at intermediate pressures (5–30 Torr) is realized in this work. Cathode sputtering is used for atomization of the metal under analysis. The identification of the analyzed metal is made from the energy spectra of groups of fast nonlocal electrons—characteristic electrons released in the Penning ionization of the Pt atoms by Ar metastable atoms and molecules. The acquisitionmore » of the electron energy spectra is performed using an additional electrode—a sensor located at the boundary of the discharge volume. The Pt characteristic Penning electrons form the maxima in the electron energy spectra at the energies of their appearance, which are 2.6 eV and 1.4 eV. From the measured energy of the maxima, identification of the metal atoms is accomplished. The characteristic Ar maxima due to pair collisions between Ar metastable atoms and molecules and super-elastic collisions are also recorded. This study demonstrates the possibility of creating a novel microplasma analyzer for atoms from metal samples.« less
Processes of energy deposition by heavy-particle and electron impact. Final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salop, A.; Smith, F.T.
1978-04-18
Progress is reported in three areas of reasearch during the present period: K-shell ionization in high energy collisions of heavy ions with light target atoms using the sudden (Magnus) approximation, K-L level matching phenomena associated with K-shell vacancy production in heavy-ion collisions, and studies of low energy collisions of electrons with molecules using semi-classical perturbation theory. A brief discussion of each of these activities is given.
DOT National Transportation Integrated Search
1994-10-28
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report describes and documents the a...
DOT National Transportation Integrated Search
1994-10-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...
DOT National Transportation Integrated Search
1995-06-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...
NASA Astrophysics Data System (ADS)
Palomares, J. M.; Graef, W. A. A. D.; Hübner, S.; van der Mullen, J. J. A. M.
2013-10-01
The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.
Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen
NASA Astrophysics Data System (ADS)
Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.
2003-07-01
Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E<80 eV/u, the differences between the current total MOCC cross sections with and without rotational coupling are small (<3%). Rotational coupling becomes more important with increasing energy: for collision energies E>400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.
Scattering of positrons and electrons by alkali atoms
NASA Technical Reports Server (NTRS)
Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.
1990-01-01
Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.
Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S
2011-04-21
Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.
The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams
NASA Technical Reports Server (NTRS)
Geddes, J.; Krause, H. F.; Fite, W. L.
1972-01-01
Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections.
NASA Astrophysics Data System (ADS)
Tanuma, Hajime; Numadate, Naoki; Uchikura, Yoshiyuki; Shimada, Kento; Akutsu, Takuto; Long, Elaine; O'Sullivan, Gerry
2017-10-01
We have performed ion beam collision experiments using multiply charged tantalum ions and observed EUV (extreme ultra-violet) emission spectra in collisions of ions with molecular targets, N2 and O2. Broad UTAs (un-resolved transition arrays) from multiply charged Ta ions were observed, and the mean wavelengths of the UTAs shifted and became shorter at higher charge statea of Ta ions. These UTAs may be attributed to the 4f-5d and 4f-5g transitions. Not only the UTA emission from incident ions, but also the sharp emission lines from multiply charged fragment atomic ions were observed. Production of temporary highly charged molecular ions, their kinetic energy and fragmentation processes have been investigated with coincident detection technique. However, the observation of emission from the fragments might be for the first time. The formation mechanisms of the multiply charged fragment atomic ions from target molecules are discussed.
Electron Emission in Highly Charged Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Liao, Chunlei
1995-01-01
This dissertation addresses the problem of electron emission in highly charged ion-atom collisions. The study is carried out by measuring doubly differential cross sections (DDCS) of emitted electrons for projectiles ranging from fluorine up to gold at ejection angles (theta _{L}) from 0^circ to 70^circ with respect to the beam direction. Prominent features are a very strong forward peaked angular distribution of emitted electrons and the appearance of strong diffraction structures in the binary encounter electron (BEe) region for projectiles heavier than chlorine. This is in clear contradiction to the results found with fluorine projectiles, where the BEe production increases slightly with increasing theta_{L} and no structure is observed in the BEe region. Both can be understood in the impulse approximation as elastic scattering of quasi free target electrons in the projectile potential. Our measurements also show that the violation of q ^2 scaling of the DDCS previously established for 0^circ electron spectra persists for all emission angles and almost all electron energies. In ion-atom collisions, besides electrons from target, electrons from projectile ionization are also presented in the emitted electron spectra. Using electron-projectile coincidence technique, different collision channels can be separated. In order to eliminate the speculations of contributions from projectile related capture and loss channels, coincidence studies of diffraction structures are initiated. In the 0^circ electron spectrum of 0.3 MeV/u I^{6+} impacting on H_2, strong autoionization peaks are observed on the shoulders of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy, and collision mechanism is probed by electron-charge state selected projectile coincidence technique.
Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F
2004-05-08
We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Barghouthi, I.; Barakat, A.
We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F-region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ion-neutral O+ -- O resonant charge exchange and polarization interactions as well as Coulomb self-collisions O+ -- O+. At a few hundreds kilometers of altitude, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and, consequently, the influence of O+ -- O+ Coulomb collisions becomes significant. In this study we consider the effect of O+ -- O+ collisions on the incoherent radar spectra in the presence of large electric field (˜ 100 mVm-1). As altitude increases, (i.e. the role of O+ -- O+ becomes significant), the 1-D O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+ -- O+ Coulomb collisions act to istropize the 1-D O+ velocity distribution, and modify the radar spectrum accordingly, by transferring thermal energy from the perpendicular direction to the parallel direction.
Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines
NASA Technical Reports Server (NTRS)
Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.
2006-01-01
We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.
NASA Technical Reports Server (NTRS)
Drachman, Richard J.
2006-01-01
Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
Displacement Cascade Damage Production in Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai
Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
Charge transfer in ultracold gases via Feshbach resonances
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Côté, Robin
2017-06-01
We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.
Dissociative excitation of the manganese atom quartet levels by collisions e-MnBr2
NASA Astrophysics Data System (ADS)
Smirnov, Yu M.
2017-04-01
Dissociative excitation of quartet levels of the manganese atom was studied in collisions of electrons with manganese dibromide molecules. Eighty-two cross-sections for transitions originating at odd levels and eleven cross-sections for transitions originating at even levels have been measured at an incident electron energy of 100 eV. An optical excitation function has been recorded in the electron energy range of 0-100 eV for transitions originating from 3d 64p z 4 F° levels. For the majority of transitions, a comparison of the resulting cross-section values to cross-sections produced by direct excitation is provided.
1985-07-30
OA 3’, one of the cases studied by Lohmann et al(2 ). The new feature in their measurement is that they normalize their cross section by an...dynamic behav- ior of neutral and ionic clusters[lO]. In the case of ionic clusters there have been already extensive studies on their stability and...The specific cases studied so far on an ab initio level (e + F2 [12], e + N2 [13], e + H2 [14]) indicate that nonlocal effects are generally important
Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)
2004-01-01
A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.
Measurements of hadron mean free path for the particle-producing collisions in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jie; Krems, Roman V.; Li, Zhiying
We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexesmore » are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.« less
NASA Technical Reports Server (NTRS)
Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.
2005-01-01
We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.
Proton-hydrogen collisions for Rydberg n,l-changing transitions in the early Universe
NASA Astrophysics Data System (ADS)
Vrinceanu, Daniel
2013-05-01
Cosmic Microwave Background (CMB) is a vestige radiation generated during the Recombination era, some 390,000 years after the Big Bang, when the Universe had become transparent for the first time. Initial observations of CMB made by the Wilkinson Microwave Anisotropy Probe (WMAP) led to determining the age of the Universe. The mechanisms that drove the recombination have been discovered by using modeling of the primordial plasma and seeking agreement with the observations. The new Plank Surveyor Instrument launched in 2009 is expected to produce data about the recombination era of an unprecedented accuracy, that require including better information regarding the basic atomic physics processes into the present models. In this talk, I will review the results for various Rydberg atom - charge particle collisions and establish their relative importance during the stages of recombination era, with respect to each other and to radiative processes. Energy changing and angular momentum changing collisions with electrons and ions are considered. This work has been supported by NSF through grants to the Institute for Theoretical Atomic and Molecular Physics at Harvard Smithsonian Center for Astrophysics and to the Center for Research on Complex Networks at Texas Southern University.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Sung, C. C.
1998-01-01
Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Sung, C. C.
1999-01-01
Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.
NASA Technical Reports Server (NTRS)
Kirby, Kate; Babb, J.; Yoshino, K.
2004-01-01
In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.
Simultaneous trapping of rubidium-85 and rubidium-87 in a far off resonant trap
NASA Astrophysics Data System (ADS)
Gorges, Anthony R.
The experiments described in this thesis were focused on the physics of simultaneous trapping of 85Rb and 87 Rb into a Far Off Resonant Trap (FORT), with a view towards the implementation of a nonevaporative cooling scheme. Atoms were first trapped in a Magneto Optical Trap (MOT) and from there loaded into the FORT. We investigated the effects of loading the FORT from a MOT vs. an optical molasses; observing that the molasses significantly improved the trapped atom number. The ultimate number of atoms trapped is determined by a balance between efficient laser cooling into the FORT and light-assisted collisional losses from the FORT. We have studied and measured the loss rates associated with light-assisted collisions for our FORT, measuring both heteronuclear and homonuclear collisions. It was discovered that induced long range dipole-dipole interactions between 85Rb and 87Rb have a significant impact on FORT loading. This interaction interferes with the loading into the trap and thus limits the number of atoms which can be trapped in the FORT under simultaneous load conditions. Despite this limitation, all required experimental parameters for our future measurements have been met. In addition to these FORT studies, we have found a technique which can successfully mitigate the effects of reabsorption in optically thick clouds, which is a limitation to the ultimate temperature an atom cloud will reach during light-based cooling. Planned future measurements for this project include the creation of a variable aspect ratio FORT; along with investigating collision assisted Zeeman cooling.
NASA Astrophysics Data System (ADS)
Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatović, Lj M.
2010-11-01
Elementary processes in plasma phenomena traditionally attract physicist's attention. The channel of charged-particle formation in Rydberg atom-atom thermal and sub-thermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI). atomic ions - Penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H-, H+, H2, He,He+). Hydrogen-like alkali-metal Lithium (Li, Li+,Li-) and combinations (HeH+, LiH-, LiH+). There is a wide range of plasma parameters in which the Rydberg atoms of the elements mentioned above make the dominant contribution to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg atom-atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modelled as diffusion within the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum. This may lead to anomalies of Rydberg atom spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg atom closed to the primary selected one. The Rydberg atoms ionisation theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.
ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo
2015-10-10
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewkow, N. R.; Kharchenko, V.
2014-08-01
The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less
Crucial Experiments in Quantum Physics.
ERIC Educational Resources Information Center
Trigg, George L.
The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…
DOT National Transportation Integrated Search
2014-01-01
Rail lines present two major challenges to the : roadways they intersect: potential for collisions : and increased congestion. In addition, congestion : can contribute collision hazards when drivers are : impatient or vehicles are prevented from clea...
NASA Technical Reports Server (NTRS)
Thompson, R. A.
1994-01-01
Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. This program was last updated in 1991. SUN and SunOS are registered trademarks of Sun Microsystems, Inc.
NASA Astrophysics Data System (ADS)
Matthews, N. F.; Robson, D.; Grant, M. A.
1990-12-01
An explicit formula is derived for the transition probability between two different states of the atom-dimer collisional system governed by second-order long-range interaction potential terms varying as R-8 and R-10.
Electron capture by Ne3+ ions from atomic hydrogen
NASA Astrophysics Data System (ADS)
Rejoub, R.; Bannister, M. E.; Havener, C. C.; Savin, D. W.; Verzani, C. J.; Wang, J. G.; Stancil, P. C.
2004-05-01
Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u . Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u . Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ˜1 eV/u , an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ˜4 eV/u , the present calculations show a significant target isotope effect.
Electron capture in collisions of S4+ with atomic hydrogen
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-06-01
Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.
Theory of ionizing neutrino-atom collisions: The role of atomic recoil
NASA Astrophysics Data System (ADS)
Kouzakov, Konstantin A.; Studenikin, Alexander I.
2016-04-01
We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.
Studies of Highly Excited Atoms.
1986-04-02
R 2 o i86 Chemical Physics Laboratory " i 0. R . Abrahamson i Vice President Physical Fciences Division ri" - c. -:OP...34 - men I IN RO U TI, .. . . . . . . . . . - .... .... o .. . . . o ......... - TI R SOPA T C LLIS OWZ.... ... . 6 ... ... oo ... .... ... .... . - A...by WA =W + 1ns- 0 (3a) and R = 1’np + ’(n-l)p (3b) .* 7_7. ’ P. z Atom 2 ’b y tom1 SA-846 1-30A FIGURE 2 GEOMETRY OF THE COLLISION OF TWO ATOMS Atom I
Differential collision cross-sections for atomic oxygen
NASA Technical Reports Server (NTRS)
Torr, Douglas G.
1991-01-01
Differential collision cross-sections of O on N2 and other gases were measured to understand vehicle-environmental contamination effects in orbit. The following subject areas are also covered: groundbased scientific observations of rocket releases during NICARE-1; data compression study for the UVI; science priorities for UV imaging in the mid-1990's; and assessment of optimizations possible in UV imaging systems.
Wasowicz, Tomasz J; Pranszke, Bogusław
2015-01-29
We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states. Fragmentation yields of these excited fragments have been measured as functions of the projectile energy (velocity). Our results show that the fragmentation mechanism depends on the projectile cations and is dominated by electron transfer from tetrahydrofuran molecules to cations. It has been additionally hypothesized that in the C(+)+THF collisions a [C-C4H8O](+) complex is formed prior to dissociation. The possible reaction channels involved in fragmentation of THF under the H(+), C(+), and O(+) cations impact are also discussed.
NASA Astrophysics Data System (ADS)
Li, B.; Allouche, A. R.; Bernard, J.; Brédy, R.; Qian, D. B.; Ma, X.; Martin, S.; Chen, L.
2017-03-01
Meso-tetraphenyl iron (III) porphyrin chloride dications (FeTPPCl2+)* were prepared in collisions with F+ and H+ at 3 keV. The dominant fragmentation channels were observed to involve the loss of the Cl atom and the successive loss of neutral phenyl groups for both collisional systems. The mass spectra in correlation with the deposited excitation energy distributions of the parent ions for the main fragmentation channels were measured by using the collision induced dissociation under energy control method. The global excitation energy distribution was found to be shifted to lower energies in collisions with H+ compared to collisions with F+ showing a noteworthy change of the excitation energy window using different projectile ions. Partial excitation energy distributions of the parent ions FeTPPCl2+ were obtained for each fragmentation group. In a theoretical work, we have calculated the dissociation energies for the loss of one and two phenyl groups, including phenyl and (phenyl ± H). The energy barrier for the hydrogen atom transfer during the loss of (phenyl-H) has been also calculated. The measured energy difference for the successive loss of two phenyl groups was compared with the theoretical values.
Recombination reactions of 5-eV O(3P) atoms on a MgF2 surface
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.; Murad, E.
1990-01-01
A source of hyperthermal, ground-state, impurity-free, atomic oxygen of an energy variable in the range 2-100 eV has been developed. Experimental results are presented of emission spectra in the wavelength range 250-850 nm produced by collisions of 5-eV O(3P) atoms with adsorbed NO and CO molecules on a MgF2 surface.
Atomic and molecular data for metallic impurities in fusion plasmas
NASA Astrophysics Data System (ADS)
Gregory, D. C.
1990-06-01
Representatives from electron-impact and ion-atom research groups reviewed and rated the available data on collision processes, of interest to fusion, involving impurity metals. The best available data were identified and rated for accuracy. Gaps and needs for additional experiments and calculations were noted. Summary articles with the group conclusions and recommendations will be published in a special topical issue of Physica Scripta along with articles on specific related topics by members of the Advisory Group. Laboratories at University College, London, were visited in order to renew contact with the research group there, which is one of the three most active in the United Kingdom in electron collision experiments.
First observation of RDEC for gas (N2) targets with F9+
NASA Astrophysics Data System (ADS)
Kumara, P. N. S.; La Mantia, D. S.; Simon, A.; Kayani, A.; Tanis, J. A.
2017-10-01
Radiative double electron capture (RDEC) is a fundamental atomic process predicted to occur in ion-atom collisions. Several attempts were made to show experimental evidence for RDEC after it was introduced theoretically in 1987. The first successful measurements were done for O8+ ions colliding with a thin carbon foil in 2010, followed by measurements for F9+ projectiles incident on carbon. The works reported here are the first observations giving preliminary results for RDEC in collisions of F9+ projectiles with gas (N2) targets. X-rays were observed in the region of interest and an estimation of RDEC cross section was calculated. These cross sections are compared with recent theoretical calculations.
NASA Technical Reports Server (NTRS)
Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.
1980-01-01
A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.
Laser-enhanced dynamics in molecular rate processes
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.
1978-01-01
The present discussion deals with some theoretical aspects associated with the description of molecular rate processes in the presence of intense laser radiation, where the radiation actually interacts with the molecular dynamics. Whereas for weak and even moderately intense radiation, the absorption and stimulated emission of photons by a molecular system can be described by perturbative methods, for intense radiation, perturbation theory is usually not adequate. Limiting the analysis to the gas phase, an attempt is made to describe nonperturbative approaches applicable to the description of such processes (in the presence of intense laser radiation) as electronic energy transfer in molecular (in particular atom-atom) collisions; collision-induced ionization and emission; and unimolecular dissociation.
NASA Astrophysics Data System (ADS)
Maruyama, Ryo; Tanaka, Hideyasu; Yamakita, Yoshihiro; Misaizu, Fuminori; Ohno, Koichi
2000-09-01
Penning ionization electron spectra (PIES) of CO 2 clusters have been observed for the first time. An unusually fast electron band with excess kinetic energies of 1.4-2.9 eV with respect to the monomer band for the ionic X state was observed for CO 2 clusters in collision with He*(2 3S) atoms. While for PIES with Ne*(3 3P), no such unusual band was observed. The unusual band is ascribed to autoionization into stable structures of ionic clusters to which direct ionization processes are almost impossible due to very small Franck-Condon overlaps associated with a very large geometry difference between the ionic and neutral clusters.
Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms
NASA Astrophysics Data System (ADS)
Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.
2018-04-01
The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.
ERIC Educational Resources Information Center
Dowds, Eris; Anderson, Daniel; Sizemore, Rick; Johnson, John
2007-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6
NASA Astrophysics Data System (ADS)
Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.
2003-11-01
Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2→H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.
Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom
NASA Astrophysics Data System (ADS)
Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan
2011-05-01
In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).
Collision induced broadening and shifting of the H and K lines of Ca+ at low temperature
NASA Astrophysics Data System (ADS)
Wang, Xin; Zhang, Rui; Shen, Yong; Liu, Qu; Zou, Hongxin; Yan, Bing
2017-09-01
Multireference configuration interaction method was used to compute the potential energy curves of Λ-S states correlating with lowest three atomic limits in Ca+-He molecular collision system. The potential energy curves of nine Ω states were obtained with inclusion of spin-orbit coupling. And the electric dipole and quadrupole moment matrix elements between excited states and ground state were also computed. Furthermore, with aid of the Anderson-Talman theory we calculated the broadening and shifting coefficients for Ca+-He spectral lines in the low temperature regime. For H line, α = 0.303 × 10-20 cm-1/cm-3, β = -0.0527 × 10-20cm-1/cm-3; For K line, α = 0.233 × 10-20cm-1/cm-3, β = -0.0402 × 10-20cm-1/cm-3 These results are helpful to understand the collision effects induced by He atom in further spectra investigations of cold Ca+ ions.
Production and decay of K -shell hollow krypton in collisions with 52-197-MeV/u bare xenon ions
NASA Astrophysics Data System (ADS)
Shao, Caojie; Yu, Deyang; Cai, Xiaohong; Chen, Xi; Ma, Kun; Evslin, Jarah; Xue, Yingli; Wang, Wei; Kozhedub, Yury S.; Lu, Rongchun; Song, Zhangyong; Zhang, Mingwu; Liu, Junliang; Yang, Bian; Guo, Yipan; Zhang, Jianming; Ruan, Fangfang; Wu, Yehong; Zhang, Yuezhao; Dong, Chenzhong; Chen, Ximeng; Yang, Zhihu
2017-07-01
X-ray spectra of K -shell hollow krypton atoms produced in single collisions with 52-197-MeV/u X e54 + ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K α1,2 s , K α1,2 h ,s , and K β1,3 s transitions are obtained. Thus the average number of the spectator L vacancies presented during the x-ray emission is deduced. From the relative intensities of the K α1,2 s and K α1,2 h ,s transitions, the ratio of K -shell hollow krypton to singly K -shell ionized atoms is determined to be 14 %-24 % . In the considered collisions, the K vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled-channel calculation performed within the independent particle approximation.
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2016-10-01
There have been discussions in the recent literature regarding the accuracy of the available electron impact excitation rates (equivalently effective collision strengths Υ) for transitions in Be-like ions. In the present paper we demonstrate, once again, that earlier results for Υ are indeed overestimated (by up to four orders of magnitude), for over 40 per cent of transitions and over a wide range of temperatures. To do this we have performed two sets of calculations for N IV, with two different model sizes consisting of 166 and 238 fine-structure energy levels. As in our previous work, for the determination of atomic structure the GRASP (General-purpose Relativistic Atomic Structure Package) is adopted and for the scattering calculations (the standard and parallelised versions of) the Dirac Atomic R-matrix Code (DARC) are employed. Calculations for collision strengths and effective collision strengths have been performed over a wide range of energy (up to 45 Ryd) and temperature (up to 2.0 × 106 K), useful for applications in a variety of plasmas. Corresponding results for energy levels, lifetimes and A-values for all E1, E2, M1 and M2 transitions among 238 levels of N IV are also reported.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking
NASA Astrophysics Data System (ADS)
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco
2015-09-01
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
NASA Astrophysics Data System (ADS)
Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration
2018-01-01
During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p +p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p +p collisions predicts only a moderate atomic-mass-number (A ) dependence. In contrast, the asymmetries observed at RHIC in p +A collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in p +Al collisions is much smaller, while the asymmetry in p +Au collisions is a factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.
Aidala, C; Akiba, Y; Alfred, M; Andrieux, V; Aoki, K; Apadula, N; Asano, H; Ayuso, C; Azmoun, B; Babintsev, V; Bagoly, A; Bandara, N S; Barish, K N; Bathe, S; Bazilevsky, A; Beaumier, M; Belmont, R; Berdnikov, A; Berdnikov, Y; Blau, D S; Boer, M; Bok, J S; Brooks, M L; Bryslawskyj, J; Bumazhnov, V; Butler, C; Campbell, S; Canoa Roman, V; Cervantes, R; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Citron, Z; Connors, M; Cronin, N; Csanád, M; Csörgő, T; Danley, T W; Daugherity, M S; David, G; DeBlasio, K; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dion, A; Dixit, D; Do, J H; Drees, A; Drees, K A; Dumancic, M; Durham, J M; Durum, A; Elder, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fan, W; Feege, N; Fields, D E; Finger, M; Finger, M; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukuda, Y; Gal, C; Gallus, P; Garg, P; Ge, H; Giordano, F; Goto, Y; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamilton, H F; Han, S Y; Hanks, J; Hasegawa, S; Haseler, T O S; He, X; Hemmick, T K; Hill, J C; Hill, K; Hollis, R S; Homma, K; Hong, B; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Imai, K; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Ito, Y; Ivanishchev, D; Jacak, B V; Jezghani, M; Ji, Z; Jiang, X; Johnson, B M; Jorjadze, V; Jouan, D; Jumper, D S; Kang, J H; Kapukchyan, D; Karthas, S; Kawall, D; Kazantsev, A V; Khachatryan, V; Khanzadeev, A; Kim, C; Kim, D J; Kim, E-J; Kim, M; Kim, M H; Kincses, D; Kistenev, E; Klatsky, J; Kline, P; Koblesky, T; Kotov, D; Kudo, S; Kurita, K; Kwon, Y; Lajoie, J G; Lallow, E O; Lebedev, A; Lee, S; Leitch, M J; Leung, Y H; Lewis, N A; Li, X; Lim, S H; Liu, L D; Liu, M X; Loggins, V-R; Lökös, S; Lovasz, K; Lynch, D; Majoros, T; Makdisi, Y I; Makek, M; Malaev, M; Manko, V I; Mannel, E; Masuda, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Mendoza, M; Metzger, W J; Mignerey, A C; Mihalik, D E; Milov, A; Mishra, D K; Mitchell, J T; Mitsuka, G; Miyasaka, S; Mizuno, S; Montuenga, P; Moon, T; Morrison, D P; Morrow, S I M; Murakami, T; Murata, J; Nagai, K; Nagashima, K; Nagashima, T; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakano, K; Nattrass, C; Niida, T; Nouicer, R; Novák, T; Novitzky, N; Novotny, R; Nyanin, A S; O'Brien, E; Ogilvie, C A; Orjuela Koop, J D; Osborn, J D; Oskarsson, A; Ottino, G J; Ozawa, K; Pantuev, V; Papavassiliou, V; Park, J S; Park, S; Pate, S F; Patel, M; Peng, W; Perepelitsa, D V; Perera, G D N; Peressounko, D Yu; PerezLara, C E; Perry, J; Petti, R; Phipps, M; Pinkenburg, C; Pisani, R P; Pun, A; Purschke, M L; Radzevich, P V; Read, K F; Reynolds, D; Riabov, V; Riabov, Y; Richford, D; Rinn, T; Rolnick, S D; Rosati, M; Rowan, Z; Runchey, J; Safonov, A S; Sakaguchi, T; Sako, H; Samsonov, V; Sarsour, M; Sato, K; Sato, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seidl, R; Sen, A; Seto, R; Sexton, A; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shioya, T; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Singh, B K; Singh, C P; Singh, V; Skoby, M J; Slunečka, M; Smith, K L; Snowball, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stoll, S P; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Syed, S; Sziklai, J; Takeda, A; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarnai, G; Tieulent, R; Timilsina, A; Todoroki, T; Tomášek, M; Towell, C L; Towell, R S; Tserruya, I; Ueda, Y; Ujvari, B; van Hecke, H W; Vazquez-Carson, S; Velkovska, J; Virius, M; Vrba, V; Vukman, N; Wang, X R; Wang, Z; Watanabe, Y; Watanabe, Y S; Wong, C P; Woody, C L; Xu, C; Xu, Q; Xue, L; Yalcin, S; Yamaguchi, Y L; Yamamoto, H; Yanovich, A; Yin, P; Yoo, J H; Yoon, I; Yu, H; Yushmanov, I E; Zajc, W A; Zelenski, A; Zharko, S; Zou, L
2018-01-12
During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p+p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p+p collisions predicts only a moderate atomic-mass-number (A) dependence. In contrast, the asymmetries observed at RHIC in p+A collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in p+Al collisions is much smaller, while the asymmetry in p+Au collisions is a factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.
2018-05-01
A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.
Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions
2014-02-03
SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled
FAIR - Cosmic Matter in the Laboratory
NASA Astrophysics Data System (ADS)
Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian
2015-06-01
To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].
NASA Technical Reports Server (NTRS)
Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.
1994-01-01
Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.
DOE R&D Accomplishments Database
Continetti, R. E.; Balko, B. A.; Lee, Y. T.
1989-02-01
A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.
Spontaneous evolution of rydberg atoms into an ultracold plasma
Robinson; Tolra; Noel; Gallagher; Pillet
2000-11-20
We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.
The Effect of Intense Laser Radiation on Atomic Collisions
NASA Astrophysics Data System (ADS)
Young, Stephen Michael Radley
1991-02-01
Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used in conjunction with the weak lambda 253.7 nm field detuned by 0 to 6 cm^ {-1}. Measurement of fluorescence intensity in two perpendicular planes of polarisation has revealed the dominant | e_1> to | e_2> excitation channel as a function of the Stark shift by way of the U.V. detuning. Competition between the channels was dependent on the generalised Rabi frequency. However, we could only monitor the relative strength of the channels and were thus unable to say that the Stark shift switched collisions off. (Abstract shortened by UMI.).
Dynamic of negative ions in potassium-D-ribose collisions.
Almeida, D; Ferreira da Silva, F; García, G; Limão-Vieira, P
2013-09-21
We present negative ion formation from collisions of neutral potassium atoms with D-ribose (C5H10O5), the sugar unit in the DNA/RNA molecule. From the negative ion time-of-flight (TOF) mass spectra, OH(-) is the main fragment detected in the collision range 50-100 eV accounting on average for 50% of the total anion yield. Prominence is also given to the rich fragmentation pattern observed with special attention to O(-) (16 m/z) formation. These results are in sharp contrast to dissociative electron attachment experiments. The TOF mass spectra assignments show that these channels are also observed, albeit with a much lower relative intensity. Branching ratios of the most abundant fragment anions as a function of the collision energy are obtained, allowing to establish a rationale on the collision dynamics.
Electron impact collision strengths in Ne VII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, L.; Shi, J.R.; Zhao, G., E-mail: gzhao@bao.ac.cn
2012-07-15
The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, andmore » effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.« less
Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse
NASA Astrophysics Data System (ADS)
Makarov, D. N.; Matveev, V. I.
2015-02-01
Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.
Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.
An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C.B.
1982-01-01
Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-24
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
NASA Technical Reports Server (NTRS)
Borenstein, M.
1972-01-01
A classical model for laser action is discussed, in which an active medium consisting of anharmonic oscillators interacts with an electromagnetic field in a resonant cavity. Comparison with the case of a medium consisting of harmonic oscillators shows the significance of nonlinearities for producing self-sustained oscillations in the radiation field. A theoretical model is presented for the pressure dependence of the intensity of a gas laser, in which only velocity-changing collisions with foreign gas atoms are included. A collision model for hard sphere, repulsive interactions was derived. Collision theory was applied to a third-order expansion of the polarization in powers of the cavity electric field (weak signal theory).
Atomic Data for Fusion. Volume 5: Collisions of Carbon and Oxygen Ions with Electrons, H, H2 and He
1987-02-01
Atomico Bariloche , 8400 San Carlos De Bariloche, Argentina 438. Dr. S. V. Mirnov, I. V. Kurchatov Institute Of, Atomic Energy, Ulitsa Kurchatova, 46...Bldg. R25, Space and Astrophysics Div., Rutherford Appleton Lab., Chilton, Didcot, Oxfordshire OX1I OQX, United Kingdom 437. Dr. W. Meckbach, Centro
Generalized pseudopotential approach for electron-atom scattering.
NASA Technical Reports Server (NTRS)
Zarlingo, D. G.; Ishihara, T.; Poe, R. T.
1972-01-01
A generalized many-electron pseudopotential approach is presented for electron-neutral-atom scattering problems. A calculation based on this formulation is carried out for the singlet s-wave and p-wave electron-hydrogen phase shifts with excellent results. We compare the method with other approaches as well as discuss its applications for inelastic and rearrangement collision problems.
NASA Astrophysics Data System (ADS)
Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.
2018-05-01
Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-10-01
Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147
Electron-impact coherence parameters for 41 P 1 excitation of zinc
NASA Astrophysics Data System (ADS)
Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh
2018-04-01
We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.
Energy distributions and radiation transport in uranium plasmas
NASA Technical Reports Server (NTRS)
Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.
1976-01-01
An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.
Theory of Electronic, Atomic and Molecular Collisions.
1983-09-01
coordinate in a reactive collision. Dynamical entropy Is defined as a statistical property of a dynamical scattering matrix, indexed by internal states of a...matrix U by enforcing certain internal symmetries that are a property of canonical transformation matrices (FCANON algorithm: Section IV...channels are present in Eq. (12). This low of accuracy is a property of the system of coupled differential equations, not of any particular method of
l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2
NASA Astrophysics Data System (ADS)
Dubreuil, B.; Harnafi, M.
1989-07-01
The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Chan, V. S.; Chiu, S. C.
2000-11-01
Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less
Improved Apparatus to Study Matter-Wave Quantum Optics in a Sodium Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Zhong, Shan; Bhagat, Anita; Zhang, Qimin; Schwettmann, Arne
2017-04-01
We present and characterize our recently improved experimental apparatus for studying matter-wave quantum optics in spin space in ultracold sodium gases. Improvements include our recent addition of a 3D-printed Helmholtz coil frame for field stabilization and a crossed optical dipole trap. Spin-exchange collisions in the F = 1 spinor Bose-Einstein condensate can be precisely controlled by microwave dressing, and generate pairs of entangled atoms with magnetic quantum numbers mF = + 1 and mF = - 1 from pairs of mF = 0 atoms. Spin squeezing generated by the collisions can reduce the noise of population measurements below the shot noise limit. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices with sub-shot noise performance. With an added ion detector to detect Rydberg atoms via pulse-field ionization, we later plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.
Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases
NASA Astrophysics Data System (ADS)
Ding, Yijue
This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohyung Lee.
This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less
NASA Astrophysics Data System (ADS)
Li, Yong-Qing; Zhang, Yong-Jia; Zhao, Jin-Feng; Zhao, Mei-Yu; Ding, Yong
2015-11-01
Vector correlations of the reaction are studied based on a recent DMBE-SEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0-5 and j = 0 states in a wide collision energy range (10-50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H-H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(ϕr), and P(θr, ϕr). Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and 11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158) , the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001).
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, Alexei N.; Popov, Yuri V.; Gryzlova, Elena V.; Solov'yov, Andrey V.
2017-07-01
The conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS-2016) brought together near to a hundred scientists in the field of electronic, photonic, atomic and molecular collisions, and spectroscopy from around the world. We deliver an Editorial of a topical issue presenting original research results from some of the participants on both experimental and theoretical studies involving many particle spectroscopy of atoms, molecules, clusters and surfaces. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu.V. Popov, and A.V. Solov'yov.
Space Dust Collisions as a Planetary Escape Mechanism.
Berera, Arjun
2017-12-01
It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space. Key Words: Hypervelocity space dust-Collision-Planetary escape-Atmospheric constituents-Microbial life. Astrobiology 17, 1274-1282.
Atom loss resonances in a Bose-Einstein condensate.
Langmack, Christian; Smith, D Hudson; Braaten, Eric
2013-07-12
Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.
NASA Astrophysics Data System (ADS)
Friedman, B.; DuCharme, G.
2017-06-01
We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J
2018-04-28
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
NASA Astrophysics Data System (ADS)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schatz, G.C.; Kuppermann, A.
1979-03-15
It is shown that the phase factor i/sup J+j+l/ omitted in a theory of atom-diatom monreactive scattering formulated by Schatz and Kupperman but included in the Choi, Poe, and Tang theory does not lead to errors in the analysis of te (H,H/sub 2/) system.
James Franck and the 1919 Discovery of Metastable States
NASA Astrophysics Data System (ADS)
Gearhart, Clayton
Today physicists associate metastable states in atoms with theoretical selection rules and transition probabilities. But these states were first discovered experimentally, at a time when such theories were in their infancy. In 1914, James Franck and Gustav Hertz published their experiments on inelastic collisions of slow electrons with helium and mercury vapor atoms. Famously, they thought they were measuring ionization energies, and not, as we understand it today, excitation energies. During the Great War, experimentalists in North America showed that Franck and Hertz had not seen ionization, and also measured the correct ionization energy of mercury vapor atoms. As Franck resumed work after the war, he and his associates at Fritz Haber's Institute for Physical Chemistry returned to experiments on and theoretical analyses of the collisions of slow electrons with helium atoms, in brisk competition with others in England and America. They were able to measure the ionization energy and to throw new light on the non-combining singlet and ``doublet'' (later found to be triplet) spectral series in helium. In the process, they proposed for the first time the existence of metastable states, first in helium, and later in mercury.
Analytically derived switching functions for exact H2+ eigenstates
NASA Astrophysics Data System (ADS)
Thorson, W. R.; Kimura, M.; Choi, J. H.; Knudson, S. K.
1981-10-01
Electron translation factors (ETF's) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical "two-center decomposition" of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the "angle variable" of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-ɛR22, where ɛ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic "optimization" scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV.
Glodić, Pavle; Mihesan, Claudia; Klontzas, Emmanouel; Velegrakis, Michalis
2016-02-25
Yttrium oxide cluster cations have been experimentally and theoretically studied. We produced small, oxygen-rich yttrium oxide clusters, YxOy+ (x = 1, 2, y = 1–13), by mixing the laser-produced yttrium plasma with a molecular oxygen jet. Mass spectrometry measurements showed that the most stable clusters are those consisting of one yttrium and an odd number of oxygen atoms of the form YO(+)(2k+1) (k = 0–6). Additionally, we performed collision induced dissociation experiments, which indicated that the loss of pairs of oxygen atoms down to a YO+ core is the preferred fragmentation channel for all clusters investigated. Furthermore, we conduct DFT calculations and we obtained two types of low-energy structures: one containing an yttrium cation core and the other composed of YO+ core and O2 ligands, being in agreement with the observed fragmentation pattern. Finally, from the fragmentation studies, total collision cross sections are obtained and these are compared with geometrical cross sections of the calculated structures.
Electron impact excitation of Kr XXXII
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2009-09-01
Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the 2s2p,2s2p,2p,2s3ℓ,2s2p3ℓ, and 2p3ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R-matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below 107.3K, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range 7.3⩽logTe(K)⩽9.0, obtained from the nonresonant collision strengths from the Flexible Atomic Code.
The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenke, Bjoern
2014-12-18
The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with eachmore » other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.« less
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Cline, Jason; Braunstein, Matthew; Minton, Timothy
2003-01-01
Contents include the following: 1. SS calculations show multi-collision effect can affect both downstream measurements and flux at surface. 2. Pulsed calculations at nominal source fluxes show that the flux to the surface is close to that expected from theory, but more information is needed. 3. Pulsed calculations needed more resolution to determine whether downstream flux correction is necessary. 4. Higher pulsed fluxes should show multi-collision effects more clearly.
Inelastic collisions of positrons with one-valence-electron targets
NASA Technical Reports Server (NTRS)
Abdel-Raouf, Mohamed Assad
1990-01-01
The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.
H- and He-like Charge-Exchange Induced X-ray Emission due to Ion Collisions with H, He, and H2
NASA Astrophysics Data System (ADS)
Cumbee, Renata; Mullen, Patrick; Miller, Ansley; Lyons, David; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.; Leutenegger, Maurice A.
2017-08-01
When a hot plasma collides with a cold neutral gas interactions occur between the microscopic constituents including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.Since the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models of astrophysical environments in which CX might be significant in order to correctly estimate the ion abundance and plasma velocities. Here, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for a variety of collision energies relevant to various astrophysical environments. Collisions of bare and H-like C, N, O, Ne, Mg, Al, Si, P, S, and Cl ions are shown with H, He, and H2 as the neutral collision targets. An X-ray model using line ratios for C-Si ions is then performed within XSPEC for a region of the Cygnus Loop supernova remnant for 8 collision energies in order to highlight the variation in CX spectral models with collision energy.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.
Cluster formation in nuclear reactions from mean-field inhomogeneities
NASA Astrophysics Data System (ADS)
Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo
2018-05-01
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few practical examples will be illustrated. This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and briefly reviews applications to heavy-ion collisions.
REVIEWS OF TOPICAL PROBLEMS: Astrophysical and laboratory applications of self-alignment
NASA Astrophysics Data System (ADS)
Kazantsev, S. A.
1983-04-01
Self-alignment of excited atoms which is observed in the laboratory and in astrophysical situations is reviewed. It is described classically and in terms of quantum mechanics. Astrophysical manifestations of selfalignment of excited atoms in the solar atmosphere and applications of self-alignment in magnetometry are analyzed. Self-alignment in low-pressure gas-discharge plasmas in the laboratory is described in detail. The cross sections for depolarizing collisions measured by this method are tabulated along with the lifetimes of excited inert gas atoms. These atomic constants can be used in practical magnetometry of the outer solar atmosphere.
Electronic excitation and quenching of atoms at insulator surfaces
NASA Technical Reports Server (NTRS)
Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.
1988-01-01
A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.
Effect of collisions on photoelectron sheath in a gas
NASA Astrophysics Data System (ADS)
Sodha, Mahendra Singh; Mishra, S. K.
2016-02-01
This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solares, Santiago D.
The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.
NASA Astrophysics Data System (ADS)
Belkic, Dzevad
Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.
NASA Astrophysics Data System (ADS)
Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.
2017-12-01
We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.
Exotic objects of atomic physics
NASA Astrophysics Data System (ADS)
Eletskii, A. V.
2017-11-01
There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.
NASA Astrophysics Data System (ADS)
Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.
2017-10-01
The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.
Energy behavior on side structure in event of ship collision subjected to external parameters.
Prabowo, Aditya Rio; Bae, Dong Myung; Sohn, Jung Min; Cao, Bo
2016-11-01
The safety of ships in regards to collisions and groundings, as well as the navigational and structural aspects of ships, has been improved and developed up to this day by technical, administrative and nautical parties. The damage resulting from collisions could be reduced through several techniques such as designing appropriate hull structures, ensuring tightness of cargo tanks as well as observation and review on structural behaviors, whilst accounting for all involved parameters. The position during a collision can be influenced by the collisions' location and angle as these parts are included in the external dynamics of ship collisions. In this paper, the results of several collision analyses using the finite element method were used and reviewed regarding the effect of location and angle on energy characteristic. Firstly, the capabilities of the structure and its ability to resist destruction in a collision process were presented and comparisons were made to other collision cases. Three types of collisions were identified based on the relative location of contact points to each other. From the results, it was found that the estimation of internal energy by the damaged ships differed in range from 12%-24%. In the second stage, the results showed that a collision between 30 to 60 degrees produced higher level energy than a collision in the perpendicular position. Furthermore, it was concluded that striking and struck objects in collision contributed to energy and damage shape.
Ozone Depletion, UVB and Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
1999-01-01
The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.
Collision of impurities with Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.
2018-04-01
Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.
NASA Astrophysics Data System (ADS)
Balance, Connor
Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.
Alignment relaxation of Ne*(2pi [J = 1]) atoms in He-Ne* glow discharges
NASA Astrophysics Data System (ADS)
Bahrim, Cristian; Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro
2009-11-01
Alignment relaxation of the Ne*(2p5 3p; 2pi [J = 1]) atoms (where i = 2, 5, 7 or 10) induced by collisions with He atoms in glow discharges at 77 K < T < 1,000 K are reported. Close-coupling many-channel quantum calculations using a model potential for the Ne*(2p5 3p) - He system are compared with measurements of the alignment relaxation using the LIFS technique and the Hanle effect. The addition of the dipole polarization potential of the Ne*(2pi [J = 1]) atoms to the spin-orbit coupling and the electrostatic interaction between Ne* and He atoms leads to good agreement between theory and experiment.
Atoms-for-Peace: A Galactic Collision in Action
NASA Astrophysics Data System (ADS)
2010-11-01
European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don't panic: the distance between stars within a galaxy is vast, so it is unlikely that our Sun will end up in a head-on collision with another star during the merger. The object's curious nickname has an interesting history. In December 1953, President Eisenhower gave a speech that was dubbed Atoms for Peace. The theme was promoting nuclear power for peaceful purposes - a particularly hot topic at the time. This speech and the associated conference made waves in the scientific community and beyond to such an extent that NGC 7252 was named the Atoms-for-Peace galaxy. In many ways, this is oddly appropriate: the curious shape that we can see is the result of two galaxies merging to produce something new and grand, a little like what occurs in nuclear fusion. Furthermore, the giant loops resemble a textbook diagram of electrons orbiting an atomic nucleus. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Plasma/Neutral-Beam Etching Apparatus
NASA Technical Reports Server (NTRS)
Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert
1989-01-01
Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.
Inelastic Transitions in Slow Collisions of Anti-Hydrogen with Hydrogen Atoms
NASA Astrophysics Data System (ADS)
Harrison, Robert; Krstic, Predrag
2007-06-01
We calculate excited adiabatic states and nonadiabatic coupling matrix elements of a quasimolecular system containing hydrogen and anti-hydrogen atoms, for a range of internuclear distances from 0.2 to 20 Bohrs. High accuracy is achieved by exact diagonalization of the molecular Hamiltionian in a large Gaussian basis. Nonadiabatic dynamics was calculated by solving MOCC equations. Positronium states are included in the consideration.
METHOD FOR REDUCING THE IMPURITY RESISTIVITY OF SODIUM
Post, R.F.; Taylor, C.E.
1963-08-13
The inherent resistivity of sodium, at cryogenic temperatures, can be reduced by clustering the impurity atoms within the crystal latiice structure of the sodium, thereby reducing the effective electron collision cross section and thus reducing the number of collisions between the electrons and such lattice imperfections. The clustering is effected by heating the sodium to a temperature approaching its melting point, and maintaining the temperature for a period of time ranging generally from two to six days. (AEC)
Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe
2016-01-15
Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.
NASA Astrophysics Data System (ADS)
Kirsch, Scott Lawrence
From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.
Optically-pumped spin-exchange polarized electron source
NASA Astrophysics Data System (ADS)
Pirbhai, Munir Hussein
Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.
NASA Astrophysics Data System (ADS)
Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatovic, Lj. M.
2010-07-01
Elementary processes in plasma phenomena traditionally attract physicist`s attention. The channel of charged-particle formation in Rydberg Atom-Atom thermal and subthermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI), atomic ions - penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H- , H+, H2, He, He+ ), Hydrogen-like alkali-metal Litium (Li, Li+, Li-) and combinations (HeH+ , LiH- , LiH+). There is a wide range of plasma parameters in which the Rydberg Atoms of the elements called above make the dominant construction to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The first series of quantitative measurements of the rate constants for Rydberg Atoms starts in 1978 (Devdariani, Klyucharev et al.). The method of AI and PI calculations, so-called "dipole resonant" mechanism proposed in 1971 (Smirnov, Mihaylov) was used in semiclassical (Mihailov and Janev 1981) and quantum mechanical theories (Duman, Shmatov, 1980). The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg Atom - Atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modeled as diffusion in the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum (Bezuglov, Borodin, Klyucharev et al. 1997). Such approach makes it possible to operate on efficiently of inelastic collisional processes and sometimes to operate on time of Rydberg Atoms life. This may lead to anomalies of Rydberg Atoms spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg Atom closed to the primary selected one. The Rydberg Atoms ionisaton theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.
Space Dust Collisions as a Planetary Escape Mechanism
NASA Astrophysics Data System (ADS)
Berera, Arjun
2017-12-01
It is observed that hypervelocity space dust, which is continuously bombarding Earth, creates immense momentum flows in the atmosphere. Some of this fast space dust inevitably will interact with the atmospheric system, transferring energy and moving particles around, with various possible consequences. This paper examines, with supporting estimates, the possibility that by way of collisions the Earth-grazing component of space dust can facilitate planetary escape of atmospheric particles, whether they are atoms and molecules that form the atmosphere or larger-sized particles. An interesting outcome of this collision scenario is that a variety of particles that contain telltale signs of Earth's organic story, including microbial life and life-essential molecules, may be "afloat" in Earth's atmosphere. The present study assesses the capability of this space dust collision mechanism to propel some of these biological constituents into space.
Radiative-emission analysis in charge-exchange collisions of O6 + with argon, water, and methane
NASA Astrophysics Data System (ADS)
Leung, Anthony C. K.; Kirchner, Tom
2017-04-01
Processes of electron capture followed by Auger and radiative decay were investigated in slow ion-atom and -molecule collisions. A quantum-mechanical analysis which utilizes the basis generator method within an independent electron model was carried out for collisions of O 6 + with Ar, H2O , and CH4 at impact energies of 1.17 and 2.33 keV/amu. At these impact energies, a closure approximation in the spectral representation of the Hamiltonian for molecules was found to be necessary to yield reliable results. Total single-, double-, and triple-electron-capture cross sections obtained show good agreement with previous measurements and calculations using the classical trajectory Monte Carlo method. The corresponding emission spectra from single capture for each collision system are in satisfactory agreement with previous calculations.
Composite quantum collision models
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo
2017-09-01
A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.
NASA Astrophysics Data System (ADS)
Li, Ming; Kapusta, Joseph I.
2017-01-01
In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.
2006-11-01
This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.
Peculiarities of structural transformations in metal nanoparticles at high speed collisions
NASA Astrophysics Data System (ADS)
Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.
2018-01-01
A molecular dynamics simulation of nanosized particle collision under the electrical explosion of metal wires of different types was conducted. Interatomic interactions were described on the base of the embedded atom method. Used potentials allowed describing with high accuracy many mechanical and physical properties which are very important for the simulations of nanoparticle collisions with high velocities. The dynamics of the nanosized particle formation at the electric pulse explosion of metal wires of different types was studied. Features of particle collisions on the example of nanoscale particles of copper and nickel, whose velocities varied from 50 to 1500 m/s were investigated. The peculiarities of structural transformations in the colliding particles depending on the velocity of collision were determined. The intervals of collision velocities in which interaction between particles is elastic or leads to the formation of structural defects or melting were calculated. The analysis of the structure and distribution of chemical elements over the cross section of the particles which were synthesized under simultaneous explosions of different metal wires was carried out.
Low-temperature physics: Chaos in the cold
NASA Astrophysics Data System (ADS)
Julienne, Paul S.
2014-03-01
A marriage between theory and experiment has shown that ultracold erbium atoms trapped with laser light and subjected to a magnetic field undergo collisions that are characterized by quantum chaos. See Letter p.475
Charge Transfer in Collisions of S^4+ with H.
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-05-01
Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented
Electron capture in collisions of N+ with H and H+ with N
NASA Astrophysics Data System (ADS)
Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.
2005-06-01
Charge-transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1meV/u-1keV/u are presented and compared with existing experimental and theoretical data. A large number of low-energy resonances are obtained for exoergic channels and near thresholds of endoergic channels. Rate coefficients are also obtained and comparison to previous calculations suggests nonadiabatic effects dominate for temperatures greater than 20 000 K, but that the spin-orbit interaction plays a major role for lower temperatures.
Charge Transfer in Collisions of S^4+ with He.
NASA Astrophysics Data System (ADS)
Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-05-01
Charge transfer processes due to collisions of ground state S^4+ ions with atomic helium were investigated for energies between 0.1 meV/u and 10 MeV/u. Total and state-selective cross sections and rate coefficients were obtained utilizing the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were also explored. Previous data are limited to an earlier Landau-Zener calculation of the total rate coefficient for which our results are two orders of magnitude larger. An observed multichannel interference effect in the MOCC results will also be discussed.
Hydrodynamic flow of ions and atoms in partially ionized plasmas.
Nemirovsky, R A; Fredkin, D R; Ron, A
2002-12-01
We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized component and the neutral components have different flow velocities and kinetic temperatures. Starting from the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge exchange. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary mixture, in particular when the components drift with respect to each other. This was applied to a partially ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have further suggested a generalized version of the relaxation time approximation and obtained the contributions of the interspecies encounters to the transport equations.
Elliptic flow from Coulomb interaction and low density elastic scattering
NASA Astrophysics Data System (ADS)
Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang
2018-04-01
In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.
Spin entanglement in elastic electron scattering from quasi-one electron atoms
NASA Astrophysics Data System (ADS)
Fonseca Dos Santos, Samantha; Bartschat, Klaus
2017-04-01
We have extended our work on e-Li collisions to investigate low-energy elastic electron collisions with atomic hydrogen and other alkali targets (Na,K,Rb). These systems have been suggested for the possibility of continuously varying the degree of entanglement between the elastically scattered projectile and the valence electron. In order to estimate how well such a scheme may work in practice, we carried out overview calculations for energies between 0 and 10 eV and the full range of scattering angles 0° -180° . In addition to the relative exchange asymmetry parameter that characterizes the entanglement, we present the differential cross section in order to estimate whether the count rates in the most interesting energy-angle regimes are sufficient to make such experiments feasible in practice. Work supported by the NSF under PHY-1403245.
Friedman, B.; DuCharme, G.
2017-05-11
We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less
Many-Body Theory for Positronium-Atom Interactions
NASA Astrophysics Data System (ADS)
Green, D. G.; Swann, A. R.; Gribakin, G. F.
2018-05-01
A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.
Ergodic properties of the multidimensional rayleigh gas with a semipermeable barrier
NASA Astrophysics Data System (ADS)
Erdős, L.; Tuyen, D. Q.
1990-06-01
We consider a multidimensional system consisting of a particle of mass M and radius r (molecule), surrounded by an infinite ideal gas of point particles of mass m (atoms). The molecule is confined to the unit ball and interacts with its boundary ( barrier) via elastic collision, while the atoms are not affected by the boundary. We obtain convergence to equilibrium for the molecule from almost every initial distribution on its position and velocity. Furthermore, we prove that the infinite composite system of the molecule and the atoms is Bernoulli.
Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma
NASA Astrophysics Data System (ADS)
Tokar, Mikhail Z.
2017-12-01
The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.
DOE R&D Accomplishments Database
Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.
1982-04-01
From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.
Correlation of reaction sites during the chlorine extraction by hydrogen atom from Cl /Si(100)-2×1
NASA Astrophysics Data System (ADS)
Hsieh, Ming-Feng; Chung, Jen-Yang; Lin, Deng-Sung; Tsay, Shiow-Fon
2007-07-01
The Cl abstraction by gas-phase H atoms from a Cl-terminated Si(100) surface was investigated by scanning tunneling microscopy (STM), high-resolution core level photoemission spectroscopy, and computer simulation. The core level measurements indicate that some additional reactions occur besides the removal of Cl. The STM images show that the Cl-extracted sites disperse randomly in the initial phase of the reaction, but form small clusters as more Cl is removed, indicating a correlation between Cl-extracted sites. These results suggest that the hot-atom process may occur during the atom-adatom collision.
Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.
Clarke, Anthea C; Anson, Judith M; Pyne, David B
2017-04-01
Clarke, AC, Anson, JM, and Pyne, DB. Proof of concept of automated collision detection technology in rugby sevens. J Strength Cond Res 31(4): 1116-1120, 2017-Developments in microsensor technology allow for automated detection of collisions in various codes of football, removing the need for time-consuming postprocessing of video footage. However, little research is available on the ability of microsensor technology to be used across various sports or genders. Game video footage was matched with microsensor-detected collisions (GPSports) in one men's (n = 12 players) and one women's (n = 12) rugby sevens match. True-positive, false-positive, and false-negative events between video and microsensor-detected collisions were used to calculate recall (ability to detect a collision) and precision (accurately identify a collision). The precision was similar between the men's and women's rugby sevens game (∼0.72; scale 0.00-1.00); however, the recall in the women's game (0.45) was less than that for the men's game (0.69). This resulted in 45% of collisions for men and 62% of collisions for women being incorrectly labeled. Currently, the automated collision detection system in GPSports microtechnology units has only modest utility in rugby sevens, and it seems that a rugby sevens-specific algorithm is needed. Differences in measures between the men's and women's game may be a result of physical size, and strength, and physicality, as well as technical and tactical factors.
Imaging chemical reactions - 3D velocity mapping
NASA Astrophysics Data System (ADS)
Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.
Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.
Simulation studies for surfaces and materials strength
NASA Technical Reports Server (NTRS)
Halicioglu, T.
1986-01-01
During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.
Means and method for calibrating a photon detector utilizing electron-photon coincidence
NASA Technical Reports Server (NTRS)
Srivastava, S. K. (Inventor)
1984-01-01
An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.
NASA Astrophysics Data System (ADS)
Nuñez-Reyes, Dianailys; Kłos, Jacek; Alexander, Millard H.; Dagdigian, Paul J.; Hickson, Kevin M.
2018-03-01
The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumberidze, A.; Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt am Main; Fritzsche, S.
2010-11-15
The projectile excitation of high-Z ions has been investigated in relativistic ion-atoms collisions by observing the subsequent x-ray emission. The x-ray spectra from the projectile excitation have been separated from the x-ray emission following electron capture into the excited states using a novel anticoincidence technique. For the particular case of hydrogenlike Au{sup 78+} ions colliding with Ar atoms, Coulomb excitation from the ground state into the fine-structure-resolved n=2 levels as well as into levels with principal quantum number n{>=}3 has been measured with excellent statistics. The observed spectra agree well with simulated spectra that are based on Dirac's relativistic equationmore » and the proper inclusion of the magnetic interaction into the amplitudes for projectile excitation. It is shown that a coherent inclusion of the magnetic part of the Lienard-Wiechert potential leads to the lowering of the excitation cross section by up to 35%. This effect is more pronounced for excitation into states with high angular momentum and is confirmed by our experimental data.« less
Specific cationic emission of cisplatin following ionization by swift protons
NASA Astrophysics Data System (ADS)
Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre
2016-05-01
We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.
On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.
Striganov, S I
2005-01-01
The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.
NASA Astrophysics Data System (ADS)
Bartlett, P. L.; Stelbovics, A. T.; Rescigno, T. N.; McCurdy, C. W.
2007-11-01
Calculations are reported for four-body electron-helium collisions and positron-hydrogen collisions, in the S-wave model, using the time-independent propagating exterior complex scaling (PECS) method. The PECS S-wave calculations for three-body processes in electron-helium collisions compare favourably with previous convergent close-coupling (CCC) and time-dependent exterior complex scaling (ECS) calculations, and exhibit smooth cross section profiles. The PECS four-body double-excitation cross sections are significantly different from CCC calculations and highlight the need for an accurate representation of the resonant helium final-state wave functions when undertaking these calculations. Results are also presented for positron-hydrogen collisions in an S-wave model using an electron-positron potential of V12 = - (8 + (r1 - r2)2)-1/2. This model is representative of the full problem, and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.
2011-09-01
there a one time transfer of prob- ability between Coriolis coupled states. One possible way to answer this question would be to literally create and... time -dependent numerical algorithm was developed using FORTRAN 90 to predict S-Matrix elements for alkali metal - noble gas (MNg) collisions. The...committee and the physics department for their time and effort to see me through the completion of my doctorate degree. Charlton D. Lewis, II v Table of
H(D) → D(H) + Cu(111) collision system: Molecular dynamics study of surface temperature effects
Vurdu, Can D.; Güvenç, Ziya B.
2011-01-01
All the channels of the reaction dynamics of gas-phase H (or D) atoms with D (or H) atoms adsorbed onto a Cu(111) surface have been studied by quasiclassical constant energy molecular dynamics simulations. The surface is flexible and is prepared at different temperature values, such as 30 K, 94 K, and 160 K. The adsorbates were distributed randomly on the surface to create 0.18 ML, 0.28 ML, and 0.50 ML of coverages. The multi-layer slab is mimicked by a many-body embedded-atom potential energy function. The slab atoms can move according to the exerted external forces. Treating the slab atoms non-rigid has an important effect on the dynamics of the projectile atom and adsorbates. Significant energy transfer from the projectile atom to the surface lattice atoms takes place especially during the first impact that modifies significantly the details of the dynamics of the collisions. Effects of the different temperatures of the slab are investigated in this study. Interaction between the surface atoms and the adsorbates is modeled by a modified London–Eyring–Polanyi–Sato (LEPS) function. The LEPS parameters are determined by using the total energy values which were calculated by a density functional theory and a generalized gradient approximation for an exchange-correlation energy for many different orientations, and locations of one- and two-hydrogen atoms on the Cu(111) surface. The rms value of the fitting procedure is about 0.16 eV. Many different channels of the processes on the surface have been examined, such as inelastic reflection of the incident hydrogen, subsurface penetration of the incident projectile and adsorbates, sticking of the incident atom on the surface. In addition, hot-atom and Eley-Rideal direct processes are investigated. The hot-atom process is found to be more significant than the Eley-Rideal process. Furthermore, the rate of subsurface penetration is larger than the sticking rate on the surface. In addition, these results are compared and analyzed as a function of the surface temperatures. PMID:21528959
H(D) → D(H) + Cu(111) collision system: molecular dynamics study of surface temperature effects.
Vurdu, Can D; Güvenç, Ziya B
2011-04-28
All the channels of the reaction dynamics of gas-phase H (or D) atoms with D (or H) atoms adsorbed onto a Cu(111) surface have been studied by quasiclassical constant energy molecular dynamics simulations. The surface is flexible and is prepared at different temperature values, such as 30 K, 94 K, and 160 K. The adsorbates were distributed randomly on the surface to create 0.18 ML, 0.28 ML, and 0.50 ML of coverages. The multi-layer slab is mimicked by a many-body embedded-atom potential energy function. The slab atoms can move according to the exerted external forces. Treating the slab atoms non-rigid has an important effect on the dynamics of the projectile atom and adsorbates. Significant energy transfer from the projectile atom to the surface lattice atoms takes place especially during the first impact that modifies significantly the details of the dynamics of the collisions. Effects of the different temperatures of the slab are investigated in this study. Interaction between the surface atoms and the adsorbates is modeled by a modified London-Eyring-Polanyi-Sato (LEPS) function. The LEPS parameters are determined by using the total energy values which were calculated by a density functional theory and a generalized gradient approximation for an exchange-correlation energy for many different orientations, and locations of one- and two-hydrogen atoms on the Cu(111) surface. The rms value of the fitting procedure is about 0.16 eV. Many different channels of the processes on the surface have been examined, such as inelastic reflection of the incident hydrogen, subsurface penetration of the incident projectile and adsorbates, sticking of the incident atom on the surface. In addition, hot-atom and Eley-Rideal direct processes are investigated. The hot-atom process is found to be more significant than the Eley-Rideal process. Furthermore, the rate of subsurface penetration is larger than the sticking rate on the surface. In addition, these results are compared and analyzed as a function of the surface temperatures.
NASA Astrophysics Data System (ADS)
Bultinck, E.; Bogaerts, A.
2009-10-01
The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O- ions and O atoms. This model accounts for plasma-target interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O- density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.
Whiplash injury: cases with a long period of sick leave need biomechanical assessment.
Schmitt, K-U; Walz, F; Vetter, D; Muser, M
2003-06-01
A total of 668 cases of cervical spine disorders (CSD) sustained in automotive collisions were analysed. All cases had a minimum sick leave duration of 4 weeks. To evaluate these cases a scheme was developed that takes into account technical, medical, and biomechanical aspects. For each case, the delta-v value of the underlying collision was estimated, the medical files were analysed, and a QTF (Québec Task Force) grade was assigned. In addition, the medical history of the patient was reviewed. It was found that the QTF grade for patients with pre-existing damage of the neck or pre-existing signs differed significantly from those patients without such a history. The overall assessment, which stated the extent to which the symptoms claimed could be explained by the impact, was also found to be significantly influenced by a history of neck injury. The results of the study showed that in about 50% of the cases where the technical analysis alone would not suggest that the symptoms shown could be explained by the impact, those symptoms could be explained when patient history and the collision circumstances were taken into consideration. It also found that medical evaluation based on a QTF grade alone cannot assess the explicability of claimed CSD without taking into account the collision circumstances. Therefore, the assessment of critical individual relevant biomechanical factors is necessary.
Nanosecond laser-cluster interactions at 109-1012 W/cm 2
NASA Astrophysics Data System (ADS)
Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.
2017-08-01
An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.
Theory of rotational transition in atom-diatom chemical reaction
NASA Astrophysics Data System (ADS)
Nakamura, Masato; Nakamura, Hiroki
1989-05-01
Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.
Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Lei; Avoird, Ad van der; Karman, Tijs
2015-05-28
We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 − 30 to v′ = 0, j′ are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm{sup −1} based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v′ = 0, j′ are reported for the first time at this level of theory. Alsomore » calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions in astrophysical models.« less
Thermal relaxation of molecular oxygen in collisions with nitrogen atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D.
2016-07-07
Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systemsmore » with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.« less
NASA Astrophysics Data System (ADS)
Liu, Chien-Nan; Le, Anh-Thu; Morishita, Toru; Esry, B. D.; Lin, C. D.
2003-05-01
A theory for ion-atom collisions at low energies based on the hyperspherical close-coupling (HSCC) method is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer approximation where the adiabatic channel functions are calculated with B-spline basis functions while the coupled hyperradial equations are solved by a combination of R-matrix propagation and the slow/smooth variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for He2++H(1s)→He+(n=2)+H+ reactions at center-of-mass energies from 10 eV to 4 keV. The results are shown to be in general good agreement with calculations based on the molecular orbital (MO) expansion method where electron translation factors (ETF’s) or switching functions have been incorporated in each MO. However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to study low-energy ion-atom collisions without the need to introduce the ad hoc ETF’s, and the results are free from ambiguities associated with the traditional MO expansion approach.
Scales and kinetics of granular flows.
Goldhirsch, I.
1999-09-01
When a granular material experiences strong forcing, as may be the case, e.g., for coal or gravel flowing down a chute or snow (or rocks) avalanching down a mountain slope, the individual grains interact by nearly instantaneous collisions, much like in the classical model of a gas. The dissipative nature of the particle collisions renders this analogy incomplete and is the source of a number of phenomena which are peculiar to "granular gases," such as clustering and collapse. In addition, the inelasticity of the collisions is the reason that granular gases, unlike atomic ones, lack temporal and spatial scale separation, a fact manifested by macroscopic mean free paths, scale dependent stresses, "macroscopic measurability" of "microscopic fluctuations" and observability of the effects of the Burnett and super-Burnett "corrections." The latter features may also exist in atomic fluids but they are observable there only under extreme conditions. Clustering, collapse and a kinetic theory for rapid flows of dilute granular systems, including a derivation of boundary conditions, are described alongside the mesoscopic properties of these systems with emphasis on the effects, theoretical conclusions and restrictions imposed by the lack of scale separation. (c) 1999 American Institute of Physics.
Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr
Béland, Laurent Karim; Tamm, Artur; Mu, Sai; ...
2017-05-10
The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed.more » The pairwise terms and the embedding terms of the potential are modi ed in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni 50Fe 50, Ni 80Cr 20 and Ni 33Fe 33Cr 33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.« less
An ultracold potassium Rydberg source for experiments in quantum optics and many-body physics
NASA Astrophysics Data System (ADS)
Conover, Charles; Dupre, Pamela; Tong, Ai Phuong; Sanon, Carlvin; Clarke, Kevin; Doolittle, Brian; Louria, Stephen; Adamson, Philip
2017-04-01
We report on the development of an apparatus for the study of quantum dynamics of Rydberg atoms of potassium. Samples of Rydberg atoms at 1 mK and varying density are excited in a magneto-optical trap of 107 K-39 atoms. The atoms are excited to Rydberg states in a steps from 4s to 5p and from 5p to ns and nd states using stabilized external-cavity diode lasers at 405 nm and 980 nm. Selective field ionization and detection with microchannel plates provides a platform for spectroscopic measurements in potassium, exploration of multiphoton processes, and experiments on cold atom collisions. This research was supported by the National Science Foundation under Grant PHY-1126599.
Collisional transfer of population and orientation in sodium potassium
NASA Astrophysics Data System (ADS)
Wolfe, Christopher Matthew
Collisional spectral satellite lines have been identified in recent optical-optical double resonance (OODR) excitation spectra of the NaK molecule. These satellite lines represent both a transfer of population, and a partial preservation of angular momentum orientation, to a rotational level adjacent to the one directly excited by the pump laser beam. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms (being the most populous species in the vapor by an order of magnitude over the third most populous). Using a fit of this rate equation model to the data, it was found that collisions between NaK and potassium are more likely to transfer population and destroy orientation than argon collisions, and also more likely to transfer population to rotational levels higher in energy than the one being pumped (i.e. a propensity for positive Delta J collisions). Also, collisions between NaK and argon atoms show a propensity toward even-numbered changes in J. In addition to the above study, an analysis of collisional line broadening and velocity-changes in J-changing collisions was performed, showing potassium has a higher line broadening rate coefficient, as well as a smaller velocity change in J-changing collisions, than argon. A program was also written in Fortran 90/95 which solves the density matrix equations of motion in steady state for a coupled system of 3 (or 4) energy levels with their constituent degenerate magnetic sublevels. The solution to these equations yields the populations of each sublevel in steady state, as well as the laser-induced coherences between each sublevel (which are needed to model the polarization spectroscopy lineshape precisely). Development of an appropriate theoretical model for collisional transfer will yield a more rigorous study of the problem than the empirical rate equation model used in the analysis of our experiment.
Convergent Close-Coupling Approach to Electron-Atom Collisions
NASA Technical Reports Server (NTRS)
Bray, Igor; Stelbovics, Andris
2007-01-01
It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.
Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering
DOE R&D Accomplishments Database
Tang, K. T.; Karplus, M.
1970-10-01
A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the ?linear model? is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru
2015-11-15
The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific featuresmore » of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)« less
Plasma Inter-Particle and Particle-Wall Interactions
NASA Astrophysics Data System (ADS)
Patino, Marlene Idy
An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials. For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models. This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and traveling wave tubes), lithium (for tokamak walls), tungsten (the most promising material for future tokamaks such as ITER), and nickel (for plasma-enhanced chemistry). Measurements were made for incident electron energies up to 1.5 keV and angles between 0 and 78°. The most significant results from these measurements are as follows: (1) first-ever measurements of naturally-forming tungsten fuzz show a more than 40% reduction in secondary electron emission and an independence on incidence angle; (2) original measurements of lithium oxide show a 2x and 6x increase in secondary electron emission for 17% and 100% oxidation; and (3) unique measurements of Ni(110) single crystal show extrema in secondary electron emission when incidence angle is varied and an up to 36% increase at 0° over polycrystalline nickel. Each of these results are important discoveries for improving plasma devices. For example, from (1), the growth of tungsten fuzz in tokamaks is desirable for minimizing adverse secondary electron emission effects. From (2), the opposite is true for tokamaks with lithium coatings which are oxidized by typical residual gases. From (3), secondary electron emission from Ni(110) catalysts in plasma-enhanced chemistry may facilitate further reactions.
System engineering analysis of derelict collision prevention options
NASA Astrophysics Data System (ADS)
McKnight, Darren S.; Di Pentino, Frank; Kaczmarek, Adam; Dingman, Patrick
2013-08-01
Sensitivities to the future growth of orbital debris and the resulting hazard to operational satellites due to collisional breakups of large derelict objects are being studied extensively. However, little work has been done to quantify the technical and operational tradeoffs between options for minimizing future derelict fragmentations that act as the primary source for future debris hazard growth. The two general categories of debris mitigation examined for prevention of collisions involving large derelict objects (rocket bodies and payloads) are active debris removal (ADR) and just-in-time collision avoidance (JCA). Timing, cost, and effectiveness are compared for ADR and JCA solutions highlighting the required enhancements in uncooperative element set accuracy, rapid ballistic launch, despin/grappling systems, removal technologies, and remote impulsive devices. The primary metrics are (1) the number of derelict objects moved/removed per the number of catastrophic collisions prevented and (2) cost per collision event prevented. A response strategy that contains five different activities, including selective JCA and ADR, is proposed as the best approach going forward.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.
NASA Astrophysics Data System (ADS)
Cui, Jie; Li, Zhiying; Krems, Roman V.
2015-10-01
We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the -H →-X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He.
Procesos cuasi-moleculares en enanas blancas frías
NASA Astrophysics Data System (ADS)
Rohrmann, R. D.; Althaus, L. G.; Kepler, S. O.
We show that the radiation emitted by very cool white dwarf stars (Teff ~< 3000 K) with pure hydrogen atmospheres, is fully formed by radiative processes induced by atomic and molecular collisions. FULL TEXT IN SPANISH
NASA Astrophysics Data System (ADS)
Rebelo, André; Cunha, Tiago; Mendes, Mónica; da Silva, Filipe Ferreira; García, Gustavo; Limão-Vieira, Paulo
2016-06-01
Kinetic-energy release distributions have been obtained from the width and shapes of the time-of-flight (TOF) negative ion mass peaks formed in collisions of fast potassium atoms with D-Ribose (DR) and tetrahydrofuran (THF) molecules. Recent dissociative ion-pair formation experiments yielding anion formation have shown that the dominant fragment from D-Ribose is OH- [D. Almeida, F. Ferreira da Silva, G. García, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013)] whereas in the case of THF is O- [D. Almeida, F. Ferreira da Silva, S. Eden, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 690 (2014)]. The results for DR and THF show an energy distribution profile reminiscent of statistical degradation via vibrational excitation and partly due to direct transformation of the excess energy in translational energy.
Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmell, D. S.; Physics
2000-01-01
The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less
Annihilation in Gases and Galaxies
NASA Technical Reports Server (NTRS)
Drachman, Richard J. (Editor)
1990-01-01
This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.
[Mechanism of pelvic girdle injuries in street traffic. Medical-technical accident analysis].
Pohlemann, T; Richter, M; Otte, D; Gänsslen, A; Bartram, H; Tscherne, H
2000-04-01
During 1985 and 1993, 7,410 persons were injured in traffic accidents in the area of Hanover. Of these, 306 (4.1%) sustained a pelvic girdle injury. In 139 cases (45%), the pelvic girdle injuries were further classified (Pennal and Tile) and a technical reconstruction of the accident situation was performed. 52% were type A, 27% type B and 21% type C injuries. Some 47% of the casualties were vehicle occupants, 31% pedestrians, 12% motorcyclists and 10% cyclists. In restrained vehicle occupants pelvic girdle injuries occurred mostly in accidents with a delta-v of more than 30 km/h, whereas in unrestrained vehicle occupants, pedestrians and cyclists they also occurred with lower delta-v or collision speed. The percentage of type B and C injuries increased with higher velocities. In addition to further improvements in passive safety, lower collision speed or delta-v is necessary to reduce or prevent pelvic girdle injuries. The reconstruction of pelvic girdle injury mechanism in traffic accidents is possible, when both technical and medical parameters are considered.
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
Controlled dipole-dipole interactions between K Rydberg atoms in a laser-chopped effusive beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutteruf, M. R.; Jones, R. R.
2010-12-15
We explore pulsed-field control of resonant dipole-dipole interactions between K Rydberg atoms. A laser-based atomic beam chopper is used to reduce the relative velocities of Rydberg atoms excited from an effusive thermal source. Resonant energy transfer (RET) between pairs of atoms is controlled via Stark tuning of the relevant Rydberg energy levels. Resonance line shapes in the electric field dependence of the RET probability are used to determine the effective temperature of the sample. We demonstrate that the relative atom velocities can be reduced to the point where the duration of the electric-field tuning pulses, and not the motion ofmore » neighboring atoms, defines the interaction time for each pair within the ensemble. Coherent, transform-limited broadening of the resonance line shape is observed as the tuning pulse duration is reduced below the natural time scale for collisions.« less
NASA Astrophysics Data System (ADS)
Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.
2017-02-01
Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.
Negative ion formation in potassium-nitromethane collisions.
Antunes, R; Almeida, D; Martins, G; Mason, N J; Garcia, G; Maneira, M J P; Nunes, Y; Limão-Vieira, P
2010-10-21
Ion-pair formation in gaseous nitromethane (CH(3)NO(2)) induced by electron transfer has been studied by investigating the products of collisions between fast potassium atoms and nitromethane molecules using a crossed molecular-beam technique. The negative ions formed in such collisions were analysed using time-of-flight mass spectroscopy. The six most dominant product anions are NO(2)(-), O(-), CH(3)NO(2)(-), OH(-), CH(2)NO(2)(-) and CNO(-). By using nitromethane-d(3) (CD(3)NO(2)), we found that previous mass 17 amu assignment to O(-) delayed fragment, is in the present experiment may be unambiguously assigned to OH(-). The formation of CH(2)NO(2)(-) may be explained in terms of dissociative electron attachment to highly vibrationally excited molecules.
Exchange and correlation in positronium-molecule scattering
NASA Astrophysics Data System (ADS)
Fabrikant, I. I.; Wilde, R. S.
2018-05-01
Exchange and correlations play a particularly important role in positronium (Ps) collisions with atoms and molecules, since the static potential for Ps interaction with a neutral system is zero. Theoretical description of both effects is a very challenging task. In the present work we use the free-electron-gas model to describe exchange and correlations in Ps collisions with molecules similar to the approach widely used in the theory of electron-molecule collisions. The results for exchange and correlation energies are presented as functions of the Fermi momentum of the electron gas and the Ps incident energy. Using the Thomas-Fermi model, these functions can be converted into exchange and correlation potentials for Ps interaction with molecules as functions of the distance between the projectile and the target.
High-resolution laser spectroscopy of hot Cs and Rb vapor confined in a thin optical cell
NASA Astrophysics Data System (ADS)
Todorov, P.; Krasteva, A.; Vartanyan, T.; Todorov, G.; Sarkisyan, D.; Cartaleva, S.
2018-03-01
We propose a novel use of an optical cell of micrometer thickness filled with Cs vapor in view of studying the collisions between two different alkali atoms of strongly different densities. We demonstrate narrow and good-contrast sub-Doppler resonances at the Rb D2 line for a mean-free-path of the Cs atoms comparable to the optical cell longitudinal dimension; the resonances are completely destroyed when the mean-free-path of the Cs atoms is more than two orders of magnitude shorter than the longitudinal dimension of the thin cell.
Collisions in primordial star clusters. Formation pathway for intermediate mass black holes
NASA Astrophysics Data System (ADS)
Reinoso, B.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Boekholt, T. C. N.
2018-06-01
Collisions were suggested to potentially play a role in the formation of massive stars in present day clusters, and have likely been relevant during the formation of massive stars and intermediate mass black holes within the first star clusters. In the early Universe, the first stellar clusters were particularly dense, as fragmentation typically only occurred at densities above 109 cm-3, and the radii of the protostars were enhanced as a result of larger accretion rates, suggesting a potentially more relevant role of stellar collisions. We present here a detailed parameter study to assess how the number of collisions and the mass growth of the most massive object depend on the properties of the cluster. We also characterize the time evolution with three effective parameters: the time when most collisions occur, the duration of the collisions period, and the normalization required to obtain the total number of collisions. We apply our results to typical Population III (Pop. III) clusters of about 1000 M⊙, finding that a moderate enhancement of the mass of the most massive star by a factor of a few can be expected. For more massive Pop. III clusters as expected in the first atomic cooling halos, we expect a more significant enhancement by a factor of 15-32. We therefore conclude that collisions in massive Pop. III clusters were likely relevant to form the first intermediate mass black holes.
Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Wagatsuma, Kazuaki
2017-07-01
This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.
NASA Astrophysics Data System (ADS)
Corni, Federico; Michelini, Marisa
2018-01-01
Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.
Dinardo, Brad A; Anderson, Dana Z
2016-12-01
We describe a system for loading a single atom from a reservoir into a blue-detuned crossed vortex bottle beam trap using a dynamic 1D optical lattice. The lattice beams are frequency chirped using acousto-optic modulators, which causes the lattice to move along its axial direction and behave like an optical conveyor belt. A stationary lattice is initially loaded with approximately 6000 atoms from a reservoir, and the conveyor belt transports them 1.1 mm from the reservoir to a bottle beam trap, where a single atom is loaded via light-assisted collisions. Photon counting data confirm that an atom can be delivered and loaded into the bottle beam trap 13.1% of the time.
Studies of Heavy-Ion Reactions and Transuranic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, W. Udo
2016-07-28
Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less
Classical theory of atomic collisions - The first hundred years
NASA Astrophysics Data System (ADS)
Grujić, Petar V.
2012-05-01
Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for α particles scattered on foil atoms [1]. The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects [2]. Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics [4]. We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and epistemological background of the classical calculations and explain why these turned out so successful, despite the essentially quantum nature of the atomic and subatomic systems.
PREFACE: International Conference on Dynamics of Systems on the Nanoscale (DySoN 2012)
NASA Astrophysics Data System (ADS)
Solov'yov, Andrey V.
2013-06-01
Conference logo The Second International Conference 'Dynamics of Systems on the Nanoscale' (DySoN 2012) took place in Saint Petersburg, Russia between 30 September and 4 October 2012. The venue was the Courtyard by Marriott St Petersburg Vasilievsky Hotel, 2nd line of Vasilievsky Island 61/30A, 199178. The conference was organized by the Frankfurt Institute for Advanced Studies - Goethe University, A F Ioffe Physical-Technical Institute and Saint Petersburg State Polytechnic University. This DySoN conference has been built upon a series of International Symposia 'Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale' (ISACC 2003, ISACC 2007, ISACC 2008, ISACC 2009 and ISACC 2011). During these meetings it has become clear that there is a need for an interdisciplinary conference covering a broader range of topics than just atomic cluster collisions, related to the Dynamics of Systems on a Nanoscale. Therefore, in 2010 it was decided to launch a new conference series under the title 'Dynamics of Systems on the Nanoscale'. The first DySoN conference took place at the National Research Council, Rome, Italy in 2010. The DySoN 2012 is the second conference in this series. The DySoN 2012 Conference promoted the growth and exchange of interdisciplinary scientific information on the structure, formation and dynamics of animate and inanimate matter on the nanometer scale. There are many examples of complex many-body systems of micro- and nanometer scale size exhibiting unique features, properties and functions. These systems may have very different nature and origin, e.g. atomic and molecular clusters, nanoobjects, ensembles of nanoparticles, nanostructures, biomolecules, biomolecular and mesoscopic systems. A detailed understanding of the structure and dynamics of these systems on the nanometer scale is an important fundamental task, the solution of which is necessary in numerous applications of nano- and biotechnology, material science and medicine. Although mesoscopic, nano- and biomolecular systems differ in their nature and origin, a number of fundamental problems are common to all of them: what are the underlying principles of self-organization and self-assembly of matter on the micro- and nanoscale? Are these principles classical or quantum? How does function emerge on the nano- and the mesoscale in systems of different origin? What criteria govern the stability of these systems? How do their properties change as a function of size and composition? How are their properties altered by their environment? Seeking answers to these questions is at the core of a new interdisciplinary field that lies at the intersection of physics, chemistry and biology, a field called Meso-Bio-Nano (MBN) Science. Both experimental and theoretical aspects of the mentioned problems were discussed at the DySoN 2012 Conference. Particular attention was devoted to dynamical phenomena and many-body effects taking place in various MBN systems, which include problems of structure formation, fusion and fission, collision and fragmentation, collective electron excitations, reactivity, nanoscale phase transitions, nanoscale insights into biodamage, channeling phenomena and many more. This volume is a collection of the contributions received from the participants of the DySoN 2012 Conference. It provides an overview of the topics, new results and ideas that have been discussed at the conference. I would like to thank all the authors of these proceedings, as well as all the participants of the conference for making it so successful. The third DySoN Conference will be held in Edinburgh in May 2014. A V Solov'yov Frankfurt Institute for Advanced Studies, Ruth-Moufang Str. 1, 60438, Frankfurt am Main, Germany On leave from A F Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021, St. Petersburg, Russia E-mail: solovyov@fias.uni-frankfurt.de The PDF contains further information about the conference. Conference photograph Picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, J.Y.; Zhao, G.; Zhang, J.
energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000,more » and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendleton, W.R. Jr.; Larsson, M.; Mannfors, B.
1983-12-01
Total collisional depopulation rates for He(n /sup 1/P) (4< or =n< or =13) in thermal collisions with He(1 /sup 1/S) have been measured using the transient-decay method. Related loss cross sections increase in proportion to n/sup 4/ in the limited range 4< or =n< or =6, reach a maximum of 2600 +- 600 A/sup 2/ at n = 10, and decrease approximately in proportion to n/sup -2.5/ for 11< or =n< or =13. The measurements were found to be inconsistent with a strong ''selection rule,'' ..delta..L = 2, for the He(n /sup 1/P)-He collisions. A model in which ..delta..L formore » the collision is largely unrestricted provides a satisfactory interpretation of the observations, in agreement with recent l-mixing studies of atomic Rydberg levels. The experimental cross sections compare favorably with values calculated using an approximate scaling formula for collisional l mixing and, for n>10, with predictions based on a simple perturbation treatment in the weak-collision approximation.« less
Electronic excitation of Na due to low-energy He collisions
NASA Astrophysics Data System (ADS)
Lin, C. Y.; Liebermann, H. P.
2005-05-01
In warm astrophysical environments electron collisions are the primary mechanism for thermalizing the internal energy of ambient atoms and molecules. However, in cool stellar and planetary atmospheres, the electron abundance is extremely low so that thermalization is only possible through collisions of the dominant neutral species, H2, He, and H. Typically, the neutral cross sections are much smaller than those due to electrons, so that the level populations of the atmospheric constituents may display departures from equilibrium. Unfortunately, these cross sections are generally not available for collision energies typical of stellar/planetary environments. In this work, we investigate the electronic excitation of Na due to collisions with He for energies near and just above threshold. The calculations are performed with the quantum-mechanical molecular-orbital close-coupling method utilizing ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained from multireference single- and double- excitation configuration interaction approach. State-to-state cross sections and rate coefficients will be presented and compared with other theoretical and experimental data where available.
Lightwave-driven quasiparticle collisions on a subcycle timescale
NASA Astrophysics Data System (ADS)
Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-05-01
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Lightwave-driven quasiparticle collisions on a subcycle timescale.
Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R
2016-05-12
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Physics Division annual review, 1 April 1980-31 March 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-06-01
Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less
NASA Astrophysics Data System (ADS)
Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.
2017-10-01
In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.
Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody
2010-05-24
A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.
Collisional excitation of ArH+ by hydrogen atoms
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-06-01
The rotational excitation of the 36ArH+ ion in collisions with hydrogen atoms is investigated in this work. The potential energy surface (PES) describing the 36ArH+-H interaction, with the ion bond length r fixed at the average of r over the radial v = 0 vibrational state distribution, was obtained with a coupled cluster method that included single, double, and (perturbatively) triple excitations [RCCSD(T)]. A deep minimum (De = 3135 cm-1) in the PES was found in linear H-ArH+ geometry at an ion-atom separation Re = 4.80a0. Energy-dependent cross-sections and rate coefficients as a function of temperature for this collision pair were computed in close-coupling (CC) calculations. Since the PES possesses a deep well, this is a good system to test the performance of the quantum statistical (QS) method developed by Manolopoulos and co-workers as a more efficient method to compute the cross-sections. Good agreement was found between rate coefficients obtained by the CC and QS methods at several temperatures. In a simple application, the excitation of ArH+ is simulated for conditions under which this ion is observed in absorption.
Ab Initio Study of Ultracold Polar Molecules in Optical Lattices
2010-01-01
collisions of Li and alkaline-earth or rare- earth atoms, such LiSr and LiYb. Finally, we calculated the isotropic and anisotropic interaction potentials... LiSr and LiYb molecules. To the best of our knowledge, only LiMg was experimentally investigated [3], which allowed us to compare our predictions...alkaline-earth or rare-earth atoms. Interest in the LiSr and LiYb molecules stems from prospects to achieve optical Feshbach tuning of scattering properties
Surface heating of electrons in atomic clusters irradiated by ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Krainov, V. P.; Sofronov, A. V.
2014-04-01
We consider a mechanism for electron heating in atomic clusters at the reflections of free electrons from the cluster surface. Electrons acquire energy from the external laser field during these reflections. A simple analytical expression has been obtained for acquired electron kinetic energy during the laser pulse. We find conditions when this mechanism dominates compared to the electron heating due to the well-known induced inverse bremsstrahlung at the electron-ion collisions inside clusters.
Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions
2016-08-05
rection of the arrows. Dashed (dotted) lines mark the NNN hopping terms (coefficients ±t2). NNNN long -range hopping along curved lines are included to...Quantum spin dynamics with pairwise-tunable, long -range interactions C.-L. Hunga,b,1,2, Alejandro González-Tudelac,1,2, J. Ignacio Ciracc, and H. J...atoms) that interact by way of a variety of processes, such as atomic collisions. Such pro- cesses typically lead to short -range, nearest-neighbor
NASA Astrophysics Data System (ADS)
Takeuchi, Wataru
2017-05-01
The rainbow angles corresponding to prominent peaks in the angular distributions of scattered projectiles with small angle, attributed to rainbow scattering (RS), under axial surface channeling conditions are strongly influenced by the interatomic potentials between projectiles and target atoms. The dependence of rainbow angles on normal energy of projectile energy to the target surface, being experimentally obtained by Specht et al. for RS of He, N, Ne and Ar atoms under <1 0 0> and <1 1 0> axial channeling conditions at a KCl(0 0 1) surface with projectile energies of 1-60 keV, was evaluated by the three-dimensional computer simulations using the ACOCT code based on the binary collision approximation with interatomic pair potentials. Good agreement between the ACOCT results using the ZBL pair potential and the individual pair potentials calculated from Hartree-Fock (HF) wave functions and the experimental ones was found for RS of He, N and Ne atoms from the atomic rows along <1 0 0> direction. For <1 1 0> direction, the ACOCT results employing the Moliere pair potential with adjustable screening length of O'Connor-Biersack (OB) formula, the ZBL pair potential and the individual HF pair potentials except for Ar → KCl using the OB pair potential are nearly in agreement with the experimental ones.
PREFACE: XXVII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2011)
NASA Astrophysics Data System (ADS)
Williams, I. D.; van der Hart, H. W.; McCann, J. F.; Crothers, D. S. F.
2012-11-01
The XXVII International Conference on Photonic, Electronic and Atomic Collisions was held at Queen's University Belfast, Northern Ireland, 27 July - 2 August 2011. Members of the Local Organising Committee were drawn from the School of Mathematics and Physics of Queen's University Belfast, the School of Physical Sciences at Dublin City University, the School of Physics at University College Dublin and the Department of Experimental Physics at the National University of Ireland, Maynooth. The Conference was attended by 566 participants with contributions from 54 countries. The meeting attracted 786 contributed papers for presentation in the poster sessions. The conference included 20 Special Reports selected from the contributed papers, and these are included in part 1 of this volume. During the meeting a total of 65 Progress Reports were also presented, and the authors invited to submit written versions of their talks (see Part 1). Of the total number of contributed papers, 663 are included as refereed abstracts in parts 2 to 15 of this volume of Journal of Physics: Conference Series. Part 1 of this volume includes detailed write-ups of the majority of plenary lectures, progress reports and special reports, constituting a comprehensive tangible record of the meeting, and is additionally published in hard-copy as the Conference Proceedings. There were 5 plenary lectures given by Margaret Murnane on Ultrafast processes in atomic dynamics; Chris Greene on Few-body highly-correlated dynamics; Michael Allan on Electron-molecule collisions; Yasunori Yamazaki on Antiproton and positron collisions and Thomas Stöhlker on Relativistic ion collisions. Ian Spielman, winner of the IUPAP Young Scientist Prize for 2011, gave a special lecture entitled Modifying interatomic interactions using Raman coupling: a tale of slowly colliding Bose-Einstein condensates. In addition an evening public lecture by Mike Baillie on How precise tree-ring dating raises issues concerning the frequency of extraterrestrial impacts drew an attentive and appreciative audience. The editors are indebted to Tara Spencer for her exceptional organisation skills and support in compiling this volume. Thanks are also due to Ian Stewart for his assistance with gathering and indexing the documents. We would also like to express our sincere appreciation to the ICPEAC sponsors for their financial support. I D Williams Queen's University Belfast H W van der Hart Queen's University Belfast J F McCann Queen's University Belfast D S F Crothers Queen's University Belfast EDITORS
Results of DATAS Investigation of ATCRBS Environment at Los Angeles International Airport
DOT National Transportation Integrated Search
1993-04-01
Federal Aviation Administration (FAA) Technical Center Data Link project : personnel designed, developed, and deployed a system to record Traffic Alert : and Collision Avoidance System (TCAS) activity. Through coordinated efforts with : TCAS project ...
Improving atomic displacement and replacement calculations with physically realistic damage models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Operation of the computer model for direct atomic oxygen exposure of Earth satellites
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.
1995-01-01
One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.
Improving atomic displacement and replacement calculations with physically realistic damage models.
Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.
Characterization of xenon ion and neutral interactions in a well-characterized experiment
NASA Astrophysics Data System (ADS)
Patino, Marlene I.; Wirz, Richard E.
2018-06-01
Interactions between fast ions and slow neutral atoms are commonly dominated by charge-exchange and momentum-exchange collisions, which are important to understanding and simulating the performance and behavior of many plasma devices. To investigate these interactions, this work developed a simple, well-characterized experiment that accurately measures the behavior of high energy xenon ions incident on a background of xenon neutral atoms. By using well-defined operating conditions and a simple geometry, these results serve as canonical data for the development and validation of plasma models and models of neutral beam sources that need to ensure accurate treatment of angular scattering distributions of charge-exchange and momentum-exchange ions and neutrals. The energies used in this study are relevant for electric propulsion devices ˜1.5 keV and can be used to improve models of ion-neutral interactions in the plume. By comparing these results to both analytical and computational models of ion-neutral interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over a large range of neutral background pressures and (2) properly considering commonly overlooked interactions, such as ion-induced electron emission from nearby surfaces and neutral-neutral ionization collisions.
Dispersive detection of radio-frequency-dressed states
NASA Astrophysics Data System (ADS)
Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas
2018-04-01
We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.
Kempton, Thomas; Sirotic, Anita C; Coutts, Aaron J
2017-04-01
To examine differences in physical and technical performance profiles using a large sample of match observations drawn from successful and less-successful professional rugby league teams. Match activity profiles were collected using global positioning satellite (GPS) technology from 29 players from a successful rugby league team during 24 games and 25 players from a less-successful team during 18 games throughout 2 separate competition seasons. Technical performance data were obtained from a commercial statistics provider. A progressive magnitude-based statistical approach was used to compare differences in physical and technical performance variables between the reference teams. There were no clear differences in playing time, absolute and relative total distances, or low-speed running distances between successful and less-successful teams. The successful team possibly to very likely had lower higher-speed running demands and likely had fewer physical collisions than the less-successful team, although they likely to most likely demonstrated more accelerations and decelerations and likely had higher average metabolic power. The successful team very likely gained more territory in attack, very likely had more possessions, and likely committed fewer errors. In contrast, the less-successful team was likely required to attempt more tackles, most likely missed more tackles, and very likely had a lower effective tackle percentage. In the current study, successful match performance was not contingent on higher match running outputs or more physical collisions; rather, proficiency in technical performance components better differentiated successful and less-successful teams.
Building one molecule from a reservoir of two atoms
NASA Astrophysics Data System (ADS)
Liu, L. R.; Hood, J. D.; Yu, Y.; Zhang, J. T.; Hutzler, N. R.; Rosenband, T.; Ni, K.-K.
2018-05-01
Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.
Negative Differential Conductivity in an Interacting Quantum Gas.
Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Wimberger, Sandro; Ott, Herwig
2015-07-31
We report on the observation of negative differential conductivity (NDC) in a quantum transport device for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial difference in chemical potential at one site by local atom removal. The ensuing transport dynamics are governed by the interplay between the tunneling coupling, the interaction energy, and intrinsic collisions, which turn the coherent coupling into a hopping process. The resulting current-voltage characteristics exhibit NDC, for which we identify atom number-dependent tunneling as a new microscopic mechanism. Our study opens new ways for the future implementation and control of complex neutral atom quantum circuits.
The influence of velocity-changing collisions on resonant degenerate four-wave mixing
NASA Technical Reports Server (NTRS)
Richardson, W. H.; Maleki, L.; Garmire, Elsa
1989-01-01
The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.
Chirality in molecular collision dynamics
NASA Astrophysics Data System (ADS)
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
NASA Astrophysics Data System (ADS)
Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.
2018-04-01
We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jie; Krems, Roman V.; Li, Zhiying
2015-10-21
We consider a problem of extrapolating the collision properties of a large polyatomic molecule A–H to make predictions of the dynamical properties for another molecule related to A–H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A–X. We assume that the effect of the −H →−X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can bemore » used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C{sub 6}H{sub 5}CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C{sub 6}H{sub 6} collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C{sub 6}H{sub 5}CN with He.« less
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2013-11-01
Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.
Zeeman relaxation of cold atomic iron and nickel in collisions with He3
NASA Astrophysics Data System (ADS)
Johnson, Cort; Newman, Bonna; Brahms, Nathan; Doyle, John M.; Kleppner, Daniel; Greytak, Thomas J.
2010-06-01
We have measured the ratio γ of the diffusion cross section to the angular momentum reorientation cross section in the colliding Fe-He3 and Ni-He3 systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (<1 K) He3 buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the He3 temperature. γ is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine γ accurately, we introduce a model of Zeeman-state dynamics that includes thermal excitations. We find γNi-3He=5×103 and γFe-3He⩽3×103 at 0.75 K in a 0.8-T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation, as studied previously in transition metals and rare-earth-metal atoms [C. I. Hancox, S. C. Doret, M. T. Hummon, R. V. Krems, and J. M. Doyle, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.013201 94, 013201 (2005); C. I. Hancox, S. C. Doret, M. T. Hummon, L. Luo, and J. M. Doyle, Nature (London)NATUAS0028-083610.1038/nature02938 431, 281 (2004); A. Buchachenko, G. Chaasiski, and M. Szczniak, Eur. Phys. J. DEPJDF61434-606010.1140/epjd/e2006-00263-3 45, 147 (2007)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
Robot body self-modeling algorithm: a collision-free motion planning approach for humanoids.
Leylavi Shoushtari, Ali
2016-01-01
Motion planning for humanoid robots is one of the critical issues due to the high redundancy and theoretical and technical considerations e.g. stability, motion feasibility and collision avoidance. The strategies which central nervous system employs to plan, signal and control the human movements are a source of inspiration to deal with the mentioned problems. Self-modeling is a concept inspired by body self-awareness in human. In this research it is integrated in an optimal motion planning framework in order to detect and avoid collision of the manipulated object with the humanoid body during performing a dynamic task. Twelve parametric functions are designed as self-models to determine the boundary of humanoid's body. Later, the boundaries which mathematically defined by the self-models are employed to calculate the safe region for box to avoid the collision with the robot. Four different objective functions are employed in motion simulation to validate the robustness of algorithm under different dynamics. The results also confirm the collision avoidance, reality and stability of the predicted motion.
NASA Astrophysics Data System (ADS)
Hey, J. D.
2012-03-01
Published arguments, which assign an important role to atomic metastability in the production of ‘narrow’ Zeeman component radiation from the boundary region of fusion plasmas, are examined critically in relation to l-redistribution by proton and electron collisions, and mixing of unperturbed atomic states by the ion microfield and microfield gradient. It is concluded that these important processes indeed severely constrain the contribution from ‘metastable’ states to the generation of the hydrogen Balmer spectra, for electron concentrations above 1012 cm-3, as pointed out before by the present author (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555). The analysis of collision-induced l-redistribution represents an extension of that used previously (Hey et al 1996 Contrib. Plasma Phys. 36 583), applicable up to higher electron densities. For comparison purposes, we also consider the question of metastability of ionized helium in a low-temperature plasma, and that of some common hydrogenic impurities (C5+ and Ne9+) in a hydrogen (deuterium) fusion plasma. While for low nuclear charge Z the metastability of 2s1/2 levels is quenched by the plasma environment, it is much reduced in high-Z ions owing to the rapid increase with Z of the two-photon electric dipole (2E1) and magnetic dipole (M1) spontaneous transition rates to the ground state, whereas the role of the plasma in these cases is less important. The main new principle elaborated in this work is the sensitivity of atomic line strengths, and hence collision strengths, to perturbation by the plasma environment for transitions between fine-structure sublevels of the same principal quantum number. As the plasma microfield strength grows, ‘allowed’ transitions diminish in strength, while ‘forbidden’ transitions grow. However, owing to violation of the parity selection rule, there is an overall loss of collision strength available to transitions, resulting from the appearance of significant ‘self-strength’ contributions, in accord with the sum rules for the line strengths, which remain valid over the range of fields considered. Thus, the relative effectiveness per perturber of both electron and ion collisions, for inducing population transfer between fine-structure sublevels, diminishes as the sublevels evolve from a fine-structure dominated to a Stark-effect-dominated regime. In the concluding discussion, we mention that this finding may have a bearing on discrepancies claimed between Stark broadening theory developed by Griem (1967 Astrophys. J. 148 547) and by Watson (2006 J. Phys.B: At. Mol. Opt. Phys. 39 1889), and the measurements of Bell and co-workers (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 335 451) for high-n radio recombination lines from galactic H II regions. In the absence of detailed modelling to test this suggestion, however, it would be premature to attempt to draw any firm conclusions along these lines. This manuscript is dedicated to the memory of my esteemed colleague Dr. rer. nat. Manfred Korten (1940-2010).
GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Benjamin; Loo, Sven Van; Tan, Jonathan C.
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, andmore » impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.« less
Spin-dependent quark beam function at NNLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughezal, Radja; Petriello, Frank; Schubert, Ulrich
2017-08-01
We calculate the beam function for longitudinally polarized quarks through next-to-next-to-leading order (NNLO) in QCD perturbation theory. This is the last missing ingredient needed to apply the factorization theorem for the N-jettiness event-shape variable in a variety of polarized collisions through the NNLO level. We present all technical details of our derivation. As a by-product of our calculation we provide the first independent check of the previously obtained unpolarized quark beam function. We anticipate that our result will have phenomenological applications in describing data from polarized collisions.
Theory of molecular rate processes in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.
1979-01-01
The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.
Bayrakçeken, Fuat
2008-02-01
The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.
A vacuum gauge based on an ultracold gas
NASA Astrophysics Data System (ADS)
Makhalov, V. B.; Turlapov, A. V.
2017-06-01
We report the design and application of a primary vacuum gauge based on an ultracold gas of atoms in an optical dipole trap. The pressure is calculated from the confinement time for atoms in the trap. The relationship between pressure and confinement time is established from the first principles owing to elimination of all channels introducing losses, except for knocking out an atom from the trap due to collisions with a residual gas particle. The method requires the knowledge of the gas chemical composition in the vacuum chamber, and, in the absence of this information, the systematic error is less than that of the ionisation sensor.
Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.
2017-08-01
The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability ofmore » mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.« less
Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili
2004-01-01
We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.
Long-range interactions between metastable rare gases atoms
NASA Astrophysics Data System (ADS)
Vrinceanu, D.; Marinescu, M.; Flannery, M. R.
1998-10-01
Knowledge of the long-range interaction between atoms and molecules is of fundamental importance for low-energy and low-temperature collisions. The electronic interaction between the charge distributions of two metastable rare gases atoms can be expanded in inverse powers of R, the internuclear distance. The coefficients C_6, C_8, and C_10 of, respectively, the R-6, R-8, and R-10 terms are calculated by integrating the products of the dynamic electric polarizabilities of the individual atoms at imaginary frequencies, which are in turn obtained by solving a system of coupled inhomogeneous differential equations. The triplet state spectrum of the rare gases atoms is described by precise l-dependent one-electron model potentials. Numerical results for the C_6, C_8, and C_10 dispersion coefficients for homonuclear and heteronuclear metastable rare gases diatoms are presented.
Long-range interactions between metastable rare gases atoms
NASA Astrophysics Data System (ADS)
Vrinceanu, D.; Marinescu, M.; Flannery, M. R.
1998-05-01
Knowledge of the long-range interaction between atoms and molecules is of fundamental importance for low-energy and low-temperature collisions. The electronic interaction between the charge distributions of two metastable rare gases atoms can be expanded in inverse powers of R, the internuclear distance. The coefficients C_6, C_8, and C_10 of, respectively, the R-6, R-8, and R-10 terms are calculated by integrating the products of the dynamic electric polarizabilities of the individual atoms at imaginary frequencies, which are in turn obtained by solving a system of coupled inhomogeneous differential equations. The triplet state spectrum of the rare gases atoms is described by precise l-dependent one-electron model potentials. Numerical results for the C_6, C_8, and C_10 dispersion coefficients for homonuclear and heteronuclear metastable rare gases diatoms are presented.
The Atom in a Molecule: Implications for Molecular Structure and Properties
2016-05-23
unlimited. PA Clearance #16075.” Atomic- Product Representations of Molecules Employ “van der Waals” products of atomic states to represent molecules...representation the electrons “stay home” with each nucleus. Atomic fragment operators are well-defined over product representations. Expectation values of...release; distribution unlimited. PA Clearance #16075.” Hamiltonian Matrix in the Atomic- Product Basis Technical Questions Addressed: J. Chem. Phys
Theoretical Issues Involving Traps for Neutral Spin-Polarized Atoms.
1984-11-15
U. S. and he has promised to send us his potential curve calculation when he returns to France. In the meantime, we have adopted a Lennard - Jones ...4He for cooling initially because temperatures -1.5 K can be readily achieved with high cooling power by pumping on liquid helium and because 4He is...3 " . He (which is roughly half the vapor pressure of liquid helium at 1.5 K)), each K atom undergoes a very large number of collisions (-10 8/sec
Deriving principles of microbiology by multiscaling laws of molecular physics.
Ortoleva, Peter; Adhangale, P; Cheluvaraja, S; Fontus, Max; Shreif, Zeina
2009-01-01
It has long been an objective of the physical sciences to derive principles of biology from the laws of physics. At the angstrom scale for processes evolving on timescales of 10(-14) s, many systems can be characterized in terms of atomic vibrations and collisions. In contrast, biological systems display dramatic transformations including self-assembly and reorganization from one cell phenotype to another as the microenvironment changes. We have developed a framework for understanding the emergence of living systems from the underlying atomic chaos.
NASA Astrophysics Data System (ADS)
Rieger, G.; Pinnington, E. H.; Ciubotariu, C.
2000-12-01
Absolute photon emission cross sections following electron capture reactions have been measured for C2+, N3+, N4+ and O3+ ions colliding with Li(2s) atoms at keV energies. The results are compared with calculations using the extended classical over-the-barrier model by Niehaus. We explore the limits of our experimental method and present a detailed discussion of experimental errors.
NASA Astrophysics Data System (ADS)
Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.
2014-04-01
A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.
Non-Evaporative Cooling via Inelastic Collisions in an Optical Trap
2013-02-28
Simultaneous loading of 85 Rb and 87 Rb into an optical trap from a Magneto - optic Trap (MOT) As was mentioned in the previous section, when both...potential in an 85 Rb magneto - optical trap , Phys. Rev. A 83, 033419 (2011) I.D Ultracold plasma response to few-cycle rf pulses As will be detailed in...ultracold atoms of each isotope were cooled into overlapping Magneto - optic Traps (MOTs). From there, the atoms were then loaded into a Far-off
Theoretical Investigation of Kinetic Processes in Small Radicals of Importance in Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Millard; Dagdigian, Paul J.
Our group studies inelastic and reactive collisions of small molecules, focusing on radicals important in combustion environments. The goal is the better understanding of kinetic processes that may be difficult to access experimentally. An essential component is the accurate determination and fitting of potential energy surfaces (PESs). After fitting the ab initio points to obtain global PESs, we treat the dynamics using time-independent (close-coupling) methods. Cross sections and rate constants for collisions of are determined with our Hibridon program suite . We have studied energy transfer (rotationally, vibrationally, and/or electronically inelastic) in small hydrocarbon radicals (CH 2 and CH 3)more » and the CN radical. We have made a comparison with experimental measurements of relevant rate constants for collisions of these radicals. Also, we have calculated accurate transport properties using state-of-the-art PESs and to investigate the sensitivity to these parameters in 1-dimensional flame simulations. Of particular interest are collision pairs involving the light H atom.« less
Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas
NASA Astrophysics Data System (ADS)
Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco
2018-04-01
The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).
Shock wave loading of a magnetic guide
NASA Astrophysics Data System (ADS)
Kindt, L.
2011-10-01
The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Collisions involving antiprotons and antihydrogen: an overview
NASA Astrophysics Data System (ADS)
Jonsell, S.
2018-03-01
I give an overview of experimental and theoretical results for antiproton and antihydrogen scattering with atoms and molecules (in particular H, He). At low energies (>1 keV) there are practically no experimental data available. Instead I compare the results from different theoretical calculations, of various degrees of sophistication. At energies up to a few tens of eV, I focus on simple approximations that give reasonably accurate results, as these allow quick estimates of collision rates without embarking on a research project. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
Simulations of Ground and Space-Based Oxygen Atom Experiments
NASA Technical Reports Server (NTRS)
Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.
2003-01-01
A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.
NASA Astrophysics Data System (ADS)
Gyergyek, T.; Kovačič, J.
2016-06-01
Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .
NASA Astrophysics Data System (ADS)
Joseph, Dwayne C.; Saha, Bidhan C.
2012-11-01
Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results
NASA Astrophysics Data System (ADS)
Schiwietz, Gregor; Klaumünzer, Siegfried; Mahnke, Heinz-Eberhard
2007-03-01
This NIM-B issue contains the Proceedings of the 22nd International Conference on Atomic Collisions in Solids (ICACS-22) held in the main building of the Technische Universität Berlin (Strasse des 17.Juni 135, 10623 Berlin, Germany) from the 21st until the 26th of July 2006.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2013-11-01
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strayer, M.R.
This talk surveys a thirteen-year collaboration with Chris Bottcher on various aspects of strong field electrodynamics. Most of the work centers on the atomic physics associated with the peripheral collisions of ultrarelativistic heavy atoms. The earliest, beginning in about 1979, dealt with the spontaneous emission of positrons from nuclear quasimolecules and touched briefly on the formation of axions as a possible explanation of the anomalous peaks in the spectrum. This work stimulated the extensive studies of particle production from coherent fields that laid the foundations for investigations of nuclear form factors, structure functions, and production mechanisms for the Higgs andmore » other exotic particles. Chris conjectured that the strong fields that are present in these collisions would give rise to nonperturbative effects. Thus, during this time, Chris also worked to develop basis-spline collocation methods for solving dynamical relativistic fermions in super strong fields. This was perhaps one of the best of times for Chris; on these problems alone, he co-authored fifty articles with more than twenty different collaborators.« less
Activated recombinative desorption: A potential component in mechanisms of spacecraft glow
NASA Technical Reports Server (NTRS)
Cross, J. B.
1985-01-01
The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.
Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules
NASA Astrophysics Data System (ADS)
Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun
2016-05-01
Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.
Optical emission generated by collisions of 5 eV O(3P) atoms with surface-absorbed hydrazine
NASA Technical Reports Server (NTRS)
Orient, O. J.; Martus, K. E.; Chutjian, A.; Murad, E.
1992-01-01
Optical emission has been observed corresponding to vibrational bands in the NH (A 3Pi - X 3Sigma(-)) electronic transition during collisions of 5 eV, ground-state oxygen O(3P) atoms with MgF2 and Ni surfaces continuously exposed to a beam of hydrazine (N2H4). The NH emission intensity is observed to be about five times greater for MgF2 than for Ni. No dependence on temperature was observed for either surface in the range 240 - 340 K, implying that the NH-producing intermediate species is tightly bound. The half-lifetime for desorption of hydrazine from each surface was measured. This was found to be 120 min for the MgF2 surface at 240 K, and less than 20 min for Ni. After exposure, the surface composition was measured using X-ray photoelectron spectroscopy on the exposed and unexposed areas of both targets.
Electron collisions—experiment, theory, and applications
NASA Astrophysics Data System (ADS)
Bartschat, Klaus
2018-07-01
Electron collisions with atoms, ions, and molecules have represented an important area of ‘applied quantum mechanics’ for more than a century. This Topical Review is the write-up of the Allis Prize Lecture given by the author at the 2016 meeting of the Division of Atomic, Molecular, and Optical Physics of the American Physical Society and the 2017 Gaseous Electronics Conference. In light of the enormous size of the field, the examples presented were selected in order to tell the story of how experimental and theoretical/numerical methods have developed over time, how fruitful collaborations between data producers (experimentalists and theorists) and data users have led to significant progress, and how the results of these studies, which were often designed for fundamental research in order to push both experiment and theory to new frontiers, continue to be highly sought after for modeling applications in a variety of fields. The impact of electron collision studies on other fields, such as photoinduced processes and quantum information, is also discussed.
NASA Astrophysics Data System (ADS)
Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.
2017-02-01
This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bize, S.; Marion, H.; Cacciapuoti, L.
2005-05-05
This paper describes the work performed at BNM-SYRTE (Observatoire de Paris) over the past few years toward the improvement and the use of microwave frequency standards using laser-cooled atoms. First, recent improvements of the 133Cs and 87Rb atomic fountains are described. An important advance is the achievement of a fractional frequency instability of 1.6 x 10-14{tau}-1/2 where {tau} is the measurement time in seconds, thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances leadmore » to a frequency stability of 2 x 10-16 at 50,000 s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7 x 10-16, one order of magnitude below that of uncooled devices.« less
Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron
Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April
Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun
2018-06-01
Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.
2010-10-01
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.
Probing interactions of thermal Sr Rydberg atoms using simultaneous optical and ion detection
NASA Astrophysics Data System (ADS)
Hanley, Ryan K.; Bounds, Alistair D.; Huillery, Paul; Keegan, Niamh C.; Faoro, Riccardo; Bridge, Elizabeth M.; Weatherill, Kevin J.; Jones, Matthew P. A.
2017-06-01
We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that reproduces the optical signals and allows us to connect the optical coherences and the populations. We use this to determine that the spontaneous ionization process in our system occurs due to collisions between Rydberg and ground state atoms in the EIT regime. We measure the cross section of this process to be 0.6+/- 0.2 {σ }{geo}, where {σ }{geo} is the geometrical cross section of the Rydberg atom. This result adds complementary insight to a range of recent studies of interacting thermal Rydberg ensembles.
Double photoionization of atoms
NASA Astrophysics Data System (ADS)
Wiedenhoeft, Marco
2003-10-01
Double photoionization studies of atoms and molecules are new state-of-the-art studies providing a deeper knowledge of multi-electron excitations. This type of work advances the understanding of many-body problems. Double photoionization of atoms is of great interest to learn about electron-electron correlation and relaxation effects in atoms and molecules. In order to study double photoionization processes, a new electron-electron coincidence apparatus was built to carry out the measurements. I will present the apparatus I built as well as the results of the measurement of the triply-differential-cross-section (TDCS) for the predicted interference and Post-Collision-Interaction (PCI) effects in the Xenon N5O2,3 O2,3 Auger decay after 4d5/2 photoionization. Furthermore I present measurements for direct double photoionization of Helium at various photon energies.
Collisional quenching dynamics and reactivity of highly vibrationally excited molecules
NASA Astrophysics Data System (ADS)
Liu, Qingnan
Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine molecules with HOD are reported. Lower limits to the overall collision rate are directly determined from experimental measurements and compared to Lennard-Jones models which underestimate the collision rate for highly vibrationally excited azabenzenes with HOD. The fourth study explores reactive collisions of highly vibrationally excited pyridine molecules. D-atom abstraction reactions of highly vibrationally excited pyridine-d5 molecules and chlorine radical show a rate enhancement of ˜90 relative to the reaction of room temperature pyridine-d5 with chlorine radical. A single quantum of C-D stretching vibration is observed to be used for the vibrational driven reaction. Reactions of 2-picoline-d3 with chlorine radical do not show a similar enhancement. For this case, the fast rotation of --CD3 group in highly vibrationally excited 2-picoline-d3 inhibits the D-atom abstraction.
Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.
2011-06-01
Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.
Collisional Transfer of Population and Orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.
2010-03-01
We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v'=16, J') <- X^1&+circ;(v''=0, J'±1) transition, creating an orientation (non-uniform MJ' level distribution) in both levels. The linearly polarized probe laser is scanned over various 3^1π(v, J'±1) <- A^1&+circ;(v'=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system.
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.
1990-08-01
A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).
NASA Astrophysics Data System (ADS)
Gupta, P.; Becker, H.-W.; Williams, G. V. M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.
2017-03-01
Hydrogenated diamond-like carbon films produced by C3H6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.
NASA Astrophysics Data System (ADS)
Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi
2000-08-01
A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.
NASA Astrophysics Data System (ADS)
Gann, V. V.; Tolstolutskaya, G. D.
2008-08-01
An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
Electricity and short wavelength radiation generator
George, E.V.
1985-08-26
Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.
1991-01-24
Molecular Graphics, vol. 6, No. 4 (Dec. 1988), p. 223. Turk, Greg, "Interactive Collision Detection for Molecular Graphics," M.S. thesis , UNC-Chapel Hill...Problem," Master’s thesis , UNC Department of Computer Science Technical Report #TR87-013, May 1987. Pique, ME., "Technical Trends in Molecular Graphics...AD-A236 598 Seventeenth Annual Progress Report and 1992-97 Renewal Proposal Interactive Graphics for Molecular Studies TR91-020 January 24, 1991 red
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, B.; DuCharme, G.
We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less
Atomic Data and Spectral Line Intensities for Be-like Ions
NASA Technical Reports Server (NTRS)
Bhatia, Anand; Landi, E.
2008-01-01
Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
NASA Astrophysics Data System (ADS)
Sizun, M.; Bachellerie, D.; Aguillon, F.; Sidis, V.
2010-09-01
We study the Eley-Rideal recombination of H atoms on graphene under the physical conditions of the interstellar medium. Effects of the ZPE motions of the chemisorbed H atom and of the graphene thermal motions are investigated. Classical molecular dynamics calculations undertaken with the multidimensional potential of Bachellerie et al. [Phys. Chem. Chem. Phys. 11 (2009) 2715] are reported. The ZPE effects are the strongest. The closer the collision energy is to the classical reaction threshold the more sizeable the effects. The quantum reaction cross section is also estimated below and above the classical threshold using a capture model.
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Elastic scattering losses from colliding Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zin Pawel; Chwedenczuk, Jan; Trippenbach, Marek
2006-03-15
Bragg diffraction divides a Bose-Einstein condensate into two overlapping components, moving with respect to each other with high momentum. Elastic collisions between atoms from distinct wave packets can significantly deplete the condensate. Recently, Zin et al. [Phys. Rev. Lett. 94, 200401 (2005)] introduced a model of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of the incoherent scattering processes. Here we study the properties of this model in detail, including the nature of the transition from spontaneous to stimulated scattering. Within the first-order approximation, we derive analytical expressions for the density matrix and anomalous density that provide excellent insightmore » into correlation properties of scattered atoms.« less
Progress in Scientific and Technical Communications, 1968 Annual Report.
ERIC Educational Resources Information Center
Federal Council for Science and Technology, Washington, DC. Committee on Scientific and Technical Information.
This sixth annual report describes progress achieved by the Federal Government in improving the communication of scientific and technical information to support and enhance national science and technology. Included in the report are details regarding the scientific and technical activities of individual Federal Agencies, such as the Atomic Energy…
Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling
NASA Astrophysics Data System (ADS)
Bartlett, Philip
2007-10-01
The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.
Multimillion Atom Simulations of Nanoenergetic Materials
2014-12-01
L R E P O R T DTRA-TR-14-46 Multimillion Atom Simulations of Nanoenergetic Materials Distribution Statement A. Approved for public release...December 2009 Multimillion Atom Simulations of Nanoenergetic Materials HDTRA1-07-1-0023 Priya Vashishta Rajiv K. Kalia Aiichiro Nakano Collaboratory for...Technical Report (December 18, 2006—December 17, 2009) Defense Threat Reduction Agency Grant # HDTRA1-07-1-0023 Multimillion Atom Simulations of
Physics and the New Games -- or Pretend You're an Atom.
ERIC Educational Resources Information Center
Edge, Ronald D.
1982-01-01
Describes several games in which physics principles are demonstrated using students. These include Pirates Treasure Game (vectors), Three-Meter Dash (kinematics), Knee-Bend Game (energy and power), Wave Game, Reaction Kinematics, Statics-People Pyramids, and games demonstrating nuclear reactions, collisions, electrons in a wire, close packing, and…
The "Collisions Cube" Molecular Dynamics Simulator.
ERIC Educational Resources Information Center
Nash, John J.; Smith, Paul E.
1995-01-01
Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)
Efficient calculation of atomic rate coefficients in dense plasmas
NASA Astrophysics Data System (ADS)
Aslanyan, Valentin; Tallents, Greg J.
2017-03-01
Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.
Stimulated emission by hybrid transitions via a heteronuclear molecule
NASA Astrophysics Data System (ADS)
Dinev, S. G.; Khadzhikhristov, G. B.; Stefanov, I. L.
1990-03-01
An atomic emission, identified as a four-wave parametric emission and stimulated by collision assisted hybrid transition via a heteronuclear molecule, is presented together with a diagram of excitation and emission for the relevant K and NaK energy levels. The cascading emission from the excited 7S or 5D levels to lower-lying atomic states is considered to be insignificant. The dependence of the red signal and the NaK fluorescence on the pump energy is investigated, and the results can be used to indicate the onset of a stimulated process.
NASA Astrophysics Data System (ADS)
Vartanyan, T.; Polishchuk, V.; Sargsyan, A.; Krasteva, A.; Cartaleva, St.; Todorov, G.
2018-03-01
Linear and nonlinear absorption spectra of 133Cs vapor confined in an extremely thin cell were computed via iterations with respect to the resonance radiation intensity. When the incident radiation intensity is low, the transient polarization of the atoms that undergo frequent collisions with the cell walls leads to sub-Doppler features in the absorption spectra. Higher incident radiation intensities result in the appearance of velocity-selective optical pumping resonances. The theory developed agrees quantitatively with the experimental findings.
Measurement of optical Feshbach resonances in an ideal gas.
Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J
2011-08-12
Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.
The concept of collision strength and its applications
NASA Astrophysics Data System (ADS)
Chang, Yongbin
Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equation has a five-fold integral collision term that is complicated. Chandrasekhar and Spitzer's approaches to the linear Fokker-Planck coefficients have several approximations. An effective variable-change technique has been developed in this dissertation as an alternative to scattering angle as the measure of collision strength. By introducing the square of the reduced impulse or its equivalencies as a collision strength variable, many plasma calculations have been simplified. The five-fold linear Boltzmann collision integral and linearized Boltzmann collision integral are simplified to three-fold integrals. The arbitrary order linear Fokker-Planck coefficients are calculated and expressed in a uniform expression. The new theory provides a simple and exact method for describing the equilibrium plasma collision rate, and a precise calculation of the equilibrium relaxation time. It generalizes bimolecular collision reaction rate theory to a reaction rate theory for plasmas. A simple formula of high precision with wide temperature range has been developed for electron impact ionization rates for carbon atoms and ions. The universality of the concept of collision strength is emphasized. This dissertation will show how Arrhenius' chemical reaction rate theory and Thomson's ionization theory can be unified as one single theory under the concept of collision strength, and how many important physical terms in different disciplines, such as activation energy in chemical reaction theory, ionization energy in Thomson's ionization theory, and the Coulomb logarithm in plasma physics, can be unified into a single one---the threshold value of collision strength. The collision strength, which is a measure of a transfer of momentum in units of energy, can be used to reconcile the differences between Descartes' opinion and Leibnitz's opinion about the "true" measure of a force. Like Newton's second law, which provides an instantaneous measure of a force, collision strength, as a cumulative measure of a force, can be regarded as part of a law of force in general.
Atomic data and line intensities for the S V ion
NASA Astrophysics Data System (ADS)
Iorga, C.; Stancalie, V.
2017-05-01
The energy levels, oscillator strengths, spontaneous radiative decay rates, lifetimes and electron impact collision strengths have been obtained for the [ Ne ] 3s nl, [ Ne ] 3p nl, [ Ne ] 3d nl configurations belonging to S V ion, with n ≤ 7 and l ≤ 4, resulting in 567 fine-structure levels. The calculations have been performed within the fully relativistic Flexible Atomic Code (FAC, Gu, 2008) framework and the distorted wave approximation. To attain the desired accuracy for the levels energy, the valence-valence and valence-core correlations have been taken care of by including 96 configuration state functions (CSFs) in the model, reaching a total of 3147 fine-structure levels. Two separate calculations have been performed with the local central potential computed for two different average configurations. A third calculation is also performed without the addition of the core-excited states in the atomic model for completeness. The effects of slightly different mean configurations and valence-core correlations on the energy levels and decay rates are investigated. The collision data have been computed employing the relativistic distorted-wave method along with the atomic model containing the 96 CSFs and corresponding to the ground state mean configuration. The collision strengths corresponding to excitation from the first four fine-structure levels are given for five energy values of the scattered electron 2.65, 6.18, 11.02, 17.36, 25.43 Rydberg, plus an additional variable small energy value near the threshold. A collisional-radiative model has been employed to solve the rate equations for the populations of the 567 fine-structure levels, for a temperature of LogTE(K) = 5.2 corresponding to the maximum abundance of S V, and at densities 106-1016cm-3, assuming a Maxwellian electron energy distribution function and black body radiation of temperature 6000 K and dilution factor 0.35 for the photon distribution function. The main processes responsible for the level population variations are the electron-impact collisional excitation and the radiative decay along with their inverse processes. As a result, the level populations along with the spectral high-line intensity ratios are provided.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.
1993-01-01
Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.
Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers
NASA Astrophysics Data System (ADS)
Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.
2013-05-01
We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.
Nitrogen implantation with a scanning electron microscope.
Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J
2018-01-08
Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.
DOE R&D Accomplishments Database
Fermi, E.
1946-05-27
There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.
Electron Capture in Slow Collisions of Si4+ With Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Joseph, D. C.; Gu, J. P.; Saha, B. C.
2009-10-01
In recent years the charge transfer involving Si4+ and H at low energies has drawn considerable attention both theoretically and experimentally due to its importance not only in astronomical environments but also in modern semiconductor industries. Accurate information regarding its molecular structures and interactions are essential to understand the low energy collision dynamics. Ab initio calculations are performed using the multireference single- and double-excitation configuration-interaction (MRD-CI) method to evaluate potential energies. State selective cross sections are calculate using fully quantum and semi-classical molecular-orbital close coupling (MOCC) methods in the adiabatic representation. Detail results will be presented in the conference.
Quantum entangled dark solitons formed by ultracold atoms in optical lattices.
Mishmash, R V; Carr, L D
2009-10-02
Inspired by experiments on Bose-Einstein condensates in optical lattices, we study the quantum evolution of dark soliton initial conditions in the context of the Bose-Hubbard Hamiltonian. An extensive set of quantum measures is utilized in our analysis, including von Neumann and generalized quantum entropies, quantum depletion, and the pair correlation function. We find that quantum effects cause the soliton to fill in. Moreover, soliton-soliton collisions become inelastic, in strong contrast to the predictions of mean-field theory. These features show that the lifetime and collision properties of dark solitons in optical lattices provide clear signals of quantum effects.
Collision for Li++He System. I. Potential Curves and Non-Adiabatic Coupling Matrix Elements
NASA Astrophysics Data System (ADS)
Yoshida, Junichi; O-Ohata, Kiyosi
1984-02-01
The potential curves and the non-adiabatic coupling matrix elements for the Li++He collision system were computed. The SCF molecular orbitals were constructed with the CGTO atomic bases centered on each nucleus and the center of mass of two nuclei. The SCF and CI calculations were done at various internuclear distances in the range of 0.1˜25.0 a.u. The potential energies and the wavefunctions were calculated with good approximation over whole internuclear distance. The non-adiabatic coupling matrix elements were calculated with the tentative method in which the ETF are approximately taken into account.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Misra, D.; Chatterjee, S.; Kasthurirangan, S.; Agnihotri, A.; Tribedi, L. C.
2009-11-01
We report the first direct measurement of GDPR peak in heavy ion (4 MeV/u F9+) induced secondary electron DDCS (double differential cross section) spectrum of C60 fullerene. A peak corresponding to GDPR is seen at all angles and the angular distribution, showing a dip at 90°, is in contrast with ion-atom collisions, indicating plasmon oscillations along beam direction. A comparison has also been done between C60 and other gaseous targets as well as with state-of-the art theoretical models, based on density functional methods.
NASA Astrophysics Data System (ADS)
Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen
2018-05-01
A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, M. M.; Michelin, S. E.; Mazon, K. T.
2007-07-15
We report a theoretical study of elastic electron collisions on three isoelectronic free radicals, namely, SiNN, SiCO, and CSiO. More specifically, differential, integral, and momentum-transfer cross sections are calculated and reported in the (1-100) eV energy range. Calculations are performed at the static-exchange-polarization-absorption level of approximation. A combination of the iterative Schwinger variational method and the distorted-wave approximation is used to solve the scattering equations. Our study reveals that the calculated cross sections for the e{sup -}-SiNN and e{sup -}-SiCO collisions are very similar even at incident energies as low as 3 eV. Strong isomeric effects are also observed inmore » the calculated cross sections for e{sup -}-CSiO and e{sup -}-SiCO collisions, particularly at incident energies below 20 eV. It is believed that the position of the silicon atom being at the center or extremity of the molecules may exert important influence on the calculated cross sections.« less
High temperature electronic excitation and ionization rates in gases
NASA Technical Reports Server (NTRS)
Hansen, Frederick
1991-01-01
The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.
Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.
Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong
2013-08-28
Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.
Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules
NASA Astrophysics Data System (ADS)
Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim
2008-09-01
We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.
Analytical Wave Functions for Ultracold Collisions.
NASA Astrophysics Data System (ADS)
Cavagnero, M. J.
1998-05-01
Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A. H.; Kadhane, U.; Misra, D.
2010-10-15
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less