Some connectivity indices and zagreb index of polyhex nanotubes.
Farahani, Mohammad Reza
2012-12-01
Several topological indices are investigated in polyhex nanotubes: Randić connectivity index, sum-connectivity index, atom-bond connectivity index, geometric-arithmetic index, First and Second Zagreb indices and Zagreb polynomials. Formulas for calculating the above topological descriptors in polyhex zigzag TUZC6[m,n] and armchair TUAC6[m,n] nanotube families are given.
On Atom-Bond Connectivity Index
NASA Astrophysics Data System (ADS)
Zhou, Bo; Xing, Rundan
2011-02-01
The atom-bond connectivity (ABC) index, introduced by Estrada et al. in 1998, displays an excellent correlation with the formation heat of alkanes. We give upper bounds for this graph invariant using the number of vertices, the number of edges, the Randíc connectivity indices, and the first Zagreb index. We determine the unique tree with the maximum ABC index among trees with given numbers of vertices and pendant vertices, and the n-vertex trees with the maximum, and the second, the third, and the fourth maximum ABC indices for n ≥ 6.
On Certain Topological Indices of Boron Triangular Nanotubes
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Ahmad, Safyan; Gao, Wei
2017-08-01
The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.
NASA Astrophysics Data System (ADS)
Zhou, Bo; Trinajstić, Nenad
2008-03-01
We report lower bounds for the Kirchhoff index of a connected (molecular) graph in terms of its structural parameters such as the number of vertices (atoms), the number of edges (bonds), maximum vertex degree (valency), connectivity and chromatic number.
NASA Astrophysics Data System (ADS)
Vukičević, Damir; Đurđević, Jelena
2011-10-01
Bond incident degree index is a descriptor that is calculated as the sum of the bond contributions such that each bond contribution depends solely on the degrees of its incident vertices (e.g. Randić index, Zagreb index, modified Zagreb index, variable Randić index, atom-bond connectivity index, augmented Zagreb index, sum-connectivity index, many Adriatic indices, and many variable Adriatic indices). In this Letter we find tight upper and lower bounds for bond incident degree index for catacondensed fluoranthenes with given number of hexagons.
The aim of this work is to develop group-contribution+ (GC+) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncert...
Zhao, Tanfeng; Zhang, Qingyou; Long, Hailin; Xu, Lu
2014-01-01
In order to explore atomic asymmetry and molecular chirality in 2D space, benzenoids composed of 3 to 11 hexagons in 2D space were enumerated in our laboratory. These benzenoids are regarded as planar connected polyhexes and have no internal holes; that is, their internal regions are filled with hexagons. The produced dataset was composed of 357,968 benzenoids, including more than 14 million atoms. Rather than simply labeling the huge number of atoms as being either symmetric or asymmetric, this investigation aims at exploring a quantitative graph theoretical descriptor of atomic asymmetry. Based on the particular characteristics in the 2D plane, we suggested the weighted atomic sum as the descriptor of atomic asymmetry. This descriptor is measured by circulating around the molecule going in opposite directions. The investigation demonstrates that the weighted atomic sums are superior to the previously reported quantitative descriptor, atomic sums. The investigation of quantitative descriptors also reveals that the most asymmetric atom is in a structure with a spiral ring with the convex shape going in clockwise direction and concave shape going in anticlockwise direction from the atom. Based on weighted atomic sums, a weighted F index is introduced to quantitatively represent molecular chirality in the plane, rather than merely regarding benzenoids as being either chiral or achiral. By validating with enumerated benzenoids, the results indicate that the weighted F indexes were in accordance with their chiral classification (achiral or chiral) over the whole benzenoids dataset. Furthermore, weighted F indexes were superior to previously available descriptors. Benzenoids possess a variety of shapes and can be extended to practically represent any shape in 2D space—our proposed descriptor has thus the potential to be a general method to represent 2D molecular chirality based on the difference between clockwise and anticlockwise sums around a molecule. PMID:25032832
Eccentric connectivity index of chemical trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haoer, R. S., E-mail: raadsehen@gmail.com; Department of Mathematics, Faculty of Computer Sciences and Mathematics, University Of Kufa, Najaf; Atan, K. A., E-mail: kamel@upm.edu.my
Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices and edges are depicted atoms and chemical bonds respectively, we refer to the sets of vertices by V (G) and edges by E (G). If d(u, v) be distance between two vertices u, v ∈ V(G) and can be defined as the length of a shortest path joining them. Then, the eccentricity connectivity index (ECI) of a molecular graph G is ξ(G) = ∑{sub v∈V(G)} d(v) ec(v), where d(v) is degree of a vertex v ∈ V(G). ec(v) is the length ofmore » a greatest path linking to another vertex of v. In this study, we focus the general formula for the eccentricity connectivity index (ECI) of some chemical trees as alkenes.« less
On Topological Indices of Certain Families of Nanostar Dendrimers.
Husin, Mohamad Nazri; Hasni, Roslan; Arif, Nabeel Ezzulddin; Imran, Muhammad
2016-06-24
A topological index of graph G is a numerical parameter related to G which characterizes its molecular topology and is usually graph invariant. In the field of quantitative structure-activity (QSAR)/quantitative structure-activity structure-property (QSPR) research, theoretical properties of the chemical compounds and their molecular topological indices such as the Randić connectivity index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are used to predict the bioactivity of different chemical compounds. A dendrimer is an artificially manufactured or synthesized molecule built up from the branched units called monomers. In this paper, the fourth version of ABC index and the fifth version of GA index of certain families of nanostar dendrimers are investigated. We derive the analytical closed formulas for these families of nanostar dendrimers. The obtained results can be of use in molecular data mining, particularly in researching the uniqueness of tested (hyper-branched) molecular graphs.
Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J
2004-04-05
We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.
On the Certain Topological Indices of Titania Nanotube TiO2[m, n
NASA Astrophysics Data System (ADS)
Javaid, M.; Liu, Jia-Bao; Rehman, M. A.; Wang, Shaohui
2017-07-01
A numeric quantity that characterises the whole structure of a molecular graph is called the topological index that predicts the physical features, chemical reactivities, and boiling activities of the involved chemical compound in the molecular graph. In this article, we give new mathematical expressions for the multiple Zagreb indices, the generalised Zagreb index, the fourth version of atom-bond connectivity (ABC4) index, and the fifth version of geometric-arithmetic (GA5) index of TiO2[m, n]. In addition, we compute the latest developed topological index called by Sanskruti index. At the end, a comparison is also included to estimate the efficiency of the computed indices. Our results extended some known conclusions.
On Topological Indices of Certain Dendrimer Structures
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei
2017-05-01
A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Jun; Ma, Evan; Asta, Mark
Using molecular dynamics simulations, we have studied the atomic correlations characterizing the second peak in the radial distribution function (RDF) of metallic glasses and liquids. The analysis was conducted from the perspective of different connection schemes of atomic packing motifs, based on the number of shared atoms between two linked coordination polyhedra. The results demonstrate that the cluster connections by face-sharing, specifically with three common atoms, are most favored when transitioning from the liquid to glassy state, and exhibit the stiffest elastic response during shear deformation. These properties of the connections and the resultant atomic correlations are generally the samemore » for different types of packing motifs in different alloys. Splitting of the second RDF peak was observed for the inherent structure of the equilibrium liquid, originating solely from cluster connections; this trait can then be inherited in the metallic glass formed via subsequent quenching of the parent liquid through the glass transition, in the absence of any additional type of local structural order. In conclusion, increasing ordering and cluster connection during cooling, however, may tune the position and intensity of the split peaks.« less
Woodruff, Steven D.; Mcintyre, Dustin L.
2016-03-29
A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.
NASA Astrophysics Data System (ADS)
Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong
2016-05-01
Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.
Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil.
Olivero, J; Gracia, T; Payares, P; Vivas, R; Díaz, D; Daza, E; Geerlings, P
1997-05-01
Using quantitative structure-retention relationships (QSRR) methodologies the Kovats gas chromatographic retention indices for both apolar (DB-1) and polar (DB-Wax) columns for 48 compounds from Ylang-Ylang essential oil were empirically predicted from calculated and experimental data on molecular structure. Topological, geometric, and electronic descriptors were obtained for model generation. Relationships between descriptors and the retention data reported were established by linear multiple regression, giving equations that can be used to predict the Kovats indices for compounds present in essential oils, both in DB-1 and DB-Wax columns. Factor analysis was performed to interpret the meaning of the descriptors included in the models. The prediction model for the DB-1 column includes descriptors such as Randic's first-order connectivity index (1X), the molecular surface (MSA), the sum of the atomic charge on all the hydrogens (QH), Randic's third-order connectivity index (3X) and the molecular electronegativity (chi). The prediction model for the DB-Wax column includes the first three descriptors mentioned for the DB-1 column (1X, MSA and QH) and the most negative charge (MNC), the global softness (S), and the difference between Randic's and Kier and Hall's third-order connectivity indexes (3X-3XV).
Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang
2014-04-15
This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.
Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling; Ge, Hui-Lin
2008-02-01
Polychlorinated biphenyls (PCBs) are some of the most prevalent pollutants in the total environment and receive more and more concerns as a group of ubiquitous potential persistent organic pollutants. Using the variable selection and modeling based on prediction (VSMP), the molecular electronegativity distance vector (MEDV) derived directly from the molecular topological structures was employed to develop a linear model (MI) between the bioconcentration factors (BCF) and two MEDV descriptors of 58 PCBs. The MI model showed a good estimation ability with a correlation coefficient (r) of 0.9605 and a high stability with a leave-one-out cross-validation correlation coefficient (q) of 0.9564. The MEDV-base model (MI) is easier to use than the splinoid poset method reported by Ivanciuc et al. [Ivanciuc, T., Ivanciuc, O., Klein, D.J., 2006. Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quatitative super-structure/activity relationships (QSSAR). Mol. Divers. 10, 133-145] and gives a better statistics than molecular connectivity index (MCI)-base model developed by Hu et al. [Hu, H.Y., Xu, F.L., Li, B.G., Cao, J., Dawson, R., Tao, S., 2005. Prediction of the bioconcentration factor of PCBs in fish using the molecular connectivity index and fragment constant models. Water Environ. Res. 77, 87-97]. Main structural factors influencing the BCF of PCBs are the substructures expressed by two atomic groups >C= and -CH=. 58 PCBs were divided into an "odd set" and "even set" in order to ensure the predicted potential of the MI for the external samples. It was shown that three models, MI, MO for "odd set", and ME for "even set", can be used to predict the BCF of remaining 152 PCBs in which the experimental BCFs are not available.
Atomic Force Microscopy Based Cell Shape Index
NASA Astrophysics Data System (ADS)
Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia
2013-03-01
Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.
Sánchez-Márquez, Jesús
2016-11-21
A new methodology to obtain reactivity indices has been defined. This is based on reactivity functions such as the Fukui function or the dual descriptor and makes it possible to project the information of reactivity functions over molecular orbitals instead of the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecule's natural bond orbitals (bond reactivity indices) because these orbitals (with physical meaning) have the advantage of being very localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology gives a reactivity index for every Natural Bond Orbital (NBO), and we have verified that they have equivalent information to the reactivity functions. A representative set of molecules has been used to test the new definitions. Also, the bond reactivity index has been related with the atomic reactivity one, and complementary information has been obtained from the comparison. Finally, a new atomic reactivity index has been defined and compared with previous definitions.
Senior, Samir A; Madbouly, Magdy D; El massry, Abdel-Moneim
2011-09-01
Quantum chemical and topological descriptors of some organophosphorus compounds (OP) were correlated with their toxicity LD(50) as a dermal. The quantum chemical parameters were obtained using B3LYP/LANL2DZdp-ECP optimization. Using linear regression analysis, equations were derived to calculate the theoretical LD(50) of the studied compounds. The inclusion of quantum parameters, having both charge indices and topological indices, affects the toxicity of the studied compounds resulting in high correlation coefficient factors for the obtained equations. Two of the new four firstly supposed descriptors give higher correlation coefficients namely the Heteroatom Corrected Extended Connectivity Randic index ((1)X(HCEC)) and the Density Randic index ((1)X(Den)). The obtained linear equations were applied to predict the toxicity of some related structures. It was found that the sulfur atoms in these compounds must be replaced by oxygen atoms to achieve improved toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Research on comprehensive decision-making of PV power station connecting system
NASA Astrophysics Data System (ADS)
Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai
2018-04-01
In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.
Trapped Atoms in One-Dimensional Photonic Crystals
2013-08-09
a single silicon -nitride nanobeam (refractive index n = 2) with a 1D array of filleted rectangular holes along the propagation direction; atoms are...trapped in the centers of the holes (figure 1( a )). The second waveguide consists of two parallel silicon nitride nanobeams, each with a periodic array...the refractive index of silicon nitride is approximately constant across the optical domain, we adopt the approximation based on a frequency
QSPR modeling: graph connectivity indices versus line graph connectivity indices
Basak; Nikolic; Trinajstic; Amic; Beslo
2000-07-01
Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.
NASA Technical Reports Server (NTRS)
Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus;
2012-01-01
The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.
1992-05-01
that unusually high-quality STM data of this type 5-7can be obtained at ordered gold -aqueous interfaces. Reconstruction is seen 2 to be triggered on...all three low-index gold surfaces by altering the potential to values corresponding to small (10-15 pC cm-2 ) negative surface electronic 5-7 charges...connections. The former was platinum and the latter was a freshly electrooxidized gold wire. All electrode potentials quoted here, however, are
Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia
1998-04-01
Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.
Chemometric modeling of 5-Phenylthiophenecarboxylic acid derivatives as anti-rheumatic agents.
Adhikari, Nilanjan; Jana, Dhritiman; Halder, Amit K; Mondal, Chanchal; Maiti, Milan K; Jha, Tarun
2012-09-01
Arthritis involves joint inflammation, synovial proliferation and damage of cartilage. Interleukin-1 undergoes acute and chronic inflammatory mechanisms of arthritis. Non-steroidal anti-inflammatory drugs can produce symptomatic relief but cannot act through mechanisms of arthritis. Diseases modifying anti-rheumatoid drugs reduce the symptoms of arthritis like decrease in pain and disability score, reduction of swollen joints, articular index and serum concentration of acute phage proteins. Recently, some literature references are obtained on molecular modeling of antirheumatic agents. We have tried chemometric modeling through 2D-QSAR studies on a dataset of fifty-one compounds out of which forty-four 5-Phenylthiophenecarboxylic acid derivatives have IL-1 inhibitory activity and forty-six 5-Phenylthiophenecarboxylic acid derivatives have %AIA suppressive activity. The work was done to find out the structural requirements of these anti-rheumatic agents. 2D QSAR models were generated by 2D and 3D descriptors by using multiple linear regression and partial least square method where IL-1 antagonism was considered as the biological activity parameter. Statistically significant models were developed on the training set developed by k-means cluster analysis. Sterimol parameters, electronic interaction at atom number 9, 2D autocorrelation descriptors, information content descriptor, average connectivity index chi-3, radial distribution function, Balaban 3D index and 3D-MoRSE descriptors were found to play crucial roles to modulate IL-1 inhibitory activity. 2D autocorrelation descriptors like Broto-Moreau autocorrelation of topological structure-lag 3 weighted by atomic van der Waals volumes, Geary autocorrelation-lag 7 associated with weighted atomic Sanderson electronegativities and 3D-MoRSE descriptors like 3D-MoRSE-signal 22 related to atomic van der Waals volumes, 3D-MoRSE-signal 28 related to atomic van der Waals volumes and 3D-MoRSE-signal 9 which was unweighted, were found to play important roles to model %AIA suppressive activity.
Process-based tolerance assessment of connecting rod machining process
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, P. Srinivasa; Surendra Babu, B.
2016-06-01
Process tolerancing based on the process capability studies is the optimistic and pragmatic approach of determining the manufacturing process tolerances. On adopting the define-measure-analyze-improve-control approach, the process potential capability index ( C p) and the process performance capability index ( C pk) values of identified process characteristics of connecting rod machining process are achieved to be greater than the industry benchmark of 1.33, i.e., four sigma level. The tolerance chain diagram methodology is applied to the connecting rod in order to verify the manufacturing process tolerances at various operations of the connecting rod manufacturing process. This paper bridges the gap between the existing dimensional tolerances obtained via tolerance charting and process capability studies of the connecting rod component. Finally, the process tolerancing comparison has been done by adopting a tolerance capability expert software.
Crystallographic parameters of compounds and solid solutions in binary systems Cu-Pt and Ga-Pt
NASA Astrophysics Data System (ADS)
Potekaev, Alexandr; Probova, Svetlana; Klopotov, Anatolii; Vlasov, Viktor; Markov, Tatiana; Klopotov, Vladimir
2015-10-01
The study establishes that the packing index in compounds of the system Cu-Pt is close to the value 0.74 against a slight deviation from the Zen law of atomic volumes. The compounds in the system Ga-Pt have the highest values of the packing index in the range of the equiatomic composition, which greatly exceed ψ for close-packed structures based on FCC and HCP lattices for compounds made of the same kind of atoms. A correlation between singular points on the phase diagram of the system Ga-Pt and high values of the packing index in compounds is established.
Tan, Siyu; Yan, Fengping; Singh, Leena; Cao, Wei; Xu, Ningning; Hu, Xiang; Singh, Ranjan; Wang, Mingwei; Zhang, Weili
2015-11-02
The realization of high refractive index is of significant interest in optical imaging with enhanced resolution. Strongly coupled subwavelength resonators were proposed and demonstrated at both optical and terahertz frequencies to enhance the refractive index due to large induced dipole moment in meta-atoms. Here, we report an alternative design for flexible free-standing terahertz metasurface in the strong coupling regime where we experimentally achieve a peak refractive index value of 14.36. We also investigate the impact of the nearest neighbor coupling in the form of frequency tuning and enhancement of the peak refractive index. We provide an analytical circuit model to explain the impact of geometrical parameters and coupling on the effective refractive index of the metasurface. The proposed meta-atom structure enables tailoring of the peak refractive index based on nearest neighbor coupling and this property offers tremendous design flexibility for transformation optics and other index-gradient devices at terahertz frequencies.
A Novel/Old Modification of the First Zagreb Index.
Ali, Akbar; Trinajstić, Nenad
2018-03-14
In the seminal paper [I. Gutman, N. Trinajstić, Chem. Phys. Lett. 1972, 17, 535-538], it was shown that total electron energy (Eπ ) of any alternant hydrocarbon depends on the sum of the squares of the degrees of the corresponding molecular graph. Nowadays, this sum is known as the first Zagreb index. In the same paper, another molecular descriptor was proved to influence Eπ , but that descriptor was never restudied explicitly. We call this descriptor as modified first Zagreb connection index and denote it by ZC1* . In this paper, chemical applicability of the molecular descriptor ZC1* is tested for the octane isomers. Some basic properties of ZC1* are also established here. Furthermore, the alkanes with maximum and minimum ZC1* values are determined from the class of all alkanes having fixed number of carbon atoms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Site Index NNDC Tools and Publications Nuclear Structure and Decay Tools Nuclear Reaction Tools Nuclear Structure and Decay Tools 2016 Atomic Mass Evaluation Atomic mass evaluation, by Wang, Audi values as a function of gamma energy and multipolarity. Calculations based on I.M. Band and S. Raman
Band gap and refractive index tunability in thallium based layered mixed crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasanly, N. M., E-mail: nizami@metu.edu.tr; Virtual International Scientific Research Centre, Baku State University, Baku 1148
2015-07-21
Compositional variation of the band gap energy and refractive index of TlMeX{sub 2}-type (Me = Ga or In and X = S or Se) layered mixed crystals have been studied by the transmission and reflection measurements in the wavelength range of 400–1100 nm. The analysis of absorption data of TlGa{sub 1-x}In{sub x}Se{sub 2}, TlGa(S{sub 1−x}Se{sub x}){sub 2}, TlGa{sub 1−x}In{sub x}S{sub 2}, and TlIn(Se{sub 1−x}S{sub x}){sub 2} mixed crystals revealed the presence of both optical indirect and direct transitions. It was found that the energy band gaps of mixed crystals decrease at the replacing of gallium atoms by indium and of sulfur atoms by selenium ones.more » Through the similar replacing of atoms (smaller atoms by larger ones) in the studied mixed crystals, the refractive index shows the quite opposite behavior.« less
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.
Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim
2014-02-10
We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.
2014-05-20
Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Å to ~ 0.65 Å as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. Themore » contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.« less
Atomic oxygen exposure of LDEF experiment trays
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gillis, J. R.
1992-01-01
Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.
Berente, Imre; Czinki, Eszter; Náray-Szabó, Gábor
2007-09-01
We report an approach for the determination of atomic monopoles of macromolecular systems using connectivity and geometry parameters alone. The method is appropriate also for the calculation of charge distributions based on the quantum mechanically determined wave function and does not suffer from the mathematical instability of other electrostatic potential fit methods. Copyright 2007 Wiley Periodicals, Inc.
Mid-term fire danger index based on satellite imagery and ancillary geographic data
NASA Astrophysics Data System (ADS)
Stefanidou, A.; Dragozi, E.; Tompoulidou, M.; Stepanidou, L.; Grigoriadis, D.; Katagis, T.; Stavrakoudis, D.; Gitas, I.
2017-09-01
Fire danger forecast constitutes one of the most important components of integrated fire management since it provides crucial information for efficient pre-fire planning, alertness and timely response to a possible fire event. The aim of this work is to develop an index that has the capability of predicting accurately fire danger on a mid-term basis. The methodology that is currently under development is based on an innovative approach that employs dry fuel spatial connectivity as well as biophysical and topological variables for the reliable prediction of fire danger. More specifically, the estimation of the dry fuel connectivity is based on a previously proposed automated procedure implemented in R software that uses Moderate Resolution Imaging Spectrometer (MODIS) time series data. Dry fuel connectivity estimates are then combined with other ancillary data such as fuel type and proximity to roads in order to result in the generation of the proposed mid-term fire danger index. The innovation of the proposed index—which will be evaluated by comparison to historical fire data—lies in the fact that its calculation is almost solely affected by the availability of satellite data. Finally, it should be noted that the index is developed within the framework of the National Observatory of Forest Fires (NOFFi) project.
Fan, Shi-Qi; Li, Sen; Liu, Jin-Ling; Yang, Jiao; Hu, Chao; Zhu, Jun-Ping; Xiao, Xiao-Qin; Liu, Wen-Long; He, Fu-Yuan
2017-01-01
The molecular connectivity index was adopted to explore the characteristics of supramolecular imprinting template of herbs distributed to liver meridian, in order to provide scientific basis for traditional Chinese medicines(TCMs) distributed to liver meridian. In this paper, with "12th five-year plan" national planning textbooks Science of Traditional Chinese Medicine and Chemistry of Traditional Chinese Medicine as the blueprint, literatures and TCMSP sub-databases in TCM pharmacology of northwest science and technology university of agriculture and forestry were retrieved to collect and summarize active constituents of TCM distributed to liver meridian, and calculate the molecular connectivity index. The average molecular connectivity index of ingredients distributed to liver meridian was 9.47, which was close to flavonoid glycosides' (9.17±2.11) and terpenes (9.30±3.62). Therefore, it is inferred that template molecule of liver meridian is similar to physicochemical property of flavonoid glycosides and terpenes, which could be best matched with imprinting template of liver meridian. Copyright© by the Chinese Pharmaceutical Association.
2014-01-01
glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected to...of non-bridging (connected to only a single network forming cation) oxygen atoms per network polyhedron and takes on a zero value in the case of...network polyhedron and takes on a value of 4.0 in the case of fused silica. In addition to the three parameters mentioned above, the “seemingly
Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul
2012-11-26
The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.
Index to the Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This index was prepared for the set of 51 booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school students and their teachers. In addition to the index, a complete list of the series is provided in which the booklets are grouped into the categories of physics, chemistry, biology, nuclear…
First principles calculation of current-induced forces in atomic gold contacts
NASA Astrophysics Data System (ADS)
Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo
2002-03-01
We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).
Regan, Brian C [Los Angeles, CA; Zettl, Alexander K [Kensington, CA; Aloni, Shaul [Albany, CA
2011-01-04
A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.
Integration of the Eventlndex with other ATLAS systems
NASA Astrophysics Data System (ADS)
Barberis, D.; Cárdenas Zárate, S. E.; Gallas, E. J.; Prokoshin, F.
2015-12-01
The ATLAS EventIndex System, developed for use in LHC Run 2, is designed to index every processed event in ATLAS, replacing the TAG System used in Run 1. Its storage infrastructure, based on Hadoop open-source software framework, necessitates revamping how information in this system relates to other ATLAS systems. It will store more indexes since the fundamental mechanisms for retrieving these indexes will be better integrated into all stages of data processing, allowing more events from later stages of processing to be indexed than was possible with the previous system. Connections with other systems (conditions database, monitoring) are fundamentally critical to assess dataset completeness, identify data duplication, and check data integrity, and also enhance access to information in EventIndex by user and system interfaces. This paper gives an overview of the ATLAS systems involved, the relevant metadata, and describe the technologies we are deploying to complete these connections.
Cold Atom Optics on Ground and in Space
NASA Astrophysics Data System (ADS)
Rasel, E. M.
Microgravity is the ultimate laboratory environment for experiments in fundamental physics based on cold atoms. The talk will give a survey of recent activities on atomic quantum sensors and atom lasers. Inertial atomic quantum sensors are a promising and complementary technique for experiments in fundamental physics. Pioneering experiments at Yale [1,2] and Stanford [3] displayed recently the fascinating potential of matter-wave interferometers for precision measurements. The talk will present the status of a transportable matter-wave sensor under development at the Institut für Quantenoptik in Hannover: CASI. CASI stands for Cold Atom Sagnac Interferometer. The use of cold atoms makes it possible to realise compact devices with sensitivities competitive with classical state-of-the-art sensors. CASI's projected sensitivity is about 10-9 rad/ssurd Hz at the projection noise limit. The heart of our set-up will be a 15cm-long Mach-Zehnder interferometer formed by coherently splitting the atoms with Raman-type interactions. CASI is designed as a movable device, that it can be compared with other matter-wave sensors such as the cold caesium atom gyroscope at the BNM-SYRTE in Paris [4]. CASI is intimately connected with HYPER, an European initiative to send four atom interferometers in space hosted on a drag-free satellite. Main emphasis of the mission is placed on the mapping of the Earth's Lense-Thirring effect. Tests of the Equivalence Principle is under consideration as an alternative goal of high scientific value. HYPER was selected three years ago by the European Space Agency (ESA) as candidate for a future small-satellite mission within the next 10 to 15 years and is supported with detailed feasibility studies [5]. The latest status of the mission will be given. [1] T.L. Gustavson, A. Landragin, M.A, Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385-2398 (2000) [2] J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608-1 (2002) [3] A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25-61 (2001) [4] F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, and A. Landragin. A. J. Opt. B : Quant. Semiclass. Opt. 5, S136 (2003) [5] http://sci.esa.int/home/hyper/index.cfm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubko, I. Yu., E-mail: zoubko@list.ru; Kochurov, V. I.
2015-10-27
For the aim of the crystal temperature control the computational-statistical approach to studying thermo-mechanical properties for finite sized crystals is presented. The approach is based on the combination of the high-performance computational techniques and statistical analysis of the crystal response on external thermo-mechanical actions for specimens with the statistically small amount of atoms (for instance, nanoparticles). The heat motion of atoms is imitated in the statics approach by including the independent degrees of freedom for atoms connected with their oscillations. We obtained that under heating, graphene material response is nonsymmetric.
Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro
2015-01-01
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
Towards a Negative Refractive Index in an Atomic System
NASA Astrophysics Data System (ADS)
Simmons, Zach; Brewer, Nick; Yavuz, Deniz
2014-05-01
The goal of our experiments is to obtain a negative index of refraction in the optical region of the spectrum using an atomic system. The concept of negative refraction, which was first predicted by Veselago more than four decades ago, has recently emerged as a very exciting field of science. Negative index materials exhibit many seemingly strange properties such as electromagnetic vectors forming a left-handed triad. A key potential application for these materials was discovered in 2000 when Pendry predicted that a slab with a negative refractive index can image objects with a resolution far better than the diffraction limit. Thus far, research in negative index materials has primarily focused on meta-materials. The fixed response and often large absorption of these engineered materials motivates our efforts to work in an atomic system. An atomic media offers the potential to be actively modified, for example by changing laser parameters, and can be tuned to cancel absorption. A doped crystal allows for high atomic densities compared to other atomic systems. So far we have identified a transition in such a material, Eu:YSO, as a candidate for these experiments and are performing spectroscopy on this material.
Resonance of an unshared electron pair between two atoms connected by a single bond
Pauling, Linus
1983-01-01
The reported structure of the dimer of a compound of bicovalent tin indicates that the tin-tin bond is of a new type. It can be described as involving resonance between two structures in which there is transfer of an electron pair from one tin atom to the other. The tin atoms are connected by a single covalent bond (each also forms two covalent bonds with carbon atoms), and an unshared electron pair resonates between the fourth sp3 orbitals of the two atoms. Similar structures probably occur in digermene and distannene. PMID:16593329
Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI).
Dimitriadis, Stavros I; Salis, Christos I
2017-01-01
The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs). Resting state electroencephalography (rs-EEG) is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates) and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG) that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM). The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI) extracted from resting-state data ( N = 94 subjects) with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index), the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM) classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically, our results revealed a very high prediction of age for eyes-open ( R 2 = 0.60; y = 0.79x + 8.03) and lower for eyes-closed ( R 2 = 0.48; y = 0.71x + 10.91) while we succeeded to correctly classify young vs. middle-age group with 97.8% accuracy in eyes-open and 87.2% for eyes-closed. Our results were reproduced also in a second dataset for further external validation of the whole analysis. The proposed methodology proved valuable for the characterization of the intrinsic properties of dynamic functional connectivity through the age untangling developmental differences using EEG resting-state recordings.
The minimal-ABC trees with B1-branches.
Dimitrov, Darko; Du, Zhibin; Fonseca, Carlos M da
2018-01-01
The atom-bond connectivity index (or, for short, ABC index) is a molecular structure descriptor bridging chemistry to graph theory. It is probably the most studied topological index among all numerical parameters of a graph that characterize its topology. For a given graph G = (V, E), the ABC index of G is defined as [Formula: see text], where di denotes the degree of the vertex i, and ij is the edge incident to the vertices i and j. A combination of physicochemical and the ABC index properties are commonly used to foresee the bioactivity of different chemical composites. Additionally, the applicability of the ABC index in chemical thermodynamics and other areas of chemistry, such as in dendrimer nanostars, benzenoid systems, fluoranthene congeners, and phenylenes is well studied in the literature. While finding of the graphs with the greatest ABC-value is a straightforward assignment, the characterization of the tree(s) with minimal ABC index is a problem largely open and has recently given rise to numerous studies and conjectures. A B1-branch of a graph is a pendent path of order 2. In this paper, we provide an important step forward to the full characterization of these minimal trees. Namely, we show that a minimal-ABC tree contains neither 4 nor 3 B1-branches. The case when the number of B1-branches is 2 is also considered.
Wu, Jian-Sheng; Liu, Hong-Meng; Huang, Xiu-Lan; Feng, Zhe
2012-09-01
Ecological land is the most crucial and sensitive land use type in rapidly urbanizing areas. Landscape connectivity can help us to better understand the interactions between landscape structure and landscape function. By using the land use data of Shenzhen from 1996 to 2008 and the graph theory- based integral index of connectivity (IIC), probability index of connectivity (PC), and importance value of patches (dPC), a dynamic evaluation on the landscape connectivity of ecological land in the City was conducted, and a spatial assessment was made to identify the most important patches for maintaining overall landscape connectivity. In combining with the basic ecological controlling line in Shenzhen, the variations of the landscape connectivity of the ecological land inside and outside the basic ecological controlling line were evaluated. From 1996 to 2008, the overall landscape connectivity of the ecological land in Shenzhen displayed a downward trend, the importance and the spatial distribution of the important patches for maintaining the overall landscape connectivity changed, and the basic ecological controlling line played definite roles in maintaining the landscape connectivity of ecological land inside the line.
Related Structure Characters and Stability of Structural Defects in a Metallic Glass
Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng
2018-01-01
Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yu; Fan, Shanhui, E-mail: shanhui@stanford.edu
2016-01-11
We introduce a distinct class of dynamic non-reciprocal meta-surfaces with arbitrary phase-reconfigurability. This meta-surface consists of an array of meta-atoms, each of which is subject to temporal refractive index modulation, which induces photonic transitions between the states of the meta-atom. We show that arbitrary phase profile for the outgoing wave can be achieved by controlling the phase of the modulation at each meta-atom. Moreover, such dynamic meta-surfaces exhibit non-reciprocal response without the need for magneto-optical effects. The use of photonic transition significantly enhances the tunability and the possible functionalities of meta-surfaces.
Theoretical optimum of implant positional index design.
Semper, W; Kraft, S; Krüger, T; Nelson, K
2009-08-01
Rotational freedom of the implant-abutment connection influences its screw joint stability; for optimization, influential factors need to be evaluated based on a previously developed closed formula. The underlying hypothesis is that the manufacturing tolerances, geometric pattern, and dimensions of the index do not influence positional stability. We used the dimensions of 5 commonly used implant systems with a clearance of 20 microm to calculate the extent of rotational freedom; a 3D simulation (SolidWorks) validated the analytical findings. Polygonal positional indices showed the highest degrees of rotational freedom. The polygonal profile displayed higher positional stability than the polygons, but less positional accuracy than the cam-groove connection. Features of a maximal rotation-safe positional index were determined. The analytical calculation of rotational freedom of implant positional indices is possible. Rotational freedom is dependent on the geometric design of the index and may be decreased by incorporating specific aspects into the positional index design.
A Fifth Force: Generalized through Superconductors
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
1999-01-01
The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.
A global model of the neutral thermosphere in magnetic coordinates based on AE-C data
NASA Technical Reports Server (NTRS)
Stehle, C. G.
1980-01-01
An empirical model of the global atomic oxygen and helium distributions in the thermosphere is developed in a magnetic coordinate system and compared to similar models which are expanded in geographic coordinates. The advantage of using magnetic coordinates is that fewer terms are needed to make predictions which are nearly identical to those which would be obtained from a geographic model with longitudinal and universal time corrections. Magnetic coordinates are more directly related to the major energy inputs in the polar regions than geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited. The effect of magnetic activity on the atomic oxygen distribution in the morning sector of the high latitude thermosphere in the auroral zone is also considered. A magnetic activity indicator (ML) based on an auroral electrojet index (AL) and the 3 hour ap index are used to relate the atomic oxygen density variations to magnetic activity in this region.
NASA Astrophysics Data System (ADS)
Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut
2017-10-01
Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.
NASA Astrophysics Data System (ADS)
Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang
2016-06-01
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).
Noel, Jeffrey K; Whitford, Paul C; Onuchic, José N
2012-07-26
Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general definition for generating atomically grained contact maps called "Shadow". The Shadow algorithm initially considers all atoms within a cutoff distance and then, controlled by a screening parameter, discards the occluded contacts. We show that this choice of contact map is not only well behaved for protein folding, since it produces consistently cooperative folding behavior in SBMs but also desirable for exploring the dynamics of macromolecular assemblies since, it distributes energy similarly between RNAs and proteins despite their disparate internal packing. All-atom structure-based models employing Shadow contact maps provide a general framework for exploring the geometrical features of biomolecules, especially the connections between folding and function.
von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R
2016-07-01
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).
Improvement of a free software tool for the assessment of sediment connectivity
NASA Astrophysics Data System (ADS)
Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco
2015-04-01
Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of morphometric indexes, such as the Melton ruggedness number, commonly used for discriminating debris-flow catchments from bedload catchments. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188,31-41. doi:10.1016/j.geomorph.2012.05.007
Multiscale multiphysics and multidomain models—Flexibility and rigidity
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei
2013-01-01
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^2)$\\end{document}O(N2) at most, where N is the number of atoms or residues, in contrast to \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^3)$\\end{document}O(N3) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR. PMID:24320318
Magnesium-based methods, systems, and devices
Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum
2017-12-12
An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.
A phaseonium magnetometer: A new optical magnetometer based on index enhanced media
NASA Technical Reports Server (NTRS)
Scully, Marlan O.; Fleischauer, Michael; Graf, Martin
1993-01-01
An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.
Graph Lasso-Based Test for Evaluating Functional Brain Connectivity in Sickle Cell Disease.
Coloigner, Julie; Phlypo, Ronald; Coates, Thomas D; Lepore, Natasha; Wood, John C
2017-09-01
Sickle cell disease (SCD) is a vascular disorder that is often associated with recurrent ischemia-reperfusion injury, anemia, vasculopathy, and strokes. These cerebral injuries are associated with neurological dysfunction, limiting the full developing potential of the patient. However, recent large studies of SCD have demonstrated that cognitive impairment occurs even in the absence of brain abnormalities on conventional magnetic resonance imaging (MRI). These observations support an emerging consensus that brain injury in SCD is diffuse and that conventional neuroimaging often underestimates the extent of injury. In this article, we postulated that alterations in the cerebral connectivity may constitute a sensitive biomarker of SCD severity. Using functional MRI, a connectivity study analyzing the SCD patients individually was performed. First, a robust learning scheme based on graphical lasso model and Fréchet mean was used for estimating a consistent descriptor of healthy brain connectivity. Then, we tested a statistical method that provides an individual index of similarity between this healthy connectivity model and each SCD patient's connectivity matrix. Our results demonstrated that the reference connectivity model was not appropriate to model connectivity for only 4 out of 27 patients. After controlling for the gender, two separate predictors of this individual similarity index were the anemia (p = 0.02) and white matter hyperintensities (WMH) (silent stroke) (p = 0.03), so that patients with low hemoglobin level or with WMH have the least similarity to the reference connectivity model. Further studies are required to determine whether the resting-state connectivity changes reflect pathological changes or compensatory responses to chronic anemia.
Graph-based analysis of kinetics on multidimensional potential-energy surfaces.
Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y
2009-09-01
The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian
2017-04-01
The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.
Randić, M
2015-01-01
We briefly review the history of the connectivity index from 1975 to date. We hope to throw some light on why this unique, by its design, graph theoretical molecular descriptor continues to be of interest in QSAR, having wide use in applications in structure-property and structure-activity studies. We will elaborate on its generalizations and the insights it offered on applications in Multiple Regression Analysis (MRA). Going beyond the connectivity index we will outline several related developments in the development of molecular descriptors used in MRA, including molecular ID numbers (1986), the variable connectivity index (1991), orthogonal regression (1991), irrelevance of co-linearity of descriptors (1997), anti-connectivity (2006), and high discriminatory descriptors characterizing molecular similarity (2015). We will comment on beauty in QSAR and recent progress in searching for similarity of DNA, proteins and the proteome. This review reports on several results which are little known to the structure-property-activity community, the significance of which may surprise those unfamiliar with the application of discrete mathematics to chemistry. It tells the reader many unknown stories about the connectivity index, which may help the reader to better understand the meaning of this index. Readers are not required to be familiar with graph theory.
Non-Hermitian optics in atomic systems
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-04-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.
Cohen, Trevor; Schvaneveldt, Roger; Widdows, Dominic
2010-04-01
The discovery of implicit connections between terms that do not occur together in any scientific document underlies the model of literature-based knowledge discovery first proposed by Swanson. Corpus-derived statistical models of semantic distance such as Latent Semantic Analysis (LSA) have been evaluated previously as methods for the discovery of such implicit connections. However, LSA in particular is dependent on a computationally demanding method of dimension reduction as a means to obtain meaningful indirect inference, limiting its ability to scale to large text corpora. In this paper, we evaluate the ability of Random Indexing (RI), a scalable distributional model of word associations, to draw meaningful implicit relationships between terms in general and biomedical language. Proponents of this method have achieved comparable performance to LSA on several cognitive tasks while using a simpler and less computationally demanding method of dimension reduction than LSA employs. In this paper, we demonstrate that the original implementation of RI is ineffective at inferring meaningful indirect connections, and evaluate Reflective Random Indexing (RRI), an iterative variant of the method that is better able to perform indirect inference. RRI is shown to lead to more clearly related indirect connections and to outperform existing RI implementations in the prediction of future direct co-occurrence in the MEDLINE corpus. 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien
2018-06-01
A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.
Index to the Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
The topics covered by 47 booklets in the series are indexed. Page references are not given, but the booklet covering each topic is indicated by a code explained in the first two pages of the index. A brief account of the educational services program of the Atomic Energy Commission describing the booklets, films, and other services provided for…
A Review of Quantum Confinement
NASA Astrophysics Data System (ADS)
Connerade, Jean-Patrick
2009-12-01
A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker [1]—henceforth cited as SW—in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The conclusions are shown to be relevant to a proposed `quantum computer'. The description of the actual geometry of C60, as opposed to a purely spherical approximation, leads to some qualification of the computed results.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
ERIC Educational Resources Information Center
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Novel indexes based on network structure to indicate financial market
NASA Astrophysics Data System (ADS)
Zhong, Tao; Peng, Qinke; Wang, Xiao; Zhang, Jing
2016-02-01
There have been various achievements to understand and to analyze the financial market by complex network model. However, current studies analyze the financial network model but seldom present quantified indexes to indicate or forecast the price action of market. In this paper, the stock market is modeled as a dynamic network, in which the vertices refer to listed companies and edges refer to their rank-based correlation based on price series. Characteristics of the network are analyzed and then novel indexes are introduced into market analysis, which are calculated from maximum and fully-connected subnets. The indexes are compared with existing ones and the results confirm that our indexes perform better to indicate the daily trend of market composite index in advance. Via investment simulation, the performance of our indexes is analyzed in detail. The results indicate that the dynamic complex network model could not only serve as a structural description of the financial market, but also work to predict the market and guide investment by indexes.
Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit
NASA Astrophysics Data System (ADS)
Chiu, Jennifer L.; Linn, Marcia C.
2014-02-01
This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent understanding by connecting and refining existing and new ideas. The inquiry unit supports students to develop connections among molecular, observable, and symbolic representations of chemical reactions. Design-based research included a pilot study, a study comparing the visualization-enhanced inquiry unit to typical instruction, and a course-long comparison study featuring a delayed posttest. Students participating in the visualization-enhanced unit outperformed students receiving typical instruction and further consolidated their understanding on the delayed posttest. Students who used the visualization-enhanced unit formed more connections among concepts than students with typical textbook and lecture-based instruction. Item analysis revealed the types of connections students made when studying the curriculum and suggested how these connections enabled students to consolidate their understanding as they continued in the chemistry course. Results demonstrate that visualization-enhanced inquiry designed for knowledge integration can improve connections between observable and atomic-level phenomena and serve students well as they study subsequent topics in chemistry.
Multiscale multiphysics and multidomain models—Flexibility and rigidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei, E-mail: wei@math.msu.edu
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomicmore » charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O(N{sup 2}) at most, where N is the number of atoms or residues, in contrast to O(N{sup 3}) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR.« less
Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano
2016-01-01
A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320
NASA Astrophysics Data System (ADS)
Vermersch, B.; Elben, A.; Dalmonte, M.; Cirac, J. I.; Zoller, P.
2018-02-01
We present a general framework for the generation of random unitaries based on random quenches in atomic Hubbard and spin models, forming approximate unitary n -designs, and their application to the measurement of Rényi entropies. We generalize our protocol presented in Elben et al. [Phys. Rev. Lett. 120, 050406 (2018), 10.1103/PhysRevLett.120.050406] to a broad class of atomic and spin-lattice models. We further present an in-depth numerical and analytical study of experimental imperfections, including the effect of decoherence and statistical errors, and discuss connections of our approach with many-body quantum chaos.
Ivanciuc, Ovidiu
2013-06-01
Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.
NASA Astrophysics Data System (ADS)
Gao, Chen; Ding, Zhongan; Deng, Bofa; Yan, Shengteng
2017-10-01
According to the characteristics of electric energy data acquire system (EEDAS), considering the availability of each index data and the connection between the index integrity, establishing the performance evaluation index system of electric energy data acquire system from three aspects as master station system, communication channel, terminal equipment. To determine the comprehensive weight of each index based on triangular fuzzy number analytic hierarchy process with entropy weight method, and both subjective preference and objective attribute are taken into consideration, thus realize the performance comprehensive evaluation more reasonable and reliable. Example analysis shows that, by combination with analytic hierarchy process (AHP) and triangle fuzzy numbers (TFN) to establish comprehensive index evaluation system based on entropy method, the evaluation results not only convenient and practical, but also more objective and accurate.
The giant acoustic atom - a single quantum system with a deterministic time delay
NASA Astrophysics Data System (ADS)
Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran
2017-04-01
We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).
NASA Astrophysics Data System (ADS)
Abranyos, Yonatan
1999-10-01
Quantum optical tests of the fundamental principles of quantum mechanics, in particular, complementarity, entanglement and non-locality, are the central themes of this dissertation. A which-path experiment is implemented based on a recent experiment by Eichmann et al. [1] involving two four-level atoms. In the version considered here a continuous Broad Band Excitation field drives the two trapped atoms and, depending on the type of scattering, information about which atom scattered the light is stored in the internal degrees of the atoms. Entanglement of the atoms-photon system is intimately connected to the availability of ``which way'' information. The quantum eraser disentangles the atoms-photon system and consequently ``which way'' information is lost leading to interference. Two different experimental schemes based on the Eichmann et al. experiment are proposed for the implementation of the quantum eraser. The quantum eraser schemes erase the ``which way'' information and interference is observed in the second order correlation function. With a slight modification of the experiment, a scheme that allows to verify recently derived inequalities by Englert [2] in connection with distinguishability and visibility in a two-way interferometer is proposed. These inequalities, in some sense, can be regarded as quantifying the notion of wave-particle duality. The visibility of interference depends on the detected polarization direction of the scattered light, and a reading out of the internal atomic states of one of the two atoms provides for partial ``which way'' information or distinguishability of the two different paths. Finally, the quantum eraser is used to measure the decoherence time of a local measurement process. The experiment proposed is similar to the quantum eraser setup and contains the complete measurement process of system-meter-environment interaction. The decoherence time is quantitatively expressed in the amount of reduction of the visibility in the second order correlation function. In addition, it explores how we can cast the question of quantum coherence of mesoscopic or macroscopic systems with a quantum eraser or in general interference experiments.
NASA Astrophysics Data System (ADS)
Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.
2016-08-01
Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.
Digital image analysis to quantify carbide networks in ultrahigh carbon steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu
A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less
NASA Astrophysics Data System (ADS)
Majumder, Tiku
2017-04-01
In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.
A Bibliography of Basic Books on Atomic Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwörden, H. von; Ruschmeier, K.; Köhler, A.
The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less
Correlation of materials properties with the atomic density concept
NASA Technical Reports Server (NTRS)
1975-01-01
Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.
NASA Astrophysics Data System (ADS)
Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin
2015-02-01
Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.
Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.
Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul
2017-09-07
Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.
Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process
Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun
2013-01-01
Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing. PMID:28811410
Optical Constants of Crystallized TiO₂ Coatings Prepared by Sol-Gel Process.
Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun
2013-07-12
Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO₂ coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun
2015-06-01
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.
ERIC Educational Resources Information Center
Rittenhouse, Robert C.
2015-01-01
The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…
NASA Astrophysics Data System (ADS)
Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng
2008-01-01
Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.
Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.
Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe
2014-07-21
In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Zhou, Yang; Hou, Dongshuai; Manzano, Hegoi; Orozco, Carlos A; Geng, Guoqing; Monteiro, Paulo J M; Liu, Jiaping
2017-11-22
Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential-based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium-silicate-hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double-bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium-silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic-inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.
Berry connection in atom-molecule systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui Fucheng; Wu Biao; International Center for Quantum Materials, Peking University, 100871 Beijing
2011-08-15
In the mean-field theory of atom-molecule systems, where bosonic atoms combine to form molecules, there is no usual U(1) symmetry, presenting an apparent hurdle for defining the Berry phase and Berry curvature for these systems. We define a Berry connection for this system, with which the Berry phase and Berry curvature can be naturally computed. We use a three-level atom-molecule system to illustrate our results. In particular, we have computed the mean-field Berry curvature of this system analytically, and compared it to the Berry curvature computed with the second-quantized model of the same system. An excellent agreement is found, indicatingmore » the validity of our definition.« less
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.
Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state
NASA Astrophysics Data System (ADS)
Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit
2018-06-01
We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
Toofanny, Rudesh D; Simms, Andrew M; Beck, David A C; Daggett, Valerie
2011-08-10
Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008.
2011-01-01
Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. PMID:21831299
Farag, I S Ahmed; Girgis, Adel S; Ramadan, A A; Moustafa, A M; Tiekink, Edward R T
2014-01-01
The title compound, C34H38ClN5O2, has spiro links connecting the pyrrolidine ring and indole residue, as well as the piperidine and pyrrolidine rings. A half-chair conformation is found for the piperidine ring with the C atom connected to the spiro-C atom lying 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). The methyl-ene C atom is the flap in the envelope conformation for the pyrrolidine ring. In the crystal, supra-molecular chains are sustained by alternating eight-membered {⋯HNCO}2 and 14-membered {⋯HC5O}2 synthons. Chains are connected into a three-dimensional network by (pyrrolidine-bound phenyl-meth-yl)C-H⋯π(pyrrolidine-bound phen-yl) edge-to-face inter-actions.
NASA Astrophysics Data System (ADS)
Schmutz, Daria; Zimmermann, Markus; Keiler, Margreth
2017-04-01
Sediment connectivity is defined as the degree of coupling between sediment sources and sinks in a system and describes the effectiveness of the transfer of sediment from hillslopes into channels and within channels (Bracken et al. 2015). Borselli et al. (2008) developed a connectivity index (IC) based on digital terrain models (DTMs). Cavalli et al. (2013) adapted this index for mountainous catchments. These measures of connectivity provide overall information about connectivity pattern in the catchment, thus the understanding of sediment connectivity can help to improve the hazard analysis in these areas. Considering the location of settlements in the alpine regions, high sediment transfer can pose a threat to villages located nearby torrents or at the debris cones. However, there is still a lack of studies on the linkage between IC and hazardous events with high sediment yield in alpine catchments. In this study, the expressiveness and applicability of IC is tested in relation with hazardous events in several catchments of the Bernese and Pennine Alps (Switzerland). The IC is modelled based on DTMs (resolution 2 m or if available 0.5 m) indicating the surface from the time before and after a documented hazardous event and analysed with respect to changes in connectivity caused by the event. The spatial pattern of connectivity is compared with the observed sediment dynamic during the event using event documentations. In order to validate the IC, a semi-quantitative field connectivity index (FIC) is developed addressing characteristics of the channel, banks and slopes and applied in a selection of the case studies. First analysis shows that the IC is highly sensitive to the resolution and quality of the DTM. Connectivity calculated by the IC is highest along the channel. The general pattern of connectivity is comparable applying the IC for the DTM before and after the event. Range of the connectivity values gained from IC modelling is highly specific for each study area and so are their changes by the events. Whereas some slopes show an increased connectivity, others are less connected or not affected according to the IC. Further results of the comparison between the FIC and the IC and an evaluation of both indices in the context of hazardous events will be presented. REFERENCES Borselli, L., Cassi, P. & Torri, D. 2008: Prolegomena to sediment and flow connectivity in the landscape. A GIS and field numerical assessment. CATENA 75 (3), 268-277. Bracken, L. J., Turnbull, L., Wainwright, J. & Bogaart, P. 2015: Sediment connectivity. A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms 40 (2), 177-188. Cavalli, M., Trevisani, S., Comiti, F. & Marchi, L. 2013: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41.
NASA Astrophysics Data System (ADS)
Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J.; Torrens, Francisco
2012-11-01
In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ( partial ) of a molecular graph (MG) with respect to a given event ( E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub- graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns ( n) and rows ( m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ i , can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ i for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.
Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J; Torrens, Francisco
2012-11-01
In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ([Formula: see text]) of a molecular graph (MG) with respect to a given event (E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub-graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns (n) and rows (m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ(i), can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ(i) for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.
Burianová, Hana; Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris
2012-11-15
The objective of this study was to examine the functional connectivity of brain regions active during cued and uncued recognition memory to test the idea that distinct networks would underlie these memory processes, as predicted by the attention-to-memory (AtoM) hypothesis. The AtoM hypothesis suggests that dorsal parietal cortex (DPC) allocates effortful top-down attention to memory retrieval during cued retrieval, whereas ventral parietal cortex (VPC) mediates spontaneous bottom-up capture of attention by memory during uncued retrieval. To identify networks associated with these two processes, we conducted a functional connectivity analysis of a left DPC and a left VPC region, both identified by a previous analysis of task-related regional activations. We hypothesized that the two parietal regions would be functionally connected with distinct neural networks, reflecting their engagement in the differential mnemonic processes. We found two spatially dissociated networks that overlapped only in the precuneus. During cued trials, DPC was functionally connected with dorsal attention areas, including the superior parietal lobules, right precuneus, and premotor cortex, as well as relevant memory areas, such as the left hippocampus and the middle frontal gyri. During uncued trials, VPC was functionally connected with ventral attention areas, including the supramarginal gyrus, cuneus, and right fusiform gyrus, as well as the parahippocampal gyrus. In addition, activity in the DPC network was associated with faster response times for cued retrieval. This is the first study to show a dissociation of the functional connectivity of posterior parietal regions during episodic memory retrieval, characterized by a top-down AtoM network involving DPC and a bottom-up AtoM network involving VPC. Copyright © 2012 Elsevier Inc. All rights reserved.
Population-Adjusted Street Connectivity, Urbanicity and Risk of Obesity in the U.S
Wang, Fahui; Wen, Ming; Xu, Yanqing
2013-01-01
Street connectivity, defined as the number of (3-way or more) intersections per area unit, is an important index of built environments as a proxy for walkability in a neighborhood. This paper examines its geographic variations across the rural-urban continuum (urbanicity), major racial-ethnic groups and various poverty levels. The population-adjusted street connectivity index is proposed as a better measure than the regular index for a large area such as county due to likely concentration of population in limited space within the large area. Based on the data from the Behavioral Risk Factor Surveillance System (BRFSS), this paper uses multilevel modeling to analyze its association with physical activity and obesity while controlling for various individual and county-level variables. Analysis of data subsets indicates that the influences of individual and county-level variables on obesity risk vary across areas of different urbanization levels. The positive influence of street connectivity on obesity control is limited to the more but not the mostly urbanized areas. This demonstrates the value of obesogenic environment research in different geographic settings, helps us reconcile and synthesize some seemingly contradictory results reported in different studies, and also promotes that effective policies need to be highly sensitive to the diversity of demographic groups and geographically adaptable. PMID:23667278
East Java Maritime Connectivity and Its Regional Development Support
NASA Astrophysics Data System (ADS)
Purboyo, H.; Ibad, M. Z.
2017-07-01
The study presents an evolution of maritime connectivity index of East Java which is associated with accessibility and mobility index of regions in East Java. The findings show that East Java increased connectivity more than three times from 1996 to 2011. Initially, the East Java is importer but then become exporter to national territory. For accessibility, the inland regions of East Java in general is higher than the coastal areas. And for mobility, inland regions initially have a small index, but in subsequent years its index is greater than the coastal areas.
First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions
NASA Astrophysics Data System (ADS)
Wang, Qiang; Li, Jian-Wei; Wang, Bin; Nie, Yi-Hang
2018-06-01
Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [ Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T( E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T( E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. I-V curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.
2015-03-25
lime glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected...of metallic force-field functions (in the pure metallic environment) within the force-field function database used in the present work. Consequently
Introducing a new bond reactivity index: Philicities for natural bond orbitals.
Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel
2017-12-22
In the present work, a new methodology defined for obtaining reactivity indices (philicities) is proposed. This is based on reactivity functions such as the Fukui function or the dual descriptor, and makes it possible to project the information from reactivity functions onto molecular orbitals, instead of onto the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecules' natural bond orbitals (bond reactivity indices) because these orbitals have the advantage of being localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology provides a "philicity" index for every NBO, and a representative set of molecules has been used to test the new definition. A new methodology has also been developed to compare the "finite difference" and the "frontier molecular orbital" approximations. To facilitate their use, the proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, condensation schemes based on atomic populations of the "atoms in molecules" theory, the Hirshfeld population analysis, the approximation of Mulliken (with a minimal basis set) and electrostatic potential-derived charges have also been implemented, including the calculation of "bond reactivity indices" defined in previous studies. Graphical abstract A new methodology defined for obtaining bond reactivity indices (philicities) is proposed and makes it possible to project the information from reactivity functions onto molecular orbitals. The proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, this version can use new atomic condensation schemes and new "utilities" have also been included in this second version.
Hierarchical Multiscale Modeling of Macromolecules and their Assemblies
Ortoleva, P.; Singharoy, A.; Pankavich, S.
2013-01-01
Soft materials (e.g., enveloped viruses, liposomes, membranes and supercooled liquids) simultaneously deform or display collective behaviors, while undergoing atomic scale vibrations and collisions. While the multiple space-time character of such systems often makes traditional molecular dynamics simulation impractical, a multiscale approach has been presented that allows for long-time simulation with atomic detail based on the co-evolution of slowly-varying order parameters (OPs) with the quasi-equilibrium probability density of atomic configurations. However, this approach breaks down when the structural change is extreme, or when nearest-neighbor connectivity of atoms is not maintained. In the current study, a self-consistent approach is presented wherein OPs and a reference structure co-evolve slowly to yield long-time simulation for dynamical soft-matter phenomena such as structural transitions and self-assembly. The development begins with the Liouville equation for N classical atoms and an ansatz on the form of the associated N-atom probability density. Multiscale techniques are used to derive Langevin equations for the coupled OP-configurational dynamics. The net result is a set of equations for the coupled stochastic dynamics of the OPs and centers of mass of the subsystems that constitute a soft material body. The theory is based on an all-atom methodology and an interatomic force field, and therefore enables calibration-free simulations of soft matter, such as macromolecular assemblies. PMID:23671457
On the Hosoya index of a family of deterministic recursive trees
NASA Astrophysics Data System (ADS)
Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang
2017-01-01
In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.
Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo
2015-07-21
First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe4 and GeS4. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge-Se-Se connections are more frequent than the corresponding Ge-S-S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS4 is rationalized in terms of a higher number of large size rings, accounting for extended Ge-Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge-S bonds when compared to Ge-Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.
Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity
NASA Astrophysics Data System (ADS)
Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard
2018-02-01
Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.
ERIC Educational Resources Information Center
Olive, G.; And Others
A selective dissemination of information service based on computer scanning of Nuclear Science Abstracts tapes has operated at the Atomic Energy Research Establishment, Harwell, England since October, 1968. The performance of the mechanized SDI service has been compared with that of the pre-existing current awareness service which is based on…
experiment, based at UC Berkeley, that uses Internet-connected computers in the Search for Extraterrestrial several hours to be sure. If that didn't solve the problem, it probably means the index the server uses to
The Kirchhoff index and the matching number
NASA Astrophysics Data System (ADS)
Zhou, Bo; Trinajstić, Nenad
The Kirchhoff index of a connected (molecular) graph is the sum of the resistance-distances between all unordered pairs of vertices and may also be expressed by its Laplacian eigenvalues. We determine the minimum Kirchhoff index of connected (molecular) graphs in terms of the number of vertices and matching number and characterize the unique extremal graph. The results on the Kirchhoff index are compared with the corresponding results on the Wiener index.
Pogliani, Lionello
2010-01-30
Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.
Towards the distribution network of time and frequency
NASA Astrophysics Data System (ADS)
Lipiński, M.; Krehlik, P.; Śliwczyński, Ł.; Buczek, Ł.; Kołodziej, J.; Nawrocki, J.; Nogaś, P.; Dunst, P.; Lemański, D.; Czubla, A.; Pieczerak, J.; Adamowicz, W.; Pawszak, T.; Igalson, J.; Binczewski, A.; Bogacki, W.; Ostapowicz, P.; Stroiński, M.; Turza, K.
2014-05-01
In the paper the genesis, current stage and perspectives of the OPTIME project are described. The main goal of the project is to demonstrate that the newdeveloped at AGH technology of fiber optic transfer of the atomic clocks reference signals is ready to be used in building the domestic Time and Frequency distribution network. In the first part we summarize the two-year continuous operation of 420 kmlong link connecting the Laboratory of Time and Frequency at Central Office of Measures GUM in Warsaw and Time Service Laboratory at Astrogeodynamic Obserwatory AOS in Borowiec near Poznan. For the first time, we are reporting the two year comparison of UTC(PL) and UTC(AOS) atomic timescales with this link, and we refer it to the results of comparisons performed by GPS-based methods. We also address some practical aspects of maintaining time and frequency dissemination over fiber optical network. In the second part of the paper the concept of the general architecture of the distribution network with two Reference Time and Frequency Laboratories and local repositories is proposed. Moreover the brief project of the second branch connecting repositories in Poznan Polish Supercomputing and Networking Center and Torun Nicolaus Copernicus University with the first end-users in Torun such as National Laboratory of Atomic, Molecular and Optical Physics and Nicolaus Copernicus Astronomical Center is described. In the final part the perspective of developing the network both in the domestic range as far as extention with the international connections possibilities are presented.
The inverse Wiener polarity index problem for chemical trees.
Du, Zhibin; Ali, Akbar
2018-01-01
The Wiener polarity number (which, nowadays, known as the Wiener polarity index and usually denoted by Wp) was devised by the chemist Harold Wiener, for predicting the boiling points of alkanes. The index Wp of chemical trees (chemical graphs representing alkanes) is defined as the number of unordered pairs of vertices (carbon atoms) at distance 3. The inverse problems based on some well-known topological indices have already been addressed in the literature. The solution of such inverse problems may be helpful in speeding up the discovery of lead compounds having the desired properties. This paper is devoted to solving a stronger version of the inverse problem based on Wiener polarity index for chemical trees. More precisely, it is proved that for every integer t ∈ {n - 3, n - 2,…,3n - 16, 3n - 15}, n ≥ 6, there exists an n-vertex chemical tree T such that Wp(T) = t.
NASA Astrophysics Data System (ADS)
Krowne, Clifford M.
2008-05-01
A three-level atomic system, configured as either a gaseous medium or a solid state material, with a driving field establishing a Rabi frequency of control, is tested by a probe field. The medium has bianisotropic microscopic polarizability and magnetizability, from which the permittivity and permeability tensors are derived. Non-isotropy and polarization dependence for left-handedness (negative index of refraction) is demonstrated through examination of tensor components in the detuning frequency spectrum. These results have important implications for use in optical or electronic devices.
Qidwai, Tabish; Yadav, Dharmendra K; Khan, Feroz; Dhawan, Sangeeta; Bhakuni, R S
2012-01-01
This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.
Entanglement evaluation with atomic Fisher information
NASA Astrophysics Data System (ADS)
Obada, A.-S. F.; Abdel-Khalek, S.
2010-02-01
In this paper, the concept of atomic Fisher information (AFI) is introduced. The marginal distributions of the AFI are defined. This quantity is used as a parameter of entanglement and compared with linear and atomic Wehrl entropies of the two-level atom. The evolution of the atomic Fisher information and atomic Wehrl entropy for only the pure state (or dissipation-free) of the Jaynes-Cummings model is analyzed. We demonstrate the connections between these measures.
Symmetry breaking and optical negative index of closed nanorings
NASA Astrophysics Data System (ADS)
Kanté, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto D.; Jing Wong, Zi; Yin, Xiaobo; Zhang, Xiang
2012-11-01
Metamaterials have extraordinary abilities, such as imaging beyond the diffraction limit and invisibility. Many metamaterials are based on split-ring structures, however, like atomic orbital currents, it has long been believed that closed rings cannot produce negative refractive index. Here we report a low-loss and polarization-independent negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite ‘chess metamaterial’. The formation of an ultra-broad Fano-resonance-induced optical negative-index band, spanning wavelengths from 1.3 to 2.3 μm, is experimentally observed in this structure. This discrete and mono-particle negative-index approach opens exciting avenues towards symmetry-controlled topological nanophotonics with on-demand linear and nonlinear responses.
Establishment of key grid-connected performance index system for integrated PV-ES system
NASA Astrophysics Data System (ADS)
Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.
2016-08-01
In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.
NASA Technical Reports Server (NTRS)
Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.
1997-01-01
The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.
Index of refraction engineering in five-level dressed interacting ground states atoms.
Sagona-Stophel, Steven A; Weatherall, James Owen; Search, Christopher P
2011-08-15
We present a five-level atomic system in which the index of refraction of a probe laser can be enhanced or reduced below unity with vanishing absorption in the region between pairs of absorption and gain lines formed by dressing of the atoms with a control laser and rf/microwave fields. By weak incoherent pumping of the population into a single metastable state, one can create several narrow amplifying resonances. At frequencies between these gain lines and additional absorption lines, there exist regions of vanishing absorption but resonantly enhanced index of refraction. In Rb vapors with density N in units of cm(-3), we predict an index of refraction up to n≈√(1+1.2×10(-14)N) for the D1 line, which is more than an order of magnitude larger than other proposals for index of refraction enhancement. Furthermore, the index can be readily reduced below 1 by simply changing the sign of the probe or rf field detunings. This enhancement is robust with respect to homogeneous and inhomogeneous broadening. © 2011 Optical Society of America
Project Physics Text 5, Models of the Atom.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…
An optical lattice clock with accuracy and stability at the 10(-18) level.
Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J
2014-02-06
Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.
Detection of gas atoms with carbon nanotubes
Arash, B.; Wang, Q.
2013-01-01
Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.
Complete suite of geochemical values computed using wireline logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, J.R.; Atkinson, A.
1996-12-31
Geochemical values of {open_quotes}black shale{close_quotes} source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical geochemical questions relative to: (1) Organic Mattermore » Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir model for prediction of facies assemblages.« less
Complete suite of geochemical values computed using wireline logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, J.R.; Atkinson, A.
1996-01-01
Geochemical values of [open quotes]black shale[close quotes] source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical geochemical questions relative to: (1)more » Organic Matter Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir model for prediction of facies assemblages.« less
Electronic Structure of Two-Dimensional Hydrocarbon Networks of sp2 and sp3 C Atoms
NASA Astrophysics Data System (ADS)
Fujii, Yasumaru; Maruyama, Mina; Wakabayashi, Katsunori; Nakada, Kyoko; Okada, Susumu
2018-03-01
Based on density functional theory with the generalized gradient approximation, we have investigated the geometric and electronic structures of two-dimensional hexagonal covalent networks consisting of oligoacenes and fourfold coordinated hydrocarbon atoms, which are alternately arranged in a hexagonal manner. All networks were semiconductors with a finite energy gap at the Γ point, which monotonically decreased with the increase of the oligoacene length. As a result of a Kagome network of oligoacene connected through sp3 C atoms, the networks possess peculiar electron states in their valence and conduction bands, which consist of a flat dispersion band and a Dirac cone. The total energy of the networks depends on the oligoacene length and has a minimum for the network comprising naphthalene.
Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu
2017-05-31
Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.
NASA Astrophysics Data System (ADS)
Akiyama, Terunobu; Staufer, Urs; Rooij, Nico F. de
2002-06-01
A microfabricated, electrical connector is proposed for facilitating the mounting of atomic force microscopy (AFM) probes, which have an integrated sensor and/or actuator. Only a base chip, which acts as a socket, is permanently fixed onto a printed circuit board and electronically connected by standard wire bonding. The AFM chip, the “plug”, is flipped onto the base chip and pressed from the backside by a spring. Electrical contact with the eventual stress sensors, capacitive or piezoelectric sensor/actuators, is provided by contact bumps. These bumps of about 8 μm height are placed onto the base chip. They touch the pads on the AFM chip that were originally foreseen to be for wire bonding and thus provide the electrical contact. This connector schema was successfully used to register AFM images with piezoresistive cantilevers.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
A topological screening heuristic for low-energy, high-index surfaces
NASA Astrophysics Data System (ADS)
Sun, Wenhao; Ceder, Gerbrand
2018-03-01
Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.
NASA Astrophysics Data System (ADS)
Cox, John
2011-08-01
1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.
Complexity of chemical graphs in terms of size, branching, and cyclicity.
Balaban, A T; Mills, D; Kodali, V; Basak, S C
2006-08-01
Chemical graph complexity depends on many factors, but the main ones are size, branching, and cyclicity. Some molecular descriptors embrace together all these three parameters, which cannot then be disentangled. The topological index J (and its refinements that include accounting for bond multiplicity and the presence of heteroatoms) was designed to compensate in a significant measure for graph size and cyclicity, and therefore it contains information mainly on branching. In order to separate these factors, two new indices (F and G) related with J are proposed, which allow to group together graphs with the same size into families of constitutional formulas differing in their branching and cyclicity. A comparison with other topological indices revealed that a few other topological indices vary similarly with index G, notably DN2S4 among the triplet indices, and TOTOP among the indices contained in the Molconn-Z program. This comparison involved all possible chemical graphs (i.e. connected planar graphs with vertex degrees not higher than four) with four through six vertices, and all possible alkanes with four through nine carbon atoms.
Preparation and crystal structure of K/sub 2/Nb/sub 2/As/sub 2/O/sub 11/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faouzi Zid, M.; Jouini, T.; Juoini, N.
1988-06-01
K/sup 2/Nb/sub 2/As/sub 2/O/sub 11/ crystallizes in the monoclinic system, space group P21/a, with a = 10.342(6), b = 10.446(5), c = 9.971(4) A, ..beta.. = 96.72(4)/sup 0/, M = 589.86, V = 1069.8(5) A/sup 3/, Z = 4, rho = 3.67 g cm/sup -1/. The crystal structure was refined (105 variables) from 1782 independent reflections collected on a Philips PW 1100 automatic diffractometer with AgK anti ..cap alpha.. radiation. The final R index and weighted R/sub w/ index are 0.058 and 0.056, respectively. The structure consists of NbO/sub 6/ octahedra and AsO/sub 4/ tetrahedra sharing vertices, forming infinite chainsmore » (NbO/sub 6/-AsO/sub 4/)infinity parallel to the a axis. Two chains are linked together by Nb-O-Nb and Nb-O-As bonds. These double chains are connected by vertices, forming a three-dimensional network. The potassium atoms are located in tunnels parallel to the a axis.« less
Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)
NASA Astrophysics Data System (ADS)
Guo, Lingzhen; Johansson, Göran
We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).
Crystal structure of 2-diazo-imidazole-4,5-dicarbo-nitrile.
Parrish, Damon A; Kramer, Stephanie; Windler, G Kenneth; Chavez, David E; Leonard, Philip W
2015-07-01
In the title compound, C5N6, all the atoms are approximately coplanar. In the crystal, mol-ecules are packed with short contact distances of 2.885 (2) (between the diazo N atom connected to the ring and a cyano N atom on a neighboring mol-ecule) and 3.012 (2) Å (between the terminal diazo N atom and an N atom of a neighboring imidazole ring).
Identification of phases, symmetries and defects through local crystallography
Belianinov, Alex; He, Qian; Kravchenko, Mikhail; ...
2015-07-20
Here we report that advances in electron and probe microscopies allow 10 pm or higher precision in measurements of atomic positions. This level of fidelity is sufficient to correlate the length (and hence energy) of bonds, as well as bond angles to functional properties of materials. Traditionally, this relied on mapping locally measured parameters to macroscopic variables, for example, average unit cell. This description effectively ignores the information contained in the microscopic degrees of freedom available in a high-resolution image. Here we introduce an approach for local analysis of material structure based on statistical analysis of individual atomic neighbourhoods. Clusteringmore » and multivariate algorithms such as principal component analysis explore the connectivity of lattice and bond structure, as well as identify minute structural distortions, thus allowing for chemical description and identification of phases. This analysis lays the framework for building image genomes and structure–property libraries, based on conjoining structural and spectral realms through local atomic behaviour.« less
Magnetic interactions in a quasi-one-dimensional antiferromagnet Cu(H{sub 2}O){sub 2}(en)SO{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sýkora, Rudolf, E-mail: rudolf.sykora@vsb.cz; Legut, Dominik
A theoretical ab-initio investigation of exchange interaction between Cu atoms in an insulating antiferromagnet Cu(H{sub 2}O){sub 2}(en)SO{sub 4}, en = C{sub 2}H{sub 8}N{sub 2}, is reported. While the previous experimental studies described the system's magnetism to be quasi-two-dimensional, our results, based on a mapping of the system onto an effective Heisenberg model, rather support a quasi-one-dimensional character with the exchange coupling between the Cu atoms being propagated mainly along a zigzag line lying in the crystal's bc plane and connecting the Cu atoms through the N atoms. Further, the direction of magnetic moments on the Cu atoms is suggested to be nearlymore » along the crystal's a axis. A check of the change in the exchange constants induced either by external pressure or by various values of U in the GGA + U approximation is made. Finally, based on experimental values of positions of broad maxima in magnetic-susceptibility and specific-heat curves and using theoretical expressions available in the literature a relevant value of the U parameter and related expected value of the electronic gap are estimated to be about 5 eV and 2 eV, respectively.« less
Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep
2015-02-02
Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combinatorial structures to modeling simple games and applications
NASA Astrophysics Data System (ADS)
Molinero, Xavier
2017-09-01
We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.
Optical clocks and relativity.
Chou, C W; Hume, D B; Rosenband, T; Wineland, D J
2010-09-24
Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.
Quantized impedance dealing with the damping behavior of the one-dimensional oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinghao; Zhang, Jing; Li, Yuan
2015-11-15
A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less
Quantized impedance dealing with the damping behavior of the one-dimensional oscillator
NASA Astrophysics Data System (ADS)
Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping
2015-11-01
A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.
Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya
2016-09-01
Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.
Phillips, David J.; McGlaughlin, Alec; Ruth, David; Jager, Leah R.; Soldan, Anja
2015-01-01
Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD. PMID:25984446
Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films
NASA Astrophysics Data System (ADS)
Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.
2017-11-01
Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.
`The Wildest Speculation of All': Lemaître and the Primeval-Atom Universe
NASA Astrophysics Data System (ADS)
Kragh, Helge
Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître's daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître's genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.
Single molecule imaging of RNA polymerase II using atomic force microscopy
NASA Astrophysics Data System (ADS)
Rhodin, Thor; Fu, Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru
2003-03-01
An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCone, John A.
1960-01-31
The first twenty five semiannual reports of the United States Atomic Energy Commission to Congress cover the major unclassified activities of the Commission from January 1947 through January 1959. In addition to the semiannual summaries, a series of special reports on important atomic energy programs were included in many of the semiannual reports. This cumulative name and subject index provides a guide to the information published in these reports. Beginning in 1960, the Commission will be issuing annual reports, each separately indexed, ceasing the semiannual reporting.
NASA Astrophysics Data System (ADS)
Shariati, Ashrafalsadat; Rabani, Hassan; Mardaani, Mohammad
2017-10-01
We present a theoretical method based on Green’s function technique and tight-binding approach as well as harmonic approximation in order to calculate the coherent electronic conductance of an extended poly(p-phenylene) oligomer in the presence of thermal atomic vibrations. We study two proposed mass-spring models for atomic vibrations: one, including rigid benzene rings connected to each other by vibrating bonds; and in another, the bonds along the oligomer vibrate even in the benzene rings. The electron-phonon (e-ph) interaction influences the electron hopping energies linearly with respect to atomic displacements. The model shows that the conductance spectra exhibit some new energy gaps in the presence of e-ph interaction even at zero temperature. The conductance is more affected by e-ph interaction when the atomic vibrations are supposed to be present in the benzene rings. At the edges of the band energy and central gap, the phonon-assisted phenomena can be observed. Generally, the increasing e-ph interaction strength as well as temperature destroys the electronic conductance especially in the resonance region.
ERIC Educational Resources Information Center
Becker, Nicole M.; Cooper, Melanie M.
2014-01-01
Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…
Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer
NASA Astrophysics Data System (ADS)
Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore
2017-11-01
The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Wang, Fei; Yuan, Peng-Fei
Graphical abstract: Our work confirms the negative thermal expansion (NTE) behavior of the orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} in this range 0–1000 K. The orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} has an open framework structure where MoO{sub 4} tetrahedra and YO{sub 6} octahedra are connected by oxygen atoms. The previous mechanisms for the NTE behavior of orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} are that the translational mode (see (b)) of the O bridge atoms in Y-O-Mo linkages will cause the linkages to be bent, reducing the space between polyhedra and making the volumetric shrinkage. Furthermore, the internal polyhedral distortions have been reportedmore » experimentally. It is necessary to reveal the relationship between NTE and polyhedral movements, distortions. From the vibrational properties, we get that the different vibrational eigenvectors of oxygen atoms relative to Y or Mo atoms can lead internal polyhedra to distort unevenly (see (c)). Herein, an extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} based on the Y-O-Mo linkage is proposed (see (a)). It presents a simultaneous dynamic process, i.e. the YO{sub 6} octahedra and MoO{sub 4} tetrahedra distort unevenly, along with both polyhedra being closer which makes the volumetric contraction. This model is helpful to improve the mechanisms of NTE and may be applied in the whole A{sub 2}M{sub 3}O{sub 12} family. - Highlights: • The NTE properties of Y{sub 2}Mo{sub 3}O{sub 12} are confirmed using a first-principles calculation. • The optical branch with the lowest frequency is most responsible for the NTE. • The relationship between NTE and polyhedral movements, distortions is elucidated. • An extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} is proposed. - Abstract: The internal polyhedral distortions have been reported experimentally in orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} as a negative thermal expansion (NTE) material. To reveal the relationship between NTE and polyhedral movements, distortions, the vibrational properties of Y{sub 2}Mo{sub 3}O{sub 12} have been studied using first-principles calculations. The lowest optical branch corresponding to translational mode of the O bridge atom in Y-O-Mo linkage has the largest negative Grüneisen parameter and therefore contributes most to the NTE behavior. The different vibrational eigenvectors of oxygen atoms relative to Y or Mo atoms can cause internal polyhedral to distort unevenly. Herein, an extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} based on the Y-O-Mo linkage presents a simultaneous dynamic process, i.e. the YO{sub 6} octahedra and MoO{sub 4} tetrahedra distort unevenly, along with both polyhedra being closer which makes the volumetric contraction. This model is helpful to improve the mechanisms of NTE and may be applied in the whole A{sub 2}M{sub 3}O{sub 12} family.« less
Nadgórska-Socha, Aleksandra; Kandziora-Ciupa, Marta; Trzęsicki, Michał; Barczyk, Gabriela
2017-09-01
This research was carried out on plants Taraxacum officinale, Plantago lanceolata, Betula pendula and Robinia pseudoacacia growing in urban biotopes with different levels of heavy metal contamination in the city of Dąbrowa Górnicza (southern Poland). Based on the pollution index, the highest heavy metal contamination was determined in the site 4 (connected with industry emitters) and 6 (high traffic). The metal accumulation index (MAI) values ranged within the biotopes in Dąbrowa Górnicza between 7.3 and 20.6 for R. pseudoacacia, 4.71-23.1 for P. lanceolata, 4.68-28.1 for T. officinale and 10.5-27.2 for B. pendula. Increasing tendency in proline content in biotopes connected with high traffic was found in the leaves of investigated plants (except R. pseudoacacia). Similar tendency was observed for ascorbic acid content in the foliage of the plants as well as in T. officinalle in stands connected industrial emission. Non-protein thiols content increased especially in the leaves of R. pseudoacacia in biotopes with high traffic emissions as well as in T. officinale in stands connected with industry. The mean values of APTI (Air Pollution Tolerance Index) within the city of Dąbrowa Górnicza for investigated plants were found in the following ascending order P. lanceolata < R. pseudoacacia < B. pendula < T. officinale. Among the investigated plants B. pendula and T. officinale may be postulated as appropriate plants in urban areas with considerable soil and air contamination, especially with heavy metals. The results indicate that species deemed tolerant according to APTI are suitable plants in barriers areas to combat atmospheric pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diuretics and Gout: What's the Connection?
... Limiting beverages that are sugar sweetened and limiting foods and beverages that contain high fructose corn syrup Losing weight and maintaining a healthy weight based on your body mass index To ... also limit your intake of foods rich in the compound purine, which form uric ...
Guerra, Concettina
2015-01-01
Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.
%;position:relative;z-index:1}.noUi-connects{overflow:hidden;z-index:0}.noUi-connect,.noUi-origin{will -change:transform;position:absolute;z-index:1;top:0;left:0;height:100%;width:100%;-webkit-transform-origin:0 0 ;transform-origin:0 0}html:not([dir=rtl]) .noUi-horizontal .noUi-origin{left:auto;right:0}.noUi-vertical
Books on Atomic Energy for Adults and Children, Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This booklet in the "Understanding the Atom" series includes annotated bibliographies for children (grade level indicated) and adults. Over 100 basic books on atomic energy and closely related subjects are alphabetized by title and an author index. A list of publisher addresses are included. A brief introduction to library usage is given. The…
[Carl Friedrich von Weizsäcker's philosophy of the mind].
Lyre, Holger
2014-01-01
The paper deals with Carl Friedrich von Weizsäcker's position within the philosophy of mind. It turns out that Weizsäcker's ontology is based on an unorthodox conception both in the philosophy of physics and in the philosophy of mind. His quantum information theoretic reductionism is based on a subtle combination of atomism and holism, his philosophy of mind connected to this is a neutral monism, which proposes a bold intertwining of mind, matter, and space.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.
Coskun Hepcan, Cigdem
2013-01-01
This study was aimed at analyzing and interpreting changes in landscape pattern and connectivity in the Urla district, Turkey using core landscape metrics based on a 42-year data derived from 1963 CORONA and 2005 ASTER satellite images and ten 1/25,000 topographical maps (1963-2005). The district represents a distinctive example of re-emerged suburbanization in the Izmir metropolitan area. In order to explore landscape characteristics of the study area, nine landscape composition and configuration metrics were chosen as follows: class area, percentage of landscape, number of patches, patch density, largest patch index, landscape shape index, mean patch size, perimeter area fractal dimension, and connectance index. The landscape configurations in the Urla district changed significantly by 2005 in that the process of (sub-)urbanization in the study area evolved from a rural, monocentric urban typology to a more suburban, polycentric morphology. Agricultural, maquis-phrygana, and forest areas decreased, while the built-up, olive plantation and phrygana areas increased. There was nearly a fivefold increase in the built-up areas during the study period, and the connectivity of the natural landscape declined. To prevent further fragmentation, it is important to keep the existing natural land cover types and agricultural areas intact. More importantly, a sustainable development scenario is required that contains a green infrastructure, or an ecological network planning for conservation and rehabilitation of the vital natural resources in the study area.
Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H
2018-05-17
A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.
Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier
2017-01-01
In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939
An analytical method for computing atomic contact areas in biomolecules.
Mach, Paul; Koehl, Patrice
2013-01-15
We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Cavity-based quantum networks with single atoms and optical photons
NASA Astrophysics Data System (ADS)
Reiserer, Andreas; Rempe, Gerhard
2015-10-01
Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.
Assessing Variation in Permanence/Pragmatism Orientations: Implications for Marital Stability.
ERIC Educational Resources Information Center
Morgan, Mary Y.; Scanzoni, John
1987-01-01
Traces history of construct known as "permanent availability,""universal availability," and "permanence/pragmatism." Connects latter with emerging research tradition labeled "causes and consequences of divorce." Based on data collected from college students, constructed an index of permanence/pragmatism in close relationship. (Author)
Measuring the elasticity of plant cells with atomic force microscopy.
Braybrook, Siobhan A
2015-01-01
The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.
Wohlin, Åsa
2015-03-21
The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver; Siemon, John
The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pourmore » tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O 2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.« less
NASA Astrophysics Data System (ADS)
Tamamitsu, Miu; Zhang, Yibo; Wang, Hongda; Wu, Yichen; Ozcan, Aydogan
2018-02-01
The Sparsity of the Gradient (SoG) is a robust autofocusing criterion for holography, where the gradient modulus of the complex refocused hologram is calculated, on which a sparsity metric is applied. Here, we compare two different choices of sparsity metrics used in SoG, specifically, the Gini index (GI) and the Tamura coefficient (TC), for holographic autofocusing on dense/connected or sparse samples. We provide a theoretical analysis predicting that for uniformly distributed image data, TC and GI exhibit similar behavior, while for naturally sparse images containing few high-valued signal entries and many low-valued noisy background pixels, TC is more sensitive to distribution changes in the signal and more resistive to background noise. These predictions are also confirmed by experimental results using SoG-based holographic autofocusing on dense and connected samples (such as stained breast tissue sections) as well as highly sparse samples (such as isolated Giardia lamblia cysts). Through these experiments, we found that ToG and GoG offer almost identical autofocusing performance on dense and connected samples, whereas for naturally sparse samples, GoG should be calculated on a relatively small region of interest (ROI) closely surrounding the object, while ToG offers more flexibility in choosing a larger ROI containing more background pixels.
A Bibliography of Basic Books on Atomic Energy, A World of the Atom Series Booklet.
ERIC Educational Resources Information Center
Atomic Energy Commission, Washington, DC.
This booklet in the "World of the Atom" Series replaces the earlier Books on Atomic Energy for Adults and Children. It includes annotated bibliographies for children (grade level indicated) and adults. Over 60 books are classed as elementary and over 70 as advanced. These are alphabetized by title and also indexed by author. A list of…
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.
This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the statemore » of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop and test a quantitative index of the early life history diversity of juvenile salmon in the LCRE; (3) assess and, if feasible, develop and test a quantitative index of the survival benefits of tidal wetland habitat restoration (hydrologic reconnection) in the LCRE; and (4) synthesize the results of investigations into the indices for habitat connectivity, early life history diversity, and survival benefits.« less
Navoni, Julio A; De Pietri, Diana; Garcia, Susana; Villaamil Lepori, Edda C
2012-01-01
To analyze the concentration of arsenic in water collected in localities of the province of Buenos Aires, Argentina, and the epidemiological relationship of that concentration to factors of susceptibility and associated pathologies. In 152 samples from 52 localities of Buenos Aires from 2003-2008, the concentration of arsenic was quantified through the generation of hydride spectrophotometry of atomic absorption. A composite index of health (CIH) was constructed using the content of arsenic and the percentages of households with unmet basic needs and dwellings without access to the potable water. Through the CIH, risk areas associated with mortality from malignant neoplasms related to arsenic were defined. Concentrations of arsenic spanned a broad range from 0.3 to 187 mg/L, with a median of 40 mg/L. Of the samples, 82% presented levels of arsenic higher than the acceptable limit of 10 mg/L, and more than half of those came from households with potable water connections. In the departments studied, the average mortality (deaths/100 000 inhabitants) from tumors was greater in men than in women: respiratory tract (310 versus 76), urinary tract (44 versus 11), and skin (21 versus 11), respectively. The regions with greater concentrations of arsenic and of poverty, together with the lack of potable water connections, had a two-to-four times greater risk. The findings from the composite index of health summarized the health risk from exposure to arsenic for lower socioeconomic levels of the population for a broad area of the province of Buenos Aires.
Athermally photoreduced graphene oxides for three-dimensional holographic images
Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min
2015-01-01
The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676
Atomic oxygen reactor having at least one sidearm conduit
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1994-01-01
An apparatus for treating a microporous structure with atomic oxygen is presented. The apparatus includes a main gas chamber for flowing gas in an axial direction and a source of gas, containing atomic oxygen, connected for introducing the gas into the main gas chamber. The apparatus employs at least one side arm extending from the main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.
A motif for infinite metal atom wires.
Yin, Xi; Warren, Steven A; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L; Bertke, Jeffery; Yang, Hong
2014-12-15
A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and μ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K
2006-06-01
The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.
Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.
Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P
2016-04-29
We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime.
N-tert-Butyl-N'-(5,7-dimethyl-1,8-naphthyridin-2-yl)urea.
Lüning, U; Kühl, C; Bolte, M
2001-08-01
The title compound, C(15)H(20)N(4)O, has been synthesized as an AADD recognition unit for quadruple hydrogen bonds. All non-H atoms of the molecule apart from two methyl groups of the tert-butyl group lie in a common plane. An intramolecular hydrogen bond is formed connecting two N atoms. In the solid state, the title compound crystallizes as a centrosymmetric dimer connected by N-H...O=C interactions with an N...O distance of 2.824 (2) A.
QSAR modeling based on structure-information for properties of interest in human health.
Hall, L H; Hall, L M
2005-01-01
The development of QSAR models based on topological structure description is presented for problems in human health. These models are based on the structure-information approach to quantitative biological modeling and prediction, in contrast to the mechanism-based approach. The structure-information approach is outlined, starting with basic structure information developed from the chemical graph (connection table). Information explicit in the connection table (element identity and skeletal connections) leads to significant (implicit) structure information that is useful for establishing sound models of a wide range of properties of interest in drug design. Valence state definition leads to relationships for valence state electronegativity and atom/group molar volume. Based on these important aspects of molecules, together with skeletal branching patterns, both the electrotopological state (E-state) and molecular connectivity (chi indices) structure descriptors are developed and described. A summary of four QSAR models indicates the wide range of applicability of these structure descriptors and the predictive quality of QSAR models based on them: aqueous solubility (5535 chemically diverse compounds, 938 in external validation), percent oral absorption (%OA, 417 therapeutic drugs, 195 drugs in external validation testing), AMES mutagenicity (2963 compounds including 290 therapeutic drugs, 400 in external validation), fish toxicity (92 substituted phenols, anilines and substituted aromatics). These models are established independent of explicit three-dimensional (3-D) structure information and are directly interpretable in terms of the implicit structure information useful to the drug design process.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
Stress assessment based on EEG univariate features and functional connectivity measures.
Alonso, J F; Romero, S; Ballester, M R; Antonijoan, R M; Mañanas, M A
2015-07-01
The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.
NASA Astrophysics Data System (ADS)
Hla, Saw Wai
2014-05-01
Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang
The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through themore » neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.« less
Pauling bond strength, bond length and electron density distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.
2014-01-18
A power law regression equation, = 1.46(/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, , between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43( /r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined formore » geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M-O bonded interactions for a relatively wide range of M atoms of the periodic table. The power law equation determined for the oxide crystals at ambient conditions is similar to the power law expression = r[1.46/]5.26 determined for the perovskites at pressures as high as 80 GPa, indicating that the intrinsic connection between R(M-O) and ρ(rc) that holds at ambient conditions also holds, to a first approximation, at high pressures.« less
Knowledge synthesis with maps of neural connectivity.
Tallis, Marcelo; Thompson, Richard; Russ, Thomas A; Burns, Gully A P C
2011-01-01
This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called "Knowledge Engineering from Experimental Design" (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features.
A Theory of Term Importance in Automatic Text Analysis.
ERIC Educational Resources Information Center
Salton, G.; And Others
Most existing automatic content analysis and indexing techniques are based on work frequency characteristics applied largely in an ad hoc manner. Contradictory requirements arise in this connection, in that terms exhibiting high occurrence frequencies in individual documents are often useful for high recall performance (to retrieve many relevant…
NASA Astrophysics Data System (ADS)
Shen, Ji; Linn, Marcia C.
2011-08-01
What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.
GIS-based approach for quantifying landscape connectivity of Javan Hawk-Eagle habitat
NASA Astrophysics Data System (ADS)
Nurfatimah, C.; Syartinilia; Mulyani, Y. A.
2018-05-01
Javan Hawk-Eagle (Nisaetus bartelsi; JHE) is a law-protected endemic raptor which currently faced the decreased in number and size of habitat patches that will lead to patch isolation and species extinction. This study assessed the degree of connectivity between remnant habitat patches in central part of Java by utilizing Conefor Sensinode software as an additional tool for ArcGIS. The connectivity index was determined by three fractions which are infra, flux and connector. Using connectivity indices successfully identified 4 patches as core habitat, 9 patches as stepping-stone habitat and 6 patches as isolated habitat were derived from those connectivity indices. Those patches then being validated with land cover map derived from Landsat 8 of August 2014. 36% of core habitat covered by natural forest, meanwhile stepping stone habitat has 55% natural forest and isolated habitat covered by 59% natural forest. Isolated patches were caused by zero connectivity (PCcon = 0) and the patch size which too small to support viable JHE population. Yet, the condition of natural forest and the surrounding matrix landscape in isolated patches actually support the habitat need. Thus, it is very important to conduct the right conservation management system based on the condition of each patches.
Mancebo Quintana, S; Martín Ramos, B; Casermeiro Martínez, M A; Otero Pastor, I
2010-05-01
The aim of the present work is to design a model for evaluating the impact of planned infrastructures on species survival at the territorial scale by calculating a connectivity index. The method developed involves determining the effective distance of displacement between patches of the same habitat, simplifying earlier models so that there is no dependence on specific variables for each species. A case study is presented in which the model was used to assess the impact of the forthcoming roads and railways included in the Spanish Strategic Infrastructure and Transport Plan (PEIT, in its Spanish initials). This study took into account the habitats of peninsular Spain, which occupies an area of some 500,000 km(2). In this territory, the areas deemed to provide natural habitats are defined by Directive 92/43/EEC. The impact of new infrastructures on connectivity was assessed by comparing two scenarios, with and without the plan, for the major new road and railway networks. The calculation of the connectivity index (CI) requires the use of a raster methodology based on the Arc/Info geographical information system (GIS). The actual calculation was performed using a program written in Arc/Info Macro Language (AML); this program is available in FragtULs (Mancebo Quintana, 2007), a set of tools for calculating indicators of fragmentation caused by transport infrastructure (http://topografia.montes.upm.es/fragtuls.html). The indicator of connectivity proposed allows the estimation of the connectivity between all the patches of a territory, with no artificial (non-ecologically based) boundaries imposed. The model proposed appears to be a useful tool for the analysis of fragmentation caused by plans for large territories. Copyright 2009 Elsevier Ltd. All rights reserved.
Connection to Nature: Children's Affective Attitude toward Nature
ERIC Educational Resources Information Center
Cheng, Judith Chen-Hsuan; Monroe, Martha C.
2012-01-01
A connection to nature index was developed and tested to measure children's affective attitude toward the natural environment. The index was employed through a survey that investigates students' attitude toward Lagoon Quest, a mandatory environmental education program for all fourth-grade, public school students in Brevard County, Florida. Factor…
NASA Astrophysics Data System (ADS)
Li, Z.; Li, C.
2017-12-01
Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.
1992-10-01
organized into hexagonal patterns, but unlike the monoatomic iodine adlayers noted above the close-packed atomic strings tend to lie along the gold ...adsorbate systems. Illustrative results of the former type are presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The...presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The virtues of acquiring "composite-domain" STM images, where
Selection of test paths for solder joint intermittent connection faults under DC stimulus
NASA Astrophysics Data System (ADS)
Huakang, Li; Kehong, Lv; Jing, Qiu; Guanjun, Liu; Bailiang, Chen
2018-06-01
The test path of solder joint intermittent connection faults under direct-current stimulus is examined in this paper. According to the physical structure of the circuit, a network model is established first. A network node is utilised to represent the test node. The path edge refers to the number of intermittent connection faults in the path. Then, the selection criteria of the test path based on the node degree index are proposed and the solder joint intermittent connection faults are covered using fewer test paths. Finally, three circuits are selected to verify the method. To test if the intermittent fault is covered by the test paths, the intermittent fault is simulated by a switch. The results show that the proposed method can detect the solder joint intermittent connection fault using fewer test paths. Additionally, the number of detection steps is greatly reduced without compromising fault coverage.
Automated map sharpening by maximization of detail and connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.
An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less
Automated map sharpening by maximization of detail and connectivity
Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.; ...
2018-05-18
An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less
A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues
2014-02-27
Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.
Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe
2016-05-24
In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.
A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing.
Sillin, Henry O; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K
2013-09-27
Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.
A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing
NASA Astrophysics Data System (ADS)
Sillin, Henry O.; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2013-09-01
Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.
A numerical study on liquid charging inside electrostatic atomizers
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
Franzmeier, N; Caballero, M Á Araque; Taylor, A N W; Simon-Vermot, L; Buerger, K; Ertl-Wagner, B; Mueller, C; Catak, C; Janowitz, D; Baykara, E; Gesierich, B; Duering, M; Ewers, M
2017-04-01
Cognitive reserve (CR) shows protective effects in Alzheimer's disease (AD) and reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic biomarker of brain changes underlying CR in AD is not available yet. Our aim was to develop a fully-automated approach applied to fMRI to produce a biomarker associated with CR in subjects at increased risk of AD. We computed resting-state global functional connectivity (GFC), i.e. the average connectivity strength, for each voxel within the cognitive control network, which may sustain CR due to its central role in higher cognitive function. In a training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR (> median of years of education, CR+) showed increased frequency of high GFC values compared to MCI-CR- and HC. A summary index capturing such a surplus frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with the area under the ROC = 0.84. Cross-validation in an independently recruited test sample of 23 MCI subjects showed that higher levels of the GFC-R index predicted higher years of education and an alternative questionnaire-based proxy of CR, controlled for memory performance, gray matter of the cognitive control network, white matter hyperintensities, age, and gender. In conclusion, the GFC-R index that captures GFC changes within the cognitive control network provides a biomarker candidate of functional brain changes of CR in patients at increased risk of AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences
The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less
Block copolymer libraries: modular versatility of the macromolecular Lego system.
Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S
2004-12-21
The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.
Maximum covariance analysis to identify intraseasonal oscillations over tropical Brazil
NASA Astrophysics Data System (ADS)
Barreto, Naurinete J. C.; Mesquita, Michel d. S.; Mendes, David; Spyrides, Maria H. C.; Pedra, George U.; Lucio, Paulo S.
2017-09-01
A reliable prognosis of extreme precipitation events in the tropics is arguably challenging to obtain due to the interaction of meteorological systems at various time scales. A pivotal component of the global climate variability is the so-called intraseasonal oscillations, phenomena that occur between 20 and 100 days. The Madden-Julian Oscillation (MJO), which is directly related to the modulation of convective precipitation in the equatorial belt, is considered the primary oscillation in the tropical region. The aim of this study is to diagnose the connection between the MJO signal and the regional intraseasonal rainfall variability over tropical Brazil. This is achieved through the development of an index called Multivariate Intraseasonal Index for Tropical Brazil (MITB). This index is based on Maximum Covariance Analysis (MCA) applied to the filtered daily anomalies of rainfall data over tropical Brazil against a group of covariates consisting of: outgoing longwave radiation and the zonal component u of the wind at 850 and 200 hPa. The first two MCA modes, which were used to create the { MITB}_1 and { MITB}_2 indices, represent 65 and 16 % of the explained variance, respectively. The combined multivariate index was able to satisfactorily represent the pattern of intraseasonal variability over tropical Brazil, showing that there are periods of activation and inhibition of precipitation connected with the pattern of MJO propagation. The MITB index could potentially be used as a diagnostic tool for intraseasonal forecasting.
NASA Astrophysics Data System (ADS)
van der Most, Merel; Hudson, Paul F.
2018-02-01
The floodplain geomorphology of large lowland rivers is intricately related to aquatic ecosystems dependent upon flood pulse dynamics. The alligator gar (Atractosteus spatula) is native to the Lower Mississippi River and dependent upon floodplain backwater areas for spawning. In this study we utilize a geospatial approach to develop a habitat suitability index for alligator gar that explicitly considers hydrologic connectivity and the floodplain geomorphology along a frequently inundated segment of the Lower Mississippi River. The data sets include Landsat imagery, a high-resolution LiDAR digital elevation model (DEM), National Hydrography Dataset (NHD), and hydrologic and geomorphic data. A habitat suitability index is created based on the extent and frequency of inundation, water depth, temperature, and vegetation. A comparison between the remote sensing approach and the NHD revealed substantial differences in the area and location of water bodies available for alligator gar spawning. The final habitat suitability index indicates that a modest proportion (19%) of the overall embanked floodplain is available for alligator gar spawning. Opportunities exist for management efforts to utilize engineered and natural geomorphic features to facilitate hydrologic connectivity at flow levels below flood stage that would expand the habitat of alligator gar across the floodplain. The study results have direct implications regarding environmental restoration of the Lower Mississippi, an iconic example of an embanked meandering river floodplain.
NLTE steady-state response matrix method.
NASA Astrophysics Data System (ADS)
Faussurier, G.; More, R. M.
2000-05-01
A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.
1994-02-01
known gold atomic diameter of 2.89 A. Within a given domain, featuring adjacent terrace strings separated by monoatomic steps, the measured unit-cell...to utilize high-index gold faces in exploring the influence of monoatomic steps and related structural features on surface electrochemical phenomena...110) Gold Electrode Surfaces D1 T IC as Revealed by Scanning Tunneling Microscopy FLECTE MAR 10 19941 by E Xiaoping Gao, Gregory J. Edens, Antoinette
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barantsev, K A; Litvinov, A N
2014-10-31
A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kira, M., E-mail: mackillo.kira@physik.uni-marburg.de
Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approachmore » are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.« less
NASA Astrophysics Data System (ADS)
Yildizhan, Gulsum; Caliskan, Serkan; Ozturk, Ramazan
2018-04-01
Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures.
Spatial assessment of landscape ecological connectivity in different urban gradient.
Park, Sohyun
2015-07-01
Urbanization has resulted in remnant natural patches within cities that often have no connectivity among themselves and to natural reserves outside the urban area. Protecting ecological connectivity in fragmented urban areas is becoming crucial in maintaining urban biodiversity and securing critical habitat levels and configurations under continual development pressures. Nevertheless, few studies have been undertaken for urban landscapes. This study aims to assess ecological connectivity for a group of species that represent the urban desert landscape in the Phoenix metropolitan area and to compare the connectivity values along the different urban gradient. A GIS-based landscape connectivity model which relies upon ecological connectivity index (ECI) was developed and applied to this region. A GIS-based concentric buffering technique was employed to delineate conceptual boundaries for urban, suburban, and rural zones. The research findings demonstrated that urban habitats and potential habitat patches would be significantly influenced by future urban development. Particularly, the largest loss of higher connectivity would likely to be anticipated in the "in-between areas" where urban, suburban, and rural zones overlap one another. The connectivity maps would be useful to provide spatial identification regarding connectivity patterns and vulnerability for urban and suburban activities in this area. This study provides planners and landscape architects with a spatial guidance to minimize ecological fragmentation, which ultimately leads to urban landscape sustainability. This study suggests that conventional planning practices which disregard the ecological processes in urban landscapes need to integrate landscape ecology into planning and design strategies.
Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.
Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A
2018-02-15
We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
Tuning the hybridization bandgap by meta-molecules with in-unit interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yongqiang; Li, Yunhui, E-mail: liyunhui@tongji.edu.cn; Wu, Qian
2015-09-07
In this paper, we demonstrate that the hybridization bandgap (HBG) can be tuned conveniently by deep subwavelength meta-molecules with in-unit interaction. Spontaneous-emission-cancellation-like (SEC-like) effect is realized in a meta-molecule by introducing the destructive interference of two detuned meta-atoms. The meta-atoms consisting of subwavelength zero-index-metamaterial-based resonators are side-coupled to a microstrip. Compared to conventional HBG configurations, the presence of in-unit interaction between meta-atoms provides more flexibility in tuning the bandgap properties, keeping the device volume almost unchanged. Both numerical simulations and microwave experiments confirm that the width, depth, and spectrum shape of HBG can be tuned by simply introducing SEC-like interactionmore » into the meta-molecule. Due to these features, our design may be promising to be applied in microwave or optics communications systems with strict limitation of device volume and flexible bandgap properties.« less
Algorithmic complexity of real financial markets
NASA Astrophysics Data System (ADS)
Mansilla, R.
2001-12-01
A new approach to the understanding of complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a quantity rooted in the Kolmogorov-Chaitin theory is applied to binary sequences built up from real time series of financial markets indexes. The study is based on NASDAQ and Mexican IPC data. Different behaviors of this quantity are shown when applied to the intervals of series placed before crashes and to intervals when no financial turbulence is observed. The connection between our results and the efficient market hypothesis is discussed.
Empirical Examination of Fundamental Indexation in the German Market
NASA Astrophysics Data System (ADS)
Mihm, Max; Locarek-Junge, Hermann
Index Funds, Exchange Traded Funds and Derivatives give investors easy access to well diversified index portfolios. These index-based investment products exhibit low fees, which make them an attractive alternative to actively managed funds. Against this background, a new class of stock indices has been established based on the concept of “Fundamental Indexation”. The selection and weighting of index constituents is conducted by means of fundamental criteria like total assets, book value or number of employees. This paper examines the performance of fundamental indices in the German equity market. For this purpose, a backtest of five fundamental indices is conducted over the last 20 years. Furthermore the index returns are analysed under the assumption of an efficient as well as an inefficient market. Index returns in efficient markets are explained by applying the three factor model for stock returns of Fama and French (J Financ Econ 33(1):3-56, 1993). The results show that the outperformance of fundamental indices is partly due to a higher risk exposure, particularly to companies with a low price to book ratio. By relaxing the assumption of market efficiency, a return drag of capitalisation weighted indices can be deduced. Given a mean-reverting movement of prices, a direct connection between market capitalisation and index weighting leads to inferior returns.
NASA Astrophysics Data System (ADS)
Leibowitz, S. G.; Hill, R. A.; Weber, M.; Jones, C., Jr.; Rains, M. C.; Creed, I. F.; Christensen, J.
2017-12-01
Connectivity has become a major focus of hydrological and ecological studies. Connectivity enhances fluxes among landscape features, whereas isolation eliminates or reduces such flows. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since chemical and biological flows are often associated with water movement. Wetlands have many important functions, and the degree to which they are hydrologically connected influences the effect they have on downstream waters. Wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved organic carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). We developed a system to classify wetlands based on type, magnitude, and frequency of hydrologic connectivity with downstream waters. We determined type (riparian, non-riparian surface, and non-riparian subsurface) by considering soil and bedrock permeability. For magnitude, we developed indices to represent travel time based on Manning's kinematic and Darcy's equations. We used soil drainage class as an indicator of frequency. We also included an index that assesses relative level of anthropogenic impacts to connectivity (e.g., presence of canals and ditches and impervious surfaces). The classification system was designed to be applied at various spatial scales using available data. The system was applied to 4.7 million wetlands in the conterminous United States, using the National Land Cover Dataset and other nationally available geospatial data, and the resulting maps were assessed for patterns in wetland connectivity. While wetland connectivity was dominated by fast, frequent riparian connections nationally, distributions of connectivity were characteristic for each region. Consideration of these distributions of connectivity should promote better management of watershed functions such as flood control and water quality improvement.
Veselago lensing with ultracold atoms in an optical lattice.
Leder, Martin; Grossert, Christopher; Weitz, Martin
2014-01-01
Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.
Progress Towards Left-Handed Electromagnetic Waves in Rare-Earth Doped Crystals
NASA Astrophysics Data System (ADS)
Brewer, Nicholas Riley
In 1968 Victor Veselago determined that a material with both a negative permittivity and negative permeability would have some extraordinary properties. The index of refraction of this material would be negative and light propagating inside would be 'left-handed'. This research went relatively unnoticed until the year 2000 when John Pendry discovered that a lens with an index of refraction of n = -1 could, in principle, have infinite resolution. Since 2000, research into negative index materials has exploded. The challenging part of this research is to get a material to respond to magnetic fields at optical frequencies. Artificially created metamaterials are able to achieve this and have been the focus of most negative index research. The long term goal of our project is to produce left-handed light in an atomic system. In order to do this, an atomic transition needs to be utilized that is magnetic dipole in character. Pure magnetic dipole transitions in the optical regime are more rare and fundamentally much weaker than the electric dipole transitions typically used in atomic physics experiments. They can be found, however, in the complex atomic structure of rare-earth elements. The 7F0 → 5D 1 transition in europium doped yttrium orthosilicate (Eu3+:Y 2SiO5) has a wavelength of 527.5 nm and is a pure magnetic dipole transition. We measured its dipole moment to be (0.063 +/- 0.005)mu B via Rabi oscillations, inferring a magnetization on the order of 10 -2 A/m. Demonstrating this large magnetic response at an optical frequency is a major first step in realizing left-handed light in atomic systems.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model
NASA Astrophysics Data System (ADS)
Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi
2015-04-01
Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.
Planar polymer and glass graded index waveguides for data center applications
NASA Astrophysics Data System (ADS)
Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex
2016-03-01
Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.
First measurements of the index of refraction of gases for lithium atomic waves.
Jacquey, M; Büchner, M; Trénec, G; Vigué, J
2007-06-15
We report the first measurements of the index of refraction of gases for lithium waves. Using an atom interferometer, we have measured the real and imaginary parts of the index of refraction n for argon, krypton, and xenon as a function of the gas density for several velocities of the lithium beam. The linear dependence of (n-1) with the gas density is well verified. The total collision cross section deduced from the imaginary part of (n-1) is in very good agreement with traditional measurements of this quantity. Finally, the real and imaginary parts of (n-1) and their ratio rho exhibit glory oscillations, in good agreement with calculations.
From sphere to polyhedron: a hypothesis on the formation of high-index surfaces in nanocrystals.
Zhou, Yan; Zhang, Junyan; Su, Gang; Li, Jiangong
2014-10-06
The morphology of tetrahexahedral nanocrystals could be understood on the basis of a hypothesis that the atoms or molecules on or near spherical surfaces can migrate till reaching their equilibrium positions. Such migration of atoms/molecules is shown to be closely related to the formation of high-index surfaces in nanopolyhedrons. On account of this hypothesis, a theoretical calculation about the indices of the surfaces in tetrahexahedrons is found in good agreement with the empirical results. A group of high-index surfaces for nanocrystals that can be formed under certain environments are thus predicted. This study may provide a novel idea for preparing the catalysts at nanoscale.
Emergence of small-world structure in networks of spiking neurons through STDP plasticity.
Basalyga, Gleb; Gleiser, Pablo M; Wennekers, Thomas
2011-01-01
In this work, we use a complex network approach to investigate how a neural network structure changes under synaptic plasticity. In particular, we consider a network of conductance-based, single-compartment integrate-and-fire excitatory and inhibitory neurons. Initially the neurons are connected randomly with uniformly distributed synaptic weights. The weights of excitatory connections can be strengthened or weakened during spiking activity by the mechanism known as spike-timing-dependent plasticity (STDP). We extract a binary directed connection matrix by thresholding the weights of the excitatory connections at every simulation step and calculate its major topological characteristics such as the network clustering coefficient, characteristic path length and small-world index. We numerically demonstrate that, under certain conditions, a nontrivial small-world structure can emerge from a random initial network subject to STDP learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; D’Abrusco, R.
Using data from the Wide-field Infrared Survey Explorer ( WISE ) all-sky survey, we discovered that the nonthermal infrared (IR) emission of blazars, the largest known population of extragalactic γ -ray sources, has peculiar spectral properties. In this work, we confirm and strengthen our previous analyses using the latest available releases of both the WISE and the Fermi source catalogs. We also show that there is a tight correlation between the mid-IR colors and the γ -ray spectral index of Fermi blazars. We name this correlation the infrared– γ -ray connection. We discuss how this connection links both the emittedmore » powers and the spectral shapes of particles accelerated in jets arising from blazars over 10 decades in energy. Based on this evidence, we argue that the infrared– γ -ray connection is stronger than the well-known radio– γ -ray connection.« less
NASA Astrophysics Data System (ADS)
Cantreul, Vincent; Cavalli, Marco; Degré, Aurore
2016-04-01
The emerging concept of hydrological connectivity is difficult to quantify. Some indices have been proposed. The most cited is Borselli's one. It mainly uses the DEM as input. The pixel size may strongly impacts the result of the calculation. It has not been studied yet in silty areas. Another important aspect is the choice of the weighting factor which strongly influences the index value. The objective of this poster is so to compare 8 different DEM's resolutions (12, 24, 48, 72, 96, 204, 504 and 996cm) and 3 different weighting factors (factor C of Wischmeier, Manning's factor and rugosity index) in the Borselli's index calculation. The IC was calculated in a 124ha catchment (Hevillers), in the loess belt, in Belgium. The DEM used is coming from a UAV with a maximum resolution of 12 cm. Permanent covered surfaces are not considered in order to avoid artefact due to the vegetation (2% of the surface). Regarding the DEM pixel size, the IC increases for a given pixel when the pixel size decreases. That confirms some results observed in the Alpine region by Cavalli (2014). The mean difference between 12 cm and 10 m resolution is 35% with higher values up to 100% for higher connectivity zones (flow paths). Another result is the lower impact of connections in the watershed (grass strips…) at lower pixel sizes. This is linked to the small width of some connections which are sometimes comparing to cell size. Furthermore, a great loss of precision is observed from the 500 cm pixel size and upper. That remark is quite intuitive. Finally, some very well disconnected zones appear for the highest resolutions. Regarding the weighting factor, IC values calculated using C factor are lower than with the rugosity index which is only a topographic factor. With very high resolution DEM, it permits to represent the fine topography. For the C factor, the zones up to very well disconnected areas (grass strips, wood…) are well represented with lower index values than downstream zones. On the contrary, areas up to very well connected zones (roads, paths…) are higher and much more connected than downstream areas. For the Manning's factor, the values are very low and not very well contrasted. This factor is not enough discriminant for this study. In conclusion, high resolution DEM (1 meter or higher) is needed for the IC calculation (precison, impact of connections…). Very high resolution permits to identify very well disconnected areas but it multiplies the calculation time. For the weighting factor, rugosity index and C factor have each some advantages. It is planned to test other approaches for the IC calculation. Key-words: hydrological connectivity index, DEM, resolution, weighting factor, comparison
Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.
Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano
2015-12-01
On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.
Quasi-aromatic Möbius Metal Chelates.
Mahmoudi, Ghodrat; Afkhami, Farhad A; Castiñeiras, Alfonso; García-Santos, Isabel; Gurbanov, Atash; Zubkov, Fedor I; Mitoraj, Mariusz P; Kukułka, Mercedes; Sagan, Filip; Szczepanik, Dariusz W; Konyaeva, Irina A; Safin, Damir A
2018-04-16
We report the design as well as structural and spectroscopic characterizations of two new coordination compounds obtained from Cd(NO 3 ) 2 ·4H 2 O and polydentate ligands, benzilbis(pyridin-2-yl)methylidenehydrazone (L I ) and benzilbis(acetylpyridin-2-yl)methylidenehydrazone (L II ), in a mixture with two equivalents of NH 4 NCS in MeOH, namely [Cd(SCN)(NCS)(L I )(MeOH)] (1) and [Cd(NCS) 2 (L II )(MeOH)] (2). Both L I and L II are bound via two pyridyl-imine units yielding a tetradentate coordination mode giving rise to the 12 π electron chelate ring. It has been determined for the first time (qualitatively and quantitatively), using the EDDB electron population-based method, the HOMA index, and the ETS-NOCV charge and energy decomposition scheme, that the chelate ring containing Cd II can be classified as a quasi-aromatic Möbius motif. Notably, using the methyl-containing ligand L II controls the exclusive presence of the NCS - connected with the Cd II atom (structure 2), while applying L I allows us to simultaneously coordinate NCS - and SCN - ligands (structure 1). Both systems are stabilized mostly by hydrogen bonding, C-H···π interactions, aromatic π···π stacking, and dihydrogen C-H···H-C bonds. The optical properties have been investigated by diffused reflectance spectroscopy as well as molecular and periodic DFT/TD-DFT calculations. The DFT-based ETS-NOCV analysis as well as periodic calculations led us to conclude that the monomers which constitute the obtained chelates are extremely strongly bonded to each other, and the calculated interaction energies are found to be in the regime of strong covalent connections. Intramolecular van der Waals dispersion forces, due to the large size of L I and L II , appeared to significantly stabilize these systems as well as amplify the aromaticity phenomenon.
Knowledge Synthesis with Maps of Neural Connectivity
Tallis, Marcelo; Thompson, Richard; Russ, Thomas A.; Burns, Gully A. P. C.
2011-01-01
This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called “Knowledge Engineering from Experimental Design” (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features. PMID:22053155
McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.
2001-01-01
A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.
Moon, Suk-Hee; Seo, Joobeom; Park, Ki-Min
2017-11-01
The asymmetric unit of the title compound, [Co(NO 3 ) 2 (C 12 H 12 N 2 S) 2 ] n , contains a bis-(pyridin-3-ylmeth-yl)sulfane ( L ) ligand, an NO 3 - anion and half a Co II cation, which lies on an inversion centre. The Co II cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the Co II centre adopts a distorted octa-hedral geometry. Two symmetry-related L ligands are connected by two symmetry-related Co II cations, forming a 20-membered cyclic dimer, in which the Co II atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing Co II atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Inter-molecular C-H⋯π (H⋯ring centroid = 2.89 Å) inter-actions between one pair of corresponding L ligands and C-H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by inter-molecular π-π stacking inter-actions [centroid-to-centroid distance = 3.8859 (14) Å] and C-H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C-H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supra-molecular architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levashov, V. A.
2016-03-07
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectorsmore » of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.« less
Levashov, V A
2016-03-07
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.
Prasanna, S; Manivannan, E; Chaturvedi, S C
2005-04-15
As a part of our continuing efforts in discerning the structural and physicochemical requirements for selective COX-2 over COX-1 inhibition among the fused pyrazole ring systems, herein we report the QSAR analyses of the title compounds. The conformational flexibility of the title compounds was examined using a simple connection table representation. The conformational investigation was aided by calculating a connection table parameter called fraction of rotable bonds, b_rotR encompassing the number of rotable bonds and b_count, the number of bonds including implicit hydrogens of each ligand. The hydrophobic and steric correlation of the title compounds towards selective COX-2 inhibition was reported previously in one of our recent publications. In this communication, we attempt to calculate Wang-Ford charges of the non-hydrogen common atoms of AM1 optimized geometries of the title compounds. Owing to the partial conformational flexibility of title compounds, conformationally restricted and unrestricted descriptors were calculated from MOE. Correlation analysis of these 2D, 3D and Wang-Ford charges was accomplished by linear regression analysis. 2D molecular descriptor b_single, 3D molecular descriptors glob, std_dim3 showed significant contribution towards COX-2 inhibitory activity. Balaban J, a connectivity topological index showed a negative and positive contribution towards COX-1 and selective COX-2 over COX-1 inhibition, respectively. Wang-Ford charges calculated on C(7) showed a significant contribution towards COX-1 inhibitory activity whereas charges calculated on C(8) were crucial in governing the selectivity of COX-2 over COX-1 inhibition among these congeners.
NASA Astrophysics Data System (ADS)
Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping
2017-02-01
To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.
Indexing Theory and Retrieval Effectiveness.
ERIC Educational Resources Information Center
Robertson, Stephen E.
1978-01-01
Describes recent attempts to make explicit connections between the indexing process and the use of the index or information retrieval system, particularly the utility-theoretic and automatic indexing models of William Cooper and Stephen Harter. Theory and performance, information storage and retrieval, search stage feedback, and indexing are also…
A graph-based approach to construct target-focused libraries for virtual screening.
Naderi, Misagh; Alvin, Chris; Ding, Yun; Mukhopadhyay, Supratik; Brylinski, Michal
2016-01-01
Due to exorbitant costs of high-throughput screening, many drug discovery projects commonly employ inexpensive virtual screening to support experimental efforts. However, the vast majority of compounds in widely used screening libraries, such as the ZINC database, will have a very low probability to exhibit the desired bioactivity for a given protein. Although combinatorial chemistry methods can be used to augment existing compound libraries with novel drug-like compounds, the broad chemical space is often too large to be explored. Consequently, the trend in library design has shifted to produce screening collections specifically tailored to modulate the function of a particular target or a protein family. Assuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. On this account, we developed eSynth, an exhaustive graph-based search algorithm to computationally synthesize new compounds by reconnecting these building blocks following their connectivity patterns. We conducted a series of benchmarking calculations against the Directory of Useful Decoys, Enhanced database. First, in a self-benchmarking test, the correctness of the algorithm is validated with the objective to recover a molecule from its building blocks. Encouragingly, eSynth can efficiently rebuild more than 80 % of active molecules from their fragment components. Next, the capability to discover novel scaffolds is assessed in a cross-benchmarking test, where eSynth successfully reconstructed 40 % of the target molecules using fragments extracted from chemically distinct compounds. Despite an enormous chemical space to be explored, eSynth is computationally efficient; half of the molecules are rebuilt in less than a second, whereas 90 % take only about a minute to be generated. eSynth can successfully reconstruct chemically feasible molecules from molecular fragments. Furthermore, in a procedure mimicking the real application, where one expects to discover novel compounds based on a small set of already developed bioactives, eSynth is capable of generating diverse collections of molecules with the desired activity profiles. Thus, we are very optimistic that our effort will contribute to targeted drug discovery. eSynth is freely available to the academic community at www.brylinski.org/content/molecular-synthesis.Graphical abstractAssuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. Here, we developed eSynth, an automated method to synthesize new compounds by reconnecting these building blocks following the connectivity patterns via an exhaustive graph-based search algorithm. eSynth opens up a possibility to rapidly construct virtual screening libraries for targeted drug discovery.
NASA Astrophysics Data System (ADS)
Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham
2018-05-01
Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.
Hemani, H; Warrier, M; Sakthivel, N; Chaturvedi, S
2014-05-01
Molecular dynamics (MD) simulations are used in the study of void nucleation and growth in crystals that are subjected to tensile deformation. These simulations are run for typically several hundred thousand time steps depending on the problem. We output the atom positions at a required frequency for post processing to determine the void nucleation, growth and coalescence due to tensile deformation. The simulation volume is broken up into voxels of size equal to the unit cell size of crystal. In this paper, we present the algorithm to identify the empty unit cells (voids), their connections (void size) and dynamic changes (growth and coalescence of voids) for MD simulations of large atomic systems (multi-million atoms). We discuss the parallel algorithms that were implemented and discuss their relative applicability in terms of their speedup and scalability. We also present the results on scalability of our algorithm when it is incorporated into MD software LAMMPS. Copyright © 2014 Elsevier Inc. All rights reserved.
CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings
Schmidt, Joel E.; Xie, Dan; Rea, Thomas; ...
2015-01-23
A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [4 25 46 2] mtw building unit and a previously unreported [4 45 2] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected withmore » oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, R. S.; Ávila, H. C.; Cremona, M., E-mail: cremona@fis.puc-rio.br
The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMARmore » effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.« less
Connecting the Visible World with the Invisible
ERIC Educational Resources Information Center
Pentecost, Thomas; Weber, Sarah; Herrington, Deborah
2016-01-01
Research suggests that connecting the visible (macroscopic) world of chemical phenomena to the invisible (particulate) world of atoms and molecules enhances student understanding in chemistry. This approach aligns with the science standards and is fundamental to the redesigned AP Chemistry curriculum. However, chemistry is usually taught at the…
Structural origin underlying poor glass forming ability of Al metallic glass
NASA Astrophysics Data System (ADS)
Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.
2011-07-01
We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.
Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca
2011-01-01
A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (ISET). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the ISET in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P. PMID:22072945
Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca
2011-01-01
A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (I(SET)). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the I(SET) in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-09-01
The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics
Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan; ...
2018-02-26
Doped semiconductors are the most important building elements for modern electronic devices. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturallymore » grown n-type S-vacancy SnS 2, Cu intercalated bilayer SnS 2 obtained by this technique displays a hole field-effect mobility of ~40 cm 2 V -1 s -1, and the obtained Co-SnS 2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.« less
Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested
NASA Technical Reports Server (NTRS)
Sechkar, Edward A.; Stueber, Thomas J.
1999-01-01
NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.
Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan
Doped semiconductors are the most important building elements for modern electronic devices. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturallymore » grown n-type S-vacancy SnS 2, Cu intercalated bilayer SnS 2 obtained by this technique displays a hole field-effect mobility of ~40 cm 2 V -1 s -1, and the obtained Co-SnS 2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.« less
Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics
NASA Astrophysics Data System (ADS)
Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan; Tang, Peizhe; Yang, Shi-Ze; Yang, Ankun; Li, Guodong; Liu, Bofei; van de Groep, Jorik; Brongersma, Mark L.; Chisholm, Matthew F.; Zhang, Shou-Cheng; Zhou, Wu; Cui, Yi
2018-04-01
Doped semiconductors are the most important building elements for modern electronic devices1. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4-9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of 40 cm2 V-1 s-1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene5. Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.
Carbonell, F; Bellec, P; Shmuel, A
2014-02-01
The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their impact on functional connectivity in the resting state. © 2013.
Dagdeviren, Omur E.; Schwarz, Udo D.
2017-03-20
Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder (“qPlus” configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on themore » operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagdeviren, Omur E.; Schwarz, Udo D.
Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder (“qPlus” configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on themore » operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.« less
[Construction and optimization of ecological network for nature reserves in Fujian Province, China].
Gu, Fan; Huang, Yi Xiong; Chen, Chuan Ming; Cheng, Dong Liang; Guo, Jia Lei
2017-03-18
The nature reserve is very important to biodiversity maintenance. However, due to the urbanization, the nature reserve has been fragmented with reduction in area, leading to the loss of species diversity. Establishing ecological network can effectively connect the fragmented habitats and plays an important role in species conversation. In this paper, based on deciding habitat patches and the landscape cost surface in ArcGIS, a minimum cumulative resistance model was used to simulate the potential ecological network of Fujian provincial nature reserves. The connectivity and importance of network were analyzed and evaluated based on comparison of connectivity indices (including the integral index of connectivity and probability of connectivity) and gravity model both before and after the potential ecological network construction. The optimum ecological network optimization measures were proposed. The result demonstrated that woodlands, grasslands and wetlands together made up the important part of the nature reserve ecological network. The habitats with large area had a higher degree of importance in the network. After constructing the network, the connectivity level was significantly improved. Although interaction strength between different patches va-ried greatly, the corridors between patches with large interaction were very important. The research could provide scientific reference and basis for nature protection and planning in Fujian Province.
Structural evolution study of 1-2 nm gold clusters
NASA Astrophysics Data System (ADS)
Beltrán, M. R.; Suárez Raspopov, R.; González, G.
2011-12-01
We have explored lowest energy minima structures of gold atom clusters both, charged and neutral (Aun^{ν}νn with n = 20, 28, 34, 38, 55, 75, 101, 146, 147, 192, 212 atoms and ν = 0, ±1). The structures have been obtained from first principles generalized gradient approximation, density functional theory (DFT) calculations based on norm-conserving pseudopotentials and numerical atomic basis sets. We have found two new disordered or defective isomers lower in energy than their ordered counterparts for n = 101, 147. The purpose of this work is to systematically study the difference between the electronic properties of the two lowest ordered and disordered isomers for each size. Our results agree with previous first principle calculations and with some recent experimental results (Au20 and Au101). For each case we report total energies, binding energies, ionization potentials, electron affinities, density of states, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, Housdorff chirality measure index and their simulated image in a high resolution transmission electron microscopy (HRTEM). The calculated properties of the two low lying (ordered and disordered) isomers show clear differences as to be singled out in a suitable experimental setting. An extensive discussion on the evolution with size of the cohesive energy, the ionization potentials, the electron affinities, the HOMO-LUMO gaps and their index of chirality to determine the crossover between them is given.
Refractive index sensor based on lateral-offset of coreless silica interferometer
NASA Astrophysics Data System (ADS)
Baharin, Nur Faizzah; Azmi, Asrul Izam; Abdullah, Ahmad Sharmi; Mohd Noor, Muhammad Yusof
2018-02-01
A compact, cost-effective and high sensitivity fiber interferometer refractive index (RI) sensor based on symmetrical offset coreless silica fiber (CSF) configuration is proposed, optimized and demonstrated. The sensor is formed by splicing a section of CSF between two CSF sections in an offset manner. Thus, two distinct optical paths are created with large index difference, the first path through the connecting CSF sections and the second path is outside the CSF through the surrounding media. RI sensing is established from direct interaction of light with surrounding media, hence high sensitivity can be achieved with a relatively compact sensor length. In the experimental work, a 1.5 mm sensor demonstrates RI sensitivity of 750 nm/RIU for RI range between 1.33 and 1.345. With the main attributes of high sensitivity and compact size, the proposed sensor can be further developed for related applications including blood diagnosis, water quality control and food industries.
48 CFR 1252.211-70 - Index for specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Index for specifications... Index for specifications. As prescribed in (TAR) 48 CFR 1211.204-70, insert the following clause: Index for Specifications (APR 2005) If an index or table of contents is furnished in connection with...
Annual Report to Congress of the Atomic Energy Commission for 1965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborg, Glenn T.
1966-01-31
The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less
A high-pressure atomic force microscope for imaging in supercritical carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.
2011-04-26
A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less
Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; Ho, Kai-Ming
2017-12-04
Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3 X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3 X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3 Te 4 can be a good candidate as a rare-earth-free permanent magnet and Fe 3 S 4 can be a magnetic nodal-line topological material.
An Additive Definition of Molecular Complexity.
Böttcher, Thomas
2016-03-28
A framework for molecular complexity is established that is based on information theory and consistent with chemical knowledge. The resulting complexity index Cm is derived from abstracting the information content of a molecule by the degrees of freedom in the microenvironments on a per-atom basis, allowing the molecular complexity to be calculated in a simple and additive way. This index allows the complexity of any molecule to be universally assessed and is sensitive to stereochemistry, heteroatoms, and symmetry. The performance of this complexity index is evaluated and compared against the current state of the art. Its additive character gives consistent values also for very large molecules and supports direct comparisons of chemical reactions. Finally, this approach may provide a useful tool for medicinal chemistry in drug design and lead selection, as demonstrated by correlating molecular complexities of antibiotics with compound-specific parameters.
Sodium storage and injection system
NASA Technical Reports Server (NTRS)
Keeton, A. R. (Inventor)
1979-01-01
A sodium storage and injection system for delivering atomized liquid sodium to a chemical reactor employed in the production of solar grade silicon is disclosed. The system is adapted to accommodate start-up, shut-down, normal and emergency operations, and is characterized by (1) a jacketed injection nozzle adapted to atomize liquefied sodium and (2) a supply circuit connected to the nozzle for delivering the liquefied sodium. The supply circuit is comprised of a plurality of replaceable sodium containment vessels, a pump interposed between the vessels and the nozzle, and a pressurizing circuit including a source of inert gas connected with the vessels for maintaining the sodium under pressure.
2,3-Diamino-pyridinium sorbate-sorbic acid (1/1).
Hemamalini, Madhukar; Goh, Jia Hao; Fun, Hoong-Kun
2012-01-01
In the title mol-ecular salt-adduct, C(5)H(8)N(3) (+)·C(6)H(7)O(2) (-)·C(6)H(8)O(2), the 2,3-diamino-pyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid mol-ecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N-H⋯O hydrogen bonds, forming an R(1) (2)(6) ring motif. The carboxyl groups of the sorbic acid mol-ecules and the carboxyl-ate groups of the sorbate anions are connected via O-H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral mol-ecules are connected via inter-molecular N-H⋯O hydrogen bonds, forming sheets lying parallel to (100).
Adiabatic Berry phase in an atom-molecule conversion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Libin; Center for Applied Physics and Technology, Peking University, Beijing 100084; Liu Jie, E-mail: liu_jie@iapcm.ac.c
2010-11-15
We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole.more » We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.« less
(Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.
Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria
2011-04-01
In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.
(Carbonato-κ2 O,O′)bis(di-2-pyridylamine-κ2 N,N′)cobalt(III) bromide
Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria
2011-01-01
In the title compound, [Co(CO3)(C10H9N3)2]Br, a distorted octahedral coordination of the CoIII atom is completed by four N atoms of the two chelating di-2-pyridylamine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridylamine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C 2 symmetry, is connected to the bromide ion via an N—H⋯Br− hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N—H⋯O interactions about an inversion centre. A set of weaker C—H⋯O and C—H⋯Br− interactions connect the dimers into a three-dimensional network. PMID:21753946
[Delineation of ecological security pattern based on ecological network].
Fu, Qiang; Gu, Chao Lin
2017-03-18
Ecological network can be used to describe and assess the relationship between spatial organization of landscapes and species survival under the condition of the habitat fragmentation. Taking Qingdao City as the research area, woodland and wetland ecological networks in 2005 were simulated based on least cost path method, and the ecological networks were classified by their corridors' cumulative cost value. We made importance distinction of ecological network structure elements such as patches and corridors using betweenness centrality index and correlation length-percentage of importance of omitted patches index, and then created the structure system of ecological network. Considering the effects brought by the newly-added construction land from 2005 to 2013, we proposed the ecological security pattern for construction land change of Qingdao City. The results showed that based on ecological network framework, graph theory based methods could be used to quantify both attributes of specific ecological land (e.g., the area of an ecological network patch) and functional connection between ecological lands. Between 2005 and 2013, large area of wetlands had been destroyed by newly-added construction land, while the role of specific woodland and wetland played in the connection of the whole network had not been considered. The delineation of ecological security pattern based on ecological network could optimize regional ecological basis, provide accurate spatial explicit decision for ecological conservation and restoration, and meanwhile provide scientific and reasonable space guidance for urban spatial expansion.
NASA Astrophysics Data System (ADS)
Kahn, Yoni; Anderson, Adam
2018-03-01
Preface; How to use this book; Resources; 1. Classical mechanics; 2. Electricity and magnetism; 3. Optics and waves; 4. Thermodynamics and statistical mechanics; 5. Quantum mechanics and atomic physics; 6. Special relativity; 7. Laboratory methods; 8. Specialized topics; 9. Special tips and tricks for the Physics GRE; Sample exams and solutions; References; Equation index; Subject index; Problems index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru; Markova, Tat’jana, E-mail: patriot-rf@mail.ru
2016-01-15
The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.
Human Language Technology: Opportunities and Challenges
2005-01-01
because of the connections to and reliance on signal processing. Audio diarization critically includes indexing of speakers [12], since speaker ...to reduce inter- speaker variability in training. Standard techniques include vocal-tract length normalization, adaptation of acoustic models using...maximum likelihood linear regression (MLLR), and speaker -adaptive training based on MLLR. The acoustic models are mixtures of Gaussians, typically with
Connecting Formal and Content Schemata: Some Results of Recent Work in Semiotics.
ERIC Educational Resources Information Center
Oller, John W., Jr.
This paper expands on schematic theory through a review of recent work in the field of semiotics. Content and formal schemata are shown to be grounded respectively in perceptual (abductive) and indexical (inductive) strategies of inference. A third kind of schemata is based on deductive generalization and referred to as abstract schemata. All…
The adjuvant activity of aliphatic nitrogenous bases
Gall, D.
1966-01-01
By the use of diphtheria toxoid in guinea-pigs, high adjuvant activity has been found in a number of aliphatic nitrogenous bases including amines, quaternary ammonium compounds, guanidines, benzamidines and thiouroniums. Activity appears to depend on a combination of basicity and a long aliphatic chain of twelve or more carbon atoms. Such adjuvants tend to be haemolytic, and cause damage to tissue culture monolayers. It is suggested that their activity is connected with their surface activity and hence their ability to alter cell membranes, but that the basicity plays a further as yet undetermined role. ImagesFIG. 1-2FIG. 3-4 PMID:5924622
USDA-ARS?s Scientific Manuscript database
Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...
Continuum ionization transition probabilities of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Petrosky, V. E.
1974-01-01
The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.
Harding, I H; Andrews, Z B; Mata, F; Orlandea, S; Martínez-Zalacaín, I; Soriano-Mas, C; Stice, E; Verdejo-Garcia, A
2018-03-01
Unhealthy dietary choices are a major contributor to harmful weight gain and obesity. This study interrogated the brain substrates of unhealthy versus healthy food choices in vivo, and evaluated the influence of hunger state and body mass index (BMI) on brain activation and connectivity. Thirty adults (BMI: 18-38 kg m -2 ) performed a food-choice task involving preference-based selection between beverage pairs consisting of high-calorie (unhealthy) or low-calorie (healthy) options, concurrent with functional magnetic resonance imaging (fMRI). Selected food stimuli were delivered to participants using an MRI-compatible gustometer. fMRI scans were performed both after 10-h fasting and when sated. Brain activation and hypothalamic functional connectivity were assessed when selecting between unhealthy-healthy beverage pairings, relative to unhealthy-unhealthy and healthy-healthy options. Results were considered significant at cluster-based family-wise error corrected P<0.05. Selecting between unhealthy and healthy foods elicited significant activation in the hypothalamus, the medial and dorsolateral prefrontal cortices, the anterior insula and the posterior cingulate. Hunger was associated with higher activation within the ventromedial and dorsolateral prefrontal cortices, as well as lower connectivity between the hypothalamus and both the ventromedial prefrontal cortex and dorsal striatum. Critically, people with higher BMI showed lower activation of the hypothalamus-regardless of hunger state-and higher activation of the ventromedial prefrontal cortex when hungry. People who are overweight and obese have weaker activation of brain regions involved in energy regulation and greater activation of reward valuation regions while making choices between unhealthy and healthy foods. These results provide evidence for a shift towards hedonic-based, and away from energy-based, food selection in obesity.
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
Constant size descriptors for accurate machine learning models of molecular properties
NASA Astrophysics Data System (ADS)
Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.
2018-06-01
Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.
NASA Astrophysics Data System (ADS)
Burrell, Derek; Middlebrook, Christopher
2016-03-01
Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that < 1 dB IL per connection can be achieved by either method and results indicate lowest potential losses associated with a fine-tuned self-writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.
Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression
Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna
2016-01-01
Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11–60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD. PMID:26593265
Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression.
Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna
2016-06-01
Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11-60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD.
Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules
NASA Astrophysics Data System (ADS)
Blackstone, Christopher C.
2017-06-01
Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.
A left cerebellar pathway mediates language in prematurely-born young adults
Constable, R. Todd; Vohr, Betty R.; Scheinost, Dustin; Benjamin, Jennifer R.; Fulbright, Robert K.; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Zhang, Heping; Papademetris, Xenophon; Ment, Laura R.
2012-01-01
Preterm (PT) subjects are at risk for developmental delay, and task-based studies suggest that developmental disorders may be due to alterations in neural connectivity. Since emerging data imply the importance of right cerebellar function for language acquisition in typical development, we hypothesized that PT subjects would have alternate areas of cerebellar connectivity, and that these areas would be responsible for differences in cognitive outcomes between PT subjects and term controls at age 20 years. Nineteen PT and 19 term control young adults were prospectively studied using resting-state functional MRI (fMRI) to create voxel-based contrast maps reflecting the functional connectivity of each tissue element in the grey matter through analysis of the intrinsic connectivity contrast degree (ICC-d). Left cerebellar ICC-d differences between subjects identified a region of interest that was used for subsequent seed-based connectivity analyses. Subjects underwent standardized language testing, and correlations with cognitive outcomes were assessed. There were no differences in gender, hand preference, maternal education, age at study, or Peabody Picture Vocabulary Test (PPVT) scores. Functional connectivity (FcMRI) demonstrated increased tissue connectivity in the biventer, simple and quadrangular lobules of the L cerebellum (p<0.05) in PTs compared to term controls; seed-based analyses from these regions demonstrated alterations in connectivity from L cerebellum to both R and L inferior frontal gyri (IFG) in PTs compared to term controls. For PTs but not term controls, there were significant positive correlations between these connections and PPVT scores (R IFG: r=0.555, p=0.01; L IFG: r=0.454, p=0.05), as well as Verbal Comprehension Index (VCI) scores (R IFG: r=0.472, p=0.04). These data suggest the presence of a left cerebellar language circuit in PT subjects at young adulthood. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. PMID:22982585
A time domain frequency-selective multivariate Granger causality approach.
Leistritz, Lutz; Witte, Herbert
2016-08-01
The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.
NASA Astrophysics Data System (ADS)
Foerster, Saskia; Wilczok, Charlotte; Brosinsky, Arlena; Kroll, Anja; Segl, Karl; Francke, Till
2014-05-01
Many drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity relates to the physical transfer of sediment through a drainage basin (Bracken and Croke 2007). The identification of sediment source areas and the way they connect to the channel network are essential to environmental management (Reid et al. 2007), especially where high erosion and sediment delivery rates occur. Vegetation cover and its spatial and temporal pattern is one of the main factors affecting sediment connectivity. This is particularly true for patchy vegetation covers typical for dryland environments. While many connectivity studies are based on field-derived data, the potential of remotely-sensed data for sediment connectivity analyses has not yet been fully exploited. Recent advances in remote sensing allow for quantitative, spatially explicit, catchment-wide derivation of surface information to be used in connectivity analyses. These advances include a continuous increase in spatial image resolution to comprise processes at the plot to hillslope to catchment scale, an increase in the temporal resolution to cover seasonal and long-term changes and an increase in the spectral resolution enabling the discrimination of dry and green vegetation fractions from soil surfaces in heterogeneous dryland landscapes. The utilization of remotely-sensed data for connectivity studies raises questions on what type of information is required, how scale of sediment flux and image resolution match, how the connectivity information can be incorporated into water and sediment transport models and how this improves model predictions. The objective of this study is to demonstrate the potential of remotely-sensed data for mapping sediment connectivity pathways and their seasonal change at the example of a mesoscale dryland catchment in the Spanish Pyrenees. Here, sediment connectivity pathways have been mapped for two adjacent sub-catchments (approx. 70 km²) of the Isábena River in different seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. Fractional cover of green and dry vegetation, bare soil and rock were derived by applying a Multiple Endmember Spectral Mixture Analysis approach applied to a hyperspectral image dataset. Sediment connectivity was mapped using the Index of Connectivity (Borselli et al. 2008), in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighing factor (in this study, the cover and management factor of the RUSLE). The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover but also on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in summer than in spring. The studied sub-catchments show a slightly different connectivity behaviour reflecting the different land cover proportions and their spatial configuration. Future work includes the incorporation of sediment connectivity information into a hydrological model (WASA-SED, Mueller et al. 2010) to better reflect connectivity processes and testing the sensitivity of the model to different input data.
Santos, Sara M; Lourenço, Rui; Mira, António; Beja, Pedro
2013-01-01
Despite its importance for reducing wildlife-vehicle collisions, there is still incomplete understanding of factors responsible for high road mortality. In particular, few empirical studies examined the idea that spatial variation in roadkills is influenced by a complex interplay between road-related factors, and species-specific habitat quality and landscape connectivity. In this study we addressed this issue, using a 7-year dataset of tawny owl (Strix aluco) roadkills recorded along 37 km of road in southern Portugal. We used a multi-species roadkill index as a surrogate of intrinsic road risk, and we used a Maxent distribution model to estimate habitat suitability. Landscape connectivity was estimated from least-cost paths between tawny owl territories, using habitat suitability as a resistance surface. We defined 10 alternative scenarios to compute connectivity, based on variation in potential movement patterns according to territory quality and dispersal distance thresholds. Hierarchical partitioning of a regression model indicated that independent variation in tawny owl roadkills was explained primarily by the roadkill index (70.5%) and, to a much lesser extent, by landscape connectivity (26.2%), while habitat suitability had minor effects (3.3%). Analysis of connectivity scenarios suggested that owl roadkills were primarily related to short range movements (<5 km) between high quality territories. Tawny owl roadkills were spatially autocorrelated, but the introduction of spatial filters in the regression model did not change the type and relative contribution of environmental variables. Overall, results suggest that road-related factors may have a dominant influence on roadkill patterns, particularly in areas like ours where habitat quality and landscape connectivity are globally high for the study species. Nevertheless, the study supported the view that functional connectivity should be incorporated whenever possible in roadkill models, as it may greatly increase their power to predict the location of roadkill hotspots.
Santos, Sara M.; Lourenço, Rui; Mira, António; Beja, Pedro
2013-01-01
Background Despite its importance for reducing wildlife-vehicle collisions, there is still incomplete understanding of factors responsible for high road mortality. In particular, few empirical studies examined the idea that spatial variation in roadkills is influenced by a complex interplay between road-related factors, and species-specific habitat quality and landscape connectivity. Methodology/Principal Findings In this study we addressed this issue, using a 7-year dataset of tawny owl (Strix aluco) roadkills recorded along 37 km of road in southern Portugal. We used a multi-species roadkill index as a surrogate of intrinsic road risk, and we used a Maxent distribution model to estimate habitat suitability. Landscape connectivity was estimated from least-cost paths between tawny owl territories, using habitat suitability as a resistance surface. We defined 10 alternative scenarios to compute connectivity, based on variation in potential movement patterns according to territory quality and dispersal distance thresholds. Hierarchical partitioning of a regression model indicated that independent variation in tawny owl roadkills was explained primarily by the roadkill index (70.5%) and, to a much lesser extent, by landscape connectivity (26.2%), while habitat suitability had minor effects (3.3%). Analysis of connectivity scenarios suggested that owl roadkills were primarily related to short range movements (<5 km) between high quality territories. Tawny owl roadkills were spatially autocorrelated, but the introduction of spatial filters in the regression model did not change the type and relative contribution of environmental variables. Conclusions Overall, results suggest that road-related factors may have a dominant influence on roadkill patterns, particularly in areas like ours where habitat quality and landscape connectivity are globally high for the study species. Nevertheless, the study supported the view that functional connectivity should be incorporated whenever possible in roadkill models, as it may greatly increase their power to predict the location of roadkill hotspots. PMID:24278226
Predicting links based on knowledge dissemination in complex network
NASA Astrophysics Data System (ADS)
Zhou, Wen; Jia, Yifan
2017-04-01
Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.
NASA Astrophysics Data System (ADS)
Farrell, Kathryn; Oden, J. Tinsley
2014-07-01
Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and methods through applications to representative atomic structures and we discuss extensions to the validation process for molecular models of polymer structures encountered in certain semiconductor nanomanufacturing processes. The powerful method of model plausibility as a means for selecting interaction potentials for coarse-grained models is discussed in connection with a coarse-grained hexane molecule. Discussions of how all-atom information is used to construct priors are contained in an appendix.
NASA Astrophysics Data System (ADS)
Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo
2015-11-01
Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively implement neighbourhood-based link prediction entirely in the bipartite domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.
Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M
2016-09-21
We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.
Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.
[Selection of distance thresholds of urban forest landscape connectivity in Shenyang City].
Liu, Chang-fu; Zhou, Bin; He, Xing-yuan; Chen, Wei
2010-10-01
By using the QuickBird remote sensing image interpretation data of urban forests in Shenyang City in 2006, and with the help of geographical information system, this paper analyzed the landscape patches of the urban forests in the area inside the third ring-road of Shenyang. Based on the habitat availability and the dispersal potential of animal and plant species, 8 distance thresholds (50, 100, 200, 400, 600, 800, 1000, and 1200 m) were selected to compute the integral index of connectivity, probability of connectivity, and important value of the landscape patches, and the computed values were used for analyzing and screening the distance thresholds of urban forest landscape connectivity in the City. The results showed that the appropriate distance thresholds of the urban forest landscape connectivity in Shenyang City in 2006 ranged from 100 to 400 m, with 200 m being most appropriate. It was suggested that the distance thresholds should be increased or decreased according to the performability of urban forest landscape connectivity and the different demands for landscape levels.
NASA Technical Reports Server (NTRS)
Cohen, W.
1973-01-01
After a review of the work of the late-Fifties on free radicals for propulsion, it is concluded that atomic hydrogen would provide a potentially large increase in specific impulse. Work conducted to find an approach for isolating atomic hydrogen is considered. Other possibilities for obtaining propellants of greatly increased capability might be connected with the technology for the generation of activated states of gases, metallic hydrogen, fuels obtained from other planets, and laser transfer of energy.
2-Methyl-2-phenyl-1-(pyrrolidin-1-yl)propan-1-one.
Ren, Dong-Mei
2013-05-01
In the title compound, C14H19NO, the dihedral angle between the benzene ring and the plane of the amide group is 80.6 (1)°. In the crystal, mol-ecules are connected via weak C-H⋯O hydrogen bonds, forming chains along the c-axis direction. The conformation of the five-memebred ring is an envelope, with one of the ring C atoms adjacent to the ring N atom as the flap atom.
Prediction of individual brain maturity using fMRI.
Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L
2010-09-10
Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.
Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures
Lim, Joonwon; Narayan Maiti, Uday; Kim, Na-Young; Narayan, Rekha; Jun Lee, Won; Sung Choi, Dong; Oh, Youngtak; Min Lee, Ju; Yong Lee, Gil; Hun Kang, Seok; Kim, Hyunwoo; Kim, Yong-Hyun; Ouk Kim, Sang
2016-01-01
Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of −85° of phase angle at 120 Hz. PMID:26796993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, S.N.; Buldakov, L.A.; Ternovsky, I.A.
Effects of radiation, chemical, and social factors on the level of disease incidence of populations in the vicinity of the atomic industry plant releases from Production association-{open_quotes}Mayak{close_quotes} was considered. The regressional equations have been received on the basis of connection of the disease with chemical and social factors. No significant connection with radiation factors have been found.
NASA Astrophysics Data System (ADS)
Schwarz, Michael; Wendorff, Marco; Röhr, Caroline
2012-12-01
The title compounds Ba3ZnHg10 and BaZn0.6Hg3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba3ZnHg10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 44 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl4. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn0.6Hg3.4 (cubic, cI320, space group I4bar3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba3ZnHg10, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6)4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4)2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb3Hg20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds.
Factoring the brain signatures of anesthesia concentration and level of arousal across individuals.
Barttfeld, Pablo; Bekinschtein, Tristan A; Salles, Alejo; Stamatakis, Emmanuel A; Adapa, Ram; Menon, David K; Sigman, Mariano
2015-01-01
Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants' level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex.
Factoring the brain signatures of anesthesia concentration and level of arousal across individuals
Barttfeld, Pablo; Bekinschtein, Tristan A.; Salles, Alejo; Stamatakis, Emmanuel A.; Adapa, Ram; Menon, David K.; Sigman, Mariano
2015-01-01
Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants’ level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex. PMID:26509121
Connected Au network in annealed Ni/Au thin films on p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. P.; Jang, H. W.; Noh, D. Y.
2007-11-12
We report the formation of a connected Au network in annealed Ni/Au thin films on p-GaN, which was studied by scanning electron microscopy, transmission electron microscopy, and synchrotron x-ray diffraction. As the Ni was oxidized into NiO upon annealing at 530 deg. C in air, the Au layer was transformed to an interconnected network with an increased thickness. During annealing, Ni atoms diffuse out onto the Au through defects to form NiO, while Au atoms replace the Ni positions. The Au network grows downward until it reaches the p-GaN substrate, and NiO columns fill the space between the Au network.
Compactness Aromaticity of Atoms in Molecules
Putz, Mihai V.
2010-01-01
A new aromaticity definition is advanced as the compactness formulation through the ratio between atoms-in-molecule and orbital molecular facets of the same chemical reactivity property around the pre- and post-bonding stabilization limit, respectively. Geometrical reactivity index of polarizability was assumed as providing the benchmark aromaticity scale, since due to its observable character; with this occasion new Hydrogenic polarizability quantum formula that recovers the exact value of 4.5 a03 for Hydrogen is provided, where a0 is the Bohr radius; a polarizability based–aromaticity scale enables the introduction of five referential aromatic rules (Aroma 1 to 5 Rules). With the help of these aromatic rules, the aromaticity scales based on energetic reactivity indices of electronegativity and chemical hardness were computed and analyzed within the major semi-empirical and ab initio quantum chemical methods. Results show that chemical hardness based-aromaticity is in better agreement with polarizability based-aromaticity than the electronegativity-based aromaticity scale, while the most favorable computational environment appears to be the quantum semi-empirical for the first and quantum ab initio for the last of them, respectively. PMID:20480020
Financial networks based on Granger causality: A case study
NASA Astrophysics Data System (ADS)
Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees
2017-09-01
Connectivity analysis is performed on a long financial record of 21 international stock indices employing a linear and a nonlinear causality measure, the conditional Granger causality index (CGCI) and the partial mutual information on mixed embedding (PMIME), respectively. Both measures aim to specify the direction of the interrelationships among the international stock indexes and portray the links of the resulting networks, by the presence of direct couplings between variables exploiting all available information. However, their differences are assessed due to the presence of nonlinearity. The weighted networks formed with respect to the causality measures are transformed to binary ones using a significance test. The financial networks are formed on sliding windows in order to examine the network characteristics and trace changes in the connectivity structure. Subsequently, two statistical network quantities are calculated; the average degree and the average shortest path length. The empirical findings reveal interesting time-varying properties of the constructed network, which are clearly dependent on the nature of the financial cycle.
Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry
NASA Astrophysics Data System (ADS)
Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel
2016-05-01
Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.
Significance of structural changes in proteins: expected errors in refined protein structures.
Stroud, R. M.; Fauman, E. B.
1995-01-01
A quantitative expression key to evaluating significant structural differences or induced shifts between any two protein structures is derived. Because crystallography leads to reports of a single (or sometimes dual) position for each atom, the significance of any structural change based on comparison of two structures depends critically on knowing the expected precision of each median atomic position reported, and on extracting it for each atom, from the information provided in the Protein Data Bank and in the publication. The differences between structures of protein molecules that should be identical, and that are normally distributed, indicating that they are not affected by crystal contacts, were analyzed with respect to many potential indicators of structure precision, so as to extract, essentially by "machine learning" principles, a generally applicable expression involving the highest correlates. Eighteen refined crystal structures from the Protein Data Bank, in which there are multiple molecules in the crystallographic asymmetric unit, were selected and compared. The thermal B factor, the connectivity of the atom, and the ratio of the number of reflections to the number of atoms used in refinement correlate best with the magnitude of the positional differences between regions of the structures that otherwise would be expected to be the same. These results are embodied in a six-parameter equation that can be applied to any crystallographically refined structure to estimate the expected uncertainty in position of each atom. Structure change in a macromolecule can thus be referenced to the expected uncertainty in atomic position as reflected in the variance between otherwise identical structures with the observed values of correlated parameters. PMID:8563637
A new scale of electronegativity based on electrophilicity index.
Noorizadeh, Siamak; Shakerzadeh, Ehsan
2008-04-17
By calculating the energies of neutral and different ionic forms (M2+, M+, M, M-, and M2-) of 32 elements (using B3LYP/6-311++G** level of theory) and taking energy (E) to be a Morse-like function of the number of electrons (N), the electrophilicity values (omega) are calculated for these atoms. The obtained electrophilicities show a good linearity with some commonly used electronegativity scales such as Pauling and Allred-Rochow. Using these electrophilicities, the ionicities of some diatomic molecules are calculated, which are in good agreement with the experimental data. Therefore, these electrophilicities are introduced as a new scale for atomic electronegativity, chi(omega)0. The same procedure is also performed for some simple polyatomic molecules. It is shown that the new scale successfully obeys Sanderson's electronegativity equalization principle and for those molecules which have the same number of atoms, the ratio of the change in electronegativity during the formation of a molecule from its elements to the molecular electronegativity (Delta chi/chi omega) is the same.
Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry
NASA Astrophysics Data System (ADS)
Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael
2014-10-01
Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.
1978 bibliography of atomic and molecular processes. [Bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.
1979 bibliography of atomic and molecular processes. [Bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.
Material platforms for spin-based photonic quantum technologies
NASA Astrophysics Data System (ADS)
Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg
2018-05-01
A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung
Here, Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Additionally, using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3X 4 can be a good candidatemore » as a rare-earth-free permanent magnet and Fe 3X 4 can be a magnetic nodal-line topological material.« less
Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; ...
2017-11-13
Here, Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Additionally, using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3X 4 can be a good candidatemore » as a rare-earth-free permanent magnet and Fe 3X 4 can be a magnetic nodal-line topological material.« less
Connectivity from source to sink in a lowland area: the Loire river basin (France)
NASA Astrophysics Data System (ADS)
Gay, Aurore; Cerdan, Olivier; Degan, Francesca; Salvador, Sebastien
2014-05-01
Sediment connectivity relates to the transfer of sediments from sources to sinks via runoff and in channel transport. It is highly dependent on spatial variability of landscape properties such as differences in morphology, land use and infiltration/runoff characteristics but may also vary in time due to differences in rainfall amount/intensity and changes in vegetation cover throughout the year. In the Loire river basin, we found that sediment fluxes displayed strong variations in space but also at the interannual and seasonnal time scales (Gay et al. 2013). In this context, our goal is to better understand and quantify hillslope sediment redistributions within this lowland area thanks to the use of semi distributed connectivity approach. To this aim, Borselli's index of connectivity (IC, Borselli et al., 2008) is selected to assess hillslope connectivity at annual and seasonal time scales. Several improvements are proposed to take into account the coupling of the structural landscape connectivity and its hydrosedimentary response. Parameters such as rainfall intensity and differences in seasonal land cover are integrated into the model to account for landscape variations through time. Infiltration and runoff indices were also tested. Preliminary results confirm the variability of landscape connectivity throughout the year. The integration of the index of infiltration and runoff properties of landscape (IDPR) as defined by Mardhel et al. 2004 seems to improve the IC model outputs. From this first step, in-stream sediment connectivity index should be developed for a better understanding and assessment of sediment redistributions at the entire catchment scale. L. Borselli L., Cassi P., Torri D. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75 (2008), pp. 268-277 Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Mardhel V., Frantar P., Uhan J., Mio A. Index of development and persistence of the river networks as a component of regional groundwater vulnerability assessment in Slovenia.Int. Conf. groundwater vulnerability assessment and mapping. Ustron, Poland, 15-18 June 2004.
NASA Astrophysics Data System (ADS)
Leleyter, M.; Olivi-Tran, N.
2008-12-01
We studied in tight-binding approximation involving spν hybridization (ν=2,3), some Si2Cn (n=3 to 42) microclusters. We then investigated, on one hand, fragments of fullerene-like structures (sp2), and on the other hand, nanodiamonds (sp3) of adamantane-type or a 44-atom nanodiamond (with 2 inner atoms which are assumed to play the role of bulk atoms). We compared the stabilities, i.e. the electronic energies of these clusters, according to the various positions of the 2 Si atoms. Results are very different in the two kinds of hybridization. Besides, they can be analysed according to two different points of view: either the clusters are considered as small particles with limited sizes, or they are assumed to be used as models in order to simulate the Si-atom behaviour in very larger systems. In sp2 hybridization (fullerene-like geometries), the most stable isomer is always encountered when the 2 Si atoms build a Si2 group, and this result holds for both viewpoints quoted above. Conversely, in sp3 hybridization (nanodiamonds), since Si atoms “prefer” sites having the minimum connectivity, they are never found in adjacent sites. We see that with a simple and fast computational method we can explain an experimental fact which is very interesting such as the relative position of two heteroatoms in the cluster. This enhances the generality and the fecondity in the tight binding approximation due essentially to the link between this model and the graph theory, link based on the topology of the clusters.
Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy
NASA Astrophysics Data System (ADS)
Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.
2016-02-01
The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.
The connection Between Plasma Protein Binding and Acute Toxicity as Determined by the LD50 Value.
Svennebring, Andreas
2016-02-01
Preclinical Research A dataset of three drug classes (acids, bases, and neutrals) with LD50 values in mice was analysed to investigate a possible connection between high plasma protein binding and acute toxicity. Initially, it was found that high plasma protein binding was associated with toxicity for acids and neutrals, but after compensating for differences in lipophilicity, plasma protein binding was found not to be associated with toxicity. The therapeutic index established by the quotient between mouse LD50 and the defined daily dose was unaffected by both lipophilicity and plasma protein binding. © 2015 Wiley Periodicals, Inc.
Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R
2017-07-01
Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun
2016-08-15
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.
NASA Astrophysics Data System (ADS)
Spence, C. M.; Brown, C.; Doss-Gollin, J.
2016-12-01
Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.
Akiki, Teddy J; Averill, Christopher L; Wrocklage, Kristen M; Scott, J Cobb; Averill, Lynnette A; Schweinsburg, Brian; Alexander-Bloch, Aaron; Martini, Brenda; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G
2018-08-01
Disruption in the default mode network (DMN) has been implicated in numerous neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). However, studies have largely been limited to seed-based methods and involved inconsistent definitions of the DMN. Recent advances in neuroimaging and graph theory now permit the systematic exploration of intrinsic brain networks. In this study, we used resting-state functional magnetic resonance imaging (fMRI), diffusion MRI, and graph theoretical analyses to systematically examine the DMN connectivity and its relationship with PTSD symptom severity in a cohort of 65 combat-exposed US Veterans. We employed metrics that index overall connectivity strength, network integration (global efficiency), and network segregation (clustering coefficient). Then, we conducted a modularity and network-based statistical analysis to identify DMN regions of particular importance in PTSD. Finally, structural connectivity analyses were used to probe whether white matter abnormalities are associated with the identified functional DMN changes. We found decreased DMN functional connectivity strength to be associated with increased PTSD symptom severity. Further topological characterization suggests decreased functional integration and increased segregation in subjects with severe PTSD. Modularity analyses suggest a spared connectivity in the posterior DMN community (posterior cingulate, precuneus, angular gyrus) despite overall DMN weakened connections with increasing PTSD severity. Edge-wise network-based statistical analyses revealed a prefrontal dysconnectivity. Analysis of the diffusion networks revealed no alterations in overall strength or prefrontal structural connectivity. DMN abnormalities in patients with severe PTSD symptoms are characterized by decreased overall interconnections. On a finer scale, we found a pattern of prefrontal dysconnectivity, but increased cohesiveness in the posterior DMN community and relative sparing of connectivity in this region. The DMN measures established in this study may serve as a biomarker of disease severity and could have potential utility in developing circuit-based therapeutics. Published by Elsevier Inc.
Time-dependence of graph theory metrics in functional connectivity analysis
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
2016-01-01
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632
Time-dependence of graph theory metrics in functional connectivity analysis.
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M
2016-01-15
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
NASA Astrophysics Data System (ADS)
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.
Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L
2017-06-15
The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.
Embedded-atom-method interatomic potentials from lattice inversion.
Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu
2010-09-22
The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.
The oral-systemic disease connection: a retrospective study.
Joseph, Bobby K; Kullman, Leif; Sharma, Prem N
2016-11-01
The study aimed at determining the association between oral disease and systemic health based on panoramic radiographs and general health of patients treated at Kuwait University Dental Center. The objective was to determine whether individuals exhibiting good oral health have lower propensity to systemic diseases. A total of 1000 adult patients treated at Kuwait University Dental Center were randomly selected from the patient's records. The general health of patients was assessed from the medical history of each patient recorded during their visit to the clinic. The number of reported diseases and serious symptoms were used to develop a medical index. The oral health of these patients was assessed from panoramic radiographs to create an oral index by evaluating such parameters as caries, periodontitis, periapical lesions, pericoronitis, and tooth loss. In a total of 887 patients, 43.8 % had an oral index between 3 and 8, of which significantly higher (62.1 %) patients were with medical conditions compared to those without (33.2 %; p < 0.001). The Spearmans's correlation (rho') revealed a positive correlation (rho' = 0.360, p 0.001) between oral and medical index. Partial correlation, while controlling demographics, gender, nationality, and age, also showed a significant positive correlation (p < 0.001) between medical and oral index. The findings of this study showed a significant association between oral health and general health and confirmed the findings of previous reports as regards the existing correlation between dental infections and medical disorders. These results are not indicative of a causal relationship when the diagnosis of oral disease was based primarily on radiographic findings. Future research needs to include prospective clinical and interventional studies. The significance of the oral-systemic disease connection highlights the importance of preventing and treating oral disease which have profound medical implications on general health.
Park, Daejin; Cho, Jeonghun
2014-01-01
A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.
NASA Astrophysics Data System (ADS)
Raju, Subramanian; Saibaba, Saroja
2016-09-01
The enthalpy of formation Δo H f is an important thermodynamic quantity, which sheds significant light on fundamental cohesive and structural characteristics of an alloy. However, being a difficult one to determine accurately through experiments, simple estimation procedures are often desirable. In the present study, a modified prescription for estimating Δo H f L of liquid transition metal alloys is outlined, based on the Macroscopic Atom Model of cohesion. This prescription relies on self-consistent estimation of liquid-specific model parameters, namely electronegativity ( ϕ L) and bonding electron density ( n b L ). Such unique identification is made through the use of well-established relationships connecting surface tension, compressibility, and molar volume of a metallic liquid with bonding charge density. The electronegativity is obtained through a consistent linear scaling procedure. The preliminary set of values for ϕ L and n b L , together with other auxiliary model parameters, is subsequently optimized to obtain a good numerical agreement between calculated and experimental values of Δo H f L for sixty liquid transition metal alloys. It is found that, with few exceptions, the use of liquid-specific model parameters in Macroscopic Atom Model yields a physically consistent methodology for reliable estimation of mixing enthalpies of liquid alloys.
The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities.
Pedruski, Michael T; Arnott, Shelley E
2011-05-01
Habitat connectivity and regional heterogeneity represent two factors likely to affect biodiversity across different spatial scales. We performed a 3 × 2 factorial design experiment to investigate the effects of connectivity, heterogeneity, and their interaction on artificial pond communities of freshwater invertebrates at the local (α), among-community (β), and regional (γ) scales. Despite expectations that the effects of connectivity would depend on levels of regional heterogeneity, no significant interactions were found for any diversity index investigated at any spatial scale. While observed responses of biodiversity to connectivity and heterogeneity depended to some extent on the diversity index and spatial partitioning formula used, the general pattern shows that these factors largely act at the β scale, as opposed to the α or γ scales. We conclude that the major role of connectivity in aquatic invertebrate communities is to act as a homogenizing force with relatively little effect on diversity at the α or γ levels. Conversely, heterogeneity acts as a force maintaining differences between communities.
A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum
ERIC Educational Resources Information Center
Bopegedera, A. M. R. P.
2011-01-01
A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…
One Photon Can Simultaneously Excite Two or More Atoms.
Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore
2016-07-22
We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.
Atomic-scale reversibility in sheared glasses
NASA Astrophysics Data System (ADS)
Fan, Meng; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey
Systems become irreversible on a macroscopic scale when they are sheared beyond the yield strain and begin flowing. Using computer simulations of oscillatory shear, we investigate atomic scale reversibility. We employ molecular dynamics simulations to cool binary Lennard-Jones liquids to zero temperature over a wide range of cooling rates. We then apply oscillatory quasistatic shear at constant pressure to the zero-temperature glasses and identify neighbor-switching atomic rearrangement events. We determine the critical strain γ*, beyond which atoms in the system do not return to their original positions upon reversing the strain. We show that for more slowly cooled glasses, the average potential energy is lower and the typical size of atomic rearrangements is smaller, which correlates with larger γ*. Finally, we connect atomic- and macro-scale reversibility by determining the number of and correlations between the atomic rearrangements that occur as the system reaches the yield strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X. M.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Yu, Q.
The atomic structures of Al{sub 89}Y{sub 11}, Al{sub 90}Y{sub 6.5}La{sub 3.5}, and Al{sub 82.8}Y{sub 6.07}Ni{sub 8}La{sub 3.13} metallic glasses have been studied by using high energy X-ray diffraction, X-ray absorption fine structure combined with the ab initio molecular dynamics and reverse Monte Carlo simulations. It is demonstrated that the partial replacement of Y atoms by La has limited improvement of the glass forming ability (GFA), although La atoms reduce the ordering around Y atoms and also the fractions of icosahedron-like polyhedra centered by Al atoms. In contrast, Ni atoms can significantly improve the GFA, which are inclined to locate inmore » the shell of polyhedra centered by Al, Y, and La atoms, mainly forming Ni-centered icosahedron-like polyhedra to enhance the spatial connectivity between clusters and suppress the crystallization.« less
Inductively guided circuits for ultracold dressed atoms
Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.
2014-01-01
Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163
Ouyang, Yongzhong; Ye, Fei; Liang, Yizeng
2009-08-07
To further extend the EEM approach to improve its accuracy, a new approach, in which the different connectivities and hybridized states are introduced to represent the different chemical environments, has been developed. The C, O and N atoms are distinguished between different hybridized states. Different states of hydrogen atoms are defined according to their different connectivities. Furthermore, the sp(2) carbons in the aromatic rings are also separated from the other sp(2) carbons. Geometries and NPA charges are calculated at the B3LYP/6-31G* level, and the effective electronegativity and hardness values could be calibrated with the help of a training set of 141 organic molecules using the Differential Evolution (DE) algorithm. The quality of the modified EEM charges is evaluated by comparison with the B3LYP/6-31G* charges calculated for a series of polypeptides, not contained in the training set. For further comparison, the atomic parameters of the original EEM without including chemical environments are recalibrated under the same conditions. It is found that the accuracy of the modified EEM method improves significantly as compared to that of the original EEM method.
Atomic and Molecular Databases, VAMDC (Virtual Atomic and Molecular Data Centre)
NASA Astrophysics Data System (ADS)
Dubernet, Marie-Lise; Zwölf, Carlo Maria; Moreau, Nicolas; Awa Ba, Yaya; VAMDC Consortium
2015-08-01
The "Virtual Atomic and Molecular Data Centre Consortium",(VAMDC Consortium, http://www.vamdc.eu) is a Consortium bound by an Memorandum of Understanding aiming at ensuring the sustainability of the VAMDC e-infrastructure. The current VAMDC e-infrastructure inter-connects about 30 atomic and molecular databases with the number of connected databases increasing every year: some databases are well-known databases such as CDMS, JPL, HITRAN, VALD,.., other databases have been created since the start of VAMDC. About 90% of our databases are used for astrophysical applications. The data can be queried, retrieved, visualized in a single format from a general portal (http://portal.vamdc.eu) and VAMDC is also developing standalone tools in order to retrieve and handle the data. VAMDC provides software and support in order to include databases within the VAMDC e-infrastructure. One current feature of VAMDC is the constrained environnement of description of data that ensures a higher quality for distribution of data; a future feature is the link of VAMDC with evaluation/validation groups. The talk will present the VAMDC Consortium and the VAMDC e infrastructure with its underlying technology, its services, its science use cases and its etension towards other communities than the academic research community.
Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Johansson, Göran; Nori, Franco
2018-04-01
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.
Kockum, Anton Frisk; Johansson, Göran; Nori, Franco
2018-04-06
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
Fritsch, Julia; Rose, Marcus; Wollmann, Philipp; Böhlmann, Winfried; Kaskel, Stefan
2010-01-01
We present new element organic frameworks based on Sn, Sb and Bi atoms connected via organic linkers by element-carbon bonds. The open frameworks are characterized by specific surface areas (BET) of up to 445 m2 g-1 and a good stability under ambient conditions resulting from a highly hydrophobic inner surface. They show good performance as heterogeneous catalysts in the cyanosylilation of benzaldehyde as a test reaction. Due to their catalytic activity, this class of materials might be able to replace common homogeneous element-organic and often highly toxic catalysts especially in the food industry.
Quantum oscillation and the Aharonov-Bohm effect in a multiply connected normal-conductor loop
NASA Astrophysics Data System (ADS)
Takai, Daisuke; Ohta, Kuniichi
1994-12-01
The magnetostatic and electrostatic Aharonov-Bohm (AB) effects in multiply connected normal-conductor rings are studied. A previously developed model of a single mesoscopic ring is generalized to include an arbitrary number of rings, and the oscillatory behavior of the total transmission coefficients for the serially connected N (N is equal to integer) rings are derived as a function of the magnetic flux threading each ring and as a function of the electrostatic potential applied to the rings. It is shown that quantum oscillation of multiple rings exhibits greater variety of behavior than in periodic superlattices. We investigate the influence of the scattering at a junction and the number of atoms in the ring in both magnetostatic and electrostatic oscillation of multiring systems. For the electrostatic AB effects, when scattering occurs at the junctions between the connecting wire and the ring, the conductance in the AB oscillation is modified to an N-1 peaked shape. It is shown that this oscillatory behavior is greatly influenced by the number of atoms in the ring and is controlled by the electrostatic potential or magnetic flux that is applied to the ring. We discuss the behavior of the quantum oscillations upon varying the number of connected rings and the number of minibands.
Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.
Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia
2015-01-01
In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ning; Jiang, Dingding; Pan, Qiliang; Zhao, Jianguo; Zhang, Sufang; Xing, Baoyan; Du, Yaqin; Zhang, Zhong; Liu, Shuxia
2018-05-01
Two enantiomerically 3D chiral polyoxometalate frameworks L,D-[K(H2O)]6[H2GeMo2W10O40]3ṡ40H2O (1a and 1b), were conventionally synthesized and characterized by X-ray single-crystal diffraction, IR spectrum, elemental analysis, powder X-ray diffraction, thermogravimetric analysis, UV-Vis spectroscopy, circular dichroism spectra. Structural analysis indicates that 1a and 1b are enantiomers. The terminal O and μ2-O atoms of Keggin-type polyanion [GeMo2W10O40]4- and {K(H2O)}n segments are connected one another to form 1D chiral helical chains, which are further extended by the achiral Keggin-type [GeMo2W10O40]4- anion to construct 3D 4,8-connected chiral frameworks. The enantiomers were isolated by spontaneous resolution during crystallization without any chiral auxiliary. They represent rare examples of enantiomerically pure chiral polyoxometalate-based inorganic porous frameworks.
Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process
Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana
2012-01-01
The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295
NASA Astrophysics Data System (ADS)
Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao
2016-03-01
From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.
NASA Astrophysics Data System (ADS)
Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Kong, Qingzhao; Mousavi, Reza; Song, Gangbing
2016-08-01
Bolted joints are ubiquitous structural elements, and form critical connections in mechanical and civil structures. As such, loosened bolted joints may lead to catastrophic failures of these structures, thus inspiring a growing interest in monitoring of bolted joints. A novel energy based wave method is proposed in this study to monitor the axial load of bolted joint connections. In this method, the time reversal technique was used to focus the energy of a piezoelectric (PZT)-generated ultrasound wave from one side of the interface to be measured as a signal peak by another PZT transducer on the other side of the interface. A tightness index (TI) was defined and used to correlate the peak amplitude to the bolt axial load. The TI bypasses the need for more complex signal processing required in other energy-based methods. A coupled, electro-mechanical analysis with elasto-plastic finite element method was used to simulate and analyze the PZT based ultrasonic wave propagation through the interface of two steel plates connected by a single nut and bolt connection. Numerical results, backed by experimental results from testing on a bolted connection between two steel plates, revealed that the peak amplitude of the focused signal increases as the bolt preload (torque level) increases due to the enlarging true contact area of the steel plates. The amplitude of the focused peak saturates and the TI reaches unity as the bolt axial load reaches a threshold value. These conditions are associated with the maximum possible true contact area between the surfaces of the bolted connection.
Groundwater similarity across a watershed derived from time-warped and flow-corrected time series
NASA Astrophysics Data System (ADS)
Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.
2017-05-01
Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.
Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan
2014-08-14
In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.
Image fusion based on Bandelet and sparse representation
NASA Astrophysics Data System (ADS)
Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi
2018-04-01
Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.
Zou, Yi; Chakravarty, Swapnajit; Zhu, Liang; Chen, Ray T.
2014-01-01
We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat transmission over the entire guided mode spectrum and clear multi-resonance peaks corresponding to individual microcavities that are connected in series. Series connected photonic crystal microcavities are further multiplexed in parallel using cascaded multimode interference power splitters to generate a high density silicon nanophotonic microarray comprising 64 photonic crystal microcavity sensors, all of which are interrogated simultaneously at the same instant of time. PMID:25316921
NASA Astrophysics Data System (ADS)
Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping
2017-08-01
In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.
Computing the Ediz eccentric connectivity index of discrete dynamic structures
NASA Astrophysics Data System (ADS)
Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei
2017-06-01
From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.
PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS
NASA Technical Reports Server (NTRS)
Beratan, D. N.
1994-01-01
The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the distribution. The main memory requirement for execution is 2.6 Mb. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution) or on a TK50 tape cartridge. PATHWAYS was developed in 1988. PATHWAYS is a copyrighted work with all copyright vested in NASA. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. BIOGRAF is a trademark of Molecular Simulations, Inc., Sunnyvale, CA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergienko, V. S., E-mail: sergienko@igic.ras.ru; Martsinko, E. E.; Seifullina, I. I.
The synthesis and X-ray diffraction study of compound ([Ag{sub 2}Ge(HCit){sub 2}(H{sub 2}O){sub 2}] ∙ 2H{sub 2}O){sub n}, where H{sub 4}Cit is the citric acid, are performed. In the polymeric structure, the HCit{sup 3–} ligand fulfils the tetradentate chelate–μ{sub 4}-bridging (3Ag, Ge) function (tridentate with respect to Ge and Ag atoms). The Ge atom is octahedrally coordinated by six O atoms of two HCit{sup 3–}ligands. The coordination polyhedron of the Ag atom is an irregular five-vertex polyhedron [four O atoms of four HCit{sup 3–} ligands and the O(H{sub 2}O) atom]. An extended system of O–H···O hydrogen bonds connects complex molecules intomore » a supramolecular 3D-framework.« less
Link prediction based on local weighted paths for complex networks
NASA Astrophysics Data System (ADS)
Yao, Yabing; Zhang, Ruisheng; Yang, Fan; Yuan, Yongna; Hu, Rongjing; Zhao, Zhili
As a significant problem in complex networks, link prediction aims to find the missing and future links between two unconnected nodes by estimating the existence likelihood of potential links. It plays an important role in understanding the evolution mechanism of networks and has broad applications in practice. In order to improve prediction performance, a variety of structural similarity-based methods that rely on different topological features have been put forward. As one topological feature, the path information between node pairs is utilized to calculate the node similarity. However, many path-dependent methods neglect the different contributions of paths for a pair of nodes. In this paper, a local weighted path (LWP) index is proposed to differentiate the contributions between paths. The LWP index considers the effect of the link degrees of intermediate links and the connectivity influence of intermediate nodes on paths to quantify the path weight in the prediction procedure. The experimental results on 12 real-world networks show that the LWP index outperforms other seven prediction baselines.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2014-11-01
In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.
NASA Astrophysics Data System (ADS)
Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid
2017-08-01
The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.
Chemistry explained by topology: an alternative approach.
Galvez, Jorge; Villar, Vincent M; Galvez-Llompart, Maria; Amigó, José M
2011-05-01
Molecular topology can be considered an application of graph theory in which the molecular structure is characterized through a set of graph-theoretical descriptors called topological indices. Molecular topology has found applications in many different fields, particularly in biology, chemistry, and pharmacology. The first topological index was introduced by H. Wiener in 1947 [1]. Although its very first application was the prediction of the boiling points of the alkanes, the Wiener index has demonstrated since then a predictive capability far beyond that. Along with the Wiener index, in this paper we focus on a few pioneering topological indices, just to illustrate the connection between physicochemical properties and molecular connectivity.
NASA Astrophysics Data System (ADS)
Abdul-Majeed, Wameath Sh
This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time analysis as well as a possibility of connecting the proposed device to control loops..
Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study
Krupski, Katarzyna; Moors, Marco; Jóźwik, Paweł; Kobiela, Tomasz; Krupski, Aleksander
2015-01-01
Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations have been used to investigate the atomic and electronic structure of gold deposited (between 0.8 and 1.0 monolayer) on the Pt(111) face in ultrahigh vacuum at room temperature. The analysis of LEED and STM measurements indicates two-dimensional growth of the first Au monolayer. Change of the measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. Based on DFT, the distance between the nearest atoms in the case of bare Pt(111) and Au/Pt(111) surface is equal to 2.83 Å, which gives 1% difference in comparison with STM values. The first and second interlayer spacing of the clean Pt(111) surface are expanded by +0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on the Pt(111) surface is dependent on the adsorption position, and there is a preference for a hollow fcc site. For the Au/Pt(111) surface, the top interlayer spacing is expanded by +2.16% with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111) system below the Fermi level connected to the interaction of Au atoms with Pt(111) surface are observed.
Molecular vibrations in metal-single-molecule-metal junctions
NASA Astrophysics Data System (ADS)
Yokota, Kazumichi; Taniguchi, Masateru; Kawai, Tomoji
2010-03-01
Molecular vibrations in a metal-single-molecule-metal junction were studied based on density functional theory using a single benzenedithiolate molecule connected between gold clusters. We found that the difference in vibrational energy between an isolated benzenedithiol and the single-molecule junction is less than 3% in the energy range above 540 cm -1, where sulfur atoms contribute little to molecular vibrations. The finding implies that we can predict the peak energy in the inelastic electron tunneling spectrum of the single-molecule junction in the high energy range by vibrational analyses of isolated molecules.
1984 Bibliography of atomic and molecular processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.
1985-04-01
This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.
1982 bibliography of atomic and molecular processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.
1984-05-01
This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.
Chandralekha, Kuppan; Gavaskar, Deivasigamani; Sureshbabu, Adukamparai Rajukrishnan; Lakshmi, Srinivasakannan
2016-03-01
In the title compound, C36H31NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace-naphthyl-ene and cyclo-hexa-none rings. The cyclo-hexa-none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace-naphthylen-1-one ring system adopts a flattened envelope conformation with the ketonic C atom as flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo-hexa-none ring assumes a boat conformation. Three intra-molecular C-H⋯O hydrogen bonds involving both ketonic O atoms as acceptors are present. In the crystal, C-H⋯O hydrogen bonds connect centrosymmetrically related mol-ecule into chains parallel to the b axis, forming rings of R 2 (2)(10)and R 2 (2)(8) graph-set motifs.
Creating a Student Price Index. Lesson Plan.
ERIC Educational Resources Information Center
Lewin, Roland
This lesson plan gives students a hands-on understanding of a price index, how it is composed, what it is used for, and some of its limitations. Students then can make the connection to some of the popular price indices such as the Consumer Price Index and the Producer Price Index. The lesson states a purpose; cites learning objectives; suggests…
PDBToSDF: Create ligand structure files from PDB file.
Muppalaneni, Naresh Babu; Rao, Allam Appa
2011-01-01
Protein Data Bank (PDB) file contains atomic data for protein and ligand in protein-ligand complexes. Structure data file (SDF) contains data for atoms, bonds, connectivity and coordinates of molecule for ligands. We describe PDBToSDF as a tool to separate the ligand data from pdb file for the calculation of ligand properties like molecular weight, number of hydrogen bond acceptors, hydrogen bond receptors easily.
Tzou, An-Jye; Chu, Kuo-Hsiung; Lin, I-Feng; Østreng, Erik; Fang, Yung-Sheng; Wu, Xiao-Peng; Wu, Bo-Wei; Shen, Chang-Hong; Shieh, Jia-Ming; Yeh, Wen-Kuan; Chang, Chun-Yen; Kuo, Hao-Chung
2017-12-01
We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N 2 -based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H 2 /NH 3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th ), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.
Energy levels of double triangular graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, F. X.; Jiang, Z. T., E-mail: ztjiang616@hotmail.com; Zhang, H. Y.
2014-09-28
We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection ismore » inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.« less
Matter, energy, and heat transfer in a classical ballistic atom pump.
Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B
2014-11-01
A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.
Validation and extraction of molecular-geometry information from small-molecule databases.
Long, Fei; Nicholls, Robert A; Emsley, Paul; Graǽulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Murshudov, Garib N
2017-02-01
A freely available small-molecule structure database, the Crystallography Open Database (COD), is used for the extraction of molecular-geometry information on small-molecule compounds. The results are used for the generation of new ligand descriptions, which are subsequently used by macromolecular model-building and structure-refinement software. To increase the reliability of the derived data, and therefore the new ligand descriptions, the entries from this database were subjected to very strict validation. The selection criteria made sure that the crystal structures used to derive atom types, bond and angle classes are of sufficiently high quality. Any suspicious entries at a crystal or molecular level were removed from further consideration. The selection criteria included (i) the resolution of the data used for refinement (entries solved at 0.84 Å resolution or higher) and (ii) the structure-solution method (structures must be from a single-crystal experiment and all atoms of generated molecules must have full occupancies), as well as basic sanity checks such as (iii) consistency between the valences and the number of connections between atoms, (iv) acceptable bond-length deviations from the expected values and (v) detection of atomic collisions. The derived atom types and bond classes were then validated using high-order moment-based statistical techniques. The results of the statistical analyses were fed back to fine-tune the atom typing. The developed procedure was repeated four times, resulting in fine-grained atom typing, bond and angle classes. The procedure will be repeated in the future as and when new entries are deposited in the COD. The whole procedure can also be applied to any source of small-molecule structures, including the Cambridge Structural Database and the ZINC database.
Chemical Bonding: The Orthogonal Valence-Bond View
Sax, Alexander F.
2015-01-01
Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476
Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.
Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing
2015-02-11
A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.
A new method to derive electronegativity from resonant inelastic x-ray scattering.
Carniato, S; Journel, L; Guillemin, R; Piancastelli, M N; Stolte, W C; Lindle, D W; Simon, M
2012-10-14
Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p(-1)LUMO(1) electronic states reached after Cl 1s → LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p(z) atomic orbital contributing to the Cl 2p(3/2) molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.
Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, E. J.; He, Q.; Ghosh, S.
Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less
Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures
Moon, E. J.; He, Q.; Ghosh, S.; ...
2017-11-08
Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less
Structural properties of medium-range order in CuNiZr alloy
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei
2017-10-01
The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.
Highlighting landslides and other geomorphological features using sediment connectivity maps
NASA Astrophysics Data System (ADS)
Bossi, Giulia; Crema, Stefano; Cavalli, Marco; Marcato, Gianluca; Pasuto, Alessandro
2016-04-01
Landslide identification is usually made through interpreting geomorphological features in the field or with remote sensing imagery. In recent years, airborne laser scanning (LiDAR) has enhanced the potentiality of geomorphological investigations by providing a detailed and diffuse representation of the land surface. The development of algorithms for geomorphological analysis based on LiDAR derived high-resolution Digital Terrain Models (DTMs) is increasing. Among them, the sediment connectivity index (IC) has been used to quantify sediment dynamics in alpine catchments. In this work, maps of the sediment connectivity index are used for detecting geomorphological features and processes not exclusively related to water-laden processes or debris flows. The test area is located in the upper Passer Valley in South Tyrol (Italy). Here a 4 km2 Deep-seated Gravitational Slope Deformation (DGSD) with several secondary phenomena has been studied for years. The connectivity index was applied to a well-known study area in order to evaluate its effectiveness as an interpretative layer to assist geomorphological analysis. Results were cross checked with evidence previously identified by means of in situ investigations, photointerpretation and monitoring data. IC was applied to a 2.5 m LiDAR derived DTM using two different scenarios in order to test their effectiveness: i) IC derived on the hydrologically correct DTM; ii) IC derived on the original DTM. In the resulting maps a cluster of low-connectivity areas appears as the deformation of the DGSD induce a convexity in the central part of the phenomenon. The double crests, product of the sagging of the landslide, are extremely evident since in those areas the flow directions diverge from the general drainage pattern, which is directed towards the valley river. In the crown area a rock-slab that shows clear evidence of incumbent detachment is clearly highlighted since the maps emphasize the presence of traction trenches and reverse slope. In the second scenario, rockfall activity is more evident since the collapse path induces scars in the slope that locally are identified as flow paths, moreover the presence of the block remnants creates an obstruction (i.e., a sink) for the algorithm. On the other hand, the presence of a smaller rotational landslide at the toe of the DGSD is more detectable in the map derived from the first scenario that shows a rapid change in slope together with a high drainage concentration. An integrated approach that assists the geomorphologic analysis based on aerial images and shaded relief maps with an IC map has proven to be a valuable tool as it allows to highlight different gravitational processes.
NASA Astrophysics Data System (ADS)
Karabıyık, Hande; Sevinçek, Resul; Karabıyık, Hasan
2014-05-01
We report experimental and theoretical evidences for supramolecular aromaticity as a new concept to be widely used in researches about molecular crystals. CSD survey regarding frequently encountered resonance-assisted H-bonds (RAHBs) in formic acid, formamide, formimidamide, formic acid-formamide, and formamide-formimidamide dimers shows that supramolecular quasirings formed by RAHBs have remarkable electronic delocalization within themselves, which is reminiscent of aromaticity at supramolecular level. This study criticizes and reevaluates the validity of conventional judgment which states that ring systems formed by intermolecular H-bonds cannot be aromatic. Thus, the term aromaticity can be extended to supramolecular systems formed by RAHBs. Supramolecular aromaticity has a multi-fold nature involving both σ- and π-delocalization, and σ-delocalization through RAHBs takes on a task of compensating σ-deficiency within quasirings. Atomic composition in donor-acceptor set of the dimers is descriptive for supramolecular aromaticity. We revised bond-valence parameters for RAHBs and they suggest that hypervalent character of H atoms is more pronounced than their hypovalent character in RAHBs. The σ-delocalized bonding within H-bonded quasirings necessitates hypervalent character of H atoms. Quantum chemical calculations based on adiabatic Hydrogen Atom Transfer (HAT) between the monomers reveal that topological parameters at ring critical points (RCPs) of the quasirings correlate well with Shannon's entropic aromaticity index. The presence of additional LP orbital on O atoms implying more diffused LP-orbitals in donor-acceptor set leads to the formation of resonance-disabling states reducing supramolecular aromaticity of a quasiring and energetic cost of the electron transfer between the monomers. There is a nonignorable electron transfer between the monomers even in the cases where H atoms are close to donor or acceptor atom. NBO analyses have revealed that formally vacant LP* orbitals on H-atoms in TS geometries mediate intermolecular electron transfer as a result of the hyperconjugative stereoelectronic interactions.
Computer-Aided Engineering Of Cabling
NASA Technical Reports Server (NTRS)
Billitti, Joseph W.
1989-01-01
Program generates data sheets, drawings, and other information on electrical connections. DFACS program, centered around single data base, has built-in menus providing easy input of, and access to, data for all personnel involved in system, subsystem, and cabling. Enables parallel design of circuit-data sheets and drawings of harnesses. Also recombines raw information to generate automatically various project documents and drawings, including index of circuit-data sheets, list of electrical-interface circuits, lists of assemblies and equipment, cabling trees, and drawings of cabling electrical interfaces and harnesses. Purpose of program to provide engineering community with centralized data base for putting in, and gaining access to, functional definition of system as specified in terms of details of pin connections of end circuits of subsystems and instruments and data on harnessing. Primary objective to provide instantaneous single point of interchange of information, thus avoiding
How does the connectivity index change through year in an agricultural catchment?
NASA Astrophysics Data System (ADS)
Cantreul, Vincent; Degré, Aurore
2017-04-01
The emerging concept of hydrological connectivity is difficult to quantify. Some indices have been proposed. The most cited is Borselli's one. It gives the advantage to visualize connectivity at watershed scale with very few inputs. But it is not a dynamic index and the resulting map is not time dependent. However, vegetation cover changes through year and possibly affects the connectivity dynamics. The objective of this poster is to show the evolution of the CI during the year looking at a few "strategic" times. Moreover, the study permits to identify a few "key locations" in the watershed, for example permanent disconnections or at the opposite constantly connected fields. The CI was calculated in a 124ha catchment (Hevillers), in the loess belt, in Belgium. Land use is agricultural with mostly cereals, sugar beets and potatoes, little area with wood, road, path or grass strip. Used weighting factor is soil loss ratio. It is between 0 and 1 and translates the protection offered to the soil by the crop. In winter (January), cereals have the most connected fields because of almost bare soils. Cover crops on sugar beets and potatoes fields decrease connectivity, except for one big field not far from the outlet. But rainfalls are generally not so erosive during this period. In spring (March and May), the cereals have a decreasing CI with plants growth covering the soil. On the opposite, sugar beets and potatoes are planted and bare soils in spring involve much higher connectivity index. The effect of grass strip is strong for sugar beet field situated uphill and underlines the importance of such mitigation measures. In summer (July), the whole watershed is much more disconnected and it does not represent the most risky part of the year in terms of erosion. The end of the year is related to harvesting and consequent bare soil in September for potatoes and November for the rest. In conclusion, the IC is an easy tool to estimate connectivity in a watershed. With the evolution during the year using soil loss ratio in the calculation, it permits to visualize dynamically the connectivity pattern and to localize erosive parts of the catchment for the crop rotation. With a global view on several years, it could be helpful to erosion managers to think about best long-term location of mitigation measures in the watershed. Key-words: hydrological connectivity index, soil loss ratio, erosion, dynamic
Atomic Spectra and the Vector Model
NASA Astrophysics Data System (ADS)
Candler, A. C.
2015-05-01
12. Displaced terms; 13. Combination of several electrons; 14. Short periods; 15. Long periods; 16. Rare earths; 17. Intensity relsations; 18. Sum rules and (jj) coupling; 19. Series limit; 20. Hyperfine structure; 21. Quadripole radiation; 22. Fluorescent crystals; Appendix 5. Key to references; Appendix 6. Bibliography; Subject index; Author index.
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry
NASA Astrophysics Data System (ADS)
Daubenmire, Paul L.
Much like a practiced linguist, expert chemists utilize the power and elegance of chemical symbols to understand what is happening at the atomic level and to manipulate atoms and molecules to effect an observable change at the macroscopic level. Unfortunately, beginning chemistry is often taught in a way that emphasizes memorizing the symbolic representations of equations and reactions without much opportunity to meaningfully connect the observable macroscopic phenomena with an understanding of the chemistry taking place at the atomic level. The compartmentalized manner of chemistry instruction in most chemistry classrooms further nullifies the efficacy of the triplet relationship to connect between macroscopic observations, symbolic representations, and atomic scale views. If symbolic representations are presented as the goal of instruction, rather than as the means to gain understanding, then students will be impaired in developing a coherent understanding of chemical principles. This dissertation describes the development and implementation of an interview study to examine how undergraduate students interpreted multiple representations of a chemical equilibrium. To establish a baseline of ideas, students first were coached to verbally generate successive representations. They were then cued to think about the chemistry occurring between atoms and ions at the molecular level. Next, an experiment involving a change in states of matter and color was performed which paralleled the symbolic representations. Through self-explanations and verbalizing of conjectures, students were encouraged to explore, interpret, and refine their understanding of the observations related to the chemical symbols presented to them. Finally, with the goal of fostering a deeper understanding of the process of equilibrium, a dynamic visualization of the molecular level was introduced as a tool for helping students connect these multiple representations. This study revealed that one way in which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.
A predictive structural model for bulk metallic glasses
Laws, K. J.; Miracle, D. B.; Ferry, M.
2015-01-01
Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667
Maggioni, Eleonora; Tana, Maria Gabriella; Arrigoni, Filippo; Zucca, Claudio; Bianchi, Anna Maria
2014-05-15
Functional Magnetic Resonance Imaging (fMRI) is used for exploring brain functionality, and recently it was applied for mapping the brain connection patterns. To give a meaningful neurobiological interpretation to the connectivity network, it is fundamental to properly define the network framework. In particular, the choice of the network nodes may affect the final connectivity results and the consequent interpretation. We introduce a novel method for the intra subject topological characterization of the nodes of fMRI brain networks, based on a whole brain parcellation scheme. The proposed whole brain parcellation algorithm divides the brain into clusters that are homogeneous from the anatomical and functional point of view, each of which constitutes a node. The functional parcellation described is based on the Tononi's cluster index, which measures instantaneous correlation in terms of intrinsic and extrinsic statistical dependencies. The method performance and reliability were first tested on simulated data, then on a real fMRI dataset acquired on healthy subjects during visual stimulation. Finally, the proposed algorithm was applied to epileptic patients' fMRI data recorded during seizures, to verify its usefulness as preparatory step for effective connectivity analysis. For each patient, the nodes of the network involved in ictal activity were defined according to the proposed parcellation scheme and Granger Causality Analysis (GCA) was applied to infer effective connectivity. We showed that the algorithm 1) performed well on simulated data, 2) was able to produce reliable inter subjects results and 3) led to a detailed definition of the effective connectivity pattern. Copyright © 2014 Elsevier B.V. All rights reserved.
Atomic structure and dynamics properties of Cu50Zr50 films
NASA Astrophysics Data System (ADS)
Chen, Heng; Qu, Bingyan; Li, Dongdong; Zhou, Rulong; Zhang, Bo
2018-01-01
In this paper, the structural and dynamic properties of Cu50Zr50 films are investigated by molecular dynamics simulations. Our results show that the dynamics of the surface atoms are much faster than those of the bulk. Especially, the diffusion coefficient of the surface atoms is about forty times larger than that of the bulk at 600 K, which qualitatively agrees with the experimental results. Meanwhile, we find that the population of the icosahedral (-like) clusters in the surface region is obviously higher than that of the bulk, which prevents the surface from crystallization. A new method to determine the string-like collective atomic motion is introduced in the paper, and it suggests a possible connection between the glass formation ability and collective atomic motion. By using the method, the effects of surface on collective motion are illustrated. Our results show that the string-like collective atomic motion of surface atoms is weakened while that of the interior atoms is strengthened. The studies clearly explain the effects of surface on the structural and dynamic properties of Cu50Zr50 films from the atomic scale.
NASA Astrophysics Data System (ADS)
Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.
2012-12-01
Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.
Structural and Functional Connectivity from Unmanned-Aerial System Data
NASA Astrophysics Data System (ADS)
Masselink, Rens; Heckmann, Tobias; Casalí, Javier; Giménez, Rafael; Cerdá, Artemi; Keesstra, Saskia
2017-04-01
Over the past decade there has been an increase in both connectivity research and research involving Unmanned-Aerial systems (UASs). In some studies, UASs were successfully used for the assessment of connectivity, but not yet to their full potential. We present several ways to use data obtained from UASs to measure variables related to connectivity, and use these to assess both structural and functional connectivity. These assessments of connectivity can aid us in obtaining a better understanding of the dynamics of e.g. sediment and nutrient transport. We identify three sources of data obtained from a consumer camera mounted on a fixed-wing UAS, which can be used separately or combined: Visual and near-infrared imagery, point clouds, and digital elevation models (DEMs). Imagery (or: orthophotos) can be used for (automatic) mapping of connectivity features like rills, gullies and soil and water conservation measures using supervised or unsupervised classification methods with e.g. Object-Based Image Analysis. Furthermore, patterns of soil moisture in the top layers can be extracted from visual and near-infrared imagery. Point clouds can be analysed for vegetation height and density, and soil surface roughness. Lastly, DEMs can be used in combination with imagery for a number of tasks, including raster-based (e.g. DEM derivatives) and object-based (e.g., feature detection) analysis: Flow routing algorithms can be used to analyse potential pathways of surface runoff and sediment transport. This allows for the assessment of structural connectivity through indices that are based, for example, on morphometric and other properties of surfaces, contributing areas, and pathways. Third, erosion and deposition can be measured by calculating elevation changes from repeat surveys. From these "intermediate" variables like roughness, vegetation density and soil moisture, structural connectivity and functional connectivity can be assessed by combining them into a dynamic index of connectivity, use them in connectivity modelling (Masselink et al., 2016b) or be combined with measured data of water and sediment fluxes (Masselink et al., 2016a). References Masselink, R.J.H., Heckmann, T., Temme, A.J.A.M., Anders, N.S., Gooren, H.P.A., Keesstra, S.D., 2016a. A network theory approach for a better understanding of overland flow connectivity. Hydrol. Process. doi:10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016b. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degrad. Dev. 27, 933-945. doi:10.1002/ldr.2512
I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar
dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic
Indices and Dynamics of Global Hydroclimate Over the Past Millennium from Data Assimilation
NASA Astrophysics Data System (ADS)
Steiger, N. J.; Smerdon, J. E.
2017-12-01
Reconstructions based on data assimilation (DA) are at the forefront of model-data syntheses in that such reconstructions optimally fuse proxy data with climate models. DA-based paleoclimate reconstructions have the benefit of being physically-consistent across the reconstructed climate variables and are capable of providing dynamical information about past climate phenomena. Here we use a new implementation of DA, that includes updated proxy system models and climate model bias correction procedures, to reconstruct global hydroclimate on seasonal and annual timescales over the last millennium. This new global hydroclimate product includes reconstructions of the Palmer Drought Severity Index, the Standardized Precipitation Evapotranspiration Index, and global surface temperature along with dynamical variables including the Nino 3.4 index, the latitudinal location of the intertropical convergence zone, and an index of the Atlantic Multidecadal Oscillation. Here we present a validation of the reconstruction product and also elucidate the causes of severe drought in North America and in equatorial Africa. Specifically, we explore the connection between droughts in North America and modes of ocean variability in the Pacific and Atlantic oceans. We also link drought over equatorial Africa to shifts of the intertropical convergence zone and modes of ocean variability.
Yan, Fang; Xu, Kaili
2017-01-01
Because a biomass gasification station includes various hazard factors, hazard assessment is needed and significant. In this article, the cloud model (CM) is employed to improve set pair analysis (SPA), and a novel hazard assessment method for a biomass gasification station is proposed based on the cloud model-set pair analysis (CM-SPA). In this method, cloud weight is proposed to be the weight of index. In contrast to the index weight of other methods, cloud weight is shown by cloud descriptors; hence, the randomness and fuzziness of cloud weight will make it effective to reflect the linguistic variables of experts. Then, the cloud connection degree (CCD) is proposed to replace the connection degree (CD); the calculation algorithm of CCD is also worked out. By utilizing the CCD, the hazard assessment results are shown by some normal clouds, and the normal clouds are reflected by cloud descriptors; meanwhile, the hazard grade is confirmed by analyzing the cloud descriptors. After that, two biomass gasification stations undergo hazard assessment via CM-SPA and AHP based SPA, respectively. The comparison of assessment results illustrates that the CM-SPA is suitable and effective for the hazard assessment of a biomass gasification station and that CM-SPA will make the assessment results more reasonable and scientific.
Yan, Fang; Xu, Kaili
2017-01-01
Because a biomass gasification station includes various hazard factors, hazard assessment is needed and significant. In this article, the cloud model (CM) is employed to improve set pair analysis (SPA), and a novel hazard assessment method for a biomass gasification station is proposed based on the cloud model-set pair analysis (CM-SPA). In this method, cloud weight is proposed to be the weight of index. In contrast to the index weight of other methods, cloud weight is shown by cloud descriptors; hence, the randomness and fuzziness of cloud weight will make it effective to reflect the linguistic variables of experts. Then, the cloud connection degree (CCD) is proposed to replace the connection degree (CD); the calculation algorithm of CCD is also worked out. By utilizing the CCD, the hazard assessment results are shown by some normal clouds, and the normal clouds are reflected by cloud descriptors; meanwhile, the hazard grade is confirmed by analyzing the cloud descriptors. After that, two biomass gasification stations undergo hazard assessment via CM-SPA and AHP based SPA, respectively. The comparison of assessment results illustrates that the CM-SPA is suitable and effective for the hazard assessment of a biomass gasification station and that CM-SPA will make the assessment results more reasonable and scientific. PMID:28076440
Daskalakis, Vangelis
2018-05-07
The assembly and disassembly of protein complexes within cells are crucial life-sustaining processes. In photosystem II (PSII) of higher plants, there is a delicate yet obscure balance between light harvesting and photo-protection under fluctuating light conditions, that involves protein-protein complexes. Recent breakthroughs in molecular dynamics (MD) simulations are combined with new approaches herein to provide structural and energetic insight into such a complex between the CP29 minor antenna and the PSII subunit S (PsbS). The microscopic model involves extensive sampling of bound and dissociated states at atomic resolution in the presence of photo-protective zeaxanthin (Zea), and reveals well defined protein-protein cross-sections. The complex is placed within PSII, and macroscopic connections are emerging (PsbS-CP29-CP24-CP47) along the energy transfer pathways from the antenna to the PSII core. These connections explain macroscopic observations in the literature, while the previously obscured atomic scale details are now revealed. The implications of these findings are discussed in the context of the Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence, the down-regulatory mechanism of photosynthesis, that enables the protection of PSII against excess excitation load. Zea is found at the PsbS-CP29 cross-section and a pH-dependent equilibrium between PsbS dimer/monomers and the PsbS-CP29 dissociation/association is identified as the target for engineering tolerant plants with increased crop and biomass yields. Finally, the new MD based approaches can be used to probe protein-protein interactions in general, and the PSII structure provided can initiate large scale molecular simulations of the photosynthetic apparatus, under NPQ conditions.
NASA Astrophysics Data System (ADS)
Crook, K. E.; Pringle, C. M.; Freeman, M. C.; Scatena, F. N.
2005-05-01
Massive water withdrawals from streams draining the Caribbean National Forest (CNF), Puerto Rico, are threatening their biotic integrity. Migratory tropical shrimps are ideal indicator species to measure water withdrawal effects on riverine connectivity and biointegrity because: (1) their migratory range encompasses the stream network from estuaries to headwater streams; (2) they represent greater than 90% of biomass in streams draining the CNF; and (3) they facilitate important in-stream ecological processes. We developed an index to evaluate individual and cumulative effects of water intakes on each stage of the shrimp's life-cycle. Effect of water withdrawal on longitudinal connectivity was evaluated by combining effects of water withdrawal on larval and juvenile shrimps. Larvae require downstream transport to the estuary for advancement to the next life-stage, and juveniles similarly require access to headwater streams. Therefore, these two life-stages represent the bi-directional connectivity of streams from headwaters to estuaries. Seventeen water intakes were evaluated in and around the CNF. Larger intakes cause a greater decrease in connectivity than smaller intakes; however, several small, high elevation intakes had very low connectivity. Also, intakes with alternative designs, such as a French drain, have reduced effects on connectivity.
Atomic-scale structural signature of dynamic heterogeneities in metallic liquids
NASA Astrophysics Data System (ADS)
Pasturel, Alain; Jakse, Noel
2017-08-01
With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel
NASA Astrophysics Data System (ADS)
Ni, Yun; Liu, Nanchun; Yin, Jianping
2003-06-01
The diffracted near field distribution from an LP01 mode in a hollow optical fibre was recently calculated using a scalar model based on the weakly waveguiding approximation (Yoo et al 1999 J. Opt. B: Quantum Semiclass. Opt. 1 364). It showed a dominant Gaussian-like distribution with an increased axial intensity in the central region (not a doughnut-like distribution), so the diffracted output beam from the hollow fibre cannot be used to form an atomic funnel. Using exact solutions of the Maxwell equations based on a vector model, however, we calculate the electric field and intensity distributions of the HE11 mode in the same hollow fibre and study the diffracted near- and far-field distributions of the HE11-mode output beam under the Fresnel approximation. We analyse and compare the differences between the output beams from the HE11 and LP01 modes. Our study shows that both the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like and can be used to form a simple atomic funnel. However, it is not suitable to use the weakly waveguiding approximation to calculate the diffracted near-field distribution of the hollow fibre due to the greater refractive-index difference between the hollow region (n0 = 1) and the core (n1 = 1.45 or 1.5). Finally, the 3D intensity distribution of the HE11-mode output beam is modelled and the corresponding optical potentials for cold atoms are calculated. Some potential applications of the HE11-mode output beam in an atomic guide and funnel are briefly discussed.
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-01
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-24
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Committee on Atomic, Molecular and Optical Sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, James
The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.
Poly[[[μ3-N′-(carboxymethyl)ethylenediamine-N,N,N′-triacetato]dysprosium(III)] trihydrate
Zhuang, Xiaomei; Long, Qingping; Wang, Jun
2010-01-01
In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carboxymethyl)ethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network. PMID:21588859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergienko, V. S., E-mail: sergienko@igic.ras.ru; Martsinko, E. E.; Seifullina, I. I.
2015-09-15
The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H{sub 4}Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge(Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta{sup 4–} ligand. An extended system of weak C—H···O hydrogen bonds connects complex molecules into a supramolecular 3D framework.
NASA Astrophysics Data System (ADS)
Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.
2015-09-01
The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H4 Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge( Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta 4- ligand. An extended system of weak С—Н···О hydrogen bonds connects complex molecules into a supramolecular 3D framework.
Thomson scattering in the average-atom approximation.
Johnson, W R; Nilsen, J; Cheng, K T
2012-09-01
The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.
Stellar alchemy. The celestial origin of atoms
NASA Astrophysics Data System (ADS)
Cassé, Michel
Why do the stars shine? What messages can we read in the light they send to us from the depths of the night? Nuclear astrophysics is a fascinating discipline, and enables connections to be made between atoms, stars, and human beings. Through modern astronomy, scientists have managed to unravel the full history of the chemical elements, and to understand how they originated and evolved into all the elements that compose our surroundings today. The transformation of metals into gold, something once dreamed of by alchemists, is a process commonly occurring in the cores of massive stars. But the most exciting revelation is the intimate connection that humanity itself has with the debris of exploded stars. This engaging account of nucleosynthesis in stars, and the associated chemical evolution of the Universe, is suitable for the general reader.
Connecting Atlantic temperature variability and biological cycling in two earth system models
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand; Dunne, John P.; Msadek, Rym
2014-05-01
Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.
Electronic and optical properties of hydrogenated silicon carbide nanosheets: A DFT study
NASA Astrophysics Data System (ADS)
Delavari, Najmeh; Jafari, Mahmoud
2018-07-01
Density-functional theory has been applied to investigate the effect of hydrogen adsorption on silicon carbide (SiC) nanosheets, considering six, different configurations for adsorption process. The chair-like configuration is found to be the most stable because of the adsorption of hydrogen atoms by silicon and carbon atoms on the opposite sides. The pure and hydrogenated SiC monolayers are also found to be sp2- and sp3-hybridized, respectively. The binding energy of the hydrogen atoms in the chair-like structure is calculated about -3.845 eV, implying the system to be much more stable than the same study based on graphene, though with nearly the same electronic properties, strongly proposing the SiC monolayer to be a promising material for next generation hydrogen storage. Optical properties presented in terms of the real and the imaginary parts of the dielectric function also demonstrate a decrease in the dielectric constant and the static refractive index due to hydrogen adsorption with the Plasmon frequency of the chair-like, hydrogenated monolayer, occurring at higher energies compared to that of the pure one.
NASA Astrophysics Data System (ADS)
Kosiel, Kamil; Koba, Marcin; Masiewicz, Marcin; Śmietana, Mateusz
2018-06-01
The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 °C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double-layer overlay composed of two different materials - silicon nitride (SixNy) and TaxOy - is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques - PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties.
Local structure order in Pd 78Cu 6Si 16 liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, G. Q.; Zhang, Y.; Sun, Y.
2015-02-05
The short-range order (SRO) in Pd 78Cu 6Si 16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd 9Si 2 motif, namelymore » the structure of which motif is similar to the structure of Pd-centered clusters in the Pd 9Si 2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less
Peres experiment using photons: No test for hypercomplex (quaternionic) quantum theories
NASA Astrophysics Data System (ADS)
Adler, Stephen L.
2017-06-01
Assuming the standard axioms for quaternionic quantum theory and a spatially localized scattering interaction, the S matrix in quaternionic quantum theory is complex valued, not quaternionic. Using the standard connections between the S matrix, the forward scattering amplitude for electromagnetic wave scattering, and the index of refraction, we show that the index of refraction is necessarily complex, not quaternionic. This implies that the recent optical experiment of Procopio et al. [Nat. Commun. 8, 15044 (2017), 10.1038/ncomms15044] based on the Peres proposal does not test for hypercomplex or quaternionic quantum effects arising within the standard Hilbert space framework. Such a test requires looking at near zone fields, not radiation zone fields.
Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators
NASA Technical Reports Server (NTRS)
Smith, David D.
2006-01-01
We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...
2017-03-28
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Silverstein, S. M.; Miller, P. L.; Cullen, M. R.
1993-01-01
This paper describes a prototype information sources map (ISM), an on-line information source finder, for Occupational and Environmental Medicine (OEM). The OEM ISM was built as part of the Unified Medical Language System (UMLS) project of the National Library of Medicine. It allows a user to identify sources of on-line information appropriate to a specific OEM question, and connect to the sources. In the OEM ISM we explore a domain-specific method of indexing information source contents, and also a domain-specific user interface. The indexing represents a domain expert's opinion of the specificity of an information source in helping to answer specific types of domain questions. For each information source, an index field represents whether a source might provide useful information in an occupational, industrial, or environmental category. Additional fields represent the degree of specificity of a source in individual question types in each category. The paper discusses the development, design, and implementation of the prototype OEM ISM. PMID:8130548
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-03-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-06-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
NASA Technical Reports Server (NTRS)
1974-01-01
Short announcements of technology derived from the research and development activities of NASA or the U.S. Atomic Energy Commission are issued to encourage commercial application. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Abstracts and indexes are given.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun
2016-01-01
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhang; He, Wenjie; Duan, Chenlong
2016-01-15
Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation betweenmore » the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.« less
2014-01-01
A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error. PMID:25580458
NASA Astrophysics Data System (ADS)
Ma, Ranran; Chen, Zhiwei; Wang, Suna; Yao, Qingxia; Li, Yunwu; Lu, Jing; Li, Dacheng; Dou, Jianmin
2017-08-01
Two helical Eu(III) metal-organic frameworks, namely, {[Eu(L)(DMF)(H2O)]·0.5DMF}n (1) and [Eu(L)(DEF)(H2O)]n (2) (H3L=3,5-bis(2-carboxylphenoxy)benzoic acid, DMF=N,N-dimethylformamide, DEF=N,N-diethylformamide), have been solvothermally synthesized in different solvents, respectively. Both complexes possess helical structures through the connectivity of Eu atoms and phenolic-oxygen containing branches of the flexible multicarboxylate ligand. Based on different helices, these two complexes exhibited hexagonal and tetragonal channels, respectively. Both complexes possess (3,6)-connected (4.62)2(42.610.83) topology but with different long Schlafli symbol. The solvent plays an important role in the formation of the final frameworks. Both complexes can sensitively and selectively detect nitrobenzene and Cu2+ ions.
Atomic scale study of nanocontacts
NASA Astrophysics Data System (ADS)
Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.
1998-03-01
Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.
Electronic properties and free radical production by nitrofuran compounds.
Paulino-Blumenfeld, M; Hansz, M; Hikichi, N; Stoppani, A O
1992-01-01
Substitution of nifurtimox tetrahydrothiazine moiety by triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl or related aromatic nitrogen heterocycles determines changes in the quantum chemistry descriptors of the molecule, namely, (a) greater negative LUMO energy; (b) lesser electron density on specific atoms, especially on the nitro group atoms, and (c) modification of individual net atomic charges at relevant atoms. These variations correlate with the greater capability of nifurtimox analogues for redox-cycling and oxygen radical production, after one-electron reduction by ascorbate or reduced flavoenzymes. Variation of the nitrofurans electronic structure can also explain the greater activity of nifurtimox analogues as inhibitors of glutathione reductase and Trypanosoma cruzi growth, although other factors, such as molecular hydrophobicity and connectivity may contribute to the latter inhibition.
ERIC Educational Resources Information Center
Perez, Stella
This document describes LeagueTLC: Transformational Learning Connections (http://www.league.org/leaguetlc/index.htm), a Web site created by the League for Innovation in the Community College with funding from the Fund for the Improvement of Post Secondary Education (FIPSE). This Web site serves as a resource for community colleges by disseminating…
Exploring Volumetrically Indexed Cups
ERIC Educational Resources Information Center
Jones, Dustin L.
2011-01-01
This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…
NASA Astrophysics Data System (ADS)
Taguas, Encarnación; Mesas, F. Javier; García-Ferrer, Alfonso; Marín-Moreno, Víctor; Mateos, Luciano
2017-04-01
Physiographic attributes of the catchments (spatial organization and internal connectivity) determine sediment production, transport and delivery to river channels downstream. Understanding the hydrological connectivity allows identifying runoff and sediment contribution from overland flow pathways, rills and gullies at the upper parts of the catchments to sink areas (Borselli et al., 2008). Currently, the design of orchards and row crops plantations is driven by traffic and machinery management criteria, meaning significant simplification of the landscape. Topographic alterations may reduce the connectivity and maximize the retention of water and sediments in catchments by increasing travel times and infiltration (Gay et al., 2016). There are connectivity indices based on topography and land use information (Borselli et al., 2008) and travel times (Chow et al., 1988) which may help to identify measures to reduce water and sediment transfer. In this work, connectivity indices derived from digital elevation models (DEM) of two small agricultural catchments where topographic measures to interrupt the connectivity had been implemented were analyzed. The topographical details of the tree row ridges in a young almond orchard catchment and half-moons (individual terraces) in an olive grove catchment were obtained using Unmanned Aerial Vehicles (UAVs) flights. The aim was to evaluate the benefits of ridges and half-moons by comparing spatial patterns of connectivity indices before and after the topographical modifications in the catchments. The catchments were flown in December 2016. The original DEMs were generated based on previous topographical information and a filter based on minimum heights. The statistics and the maps generated will be presented as results of our study and its interpretation will provide an analysis to preliminarily explore effective and economical measures for erosion control and improved water harvesting. REFERENCES Gay, O. Cerdan, V. Mardhel, M. Desmet. 2016. Application of an index of sediment connectivity in a lowland area. J Soils Sediments (2016) 16:280-293 Borselli, L., Cassi, P., Torri D. 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75, 268-277 Ven Te Chow, D. R., Maidment, L., Mays W. 1988. Applied Hydrology McGraw-Hill, 572 pp. ACKNOWLEDGMENT This study was supported by the project CGL2015-64284-C2-2-R (Spanish Ministry of Economy and Competitiveness).
Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions.
Usami, N; Furusawa, Y; Kobayashi, K; Lacombe, S; Reynaud-Angelin, A; Sage, E; Wu, Ting-Di; Croisy, A; Guerquin-Kern, J-L; Le Sech, C
2008-07-01
This work investigates whether a synergy in cell death induction exists in combining atomic ions irradiation and addition of platinum salts. Such a synergy could be of interest in view of new cancer therapy protocol based on atomic ions--hadrontherapy--with the addition of radiosensitizing agents containing high-Z atoms. The experiment consists in irradiating by fast ions cultured cells previously exposed to dichloroterpyridine Platinum (PtTC) and analyzing cell survival by a colony-forming assay. Chinese Hamster Ovary (CHO) cells were incubated for six hours in medium containing 350 microM PtTC, and then irradiated by fast ions C(6+) and He(2+), with Linear Energy Transfer (LET) within range 2-70 keV/microm. In some experiments, dimethyl sulfoxide (DMSO) was added to investigate the role of free radicals. The intracellular localization of platinum was determined by Nano Secondary Ion Mass Spectroscopy (Nano-SIMS). For all LET examined, cell death rate is largely enhanced when irradiating in presence of PtTC. At fixed irradiation dose, cell death rate increases with increasing LET, while the platinum relative effect is larger at low LET. This finding suggests that hadrontherapy or protontherapy therapeutic index could be improved by combining irradiation procedure with concomitant chemotherapy protocols using platinum salts.
NASA Astrophysics Data System (ADS)
Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio
2015-06-01
We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.
Self-Reconfiguration Planning of Robot Embodiment for Inherent Safe Performance
NASA Astrophysics Data System (ADS)
Uchida, Masafumi; Nozawa, Akio; Asano, Hirotoshi; Onogaki, Hitoshi; Mizuno, Tota; Park, Young-Il; Ide, Hideto; Yokoyama, Shuichi
In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. In other ward, it is impossible to avoid the physical contact and the interaction of force between a robot and a human. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, a self-reconfiguration algorithm based on some indexes to evaluate a robot body in the macroscopic point of view was examined on a modular robot system of the 2-D lattice structure. In this paper, it investigated effect specially that the object of learning of each individual was limited to the cooperative behavior between the adjoining modules toward the macroscopic evaluation index.
Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure
NASA Technical Reports Server (NTRS)
Xu, Yu-Lin
2016-01-01
Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of scattered intensities are cross sections, such as for extinction, scattering, absorption, and radiation pressure, as a critical type of key quantity addressed in most theoretical and experimental studies of radiative scattering. Cross sections predicted from different scattering theories are supposed to be in general agreement. For objects of irregular shape, the GMM-PA solutions can be compared with the highly flexible Discrete Dipole Approximation (DDA) [4,5] when dividing a target to no more than 106 unit cells. Also, there are different ways to calculate the cross sections in the GMM-PA, providing an additional means to examine the accuracy of the numerical solutions and to unveil potential issues concerning the theoretical formulations and numerical aspects. To solve multiple scattering by an assembly of material volumes through classical theories such as the GMM-PA, the radiative properties of the component scatterers, the complex refractive index in particular, must be provided as input parameters. When using a PA to characterize a material body, this involves the use of an adequate theoretical tool, an effective medium theory, to connect Maxwell's phenomenogical theory with the atomistic theory of matter. In the atomic theory, one regards matter as composed of interacting particles (atoms and molecules) embedded in the vacuum [6]. However, the radiative properties of atomic-scaled particles are known to be substantially different from bulk materials. Intensive research efforts in the fields of cluster science and nanoscience attempt to bridge the gap between bulk and atom and to understand the transition from classical to quantum physics. The GMM-PA calculations, which place virtually no restriction on the component-particle size, might help to gain certain insight into the transition.
Connecting micro dynamics and population distributions in system dynamics models
Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa
2014-01-01
Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842
Photophysical Properties on Functional Pi-Electronic Molecular Systems
2012-08-01
the aromaticity; i) it is possible to control the number of conjugated π-electrons by changing the number of connected pyrrole rings, ii) by...flexibilities, and facile capture and release of two pyrrolic protons upon two-electron oxidation and reduction, respectively. Scheme 2. (a...nitrogen atoms of pyrrole A, B, C and D, and the ortho-carbon atom of meso-pentafluorophenyl group in a trigonal bipyramidal manner. The 1 H NMR spectrum
Self-organization in cold atomic gases: a synchronization perspective.
Tesio, E; Robb, G R M; Oppo, G-L; Gomes, P M; Ackemann, T; Labeyrie, G; Kaiser, R; Firth, W J
2014-10-28
We study non-equilibrium spatial self-organization in cold atomic gases, where long-range spatial order spontaneously emerges from fluctuations in the plane transverse to the propagation axis of a single optical beam. The self-organization process can be interpreted as a synchronization transition in a fully connected network of fictitious oscillators, and described in terms of the Kuramoto model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Investigations of Novel Surface Modification Techniques for Wear Resistant Al and Mg Based Materials
1994-01-01
microhardness to resist the abrasive wear. Moreover it is required to form dense or fine-porous uniform layers to provide the antifriction characteristics...technological regimes for production of OCC having maximum of thickness, microhardness and uniformity is expediently to carry on using the silicate-alkali...includes at the same time both the index of the process effectiveness and the strength and geometrical characteristics of the product . In connection
Roy, Tapashi G.; Palit, Debashis; Nath, Babul Chandra; Ng, Seik Weng; Tiekink, Edward R. T.
2012-01-01
The complete cation in the title hydrated molecular salt, [Ni(CH3CO2)(C16H36N4)]ClO4·H2O, is generated by the application of crystallographic twofold symmetry; the perchlorate anion and water molecule are each disordered around a twofold axis. The NiII atom exists within a cis-N4O2 donor set based on a strongly distorted octahedron and defined by the four N atoms of the macrocyclic ligand and two O atoms of a symmetrically coordinating acetate ligand. In the crystal, hydrogen bonding (water–acetate/perchlorate O—H⋯O and amine–perchlorate N—H⋯O) leads to layers in the ab plane. The layers stack along the c axis, being connected by C—H⋯O(water) interactions. The crystal studied was found to be a non-merohedral twin; the minor component refined to 15.9 (6)%. PMID:22589873
Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan
2011-12-23
Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schmidt, Joel E.; Xie, Dan; Rea, Thomas
2015-01-01
A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (∼7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants. PMID:29163872
Quantifying hydrologic connectivity with measures from the brain neurosciences - a feasibility study
NASA Astrophysics Data System (ADS)
Rinderer, Michael; Ali, Genevieve; Larsen, Laurel
2017-04-01
While the concept of connectivity is increasingly applied in hydrology and ecology, little agreement exists on its definition and quantification approaches. In contrast, the neurosciences have developed a systematic conceptualization of connectivity and methods to quantify it. In particular, neuroscientists make a clear distinction between: 1) structural connectivity, which is determined by the anatomy of the brain neural network, 2) functional connectivity, that is based on statistical dependencies between neural signals, and 3) effective connectivity, that allows to infer causal relations based on the assumption that "true" interactions occur with a certain time delay. In a similar vein, in hydrology, structural connectivity can be defined as the physical adjacency of landscape elements that are seen as a prerequisite of material transfer, while functional or process connectivity would rather describe interactions or causal relations between spatial adjacency characteristics and temporally varying factors. While hydrologists have suggested methods to derive structural connectivity (SC), the quantification of functional (FC) or effective connectivity (EC) has remained elusive. The goal of the current study was therefore to apply timeseries analysis methods from brain neuroscience to quantify EC and FC among groundwater (n = 34) and stream discharge (n = 1) monitoring sites in a 20-ha Swiss catchment where topography is assumed to be a major driver of connectivity. SC was assessed through influence maps that quantify the percentage of flow from an upslope site to a downslope site by applying a multiple flow direction algorithm. FC was assessed by cross-correlation, total and partial mutual information while EC was quantified via total and partial entropy, Granger causality and a phase slope index. Our results showed that many structural connections were also expressed as functional or effective connections, which is reasonable in a catchment with shallow perched groundwater tables. The differentiation between FC and EC measures allowed us to distinguish between hydrological connectivity (i.e., Darcian fluxes of water) and hydraulic connectivity (i.e. pressure wave-driven processes). However, some FC and EC measures also detected the presence of connectivity despite the absence of SC, which highlights the limits of applying brain connectivity measures to hydrology. We therefore conclude that brain neuroscience methods for assessing FC and EC can be powerful tools in assessing hydrological connectivity as long as they are constrained by SC measures.
Better state-of-good-repair indicators for the transportation performance index.
DOT National Transportation Integrated Search
2014-07-01
The Transportation Performance Index was developed for the US Chamber of Commerce to track the : performance of transportation infrastructure over time and explore the connection between economic : health and infrastructure performance. This project ...
Schneider, Nadine; Sayle, Roger A; Landrum, Gregory A
2015-10-26
Finding a canonical ordering of the atoms in a molecule is a prerequisite for generating a unique representation of the molecule. The canonicalization of a molecule is usually accomplished by applying some sort of graph relaxation algorithm, the most common of which is the Morgan algorithm. There are known issues with that algorithm that lead to noncanonical atom orderings as well as problems when it is applied to large molecules like proteins. Furthermore, each cheminformatics toolkit or software provides its own version of a canonical ordering, most based on unpublished algorithms, which also complicates the generation of a universal unique identifier for molecules. We present an alternative canonicalization approach that uses a standard stable-sorting algorithm instead of a Morgan-like index. Two new invariants that allow canonical ordering of molecules with dependent chirality as well as those with highly symmetrical cyclic graphs have been developed. The new approach proved to be robust and fast when tested on the 1.45 million compounds of the ChEMBL 20 data set in different scenarios like random renumbering of input atoms or SMILES round tripping. Our new algorithm is able to generate a canonical order of the atoms of protein molecules within a few milliseconds. The novel algorithm is implemented in the open-source cheminformatics toolkit RDKit. With this paper, we provide a reference Python implementation of the algorithm that could easily be integrated in any cheminformatics toolkit. This provides a first step toward a common standard for canonical atom ordering to generate a universal unique identifier for molecules other than InChI.
Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto
2012-01-21
Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Raz, Gal; Shpigelman, Lavi; Jacob, Yael; Gonen, Tal; Benjamini, Yoav; Hendler, Talma
2016-12-01
We introduce a novel method for delineating context-dependent functional brain networks whose connectivity dynamics are synchronized with the occurrence of a specific psychophysiological process of interest. In this method of context-related network dynamics analysis (CRNDA), a continuous psychophysiological index serves as a reference for clustering the whole-brain into functional networks. We applied CRNDA to fMRI data recorded during the viewing of a sadness-inducing film clip. The method reliably demarcated networks in which temporal patterns of connectivity related to the time series of reported emotional intensity. Our work successfully replicated the link between network connectivity and emotion rating in an independent sample group for seven of the networks. The demarcated networks have clear common functional denominators. Three of these networks overlap with distinct empathy-related networks, previously identified in distinct sets of studies. The other networks are related to sensorimotor processing, language, attention, and working memory. The results indicate that CRNDA, a data-driven method for network clustering that is sensitive to transient connectivity patterns, can productively and reliably demarcate networks that follow psychologically meaningful processes. Hum Brain Mapp 37:4654-4672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Queirós, S. M. D.; Tsallis, C.
2005-11-01
The GARCH algorithm is the most renowned generalisation of Engle's original proposal for modelising returns, the ARCH process. Both cases are characterised by presenting a time dependent and correlated variance or volatility. Besides a memory parameter, b, (present in ARCH) and an independent and identically distributed noise, ω, GARCH involves another parameter, c, such that, for c=0, the standard ARCH process is reproduced. In this manuscript we use a generalised noise following a distribution characterised by an index qn, such that qn=1 recovers the Gaussian distribution. Matching low statistical moments of GARCH distribution for returns with a q-Gaussian distribution obtained through maximising the entropy Sq=1-sumipiq/q-1, basis of nonextensive statistical mechanics, we obtain a sole analytical connection between q and left( b,c,qnright) which turns out to be remarkably good when compared with computational simulations. With this result we also derive an analytical approximation for the stationary distribution for the (squared) volatility. Using a generalised Kullback-Leibler relative entropy form based on Sq, we also analyse the degree of dependence between successive returns, zt and zt+1, of GARCH(1,1) processes. This degree of dependence is quantified by an entropic index, qop. Our analysis points the existence of a unique relation between the three entropic indexes qop, q and qn of the problem, independent of the value of (b,c).
Assessment of interaction-strength interpolation formulas for gold and silver clusters
NASA Astrophysics Data System (ADS)
Giarrusso, Sara; Gori-Giorgi, Paola; Della Sala, Fabio; Fabiano, Eduardo
2018-04-01
The performance of functionals based on the idea of interpolating between the weak- and the strong-interaction limits the global adiabatic-connection integrand is carefully studied for the challenging case of noble-metal clusters. Different interpolation formulas are considered and various features of this approach are analyzed. It is found that these functionals, when used as a correlation correction to Hartree-Fock, are quite robust for the description of atomization energies, while performing less well for ionization potentials. Future directions that can be envisaged from this study and a previous one on main group chemistry are discussed.
The degree-related clustering coefficient and its application to link prediction
NASA Astrophysics Data System (ADS)
Liu, Yangyang; Zhao, Chengli; Wang, Xiaojie; Huang, Qiangjuan; Zhang, Xue; Yi, Dongyun
2016-07-01
Link prediction plays a significant role in explaining the evolution of networks. However it is still a challenging problem that has been addressed only with topological information in recent years. Based on the belief that network nodes with a great number of common neighbors are more likely to be connected, many similarity indices have achieved considerable accuracy and efficiency. Motivated by the natural assumption that the effect of missing links on the estimation of a node's clustering ability could be related to node degree, in this paper, we propose a degree-related clustering coefficient index to quantify the clustering ability of nodes. Unlike the classical clustering coefficient, our new coefficient is highly robust when the observed bias of links is considered. Furthermore, we propose a degree-related clustering ability path (DCP) index, which applies the proposed coefficient to the link prediction problem. Experiments on 12 real-world networks show that our proposed method is highly accurate and robust compared with four common-neighbor-based similarity indices (Common Neighbors(CN), Adamic-Adar(AA), Resource Allocation(RA), and Preferential Attachment(PA)), and the recently introduced clustering ability (CA) index.
Grasser, Gerlinde; Van Dyck, Delfien; Titze, Sylvia; Stronegger, Willibald
2013-08-01
The aim of this study was to investigate which GIS-based measures of walkability (density, land-use mix, connectivity and walkability indexes) in urban and suburban neighbourhoods are used in research and which of them are consistently associated with walking and cycling for transport, overall active transportation and weight-related measures in adults. A systematic review of English publications using PubMed, Science Direct, Active Living Research Literature Database, the Transportation Research Information Service and reference lists was conducted. The search terms utilised were synonyms for GIS in combination with synonyms for the outcomes. Thirty-four publications based on 19 different studies were eligible. Walkability measures such as gross population density, intersection density and walkability indexes most consistently correlated with measures of physical activity for transport. Results on weight-related measures were inconsistent. More research is needed to determine whether walkability is an appropriate measure for predicting weight-related measures and overall active transportation. As most of the consistent correlates, gross population density, intersection density and the walkability indexes have the potential to be used in planning and monitoring.
Organizational performance comparative study of Jakarta and Medan city happy planet index
NASA Astrophysics Data System (ADS)
Perdamenta Tarigan, Nuah
2018-03-01
Comparative Study of Organizational Performance relating to the Happy Planet Index between Jakarta and Medan is quite challenging, the performance of the organization here is related to organizational arrangements relating to the potential associated with Corporate Social Responsibility (CSR), which is based on ISO 26000, how local leaders put the idea to build a city not only by the government budget each area, but also invite the participation of companies that have programs related to community empowerment is not a fund for cash, but the real form that is present in removing the great problems in society cities beyond than just its obligations but has become a conscious citizen that cares about its environment both natural and artificial. In the end of this research, we will see which one is the best based on the standard Happy Planet Index (HPI) which is phenomenal in the world now, connected again with 17 pieces of Sustainable Development Goals, particularly the goal of the 17th. The study was conducted by the research literature and implemented in a short time. However, a large study being conducted by the researcher.
NASA Astrophysics Data System (ADS)
Manatsa, Desmond; Mushore, Terrence; Lenouo, Andre
2017-01-01
The provision of timely and reliable climate information on which to base management decisions remains a critical component in drought planning for southern Africa. In this observational study, we have not only proposed a forecasting scheme which caters for timeliness and reliability but improved relevance of the climate information by using a novel drought index called the standardised precipitation evapotranspiration index (SPEI), instead of the traditional precipitation only based index, the standardised precipitation index (SPI). The SPEI which includes temperature and other climatic factors in its construction has a more robust connection to ENSO than the SPI. Consequently, the developed ENSO-SPEI prediction scheme can provide quantitative information about the spatial extent and severity of predicted drought conditions in a way that reflects more closely the level of risk in the global warming context of the sub region. However, it is established that the ENSO significant regional impact is restricted only to the period December-March, implying a revisit to the traditional ENSO-based forecast scheme which essentially divides the rainfall season into the two periods, October to December and January to March. Although the prediction of ENSO events has increased with the refinement of numerical models, this work has demonstrated that the prediction of drought impacts related to ENSO is also a reality based only on observations. A large temporal lag is observed between the development of ENSO phenomena (typically in May of the previous year) and the identification of regional SPEI defined drought conditions. It has been shown that using the Southern Africa Regional Climate Outlook Forum's (SARCOF) traditional 3-month averaged Nino 3.4 SST index (June to August) as a predictor does not have an added advantage over using only the May SST index values. In this regard, the extended lead time and improved skill demonstrated in this study could immensely benefit regional decision makers.
Śmietana, Mateusz; Myśliwiec, Marcin; Mikulic, Predrag; Witkowski, Bartłomiej S.; Bock, Wojtek J.
2013-01-01
This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ∼ 0.12 nm) of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device's RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range) Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.
Maximal refraction and superluminal propagation in a gaseous nanolayer.
Keaveney, J; Hughes, I G; Sargsyan, A; Sarkisyan, D; Adams, C S
2012-12-07
We present an experimental measurement of the refractive index of high density Rb vapor in a gaseous atomic nanolayer. We use heterodyne interferometry to measure the relative phase shift between two copropagating laser beams as a function of the laser detuning and infer a peak index n=1.26±0.02, close to the theoretical maximum of 1.31. The large index has a concomitant large index gradient creating a region with steep anomalous dispersion where a subnanosecond optical pulse is advanced by >100 ps over a propagation distance of 390 nm, corresponding to a group index n(g)=-(1.0±0.1)×10(5), the largest negative group index measured to date.
Levashov, V A
2017-11-14
We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2017-11-01
We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.
Range indices of geomagnetic activity
Stuart, W.F.; Green, A.W.
1988-01-01
The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.
Lie, Octavian V; van Mierlo, Pieter
2017-01-01
The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
....regulations.gov index. Although listed in the index, some information is not publicly available, e.g., CBI or... compliance with the Federal Maximum Achievable Control Technology (MACT) limits on volatile organic compounds... by non-atomized guns, and 33.4% HAPs for the gelcoat composition. These emission limits are...
Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study.
Engels, Marjolein M A; Stam, Cornelis J; van der Flier, Wiesje M; Scheltens, Philip; de Waal, Hanneke; van Straaten, Elisabeth C W
2015-08-20
EEG studies have shown that patients with Alzheimer's disease (AD) have weaker functional connectivity than controls, especially in higher frequency bands. Furthermore, active regions seem more prone to AD pathology. How functional connectivity is affected in AD subgroups of disease severity and how network hubs (highly connected brain areas) change is not known. We compared AD patients with different disease severity and controls in terms of functional connections, hub strength and hub location. We studied routine 21-channel resting-state electroencephalography (EEG) of 318 AD patients (divided into tertiles based on disease severity: mild, moderate and severe AD) and 133 age-matched controls. Functional connectivity between EEG channels was estimated with the Phase Lag Index (PLI). From the PLI-based connectivity matrix, the minimum spanning tree (MST) was derived. For each node (EEG channel) in the MST, the betweenness centrality (BC) was computed, a measure to quantify the relative importance of a node within the network. Then we derived color-coded head plots based on BC values and calculated the center of mass (the exact middle had x and y values of 0). A shifting of the hub locations was defined as a shift of the center of mass on the y-axis across groups. Multivariate general linear models with PLI or BC values as dependent variables and the groups as continuous variables were used in the five conventional frequency bands. We found that functional connectivity decreases with increasing disease severity in the alpha band. All, except for posterior, regions showed increasing BC values with increasing disease severity. The center of mass shifted from posterior to more anterior regions with increasing disease severity in the higher frequency bands, indicating a loss of relative functional importance of the posterior brain regions. In conclusion, we observed decreasing functional connectivity in the posterior regions, together with a shifted hub location from posterior to central regions with increasing AD severity. Relative hub strength decreases in posterior regions while other regions show a relative rise with increasing AD severity, which is in accordance with the activity-dependent degeneration theory. Our results indicate that hubs are disproportionally affected in AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamdani, Hazrina Yusof, E-mail: hazrina@mfrlab.org; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas; Artymiuk, Peter J., E-mail: p.artymiuk@sheffield.ac.uk
A fundamental understanding of the atomic level interactions in ribonucleic acid (RNA) and how they contribute towards RNA architecture is an important knowledge platform to develop through the discovery of motifs from simple arrangements base pairs, to more complex arrangements such as triples and larger patterns involving non-standard interactions. The network of hydrogen bond interactions is important in connecting bases to form potential tertiary motifs. Therefore, there is an urgent need for the development of automated methods for annotating RNA 3D structures based on hydrogen bond interactions. COnnection tables Graphs for Nucleic ACids (COGNAC) is automated annotation system using graphmore » theoretical approaches that has been developed for the identification of RNA 3D motifs. This program searches for patterns in the unbroken networks of hydrogen bonds for RNA structures and capable of annotating base pairs and higher-order base interactions, which ranges from triples to sextuples. COGNAC was able to discover 22 out of 32 quadruples occurrences of the Haloarcula marismortui large ribosomal subunit (PDB ID: 1FFK) and two out of three occurrences of quintuple interaction reported by the non-canonical interactions in RNA (NCIR) database. These and several other interactions of interest will be discussed in this paper. These examples demonstrate that the COGNAC program can serve as an automated annotation system that can be used to annotate conserved base-base interactions and could be added as additional information to established RNA secondary structure prediction methods.« less
Miyata, Tomohiro; Uesugi, Fumihiko; Mizoguchi, Teruyasu
2017-12-01
Investigation of the local dynamic behavior of atoms and molecules in liquids is crucial for revealing the origin of macroscopic liquid properties. Therefore, direct imaging of single atoms to understand their motions in liquids is desirable. Ionic liquids have been studied for various applications, in which they are used as electrolytes or solvents. However, atomic-scale diffusion and relaxation processes in ionic liquids have never been observed experimentally. We directly observe the motion of individual monatomic ions in an ionic liquid using scanning transmission electron microscopy (STEM) and reveal that the ions diffuse by a cage-jump mechanism. Moreover, we estimate the diffusion coefficient and activation energy for the diffusive jumps from the STEM images, which connect the atomic-scale dynamics to macroscopic liquid properties. Our method is the only available means to observe the motion, reactions, and energy barriers of atoms/molecules in liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha
2015-01-01
The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less
Bibliography of atomic and molecular processes. Volume 1, 1978-1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, C.F.; Crandall, D.H.; Farmer, B.J.
1982-10-01
This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactantsmore » within each subcategory.« less
The all-too-flexible abductive method: ATOM's normative status.
Romeijn, Jan-Willem
2008-09-01
The author discusses the abductive theory of method (ATOM) by Brian Haig from a philosophical perspective, connecting his theory with a number of issues and trends in contemporary philosophy of science. It is argued that as it stands, the methodology presented by Haig is too permissive. Both the use of analogical reasoning and the application of exploratory factor analysis leave us with too many candidate theories to choose from, and explanatory coherence cannot be expected to save the day. The author ends with some suggestions to remedy the permissiveness and lack of normative force in ATOM, deriving from the experimental practice within which psychological data are produced.
NASA Astrophysics Data System (ADS)
Baidyshev, V. S.; Chepkasov, I. V.; Artemova, N. D.
2018-05-01
In this paper melting processes of particles of disordered AgCu alloy in the size range of D=3-5 nm were investigated. The simulation was carried out with molecular dynamics, using the embedded atom potential. It was defined that for nanoparticles of D=3 nm, the melting process is connected with the formation of the outer layer consisting of Ag atoms as well as with the further transition of the particle into an amorphous state. The increase of the particle size to D=5 nm did not show the processes of redistributing Ag atoms on the particle surface.
ETR, TRA642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST ...
ETR, TRA-642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST QUADRANT OF FLOOR. WESTINGHOUSE ATOMIC POWER DIVISION (WAPD) AND BETTIS ATOMIC POWER LABORATORY (BAPL) CONSUME MOST OF THE QUADRANT. PHILLIPS PETROLEUM COMPANY ETR-E-2256, 12/1966. INL INDEX NO. 532-0642-00-706-021256, REV. F. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Observation of Raman self-focusing in an alkali-metal vapor cell
NASA Astrophysics Data System (ADS)
Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.
2008-02-01
We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.
NASA Astrophysics Data System (ADS)
Lill, Adrian Wilfred Thomas; Schallenberg, Marc; Lal, Aparna; Savage, Candida; Closs, Gerard Patrick
2013-08-01
Morphometric and physicochemical variables are key determinants of biotic community structure in estuaries and are influenced by changes to estuary mouth state (open/closed). This study examined and compared the consequences of intermittent connection to the ocean on environmental gradients among estuaries; specifically, how estuary morphology and hydrology relate to physical connection to the sea, and the influence of this relationship on the physicochemical environment. By sampling 20 estuaries across New Zealand and using historical aerial photographs, a continuous index of estuarine connection to the ocean was developed and independently validated using berm elevation derived from Airborne Laser Scanning (ALS) data. Using published literature, this index was compared to equivalent indices in South Africa and Australia. A clear relationship between connections to the ocean, freshwater flow and productivity indices underlie the environmental differences between permanently open and intermittently closed estuaries. Consistent patterns across the Southern Hemisphere, albeit with regional variations in estuarine characteristics, suggest that remote sensing is useful for predicting the physicochemical environment of small estuaries across regions. Principal components analysis for Otago estuaries showed that 40% of measured variation in the environment could be attributed to the gradient of relative connectivity (EOI), or isolation (berm elevation) to the ocean. Evaluating these relationships is central to understanding how global and local environmental changes may affect estuarine connectivity regimes and, ultimately, the functioning of estuarine ecosystems.
Pauling, L
1988-06-01
Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.
Pauling, Linus
1988-01-01
Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929
Atomic Spectra Bibliography Databases at NIST
NASA Astrophysics Data System (ADS)
Kramida, Alexander
2010-03-01
NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) [http://physics.nist.gov/PhysRefData/ASBib1/index.html]: -- Atomic Energy Levels and Spectra (AEL BD), Atomic Transition Probability (ATP BD), and Atomic Spectral Line Broadening (ALB BD). This year marks new releases of these BDs -- AEL BD v.2.0, ATP BD v.9.0, and ALB DB v.3.0. These releases incorporate significant improvements in the quantity and quality of bibliographic data since the previous versions published first in 2006. The total number of papers in the three DBs grew from 20,000 to 30,000. The data search is now made easier, and the returned content is enriched with direct links to online journal articles and universal Digital Object Identifiers. Statistics show a nearly constant flow of new publications on atomic spectroscopy, about 600 new papers published each year since 1968. New papers are inserted in our BDs every two weeks on average.
Kok, Bethany E; Coffey, Kimberly A; Cohn, Michael A; Catalino, Lahnna I; Vacharkulksemsuk, Tanya; Algoe, Sara B; Brantley, Mary; Fredrickson, Barbara L
2013-07-01
The mechanisms underlying the association between positive emotions and physical health remain a mystery. We hypothesize that an upward-spiral dynamic continually reinforces the tie between positive emotions and physical health and that this spiral is mediated by people's perceptions of their positive social connections. We tested this overarching hypothesis in a longitudinal field experiment in which participants were randomly assigned to an intervention group that self-generated positive emotions via loving-kindness meditation or to a waiting-list control group. Participants in the intervention group increased in positive emotions relative to those in the control group, an effect moderated by baseline vagal tone, a proxy index of physical health. Increased positive emotions, in turn, produced increases in vagal tone, an effect mediated by increased perceptions of social connections. This experimental evidence identifies one mechanism-perceptions of social connections-through which positive emotions build physical health, indexed as vagal tone. Results suggest that positive emotions, positive social connections, and physical health influence one another in a self-sustaining upward-spiral dynamic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfang, E-mail: zjf260@jiangnan.edu.cn; Wang, Chao; Wang, Yinlin
2015-11-15
The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}{sub n} (1), {[Pr_4N][WS_4Cu_4(CN)_3]}{sub n} (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}{sub n} (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}{sub n} (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}{sub n} (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS{sub 4}Cu{sub 3}]{sup +} and single CN{sup −} bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS{sub 4}Cu{sub 4}]{supmore » 2+} and single CN{sup −} bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS{sub 3}Cu{sub 3}]{sup +} linked by single CN{sup −} bridges, but containing the different cations [Pr{sub 4}N]{sup +} and [Bu{sub 4}N]{sup +}, respectively. 5 is constructed from nest-shaped clusters [MoOS{sub 3}Cu{sub 3}]{sup +} and single CN{sup −} bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN{sup −} bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr{sub 4}N]{sup +} vs. [Bu{sub 4}N]{sup +}) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2 exhibits effective photocatalytic properties. - Highlights: • Reaction variables affecting Mo(W)/S/Cu cluster-based CPs is firstly explored. • Replacing central metal atom had a pronounced effect on W/S/Cu cluster-based CPs. • Photocatalytic activities of Mo(W)/S/Cu cluster-based CPs are firstly investigated.« less
Probing interactions of thermal Sr Rydberg atoms using simultaneous optical and ion detection
NASA Astrophysics Data System (ADS)
Hanley, Ryan K.; Bounds, Alistair D.; Huillery, Paul; Keegan, Niamh C.; Faoro, Riccardo; Bridge, Elizabeth M.; Weatherill, Kevin J.; Jones, Matthew P. A.
2017-06-01
We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that reproduces the optical signals and allows us to connect the optical coherences and the populations. We use this to determine that the spontaneous ionization process in our system occurs due to collisions between Rydberg and ground state atoms in the EIT regime. We measure the cross section of this process to be 0.6+/- 0.2 {σ }{geo}, where {σ }{geo} is the geometrical cross section of the Rydberg atom. This result adds complementary insight to a range of recent studies of interacting thermal Rydberg ensembles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, B.S.; Seshadri, T.P.; Sakore, T.D.
1979-01-01
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3'-5') guanosine (iodoCpG). The acridine orange-iodoCpG crystals are monoclinic, space group P2/sub 1/, with unit cell dimensions a = 14.36 A, b = 19.64 A, c = 20.67 A, ..beta.. = 102.5. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A, b = 22.23 A, c = 18.42 A, ..beta.. = 123.3. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. Acridine orange forms an intercalative structure with iodoCpG but the acridinemore » nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus. Base-pairs above and below the drug are separated by about 6.8 A and are twisted about 10/sup 0/. Proflavine demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino- groups on proflavine with phosphate oxygen atoms on the dinucleotide. Base-pairs above and below the intercalative proflavine molecule are twisted about 36/sup 0/. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed. We propose a proflavine-DNA and an acridine orange-DNA binding model. We will describe these models in detail in this paper.« less
Development of Tuning Fork Based Probes for Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood
2014-03-01
This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.
A Multiwavelength Study of the Nature of Diffuse Atomic and Molecular Gas
NASA Astrophysics Data System (ADS)
Federman, Steven
2015-10-01
Our proposed observations under the UV Initiative form a key component of a multiwavelength study of diffuse atomic and molecular clouds. The Herschel GOT C+ survey associated [C II] emission at 158 microns with emission from H I at 21 cm and CO at 2.6 mm, revealing the presence of warm neutral gas, cold neutral gas, CO-dark H2 gas, and molecular clouds. Ground-based measurements of Ca II, CH+, CH, and CN at visible wavelengths show absorption at the same velocities as the components seen in the GOT C+ survey. A main focus of our project is a detailed investigation of the nature of CO-dark H2 gas, interstellar material not associated with H I and CO emission. The presence of this additional material alters our view of molecular gas in galaxies and its connection to star formation rates. We propose ultraviolet observations of three targets with STIS that probe two of the pointings in the GOT C+ survey. Absorption from CO, at much greater sensitivies than is possible from surveying CO emission, will be sought. Analysis of CO, C I, and C2 absorption will yield the physical conditions (gas density and temperature) along the sight lines. The results will be compared with those inferred from CN chemistry based on the observations at visible wavelengths. Other probes seen at UV wavelengths, such as O I, Cu II, and Cl I, will provide a more complete picture of the environment seen in the atomic components of the GOT C+ survey. The outcome of the project will be the most detailed study of diffuse atomic and molecular gas from spectral measurements spanning nearly seven orders of magnitude in wavelength.
Low temperature scanning tunneling microscopy of metallic and organic nanostructures
NASA Astrophysics Data System (ADS)
Fölsch, Stefan
2006-03-01
Low temperature scanning tunneling microscopy (LT-STM) is capable of both characterizing and manipulating atomic-scale structures at surfaces. It thus provides a powerful experimental tool to gain fundamental insight into how electronic properties evolve when controlling size, geometry, and composition of nanometric model systems at the level of single atoms and molecules. The experiments discussed in this talk employ a Cu(111) surface onto which perfect nanostructures are assembled from native adatoms and organic molecules. Using single Cu adatoms as building blocks, we obtain zero-, one-, and two-dimensional quantum objects (corresponding to the discrete adatom, monatomic adatom chains, and compact adatom assemblies) with intriguing electronic properties. Depending on the structure shape and the number of incorporated atoms we observe the formation of characteristic quantum levels which merge into the sp-derived Shockley surface state in the limit of extended 2D islands; this state exists on many surfaces, such as Cu(111). Our results reveal the natural linkage between this traditional surface property, the quantum confinement in compact adatom structures, and the quasi-atomic state associated with the single adatom. In a second step, we study the interaction of pentacene (C22H14) with Cu adatom chains serving as model quantum wires. We find that STM-based manipulation is capable of connecting single molecules to the chain ends in a defined way, and that the molecule-chain interaction shifts the chain-localized quantum states to higher binding energies. The present system provides an instructive model case to study single organic molecules interacting with metallic nanostructures. The microscopic nature of such composite structures is of importance for any future molecular-based device realization since it determines the contact conductance between the molecular unit and its metal ''contact pad''.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya
2013-02-01
Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.
2005-07-01
Photographs of the Low Impact Docking System (LIDS); this hardware is a test for the ORION docking birthing system to connect the Crew Exploration Vehicle (CEV) to the International Space Station (ISS); atomic oxygen 12 inch seals testing
ERIC Educational Resources Information Center
Sleigh, John; Plevey, Ray
1986-01-01
Provides background information for teachers on the chemistry of flourine. Points out that it links aerosols with refrigerants, anaesthetics with fire-fighting agents, batteries with blood substitutes, and atomic energy with the steel, petroleum, and aluminum industries. (JN)
Južnič, Stanislav
2016-12-01
One of the most important Mid-European professor with more than six thousand academic descendants was the leading Slovenian erudite Jurij Vega. In broader sense, Vega's and other applied sciences of the south of Holy Roman Empire of German Nationality were connected with the mercury mine of Idrija during the last half of millennia. The Idrija Mine used to be one of the two top European producers of mercury, the basic substance of atomistic alchemists. Idrija Mine contributions to the history of techniques, their examinations and approbations is comparable to the other Mid-European achievements. The peculiarities of Idrija mining environment where people valued mostly the applicative knowhow is put into the limelight. The applicative abilities of Idrija employers affected the broader surroundings including Vega's Jesuit teachers in nearby Ljubljana and the phenomena of comparatively many China-Based Jesuits connected with the area of modern Slovenia. The Jesuits' Mid-European education and networks are put into the limelight, as well as their adopted Chinese networks used for their bridging between Eastern and Western Sciences. The Western origin of the scientific-technologic-industrial revolution(s) with causes for their apparent nonexistence in Chinese frames is discussed as another Eurocentric rhetorical racist question which presumes the scientific-technologic-industrial revolution(s) as something good, positive, and therefore predominantly European. The Chinese ways into progress without those troublemaking revolutions is focused for the first time in historiography from combined scientific, moral, religious, and economic viewpoints. The Chinese contributions to particular areas of research in chemistry and physics is focused to find out the preferences and most frequent stages of (European) paradigms involved in the Chinese networks. Some predictions of future interests of Chinese chemistry and physics are provided. The Chinese Holistic Confucian distrust in atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.
NASA Astrophysics Data System (ADS)
Cao, Jianwei; Khan, Bilal; Hervey, Nathan; Tian, Fenghua; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Roberts, Heather; Tulchin-Francis, Kirsten; Shierk, Angela; Shagman, Laura; MacFarlane, Duncan; Liu, Hanli; Alexandrakis, George
2015-04-01
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2±2.1 years old) with hemiplegic cerebral palsy was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger-tapping task and the resting-state functional connectivity were quantified before, immediately after, and 6 months after CIMT. These fNIRS-based metrics were used to help explain changes in clinical scores of manual performance obtained concurrently with imaging time points. Five age-matched healthy children (9.8±1.3 years old) were also imaged to provide comparative activation metrics for normal controls. Interestingly, the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted 6 months later. In contrast to this improved localized activation response, the laterality index and resting-state connectivity metrics that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed 6 months later. In addition, for the subjects measured in this work, there was either a trade-off between improving unimanual versus bimanual performance when sensorimotor activation patterns normalized after CIMT, or an improvement occurred in both unimanual and bimanual performance but at the cost of very abnormal plastic changes in sensorimotor activity.
Okoye, Patrick; Wu, Stephen H; Dave, Rutesh H
2012-12-01
The effects of magnesium stearate (MgSt) polymorphs-anhydrate (MgSt-A), monohydrate (MgSt-M), and dihydrate (MgSt-D)-on rheological properties of powders were evaluated using techniques such as atomic analysis and powder rheometry. Additional evaluation was conducted using thermal analysis, micromeritics, and tableting forces. In this study, binary ratios of neat MgSt polymorphs were employed as lubricants in powder blends containing acetaminophen (APAP), microcrystalline cellulose (MCC), and lactose monohydrate (LAC-M). Powder rheometry was studied using permeability, basic flow energy (BFE), density, and porosity analysis. Thermal conductivity and differential scanning calorimetric analysis of MgSt polymorphs were employed to elucidate MgSt effect on powder blends. The impact of MgSt polymorphs on compaction characteristics were analyzed via tablet compression forces. Finally, the distribution of atomized magnesium (Mg) ions as a function of intensity was evaluated using laser-induced breakdown spectroscopy (LIBS) on tablets. The results from LIBS analysis indicated the dependency of the MgSt polymorphic forms on the atomized Mg ion intensity, with higher Mg ion intensity suggesting higher lubricity index (i.e. greater propensity to over-lubricate). The results from lubricity index suggested the tendency of blends to over-lubricate based on the MgSt polymorphic forms. Finally, tableting forces suggested that MgSt-D and MgSt-A offered processing benefits such as lower ejection and compression forces, and that MgSt-M showed the most stable compression force in single or combined polymorphic ratios. These results suggested that the initial moisture content, crystal arrangement, intra- and inter-molecular packing of the polymorphs defined their effects on the rheology of lubricated powders.
ERIC Educational Resources Information Center
Buck, Maria L.
In 1992, the Metropolitan Tulsa Chamber of Commerce in Oklahoma established a welfare-to-work program called Industrial Exchange, Inc. (IndEx). IndEx provides welfare recipients with a combination of education activities and work experience. By contracting with local companies to perform light manufacturing and packaging work at a central site,…