Science.gov

Sample records for atom pyramidal gravimeter

  1. Atom chip gravimeter

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.

  2. Atom-Chip Fountain Gravimeter

    NASA Astrophysics Data System (ADS)

    Abend, S.; Gebbe, M.; Gersemann, M.; Ahlers, H.; Müntinga, H.; Giese, E.; Gaaloul, N.; Schubert, C.; Lämmerzahl, C.; Ertmer, W.; Schleich, W. P.; Rasel, E. M.

    2016-11-01

    We demonstrate a quantum gravimeter by combining the advantages of an atom chip for the generation, delta-kick collimation, and coherent manipulation of freely falling Bose-Einstein condensates (BECs) with an innovative launch mechanism based on Bloch oscillations and double Bragg diffraction. Our high-contrast BEC interferometer realizes tens of milliseconds of free fall in a volume as little as a one centimeter cube and paves the way for measurements with sub-μ Gal accuracies in miniaturized, robust devices.

  3. Finite-speed-of-light perturbation in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2016-07-01

    The finite-speed-of-light (FSL) effect is a systematic error in atom gravimeters arising from the time delay due to the propagation of the light. It includes the frequency-chirp-independent part and the frequency-chirp-dependent part, which were not considered completely. The FSL effect in atom gravimeters is different from that in corner-cube absolute gravimeters. In the past, this effect has been widely studied in corner-cube absolute gravimeters, whereas little has been discussed about and done with atom gravimeters. In this paper, we mainly propose a complete analytical study based on a coordinate transformation and on a "perturbation" approach to estimate this effect in an atom gravimeter. This also offers the potential to calculate the general relativistic effects in atom gravimeters. In addition, a comparison with a crude "average-path" analysis is given for a particular case of the FSL effect in atom gravimeters.

  4. Precision atomic gravimeter based on Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; Johnsson, M. T.; Negnevitsky, V.; Dennis, G. R.; Anderson, R. P.; Debs, J. E.; Szigeti, S. S.; Hardman, K. S.; Bennetts, S.; McDonald, G. D.; Turner, L. D.; Close, J. D.; Robins, N. P.

    2013-02-01

    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g = 2.7 × 10-9 with an integration time of 1000 s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.

  5. Relativistic effects in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  6. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  7. Investigation of the thermal adaptability for a mobile cold atom gravimeter

    NASA Astrophysics Data System (ADS)

    Wang, Qi-Yu; Wang, Zhao-Ying; Fu, Zhi-Jie; Lin, Qiang

    2016-12-01

    The cold atom gravimeter offers the prospect of a new generation of inertial sensors for field applications. We accomplish a mobile atom gravimeter. With the compact and stable system, a sensitivity of 1.4×10-7 g·Hz-1/2 is achieved. Moreover, a continuous gravity monitoring of 80 h is carried out. However, the harsh outdoor environment is a big challenge for the atom gravimeter when it is for field applications. In this paper, we present the preliminary investigation of the thermal adaptability for our mobile cold atom gravimeter. Here, we focus on the influence of the air temperature on the performance of the atom gravimeter. The responses to different factors (such as laser power, fiber coupling efficiency, etc.) are evaluated when there is a great temperature shift of 10 °C. The result is that the performances of all the factors deteriorate to different extent, nevertheless, they can easily recover as the temperature comes back. Finally, we conclude that the variation of air temperature induces the increase of noise and the system error of the atom gravimeter as well, while the process is reversible with the recovery of the temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the National High Technology Research and Development Program of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2016FZA3004).

  8. Continuous absolute g monitoring of the mobile LNE-SYRTE Cold Atom Gravimeter - a new tool to calibrate superconducting gravimeters -

    NASA Astrophysics Data System (ADS)

    Merlet, Sébastien; Gillot, Pierre; Cheng, Bing; Pereira Dos Santos, Franck

    2016-04-01

    Atom interferometry allows for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developed an absolute gravimeter (CAG) based on this technic, which can perform continuous gravity measurements at a high cycling rate. This instrument, operating since summer 2009, is the new metrological french standard for gravimetry. The CAG has been designed to be movable, so as to participate to international comparisons and on field measurements. It took part to several comparisons since ICAG'09 and operated in both urban environments and low noise underground facilities. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which is rejected thanks to isolation platforms and correlation with other sensors, such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity of 5.6 μGal at 1 s measurement time has been demonstrated. The long term stability averages down to 0.1 μGal for long term measurements. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of the gravity acceleration measurement and its performances. I will focus on continuous gravity measurements performed over several years and compared with our superconducting gravimeter iGrav signal. This comparison allows us to calibrate the iGrav scale factor and follow its evolution. Especially, we demonstrate that, thanks to the CAG very high cycling rate, a single day gravity measurement allows to calibrate the iGrav scaling factor with a relative uncertainty as good as 4.10-4.

  9. Note: A three-dimension active vibration isolator for precision atom gravimeters

    SciTech Connect

    Zhou, Min-Kang; Xiong, Xin; Chen, Le-Le; Cui, Jia-Feng; Duan, Xiao-Chun; Hu, Zhong-Kun

    2015-04-15

    An ultra-low frequency active vibration isolator, simultaneously suppressing three-dimensional vibration noise, is demonstrated experimentally. The equivalent natural period of the isolator is 100 s and 12 s for the vertical and horizontal direction, respectively. The vibration noise in the vertical direction is about 50 times reduced during 0.2 and 2 Hz, and 5 times reduced in the other two orthogonal directions in the same frequency range. This isolator is designed for atom gravimeters, especially suitable for the gravimeter whose sensitivity is limited by vibration couplings.

  10. Performances and capabilities of the mobile LNE-SYRTE Cold Atom Gravimeter

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Farah, T.; Lautier, J.; Landragin, A.; Pereira Dos Santos, F.

    2013-12-01

    Atom interferometry technics allow for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developped an absolute gravimeter (CAG) based on these technics, which can perform continuous gravity measurements at high cycling rate. This instrument, operating since summer 2009 is the new metrological french standard for gravimetry. The CAG has been developped to be movable to participate to international comparisons and on field measurement. It took part to several comparisons such as ICAG'09 and ECAG'11 and operated in urban environment and low noise underground laboratory. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which can be rejected thanks to isolation platforms and/or correlation with other sensors such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity below 1 μGal after only 100 s measurement time without any ground vibration isolation system have been obtained. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of gravity acceleration measurement and its performances and results during comparisons, in different environmental conditions such as at LSBB, an underground laboratory, or during earthquakes. Comparison with our superconducting gravimeter iGrav recently installed in our laboratory will also be presented. Then I will be able to present other geometries for different applications.

  11. Development of a portable matter-wave gravimeter

    NASA Astrophysics Data System (ADS)

    Desruelle, B.; Menoret, V.; Bouyer, P.; Landragin, A.

    2013-12-01

    This paper presents the results of the research activities conducted by our company for the development of its Absolute Quantum Gravimeter. This instrument relies on the utilization of a free-falling cloud of cold rubidium atoms, whose vertical acceleration is characterized using advanced matter-wave interferometry techniques. In order to meet the tight requirements expressed by geophysicists for field utilization, we have implemented several technological innovations, which allow us to combine state-of-the-art performance with simple operation and excellent transportability. The architecture of our gravimeter is based on the following innovations: - a hollow pyramidal reflector allows us to achieve all the functions (trapping, cooling, atomic state selection, interferometry and detection) with a single laser beam [1]. This scheme leads to a drastic simplification of the sensor head, and a strong reduction of its mass and volume. - An all-fibered laser system based on the frequency doubling of a seed laser operating at 1560 nm [2]. With this approach, we are able to obtain a very compact, reliable and easy to use laser source capable of generating two optical frequencies in the 780.23 nm range with an output power in excess of 250 mW, an excellent polarization extinction ratio and a fast tunability. - a real-time system dedicated to the compensation of ground vibrations [3]. This technique is based on the operation of a low noise seismometer, whose AC acceleration signal is used to correct the atomic interferometer signal. We give a detailed presentation of the instrument architecture and summarize the experimental results we have obtained with our first generation prototype. [1] A cold atom pyramidal gravimeter with a single laser beam, Q. Bodart et al, Appl. Phys. Lett. 96, 134101 (2010) [2] "Light-pulse atom interferometry in microgravity", G. Stern et al, Eur. Phys. J. D 53, 353-357 (2009) [3]. "Limits in the sensitivity of a compact atomic interferometer ", J

  12. Generation of a Cold Atom Beam from a Pyramidal Magneto-Optical Trap

    NASA Technical Reports Server (NTRS)

    Kohel, J.; Thompson, R. J.; Seidel, D. J.; Klipstein, W. M.; Maleki, L.; Bliss, J.; Libbrecht, K. G.

    2000-01-01

    Techniques to generate cold atom beams are of great interest in a variety of applications, from atomic frequency standards and atom optics to experimental studies of Bose-Einstein condensation. Cold atom beams have been produced by slowing thermal atomic beams using the Zeeman-slowing technique or chirped lasers, or using laser-cooling techniques to extract a slow atomic beam from the background gas in a low-pressure vapor cell. These laser-cooling techniques include "atomic funnels" or two-dimensional magneto-optical traps, as well as a variation of the conventional vapor cell magneto-optical trap called the "low-velocity intense source" (LVIS). Variations of the LVIS have been realized with unique trap geometries such as conical or pyramidal mirror traps. The present work implements a simple and robust design based on the pyramidal trap geometry and allows use of a single large diameter (atoms from the background vapor. The four 45 deg mirrors are truncated just before the apex of the pyramid, and the 1 sq cm region at the center of the incident laser beam is retro-reflected by lambda /4 plate with a high-reflectance gold coating on the second surface. A small (1 mm diameter) hole in this retro-optic forms an extraction column for the atoms while maintaining a low conductance between the source region and an adjacent UHV chamber.

  13. Educational Inductive Gravimeter

    ERIC Educational Resources Information Center

    Nunn, John

    2014-01-01

    A simple inductive gravimeter constructed from a rigid plastic pipe and insulated copper wire is described. When a magnet is dropped through the vertically mounted pipe it induces small alternating voltages. These small signals are fed to the microphone input of a typical computer and sampled at a typical rate of 44.1 kHz using a custom computer…

  14. Stabilized Laser Gravimeter

    DTIC Science & Technology

    1976-11-01

    McMullen, "Stabilized Laser Gravim- eter," Proceedings of the 20th International Instrumentations Symposium, Albuquerque, New Mexico , May 1974. N.D...and N.D. McMullen, "Stabilized Laser Gravimeter," Proceedings of the 20th International Instrumentations Symposium, Albuquerque, New Mexico , May 1974...International Instrumentations *i, Albuquerque, New Mexico , May 1974. 3. J. Levine and J.L. Hall, "Design and Operation of a Methane Absorp- tion Stabilized

  15. Single-crystal diamond pyramids: synthesis and application for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Ismagilov, Rinat R.

    2016-03-01

    Here we present the results of investigations aimed at the development and testing of robust, chemically inert single-crystal diamond probes for atomic force microscopy (AFM). The probes were prepared by assembling common silicon probes with micrometer-sized pyramid-shaped single-crystal diamonds (SCD). The SCD were obtained by the selective thermal oxidation of the polycrystalline films grown by chemical vapor deposition. Electrostatic spray of adhesive coating onto silicon probes was used to attach individual SCD. Geometrical parameters of produced AFM SCD probes were revealed with transmission electron microscopy: the apex angle of the pyramidal diamond crystallite was ˜10 deg, and the curvature radius at the apex was ˜2 to 10 nm. The diamond AFM probes were used for surface imaging of deoxyribonucleic acid deposited on graphite substrate. Obtained results demonstrate high efficiency of the diamond AFM probes, allowing improvement of the image quality compared to standard silicon probes.

  16. Atomic Structure of Pyramidal Defects in GaN:Mg; Influence ofAnnealing

    SciTech Connect

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; O'Keefe, M.; Hautakangas, S.; Saarinen, K.; Freitas, J.A.

    2005-10-03

    The atomic structure of the characteristic defects (Mg-rich hexagonal pyramids) in p-doped bulk and MOCVD GaN:Mg thin films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects, confirmed also with positron annihilation. The inside walls of the cavities were covered by GaN of reverse polarity compared to the matrix. Defects in bulk GaN:Mg were almost one order of magnitude larger than in thin films. An exchange of Ga and N sublattices within the defect compared to the matrix lead to a 0.6 {+-} 0.2 {angstrom} displacement between the Ga sublattices of these two areas. A [1100]/3 shift with change from AB stacking in the matrix to BC within the entire pyramid was observed. Annealing of the MOCVD layers lead to slight increase of the defect size and an increase of the photoluminescence intensity. Positron annihilation confirms presence of vacancies of different sizes triggered by the Mg doping in as-grown samples and decrease of their concentration upon annealing at 900 and 1000 C.

  17. Measurement of the Earth tides with a MEMS gravimeter

    NASA Astrophysics Data System (ADS)

    Middlemiss, R. P.; Samarelli, A.; Paul, D. J.; Hough, J.; Rowan, S.; Hammond, G. D.

    2016-03-01

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz1/2): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz1/2 only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers—found in most smart phones—can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  18. Erbium Doped Fiber Optic Gravimeter

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, G. G.; Pérez-Torres, J. R.; Flores-Bravo, J. A.; Álvarez-Chávez, J. A.; Martínez-Piñón, F.

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor.

  19. Superatom-atom super-bonding in metallic clusters: a new look to the mystery of an Au20 pyramid.

    PubMed

    Cheng, Longjiu; Zhang, Xiuzhen; Jin, Baokang; Yang, Jinlong

    2014-11-07

    Using the super valence bond model, a generalized chemical picture for the electronic shells of an Au20 pyramid is given. It is found that Au20 can be viewed to be a superatomic molecule, of which its superatomic 16c-16e core (T) is in D(3)S hybridization bonded with four vertical Au atoms for the molecule-like (TAu4) electronic shell-closure. Based on such a superatom-atom bonding model, TX4 (X = F, Cl, or Br) are predicted to be very stable. Such a superatom-atom T-Au/T-X bonding enriches the scope of chemistry.

  20. Gravimeter using high-temperature superconductor bearing.

    SciTech Connect

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  1. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    PubMed

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  2. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-02-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters.

  3. Calculation of the local density of states for a discrete pyramidal model of a diamond tip surmounted by a single atom

    NASA Astrophysics Data System (ADS)

    Miskovsky, N. M.; Cutler, P. H.

    1999-09-01

    In a series of recent experiments, diamond cold cathodes have yielded high current at low power (μA to mA at about 10 V). These results, coupled with the extraordinary physical and electronic properties of this wide bandgap material ( Eg≈5.5 eV) make diamond cold cathodes promising candidates for use in flat panel displays, high frequency devices, sensors and other vacuum microelectronics applications. The experimental work on these cathodes has concentrated on thin film composites and needle geometries. It has been proposed that the emission originates from localized asperities (or crystallites) on the film (which can be of nanometer, or even atomic, size) or from very sharp tips approaching atomic size in the case of needle geometry. A quantity important in determining the origin of the tunneling electron states is the local density of states function. In the present work we have calculated the local density of states (LDOS) at an atomically sharp diamond asperity (or tip) using a tight binding model. A pyramidal shaped cluster of 159 atoms is constructed to model the tip. The forces are calculated and used to optimize the atomic geometry of the top six layers of atoms. The bottom layers are fixed to simulate the bulk diamond. The broken symmetry of the pyramidal tip gives rise to unique features in the LDOS compared to the slab or flat-surface geometry. In the tip geometry, there are unoccupied states just above the topmost occupied energy states which gives rise to a more 'metallic' like behavior in the presence of an applied electric field. Since the tunneling characteristics depend strongly on the local density of states at the 'surface', it is expected (without even considering field enhancement effects) that the field electron energy distribution from these tips will be significantly different from so called flat or 'blunt' field emitters.

  4. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    NASA Astrophysics Data System (ADS)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  5. The Absolute Gravimeter FG5 - Adjustment and Residual Data Evaluation

    NASA Astrophysics Data System (ADS)

    Orlob, M.; Braun, A.; Henton, J.; Courtier, N.; Liard, J.

    2009-05-01

    The most widely used method of direct terrestrial gravity determination is performed by using a ballistic absolute gravimeter. Today, the FG5 (Micro-g LaCoste; Lafayette, CO) is the most common free-fall absolute gravimeter. It uses the Michelson-type interferometer to determine the absolute gravity value with accuracies up to one part- per-billion of g. Furthermore, absolute gravimeter measurements can be used to assist in the validation and interpretation of temporal variations of the global gravity field, e.g. from the GRACE mission. In addition, absolute gravimetry allows for monitoring gravity changes which are caused by subsurface mass redistributions and/or vertical displacements. In this study,adjustment software was developed and applied to the raw data sets of FG5#106 and FG5#236, made available by Natural Resources Canada. Both data sets have been collected at the same time and place which leads to an intercomparison of the instruments performance. The adjustment software was validated against the official FG5 software package developed by Micro-g Lacoste. In order to identify potential environmental or instrument disturbances in the observed time series, a Lomb- Scargle periodogram analysis was employed. The absolute gravimeter FG5 is particularly sensitive to low frequencies between 0-3Hz. Hence, the focus of the analysis is to detect signals in the band of 0-100 Hz. An artificial signal was added to the measurements for demonstration purposes. Both the performance of the adjustment software and the Lomb-Scargle analysis will be discussed.

  6. Continuous gravity observations at active volcanoes through superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo

    2016-04-01

    Continuous gravity measurements at active volcanoes are usually taken through spring gravimeters that are easily portable and do not require much power to work. However, intrinsic limitations dictate that, when used in continuous, these instruments do not provide high-quality data over periods longer than some days. Superconducting gravimeters (SG), that feature a superconducting sphere in a magnetic field as the proof mass, provide better-quality data than spring gravimeters, but are bigger and need mains electricity to work, implying that they cannot be installed close to the active structures of high volcanoes. An iGrav SG was installed on Mt. Etna (Italy) in September 2014 and has worked almost continuously since then. It was installed about 6km from the active craters in the summit zone of the volcano. Such distance is normally too much to observe gravity changes due to relatively fast (minutes to days) volcanic processes. Indeed, mass redistributions in the shallowest part of the plumbing system induce short-wavelength gravity anomalies, centered below the summit craters. Nevertheless, thanks to the high precision and long-term stability of SGs, it was possible to observe low-amplitude changes over a wide range of timescales (minutes to months), likely driven by volcanic activity. Plans are in place for the implementation of a mini-array of SGs at Etna.

  7. SGA-WZ: a new strapdown airborne gravimeter.

    PubMed

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  8. Remarks on superconducting gravimeter calibration by co-located gravity observations

    NASA Astrophysics Data System (ADS)

    Meurers, B.; Blaumoser, N.; Ullrich, Ch.

    2012-04-01

    Using absolute gravimetry for site by site recording of temporal gravity variations is the most common method to calibrate stationary relative gravimeters, specifically superconducting gravimeters. This method is based on the assumption that both sensors record the same gravity signal. Actually, this condition is never perfectly fulfilled, not even when absolute gravimeters are involved. Instrumental effects like drift are the main reason. Therefore the situation dramatically deteriorates if spring gravimeters are applied as reference due to their large and sometimes irregular drift. This paper investigates the role of instrumental drift at calibration experiments based both on absolute and spring gravimeters and how the calibration results improve if drift is considered even in case of absolute gravimeters. The question whether spring gravimeters can reliably support SG calibration is discussed especially under the aspect of appropriate drift modelling. The accuracy which is presently achievable with FG5 absolute gravimeters strongly depends on the drop-to-drop scatter and therefore on the site noise. E.g. at Conrad observatory (Austria) the difference between the mean calibration factor obtained when drift is or is not taken into account turns out to be in the same order of magnitude as the error, i.e. the improvement by a common drift adjustment is just at the error limit. Nevertheless, based on this result, adjusting the instrumental drift is recommended. This will especially hold when further instrumental improvements reduce the drop-to-drop scatter or even presently at low noise stations.

  9. High tilt susceptibility of the Scintrex CG-5 relative gravimeters

    NASA Astrophysics Data System (ADS)

    Reudink, R.; Klees, R.; Francis, O.; Kusche, J.; Schlesinger, R.; Shabanloui, A.; Sneeuw, N.; Timmen, L.

    2014-06-01

    We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10 Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.

  10. Effects of impedance mismatch and coaxial cable length on absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel; Vaľko, Miloš

    2017-04-01

    The systematic effects of absolute gravimeters have to be investigated to fully utilize their capabilities in metrology and geosciences. In Křen et al (2016 Metrologia 53 27–40) we found that for an FG5 gravimeter, even a few meter long coaxial cable used for transmission of fringe signal causes systematic features in residuals and errors at the level of 1–2 µGal. In this paper, we present experimental results and appropriate models to explain the effects that were found to be caused by impedance mismatches of electronic components and dispersion effects in coaxial cables of gravimeters. The experimental results have been obtained for analogue and transistor–transistor logic (TTL) compatible signals in the FG5-215 gravimeter and for a TTL signal in the FG5X-251 gravimeter. We found that dispersion and impedance mismatch effects are similar for both gravimeters. Furthermore, we describe a model of the dispersion that allows an evaluation of the effect/correction for a given range of the free-fall and thus it is also applicable to other gravimeters. The effect of impedance mismatch for the analogue fringe signal is modelled as an effect of the reflected electronic signal on the evaluation of zero-crossings. The applicability of this model for TTL signal is also discussed.

  11. Pyramid beam splitter

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  12. Rebuilding the Food Pyramid.

    ERIC Educational Resources Information Center

    Willet, Walter C.; Stampfer, Meir J.

    2003-01-01

    Discusses the old food guide pyramid released in 1992 by the U.S. Department of Agriculture. Contradicts the message that fat is bad, which was presented to the public by nutritionists, and the effects of plant oils on cholesterol. Introduces a new food pyramid. (YDS)

  13. Oxidation sharpening, template stripping, and passivation of ultra-sharp metallic pyramids and wedges.

    PubMed

    Im, Hyungsoon; Oh, Sang-Hyun

    2014-02-26

    Ultra-sharp metallic pyramids and wedges with tunable tip angles and 5-nm tip radii are replicated from oxidation-sharpened silicon templates with high throughput (80 million pyramids per wafer). Atomic layer deposition of Al2 O3 shells can protect these sharp pyramidal tips for subsequent usage in near-field imaging.

  14. Comparisons of absolute gravimeters (COOMET.M.G-S1)

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Mr Alexander; Germak, Alessandro, Dr

    2017-01-01

    This report describes the results of the RMO supplementary comparison COOMET.M.G-S1 (also known as bilateral comparison COOMET 634/UA/14). The comparison measurements between the two participants NSC 'IM' (pilot laboratory) and INRIM were started in December 2015 and finished in January 2016. Participants of comparisons were conducted at their national standards the measurements of the free fall acceleration in gravimetric point laboratory of absolute gravimetry of INRIM named INRiM.2. Absolute measurements of gravimetric acceleration were conducted by ballistic gravimeters. The agreement between the two participants is good. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    NASA Astrophysics Data System (ADS)

    Schmerge, D.; Francis, O.; Henton, J.; Ingles, D.; Jones, D.; Kennedy, J.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, A.; Silliker, J.; van Westrum, D.

    2012-08-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS's GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 μGal (1 Gal ≡ 1 cm s -2). The minimum and maximum offsets are -2.8 and 2.7 μGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  16. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    USGS Publications Warehouse

    Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.

    2012-01-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  17. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  18. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  19. Self-attraction effect and correction on the T-1 absolute gravimeter

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hu, H.; Wu, K.; Li, G.; Wang, G.; Wang, L. J.

    2015-12-01

    The self-attraction effect (SAE) in an absolute gravimeter is a kind of systematic error due to the gravitation of the instrument to the falling object. This effect depends on the mass distribution of the gravimeter, and is estimated to be a few microgals (1 μGal  =  10-8 m s-2) for the FG5 gravimeter. In this paper, the SAE of a home-made T-1 absolute gravimeter is analyzed and calculated. Most of the stationary components, including the dropping chamber, the laser interferometer, the vibration isolation device and two tripods, are finely modelled, and the related SAEs are computed. In addition, the SAE of the co-falling carriage inside the dropping chamber is carefully calculated because the distance between the falling object and the co-falling carriage varies during the measurement. In order to get the correction of the SAE, two different methods are compared. One is to linearize the SAE curve, the other one is to calculate the perturbed trajectory. The results from these two methods agree with each other within 0.01 μGal. With an uncertainty analysis, the correction of the SAE of the T-1 gravimeter is estimated to be (-1.9  ±  0.1) μGal.

  20. Characterization of the response of spring-based relative gravimeters during paroxysmal eruptions at Etna volcano

    NASA Astrophysics Data System (ADS)

    Greco, Filippo; Iafolla, Valerio; Pistorio, Antonio; Fiorenza, Emiliano; Currenti, Gilda; Napoli, Rosalba; Bonaccorso, Alessandro; Del Negro, Ciro

    2014-12-01

    Gravity time sequences collected at Etna volcano by continuously recording spring-based relative gravimeters showed significant variations in temporal correspondence with paroxysmal eruptions. Since the observed gravity variations can only be partially related to subsurface mass redistribution phenomena, we investigated the instrumental effects due to ground vibrations such as those that accompany explosive activity. We simulated the performances of relative gravimeters with laboratory experiments to estimate their response to vertical and horizontal excitations. Laboratory tests were carried out using a vibrating platform capable of accelerating the instruments with intensities and frequencies, in both the vertical and horizontal directions, observed in the ground vibrations associated with paroxysmal events. The seismic signals recorded at Etna volcano during the 10 April 2011 lava fountain were analyzed to retrieve the parameters used to drive the vibration platform. We tested two gravimeters used for Etna volcano monitoring: the LaCoste & Romberg D#185 (Lafayette, CO, USA) and the Scintrex CG-3 M#9310234 (Concord, ON, Canada). The experiment results highlight that the vibrations resembling the seismic waves propagated during paroxysmal events cause an amplitude response in the gravity readings on the order of several hundred microgals (μGal). Generally, the relationship between the vibrations and the gravimeter response is nonlinear, with a fairly complex dependence on the frequencies and amplitudes of the signals acting on the gravimeters.

  1. Set standard deviation, repeatability and offset of absolute gravimeter A10-008

    USGS Publications Warehouse

    Schmerge, D.; Francis, O.

    2006-01-01

    The set standard deviation, repeatability and offset of absolute gravimeter A10-008 were assessed at the Walferdange Underground Laboratory for Geodynamics (WULG) in Luxembourg. Analysis of the data indicates that the instrument performed within the specifications of the manufacturer. For A10-008, the average set standard deviation was (1.6 0.6) ??Gal (1Gal ??? 1 cm s -2), the average repeatability was (2.9 1.5) ??Gal, and the average offset compared to absolute gravimeter FG5-216 was (3.2 3.5) ??Gal. ?? 2006 BIPM and IOP Publishing Ltd.

  2. Monitoring water storage variations in the vadose zone with gravimeters - quantifying the influence of observatory buildings

    NASA Astrophysics Data System (ADS)

    Reich, Marvin; Güntner, Andreas; Mikolaj, Michal; Blume, Theresa

    2016-04-01

    Time-lapse ground-based measurements of gravity have been shown to be sensitive to water storage variations in the surroundings of the gravimeter. They thus have the potential to serve as an integrative observation of storage changes in the vadose zone. However, in almost all cases of continuous gravity measurements, the gravimeter is located within a building which seals the soil beneath it from natural hydrological processes like infiltration and evapotranspiration. As water storage changes in close vicinity of the gravimeter have the strongest influence on the measured signal, it is important to understand the hydrology in the unsaturated soil zone just beneath the impervious building. For this reason, TDR soil moisture sensors were installed in several vertical profiles up to a depth of 2 m underneath the planned new gravimeter building at the Geodetic Observatory Wettzell (southeast Germany). In this study, we assess the influence of the observatory building on infiltration and subsurface flow patterns and thus the damping effect on gravimeter data in a two-way approach. Firstly, soil moisture time series of sensors outside of the building area are correlated with corresponding sensors of the same depth beneath the building. The resulting correlation coefficients, time lags and signal to noise relationships are used to find out how and where infiltrating water moves laterally beneath the building and towards its centre. Secondly, a physically based hydrological model (HYDRUS) with high discretization in space and time is set up for the 20 by 20 m area around and beneath the gravimeter building. The simulated spatial distribution of soil moisture in combination with the observed point data help to identify where and to what extent water storage changes and thus mass transport occurs beneath the building and how much this differs to the dynamics of the surroundings. This allows to define the umbrella space, i.e., the volume of the vadose zone where no mass

  3. Build a Sierpinski Pyramid.

    ERIC Educational Resources Information Center

    Kelley, Paul

    1999-01-01

    Describes an activity on fractal geometry in which students built a 19-foot-tall Sierpinski pyramid in the Minneapolis Convention Center in conjunction with the National Council of Teachers of Mathematics' (NCTM) 75th Annual Meeting in April, 1997. Contains 13 references. (ASK)

  4. David Macaulay's Pyramid.

    ERIC Educational Resources Information Center

    Frew, Andrew W.

    1997-01-01

    Integrating literature and mathematics can be meaningful using David Macaulay's "Pyramid." This article provides an annotated bibliography of picture books, fiction, folk tales, nonfiction, videotapes, audio books, and CD-ROMs for grades 1-12 to support a unit on Egypt. Describes related math activities; and highlights a catalog of…

  5. Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)

    USGS Publications Warehouse

    Jiang, Z.; Francis, O.; Vitushkin, L.; Palinkas, V.; Germak, A.; Becker, M.; D'Agostino, G.; Amalvict, M.; Bayer, R.; Bilker-Koivula, M.; Desogus, S.; Faller, J.; Falk, R.; Hinderer, J.; Gagnon, C.; Jakob, T.; Kalish, E.; Kostelecky, J.; Lee, C.; Liard, J.; Lokshyn, Y.; Luck, B.; Makinen, J.; Mizushima, S.; Le, Moigne N.; Origlia, C.; Pujol, E.R.; Richard, P.; Robertsson, L.; Ruess, D.; Schmerge, D.; Stus, Y.; Svitlov, S.; Thies, S.; Ullrich, C.; Van Camp, M.; Vitushkin, A.; Ji, W.; Wilmes, H.

    2011-01-01

    The Bureau International des Poids et Mesures (BIPM), S??vres, France, hosted the 7th International Comparison of Absolute Gravimeters (ICAG) and the associated Relative Gravity Campaign (RGC) from August to September 2005. ICAG 2005 was prepared and performed as a metrological pilot study, which aimed: To determine the gravity comparison reference values; To determine the offsets of the absolute gravimeters; and As a pilot study to accumulate experience for the CIPM Key Comparisons. This document presents a complete and extensive review of the technical protocol and data processing procedures. The 1st ICAG-RGC comparison was held at the BIPM in 1980-1981 and since then meetings have been organized every 4 years. In this paper, we present an overview of how the meeting was organized, the conditions of BIPM gravimetric sites, technical specifications, data processing strategy and an analysis of the final results. This 7th ICAG final report supersedes all previously published reports. Readings were obtained from participating instruments, 19 absolute gravimeters and 15 relative gravimeters. Precise levelling measurements were carried out and all measurements were performed on the BIPM micro-gravity network which was specifically designed for the comparison. ?? 2011 BIPM & IOP Publishing Ltd.

  6. Regional comparison of absolute gravimeters, EURAMET.M.G-K2 key comparison

    NASA Astrophysics Data System (ADS)

    Pálinkáš, V.; Francis, O.; Val'ko, M.; Kostelecký, J.; Van Camp, M.; Castelein, S.; Bilker-Koivula, M.; Näränen, J.; Lothhammer, A.; Falk, R.; Schilling, M.; Timmen, L.; Iacovone, D.; Baccaro, F.; Germak, A.; Biolcati, E.; Origlia, C.; Greco, F.; Pistorio, A.; De Plaen, R.; Klein, G.; Seil, M.; Radinovic, R.; Reudink, R.; Dykowski, P.; Sȩkowski, M.; Próchniewicz, D.; Szpunar, R.; Mojzeš, M.; Jańk, J.; Papčo, J.; Engfeldt, A.; Olsson, P. A.; Smith, V.; van Westrum, D.; Ellis, B.; Lucero, B.

    2017-01-01

    In the framework of the regional EURAMET.M.G-K2 comparison of absolute gravimeters, 17 gravimeters were compared in November 2015. Four gravimeters were from different NMIs and DIs, they were used to link the regional comparison to the CCM.G.K2 by means of linking converter. Combined least-squares adjustments with weighted constraint was used to determine KCRV. Several pilot solutions are presented and compared with the official solution to demonstrate influences of different approaches (e.g. definition of weights and the constraint) on results of the adjustment. In case of the official solution, all the gravimeters are in equivalence with declared uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Gravimetric observations of water storage change - lysimeters and superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, B.; Güntner, A.; Merz, B.; Wziontek, H.

    2009-12-01

    Water storage changes (WSC) are a key component in the water balance equation, but the estimation of local WSC in the subsurface is still a challenging task. Despite many advances of WSC measurement technique, in general, the measurement scale (point scale) differs to the scale of interest. Advances in lysimeter techniques enable the direct measurement of the soil water balance on the field scale, but exclude WSC in greater depths below the lysimeter. Superconducting gravimeter (SG) measurements are influenced by local water mass changes and thus, may allow for observing WSC in the vadose and saturated zone in an integrative way. Vice versa, lysimeters can contribute to the reduction of noise by hydrological surface processes in SG observations. The Geodetic Observatory Wettzell (Germany) is the only place where both systems - a state-of-the-art weighable, suction-controlled lysimeter and a dual sphere SG -measure in parallel at a distance of around 40 m. This gives the unique opportunity to observe in-situ gravimetric WSC at the field scale by two independent techniques. In this study we focus on assessing the WSC estimated by the lysimeter and its local effect (Newtonian attraction) on the SG. First, we evaluate the lysimeter measurements by comparing them to TDR soil profile data in and around the lysimeter, in terms of artificial conditions in the lysimeter and spatial variability. Then, the effect of local soil moisture change on the SG residuals measured directly with the lysimeter is identified. Finally, we use a hydrological 1D model to estimate WSC in the vadose zone below the lysimeter, whereas the upper boundary is defined by the drainage measured by the lysimeter and the lower boundary by groundwater level data. The estimated WSC are used to explain the sources of the SG signal. Results show that the lysimeter reproduces the soil water dynamics in the field. The results also highlight the importance of WSC in the vadose zone below the lysimeter and the

  8. PYRAMID ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Armstrong, Augustus K.; Scott, Douglas F.

    1984-01-01

    A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.

  9. Time stability of spring and superconducting gravimeters through the analysis of very long gravity records

    NASA Astrophysics Data System (ADS)

    Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter

    2014-10-01

    Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.

  10. Evolution of pyramid morphology during InAs(001) homoepitaxy

    SciTech Connect

    Babu, J. Bubesh; Yoh, Kanji

    2010-08-16

    Growth of InAs(001) homoepitaxial layer has been carried out especially at the bistable region, where the coexistence of both In-stabilized (4x2) and As-stabilized (2x4) surface reconstruction are found to be predominant. The observation of pyramid morphology in this bistable region is reported here. Atomic force microscopy studies have been performed on such pyramids. The heights of the observed pyramids vary from 12 to 26 nm with their bases from 3.6x1.2 to 18x6.3 {mu}m{sup 2}. Formation of such pyramids in the bistable region is attributed to the unique anomalous As-desorption observed during the surface reconstruction.

  11. The Periodic Pyramid

    ERIC Educational Resources Information Center

    Hennigan, Jennifer N.; Grubbs, W. Tandy

    2013-01-01

    The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy…

  12. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    SciTech Connect

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  13. Pyramid Lake Renewable Energy Project

    SciTech Connect

    John Jackson

    2008-03-14

    The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

  14. On the effect of distortion and dispersion in fringe signal of the FG5 absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel

    2016-02-01

    The knowledge of absolute gravity acceleration at the level of 1  ×  10-9 is needed in geosciences (e.g. for monitoring crustal deformations and mass transports) and in metrology for watt balance experiments related to the new SI definition of the unit of kilogram. The gravity reference, which results from the international comparisons held with the participation of numerous absolute gravimeters, is significantly affected by qualities of instruments prevailing in the comparisons (i.e. at present, FG5 gravimeters). Therefore, it is necessary to thoroughly investigate all instrumental (particularly systematic) errors. This paper deals with systematic errors of the FG5#215 coming from the distorted fringe signal and from the electronic dispersion at several electronic components including cables. In order to investigate these effects, we developed a new experimental system for acquiring and analysing the data parallel to the FG5 built-in system. The new system based on the analogue-to-digital converter with digital waveform processing using the FFT swept band pass filter is developed and tested on the FG5#215 gravimeter equipped with a new fast analogue output. The system is characterized by a low timing jitter, digital handling of the distorted swept signal with determination of zero-crossings for the fundamental frequency sweep and also for its harmonics and can be used for any gravimeter based on the laser interferometry. Comparison of the original FG5 system and the experimental systems is provided on g-values, residuals and additional measurements/models. Moreover, advanced approach for the solution of the free-fall motion is presented, which allows to take into account a non-linear gravity change with height.

  15. Correction of vibration for classical free-fall gravimeters with correlation-analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Hu, H.; Wu, K.; Wang, L. J.

    2017-03-01

    In a free-fall absolute gravimeter, a laser interferometer is used to track the falling retro-reflector. To buffer the reference retro-reflector from seismic noise, a low-frequency vertical vibration isolator is traditionally used. However, an isolation device is usually complicated and expensive. A strap-down system using a seismometer to record the vibration and correct the measurement resolves the issue, but the actual recorded vibration cannot be directly used because of signal transfer delay and amplitude attenuation. Nevertheless, by quadratically fitting the trajectory of the falling retro-reflector and the motion of the reference retro-reflector, we find that their residuals are significantly correlated. Moreover, the transfer delay and the amplitude attenuation can be calculated using correlation analysis. With this capability, a vibration correction method for absolute gravimeters is proposed and demonstrated. The transfer delay and the gain attenuation are determined from data of only 25 drops, and can be used to correct subsequent measurements. The method is also applied in the T-1 absolute gravimeter. The standard deviation of the measurement results is improved by a factor of 20 after correction in a noisy environment, and improved by a factor of 5 in a quiet environment. Compared with vibration isolators, the strap-down system using this correction method is much more compact, enabling its use in field conditions or even dynamic environments not suitable for vibration isolators.

  16. [The pyramid trap].

    PubMed

    Harzheim, E; Alvarez-Dardet, C

    2001-01-01

    This paper discusses the impact of globalization on public health practice. Neoliberal supremacy has resulted in both greater interdependence between countries and increasing inequalities. Globalization of health risks and the dependence of local health conditions on external forces precludes the use of local/national solutions for global problems. In this context, the classical organization of public health services in a hierarchical pyramid based on geographically defined areas (from the local to the regional and national levels) no longer makes sense. We thus suggest some characteristics of a different type of organization based on new information technologies: a transnational network, horizontally shaped, more independent from political power, allowing for exchange of information and good practices, promoting dissemination of knowledge and producing "glocal" solutions. Through the creation of work opportunities between health professionals, the model will permit the creation of common strategies and increase the power of their political demands, perhaps allowing for the collective development of a more equitable world.

  17. Pyramidical model of schizophrenia.

    PubMed

    Kay, S R; Sevy, S

    1990-01-01

    Research and treatment of schizophrenia have been impeded by its heterogeneity and the lack of well-standardized methods for a comprehensive assessment of symptoms, including positive and negative dimensions. To study symptom profiles, therefore, we standardized and administered a well-operationalized 30-item psychiatric symptom scale to 240 schizophrenic inpatients. Principal component analysis suggested a pyramidlike triangular model of uncorrelated but nonexclusive syndromes that encompassed the spectrum of psychopathology. Negative, positive, and depressive features constituted divergent points of a triangular base, and excitement made up a separate vertical axis. Paired syndromes could account for symptoms of the paranoid (positive-depressive), disorganized (positive-negative), and catatonic (negative-depressive) diagnostic subtypes. The transversal positions in this model suggested polarized dimensions in schizophrenia, including a prognostic axis (depression-cognitive dysfunction). The findings imply that (1) negative and positive syndromes show factorial validity and distinction from depression but, alone, are insufficient to accommodate the full diversity of symptoms; (2) schizophrenic subtypes derive from a hybrid between unrelated but co-occurring dimensions that may define the fundamental elements of psychopathology; and (3) the pyramidical model is of heuristic value. The results help to clarify the heterogeneity of schizophrenia and to illuminate the path toward syndrome-specific treatments.

  18. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  19. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.

    PubMed

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-12-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  20. Fractal analysis of Mesoamerican pyramids.

    PubMed

    Burkle-Elizondo, Gerardo; Valdez-Cepeda, Ricardo David

    2006-01-01

    A myth of ancient cultural roots was integrated into Mesoamerican cult, and the reference to architecture denoted a depth religious symbolism. The pyramids form a functional part of this cosmovision that is centered on sacralization. The space architecture works was an expression of the ideological necessities into their conception of harmony. The symbolism of the temple structures seems to reflect the mathematical order of the Universe. We contemplate two models of fractal analysis. The first one includes 16 pyramids. We studied a data set that was treated as a fractal profile to estimate the Df through variography (Dv). The estimated Fractal Dimension Dv = 1.383 +/- 0.211. In the second one we studied a data set to estimate the Dv of 19 pyramids and the estimated Fractal Dimension Dv = 1.229 +/- 0.165.

  1. The gravimeter "B-grave" for the in-situ surface gravity measurements of an asteroid

    NASA Astrophysics Data System (ADS)

    van Ruymbeke, Michel; karatekin, ozgur; rasson, jean; wielant, françois; dumont, Phillipe; Ritter, Birgit; zhu, Ping

    2016-04-01

    In the context of the preliminary study phase for the CubeSats supporting ESA's Asteroid Impact Mission (AIM) to the Didymos, we investigate a miniaturized gravimeter as part of the geophysical instrument package for the Asteroid Geophysical Explorer (AGEX). AGEX intends to land a CubeSat on the secondary object in the Didymos system, Didymoon in order to characterize the asteroid surface and internal structure A 3D compact gravimeter is developed at the Royal Observatory of Belgium. Its design allows to meter a weak 50 μm/sec² gravity field corresponding to 5 ppm of Earth gravity in a harsh environment. A system with three components mounted in an orthogonal geometry allows obtaining the gravity field in amplitude and in angular position without any requirement of levelling. B-GRAVES will use a in-situ calibration and multi-parameter approach for validation of the measurements. A laboratory simulation is induced with centrifugal forces applied to the pendulum set-up in a vertical position to reject the Earth gravity field. Signal treatment and uncertainties are discussed keeping in mind questions of thermal and vibration influence. The B-GRAVES can serve as a novel and robust instrument for future lander and rover missions .

  2. Impact of ambient temperature on spring-based relative gravimeter measurements

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Moigne, N. Le; Chery, J.

    2016-10-01

    In this paper, we investigate the impact of ambient temperature changes on the gravity reading of spring-based relative gravimeters. Controlled heating experiments using two Scintrex CG5 gravimeters allowed us to determine a linear correlation (R 2> 0.9) between ambient temperature and gravity variations. The relation is stable and constant for the two CG5 we used: -5 nm/s2/° C. A linear relation is also seen between gravity and residual sensor temperature variations (R 2> 0.75), but contrary to ambient temperature, this relation is neither constant over time nor similar between the two instruments. The linear correction of ambient temperature on the controlled heating time series reduced the standard deviation at least by a factor of 2, to less than 10 nm/s2 . The laboratory results allowed for reprocessing the data gathered on a field survey that originally aimed to characterize local hydrological heterogeneities on a karstic area. The correction of two years of monthly CG5 measurements from ambient temperature variations halved the standard deviation (from 62 to 32 nm/s2 ) and led us to a better hydrological interpretation. Although the origin of this effect is uncertain, we suggest that an imperfect control of the sensor temperature may be involved, as well as a change of the properties of an electronic component.

  3. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland.

    PubMed

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-06-05

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level.

  4. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  5. Impact of ambient temperature on spring-based relative gravimeter measurements

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Moigne, N. Le; Chery, J.

    2017-03-01

    In this paper, we investigate the impact of ambient temperature changes on the gravity reading of spring-based relative gravimeters. Controlled heating experiments using two Scintrex CG5 gravimeters allowed us to determine a linear correlation ( R 2> 0.9) between ambient temperature and gravity variations. The relation is stable and constant for the two CG5 we used: -5 nm/s2/° C. A linear relation is also seen between gravity and residual sensor temperature variations ( R 2> 0.75), but contrary to ambient temperature, this relation is neither constant over time nor similar between the two instruments. The linear correction of ambient temperature on the controlled heating time series reduced the standard deviation at least by a factor of 2, to less than 10 nm/s2. The laboratory results allowed for reprocessing the data gathered on a field survey that originally aimed to characterize local hydrological heterogeneities on a karstic area. The correction of two years of monthly CG5 measurements from ambient temperature variations halved the standard deviation (from 62 to 32 nm/s2) and led us to a better hydrological interpretation. Although the origin of this effect is uncertain, we suggest that an imperfect control of the sensor temperature may be involved, as well as a change of the properties of an electronic component.

  6. Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter

    NASA Astrophysics Data System (ADS)

    Svitlov, S.; Masłyk, P.; Rothleitner, Ch; Hu, H.; Wang, L. J.

    2010-12-01

    This paper reports results of comparison of three digital fringe signal processing methods implemented in the same free-fall absolute gravimeter. A two-sample zero-crossing method, a windowed second-difference method and a method of non-linear least-squares adjustment on the undersampled fringe signal are compared in numerical simulations, hardware tests and actual measurements with the MPG-2 absolute gravimeter, developed at the Max Planck Institute for the Science of Light, Germany. The two-sample zero-crossing method realizes data location schemes that are both equally spaced in distance and equally spaced in time (EST) along the free-fall trajectory. The windowed second-difference method and the method of non-linear least-squares adjustment with complex heterodyne demodulation operate with the EST data. Results of the comparison verify an agreement of the three methods within one part in 109 of the measured gravity value, provided a common data location scheme is considered.

  7. A Rebuttal of NTL Institute's Learning Pyramid

    ERIC Educational Resources Information Center

    Letrud, Kare

    2012-01-01

    This article discusses the learning pyramid corroborated by National Training Laboratories Institute. It present and compliment historical and methodological critique against the learning pyramid, and call upon NTL Institute ought to retract their model.

  8. Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips

    NASA Astrophysics Data System (ADS)

    Nelz, Richard; Fuchs, Philipp; Opaluch, Oliver; Sonusen, Selda; Savenko, Natalia; Podgursky, Vitali; Neu, Elke

    2016-11-01

    We investigate bright fluorescence of nitrogen (NV)- and silicon-vacancy color centers in pyramidal, single crystal diamond tips, which are commercially available as atomic force microscope probes. We coherently manipulate NV electronic spin ensembles with T2 = 7.7(3) μs. Color center lifetimes in different tip heights indicate effective refractive index effects and quenching. Using numerical simulations, we verify enhanced photon rates from emitters close to the pyramid apex rendering them promising as scanning probe sensors.

  9. Mesoscale metallic pyramids with nanoscale tips.

    PubMed

    Henzie, Joel; Kwak, Eun-Soo; Odom, Teri W

    2005-07-01

    We report a simple procedure that can generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used as an etch mask to fabricate pyramidal pits and then as a deposition mask to form the metallic pyramids. We have fabricated two- and three-layered pyramids with control over their materials and chemical functionality.

  10. A magic pyramid of supergravities

    NASA Astrophysics Data System (ADS)

    Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S.

    2014-04-01

    By formulating = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in , it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of anexotic theory with G/ H duality structure F 4(4)/Sp(3) × Sp(1).

  11. Modified MyPyramid for Older Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1999 we proposed a Modified Food Guide Pyramid for 70+ Adults. It has been extensively used in a variety of settings and formats to highlight the unique dietary challenges of older adults. We now propose a Modified MyPyramid for Older Adults in a format consistent with the MyPyramid graphic. I...

  12. Moving-mass gravimeter calibration in the Mátyáshegy Gravity and Geodynamical Observatory (Budapest)

    NASA Astrophysics Data System (ADS)

    Kis, Márta; Koppán, Andras; Kovács, Péter; Merényi, László

    2014-05-01

    A gravimeter calibration facility exists in the Mátyáshegy Gravity and Geodynamical Observatory of Geological and Geophysical Institute in Hungary. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The main target of the calibration device was to reach a relative accuracy of 0.1-0.2% for the calibration of Earth-tide registering gravimeters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. The instrument was out of order for many years and in 2012 and 2013 it was renovated and automatized. The calibration process is aided by intelligent controller electronics. A new PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. As it is well known that variations of the magnetic field can influence the measurements of metal-spring gravimeters, authors carried out magnetic experiments on the pillar of the calibration device as well, in order to analyze the magnetic effect of the moving stainless steel-mass. During the movements of the mass, the observed magnetic field has been changed significantly. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. In this presentation authors show the facility in details and the numerical results of tests carried out by applying LCR G gravimeters.

  13. Gravity sensing with Very Long Baseline Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Schlippert, Dennis; Albers, Henning; Richardson, Logan L.; Nath, Dipankar; Meiners, Christian; Wodey, Etienne; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.

    2016-05-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Extending the baseline of atomic gravimeters from tens of centimeters to meters opens the route towards competition with superconducting gravimeters. The VLBAI-test stand will consist of a 10m-baseline atom interferometer allowing for free fall times of seconds. In order to suppress environmental noise, the facility utilizes a state-of-the-art vibration isolation platform and a three-layer magnetic shield. We envisage a resolution of local gravitational acceleration of 5 .10-10 m/ s2 with sub-ppb inaccuracy. Operation as a gradiometer will allow to resolve the gravity gradient at a resolution of 5 .10-10 1/ s2. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level, with the potential to surpass the accuracy of the best experiments to date. We report on a quantum test of the UFF using two different chemical elements, 39 K and 87 Rb, reaching a 100 ppb inaccuracy and show the potential of UFF tests in VLBAI at an inaccuracy of 10-13 and beyond.

  14. Superconducting gravimeter observation for identifying slow slip events at Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Imanishi, Y.; Nawa, K.; Tamura, Y.; Ikeda, H.; Miyaji, T.; Tanaka, Y.

    2012-12-01

    Analysis of the data from the dense GPS network of Japan (GEONET) revealed quasi-periodic occurrences of long-term slow slip events at the Ryukyu Trench (Heki and Kataoka, 2008). The recurrence period of the events is about half a year, much shorter than typically found in other regions where slow slips are known to take place. Therefore, this region provides an interesting field for investigating the nature of slow slip events. In February 2012, we started gravity observation using a superconducting gravimeter (SG) at the VERA Ishigakijima Station, National Astronomical Observatory of Japan. The Ishigakijima island is located slightly east off the presumed fault area of the slow slip events. Our purpose is to detect gravity changes associated with the slow slip events by making full use of the high resolution of the SG. Of particular interest is the possible effect of water on the slow slip events, which might be identified from gravity observations. In addition to the SG, we installed an FG5 absolute gravimeter at the Iriomotejima island, located about 10 km west of the Ishigakijima island. The SG used in this study (serial number CT36) is the one which was in operation at the Inuyama Seismological Observatory, Nagoya University for about ten years. Before moving it to Ishigakijima, we made a thorough examination of the instruments. Because we found a serious problem in transferring liquid helium because of the ice inside, we warmed up the Dewar to initialize it. This not only solved the ice problem but also resulted in a significant decrease of the heater power for the gravity sensor. As of this writing, we have about six months worth of data from the SG. The condition of the gravimeter is good except for the first month when temperature control was unstable. Because of the ground vibrations caused by the movement of the 20-m VLBI antenna (about 30 m apart from the SG), the noise level is significantly enhanced compared with other domestic SG stations. Also we

  15. Superconducting Gravimeter Data for the IRIS Seismology Database: Application to Normal Modes from the Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Crossley, D.; Rivera, L.; Hinderer, J.; Rosat, S.

    2009-04-01

    For several years, it has been the goal of the Global Geodynamics Project (GGP) to convert high rate acceleration data recorded on superconducting gravimeters (SG) to a format compatible with the seismic data archived at IRIS. The problem for the GGP community has been to properly establish the metadata for characterizing the response of the instrument, particularly its phase characteristics. Although SG data exists at IRIS from the Membach GGP station in Belgium, up to now most of the data from the GGP network has been on hold until the response problem was solved. This we have now been able to do, and we hope to show that data from the Strasbourg SG station will be at IRIS and available. We will also upload all the data from the SGs from after the Sumatra earthquake and show some results on normal mode analysis that demonstrates the benefit of the good amplitude calibration feature and high precision of the SG instruments.

  16. Monitoring Water Storage Variations with a Superconducting Gravimeter in a Field Enclosure

    NASA Astrophysics Data System (ADS)

    Guntner, A.; Mikolaj, M.; Reich, M.; Schröder, S.; Wziontek, H.

    2015-12-01

    Runoff generation often is a non-linear and hysteretic function of catchment water storage. Storage dynamics, in turn, are notoriously difficult to monitor in a comprehensive way beyond the point scale. Superconducting gravimeters (SG) measure temporal variations of the Earth's acceleration of gravity with very high precision and temporal resolution. They have been shown to be sensitive to mass variations induced by hydrological processes in their surroundings, typically within a radius of few 100 meters around the instrument. Thus, in turn, SGs are unique instruments for monitoring water storage variations in the landscape in an integrative way, accounting for soil moisture, vadose zone and groundwater storage, snow, and surface water bodies if existent. We present the measurement concept of SGs and expose its value for hydrological process research. We stress limitations, in particular that the hydrological application of SGs so far has often been hindered by the instruments being located in observatory buildings. This infrastructure disturbs the local hydrology and causes many uncertainties due to the often poorly known geometry of the construction, non-natural flow paths of water, and unknown water storage variations below and/or on top of the infrastructure. By deploying the SG in a small enclosure, these disturbances and unknowns are minimized. We report on the first experiences with exposing a SG of the latest generation (iGrav) in a small housing of less than 1 m2 footprint to temperate hydro-meteorological conditions. The system has been set up on a grassland site at the Geodetic Observatory in Wettzell, Bavarian Forest, Germany, in early 2015. We present the technical layout and challenges in running the gravimeter system. Additionally, we report on the quality of data acquired so far and present comparisons to in-situ soil moisture monitoring with TDR and TOMST sensors, a lysimeter, and groundwater observations. We discuss the value of SG observations

  17. Monitoring water storage variations with a superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas; Mikolaj, Michal; Reich, Marvin; Schröder, Stephan; Wziontek, Hartmut

    2016-04-01

    Water storage dynamics are notoriously difficult to monitor in a comprehensive way beyond the point scale. Superconducting gravimeters (SG) measure temporal variations of the Earth's acceleration of gravity with very high precision and temporal resolution. They have been shown to be sensitive to mass variations induced by hydrological processes in their surroundings, typically within a radius of few 100 meters around the instrument. Thus, in turn, SGs are unique instruments for monitoring water storage variations in the landscape in an integrative way, accounting for soil moisture, vadose zone and groundwater storage, snow, and surface water bodies if existent. Nevertheless, hydrological applications of SGs so far have usually been hindered by the instruments being located in observatory buildings. This infrastructure disturbs the local hydrology and causes many uncertainties due to the often poorly known geometry of the construction, non-natural flow paths of water, and unknown water storage variations below and/or on top of the infrastructure. By deploying the SG in a small enclosure, these disturbances and unknowns are minimized. We report on the first experiences with exposing a SG of the latest generation (iGrav) in a small housing of less than 1 m2 footprint to temperate hydro-meteorological conditions. The system has been set up on a grassland site at the Geodetic Observatory in Wettzell, Bavarian Forest, Germany, in early 2015. We present the technical layout and challenges in running the gravimeter system. Additionally, we report on the quality of data acquired so far and present comparisons to in-situ soil moisture monitoring with TDR and TOMST sensors, a lysimeter, and groundwater observations, and two SGs located in nearby observatory buildings. We discuss the value of SG observations for estimating water storage variations, evapotranspiration and groundwater recharge beyond the point scale.

  18. Pyramidal Defects in GaN:Mg Grown with Ga Polarity

    SciTech Connect

    Liliental-Weber, Zuzanna; Tomaszewicz, Tomasz; Zakharov, Dmitri; O'Keefe, Michael A.

    2005-02-15

    Transmission electron microscopy (TEM) studies show formation of different types of Mg-rich defects in GaN. Types of defects strongly depend on crystal growth polarity. For bulk crystals grown with N-polarity, the planar defects are distributed at equal distances (20 unit cells of GaN). For growth with Ga-polarity (for both bulk and MOCVD grown crystals) a different type of defects have been found. These defects are three-dimensional Mg-rich hexagonal pyramids (or trapezoids) with their base on the (0001) plane and six walls formed on 1123 planes. The defects appear in [1120] and [1100] cross-section TEM micrographs as triangular and trapezoidal with sides inclined at 43 and 47 degrees to the base depending on the above observation directions, respectively. The dimension of these pyramids varies depending on growth method (50-1000 Angstrom), but the angle between the base and their sides remain the same. The direction from the tip of the pyramid to its base (and from the shorter to the longer base for trapezoidal defects) is along the Ga to N matrix bond direction. Analysis of the reconstructed exit wave phase image from the pyramid side indicates a shift of Ga atomic column positions from the matrix to the N position within the pyramid. In this way a 0.6{+-}0.2 Angstrom displacement can be measured on the pyramid side between Ga positions in the matrix and within the pyramid.

  19. Using Superconducting Gravimeter iGrav for detecting small mass change in field measurements (a case study)

    NASA Astrophysics Data System (ADS)

    Kao, Ricky; Neumeyer, Juergen; Kabirzadeh, Hojjat; Sideris, Michael; Kim, Jeong Woo

    2013-04-01

    A number of geophysical and geodetic measuring techniques can be used to monitor phenomena related to geohazards and geodynamics at the earth surface, but are unable to observe subsurface mass transfer of man-made or natural origins. Because of drift and low signal resolution, a spring-type gravimeter has limited applications in areas such as monitoring geological CO2 storage, hydrocarbon reservoirs, and episodic tremor and slip (ETS). The drift and resolution problems make it even more complicated to detect non-periodic gravity signals that are associated with mass change. These limitations may be overcome by deploying a superconducting gravimeter (SG) such as i'Grav. i'Grav uses a magnetically levitated sphere as a test mass, and has considerably lower drift and a higher sensitivity in the time and frequency domains than conventional spring gravimeters. With these attributes, SG is able to record precise and continuous gravity variations over a long time for monitoring gravity change caused by geohazards and geodynamics activities. Parallel GPS and gravity records are necessary to explain the surface and subsurface movement. In order to determine offsets in the gravity signals due to horizontal and vertical movement of the gravity instruments, we performed various lab experiments with iGrav (#001) and Micro-g LaCoste's absolute gravimeter A10 in a quiet indoor environment (UofC). We used a professional camera dolly with a track and an electric lift table for a controlled movement to take gravity measurements at different locations. Offsets up to a 0.68 µGals due to the 210 pounds are placed on the top of iGrav. In our simulation, we concluded that the gravimetric method can be used to monitor surface gravity change at µGal level, which ETS is found to be associated with surface deformation at a few millimeters at a site Cascadia Subduction Zone.

  20. Urban public health: is there a pyramid?

    PubMed

    Su, Meirong; Chen, Bin; Yang, Zhifeng; Cai, Yanpeng; Wang, Jiao

    2013-01-28

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000-2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  1. The pyramids of Greece: Ancient meridian observatories?

    NASA Astrophysics Data System (ADS)

    Theodossiou, Efstratios; Manimanis, Vassilios N.; Dimitrijević, Milan S.; Katsiotis, Marco

    Pyramids, "Dragon Houses" ("Drakospita") and megalithic structures in general create always a special interest. We postulate that, as happens with the Drakospita of Euboea, the pyramid-like structures of Argolis (Eastern Peloponnese) were constructed by the Dryops. It is known that, in addition to Euboea and some Cyclades islands, this prehellenic people had also settled in Argolis, where they founded the city of Asine. We also propose that the pyramids of Argolis and in particular the pyramid of Hellinikon village were very likely, besides being a burial monument or guard house, might be served also for astronomical observations.

  2. Urban Public Health: Is There a Pyramid?

    PubMed Central

    Su, Meirong; Chen, Bin; Yang, Zhifeng; Cai, Yanpeng; Wang, Jiao

    2013-01-01

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000–2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development. PMID:23358233

  3. Virtual pyramid wavefront sensor for phase unwrapping.

    PubMed

    Akondi, Vyas; Vohnsen, Brian; Marcos, Susana

    2016-10-10

    Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.

  4. Putting the Pyramid into Practice. Science Topics.

    ERIC Educational Resources Information Center

    Texas Child Care, 1994

    1994-01-01

    Explains the new U.S. Department of Agriculture (USDA) Food Guide Pyramid, which can help children and adults visualize the basics of sound nutrition. The pyramid chart places five food groups from top to bottom in inverse proportion to the number of servings that should be consumed. Special symbols are used to indicate fat content and added…

  5. Personalizing the Food Pyramid. Teaching Techniques.

    ERIC Educational Resources Information Center

    Allen, Donna

    1996-01-01

    Presents a strategy for health and home economics teachers to use in evaluating secondary students' eating and nutritional patterns. Students keep two-day food journals then complete a colorful personal food pyramid with the results. This creates a personal pyramid of food choices that lets students explore their eating habits. (SM)

  6. Electromagnetic scattering by pyramidal and wedge absorber

    NASA Technical Reports Server (NTRS)

    Dewitt, Brian T.; Burnside, Walter D.

    1988-01-01

    Electromagnetic scattering from pyramidal and wedge absorbers used to line the walls of modern anechoic chambers is measured and compared with theoretically predicted values. The theoretical performance for various angles of incidence is studied. It is shown that a pyramidal absorber scatters electromagnetic energy more as a random rough surface does. The apparent reflection coefficient from an absorber wall illuminated by a plane wave can be much less than the normal absorber specifications quoted by the manufacturer. For angles near grazing incidence, pyramidal absorbers give a large backscattered field from the pyramid side-faces or edges. The wedge absorber was found to give small backscattered fields for near-grazing incidence. Based on this study, some new guidelines for the design of anechoic chambers are advocated because the specular scattering models used at present do not appear valid for pyramids that are large compared to the wavelength.

  7. Observing Gravity Change in the Fennoscandian Uplift Area with the Hanover Absolute Gravimeter

    NASA Astrophysics Data System (ADS)

    Timmen, Ludger; Gitlein, Olga; Klemann, Volker; Wolf, Detlef

    2012-08-01

    The Nordic countries Norway, Sweden, Finland and Denmark are a key study region for research of glacial isostasy. In addition, such research offers a unique opportunity for absolute gravimetry to show its capability as a geodetic tool for geophysical research. Within a multi-national cooperation, annual absolute gravity measurements have been performed in Fennoscandia by IfE since 2003. For the Hanover gravimeter FG5-220, overall accuracy of ±30 nm/s2 is indicated for a single station determination. First results of linear gravity changes are derived for ten stations in the central and southern part of the uplift area. Comparing with the rates predicted by glacial rebound modelling, the gravity trends of the absolute measurements differ by 3.8 nm/s2 per year (root-mean-square discrepancy) from the uplift model. The mean difference between observed and predicted rates is 0.8 nm/s2 per year only. A proportionality factor of -1.63 ± 0.20 nm/s2 per mm has been obtained, which describes the mean ratio between the observational gravity and height rates.

  8. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  9. Earth's core and inner core resonances from analysis of VLBI nutation and superconducting gravimeter data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2016-10-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyze surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 years. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov Chain Monte Carlo method. We obtain estimates of the free core nutation (FCN) resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95% confidence interval extend the possible values between roughly 28 days and 725 days for gravity, and from 362 to 414 days from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  10. Monitoring the performance of relative gravimeters for quality control in Mexico's gravity data

    NASA Astrophysics Data System (ADS)

    Avalos, D.

    2013-05-01

    Gravimetric surveying is the fundamental data source for geodetic and geophysical processes like gravity field modeling, geoid modeling and prospection among others. These applications require and often assume that the accuracy of all field data is homogeneous to the uncertainty level of a few microGal. Nonetheless, after taking care of the methodology, the data obtained can be systematically contaminated with errors at the level of hundreds of microGal due to sudden devise miss-calibration. At the Mexico's National Institute of Statistics and Geography, the program of gravimetric surveying targets to obtain a 100% of national coverage for geoid modeling while recent procedures are implemented to monitor the performance of measuring devices. By regularly testing the ability of relative gravimeters to obtain accurate results it has been proven that the data quality can be maintained at a regular level for the convenience of users. Activities like the re-calculation of scale factors, drift and tide corrections ensure not only the present and future databases but even allow improvement of past records.

  11. Estimation of the gravimetric pole tide by stacking long time-series of GGP superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Hinderer, Jacques; Rogister, Yves; Rosat, Séverine

    2016-04-01

    We compute the gravimetric factor at the Chandler wobble (CW) frequency using time-series from superconducting gravimeters (SG) longer than a decade. We first individually process the polar motion and data at each individual gravity station to estimate the gravimetric factor amplitude and phase, then we make a global analysis by applying a stacking method to different subsets of up to seven SG stations. The stacking is an efficient way of getting rid of local effects and improving the signal-to-noise ratio of the combined data sets. Using the stacking method, we find a gravimetric factor amplitude and phase of 1.118 ± 0.016 and -0.45 ± 0.66 deg, respectively, which is smaller in amplitude than expected. The sources of error are then carefully considered. For both local and global analyses, the uncertainties on our results are reliably constrained by computing the standard deviation of the estimates of the gravimetric factor amplitude and phase for increasing length of the time-series. Constraints on the CW anelastic dissipation can be set since any departure of the gravimetric factor from its elastic value may provide some insights into the dissipative processes that occur at the CW period. In particular, assuming given rheological models for the Earth's mantle enables us to make the link between the gravimetric factor phase and the CW quality factor.

  12. Optical properties of GaN pyramids

    SciTech Connect

    Zeng, K.C.; Lin, J.Y.; Jiang, H.X.; Yang, W.

    1999-03-01

    Picosecond time-resolved photoluminescence (PL) spectroscopy has been used to investigate the optical properties of GaN pyramids overgrown on hexagonal-patterned GaN(0001) epilayers on sapphire and silicon substrates with AlN buffer layers. We found that: (i) the release of the biaxial compressive strain in GaN pyramids on GaN/AlN/sapphire substrate led to a 7 meV redshift of the spectral peak position with respect to the strained GaN epilayer grown under identical conditions; (ii) in the GaN pyramids on GaN/AlN/sapphire substrate, strong band edge transitions with much narrower linewidths than those in the GaN epilayer have been observed, indicating the improved crystalline quality of the overgrown pyramids; (iii) PL spectra taken from different parts of the pyramids revealed that the top of the pyramid had the highest crystalline quality; and (iv) the presence of strong band-to-impurity transitions in the pyramids were primarily due to the incorporation of the oxygen and silicon impurities from the SiO{sub 2} mask. {copyright} {ital 1999 American Institute of Physics.}

  13. Maskless inverted pyramid texturization of silicon.

    PubMed

    Wang, Yan; Yang, Lixia; Liu, Yaoping; Mei, Zengxia; Chen, Wei; Li, Junqiang; Liang, Huili; Kuznetsov, Andrej; Xiaolong, Du

    2015-06-02

    We discovered a technical solution of such outstanding importance that it can trigger new approaches in silicon wet etching processing and, in particular, photovoltaic cell manufacturing. The so called inverted pyramid arrays, outperforming conventional pyramid textures and black silicon because of their superior light-trapping and structure characteristics, can currently only be achieved using more complex techniques involving lithography, laser processing, etc. Importantly, our data demonstrate a feasibility of inverted pyramidal texturization of silicon by maskless Cu-nanoparticles assisted etching in Cu(NO3)2 / HF / H2O2 / H2O solutions and as such may have significant impacts on communities of fellow researchers and industrialists.

  14. Hydro-gravimetry in West-Africa: First results from the Djougou (Benin) superconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Hector, Basile; Hinderer, Jacques; Séguis, Luc; Boy, Jean-Paul; Calvo, Marta; Descloitres, Marc; Rosat, Séverine; Galle, Sylvie; Riccardi, Umberto

    2014-10-01

    The increasing number of hydro-gravimetry studies proves the rising interest of the hydrology community toward this monitoring method. The accuracy of superconducting gravimeters (SG) potentially allows the retrieval of small water storage changes (WSC) down to a few millimeters of equivalent water thickness. However, the importance of corrections applied to SG data to achieve such a precision in gravity residuals should be recalled. The Djougou permanent gravity station presented in this paper and located in northern Benin, West-Africa, provides a good opportunity to review these considerations. This station is equipped since July 2010 with the superconducting gravimeter SG-060 aimed at deriving WSC at different time-scales, daily to inter-annual. In this area, WSC are (1) part of the control system for evapotranspiration (ET) process, a key variable of the West-African monsoon cycle and (2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. The potential for deriving WSC from time-lapse gravity data partly depends on environmental features such as topography and the instrument shelter. Therefore, this issue is addressed first, with the background idea that such sensitivity analysis should be undertaken before setting up any new instrument. In Djougou, local topography is quite flat leading to a theoretical straightforward relationship between gravity changes and WSC, close to the standard Bouguer value. However, the shelter plays a significant masking role, which is the principal limitation to the retrieval of fast hydrological processes such as ET following a rain event. Several issues concerning classical gravity corrections are also addressed in the paper. These include gap-filling procedures during rain-events and drift estimates for short time series. Special attention is provided to atmospheric corrections, and different approaches are tested: a simple scalar admittance, a

  15. Gravity sensing with Very Long Baseline Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Schlippert, Dennis; Albers, Henning; Richardson, Logan L.; Nath, Dipankar; Meiners, Christian; Wodey, Étienne; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst M.

    2016-04-01

    Very Long Baseline Atom Interferometry (VLBAI) represents a new class of atom optics experiments with applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Extending the baseline of atomic gravimeters from tens of centimeters to several meters opens the route towards competition with superconducting gravimeters. The VLBAI-test stand will consist of a 10m-baseline atom interferometer allowing for free fall times on the order of seconds, which will implemented in the Hannover Institut für Technologie (HITec) of the Leibniz Universität Hannover. In order to suppress environmental noise, the facility utilizes a state-of-the-art vibration isolation platform and a three-layer magnetic shield. We envisage a resolution of local gravitational acceleration of 5 ṡ 10-10 m/s2 with an inaccuracy < 10-9 m/s2. Operation as a gravity-gradiometer will allow to resolve the first-order gravity gradient with a resolution of 5 ṡ 10-10 1/s2. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of ytterbium and rubidium atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level [1], with the potential to surpass the accuracy of the best experiments to date [2]. We report on the first quantum test of the UFF using two different chemical elements, 39K and 87Rb [3], reaching a 100 ppb inaccuracy and show the potential of UFF tests in VLBAI at an inaccuracy of 10-13 and beyond. References J. Hartwig et al., New J. Phys. 17, 035011- (2015) S. Schlamminger et al., Phys. Rev. Lett. 100, 041101- (2008) D. Schlippert et al., Phys. Rev. Lett. 112, 203002 (2014)

  16. Facets formation mechanism of GaN hexagonal pyramids on dot-patterns via selective MOVPE

    SciTech Connect

    Hiramatsu, Kazumasa; Kitamura, Shota; Sawaki, Nobuhiko

    1996-11-01

    Three-dimensional GaN pyramids have been successfully obtained on dot-patterned GaN(0001)/sapphire substrates by using the selective MOVPE technique. The dot-pattern is a hexagon arranged with a 5{micro}m width and a 10{micro}m spacing. The GaN structure comprises a hexagonal pyramid covered with six {l_brace}1{bar 1}01{r_brace} pyramidal facets on the side or a frustum of a hexagonal pyramid having a (0001) facet on the top. The facet formation mechanism has been investigated by observing the facet structure with the growth time. The {l_brace}1{bar 1}01{r_brace} facets are very stable during the growth. The (0001) facet growth is dominant at the initial growth but almost stops at a certain growth time and then the facet structure is maintained. The appearance of the self-limited (0001) facet is attributed to the balance of flux between incoming Ga atoms from the vapor phase to the (0001) surface and outgoing Ga atoms from the (0001) surface to the {l_brace}1{bar 1}01{r_brace} surface via migration. The longer the diffusion length of the Ga atoms on the (0001) surface is, the more the surface migration is enhanced, resulting in the appearance of the wider (0001) facet on the top.

  17. Antireflective properties of pyramidally textured surfaces.

    PubMed

    Deinega, Alexei; Valuev, Ilya; Potapkin, Boris; Lozovik, Yurii

    2010-01-15

    Antireflective properties of pyramidally textured surfaces at normal light incidence are studied by the finite-difference time-domain (FDTD) method. Optimal parameters for the period of the texture and the pyramid height are found. The asymptotic behavior of the reflection coefficient with an increasing height-to-base size ratio for the pyramids is also estimated for two limiting approximations: the effective medium theory (EMT) and geometric optics. For calculations in the geometric optics limit the ray tracing method was applied. The FDTD results for these limits are in agreement with the EMT and with the ray tracing calculations. It was found that the key factor influencing the optimal scatterer size is the character of the substrate tiling by the pyramid bases.

  18. Pyramids and roundtables: a reflection on leadership.

    PubMed

    Murayama, Kenric M

    2014-12-01

    By the nature of their career choice, surgeons are leaders at a variety of levels. The rise to leadership positions in surgery often requires scaling a steep pyramid. Many young surgeons are poorly prepared for what is frequently a competition with their peers. Some of the qualities young surgeons must possess to ascend the leadership pyramid are summarized by the "HOPES" of leadership: Honesty, recognition of Opportunity, having a Plan, knowing your Environment, and Self-assessment.

  19. V-pit to truncated pyramid transition in AlGaN-based heterostructures

    NASA Astrophysics Data System (ADS)

    Mogilatenko, A.; Enslin, J.; Knauer, A.; Mehnke, F.; Bellmann, K.; Wernicke, T.; Weyers, M.; Kneissl, M.

    2015-11-01

    The formation of three-dimensional truncated pyramids after the deposition of AlN/GaN superlattices onto (0001) AlN/sapphire templates has been analysed by atomic force microscopy as well as transmission electron microscopy. V-pits in AlN layers and the formation of nano-mounds around the v-pit edges are suggested to be responsible for the pyramid formation. Keeping the individual AlN layer thickness at 2.5 nm in the 80xAlN/GaN superlattice, the transformation to the three-dimensional pyramids is observed when the individual GaN layer thickness exceeds 1.5 nm. A subsequent overgrowth of the pyramidal structures by AlGaN results in inhomogeneous Ga distribution in the layers and laterally inhomogeneous strain states. Nevertheless, compared to the growth on planar layers, the overgrowth of the truncated pyramids leads to a slight reduction in dislocation density from 1 · 1010 cm-2 (for GaN thickness of 1 nm in SL) to 7 · 109 cm-2 (for GaN thickness of 2 nm in SL). The non-planar growth front and thus the compositional inhomogeneity in AlGaN vanish gradually with increasing AlGaN thickness. As a result, homogeneous 4 μm thick Al0.5Ga0.5N buffer layers suitable for the fabrication of UV-B LED structures can be obtained.

  20. Modified MyPyramid for Older Adults.

    PubMed

    Lichtenstein, Alice H; Rasmussen, Helen; Yu, Winifred W; Epstein, Susanna R; Russell, Robert M

    2008-01-01

    In 1999 we proposed a Modified Food Guide Pyramid for adults aged 70+ y. It has been extensively used in a variety of settings and formats to highlight the unique dietary challenges of older adults. We now propose a Modified MyPyramid for Older Adults in a format consistent with the MyPyramid graphic. It is not intended to substitute for MyPyramid, which is a multifunctional Internet-based program allowing for the calculation of individualized food-based dietary guidance and providing supplemental information on food choices and preparation. Pedagogic issues related to computer availability, Web access, and Internet literacy of older adults suggests a graphic version of MyPyramid is needed. Emphasized are whole grains and variety within the grains group; variety and nutrient density, with specific emphasis on different forms particularly suited to older adults' needs (e.g. frozen) in the vegetables and fruits groups; low-fat and non-fat forms of dairy products including reduced lactose alternatives in the milk group; low saturated fat and trans fat choices in the oils group; and low saturated fat and vegetable choices in the meat and beans group. Underlying themes stress nutrient- and fiber-rich foods within each group and food sources of nutrients rather than supplements. Fluid and physical activity icons serve as the foundation of MyPyramid for Older Adults. A flag to maintain an awareness of the potential need to consider supplemental forms of calcium, and vitamins D and B-12 is placed at the top of the pyramid. Discussed are newer concerns about potential overnutrition in the current food landscape available to older adults.

  1. The pyramid system for multiscale raster analysis

    USGS Publications Warehouse

    De Cola, L.; Montagne, N.

    1993-01-01

    Geographical research requires the management and analysis of spatial data at multiple scales. As part of the U.S. Geological Survey's global change research program a software system has been developed that reads raster data (such as an image or digital elevation model) and produces a pyramid of aggregated lattices as well as various measurements of spatial complexity. For a given raster dataset the system uses the pyramid to report: (1) mean, (2) variance, (3) a spatial autocorrelation parameter based on multiscale analysis of variance, and (4) a monofractal scaling parameter based on the analysis of isoline lengths. The system is applied to 1-km digital elevation model (DEM) data for a 256-km2 region of central California, as well as to 64 partitions of the region. PYRAMID, which offers robust descriptions of data complexity, also is used to describe the behavior of topographic aspect with scale. ?? 1993.

  2. Maskless inverted pyramid texturization of silicon

    PubMed Central

    Wang, Yan; Yang, Lixia; Liu, Yaoping; Mei, Zengxia; Chen, Wei; Li, Junqiang; Liang, Huili; Kuznetsov, Andrej; Xiaolong, Du

    2015-01-01

    We discovered a technical solution of such outstanding importance that it can trigger new approaches in silicon wet etching processing and, in particular, photovoltaic cell manufacturing. The so called inverted pyramid arrays, outperforming conventional pyramid textures and black silicon because of their superior light-trapping and structure characteristics, can currently only be achieved using more complex techniques involving lithography, laser processing, etc. Importantly, our data demonstrate a feasibility of inverted pyramidal texturization of silicon by maskless Cu-nanoparticles assisted etching in Cu(NO3)2 / HF / H2O2 / H2O solutions and as such may have significant impacts on communities of fellow researchers and industrialists. PMID:26035520

  3. The Lunar Surface Gravimeter as a Lunar Seismometer: New Identification of Unlocated Deep Moonquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Taichi; Kobayashi, Naoki; Tanaka, Satoshi; Lognonné, Philippe; Gagnepain-Beyneix, Jeannine

    2010-05-01

    The internal structure of the Moon is an essential piece of information to investigate its origin and evolution. The seismic analyses using the data from Apollo Passive Seismic Exploration (Apollo 11, 12, 14, 15, 16) are one of the most successful methods carried out to estimate the inner structure of the Moon. From the seismic analyses, it was found that the Moon is still seismically active and the Moon has layered structure with 40~60 km crust with mantle below. However, because of the limitation of seismic network, only with 4 seismic stations all on the nearside, the experiment could not fully uncover the lunar interior, especially for the region deeper than 1000 km. This is still an important question of the lunar science and new data were desired. In our previous studies, we showed that the Lunar Surface Gravimeter on Apollo 17 can be used as a seismometer. We succeeded in relocating the known seismic event and improving its location by using the additional seismic data of the LSG. In this study, we attempted to locate deep moonquakes that could not be located with the previous data set by using the LSG data. Deep moonquakes are said to occur periodically, at certain seismic source or nests. It is known that seismic events of the same nest have almost identical waveforms at one station. This is the unique characteristic of deep moonquakes and classification by waveform cross-correlation is possible. In this way, more than 300 nests were identified. 106 of them provided sufficient data to locate their sources. Among the remaining unlocated deep moonquakes, 60 provided usable waveform data at more than one station. In this study we focused on these 60 nests and examined whether they are locatable by adding data of the LSG. First, we picked up data for seismic event whose LSG data were available. This leaves 40 nests to be examined with the additional data of LSG. We examined all the seismic events from the 40 nests and identified seismic events from 5 nests

  4. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Le Moigne, N.; Bayer, R.; Chéry, J.

    2017-01-01

    In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, 3 yr of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (-894.8 nm s-2 V-1) and the long-term drift of this instrument (45 nm s-2 yr-1) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydrogeophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time-series assimilation in hydrological simulations, even

  5. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Moigne, N. Le; Bayer, R.; Chéry, J.

    2016-10-01

    In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, three years of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (-894.8 nm.s-2.V-1) and the long term drift of this instrument (45 nm.s-2 per year) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydro-geophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time series assimilation in hydrological

  6. Least-squares self-coherency analysis of superconducting gravimeter records in search for the Slichter triplet

    NASA Astrophysics Data System (ADS)

    Pagiatakis, Spiros D.; Yin, Hui; El-Gelil, Mahmoud Abd

    2007-02-01

    We develop a new approach for the spectral analysis of the superconducting gravimeter data to search for the spheroidal oscillation 1S1 of the Earth solid inner core. The new method, which we call least- squares ( LS) self- coherency analysis, is based on the product of the least-squares spectra of segments of the time series under consideration. The statistical foundation of this method is presented in the new least- squares product spectrum theorem that establishes rigorously confidence levels for detecting significant peaks. We apply this approach along with a number of other innovative ideas to a 6-year long gravity series collected at the Canadian Superconducting Gravimeter Installation (CSGI) in Cantley, Canada, by splitting it into 72 statistically independent monthly records. Each monthly record is analysed spectrally and all monthly LS spectra are multiplied to construct the self- coherency spectrum of the 6-year gravity series. The self-coherency spectrum is then used to detect significant peaks in the band 3-7 h at various significant levels with the aim to identify a triplet of periods associated with the rotational/ellipsoidal splitting of 1S1 (Slichter triplet). From all the Slichter periods predicted by various researchers so far, Smylie's triplet appears to be the most supported one, albeit very weakly, both, before and after the atmospheric pressure effect is removed from the series. Using the viscous splitting law [Smylie, D.E., 1992. The inner core translational triplet and the density near Earth's center. Science 255, 1678-1682] as guide, we can also see one interesting and statistically significant triplet with periods A = {4.261 h, 4.516 h, 4.872 h}, which changes slightly to A' = {4.269 h, 4.516 h, 4.889 h} after the atmospheric pressure correction is applied to the gravity series.

  7. Quantitation of the prominent medullary pyramid: a reappraisal.

    PubMed

    Paling, M R; Black, W C

    1986-06-01

    We propose a revised objective measurement of the size of the renal medullary pyramid in the assessment of the prominent renal pyramid: the medullary-renal ratio (MRR). (Formula: see text). This is a more accurate assessment of the size of the renal pyramid relative to the size of the kidney than the previously proposed medullary pyramid index, which fails to take into account the varying morphology of otherwise normal kidneys.

  8. Pyramid Servings Database (PSDB) for NHANES III

    Cancer.gov

    The National Cancer Institute developed a database to examine dietary data from the National Center for Health Statistics' Third National Health and Nutrition Examination Survey in terms of servings from each of United States Department of Agriculture's The Food Guide Pyramid's major and minor food groups.

  9. Food Pyramids and Bio-Accumulation.

    ERIC Educational Resources Information Center

    Baker, Valerie

    1998-01-01

    Students learn about marine food chains, bioaccumulation, the energy pyramid, and potential ocean pollutants and their effects on ocean ecosystems in this activity which involves having students pull drawings of marine organisms which include diatoms, copepods, anchovies, bonito, and killer whale out of a bag, then demonstrating the food chain by…

  10. Comparing Volumes of Prisms and Pyramids

    ERIC Educational Resources Information Center

    Vinogradova, Natalya

    2012-01-01

    Students' experience in using formulas for volumes is often limited to substituting numbers into given formulas. An activity presented in this article may help students make connections between the formulas for volumes of prisms and volumes of pyramids. In addition, some interesting facts from number theory arise, demonstrating strong connections…

  11. Traveling Salesman Problem: A Foveating Pyramid Model

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt; Stefanov, Emil; Saalweachter, John; Li, Zheng; Haxhimusa, Yll; Kropatsch, Walter G.

    2006-01-01

    We tested human performance on the Euclidean Traveling Salesman Problem using problems with 6-50 cities. Results confirmed our earlier findings that: (a) the time of solving a problem is proportional to the number of cities, and (b) the solution error grows very slowly with the number of cities. We formulated a new version of a pyramid model. The…

  12. Extracting Compact Objects Using Linked Pyramids

    DTIC Science & Technology

    1982-09-01

    IEEE Transactions Systems. Han. Cybernetics 11. 1981, 597-605. 7. M. D, Levine, Region analysis using a pyramid data structure. In Structured ... Computer Vision (S. Tanimoto and A. Klinger, eds.) Academic Press, New York, 1980, 57-100. 8. D. L. Milgram, Region extraction using con- vergent

  13. Vegetarian food guide pyramid: a conceptual framework.

    PubMed

    Haddad, E H; Sabaté, J; Whitten, C G

    1999-09-01

    The purpose of this article and the accompanying vegetarian food guide pyramid graphic is to provide the conceptual framework for the development of a new and unique food guide. Food guides for vegetarians have tended to be adaptations of guides developed for the general nonvegetarian population instead of being designed to emphasize the healthy components of vegetarian dietary patterns. A subcommittee of the organizers of the Third International Congress on Vegetarian Nutrition began a process that led to the development of a pyramid-shaped graphic illustration and a supporting document, both of which were introduced at the congress. The 5 major plant-based food groups (whole grains, legumes, vegetables, fruit, nuts, and seeds) form the trapezoid-shaped lower portion of the pyramid. Optional food groups, which may be avoided by some vegetarians (vegetable oils, dairy, eggs, and sweets), form the smaller, separate, triangle-shaped top portion of the pyramid. The supporting document discusses the concepts that affect vegetarian food guidance and the rationale for selecting the food groups. It is hoped that this framework will provide the impetus for further research and discussion and will lead to the development of a guide that is nutritionally adequate, is conducive to good health, and can be adopted by vegetarians of diverse eating practices.

  14. The Vegetable Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating plenty of vegetables. Colorful photographs support early readers in understanding the text. The repetition of words and phrases…

  15. The Fruit Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating plenty of servings of fruit. Colorful photographs support early readers in understanding the text. The repetition of words and…

  16. The Dairy Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating from the dairy group. Colorful photographs support early readers in understanding the text. The repetition of words and phrases…

  17. The Grain Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating sufficient servings of grains. Colorful photographs support early readers in understanding the text. The repetition of words and…

  18. Eating Right. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the food groups of the food guide pyramid. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words.…

  19. Jonestown in the Shadow of Maslow's Pyramid.

    ERIC Educational Resources Information Center

    Easley, Edgar M.; Wigglesworth, David C.

    1979-01-01

    Reviews Maslow's hierarchy of needs in the light of the Jonestown tragedy. Maintains that members of the People's Temple felt frustrated in attaining the lower levels in the world of reality, and so moved outside the pyramid in search of the top, self-actualization. In the process, their primary needs were met. Journal availability: see SO 507…

  20. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  1. Fast Feature Pyramids for Object Detection.

    PubMed

    Dollár, Piotr; Appel, Ron; Belongie, Serge; Perona, Pietro

    2014-08-01

    Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result, our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels and ETH data sets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural images) and fails for images with narrow band-pass spectra (e.g., periodic textures).

  2. Toddler Teachers' Use of "Teaching Pyramid" Practices

    ERIC Educational Resources Information Center

    Branson, Diane; Demchak, MaryAnn

    2011-01-01

    Effective strategies to promote social-emotional development and prevent occurrence of challenging behaviors in young children is critical. The "Teaching Pyramid", a framework for supporting social-emotional development and preventing and addressing challenging behaviors, was developed for preschool children. This mixed methods study…

  3. Ancient Pyramids Help Students Learn Math Concepts

    ERIC Educational Resources Information Center

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  4. Using the Food Guide Pyramid: A Resource for Nutrition Educators.

    ERIC Educational Resources Information Center

    Shaw, Anne; Fulton, Lois; Davis, Carole; Hogbin, Myrtle

    This booklet provides information to assist nutrition educators in helping their audiences use the Food Guide Pyramid to plan and prepare foods for a healthy diet. It reviews the objectives set in developing the Food Guide Pyramid and illustrates their impact on the application of the Food Guide Pyramid to planning menus. In particular, the…

  5. LANDSAT-BASED WATER QUALITY MONITORING OF PYRAMID LAKE

    EPA Science Inventory

    Pyramid Lake Paiute Tribe (PLPT) in cooperation with federal, state and local entities has been able to increase stream flow, establish water quality standards and improve fish habitat in the Truckee River, a primary source of water for pyramid Lake. In the past, pyramid Lake wat...

  6. Idea Bank: Assessing Your Curriculum with the Creative Rights Pyramid

    ERIC Educational Resources Information Center

    Thibeault, Matthew D.

    2011-01-01

    This article presents a creative rights pyramid that was developed as part of the author's efforts to: (1) teach about copyright and intellectual property; and (2) increase students' awareness of their own intellectual property in and outside the music classroom. The pyramid is based on the U.S. Department of Agriculture's food pyramid to suggest…

  7. Teacher Acquisition of Functional Analysis Methods Using Pyramidal Training

    ERIC Educational Resources Information Center

    Pence, Sacha T.; St. Peter, Claire C.; Giles, Aimee F.

    2014-01-01

    Pyramidal training involves an experienced professional training a subset of individuals who, in turn, train additional individuals. Pyramidal training is effective for training a variety of behavior-analytic skills with direct-care staff, parents, and teachers. As teachers' roles in behavioral assessment increase, pyramidal training may be…

  8. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  9. Self-assembly of colloidal pyramids in magnetic fields.

    PubMed

    Helseth, L E

    2005-08-02

    We study routes toward the construction of 2D colloidal pyramids. We find that magnetic beads may self-assemble into pyramids near a nonmagnetic 1D boundary as long as the number of beads in the pyramid does not exceed 10. We have also found that a strong magnetic field gradient could act as a boundary, thus assisting the self-assembly of magnetic colloids in water, and have observed the formation of stable microscopic pyramids within a certain magnetic field range. Our results indicate that colloidal pyramids can be formed in a number of ways by utilizing external fields.

  10. Continuous Gravity Monitoring in South America with Superconducting and Absolute Gravimeters: More than 12 years time series at station TIGO/Concepcion (Chile)

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Hase, Hayo; Armin, Böer; Andreas, Güntner; Rongjiang, Wang

    2016-04-01

    As part of the Transportable Integrated Geodetic Observatory (TIGO) of BKG, the superconducting gravimeter SG 038 was set up in December 2002 at station Concepcion / Chile to record temporal gravity variations with highest precision. Since May 2006 the time series was supported by weekly observations with the absolute gravimeter FG5-227, proving the large seasonal variations of up to 30 μGal and establishing a gravity reference station in South America. With the move of the whole observatory to the new location near to La Plata / Argentina the series was terminated. Results of almost continuously monitoring gravity variations for more than 12 years are presented. Seasonal variations are interpreted with respect of global and local water storage changes and the impact of the 8.8 Maule Earthquake in February 2010 is discussed.

  11. A hierarchical cellular logic for pyramid computers

    SciTech Connect

    Tanimoto, S.L.

    1984-11-01

    Hierarchical structure occurs in biological vision systems and there is good reason to incorporate it into a model of computation for processing binary images. A mathematical formalism is presented which can describe a wide variety of operations useful in image processing and graphics. The formalism allows for two kinds of simple transformations on the values (called pyramids) of a set of cells called a hierarchical domain: the first are binary operations on boolean values, and the second are neighborhood-matching operations. The implied model of computation is more structured than previously discussed pyramidal models, and is more readily realized in parallel hardware, while it remains sufficiently rich to provide efficient solutions to a wide variety of problems. The model has a simplicity which is due to the restricted nature of the operations and the implied synchronization across the hierarchical domain. A corresponding algebraic simplicity in the logic makes possible the concise representation of many cellular-data operations.

  12. Compression asphyxia from a human pyramid.

    PubMed

    Tumram, Nilesh Keshav; Ambade, Vipul Namdeorao; Biyabani, Naushad

    2015-12-01

    In compression asphyxia, respiration is stopped by external forces on the body. It is usually due to an external force compressing the trunk such as a heavy weight on the chest or abdomen and is associated with internal injuries. In present case, the victim was trapped and crushed under the falling persons from a human pyramid formation for a "Dahi Handi" festival. There was neither any severe blunt force injury nor any significant pathological natural disease contributing to the cause of death. The victim was unable to remove himself from the situation because his cognitive responses and coordination were impaired due to alcohol intake. The victim died from asphyxia due to compression of his chest and abdomen. Compression asphyxia resulting from the collapse of a human pyramid and the dynamics of its impact force in these circumstances is very rare and is not reported previously to the best of our knowledge.

  13. Pyramidal growth of ceria nanostructures by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bârcă, E. S.; Filipescu, M.; Luculescu, C.; Birjega, R.; Ion, V.; Dumitru, M.; Nistor, L. C.; Stanciu, G.; Abrudeanu, M.; Munteanu, C.; Dinescu, M.

    2016-02-01

    We report in this paper on the deposition and characterization of CeO2 nanostructured thin films with hierarchical morphology. Micro-sized ceria powder (CeO2, 99.9% purity) was pressed to obtain a ceramic target. An ArF laser working at 193 nm irradiated the target in controlled oxygen gas flow at constant pressure (0.1 mbar). Silicon wafers used as substrates for thin films were heated at different temperatures, up to 773 K. The influence of substrate temperature on the structure and surface morphology of ceria thin films was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and scanning electron microscopy (SEM). The refractive indices and information about roughness and thickness were revealed by spectroellipsometry. Crystalline cubic ceria thin films exhibiting a hierarchical structure that combines columnar and dendritic growth were obtained at temperatures above 473 K. For the samples obtained at 773 K, columns ending in pyramidal formations with sharp edges and sizes of hundreds of nanometers were observed, indicating a high crystallinity of the layer. XRD analysis reveals a consistent increase of the X-ray coherence length/crystallite size along the [111] direction with increasing temperature. Using a semi-empirical formula, Raman crystallites sizes were calculated and it was found that size increases with the temperature increasing. The spectroellipsometry investigations evidenced the increasing of refractive index with the substrate temperature increase. High surface roughness and pyramidal structures were noticed from the atomic force microscopy images for layers deposited at substrate temperature above 473 K.

  14. An orthogonal oriented quadrature hexagonal image pyramid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1987-01-01

    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.

  15. The tufas of Pyramid Lake, Nevada

    USGS Publications Warehouse

    Benson, Larry V.

    2004-01-01

    Pyramid Lake is the site of some of the Earth's most spectacular tufa deposits. The Tufas are composed of calcium carbonate (CaCO3). The large tufa mounds, reef- and sheet-like tufas formed within Pyramid Lake, between 26,000 and 13,000 years (yr) ago, when the lake was part of pluvial Lake Lahontan. The mounds are composed of large interlocking spheres that contain multiple generations of a crystalline (thinolite) variety of tufa. Over time many of the mounds have fallen apart, exposing an internal network of tubes. The tubular structures are thought to have been created when springs discharged from the bottom of Pyramid Lake, supplying calcium that combined with carbonate dissolved in lake water to form the mounds. The reef- and sheet-like deposits contain pillow and pendant forms made up of a branching variety of tufa that often grades into dense layers or nodules. Dense layers of tufa also coat cobbles and boulders that were deposited in near-shore shallow-water areas. The thickest tufa deposits formed at lake-bottom sites of ground-water discharge and at overflow elevations1 where the lake was held at near-constant levels for long periods of time.

  16. Preserving the Pyramid of STI Using Buckets

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Maly, Kurt

    2004-01-01

    The product of research projects is information. Through the life cycle of a project, information comes from many sources and takes many forms. Traditionally, this body of information is summarized in a formal publication, typically a journal article. While formal publications enjoy the benefits of peer review and technical editing, they are also often compromises in media format and length. As such, we consider a formal publication to represent an abstract to a larger body of work: a pyramid of scientific and technical information (STI). While this abstract may be sufficient for some applications, an in-depth use or analysis is likely to require the supporting layers from the pyramid. We have developed buckets to preserve this pyramid of STI. Buckets provide an archive- and protocol-independent container construct in which all related information objects can be logically grouped together, archived, and manipulated as a single object. Furthermore, buckets are active archival objects and can communicate with each other, people, or arbitrary network services. Buckets are an implementation of the Smart Object, Dumb Archive (SODA) DL model. In SODA, data objects are more important than the archives that hold them. Much of the functionality traditionally associated with archives is pushed down into the objects, such as enforcing terms and conditions, negotiating display, and content maintenance. In this paper, we discuss the motivation, design, and implication of bucket use in DLs with respect to grey literature.

  17. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  18. New method for gravitational wave detection with atomic sensors.

    PubMed

    Graham, Peter W; Hogan, Jason M; Kasevich, Mark A; Rajendran, Surjeet

    2013-04-26

    Laser frequency noise is a dominant noise background for the detection of gravitational waves using long-baseline optical interferometry. Amelioration of this noise requires near simultaneous strain measurements on more than one interferometer baseline, necessitating, for example, more than two satellites for a space-based detector or two interferometer arms for a ground-based detector. We describe a new detection strategy based on recent advances in optical atomic clocks and atom interferometry which can operate at long baselines and which is immune to laser frequency noise. Laser frequency noise is suppressed because the signal arises strictly from the light propagation time between two ensembles of atoms. This new class of sensor allows sensitive gravitational wave detection with only a single baseline. This approach also has practical applications in, for example, the development of ultrasensitive gravimeters and gravity gradiometers.

  19. Active Control of Laser Wavefronts in Atom Interferometers

    NASA Astrophysics Data System (ADS)

    Trimeche, A.; Langlois, M.; Merlet, S.; Pereira Dos Santos, F.

    2017-03-01

    Wavefront aberrations are identified as a major limitation in quantum sensors. They are today the main contribution in the uncertainty budget of the best cold-atom interferometers based on two-photon laser beam splitters and constitute an important limit for their long-term stability, impeding these instruments from reaching their full potential. Moreover, they will also remain a major obstacle in future experiments based on large-momentum beam splitters. In this article, we tackle this issue by using a deformable mirror to control actively the laser wavefronts in atom interferometry. In particular, we demonstrate in an experimental proof of principle the efficient correction of wavefront aberrations in an atomic gravimeter.

  20. Centre of pressure correlates with pyramid performance in acrobatic gymnastics.

    PubMed

    Floría, Pablo; Gómez-Landero, Luis Arturo; Harrison, Andrew J

    2015-01-01

    Acrobatic gymnasts need excellent balance control to execute pyramids where one gymnast is supported by another. The objectives of this study were: (1) to describe balance performance by assessing the centre of pressure displacement in a group of acrobatic gymnasts executing pyramids; (2) to determine the relationship between the parameters describing the centre of pressure oscillations and pyramid score; and (3) to examine the role of each foot in providing a solid base of support to maintain the balance of the pyramid. Sixteen acrobatic gymnasts grouped in pairs performed a Half pyramid and a Straddle pyramid held for 7 s on two force platforms. Path length, variance, range trajectory, and surface area of the centre of pressure of each foot were examined to analyse the balance of the pyramid. The path length was correlated with the pyramid score (Straddle: p = 0.692 [large]; Half: p = 0.407 [moderate]). There were differences in the functions of each leg to maintain balance, with the non-preferred leg supporting a higher weight of the pyramid while the preferred leg performed control movements to maintain balance. The results suggested that quantitative analysis of balance can provide important information on pyramid performance.

  1. Pyramids: a platform for designing multifunctional plasmonic particles.

    PubMed

    Lee, Jeunghoon; Hasan, Warefta; Stender, Christopher L; Odom, Teri W

    2008-12-01

    This Account explores nanofabricated pyramids, a new class of nanoparticles with tunable optical properties at visible and near-infrared wavelengths. This system is ideally suited for designing multifunctional plasmonic materials for use in diagnostics, imaging, sensing, and therapeutics. The nanofabrication scheme that we developed (called PEEL) for these asymmetric metal particles is extremely versatile and offers several advantages over synthetic methodologies. The PEEL approach yields pyramids with variable sizes, thicknesses, and multimetal compositions, as well as blunt or ultrasharp tips or no tips. In addition, we have prepared pyramids with site-specific chemical and biological functionality on different portions of the pyramids. This is an important design feature for biological applications, as suggested by the generation of amphiphilic gold pyramids functionalized with alkanethiols on the hydrophobic portions and DNA on the hydrophilic portions. The optical characteristics of these pyramids depend on particle orientation, wavevector direction, and polarization direction and can be tuned. Using the multipolar surface plasmon resonances of large (>250 nm) pyramids, imaging and spectral identification of pyramid orientation in condensed media was possible. We were also able to direct pyramids to assemble into one- and two-dimensional arrays with interesting optical properties. Furthermore, modification of the PEEL fabrication scheme allowed the production of multimaterial pyramidal structures with complex attributes, highlighting the power of this platform for exacting nanometer-scale control over particle structure and composition.

  2. Atomistic study of pyramidal slips in pure magnesium single crystal under nano-compression

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-Zhi; Guo, Ya-Fang; Xu, Shuang; Wang, Yue-Sheng

    2015-07-01

    Pyramidal slip mechanism plays an important role in c-axis micro-compression of hexagonal closed-packed metals. In this article, the detailed slip paths, respectively, on ? and ? planes in magnesium single crystal are given by molecular dynamics. The pyramidal slip on ? plane is suggested to consist of an edge-type partial dislocation and opposite basal movements on neighbouring basal planes, while the ? slip dissociation is achieved by two partial dislocations with a strip of stacking fault. Results imply that the slip on ? plane is more likely to nucleate with a relatively easy dissociation type comparing to the one on ? plane. No twinning is found under c-axis compression by examining the stepwise movement of atoms involved, fully supporting the recent experimental observations of micro-compression and the theoretical analysis on twinning formation proposed by our previous work.

  3. The Formation and Characterization of GaN Hexagonal Pyramids

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  4. Optimizing pyramided transgenic Bt crops for sustainable pest management.

    PubMed

    Carrière, Yves; Crickmore, Neil; Tabashnik, Bruce E

    2015-02-01

    Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.

  5. Effect of housing rats within a pyramid on stress parameters.

    PubMed

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2003-11-01

    The Giza pyramids of Egypt have been the subject of much research. Pyramid models with the same base to height ratio as of the Great Pyramid of Giza, when aligned on a true north-south axis, are believed to generate, transform and transmit energy. Research done with such pyramid models has shown that they induced greater relaxation in human subjects, promoted better wound healing in rats and afforded protection against stress-induced neurodegnerative changes in mice. The present study was done to assess the effects of housing Wistar rats within the pyramid on the status of oxidative damage and antioxidant defense in their erythrocytes and cortisol levels in their plasma. Rats were housed in cages under standard laboratory conditions. Cages were left in the open (normal control), under a wooden pyramid model (experimental rats) or in a cubical box of comparable dimensions (6 hr/day for 14 days). Erythrocyte malondialdehyde and plasma cortisol levels were significantly decreased in rats kept within the pyramid as compared to the normal control and those within the square box. Erythrocyte reduced glutathione levels, erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly increased in the rats kept in the pyramid as compared to the other two groups. There was no significant difference in any of the parameters between the normal control and rats kept in the square box. The results showed that exposure of adult female Wistar rats to pyramid environment reduces stress oxidative stress and increases antioxidant defense in them.

  6. View looking up into pyramid ion from observation level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking up into pyramid ion from observation level - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC

  7. Trap door and underside of cap stone of pyramid ion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Trap door and underside of cap stone of pyramid ion - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC

  8. How to put the Food Guide Pyramid into practice.

    PubMed

    Achterberg, C; McDonnell, E; Bagby, R

    1994-09-01

    The Food Guide Pyramid represents changes and challenges for nutrition educators. Nutrition educators will have to change the focus, content, and teaching expectations for lessons. Use of the Pyramid will also require changes in the way the concepts of good nutrition are related to different audiences. In contrast to previous food guides, which represented a foundation diet, the Food Guide Pyramid represents the total diet, addressing overnutrition as well as undernutrition. The Food Guide Pyramid is a graphic representation of the Dietary Guidelines for Americans, and illustrates the key concepts of variety, moderation, and proportionality. For practitioners, one challenge is to find ways to effectively use the Food Guide Pyramid to teach clients how to put the Dietary Guidelines into action. Another challenge involves designing materials that adapt the messages of the Food Guide Pyramid to a variety of audiences. Teaching materials and instructions should emphasize the key concepts of the Food Guide Pyramid and should be clear, consistent, motivational, and culturally sensitive. Few educational materials are available to help practitioners with these challenges. In this article we outline the key changes that the Food Guide Pyramid embodies, and provide ideas and suggestions for using the Pyramid in a practice setting.

  9. View up from portal level inside of pyramidal structure toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View up from portal level inside of pyramidal structure toward pintle. - Naval Base Philadelphia-Philadelphia Naval Shipyard, 350-Ton Hammerhead Crane, League Island, Philadelphia, Philadelphia County, PA

  10. Incidence of a pyramidal lobe on thyroid scans

    SciTech Connect

    Levy, H.A.; Sziklas, J.J.; Rosenberg, R.J.; Spencer, R.P.

    1982-12-01

    Gamma camera pertechnetate and radioiodine thyroid scans were reviewed to determine the incidence of recognition of a pyramidal lobe. Ten to 17% of normals and of patients with various thyroid disease states had a pyramidal lobe on their scans. However, in patients with diffuse toxic goiter, 43% had a pyramidal lobe on the thyroid images. There appears to be a correlation between elevated thyroid function studies (likely in thyroid mass) and the incidence of a pyramidal lobe on thyroid scans in diffuse toxic goiter.

  11. Revisiting static modulation in pyramid wavefront sensing

    NASA Astrophysics Data System (ADS)

    Marafatto, L.; Ragazzoni, R.; Vassallo, D.; Bergomi, M.; Biondi, F.; Farinato, J.; Greggio, D.; Magrin, D.; Viotto, V.

    2016-07-01

    The Pyramid Sensor (PS) is based on the Focault knife-edge test, yielding then, in geometrical approximation, only the sign of the wavefront slope. To provide linear measurements of the wavefront slopes the PS relies on a technique known as modulation, which also plays a central role to improve the linear range of the pyramid WFS, very small in the nonmodulated case. In the main PS using modulation so far, this task is achieved by moving optical components in the WFS, increasing the complexity of the system. An attractive idea to simplify the optical and mechanical design of a pyramid WFS is to work without any dynamic modulation. This concept was only merely described and functionally tested in the framework of MAD, and subsequently, with a holographic diffuser. The latter produce a sort of random distribution of the light coming out from the pupil plane, leading to sort of inefficient modulation, as most of the rays are focused in the central region of the light diffused by such device. The bi-dimensional original grating is, in contrast, producing a well defined deterministic distribution of the light onto a specifically shaped pattern. A crude option has been already discussed as a possibility, and it is here generalized to holographic plates leading to various distribution of lights, including a circle whose diameter would match the required modulation pattern, or more cost effective approaches like the one of a square pattern. These holographic diffusers would exhibit also zero-th and high order patterns and the actual size of the equivalent modulation would be linearly wavelength dependent, leading to colour effects that requires a careful handling in order to properly choose the right amount of equivalent modulation.

  12. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  13. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  14. Building a pyramid to practice success.

    PubMed

    Levin, Roger P

    2003-01-01

    Although decisions about the goals of the practice originate with the dentist and drive every other system, a successful dental practice looks like a pyramid. The bottom level includes the effective management of time and resources through efficient scheduling and patient communication. The second level ensures the ability of the practice to reach its goals through results-oriented case acceptance scripting, patient finance options and advanced customer service. The third level focuses on creating long-term relationships with patients and turning the hygiene department into a "WOW" experience profit-center. Dentists must set practice management and production/profitability goals before all others.

  15. Do the pyramids show continental drift?

    PubMed

    Pawley, G S; Abrahamsen, N

    1973-03-02

    The mystery of the orientation of the Great Pyramids of Giza has remained unexplained for many decades. The general alignment is 4 minutes west of north. It is argued that this is not a builders' error but is caused by movement over the centuries. Modern theories of continental drift do not predict quite such large movements, but other causes of polar wandering give even smaller shifts. Thus, continental drift is the most likely explanation, although somewhat implausible, especially as relevant measurements have been made over a 50-year period, whereas geophysical measurements of sea-floor spreading relate to million-year time scales.

  16. Plasmonic Tipless Pyramid Arrays for Cell Poration.

    PubMed

    Courvoisier, Sébastien; Saklayen, Nabiha; Huber, Marinus; Chen, Jun; Diebold, Eric D; Bonacina, Luigi; Wolf, Jean-Pierre; Mazur, Eric

    2015-07-08

    Improving the efficiency, cell survival, and throughput of methods to modify and control the genetic expression of cells is of great benefit to biology and medicine. We investigate, both computationally and experimentally, a nanostructured substrate made of tipless pyramids for plasmonic-induced transfection. By optimizing the geometrical parameters for an excitation wavelength of 800 nm, we demonstrate a 100-fold intensity enhancement of the electric near field at the cell-substrate contact area, while the low absorption typical for gold is maintained. We demonstrate that such a substrate can induce transient poration of cells by a purely optically induced process.

  17. Experimental Investigation of Composite Pressure Vessel Performance and Joint Stiffness for Pyramid and Inverted Pyramid Joints

    NASA Technical Reports Server (NTRS)

    Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)

    2001-01-01

    The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.

  18. Mediterranean diet pyramids: towards the Italian model.

    PubMed

    del Balzo, V; Diolordi, L; Pinto, A; Giusti, A M; Vitiello, V; Cannella, C; Dernini, S; Donini, L M; Berry, E M

    2012-01-01

    There is a long history to the representation of the Mediterranean Diet Pyramid which may be seen as a form of cultural--culinary evolution as each country applies the foods best suited to its national diet. Different Mediterranean Diet pyramids have been designed for the population of Greece, Spain and Italy, tailored for their different food habits. These refer variously to portion sizes and frequency of consumption--daily, weekly and monthly and are not standardized. The 3rd CIISCAM Conference held in Parma, Italy was devoted to highlight the overall biodiversity and nutritional well being values and the sustainable benefits of the Mediterranean diet, recognised as one of the healthiest dietary pattern, and to reduce the rapid erosion of "lifestyle and food habits. It is necessary, therefore, to refer more to a Mediterranean Lifestyle of which diet is only a part. It should include physical and social activity, recreation and rest. It may be possible to construct a Mediterranean food lifestyle index both to assess such a holistic aspect and to correlate with improved morbidity & mortality.

  19. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  20. The Alphabet Pyramid of Team Development and Situation Leadership.

    ERIC Educational Resources Information Center

    Jarvis, Roy

    2001-01-01

    This pyramid model of team development has four sides--awareness, behavior, communication, and direction--on a foundation of evaluation. The four equal sides of a pyramid represent the equal importance of the different roles, including leader, within a team. All team members are involved in evaluation and deciding what is important, which empowers…

  1. Tribonacci-like sequences and generalized Pascal's pyramids

    NASA Astrophysics Data System (ADS)

    Anatriello, Giuseppina; Vincenzi, Giovanni

    2014-11-01

    A well-known result of Feinberg and Shannon states that the tribonacci sequence can be detected by the so-called Pascal's pyramid. Here we will show that any tribonacci-like sequence can be obtained by the diagonals of the Feinberg's triangle associated to a suitable generalized Pascal's pyramid. The results also extend similar properties of Fibonacci-like sequences.

  2. Estimation of Food Guide Pyramid Serving Sizes by College Students.

    ERIC Educational Resources Information Center

    Knaust, Gretchen; Foster, Irene M.

    2000-01-01

    College students (n=158) used the Food Guide Pyramid to select serving sizes on a questionnaire (73% had been instructed in its use). Overall mean scores (31% correct) indicated they generally did not know recommended serving sizes. Those who had read about or received instruction in the pyramid had higher mean scores. (SK)

  3. Commentary on "Management Education and the Base of the Pyramid"

    ERIC Educational Resources Information Center

    Rosile, Grace Ann

    2008-01-01

    This commentary asks some critical questions concerning the article "Management Education and the Base of the Pyramid" included in this special issue. Are "bottom of the pyramid" (BOP) multidisciplinary action project (MAP) students prepared to critically assess the impact of their interventions beyond a narrow definition of profit in complex and…

  4. Management Education and the Base of the Pyramid

    ERIC Educational Resources Information Center

    Gordon, Michael D.

    2008-01-01

    Doing business at the base of the pyramid is a topic of increasing interest to business practitioners and academics. Base of the pyramid business offers the promise of great economic gains for companies and the possibility of a powerful new approach to alleviate poverty. At the same time, it may threaten local culture and independence while…

  5. Building influenza surveillance pyramids in near real time, Australia.

    PubMed

    Dalton, Craig B; Carlson, Sandra J; Butler, Michelle T; Elvidge, Elissa; Durrheim, David N

    2013-11-01

    A timely measure of circulating influenza virus severity has been elusive. Flutracking, the Australian online influenza-like illness surveillance system, was used to construct a surveillance pyramid in near real time for 2011/2012 participants and demonstrated a striking difference between years. Such pyramids will facilitate rapid estimation of attack rates and disease severity.

  6. Atom interferometery on ground and in space

    NASA Astrophysics Data System (ADS)

    Rasel, Ernst M.; Quantus Collaboration

    2014-05-01

    We give a brief survey on our latest activities in atom interferometry. This included the first quantum test of the principle of equivalence with two different species, namely potassium and rubidium. We have also shown that interferometers equipped with atom-chip based sources allow to realise compact quantum gravimeters for ground based measurements. These devices allow to achieve a high flux of ultra-cold atoms, extremely low expansion rates of these wave packets and make it possible to realise new interferometers. Last but not least, in 2014, we currently work on testing these devices in the catapult and on a sounding rocket mission to extend atom interferometry to unprecedented time scales. This project is supported by the German Space Agency Deutsches Zentrum für Luft- und Raumfahrt (DLR) with funds provided by the Federal Ministry of Economics and Technology (BMWI) under grant number DLR 50 WM 0346. We thank the German Research Foundation for funding the Cluster of Excellence QUEST Centre for Quantum Engineering and Space-Time Research.

  7. Detailed Analysis of Marine Gravity Survey Data from Panama Canal Transits: Improving Error Models and Signal Processing for BGM-3 Marine Gravimeter Survey Systems

    NASA Astrophysics Data System (ADS)

    Sailor, R. V.; Medler, C. L.; Kinsey, J. C.; Zettergren, E. W.; Insanic, E.

    2015-12-01

    Our prior work (Sailor et al., 2015) showed that the Panama Canal locking operations impart a peak vertical acceleration of about 60 mGal (6 x 10-4 m/sec2) to ships as the individual lock chambers are filled or emptied. During a period of 8 to 12 minutes the ship's elevation changes by over 8 meters. This motion is very repeatable, since it is driven by gravity-fed hydraulics backed up by a huge mass of water. The novelty of the prior work was to demonstrate that the lock-driven vertical acceleration is significant, of relatively long duration, easily observed by the BGM-3 accelerometer/gravimeter, and is equivalent tothe gravity anomaly caused by a moderately-sized seamount. Thus, the lock-induced vertical acceleration is a known external acceleration input that falls within the amplitude and time duration band of interest for marine gravity as well as airborne gravity survey systems. Here we report an extension to the prior work, using BGM-3 gravimeter data from the RV Marcus G Langseth and the RV Melville, in addition to the previously-used two datasets from the RV Knorr. The new analysis allows us to compare the quality of the gravity data from these three ships in two ways, using: 1) Differences along nearly perfectly coincident gravity anomaly data profiles collected underway, during passage through calm and narrow channels with little or no vertical ship motion; and 2) Observed vertical-motion-induced accelerations, with no horizontal motion, experienced during lock operations. We use the raw 1-Hz output of the BGM-3 gravimeter and compare various filtering methods. Furthermore, good quality vertical channel GPS is used to compare to the output of our solution of a boundary value problem: Given the observed outputs of the gravimeter, solve for h(t), the elevation of the ship vs time and also for two parameters: initial gravity value prior to vertical motion in the lock and apparent vertical gravity gradient.

  8. Information on the Earth's Deep Interior Conveyed by the 2004 Sumatra-Andaman Earthquake Using Superconducting Gravimeter Data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Watada, S.; Sato, T.; Tamura, Y.

    2005-12-01

    The recent Sumatra-Andaman earthquake of magnitude Mw > 9 on 2004 December 26th has strongly excited the low-frequency seismic modes and, in particular, the degree one 2S1 mode is observed for the first time without any stacking. This mode corresponds to the first overtone of the sub-seismic mode 1S1, the so-called Slichter triplet (Slichter, Proc. Nat. Acad. Sci., 1961). On the one hand, theoretical computations suggest that the Slichter modes could not have been excited with sufficient amplitude to be detected by superconducting gravimeters (SGs) on the Earth's surface. The maximum surface gravity effect of 1S1 after Sumatra event is 0.3 nGal, that is to say 0.3 10-12 g, where g is the mean absolute gravity value on the Earth's surface, corresponding to a free air displacement of 10-3 mm (1 nm). On the other hand, the core-sensitive mode 3S2 and the fundamental radial mode 0S0 were strongly excited, meaning that the earthquake radiated much energy toward the core. 0S0 is a radial fundamental spheroidal mode called "breathing mode" of the Earth and corresponds to changes in the Earth's circumference. The high stability of SG records has enabled us to follow the time decay of 0S0 amplitude till the second Sumatra event on March 28th 2005 and to estimate 0S0 quality factor at a value of 5513 +- 8 from the weighted mean of 12 SG record estimates. Amplitude measurements of 0S0 at most SG sites in the world reveal a latitude dependency that we try to explain by theory. The amplitude deviation of 0S0 reaches +- 2% while the calibration errors of SGs are usually less than 0.2%.

  9. The 2005 Food Guide Pyramid: an opportunity lost?

    PubMed

    Chiuve, Stephanie E; Willett, Walter C

    2007-11-01

    Dietary quality has a vital role in the prevention of chronic disease. In 2005, the US Department of Agriculture released a new food guide, MyPyramid, because the previous pyramid was in substantial discordance with current scientific evidence. The US Department of Agriculture pyramids are the most visible source of US nutrition policy and dietary guidance and it is, therefore, imperative they provide scientifically derived recommendations for a healthy diet. Unfortunately, MyPyramid strays from much of the evidence generated through years of research and, in our opinion, fails to provide the public with clear information about healthy food choices. In this Review, we discuss the policy and process behind the development of MyPyramid, assess the current evidence linking diet to chronic diseases, including cardiovascular disease, cancer and diabetes, and suggest potential alternatives for dietary recommendations.

  10. The NGS Pyramid wavefront sensor for ERIS

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.

    2014-07-01

    ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.

  11. Directional structures detection using steerable pyramid

    NASA Astrophysics Data System (ADS)

    Denis, Florence; Baskurt, Atilla M.

    2003-04-01

    The object of the work described in this paper concerns directional structures detection for particular aspects of inspection, such as scratches and marbling defect detection in leather images. Because of the very specific geometry of these structures, we intend to apply a multiscale and orientation-shiftable method. Scratches and marbling have various shapes and sizes. Multiscale approaches using oriented filters have proved to be efficient to detect such curvilinear patterns. We first use the information given by the increase of gray levels in the image to locate suspicious regions. The detection is then based on steerable filters, which can be steered to any orientation fixed by the user, and are synthesized using a limited number of basic filters. These filters are used in a recursive multi-scale transform: the steerable pyramid. Then, the curvilinear structures are extracted from the directional images at different scales.

  12. Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing.

    PubMed

    Cherukulappurath, Sudhir; Johnson, Timothy W; Lindquist, Nathan C; Oh, Sang-Hyun

    2013-01-01

    We demonstrate a novel scheme for plasmonic nanofocusing with internally illuminated asymmetric metallic pyramidal tips using linearly polarized light. A wafer-scale array of sharp metallic pyramids is fabricated via template stripping with films of different thicknesses on opposing pyramid facets. This structural asymmetry is achieved through a one-step angled metal deposition that does not require any additional lithography processing and when internally illuminated enables the generation of plasmons using a Kretschmann-like coupling method on only one side of the pyramids. Plasmons traveling toward the tip on one side will converge at the apex, forming a nanoscale "hotspot." The asymmetry is necessary for these focusing effects since symmetric pyramids display destructive plasmon interference at the tip. Computer simulations confirm that internal illumination with linearly polarized light at normal incidence on these asymmetric pyramids will focus optical energy into nanoscale volumes. Far-field optical experiments demonstrate large field enhancements as well as angle-dependent spectral tuning of the reradiated light. Because of the low background light levels, wafer-scale fabrication, and a straightforward excitation scheme, these asymmetric pyramidal tips will find applications in near-field optical microscopy and array-based optical trapping.

  13. Renal pyramids: focused sonography of normal and pathologic processes.

    PubMed

    Daneman, Alan; Navarro, Oscar M; Somers, Gino R; Mohanta, Arun; Jarrín, José R; Traubici, Jeffrey

    2010-09-01

    In neonates and children, sonographic examinations of the renal pyramids may depict a spectrum of unique changes in echogenicity due to the effects of physiologic processes or a wide variety of pathologic processes that may affect the collecting ducts or interstitium of the pyramids. Focused sonographic evaluation of the pyramids with high-frequency transducers produces the most detailed images of the pyramids, revealing some appearances not previously reported, to the authors' knowledge. The authors highlight the clinical settings in which they have documented detailed changes in the echogenicity of the pyramids. The patterns of altered echogenicity alone may reflect a specific cause but in many instances are nonspecific, with clinical and biochemical correlation required to establish a more precise diagnosis. However, there is a lack of histologic data to completely explain the mechanism of many of these changes in echogenicity in all of the processes. As the authors have expanded their use of the focused sonographic technique, they have been able to depict altered echogenicity in the pyramids in greater numbers of children in whom an explanation for the changes is not always immediately apparent; for now, the cause must be considered idiopathic. More work is required to expand the use of this focused technique together with clinical, biochemical, and histologic correlation in an attempt to offer more complete explanations for the changes in echogenicity of the pyramids.

  14. Applications of atom interferometry - from ground to space

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  15. Atom interferometer as a selective sensor of rotation or gravity

    SciTech Connect

    Dubetsky, B.; Kasevich, M. A.

    2006-08-15

    In the presence of Earth gravity and gravity-gradient forces, centrifugal and Coriolis forces caused by the Earth rotation, the phase of the time-domain atom interferometers is calculated with accuracy up to the terms proportional to the fourth degree of the time separation between pulses. We considered double-loop atom interferometers and found appropriate condition to eliminate their sensitivity to acceleration to get atomic gyroscope, or to eliminate the sensitivity to rotation to increase accuracy of the atomic gravimeter. Consequent use of these interferometers allows one to measure all components of the acceleration and rotation frequency projection on the plane perpendicular to gravity acceleration. Atom interference on the Raman transition driving by noncounterpropagating optical fields is proposed to exclude stimulated echo processes which can affect the accuracy of the atomic gyroscopes. Using noncounterpropagating optical fields allows one to get a new type of the Ramsey fringes arising in the unidirectional Raman pulses and therefore centered at the two-quantum line center. Density matrix in the Wigner representation is used to perform calculations. It is shown that in the time between pulses, in the noninertial frame, for atoms with fully quantized spatial degrees of freedom, this density matrix obeys classical Liouville equations.

  16. Ischemic stroke of the pyramidal decussation causing quadriplegia and anarthria.

    PubMed

    Wilkins, Emilia G; Kamel, Hooman; Johnson, Eric C B; Shalev, Sarah M; Josephson, S Andrew

    2012-10-01

    A 52-year-old man with a history of hypertension and previously irradiated head and neck cancer presented with quadriplegia and anarthria sparing the face and sensory functions. Brain magnetic resonance imaging (MRI) demonstrated acute infarction of the pyramidal decussation. We describe the clinical and radiological characteristics of infarction at the pyramidal decussation and review the arterial supply to this region in the lower brainstem. Although rare, infarction of the pyramidal decussation should be considered in the differential diagnosis when patients present with atraumatic pure motor quadriplegia.

  17. Mysterious hexagonal pyramids on the surface of Pyrobaculum cells.

    PubMed

    Rensen, Elena; Krupovic, Mart; Prangishvili, David

    2015-11-01

    In attempts to induce putative temperate viruses, we UV-irradiated cells of the hyperthermophilic archaeon Pyrobaculum oguniense. Virus replication could not be detected; however, we observed the development of pyramidal structures with 6-fold symmetry on the cell surface. The hexagonal basis of the pyramids was continuous with the cellular cytoplasmic membrane and apparently grew via the gradual expansion of the 6 triangular lateral faces, ultimately protruding through the S-layer. When the base of these isosceles triangles reached approximately 200 nm in length, the pyramids opened like flower petals. The origin and function of these mysterious nanostructures remain unknown.

  18. Connecting a Quanterra Data Logger Q330 on the GWR C021 Superconducting Gravimeter for low Frequency Seismology

    NASA Astrophysics Data System (ADS)

    Steim, J.; van Camp, M.; Rivera, L.; Rapagnani, G.

    2008-12-01

    Reference instrumentation such as a superconducting gravimeter (SG), barometer, and absolute traceability of calibration and orientation are important components in modern networks. Array processing of seismic data is not related only to program computers: somebody has to pay attention to the measurement physics, operational accuracy and meaning of the acquired seismic data. SGs, benefiting from a calibration at the 0.1% level in amplitude and 0.01 s in phase, can play an important role for improved estimation of source parameters, in particular the magnitude of large earthquakes, as well as for investigating Earth's gravest free oscillations. Equally clearly, since the Q330 is a datalogger used not only by the largest open array in the world, the USArray Transportable Array and by the largest aperture array, the GSN, and in numerous smaller-scale deployments, the operation of core instrumentation with various types of sensors is a crucial design element of future instrumentation. In order to promote the SG data among the seismic community, a Q330 data logger was connected to the SG GWR C021 at the Membach station, Belgium, for at least two reasons: (1) the Q330 provides the data in the quite complex SEED (Standard for the Exchange of Earthquake Data) format directly and (2) the Q330 is a standard data system used for acquisition of continuous seismological data. So, integration of SG data into the global data distribution system using a Q330 and testing this data logger to monitor very low frequency signal from an SG become straightforward. This paper presents the solutions provided to optimize the Q330 data logger when connected to a SG to ensure a reliable DC level and a stable calibration factor (at the 0.1% level). The noise contribution of the data acquisition systems is below the noise affecting the SG in the 10-5 -0.01 Hz frequency band, which includes the tidal and seismic free oscillation frequencies. The Q330 data logger is also a valuable tool to

  19. Residential solar-heating system uses pyramidal optics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes reflective panels which optimize annual solar energy collection in attic installation. Subunits include collection, storage, distribution, and 4-mode control systems. Pyramid optical system heats single-family and multi-family dwellings.

  20. Existence of nitric oxide synthase in rat hippocampal pyramidal cells.

    PubMed Central

    Wendland, B; Schweizer, F E; Ryan, T A; Nakane, M; Murad, F; Scheller, R H; Tsien, R W

    1994-01-01

    It has been proposed that nitric oxide (NO) serves as a key retrograde messenger during long-term potentiation at hippocampal synapses, linking induction of long-term potentiation in postsynaptic CA1 pyramidal cells to expression of long-term potentiation in presynaptic nerve terminals. However, nitric oxide synthase (NOS), the proposed NO-generating enzyme, has not yet been detected in the appropriate postsynaptic cells. We here demonstrate specific NOS immunoreactivity in the CA1 region of hippocampal sections by using an antibody specific for NOS type I and relatively gentle methods of fixation. NOS immunoreactivity was found in dendrites and cell bodies of CA1 pyramidal neurons. Cultured hippocampal pyramidal cells also displayed specific immunostaining. Control experiments showed no staining with preimmune serum or immune serum that was blocked with purified NOS. These results demonstrate that CA1 pyramidal cells contain NOS, as required were NO involved in retrograde signaling during hippocampal synaptic plasticity. Images PMID:7510887

  1. Solar concentrating properties of truncated hexagonal, pyramidal and circular cones

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Strobel, G. L.; Shealy, D. L.

    1978-01-01

    The solar concentrating properties of specularly reflecting truncated pyramidal, hexagonal, and circular cones are evaluated. Pyramidal and hexagonal configurations are discussed with reference to the concentration factor as a function of half apex angle and the length of the side over the width, and to the irradiance distribution. Expressions are derived for the concentration factor and the irradiance at the base of a circular cone when the sunlight is incident normal to the aperture and for oblique incidence.

  2. Quantitative analysis of cortical pyramidal neurons after corpus callosotomy.

    PubMed

    Jacobs, Bob; Creswell, Johanna; Britt, Jonathan P; Ford, Kevin L; Bogen, Joseph E; Zaidel, Eran

    2003-07-01

    This study quantitatively explored the dendritic/spine extent of supragranular pyramidal neurons across several cortical areas in two adult male subjects who had undergone a callosotomy several decades before death. In all cortical areas, there were numerous atypical, supragranular pyramidal neurons with elongated "tap root" basilar dendrites. These atypical cells could be associated with an underlying epileptic condition and/or could represent a compensatory mechanism in response to deafferentation after callosotomy.

  3. Energy landscapes for shells assembled from pentagonal and hexagonal pyramids.

    PubMed

    Fejer, Szilard N; James, Tim R; Hernández-Rojas, Javier; Wales, David J

    2009-03-28

    We present new rigid body potentials that should favour efficient self-assembly of pentagonal and hexagonal pyramids into icosahedral shells over a wide range of temperature. By adding an extra repulsive site opposite the existing apex sites of the pyramids considered in a previously published model, frustrated energy landscapes are transformed into systems identified with self-assembling properties. The extra interaction may be considered analogous to a hydrophobic-hydrophilic repulsion, as in micelle formation.

  4. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  5. How They (Should Have) Built the Pyramids

    NASA Astrophysics Data System (ADS)

    Gallagher, Gregory; West, Joseph; Waters, Kevin

    2014-03-01

    A novel ``polygon method'' is proposed for moving large stone blocks. The method is implemented by the attachment of rods of analytically chosen radii to the block by means of rope. The chosen rods are placed on each side of the square-prism block in order to transform the square prism into a prism of higher order polygon, i.e. octagon, dodecagon etc. Experimental results are presented and compared to other methods proposed by the authors, including a dragging method and a rail method which includes the idea of dragging the block on rails made from arbitrarily chosen rod-shaped ``tracks,'' and to independent work by another group which utilized wooden attachments providing a cylindrical shape. It is found that the polygon method when used on small scale stone blocks across level open ground has an equivalent of a coefficient of friction order of 0.1. For full scale pyramid blocks, the wooden ``rods'' would need to be of order 30 cm in diameter, certainly within reason, given the diameter of wooden masts used on ships in that region during the relevant time period in Egypt. This project also inspired a ``spin-off'' project in which the behavior or rolling polygons is investigated and preliminary data is presented.

  6. Laboratory test of a pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Esposito, Simone; Feeney, Orla; Riccardi, Armando

    2000-07-01

    A laboratory characterization of a new wavefront sensor for adaptive optics applications called a pyramid sensor is presented. This characterization is aimed at establishing the sensor accuracy and sensitivity. To investigate the operation of the sensor in low and high order correction adaptive optics systems, its behavior for different amplitudes of incoming wavefront aberrations is studied. The sensor characterization is carried out using a two arm optical set-up that allows the comparison of the PS measurements with those of a commercial Fizeau interferometer. This is done when a certain aberration is introduced into the optical path of both instruments via a deformable mirror. The experimental data are analyzed and discussed using both geometrical and diffractive optics theory. The closed loop sensor accuracy is investigated experimentally and demonstrates closed loop wavefront correction down to 30 nm root mean square for starting aberrations whose root mean square ranges from 170 nm to 300 nm. Modal noise propagation coefficients are determined and are compared with Shack-Hartmann sensor coefficients.

  7. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  8. Microscopy analysis of pyramid formation evolution with ultra-low concentrated Na2CO3/NaHCO3 solution on (100) Si for solar cell application.

    PubMed

    Montesdeoca-Santana, Amada; Orive, Alejandro González; Creus, Alberto Hernández; González-Díaz, Benjamín; Borchert, Dietmar; Guerrero-Lemus, Ricardo

    2013-04-01

    An analysis of the nucleation mechanism of pyramids formed in (100) silicon in Na2CO3/NaHCO3 solution has been carried out. This texturization process of silicon by means of Na2CO3/NaHCO3 solutions is of special interest because it can be applied to the silicon solar cell industry to texture solar cell surfaces to decrease the front reflection and enhance light trapping in the cells. For this purpose, two microscopy techniques-scanning electron microscopy and atomic force microscopy-have been used to study the different stages of pyramidal nucleation and formation. The different aspects and factors involved in the texturization process require different analysis conditions and microscopy resolution. Tracing the transformation of determined surface areas and structures has been achieved, contributing clarification of the mechanism of pyramid nucleation in Na2CO3/NaHCO3 solutions.

  9. Formation of Self-Connected Si0.8Ge0.2 Lateral Nanowires and Pyramids on Rib-Patterned Si(1 1 10) Substrate

    NASA Astrophysics Data System (ADS)

    Du, Lei; Chen, Gang; Lu, Wei

    2017-01-01

    In this work, Si0.8Ge0.2 is deposited onto the rib-patterned Si (1 1 10) template oriented in the [1 -1 0] direction. Atomic force microscopy (AFM) reveals that the rib sidewalls reshape into pyramid-covered (0 0 1) and smooth {1 1 3} facets, respectively, while the {1 0 5} facets-bounded lateral SiGe nanowires dominate the rib top along the [5 5 -1] direction. At both the rib shoulder sites and the pyramid vacancy sites, self-connecting occurs between the meeting nanowire and pyramids to form elongated huts, which are driven by the minimization of the total energy density according to the finite-element simulations results. These results suggest a convenient solution to form lateral SiGe nanowires covering multi-faceted surfaces on the patterned template.

  10. Formation of Self-Connected Si0.8Ge0.2 Lateral Nanowires and Pyramids on Rib-Patterned Si(1 1 10) Substrate.

    PubMed

    Du, Lei; Chen, Gang; Lu, Wei

    2017-12-01

    In this work, Si0.8Ge0.2 is deposited onto the rib-patterned Si (1 1 10) template oriented in the [1 -1 0] direction. Atomic force microscopy (AFM) reveals that the rib sidewalls reshape into pyramid-covered (0 0 1) and smooth {1 1 3} facets, respectively, while the {1 0 5} facets-bounded lateral SiGe nanowires dominate the rib top along the [5 5 -1] direction. At both the rib shoulder sites and the pyramid vacancy sites, self-connecting occurs between the meeting nanowire and pyramids to form elongated huts, which are driven by the minimization of the total energy density according to the finite-element simulations results. These results suggest a convenient solution to form lateral SiGe nanowires covering multi-faceted surfaces on the patterned template.

  11. Influence of alignment of the pyramid on its beneficial effects.

    PubMed

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2007-05-01

    The present study was aimed to find out whether a change in the alignment of the pyramid from the north-south axis causes any variation in the effects produced by it on plasma cortisol levels and markers of oxidative stress in erythrocytes of adult-female Wistar rats. Plasma cortisol and erythrocyte TBARS levels were significantly lower whereas erythrocyte GSH was significantly higher in rats kept in pyramid that was aligned on the four cardinal points--north, east, south and west, as compared to normal control rats. Although there was a significant difference in the plasma cortisol level between normal control group and the group of rats kept in randomly aligned pyramid, there was no significant difference between these two groups for the other parameters. Erythrocyte TBARS levels in the group of rats kept in the randomly aligned pyramid was significantly higher than that in the group kept in the magnetically aligned pyramid. The results suggest that the north-south alignment of the pyramid is crucial for its expected effects.

  12. Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks

    PubMed Central

    Luebke, Jennifer I.

    2017-01-01

    A key challenge in cortical neuroscience is to gain a comprehensive understanding of how pyramidal neuron heterogeneity across different areas and species underlies the functional specialization of individual neurons, networks, and areas. Comparative studies have been important in this endeavor, providing data relevant to the question of which of the many inherent properties of individual pyramidal neurons are necessary and sufficient for species-specific network and areal function. In this mini review, the importance of pyramidal neuron structural properties for signaling are outlined, followed by a summary of our recent work comparing the structural features of mouse (C57/BL6 strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal association cortices and their implications for neuronal and areal function. Based on these and other published data, L3 pyramidal neurons plausibly might be considered broadly “generalizable” from one area to another in the mouse neocortex due to their many similarities, but major differences in the properties of these neurons in diverse areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons highlight the implausibility of straightforward scaling and/or extrapolation from mouse to primate neurons and cortical networks. PMID:28326020

  13. Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons.

    PubMed

    Wittner, Lucia; Henze, Darrell A; Záborszky, László; Buzsáki, György

    2006-09-01

    The specific connectivity among principal cells and interneurons determines the flow of activity in neuronal networks. To elucidate the connections between hippocampal principal cells and various classes of interneurons, CA3 pyramidal cells were intracellularly labelled with biocytin in anaesthetized rats and the three-dimensional distribution of their axon collaterals was reconstructed. The sections were double-stained for substance P receptor (SPR)- or metabotropic glutamate receptor 1alpha (mGluR-1alpha)-immunoreactivity to investigate interneuron targets of the CA3 pyramidal cells. SPR-containing interneurons represent a large portion of the GABAergic population, including spiny and aspiny classes. Axon terminals of CA3 pyramidal cells contacted SPR-positive interneuron dendrites in the hilus and in all hippocampal strata in both CA3 and CA1 regions (7.16% of all boutons). The majority of axons formed single contacts (87.5%), but multiple contacts (up to six) on single target neurons were also found. CA3 pyramidal cell axon collaterals innervated several types of morphologically different aspiny SPR-positive interneurons. In contrast, spiny SPR-interneurons or mGluR-1alpha-positive interneurons in the hilus, CA3 and CA1 regions were rarely contacted by the filled pyramidal cells. These findings indicate a strong target selection of CA3 pyramidal cells favouring the activation of aspiny classes of interneurons.

  14. A portable laser system for high-precision atom interferometry experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Prevedelli, M.; Giorgini, A.; Tino, G. M.; Peters, A.

    2011-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for a portable gravimeter based on atom interferometry that will be capable of performing high-precision gravity measurements directly at sites of geophysical interest. This laser system is constructed in a compact and mobile design so that it can be transported to different locations, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19″ rack and emits light at five different frequencies simultaneously on up to 12 fibre ports at a total output power of 800 mW. These frequencies can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked diode lasers with a phase noise spectral density of less than 1 μrad/Hz1/2 in the frequency range in which our gravimeter is most sensitive to noise. We characterise this laser system and evaluate the performance limits it imposes on an interferometer.

  15. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    PubMed

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  16. Semantic pyramids for gender and action recognition.

    PubMed

    Khan, Fahad Shahbaz; van de Weijer, Joost; Anwer, Rao Muhammad; Felsberg, Michael; Gatta, Carlo

    2014-08-01

    Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.

  17. Time Changes of the European Gravity Field from GRACE: A Comparison with Ground Measurements from Superconducting Gravimeters and with Hydrology Model Predictions

    NASA Technical Reports Server (NTRS)

    Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.

    2004-01-01

    We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  18. Polychromatic white LED using GaN nano pyramid structure

    NASA Astrophysics Data System (ADS)

    Kim, Taek; Kim, Jusung; Yang, Moonseung; Park, Yongsoo; Chung, U.-In; Ko, Yongho; Cho, Yonghoon

    2013-03-01

    We have developed monolithic white light emitting diodes (LEDs) with a hybrid structure of planar c-planes and nano size hexagonal pyramids. The white spectrum is composed of blue and yellow emissions from the InGaN multi quantum wells (MQWs) on the planar c-planes and on the nano pyramids, respectively. The yellow emission is originated from quantum wells, wires, and dots that are formed at the sides, edges, and tops of the nano-pyramids, respectively. As a result, the emission peaks are different and the entire yellow spectrum is broad enough to make a white in combination with a blue emission. The longer wavelength from the InGaN on nano-pyramids than the wavelength from the InGaN on c-planes is explained by excess In supply from the dielectric selective growth mask. The color temperature is tuned from 3600K to 6400K by controlling the relative area ratio of c-plane and nano-pyramids.

  19. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium

    NASA Astrophysics Data System (ADS)

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito

    2016-06-01

    Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c +a ⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c +a ⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {2 1 ¯ 1 ¯ 2 } plane "slither" in the {01 1 ¯1 } plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {2 1 ¯1 ¯2 } and {01 1 ¯1 } slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {2 1 ¯1 ¯2 } planes.

  20. Contact-pressure reduction of pyramidal optical probe array on corrugated aluminium/silicon nitride membranes

    NASA Astrophysics Data System (ADS)

    Jang, Jinhee; Oh, Seonghyeon; Hahn, Jae W.

    2017-04-01

    In this study, we develop an optical contact probe array for scanning near-field lithography. We fabricate the optical probes with a pyramidal tip array on an aluminium/silicon nitride composite membrane. Here, we reduce the contact pressure using the corrugations on the silicon nitride membrane and the flattened surface on top of the tip. After fabricating the 5  ×  5 probes in the array, we evaluate the contact pressure using the force–distance curve obtained by an atomic force microscope. The spring constants of the corrugated membranes are 10  ±  0.6 N m‑1. The contact pressure on a flattened 295 nm in-radius is calculated to be approximately 33 MPa for a 300 nm deflection. This value is 22 times smaller than that of a sharp pyramidal tip of 20 nm in-radius on a flat membrane.

  1. Ancient Egyptian chronology and the astronomical orientation of pyramids

    NASA Astrophysics Data System (ADS)

    Spence, Kate

    2000-11-01

    The ancient Egyptian pyramids at Giza have never been accurately dated, although we know that they were built approximately around the middle of the third millennium BC. The chronologies of this period have been reconstructed from surviving lists of kings and the lengths of their reigns, but the lists are rare, seldom complete and contain known inconsistencies and errors. As a result, the existing chronologies for that period (the Old Kingdom) can be considered accurate only to about +/-100 years, a figure that radiocarbon dating cannot at present improve. Here I use trends in the orientation of Old Kingdom pyramids to demonstrate that the Egyptians aligned them to north by using the simultaneous transit of two circumpolar stars. Modelling the precession of these stars yields a date for the start of construction of the Great Pyramid that is accurate to +/-5 yr, thereby providing an anchor for the Old Kingdom chronologies.

  2. Ancient Egyptian chronology and the astronomical orientation of pyramids.

    PubMed

    Spence, K

    2000-11-16

    The ancient Egyptian pyramids at Giza have never been accurately dated, although we know that they were built approximately around the middle of the third millennium BC. The chronologies of this period have been reconstructed from surviving lists of kings and the lengths of their reigns, but the lists are rare, seldom complete and contain known inconsistencies and errors. As a result, the existing chronologies for that period (the Old Kingdom) can be considered accurate only to about +/-100 years, a figure that radiocarbon dating cannot at present improve. Here I use trends in the orientation of Old Kingdom pyramids to demonstrate that the Egyptians aligned them to north by using the simultaneous transit of two circumpolar stars. Modelling the precession of these stars yields a date for the start of construction of the Great Pyramid that is accurate to +/-5 yr, thereby providing an anchor for the Old Kingdom chronologies.

  3. Closed-loop performance of pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Esposito, Simone; Riccardi, Armando; Feeney, Orla

    2000-07-01

    We consider the performance of the wavefront reconstruction process when a Pyramid wavefront Sensor is used in a closed loop Adaptive Optics System. The Pyramid Sensor sensitivity in closed loop operations has been the subject of a first heuristic analysis showing that the sensor sensitivity is higher than that of a Shack-Hartmann sensor, at least when low order modes are considered. In this paper we evaluate the sensor accuracy by determining the closed loop reconstruction matrix. This is done using a diffractive analysis of the sensor behavior. Furthermore, knowledge of this matrix enables us to quantify the effect of error sources like sensor non linearity and photon noise on the reconstructed wavefront accuracy. Finally, a comparison of the performance of the Shack-Hartmann and Pyramid wavefront sensors is given.

  4. Can Pyramids and Seed Mixtures Delay Resistance to Bt Crops?

    PubMed

    Carrière, Yves; Fabrick, Jeffrey A; Tabashnik, Bruce E

    2016-04-01

    The primary strategy for delaying the evolution of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) entails refuges of plants that do not produce Bt toxins and thus allow survival of susceptible pests. Recent advances include using refuges together with Bt crop 'pyramids' that make two or more Bt toxins effective against the same pest, and planting seed mixtures yielding random distributions of pyramided Bt and non-Bt corn plants within fields. We conclude that conditions often deviate from those favoring the success of pyramids and seed mixtures, particularly against pests with low inherent susceptibility to Bt toxins. For these problematic pests, promising approaches include using larger refuges and integrating Bt crops with other pest management tactics.

  5. Development of Pyramidal Type 2-AXES Analog Sun Sensor

    NASA Astrophysics Data System (ADS)

    Rhee, Sung-Ho; Lee, Hyun-Woo; Nam, Myung-Ryong; Park, Dong-Jo

    2000-12-01

    PSS (Pyramidal type 2-axes Analog Sun Sensor) which will be used for KAISTSAT-4 is designed to be small, light, low in power consumption, and adequate for small satellite attitude sensor. The PSS for the KAISTSAT-4 consists of the pyramidal structure, solar cells and amplifier. The pyramidal structure is suitable for the 2-axes sensing, Solar cells are made up of a rectangular shape of crystal silicon. The PSS measures the angle of incident light and initial satellite attitude measurement, and provides an alarm for the sunlight-sensitive payloads. This paper explains the PSS structure and the characteristic test result about the PSS with 50o in FOV, less than 3o in accuracy.

  6. Pyramid electrode location in a cardiac micropotential study.

    PubMed

    Kepski, R; Walczak, F

    1989-06-01

    There are several electrode systems dealing with low noise, body surface, and ECG recordings that have been suggested by various investigators. In the last few years, the most developed system for late potential detection has been related to the uncorrected Frank XYZ leads. However, for His bundle detection many different electrode networks have been used. A pyramid-type electrode system has been used previously for His-Purkinje signal measurement and, with some modifications, for late ventricular activity recordings. This pyramid-type system was used to evaluate 300 adult patients with coronary heart disease (CHD) or cardiomyopathy. In the proposed system, electrodes are located near the myocardium with their configuration consisting of three electrode pairs forming a pyramidal shape. Each electrode can also play the role of the top of the pyramid, with all measurement directions converging to a point. By changing the pyramidal top, signals can be detected in various chosen measurement directions. The pyramid system provides spatial averaging facility, allowing the whole measuring system (consisting of low noise multi-input amplifiers) to detect signals in the range of 1 microVp-p on a beat-to-beat basis. In the majority of cases in hospital environments, however, a number of digital averaging cycles is still necessary. Using this system, late potentials (LP) were found in 29% of the patients without myocardial infarction (MI) and in 86% of cases with remote MI and sustained ventricular tachycardia (VT) and/or ventricular fibrillation (VF). Waveforms suspected to be of His-Purkinje System (HPS) origin were detected in 71% of subjects with normal or prolonged P-R segment.

  7. Development of a Pyramid Wave-front Sensor

    NASA Astrophysics Data System (ADS)

    El Hadi, Kacem; Vignaux, Mael; Fusco, Thierry

    2013-12-01

    Within the framework of the E-ELT studies, several laboratories are involved on some instruments: HARMONY with its ATLAS adaptive optics [AO] system, EAGLE or EPICS. Most of the AO systems will probably integrate one or several pyramidal wavefront sensors, PWFS (R. Ragazzoni [1]). The coupling in an AO loop and the control in laboratory (then on sky) of this type of sensor is fundamental for the continuation of the projects related to OA systems on the E-ELT. LAM (Laboratory of Astrophysics of Marseille) is involved in particular in the VLT-SPHERE, ATLAS, EPICS projects. For the last few years, our laboratory has been carrying out different R&D activities in AO instrumentation for ELTs. An experimental AO bench is designed and being developed to allow the validation of new wave-front sensing and control concepts [2]. One the objectives of this bench, is the experimental validation of a pyramid WFS. Theoretical investigations on its behavior have been already made. The world's fastest and most sensitive camera system (OCAM2) has been recently developed at LAM (J.L Gach [3], First Light Imaging). Conjugating this advantage with the pyramid concept, we plan to demonstrate a home made Pyramid sensor for Adaptive Optics whose the speed and the precision are the key points. As a joint collaboration with ONERA and Shaktiware, our work aims at the optimization (measurement process, calibration and operation) in laboratory then on the sky of a pyramid sensor dedicated to the first generation instruments for ELTs. The sensor will be implemented on the ONERA ODISSEE AO bench combining thus a pyramid and a Shack-Hartmann wavefront sensors. What would give the possibility to compare strictly these two WFS types and make this bench unique in France and even in Europe. Experimental work on laboratory demonstration is undergoing. The status of our development will presented at the conference.

  8. Repetition Pitch glide from the step pyramid at Chichen Itza.

    PubMed

    Bilsen, Frans A

    2006-08-01

    Standing at the foot of the Mayan step pyramid at Chichen Itza in Mexico, one can produce a pitchy "chirp" echo by handclapping. As exposed by Declercq et al. [J. Acoust. Soc. Am. 116, 3328-3335 (2004)], an acoustic model based on optical Bragg diffraction at a periodic structure cannot explain satisfactorily the chirp-echo sonogram. Alternatively, considering the echo as a sequence of reflections, and given the dimensions of the pyramid and source-receiver position, the chirp is predicted correctly as a Repetition Pitch glide of which the pitch height is continuously decreasing within 177 ms from 796 to 471 Hz-equivalent.

  9. [Arabian food pyramid: unified framework for nutritional health messages].

    PubMed

    Shokr, Adel M

    2008-01-01

    There are several ways to present nutritional health messages, particularly pyramidic indices, but they have many deficiencies such as lack of agreement on a unified or clear methodology for food grouping and ignoring nutritional group inter-relation and integration. This causes confusion for health educators and target individuals. This paper presents an Arabian food pyramid that aims to unify the bases of nutritional health messages, bringing together the function, contents, source and nutritional group servings and indicating the inter-relation and integration of nutritional groups. This provides comprehensive, integrated, simple and flexible health messages.

  10. Radial microwire array solar cell with pyramidal structure

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Bindu; Das, Mukul Kumar; Sen, Mrinal; Kumar, Subindu

    2016-10-01

    In this work, a theoretical model for radial p-n junction microwire array solar cell with pyramidal structures in the space between microwires has been developed. Incorporation of pyramidal structures results in reflection of light, which would otherwise be unused, and illuminates side walls of the microwires. This additional illumination enhances absorption and, hence, efficiency of the whole structure. Efficiency enhancement is analyzed by varying different device parameters e.g., radius and length of each microwire and packing fraction of the structure. Results show that the maximum fractional efficiency enhancement can be obtained as 30% by suitable choice of these parameters.

  11. Understanding political radicalization: The two-pyramids model.

    PubMed

    McCauley, Clark; Moskalenko, Sophia

    2017-04-01

    This article reviews some of the milestones of thinking about political radicalization, as scholars and security officials struggled after 9/11 to discern the precursors of terrorist violence. Recent criticism of the concept of radicalization has been recognized, leading to a 2-pyramids model that responds to the criticism by separating radicalization of opinion from radicalization of action. Security and research implications of the 2-pyramids model are briefly described, ending with a call for more attention to emotional experience in understanding both radicalization of opinion and radicalization of action. (PsycINFO Database Record

  12. Nitride-based micron-scale hexagonal pyramids array vertical light emitting diodes by N-polar wet etching.

    PubMed

    Ma, Jun; Wang, Liancheng; Liu, Zhiqiang; Yuan, Guodong; Ji, Xiaoli; Ma, Ping; Wang, Junxi; Yi, Xiaoyan; Wang, Guohong; Li, Jinmin

    2013-02-11

    In this work, we reported the fabrication of nitride-based hexagonal pyramids array (HPA) vertical-injection light emitting diodes (V-LEDs) by N-polar wet etching. The performance of HPA V-LEDs devices was significantly improved with 30% higher internal quantum efficiency compared with conventional roughened broad area V-LEDs. The simulated extraction efficiency by finite difference time domain method was 20% higher than typical roughened V-LEDs. The reversed leakage current of HPA V-LEDs was reduced due to better crystal quality, which was confirmed by conductive atomic force microscopy measurement. Furthermore, the efficiency droop for HPA V-LEDs were substantially alleviated.

  13. 76 FR 15358 - Culturally Significant Objects Imported for Exhibition Determinations: “Before the Pyramids: The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Objects Imported for Exhibition Determinations: ``Before the Pyramids: The Origins of... ``Before the Pyramids: The Origins of Egyptian Civilization'' imported from abroad for temporary...

  14. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer.

    PubMed

    Tao, Juan-Juan; Zhou, Min-Kang; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun

    2015-09-01

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10(-11) in 1 s, which is neglectable in a 10(-9) g level atom interferometry gravimeter.

  15. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer

    SciTech Connect

    Tao, Juan-Juan; Zhou, Min-Kang E-mail: zmk@hust.edu.cn; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun E-mail: zmk@hust.edu.cn

    2015-09-15

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10{sup −11} in 1 s, which is neglectable in a 10{sup −9} g level atom interferometry gravimeter.

  16. Cold-atom gravimetry with a Bose-Einstein condensate

    SciTech Connect

    Debs, J. E.; Altin, P. A.; Barter, T. H.; Doering, D.; Dennis, G. R.; McDonald, G.; Close, J. D.; Robins, N. P.; Anderson, R. P.

    2011-09-15

    We present a cold-atom gravimeter operating with a sample of Bose-condensed {sup 87}Rb atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of (83{+-}6)% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources and observe a reduced visibility of (58{+-}4)% for the thermal source. We suspect the loss in visibility is caused partly by wave-front aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and we present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely falling, coherent atomic sources.

  17. Cold-atom gravimetry with a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Debs, J. E.; Altin, P. A.; Barter, T. H.; Döring, D.; Dennis, G. R.; McDonald, G.; Anderson, R. P.; Close, J. D.; Robins, N. P.

    2011-09-01

    We present a cold-atom gravimeter operating with a sample of Bose-condensed 87Rb atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of (83±6)% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources and observe a reduced visibility of (58±4)% for the thermal source. We suspect the loss in visibility is caused partly by wave-front aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and we present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely falling, coherent atomic sources.

  18. A phase-locked laser system based on double direct modulation technique for atom interferometry

    NASA Astrophysics Data System (ADS)

    Li, Wei; Pan, Xiong; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2017-02-01

    We demonstrate a laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-the-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  19. Input transformation by dendritic spines of pyramidal neurons

    PubMed Central

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626

  20. A Modern Myth - The "Pyramids" of Güímar

    NASA Astrophysics Data System (ADS)

    Aparicio, Antonio; Esteban, César

    We discuss about the construction of a modern myth where archaeoastronomy has played an essential role: the Pyramids of Güímar, located in the island of Tenerife (Canary Islands). We summarize the results of archaeoastronomical, archaeological, historical, and ethnographic studies devoted to them as well as our hypothesis for explaining the motivation of their astronomical alignments.

  1. The FINUT Healthy Lifestyles Guide: Beyond the Food Pyramid123

    PubMed Central

    Gil, Angel; Ruiz-Lopez, Maria Dolores; Fernandez-Gonzalez, Miguel; Martinez de Victoria, Emilio

    2014-01-01

    The WHO has proposed that health be promoted and protected through the development of an environment that enables sustainable actions at individual, community, national, and global levels. Indeed, food-based dietary guidelines, i.e., food pyramids, have been developed in numerous countries to disseminate nutritional information to the general population. However, wider recommendations are needed, with information on an active healthy lifestyle, not just healthy eating. The objective of the present work is to propose a three-dimensional pyramid as a new strategy for promoting adequate nutrition and active healthy lifestyles in a sustainable way. Indeed, the Iberoamerican Nutrition Foundation (FINUT) pyramid of healthy lifestyles has been designed as a tetrahedron, with its 3 lateral faces corresponding to the facets of food and nutrition, physical activity and rest, and education and hygiene. Each lateral face is divided into 2 triangles. These faces show the following: 1) food-based guidelines and healthy eating habits as related to a sustainable environment; 2) recommendations for rest and physical activity and educational, social, and cultural issues; and 3) selected hygiene and educational guidelines that, in conjunction with the other 2 faces, would contribute to better health for people in a sustainable planet. The new FINUT pyramid is addressed to the general population of all ages and should serve as a guide for living a healthy lifestyle within a defined social and cultural context. It includes an environmental and sustainability dimension providing measures that should contribute to the prevention of noncommunicable chronic diseases. PMID:24829489

  2. Angles of Elevation of the Pyramids of Egypt.

    ERIC Educational Resources Information Center

    Smith, Arthur F.

    1982-01-01

    The nature and history of the construction of pyramids in Egypt is detailed. It is noted that one can only theorize about why the Egyptians used particular angles of elevation. It is thought, perhaps, that new clues will provide a clear solution to this mystery as additional artifacts and hieroglyphics are discovered. (MP)

  3. The Sphinx and the Pyramids at Giza. Educational Packet.

    ERIC Educational Resources Information Center

    Gagliano, Sara; Rapport, Wendy

    This packet of materials was created to accompany the exhibit "The Sphinx and the Pyramids: 100 Years of American Archaeology at Giza" at the Semitic Museum of Harvard University. The lessons and teacher's guide focus on the following: (1) "The Mystery of the Secret Tomb" where students take on the role of an archaeologist by…

  4. English Pyramids: Using Hierarchical Diagrams for Communication Activities.

    ERIC Educational Resources Information Center

    Johnson, Tia; Sheetz-Brunetti, Judy

    The pyramid, or hierarchical diagram, is used in teaching writing English as a second language (ESL) as a visual representation of the way English speakers and writers organize ideas, for comparison with discourse organization in other cultures. A common problem of ESL students is an inability to organize ideas hierarchically. One class activity…

  5. Was the Great Pyramid Built with Simple Machines?

    ERIC Educational Resources Information Center

    Kraft, Susan; Poynor, Leslie

    2004-01-01

    Recently one of the authors challenged her third-grade students to use their imagination and travel with her to Egypt. As they were exploring the Great Pyramid, she encouraged the students to speculate how ancient people could have built such a massive structure without the sophisticated machinery they have at our disposal today. This article…

  6. Multisynaptic activity in a pyramidal neuron model and neural code.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2006-01-01

    The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation.

  7. Fats, Oils, and Sweets. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and avoiding excesses of fats, oils, and sweets. It presents appealing alternatives to these unhealthy foods. Colorful photographs support…

  8. [The finut healthy lifestyles guide: beyond the food pyramid].

    PubMed

    Gil, Angel; Ruiz-Lopez, Maria Dolores; Fernandez-Gonzalez, Miguel; Martinez de Victoria, Emilio

    2015-05-01

    The World Health Organization has proposed that health be promoted and protected through the development of an environment that enables sustainable actions at individual, community, national and global levels. Indeed, food-based dietary guidelines, i.e., food pyramids, have been developed in numerous countries to disseminate nutritional information to the general population. However, wider recommendations are needed, with information on an active, healthy lifestyle, not just healthy eating. The objective of the present work is to propose a three-dimensional pyramid as a new strategy for promoting adequate nutrition and active healthy lifestyles in a sustainable way. Indeed, the Iberomerican Nutrition Foundation (FINUT) pyramid of healthy lifestyles has been designed as a tetrahedron, its three lateral faces corresponding to the binomials food and nutrition, physical activity and rest, and education and hygiene. Each lateral face is divided into two triangles. These faces show the following: 1. food-based guidelines and healthy eating habits as related to a sustainable environment; 2. recommendations for rest and physical activity and educational, social and cultural issues; 3. selected hygiene and educational guidelines that, in conjunction with the other two faces, would contribute to better health and provide measures to promote environmental sustainability. The new FINUT pyramid is addressed to the general population of all ages and should serve as a guide for living a healthy lifestyle within a defined social and cultural context. It includes an environmental and sustainability dimension providing measures that should contribute to the prevention of non-communicable chronic diseases.

  9. The Meat and Protein Group. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of using the Food Guide Pyramid and eating from the meat and protein group. Colorful photographs support early readers in understanding the text. The repetition of words…

  10. Teach "5 a Day" and the Pyramid for Better Nutrition.

    ERIC Educational Resources Information Center

    Texas Child Care, 1999

    1999-01-01

    Reviews Food Guide Pyramid for fruits and vegetables for 2- to 6-year-old children. Identifies standard of five daily servings, defines children's portion sizes, presents guidelines for choosing appropriate foods, and suggests learning activities that use fruits and vegetables. Recommends 31 children's books about fruits and vegetables. (DLH)

  11. The FINUT healthy lifestyles guide: Beyond the food pyramid.

    PubMed

    Gil, Angel; Ruiz-Lopez, Maria Dolores; Fernandez-Gonzalez, Miguel; Martinez de Victoria, Emilio

    2014-05-01

    The WHO has proposed that health be promoted and protected through the development of an environment that enables sustainable actions at individual, community, national, and global levels. Indeed, food-based dietary guidelines, i.e., food pyramids, have been developed in numerous countries to disseminate nutritional information to the general population. However, wider recommendations are needed, with information on an active healthy lifestyle, not just healthy eating. The objective of the present work is to propose a three-dimensional pyramid as a new strategy for promoting adequate nutrition and active healthy lifestyles in a sustainable way. Indeed, the Iberoamerican Nutrition Foundation (FINUT) pyramid of healthy lifestyles has been designed as a tetrahedron, with its 3 lateral faces corresponding to the facets of food and nutrition, physical activity and rest, and education and hygiene. Each lateral face is divided into 2 triangles. These faces show the following: 1) food-based guidelines and healthy eating habits as related to a sustainable environment; 2) recommendations for rest and physical activity and educational, social, and cultural issues; and 3) selected hygiene and educational guidelines that, in conjunction with the other 2 faces, would contribute to better health for people in a sustainable planet. The new FINUT pyramid is addressed to the general population of all ages and should serve as a guide for living a healthy lifestyle within a defined social and cultural context. It includes an environmental and sustainability dimension providing measures that should contribute to the prevention of noncommunicable chronic diseases.

  12. Potential shortfall of pyramided Bt cotton for resistance management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. In the United States, two-toxin Bt cotton has replaced one-toxin Bt cotton. Althou...

  13. Design data brochure for a pyramidal optics solar system

    SciTech Connect

    Not Available

    1980-09-01

    This Design Data Brochure provides information on a Pyramidal Optics Solar System for solar heating and domestic hot water. The system is made up of the collecting, storage, and distribution subsystems. Contained in the brochure are such items as system description, available accessories, installation arrangements, physical data, piping and wiring diagrams, and guide specifications.

  14. [Diagnostic significance of pathologic synkinesis for detection of pyramidal pathology].

    PubMed

    Baliasnyĭ, M M

    1991-01-01

    Five types of pathological synkinesis (++blepharo-ocular, ++blepharo-facial, ++bucco-manual, ++digito-digital on the hands, ++pedo-digital) are described. They are of definite importance for revealing pyramidal pathology including its early stages as well as for objective evaluation and observation of the time-course of changes in the illness.

  15. Budding Architects: Exploring the Designs of Pyramids and Prisms

    ERIC Educational Resources Information Center

    Leavy, Aisling; Hourigan, Mairéad

    2015-01-01

    The context of students as architects is used to examine the similarities and differences between prisms and pyramids. Leavy and Hourigan use the Van Hiele Model as a tool to support teachers to develop expectations for differentiating geometry in the classroom using practical examples.

  16. Using the Pyramid Approach to Teaching Marketing Research.

    ERIC Educational Resources Information Center

    Peltier, James W.; Westfall, John; Ainscough, Thomas L.

    2001-01-01

    Underscores the need for teaching marketing research skills at the secondary level and shows how marketing research fits into marketing education. Provides an example of how to use the pyramid approach to research, which involves review of secondary sources, key informant interviews, focus groups, and quantitative research. (Author/JOW)

  17. The Learning Pyramid: Does It Point Teachers in the Right Direction?

    ERIC Educational Resources Information Center

    Lalley, James P.; Miller, Robert H.

    2007-01-01

    This paper raises serious questions about the reliability of the learning pyramid as a guide to retention among students. The pyramid suggests that certain teaching methods are connected with a corresponding hierarchy of student retention. No specific credible research was uncovered to support the pyramid, which is loosely associated with the…

  18. The mammalian neocortex new pyramidal neuron: a new conception

    PubMed Central

    Marín-Padilla, Miguel

    2014-01-01

    The new cerebral cortex (neocortex) and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities while essentially using analogous anatomical and neural makeups. The human neocortex starts to develop in 6-week-old embryos with the establishment of a primordial cortical organization, which resembles the primitive cortices of amphibian and reptiles. From the 8th to the 15th week of age, new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divides its components into those above it (neocortex first layer) and those below it (neocortex subplate zone). From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating its developing motor activities. The new pyramidal neuron’ distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface) without losing its original attachment to first layer or the location of its soma and, hence, retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs two pyramidal cell functional strata to carry out all its motor activities, the mouse 3, cat 4, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing and thinking as a premotor activity. Words used in language are the motor expression of thoughts and represent sounds produced by maneuvering the column of expiratory

  19. Development and validation of a food pyramid for Swiss athletes.

    PubMed

    Mettler, Samuel; Mannhart, Christof; Colombani, Paolo C

    2009-10-01

    Food-guide pyramids help translate nutrient goals into a visual representation of suggested food intake on a population level. No such guidance system has ever been specifically designed for athletes. Therefore, the authors developed a Food Pyramid for Swiss Athletes that illustrates the number of servings per food group needed in relation to the training volume of an athlete. As a first step, an average energy expenditure of 0.1 kcal . kg(-1) . min(-1) for exercise was defined, which then was translated into servings of different food groups per hour of exercise per day. Variable serving sizes were defined for athletes' different body-mass categories. The pyramid was validated by designing 168 daily meal plans according to the recommendations of the pyramid for male and female athletes of different body-mass categories and training volumes of up to 4 hr/d. The energy intake of the meal plans met the calculated reference energy requirement by 97% +/- 9%. The carbohydrate and protein intakes were linearly graded from 4.6 +/- 0.6-8.5 +/- 0.8 g . kg(-1) . d(-1) and 1.6 +/- 0.2-1.9 +/- 0.2 g . kg(-1) . d(-1), respectively, for training volumes of 1-4 hr of exercise per day. The average micronutrient intake depended particularly on the dietary energy intake level but was well above the dietary reference intake values for most micronutrients. No tolerable upper intake level was exceeded for any micronutrient. Therefore, this Food Pyramid for Swiss Athletes may be used as a new tool in sports nutrition education (e.g., teaching and counseling).

  20. Analysis of soil images applying Laplacian Pyramidal techniques

    NASA Astrophysics Data System (ADS)

    Ballesteros, F.; de Castro, J.; Tarquis, A. M.; Méndez, A.

    2012-04-01

    The Laplacian pyramid is a technique for image encoding in which local operators of many scales but identical shape are the basis functions. Our work describes some properties of the filters of the Laplacian pyramid. Specially, we pay attention to Gaussian and fractal behaviour of these filters, and we determine the normal and fractal ranges in the case of single parameter filters, while studying the influence of these filters in soil image processing. One usual property of any image is that neighboring pixels are highly correlated. This property makes inefficient to represent the image directly in terms of the pixel values, because most of the encoded information would be redundant. Burt and Adelson designed a technique, named Laplacian pyramid, for removing image correlation which combines features of predictive and transform methods. This technique is non causal, and its computations are simple and local. The predicted value for each pixel is computed as a local weighted average, using a unimodal weighting function centred on the pixel itself. Pyramid construction is equivalent to convolving the original image with a set of weighting functions determined by a parameter that defines the filter. According to the parameter values, these filters have a behaviour that goes from the Gaussian shape to the fractal. Previous works only analyze Gaussian filters, but we determine the Gaussian and fractal intervals and study the energy of the Laplacian pyramid images according to the filter types. The different behaviour, qualitatively, involves a significant change in statistical characteristics at different levels of iteration, especially the fractal case, which can highlight specific information from the images. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  1. Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro.

    PubMed Central

    Deuchars, J; West, D C; Thomson, A M

    1994-01-01

    1. Double intracellular recordings were made from 1163 pairs of pyramidal neurones in layer V-VI of the rat somatomotor cortex in vitro using sharp electrodes filled with biocytin. Monosynaptically connected pairs of cells were identified when an action potential in one could elicit a constant latency excitatory postsynaptic potential (EPSP) in the other and the cells were filled with biocytin. Labelled cells were subsequently identified histologically with avidin-horseradish peroxidase. 2. Thirty-four pairs of cells were found to be monosynaptically connected. Fifteen of these pairs were sufficiently stable for electrophysiological recordings and three of these were recovered sufficiently to permit full morphological reconstruction. 3. The EPSP recorded between the first pair of pyramids varied in amplitude between 0 and 3 mV (mean 1.33 +/- 1.06 mV) and fluctuated considerably (coefficient of variation, 0.796). This was largely due to a high incidence of apparent failures of transmission. On reconstruction two boutons from the presynaptic pyramid axon were in close apposition to the proximal portions of basal dendrites of the postsynaptic cell. 4. In the second pair of pyramids the EPSP had a mean amplitude of 1.06 mV, and displayed a 10-90% rise time of 2.8 ms and a width at half-amplitude of 23 ms. This EPSP did not alter significantly with changes in membrane potential at the soma. The presynaptic axon closely apposed the distal apical dendrite of the postsynaptic cell in eight places. 5. In the third pair of pyramids, the EPSPs, recorded at a relatively depolarized membrane potential, were long lasting and could elicit slow dendritic spikes with long and variable latencies. These slow spikes suggested that the postsynaptic recording site was dendritic and on reconstruction a possible location was identified on the apical dendrite. A total of five presynaptic boutons closely apposed three separate, proximal branches of the postsynaptic apical dendrite. 6. These

  2. Ecosystem ecology: size-based constraints on the pyramids of life.

    PubMed

    Trebilco, Rowan; Baum, Julia K; Salomon, Anne K; Dulvy, Nicholas K

    2013-07-01

    Biomass distribution and energy flow in ecosystems are traditionally described with trophic pyramids, and increasingly with size spectra, particularly in aquatic ecosystems. Here, we show that these methods are equivalent and interchangeable representations of the same information. Although pyramids are visually intuitive, explicitly linking them to size spectra connects pyramids to metabolic and size-based theory, and illuminates size-based constraints on pyramid shape. We show that bottom-heavy pyramids should predominate in the real world, whereas top-heavy pyramids indicate overestimation of predator abundance or energy subsidies. Making the link to ecological pyramids establishes size spectra as a central concept in ecosystem ecology, and provides a powerful framework both for understanding baseline expectations of community structure and for evaluating future scenarios under climate change and exploitation.

  3. Influence of noise on a magnetically sensitive atom interferometer

    NASA Astrophysics Data System (ADS)

    Desavage, Sara A.; Srinivasan, Arvind; Davis, Jon P.; Zimmermann, Matthias; Efremov, Maxim; Rasel, Ernst; Schleich, Wolfgang; Welch, George R.; Mimih, Jihane; Narducci, Frank A.

    2016-05-01

    The inherent sensitivity of atom interferometer sensors has been well established and much progress has been made in the development of atom interferometer gravimeters, gravity gradiometers and gyroscopes e.g.. These interferometers use the ``clock'' transition which is magnetically insensitive. When considering interferometers with magnetically sensitive transitions operating in unshielded environments additional noise sources must be considered. The frequency content of the noise from these sources can vary dramatically, depending on the environment. In this talk, we will discuss these various noise sources and their impact on the performance of magnetically sensitive interferometers. Specifically, we identify three ways by which noise can be introduced into the system and their effect: fluctuating detuning, leading to a randomness of the interference pattern; fluctuating Rabi frequency, leading to pulse errors; non-uniformity of the magnetic field across the atom cloud, which can, under certain circumstances lead to a complete washing out of the interference pattern. Implications for our current experiments will be discussed. Sponsored by the Office of Naval Research.

  4. Structuring by multi-beam interference using symmetric pyramids.

    PubMed

    Lei, Ming; Yao, Baoli; Rupp, Romano A

    2006-06-12

    A method for producing optical structures using rotationally symmetric pyramids is proposed. Two-dimensional structures can be achieved using acute prisms. They form by multi-beam interference of plane waves that impinge from directions distributed symmetrically around the axis of rotational symmetry. Flat-topped pyramids provide an additional beam along the axis thus generating three-dimensional structures. Experimental results are consistent with the results of numerical simulations. The advantages of the method are simplicity of operation, low cost, ease of integration, good stability, and high transmittance. Possible applications are the fabrication of photonic micro-structures such as photonic crystals or array waveguides as well as multi-beam optical tweezers.

  5. Fast modulation and dithering on a pyramid wavefront sensor bench

    NASA Astrophysics Data System (ADS)

    van Kooten, Maaike; Bradley, Colin; Veran, Jean-Pierre; Herriot, Glen; Lardiere, Olivier

    2016-07-01

    A pyramid wavefront sensor (PWFS) bench has been setup at NRC-Herzberg (Victoria, Canada) to investigate, first, the feasibility of a double roof prism PWFS, and second, test the proposed pyramid wavefront sensing methodology to be used in NFIRAOS for the Thirty Meter Telescope. Traditional PWFS require shallow angles and strict apex tolerances, making them difficult to manufacture. Roof prisms, on the other hand, are common optical components and can easily be made to the desired specifications. Understanding the differences between a double roof prism PWFS and traditional PWFS will allow for the double roof prism PWFS to become more widely used as an alternative to the standard pyramid, especially in a laboratory setting. In this work, the response of the double roof prism PWFS as the amount of modulation is changed, is compared to an ideal PWFS modelled using the adaptive optics toolbox, OOMAO in MATLAB. The object oriented toolbox uses physical optics to model complete AO systems. Fast modulation and dithering using a PI mirror has been implemented using a micro-controller to drive the mirror and trigger the camera. The various trade offs of this scheme, in a controlled laboratory environment, are studied and reported.

  6. Understanding the pyramidal growth of GaN

    SciTech Connect

    Rouviere, J.L.; Arlery, M.; Bourret, A.

    1996-11-01

    By a combination of conventional, HREM and CBED TEM experiments the authors have studied wurtzite GaN layers grown by Metal-Organic Chemical Vapor Deposition (MOCVD) on (0001)Al{sub 2}O{sub 3}. They experimentally determine the structure of the macroscopic hexagonal pyramids that are visible at the surface of the layers when no optimized buffer is introduced. These pyramids look like hexagonal volcanoes with one hexagonal microscopic chimney (up to 75 nm wide) at their core. The crystal inside the chimney is a pure GaN crystal with a polarity opposed to the one of the neighboring material: the GaN layers grown on (0001)Al{sub 2}O{sub 3} are everywhere Ga-terminated except in the chimneys where they are N-terminated. Some of the N-terminated chimneys grow faster and form macroscopic hexagonal pyramids. Chimneys bounded by Inversion Domains Boundaries (IDBs) originate from steps at the surface of the substrate and may be suppressed by an adapted buffer layer.

  7. Spatio-temporal Laplacian pyramid coding for action recognition.

    PubMed

    Shao, Ling; Zhen, Xiantong; Tao, Dacheng; Li, Xuelong

    2014-06-01

    We present a novel descriptor, called spatio-temporal Laplacian pyramid coding (STLPC), for holistic representation of human actions. In contrast to sparse representations based on detected local interest points, STLPC regards a video sequence as a whole with spatio-temporal features directly extracted from it, which prevents the loss of information in sparse representations. Through decomposing each sequence into a set of band-pass-filtered components, the proposed pyramid model localizes features residing at different scales, and therefore is able to effectively encode the motion information of actions. To make features further invariant and resistant to distortions as well as noise, a bank of 3-D Gabor filters is applied to each level of the Laplacian pyramid, followed by max pooling within filter bands and over spatio-temporal neighborhoods. Since the convolving and pooling are performed spatio-temporally, the coding model can capture structural and motion information simultaneously and provide an informative representation of actions. The proposed method achieves superb recognition rates on the KTH, the multiview IXMAS, the challenging UCF Sports, and the newly released HMDB51 datasets. It outperforms state of the art methods showing its great potential on action recognition.

  8. Amending Miller's Pyramid to Include Professional Identity Formation.

    PubMed

    Cruess, Richard L; Cruess, Sylvia R; Steinert, Yvonne

    2016-02-01

    In 1990, George Miller published an article entitled "The Assessment of Clinical Skills/Competence/Performance" that had an immediate and lasting impact on medical education. In his classic article, he stated that no single method of assessment could encompass the intricacies and complexities of medical practice. To provide a structured approach to the assessment of medical competence, he proposed a pyramidal structure with four levels, each of which required specific methods of assessment. As is well known, the layers are "Knows," "Knows How," "Shows How," and "Does." Miller's pyramid has guided assessment since its introduction; it has also been used to assist in the assessment of professionalism.The recent emphasis on professional identity formation has raised questions about the appropriateness of "Does" as the highest level of aspiration. It is believed that a more reliable indicator of professional behavior is the incorporation of the values and attitudes of the professional into the identity of the aspiring physician. It is therefore proposed that a fifth level be added at the apex of the pyramid. This level, reflecting the presence of a professional identity, should be "Is," and methods of assessing progress toward a professional identity and the nature of the identity in formation should be guided by currently available methods.

  9. Toward a pyramidal neural network system for stereo fusion

    NASA Astrophysics Data System (ADS)

    Lepage, Richard; Poussart, Denis

    1992-03-01

    A goal of computer vision is the construction of scene descriptions based on information extracted from one or more 2-D images. Stereo is one of the strategies used to recover 3-D information from two images. Intensity edges in the images correspond mostly to characteristic features in the 3-D scene and the stereo module attempt to match corresponding features in the two images. Edge detection makes explicit important information about the two-dimensional image but is scale-dependent: edges are visible only over a range of scales. One needs multiple scale analysis of the input image in order to have a complete description of the edges. We propose a compact pyramidal architecture for image representation at multiple spatial scales. A simple Processing Element (PE) is allocated at each pixel location at each level of the pyramid. A dense network of weighted links between each PE and PEs underneath is programmed to generate the levels of the pyramid. Lateral weighted links within a level compute edge localization and intensity gradient. Feedback between successive levels is used to reinforce and refine the position of true edges. A fusion channel matches the two edge channels to output a disparity map of the observed scene.

  10. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  11. MyPyramid.gov: assessment of literacy, cultural and linguistic factors in the USDA food pyramid web site.

    PubMed

    Neuhauser, Linda; Rothschild, Rebeccah; Rodríguez, Fátima M

    2007-01-01

    MyPyramid.gov, a major national Web site about healthful eating and physical activity, was analyzed for literacy, cultural, and linguistic factors relevant to consumers. The assessment used 4 standardized readability tests, 1 navigational test, availability of non-English content, and new criteria for cultural factors. Readability scores averaged between grade levels 8.8 and 10.8, and half the navigation criteria were met. The Web site was available in Spanish, but it had little cultural tailoring for English speakers. It is recommended that MyPyramid's readability, navigation, and cultural tailoring be improved. References are provided to help educators learn more about assessing and using Internet communication with diverse audiences.

  12. Clinical characteristics of papillary thyroid carcinoma arising from the pyramidal lobe

    PubMed Central

    Yoon, Sang Gab; Yi, Jin Wook; Seong, Chan-Yong; Kim, Jong-Kyu; Kim, Su-Jin; Chai, Young Jun; Choi, June Young

    2017-01-01

    Purpose Papillary thyroid carcinoma (PTC) arising from the pyramidal lobe is rare; therefore, clinicopathologic evaluation is lacking. In addition, the rate of occult malignancy in the pyramidal lobe after thyroid surgery is unclear. This study is to evaluate the clinical characteristics of PTCs that involve the pyramidal lobe. Methods The study enrolled 1,107 patients who underwent thyroid surgery for PTC at Seoul National University Hospital from 2006 to 2015. Pyramidal lobe status in pathologic reports was clear in all cases. “Pyramidal lobe-dominant PTC” was defined as single pyramidal lobe cancer or multifocal cancer with larger pyramidal lobe tumor. “Incidental pyramidal lobe PTC” was defined as occult cancer identified after thyroidectomy or as multifocal cancer with smaller pyramidal lobe tumor. Results Ten patients were included in the pyramidal lobe-dominant PTC group. The mean age was 58 ± 12.5 years, and the mean tumor size was 0.7 ± 0.7 cm. Cervical lymph node metastasis was found in 5 patients (50%). Three patients had microscopic lymphatic invasion, and 7 had advanced American Joint Comitee on Cancer (AJCC) stage disease (5 with stage III and 2 with stage IV). Compared with conventional PTC (n = 1,058), pyramidal lobe-dominant PTC was significantly associated with lymphatic invasion (P = 0.031) and advanced AJCC stage (P = 0.022). The prevalence of incidental pyramidal lobe PTC was 3.56%. Conclusion Pyramidal lobe PTC is relatively small in size; however, the rate of extrathyroidal extension and lymph node metastasis is high. Preoperative evaluation of nodal status is important, and the extent of surgery should be determined in accordance with the preoperative diagnosis. PMID:28289665

  13. Excitatory synapses from CA3 pyramidal cells onto neighboring pyramidal cells differ from those onto inhibitory interneurons.

    PubMed

    Aaron, G B; Dichter, M A

    2001-12-15

    The glutamatergic pyramidal cell (PYR) to pyramidal cell synapse was compared to the PYR to inhibitory interneuron (INT) synapse in area CA3 of rat hippocampal roller-tube cultures. Paired-pulses and tetanic stimulations of a presynaptic PYR were conducted utilizing dual whole-cell patch-clamp recordings of either two PYRs or of a PYR and visually identified stratum oriens INT. Differences in synaptic characteristics were observed, depending on the postsynaptic target cell. Across cell pairs the variation of EPSC amplitudes was much larger for postsynaptic PYRs than for INTs. EPSCs recorded from INTs had faster rise times and shorter decays than those recorded in PYRs. There were also differences in the short-term plasticity of these synapses. Dual PYR:PYR recordings during paired-pulse stimulation at 100 ms interstimulus intervals demonstrated no modulation of EPSC amplitudes, while PYR:INT synapses showed paired-pulse depression. During trains of action potentials, the PYR:PYR EPSCs followed the presynaptic action potential train reliably, with little depression of EPSCs, while PYR:INT EPSCs demonstrated failures of transmission or profound depression after the initial EPSC. These results indicate multiple differences at both the pre- and postsynaptic level in the characteristics of pyramidal cell synapses that depend on the postsynaptic target's identity as either PYR or INT.

  14. Evaluation of the Cost-Effectiveness of Pyramidal, Modified Pyramidal and Monoscreen Traps for the Control of the Tsetse Fly, Glossina fuscipes fuscipes, in Uganda

    PubMed Central

    Abila, P.P.; Okello-Onen, J.; Okoth, J.O.; Matete, G.O.; Wamwiri, F.; Politzar, H.

    2007-01-01

    Several trap designs have been used for sampling and control of the tsetse fly, Glossina fuscipes fuscipes, Newstead (Diptera: Glossinidae) based on preferences of individual researchers and program managers with little understanding of the comparative efficiency and cost-effectiveness of trap designs. This study was carried out to evaluate the cost-effectiveness of four commonly used trap designs: monoscreen, modified pyramidal and pyramidal, relative to the standard biconical trap. The study was performed under high tsetse challenge on Buvuma Island, Lake Victoria, Uganda, using a 4 × 4 Latin square design replicated 3 times, so as to separate the trap positions and day effects from the treatment effect. A total of 12 trap positions were tested over 4 days. The monoscreen trap caught significantly higher numbers of G. f. fuscipes (P<0.05) followed by biconical, modified pyramidal and pyramidal traps. Analysis of variance showed that treatment factor was a highly significant source of variation in the data. The index of increase in trap catches relative biconical were O.60 (pyramidal), 0.68 (modified pyramidal) and 1.25 (monoscreen). The monoscreen trap was cheaper (US$ 2.61) and required less material to construct than pyramidal trap (US$ 3.48), biconical and the modified pyramidal traps (US$ 4.06 each). Based on the number of flies caught per meter of material, the monoscreen trap proved to be the most cost-effective (232 flies/m) followed by the biconical trap (185 flies/m). The modified pyramidal and the pyramidal traps caught 112 and 125 flies/m, respectively. PMID:20345292

  15. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    SciTech Connect

    Mastroianni, Alexander; Claridge, Shelley; Alivisatos, A. Paul

    2009-03-30

    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures.

  16. A Sodium-Pump-Mediated Afterhyperpolarization in Pyramidal Neurons

    PubMed Central

    Dasari, Sameera; Onoue, Keita; Stephens, Emily K.; Hasse, J. Michael; Avesar, Daniel

    2013-01-01

    The sodium-potassium ATPase (i.e., the “sodium pump”) plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 “place cell” as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this “place cell train” generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons. PMID:23926257

  17. Potential shortfall of pyramided transgenic cotton for insect resistance management

    PubMed Central

    Brévault, Thierry; Heuberger, Shannon; Zhang, Min; Ellers-Kirk, Christa; Ni, Xinzhi; Masson, Luke; Li, Xianchiun; Tabashnik, Bruce E.; Carrière, Yves

    2013-01-01

    To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the “pyramid” strategy uses plants that produce two or more toxins that kill the same pest. In the United States, this strategy has been adopted widely, with two-toxin Bt cotton replacing one-toxin Bt cotton. Although two-toxin plants are likely to be more durable than one-toxin plants, the extent of this advantage depends on several conditions. One key assumption favoring success of two-toxin plants is that they kill insects selected for resistance to one toxin, which is called “redundant killing.” Here we tested this assumption for a major pest, Helicoverpa zea, on transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Selection with Cry1Ac increased survival on two-toxin cotton, which contradicts the assumption. The concentration of Cry1Ac and Cry2Ab declined during the growing season, which would tend to exacerbate this problem. Furthermore, analysis of results from 21 selection experiments with eight species of lepidopteran pests indicates that some cross-resistance typically occurs between Cry1A and Cry2A toxins. Incorporation of empirical data into simulation models shows that the observed deviations from ideal conditions could greatly reduce the benefits of the pyramid strategy for pests like H. zea, which have inherently low susceptibility to Bt toxins and have been exposed extensively to one of the toxins in the pyramid before two-toxin plants are adopted. For such pests, the pyramid strategy could be improved by incorporating empirical data on deviations from ideal assumptions about redundant killing and cross-resistance. PMID:23530245

  18. Tracking visual objects using pyramidal rotation invariant features

    NASA Astrophysics Data System (ADS)

    Paheding, Sidike; Essa, Almabrok; Krieger, Evan; Asari, Vijayan

    2016-02-01

    Challenges in object tracking such as object deformation, occlusion, and background variations require a robust tracker to ensure accurate object location estimation. To address these issues, we present a Pyramidal Rotation Invariant Features (PRIF) that integrates Gaussian Ringlet Intensity Distribution (GRID) and Fourier Magnitude of Histogram of Oriented Gradients (FMHOG) methods for tracking objects from videos in challenging environments. In this model, we initially partition a reference object region into increasingly fine rectangular grid regions to construct a pyramid. Histograms of local features are then extracted for each level of pyramid. This allows the appearance of a local patch to be captured at multiple levels of detail to make the algorithm insensitive to partial occlusion. Then GRID and magnitude of discrete Fourier transform of the oriented gradient are utilized to achieve a robust rotation invariant feature. The GRID feature creates a weighting scheme to emphasize the object center. In the tracking stage, a Kalman filter is employed to estimate the center of the object search regions in successive frames. Within the search regions, we use a sliding window technique to extract the PRIF of candidate objects, and then Earth Mover's Distance (EMD) is used to classify the best matched candidate features with respect to the reference. Our PRIF object tracking algorithm is tested on two challenging Wide Area Motion Imagery (WAMI) datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness. Experimental results show that the proposed PRIF approach yields superior results compared to state-of-the-art feature based object trackers.

  19. A sodium-pump-mediated afterhyperpolarization in pyramidal neurons.

    PubMed

    Gulledge, Allan T; Dasari, Sameera; Onoue, Keita; Stephens, Emily K; Hasse, J Michael; Avesar, Daniel

    2013-08-07

    The sodium-potassium ATPase (i.e., the "sodium pump") plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 "place cell" as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this "place cell train" generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons.

  20. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  1. A New Fuzzy System Based on Rectangular Pyramid

    PubMed Central

    Jiang, Mingzuo; Yuan, Xuehai; Li, Hongxing; Wang, Jiaxia

    2015-01-01

    A new fuzzy system is proposed in this paper. The novelty of the proposed system is mainly in the compound of the antecedents, which is based on the proposed rectangular pyramid membership function instead of t-norm. It is proved that the system is capable of approximating any continuous function of two variables to arbitrary degree on a compact domain. Moreover, this paper provides one sufficient condition of approximating function so that the new fuzzy system can approximate any continuous function of two variables with bounded partial derivatives. Finally, simulation examples are given to show how the proposed fuzzy system can be effectively used for function approximation. PMID:25874253

  2. FPGA implementation of a pyramidal Weightless Neural Networks learning system.

    PubMed

    Al-Alawi, Raida

    2003-08-01

    A hardware architecture of a Probabilistic Logic Neuron (PLN) is presented. The suggested model facilitates the on-chip learning of pyramidal Weightless Neural Networks using a modified probabilistic search reward/penalty training algorithm. The penalization strategy of the training algorithm depends on a predefined parameter called the probabilistic search interval. A complete Weightless Neural Network (WNN) learning system is modeled and implemented on Xilinx XC4005E Field Programmable Gate Array (FPGA), allowing its architecture to be configurable. Various experiments have been conducted to examine the feasibility and performance of the WNN learning system. Results show that the system has a fast convergence rate and good generalization ability.

  3. Sensing wavefronts on resolved sources with pyramids on ELTs

    NASA Astrophysics Data System (ADS)

    Feldt, Markus; Hippler, Stefan; Obereder, Andreas; Stuik, Remko; Bertram, Thomas

    2016-07-01

    Pyramid wavefront sensors (PWFS) have been agreed to provide a superior faint-end performance with respect to Shack-Hartmann systems (SHS) quite some time ago. However, much of the advantage relies on the fact that PWFSs exploit the full resolution limit of the telescope. ELTs will thus confront PWFSs with an unprecedented number of resolved targets. To analyze the behavior of PWFS on extended targets in detail observationally is difficult. We will present the result of simulations representing the Single-Conjugated Adaptive Optics (SCAO) system of METIS on the European ELT (E-ELT).

  4. Pyramidal Image-Processing Code For Hexagonal Grid

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1990-01-01

    Algorithm based on processing of information on intensities of picture elements arranged in regular hexagonal grid. Called "image pyramid" because image information at each processing level arranged in hexagonal grid having one-seventh number of picture elements of next lower processing level, each picture element derived from hexagonal set of seven nearest-neighbor picture elements in next lower level. At lowest level, fine-resolution of elements of original image. Designed to have some properties of image-coding scheme of primate visual cortex.

  5. Dynamics of multi-tethered pyramidal satellite formation

    NASA Astrophysics Data System (ADS)

    Alary, D.; Andreev, K.; Boyko, P.; Ivanova, E.; Pritykin, D.; Sidorenko, V.; Tourneur, C.; Yarotsky, D.

    2015-12-01

    This paper is devoted to the dynamics of a multi-tethered pyramidal satellite formation rotating about its axis of symmetry in the nominal mode. Whereas the combination of rotation and gravity-gradient forces is insufficient to maintain the mutual positions of satellites, they are assumed to be equipped with low-thrust rocket engines. We propose a control strategy that allows the stabilization of the nominal spin state and demonstrate the system's proper operation by numerically simulating its controlled motion. The discussed multi-tethered formations could be employed, for example, to provide co-location of several satellites at a slot in geostationary orbit.

  6. The disease pyramid for acute gastrointestinal illness in New Zealand.

    PubMed

    Lake, R J; Adlam, S B; Perera, S; Campbell, D M; Baker, M G

    2010-10-01

    The disease pyramid of under-ascertainment for surveillance of acute gastrointestinal illness (AGI) in New Zealand has been estimated using 2005-2007 data on notifiable diseases, a community telephone survey, and a survey of diagnostic laboratories. For each notified case of AGI there were an estimated 222 cases in the community, about 49 of which visited a general practitioner. Faecal samples were requested from about 15 of these cases, and 13 samples were provided. Of the faecal samples, pathogens were detected in about three cases. These ratios are similar to those reported in other developed countries, and provide baseline measurements of the AGI burden in the New Zealand community.

  7. Psychometric properties of the Pyramids and Palm Trees Test.

    PubMed

    Klein, Liesa A; Buchanan, Jeffrey A

    2009-10-01

    The Pyramids and Palm Trees Test (PPT) is a nonverbal measure of semantic memory that has been frequently used in previous aphasia, agnosia, and dementia research. Very little psychometric information regarding the PPT is available. The purpose of this study was to investigate the psychometric properties of the PPT in a population of healthy college students. Results indicated that the PPT achieved poor test-retest reliability, failed to obtain adequate internal consistency, and demonstrated poor convergent validity, but showed acceptable discriminant validity. The results of this study suggest that the PPT lacks acceptable reliability and validity for use with a college student population.

  8. Electrotonic Coupling between Pyramidal Neurons in the Neocortex

    PubMed Central

    Wang, Yun; Barakat, Amey; Zhou, Hongwei

    2010-01-01

    Electrotonic couplings (i.e., electrical synapses or gap junctions) are fundamental to neuronal synchronization, and thus essential for many physiological functions and pathological disorders. Interneuron electrical synapses have been studied intensively. Although studies on electrotonic couplings between pyramidal cells (PCs) are emerging, particularly in the hippocampus, evidence is still rare in the neocortex. The electrotonic coupling of PCs in the neocortex is therefore largely unknown in terms of electrophysiological, anatomical and synaptological properties. Using multiple patch-clamp recording with differential interference contrast infrared videomicroscopy (IR-DIC) visualization, histochemical staining, and 3D-computer reconstruction, electrotonic coupling was recorded between close PCs, mainly in the medial prefrontal cortex as well as in the visual cortical regions of ferrets and rats. Compared with interneuron gap junctions, these electrotonic couplings were characterized by several special features. The recording probability of an electrotonic coupling between PCs is extremely low; but the junctional conductance is notably high, permitting the direct transmission of action potentials (APs) and even tonic firing between coupled neurons. AP firing is therefore perfectly synchronized between coupled PCs; Postjunctional APs and spikelets alternate following slight changes of membrane potentials; Postjunctional spikelets, especially at high frequencies, are summated and ultimately reach AP-threshold to fire. These properties of pyramidal electrotonic couplings largely fill the needs, as predicted by simulation studies, for the synchronization of a neuronal assembly. It is therefore suggested that the electrotonic coupling of PCs plays a unique role in the generation of neuronal synchronization in the neocortex. PMID:20436674

  9. Gene pyramiding enhances durable blast disease resistance in rice.

    PubMed

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  10. Sex differences in hippocampal area CA3 pyramidal cells.

    PubMed

    Scharfman, Helen E; MacLusky, Neil J

    2017-01-02

    Numerous studies have demonstrated differences between males and females in hippocampal structure, function, and plasticity. There also are many studies about the different predisposition of a males and females for disorders where the hippocampus plays an important role. Many of these reports focus on area CA1, but other subfields are also very important, and unlikely to be the same as area CA1 based on what is known. Here we review basic studies of male and female structure, function, and plasticity of area CA3 pyramidal cells of adult rats. The data suggest that the CA3 pyramidal cells of males and females are distinct in structure, function, and plasticity. These sex differences cannot be simply explained by the effects of circulating gonadal hormones. This view agrees with previous studies showing that there are substantial sex differences in the brain that cannot be normalized by removing the gonads and depleting peripheral gonadal hormones. Implications of these comparisons for understanding sex differences in hippocampal function and dysfunction are discussed. © 2016 Wiley Periodicals, Inc.

  11. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.

    PubMed

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C

    2012-04-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.

  12. A Preliminary Geochemical Description of the Geothermal Reservoir at Astor Pass, Northern Pyramid Lake, Nevada

    SciTech Connect

    Cooper, Clay A.; Thomas, James M.; Lyles, Brad F.; Reeves, Donald M.; Pohll, Greg M.; Parashar, Rishi

    2012-10-01

    Samples from a well drilled in the Astor Pass area six-km north of the Needle Rocks area of Pyramid Lake indicate that the reservoir fluid is dominantly sodium, chloride, and sulfate, with a pH between 8.6 and 8.9. The total dissolved solids in the reservoir is approximately 1600 mg/l, about half that of the TDS of the fluids in the Needle Rocks area. One sample of dissolved gas from fluids produced during a well test in the reservoir had 4He value of 2.32 x 1014 atoms 4He/g water, or approximately 100 times the value of atmospheric 4He. This measurement, in conjunction with a R/Ra measurement of 0.28, suggests that most of the reservoir helium is derived from the crust, with possibly a small value (~3.3 percent) derived from the mantle. Tritium concentration of the sample was 0.09 TU, indicating that the reservoir fluid was recharged more than 60 years ago; a simple model based upon carbon-14 suggests recharge has occurred within the past 1500 years.

  13. Ge island assembly on metal-patterned Si: truncated pyramids, nanorods, and beyond.

    PubMed

    Robinson, J T; Dubon, O D

    2008-01-01

    The organization of semiconductor nanostructures into functional macroassemblies remains a fundamental challenge in nanoscience and nanotechnology. In the context of semiconductor epitaxial growth, efforts have focused on the application of advanced substrate patterning strategies for the directed assembly quantum-dot islands. We present a comprehensive investigation on the use of simple metal patterns to control the nucleation and growth of heteroepitaxial islands. In the Ge on Si model system, a square array of metal dots induces the assembly of Ge islands into an extensive two-dimensional lattice. The islands grow at sites between the metal dots and are characterized by unique shapes including truncated pyramids and nanorods, which are programmed prior to growth by the choices of metal species and substrate orientation. Our results indicate that ordering arises from the metal-induced oxidation of the Si surface; the oxide around each metal dot forms an array of periodic diffusion barriers that induce island ordering. The metals decorate the island surfaces and enhanced the growth of particular facets that are able to grow as a result of significant intermixing between deposited Ge and Si substrate atoms.

  14. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  15. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  16. 1-(2,4,6-Trialkylphenyl)-1H-Phospholes with a Flattened P-Pyramid: Synthesis and Reactivity

    NASA Astrophysics Data System (ADS)

    Keglevich, György

    The 1H-phospholes with a 2,4,6-trialkylphenyl substituent on the phosphorus atom synthesized in our laboratories are of aromatic character due to their flattened P-pyramid. Hence, they may undergo aromatic electrophilic substitution, such as Friedel-Crafts acylations. The arylphospholes were functionalized via the regioselective reaction with phosphorus tribromide to give substituted phospholes that may be ligands in rhodium complexes used in hydro-formylations. Despite their aromaticity, the arylphospholes may be involved in Diels-Alder cycloaddition with dienophiles to provide 7-phosphanorbornene derivatives useful in fragmentation - related phosphorylations. At elevated temperature, the aryl-1H-phospholes were converted to the 2H-derivatives by a sigmatropic rearrangement to furnish, after trapping, 1-phosphanorbornadienes. The complexation and the oxidation reactions of the sterically hindered arylphospholes are also discussed.

  17. Effect of varying durations of pyramid exposure - an indication towards a possibility of overexposure.

    PubMed

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2009-10-01

    Miniature replicas modeled after the Great Pyramid of Giza are believed to concentrate geoelectromagnetic energy within their cavities and hence act as antistressors in humans and animals. Although there are not many reports of adverse effects of 'overexposure' in the pyramid, subjects have claimed to feel uneasy after certain duration of staying in the pyramid. The present study was aimed to analyze the effects of prolonged pyramid exposure on plasma cortisol level, markers of oxidative damage and antioxidant defense in erythrocytes of adult female Wistar rats. Rats were divided into three groups, normal controls (NC, n=6) that were maintained under standard laboratory conditions in their home cages, pyramid exposed group-2 (PE-2, n=6) & pyramid exposed group-4 (PE-4, n=6) where the rats were housed under the pyramid for 6 hours/day for 2 weeks and 4 weeks respectively. Plasma cortisol and erythrocyte TBARS levels were significantly lower in both PE-2 and PE-4 rats and erythrocyte GSH levels and GSH-Px activity were significantly higher in them as compared to the NC rats. There was no significant difference in the results for these parameters between the PE-2 and PE-4 rats except for erythrocyte GSH-Px activity which was significantly more in the PE-2 rats than in the PE-4 rats. Although these results don't confirm any adverse effects of prolonged exposure in pyramids, they indicate a possibility of such adverse effects.

  18. The Literacy Pyramid Organization of Reading/Writing Activities in a Whole Language Classroom (Early Childhood).

    ERIC Educational Resources Information Center

    Bruneau, Beverly J.

    1997-01-01

    Describes the Literacy Pyramid (based on the United States Department of Agriculture food pyramid), a classification of eight instructional events, which is intended as a framework for teachers to think about the purpose of various instructional formats and about organizing time for language arts instruction. (SR)

  19. MyPyramid.gov knowledge and access among rural southwest Mississippi African American adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used a qualitative approach to identify knowledge of food recommendations found on MyPyramid.gov and access to MyPyramid.gov among limited-income African American youth. We conducted 5 single-sex focus groups with 9 boys and 30 girls (grades 5th and 6th). Data processing and analysis incl...

  20. A Comparison of Pyramidal Staff Training and Direct Staff Training in Community-Based Day Programs

    ERIC Educational Resources Information Center

    Haberlin, Alayna T.; Beauchamp, Ken; Agnew, Judy; O'Brien, Floyd

    2012-01-01

    This study evaluated two methods of training staff who were working with individuals with developmental disabilities: pyramidal training and consultant-led training. In the pyramidal training, supervisors were trained in the principles of applied behavior analysis (ABA) and in delivering feedback. The supervisors then trained their direct-care…

  1. Effect of lures and colors on capture of lady beetles (coleoptera: coccinellidae) in tedders pyramidal traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purposeful attraction and/or aggregation of adult Coccinellidae at target sites would be useful for sampling purposes and/or pest suppression. We field-tested 1) lures in yellow and black pyramidal traps and 2) pyramidal traps that had been painted one or two colors (without lures) to determine if ...

  2. The Teaching of Food Guide Pyramid Concepts by Nebraska Elementary School Educators.

    ERIC Educational Resources Information Center

    Martin, H. Darlene; Driskell, Judy A.

    2001-01-01

    In an analysis of food selection education using the Food Guide Pyramid for students in grades 1-4, over two-thirds of teachers (n=464) responded that nutrition should be a high priority in the elementary curriculum. Fewer than half teach pyramid concepts consistently or frequently, younger teachers (20-29) more rarely than older teachers.…

  3. MyPyramid.gov knowledge and access among rural Southwest Mississippi African-American adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our learning outcomes were: 1) To identify need for a culturally specific media campaign on the use of MyPyramid.gov targeting African-American adolescents, and 2) To identify need for nutrition education tools designed to reinforce food guide pyramid recommendations. This study used a qualitative ...

  4. Tribonacci-Like Sequences and Generalized Pascal's Pyramids

    ERIC Educational Resources Information Center

    Anatriello, Giuseppina; Vincenzi, Giovanni

    2014-01-01

    A well-known result of Feinberg and Shannon states that the tribonacci sequence can be detected by the so-called "Pascal's pyramid." Here we will show that any tribonacci-like sequence can be obtained by the diagonals of the "Feinberg's triangle" associated to a suitable "generalized Pascal's pyramid."…

  5. Left common basal pyramid torsion following left upper lobectomy/segmentectomy.

    PubMed

    Wang, Wei-Li; Cheng, Yen-Po; Cheng, Ching-Yuan; Wang, Bing-Yen

    2015-05-01

    Lobar or segmental lung torsion is a severe complication of lung resection. To the best of our knowledge, common basal pyramid torsion has never been reported. We describe a case of left basal pyramid torsion after left upper lobectomy and superior segmentectomy, which was successfully treated by thoracoscopic surgery.

  6. Integrating Early Childhood Mental Health Consultation with the Pyramid Model. Issue Brief

    ERIC Educational Resources Information Center

    Perry, Deborah F.; Kaufmann, Roxane K.

    2009-01-01

    A growing number of states and communities are implementing the Pyramid Model in early care and education settings, and in many of these places there are also early childhood mental health consultation (ECMHC) programs operating. This policy brief provides an overview of ECMHC, how it can support the implementation of the Pyramid Model and the…

  7. Pyramid of Interventions: Results of a School Counselor's Action Research Study at One Suburban Middle School

    ERIC Educational Resources Information Center

    Miller, Nicholas J.

    2008-01-01

    This paper examines the implementation of the Pyramid of Interventions (POI) at a suburban Georgia Middle School through an examination of teacher understanding, assessment of overall effectiveness, and the need for further professional development. The Pyramid of Interventions is the response to intervention (RTI) component of the Individuals…

  8. The Conflict Pyramid: A Holistic Approach to Structuring Conflict Resolution in Schools

    ERIC Educational Resources Information Center

    Hakvoort, Ilse

    2010-01-01

    This paper examines how the conflict pyramid, originally defined and used by Richard Cohen, can be used as a model to describe the relations between different conflict resolution education programs and activities included in the programs. The central questions posed in the paper are: How can Richard Cohen's conflict pyramid be used as a model for…

  9. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers.

    PubMed

    Xu, Liguang; Yan, Wenjing; Ma, Wei; Kuang, Hua; Wu, Xiaoling; Liu, Liqaing; Zhao, Yuan; Wang, Libing; Xu, Chuanlai

    2015-03-11

    Three disease biomarkers can simultaneously be detected at the attomolar level because of a novel surface-enhanced Raman scattering (SERS) encoded silver pyramid sensing system. This newly designed pyramidal sensor with well-controlled geometry exhibits highly sensitive, selective, and reproducible SERS signals, and holds promising potential for biodetection applications.

  10. Underground atom gradiometer array for mass distribution monitoring and advanced geodesy

    NASA Astrophysics Data System (ADS)

    Canuel, B.

    2015-12-01

    After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the

  11. The medullary pyramid index: an objective assessment of prominence in renal transplant rejection.

    PubMed

    Fried, A M; Woodring, J H; Loh, F K; Lucas, B A; Kryscio, R J

    1983-12-01

    Prominence of the medullary pyramids at sonography has been considered a sign of renal transplant rejection. A search of the literature reveals no previously published objective assessment of this phenomenon. Medullary pyramids of 67 normal kidneys, 53 nonrejecting transplanted kidneys, and 71 transplanted kidneys in rejection were measured. The area of the pyramid was related to the thickness of the overlying renal cortex by a "medullary pyramid index" (MPI): MPI (formula; see text) The median MPI was 4.17 for normal kidneys, 6.0 for nonrejecting transplanted kidneys, and 7.50 for transplanted kidneys in rejection. The results are significantly different (P = 0.0001) for all possible pairs. Overlap between rejection and nonrejection distributions is, however, considerable, rendering the discriminatory value of an individual observation quite low (0.69). Prominence of the medullary pyramids is therefore of very limited predictive value in the determination of transplant rejection in an individual patient.

  12. The architectonic encoding of the minor lunar standstills in the horizon of the Giza pyramids.

    NASA Astrophysics Data System (ADS)

    Hossam, M. K. Aboulfotouh

    The paper is an attempt to show the architectonic method of the ancient Egyptian designers for encoding the horizontal-projections of the moon's declinations during two events of the minor lunar standstills, in the design of the site-plan of the horizon of the Giza pyramids, using the methods of descriptive geometry. It shows that the distance of the eastern side of the second Giza pyramid from the north-south axis of the great pyramid encodes a projection of a lunar declination, when earth's obliquity-angle was ~24.10°. Besides, it shows that the angle of inclination of the causeway of the second Giza pyramid, of ~13.54° south of the cardinal east, encodes the projection of another lunar declination when earth's obliquity-angle reaches ~22.986°. In addition, it shows the encoded coordinate system in the site-plan of the horizon of the Giza pyramids.

  13. Variation around a pyramid theme: optical recombination and optimal use of photons.

    PubMed

    Fauvarque, Olivier; Neichel, Benoit; Fusco, Thierry; Sauvage, Jean-Francois

    2015-08-01

    We propose a new type of wave-front sensor (WFS) derived from the pyramid WFS (PWFS). This new WFS, called the flattened pyramid-WFS (FPWFS), has a reduced pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this Letter, this new WFS is compared to three existing WFSs, namely the PWFS, the modulated PWFS (MPWFS), and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range, and low-photon-flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations, but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.

  14. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc.

  15. GaAs micro-pyramids serving as optical micro-cavities

    SciTech Connect

    Karl, M.; Beck, T.; Li, S.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-04

    An efficient light-matter coupling requires high-quality (Q) micro-cavities with small mode volume. We suggest GaAs micro-pyramids placed on top of AlAs/GaAs distributed Bragg reflectors to be promising candidates. The pyramids were fabricated by molecular-beam epitaxy, electron-beam lithography and a subsequent wet-chemical etching process using a sacrificial AlAs layer. Measured Q-factors of optical modes in single pyramids reach values up to 650. A finite-difference time-domain simulation assuming a simplified cone-shaped geometry suggests possible Q-factors up to 3600. To enhance the light confinement in the micro-pyramids we intend to overgrow the pyramidal facets with a Bragg mirror--results of preliminary tests are given.

  16. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    PubMed Central

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193

  17. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

    PubMed

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-08-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

  18. 78 FR 21703 - Extension of Public Review and Comment Period for the Pyramid Way and McCarran Boulevard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Federal Highway Administration Extension of Public Review and Comment Period for the Pyramid Way and Mc... Department of Transportation (NDOT), is extending the review and comment period of the DEIS for the Pyramid... available for review at the Spanish Springs Library, 7100A Pyramid Lake Highway, Sparks, NV; the...

  19. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  20. Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Cole, A. E.; Nicoll, R. A.

    1983-09-01

    The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.

  1. Mediterranean diet pyramid: a proposal for Italian people.

    PubMed

    D'Alessandro, Annunziata; De Pergola, Giovanni

    2014-10-16

    Bread was a staple in the traditional Mediterranean diet of the early 1960s, as well as nowadays; however, it was a stone ground sourdough bread in Nicotera and probably in the Greek cohorts of the Seven Countries Study. In the present review, the nutritional characteristics of this food are analyzed in relation to its protective effects on coronary heart disease, metabolic diseases and cancer. According to our traditions, cultural heritage and scientific evidence, we propose that only cereal foods with low glycemic index (GI) and rich in fiber have to be placed at the base of the Mediterranean diet pyramid, whereas refined grains and high GI starchy foods have to be sited at the top.

  2. Electroosmotic flow rectification in pyramidal-pore mica membranes.

    PubMed

    Jin, Pu; Mukaibo, Hitomi; Horne, Lloyd P; Bishop, Gregory W; Martin, Charles R

    2010-02-24

    We demonstrate here a new electrokinetic phenomenon, Electroosmotic flow (EOF) rectification, in synthetic membranes containing asymmetric pores. Mica membranes with pyramidally shaped pores prepared by the track-etch method were used. EOF was driven through these membranes by using an electrode in solutions on either side to pass a constant ionic current through the pores. The velocity of EOF depends on the polarity of the current. A high EOF velocity is obtained when the polarity is such that EOF is driven from the larger base opening to the smaller tip opening of the pore. A smaller EOF velocity is obtained when the polarity is reversed such that EOF goes from tip to base. We show that this rectified EOF phenomenon is the result of ion current-rectification observed in such asymmetric-pore membranes.

  3. Electroosmotic Flow Rectification in Pyramidal-Pore Mica Membranes

    SciTech Connect

    Jin, P.; Mukaibo, H.; Horne, L.; Bishop, G.; Martin, C. R.

    2010-02-01

    We demonstrate here a new electrokinetic phenomenon, Electroosmotic flow (EOF) rectification, in synthetic membranes containing asymmetric pores. Mica membranes with pyramidally shaped pores prepared by the track-etch method were used. EOF was driven through these membranes by using an electrode in solutions on either side to pass a constant ionic current through the pores. The velocity of EOF depends on the polarity of the current. A high EOF velocity is obtained when the polarity is such that EOF is driven from the larger base opening to the smaller tip opening of the pore. A smaller EOF velocity is obtained when the polarity is reversed such that EOF goes from tip to base. We show that this rectified EOF phenomenon is the result of ion current-rectification observed in such asymmetric-pore membranes.

  4. Intrinsic Oscillations of Neocortex Generated by Layer 5 Pyramidal Neurons

    NASA Astrophysics Data System (ADS)

    Silva, Laurie R.; Amitai, Yael; Connors, Barry W.

    1991-01-01

    Rhythmic activity in the neocortex varies with different behavioral and pathological states and in some cases may encode sensory information. However, the neural mechanisms of these oscillations are largely unknown. Many pyramidal neurons in layer 5 of the neocortex showed prolonged, 5- to 12-hertz rhythmic firing patterns at threshold. Rhythmic firing was due to intrinsic membrane properties, sodium conductances were essential for rhythmicity, and calcium-dependent conductances strongly modified rhythmicity. Isolated slices of neocortex generated epochs of 4- to 10-hertz synchronized activity when N-methyl-D-aspartate receptor-mediated channels were facilitated. Layer 5 was both necessary and sufficient to produce these synchronized oscillations. Thus, synaptic networks of intrinsically rhythmic neurons in layer 5 may generate or promote certain synchronized oscillations of the neocortex.

  5. Interrupted self-organization of SiGe pyramids.

    PubMed

    Aqua, Jean-Noël; Gouyé, Adrien; Ronda, Antoine; Frisch, Thomas; Berbezier, Isabelle

    2013-03-01

    We investigate the morphological evolution of SiGe quantum dots deposited on Si(100) during long-time annealing. At low strain, the dots' self-organization begins by an instability and interrupts when (105) pyramids form. This evolution and the resulting island density are quantified by molecular-beam epitaxy. A kinetic model accounting for elasticity, wetting, and anisotropy is shown to reproduce well the experimental findings with appropriate wetting parameters. In this nucleationless regime, a mean-field kinetic analysis explains the existence of nearly stationary states by the vanishing of the coarsening driving force. The island size distribution follows in both experiments and theory the scaling law associated with a single characteristic length scale.

  6. Mediterranean Diet Pyramid: A Proposal for Italian People

    PubMed Central

    D’Alessandro, Annunziata; De Pergola, Giovanni

    2014-01-01

    Bread was a staple in the traditional Mediterranean diet of the early 1960s, as well as nowadays; however, it was a stone ground sourdough bread in Nicotera and probably in the Greek cohorts of the Seven Countries Study. In the present review, the nutritional characteristics of this food are analyzed in relation to its protective effects on coronary heart disease, metabolic diseases and cancer. According to our traditions, cultural heritage and scientific evidence, we propose that only cereal foods with low glycemic index (GI) and rich in fiber have to be placed at the base of the Mediterranean diet pyramid, whereas refined grains and high GI starchy foods have to be sited at the top. PMID:25325250

  7. Development of the stapedius muscle and pyramidal eminence in humans.

    PubMed

    Rodríguez-Vázquez, J F

    2009-09-01

    The aim of the study was to systematize the key developmental phases of the stapedius muscle and the pyramidal eminence to clarify their formation, as well as to understand the variations and anomalies that can affect these structures. Sixty human embryos and fetuses between 38 days and 17 weeks of development were studied. The stapedius muscle is formed by two anlagen, one for the tendon, which derives from the internal segment of the interhyale, and another for the belly, located in the second pharyngeal arch medial to the facial nerve and near the interhyale but forming a completely independent anlage. In the interhyale, two segments were differentiated, these forming an angle; at the vertex, the belly of the stapedius muscle is attached. The internal segment is located from the attachment of the belly of the stapedius muscle to the anlage of the stapes, forming the anlage of the tendon of the stapedius muscle. The external segment completely disappears at the beginning of the fetal period. The pyramidal eminence is formed by an anlage independent of Reichert's cartilage, from the mesenchymal tissue of the tympanic cavity, which condenses around the belly of the stapedius muscle from 12 weeks of post-conception development. The length of the tendon of the stapedius muscle in adults varies, depending on the attachment site of the belly of the stapedius muscle in the interhyale, which would determine the length of the internal segment (anlage of the tendon) and consequently the tendon length. This variation depends on the greater or lesser persistence of the angulation observed during development, between the tendon and the belly of the stapedius muscle.

  8. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

    PubMed

    He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian

    2015-09-01

    Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224 × 224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102 × faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.

  9. Development of the stapedius muscle and pyramidal eminence in humans

    PubMed Central

    Rodríguez-Vázquez, J F

    2009-01-01

    The aim of the study was to systematize the key developmental phases of the stapedius muscle and the pyramidal eminence to clarify their formation, as well as to understand the variations and anomalies that can affect these structures. Sixty human embryos and fetuses between 38 days and 17 weeks of development were studied. The stapedius muscle is formed by two anlagen, one for the tendon, which derives from the internal segment of the interhyale, and another for the belly, located in the second pharyngeal arch medial to the facial nerve and near the interhyale but forming a completely independent anlage. In the interhyale, two segments were differentiated, these forming an angle; at the vertex, the belly of the stapedius muscle is attached. The internal segment is located from the attachment of the belly of the stapedius muscle to the anlage of the stapes, forming the anlage of the tendon of the stapedius muscle. The external segment completely disappears at the beginning of the fetal period. The pyramidal eminence is formed by an anlage independent of Reichert’s cartilage, from the mesenchymal tissue of the tympanic cavity, which condenses around the belly of the stapedius muscle from 12 weeks of post-conception development. The length of the tendon of the stapedius muscle in adults varies, depending on the attachment site of the belly of the stapedius muscle in the interhyale, which would determine the length of the internal segment (anlage of the tendon) and consequently the tendon length. This variation depends on the greater or lesser persistence of the angulation observed during development, between the tendon and the belly of the stapedius muscle. PMID:19531086

  10. Active appearance pyramids for object parametrisation and fitting.

    PubMed

    Zhang, Qiang; Bhalerao, Abhir; Dickenson, Edward; Hutchinson, Charles

    2016-08-01

    Object class representation is one of the key problems in various medical image analysis tasks. We propose a part-based parametric appearance model we refer to as an Active Appearance Pyramid (AAP). The parts are delineated by multi-scale Local Feature Pyramids (LFPs) for superior spatial specificity and distinctiveness. An AAP models the variability within a population with local translations of multi-scale parts and linear appearance variations of the assembly of the parts. It can fit and represent new instances by adjusting the shape and appearance parameters. The fitting process uses a two-step iterative strategy: local landmark searching followed by shape regularisation. We present a simultaneous local feature searching and appearance fitting algorithm based on the weighted Lucas and Kanade method. A shape regulariser is derived to calculate the maximum likelihood shape with respect to the prior and multiple landmark candidates from multi-scale LFPs, with a compact closed-form solution. We apply the 2D AAP on the modelling of variability in patients with lumbar spinal stenosis (LSS) and validate its performance on 200 studies consisting of routine axial and sagittal MRI scans. Intervertebral sagittal and parasagittal cross-sections are typically used for the diagnosis of LSS, we therefore build three AAPs on L3/4, L4/5 and L5/S1 axial cross-sections and three on parasagittal slices. Experiments show significant improvement in convergence range, robustness to local minima and segmentation precision compared with Constrained Local Models (CLMs), Active Shape Models (ASMs) and Active Appearance Models (AAMs), as well as superior performance in appearance reconstruction compared with AAMs. We also validate the performance on 3D CT volumes of hip joints from 38 studies. Compared to AAMs, AAPs achieve a higher segmentation and reconstruction precision. Moreover, AAPs have a significant improvement in efficiency, consuming about half the memory and less than 10% of

  11. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  12. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  13. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  14. Pyramidal tract abnormalities in the human fetus and infant with trisomy 18 syndrome.

    PubMed

    Miyata, Hajime; Miyata, Mio; Ohama, Eisaku

    2014-06-01

    Trisomy 18 or Edwards syndrome is known to exhibit various developmental abnormalities in the central nervous system. We report dominant uncrossed pyramidal tract in trisomy 18 syndrome, based on the postmortem neuropathologic study of eight consecutive autopsied fetuses and infants with trisomy 18 ranging in age from 16 to 39 weeks of gestation, including six males and two females, along with autopsy cases of a stillborn triploid infant with 69XXX and two stillborn infants without chromosomal or neurodevelopmental abnormalities. Five out of eight cases with trisomy 18 showed a larger proportion of uncrossed than crossed pyramidal tract. All of these cases were male, and the anterior corticospinal tract on one side was constantly larger than the contralateral lateral corticospinal tract in the spinal cord on both sides, while the pyramidal tract was hypoplastic in female cases with trisomy 18 and a case with 69XXX. Abnormal pyramidal decussation has been found in cases with posterior fossa malformations such as occipital encephaloceles, Dandy-Walker malformation, Joubert syndrome and Möbius syndrome, but has not been described in cases with trisomy 18. Our data, together with the previous reports describing uncrossed aberrant ipsilateral pyramidal tract in patients with congenital mirror movements caused by DCC gene mutation in chromosome 18, and hypolasia and hyperplasia of the pyramidal tract in X-linked recessive disorders caused by L1CAM and Kal1 gene mutations, respectively, suggest a role of trisomy 18 in association with X-chromosome in the abnormal development of the pyramidal tract.

  15. A fresh look at Miller's pyramid: assessment at the 'Is' and 'Do' levels.

    PubMed

    Al-Eraky, Mohamed; Marei, Hesham

    2016-12-01

    In its silver jubilee, we celebrate the ground-breaking pyramid of George Miller by submitting a fresh look at it. We discuss two questions. (i) Does the classical pyramidal structure perfectly portray the relationships of the four levels that were described by Miller? (ii) Can the model of Miller fulfill the unmet needs of assessors to measure evolving essential constructs and accommodate the increasingly sophisticated practice of assessment of health professionals? In response to the first question, Miller's pyramid is revisited in view of two assumptions for pyramidal structures, namely: hierarchy and tapering. Then we suggest different configurations for the same classical four levels and indicate when to use each one. With regard to the second question, we provide a rationale for amending the pyramid with two further dimensions to assess personal qualities of students at the 'Is' level and their performance in teams at the 'Do' (together) level. At the end of the article, we yearn to think outside the pyramid and suggest the Assessment Orbits framework to assess students as individuals and in teams. The five Assessment Orbits alert educators to assess the emerging cognitive and non-cognitive constructs, without implying features such as hierarchy or tapering that are ingrained in pyramidal structures. The 'Is' orbit attends to the personal qualities of graduates 'who' we may (or may not) trust to be our physicians. Assessment of teams at the 'Do' level (together) offers a paradigm shift in assessment from competitive ranking (storming) among students toward norming and performing as teams.

  16. The 2005 USDA Food Guide Pyramid is associated with more adequate nutrient intakes within energy constraints than the 1992 Pyramid.

    PubMed

    Gao, Xiang; Wilde, Parke E; Lichtenstein, Alice H; Tucker, Katherine L

    2006-05-01

    The USDA issued the Food Guide Pyramid (FGP) to help Americans choose healthy diets. We examined whether adherence to the 1992 and 2005 FGP was associated with moderate energy and adequate nutrient intakes. We used data for 2138 men and 2213 women > 18 y old, from the 2001-2002 U.S. National Health and Nutrition Examination Survey (NHANES). Quadratic programming was used to generate diets with minimal departure from intakes reported for the NHANES 2001-02. We examined the effect of the number of servings/d of Food Pyramid groups set at 1992 and at 2005 FGP recommendations for 1600, 2200, and 2800 kcal (1 kcal = 4.184 kJ) levels. We calculated energy and nutrients provided by different FGP dietary patterns. Within current U.S. dietary practices, following the 1992 FGP without sodium restriction may provide 200 more kcal than recommended for each energy level. Although it can meet most of old nutrient recommendations (1989), it fails to meet the latest dietary reference intakes, especially for the 1600 kcal level. The 2005 FGP appears to provide less energy and more adequate nutrient intakes, with the exception of vitamin E and potassium for some groups. However, without discretionary energy restriction, Americans are at risk of having excessive energy intake even if they follow the 2005 FGP food serving recommendations. Our analysis suggests that following the 2005 FGP may be associated with lower energy and optimal nutrient intake. Careful restriction of discretionary calories appears necessary for appropriate energy intakes to be maintained.

  17. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection.

    PubMed

    Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F

    2016-09-30

    OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force

  18. Defects in p-GaN and their atomic structure

    SciTech Connect

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; and O'Keefe, M.

    2004-10-08

    In this paper defects formed in p-doped GaN:Mg grown with Ga polarity will be discussed. The atomic structure of these characteristic defects (Mg-rich hexagonal pyramids and truncated pyramids) in bulk and thin GaN:Mg films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects. The inside walls of the cavities were covered by GaN which grew with reverse polarity compared to the matrix. It was proposed that lateral overgrowth of the cavities restores matrix polarity on the defect base. Exchange of Ga and N sublattices within the defect compared to the matrix lead to a 0.6 {+-} 0.2 {angstrom} displacement between the Ga sublattices of these two areas. A [1{und 1}00]/3 shift with change from AB stacking in the matrix to BC within the entire pyramid is observed

  19. Forelimb movements in cats with complete or partial bulbar pyramid lesions.

    PubMed

    Dalmeida, R E; Yu, J

    1981-01-01

    Adult cats were trained to use a forelimb to open a hinged door against resistance for a food reward. Normal cats performed the task with only toe or wrist motions. Cats with unilateral complete bulbar pyramid section showed persistent deficits in distal limb movements with toe fanning, wrist stiffness and pulling from elbow and shoulder. Partial medial or lateral pyramid lesions produced similar but less severe effects. These results suggest a significant role of the corticospinal system in distal limb movements and a lack of topographical localization of pyramid fibers related to these movements in cats.

  20. Introduction of a pyramid guiding process for general musculoskeletal physical rehabilitation.

    PubMed

    Stark, Timothy W

    2006-06-08

    Successful instruction of a complicated subject as Physical Rehabilitation demands organization. To understand principles and processes of such a field demands a hierarchy of steps to achieve the intended outcome. This paper is intended to be an introduction to a proposed pyramid scheme of general physical rehabilitation principles. The purpose of the pyramid scheme is to allow for a greater understanding for the student and patient. As the respected Food Guide Pyramid accomplishes, the student will further appreciate and apply supported physical rehabilitation principles and the patient will understand that there is a progressive method to their functional healing process.

  1. Ultrasonographic Diagnosis of Cirrhosis Based on Preprocessing Using Pyramid Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Lu, Jianming; Liu, Jiang; Zhao, Xueqin; Yahagi, Takashi

    In this paper, a pyramid recurrent neural network is applied to characterize the hepatic parenchymal diseases in ultrasonic B-scan texture. The cirrhotic parenchymal diseases are classified into 4 types according to the size of hypoechoic nodular lesions. The B-mode patterns are wavelet transformed , and then the compressed data are feed into a pyramid neural network to diagnose the type of cirrhotic diseases. Compared with the 3-layer neural networks, the performance of the proposed pyramid recurrent neural network is improved by utilizing the lower layer effectively. The simulation result shows that the proposed system is suitable for diagnosis of cirrhosis diseases.

  2. Modulation of hard x-ray beam profiles by Borrmann pyramid

    SciTech Connect

    Xu, G.; Britten, J.

    2008-01-15

    Spatial modulation of hard x-ray beam profiles is reported, using the 'Borrmann pyramid' formed in dual Bragg diffraction of a single crystal, where a small angular change of the incident beam is magnified to span the entire pyramid base. As an attempt, it is demonstrated using hard x rays by (1) the linear shift of a micrometer sized mask; (2) the partial blockade of a two micron beam; and (3) the millimeter shadow of a nanoscale gold strip, which shows the potential application of Borrmann pyramids in the form of an enlarged x-ray image.

  3. Fabrication of Orientation-Tunable Si Nanowires on Silicon Pyramids with Omnidirectional Light Absorption.

    PubMed

    Pei, Zhibin; Hu, Haibo; Li, Shuxin; Ye, Changhui

    2017-04-07

    In this work, the different orientation of SiNWs on Si pyramids by a two step MACE method have been fabricated. By tuning the structure of Ag catalyst film and controlling the concentration of H2O2 or the etching temperature, the tunability of the orientation of SiNWs from <111> to <100> on Si pyramids was realized. Si structures composed of Si pyramids and SiNWs exhibit better omnidirectional light-trapping ability by multiple reflections. Si structures with structural tunability and enhanced light harvesting performance will find a wide variety of significant applications in solar cells, photodetectors, and optoelectronic devices.

  4. Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Wang, Zhao-Ying; Xu, Ao-Peng; Wang, Qi-Yu; Lin, Qiang

    2015-11-01

    Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the Ministry of Science and Technology of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2015FZA3002).

  5. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  6. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  7. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  8. Atomic Databases

    NASA Astrophysics Data System (ADS)

    Mendoza, Claudio

    2000-10-01

    Atomic and molecular data are required in a variety of fields ranging from the traditional astronomy, atmospherics and fusion research to fast growing technologies such as lasers, lighting, low-temperature plasmas, plasma assisted etching and radiotherapy. In this context, there are some research groups, both theoretical and experimental, scattered round the world that attend to most of this data demand, but the implementation of atomic databases has grown independently out of sheer necessity. In some cases the latter has been associated with the data production process or with data centers involved in data collection and evaluation; but sometimes it has been the result of individual initiatives that have been quite successful. In any case, the development and maintenance of atomic databases call for a number of skills and an entrepreneurial spirit that are not usually associated with most physics researchers. In the present report we present some of the highlights in this area in the past five years and discuss what we think are some of the main issues that have to be addressed.

  9. Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing tw...

  10. Promoting good nutrition: using the food guide pyramid in clinical practice.

    PubMed

    Keithley, J K; Keller, A; Vazquez, M G

    1996-12-01

    The Food Guide Pyramid graphically depicts how Americans can eat a balanced, healthy diet. Medical-surgical nurses can use the guideline and individually tailored strategies to get the message out about "eating right for life."

  11. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  12. The Pyramid House: A ten-day thermal time constant passive solar home

    SciTech Connect

    Ellison, T.

    1999-07-01

    The Pyramid House is a passive solar home being designed and built to operate without back-up heating. Having told people this, the fear that someday the author might have to swallow his pride and seek the warmth of a neighbor's cozy wood-heated cabin has encouraged him to analyze the Pyramid House's projected winter performance. This performance is easy to visualize when described in terms of the home's thermal time constant, {tau}--an easily calculated measure of the time it takes the house to reach equilibrium with the ambient temperature. The Pyramid House obtains its long time constant using conventional insulation, and a very high degree of thermal mass via a radiant heat flooring system and water storage. After presenting the time constant concept, it is employed to analyze building materials and then the Pyramid House. The analyses show the ineffectuality of adding solar gain to homes with low time constants, such as typical US homes.

  13. The diversity pyramid: an organizational model to structure diversity recruitment and retention in nursing programs.

    PubMed

    Rosenberg, Lisa; O'Rourke, Marilyn E

    2011-10-01

    The literature on increasing the diversity of individuals who enter and practice the nursing profession comes with sound argument, yet we have seen only modest gains in diversification over the past 10 years. This article addresses how to develop a sustainable program to increase the recruitment and retention of underrepresented students. The diversity pyramid is suggested as a conceptual planning model for increasing diversity that is matched to an institution and its resources. The foundation of the pyramid is an organizational commitment to attracting and retaining diverse students. The middle level addresses financial support for underrepresented students. From the top of the pyramid, one chooses appropriate media and relational tactics necessary to attract the underrepresented students a program seeks. All three elements of the pyramid-organizational commitment to diversity, significant financial support, and a targeted use of resources-play important and sequential roles in building a sustainable diversity initiative.

  14. Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Bond, Charlotte Z.; El Hadi, Kacem; Sauvage, Jean-François; Correia, Carlos; Fauvarque, Olivier; Rabaud, Didier; Lamb, Masen; Neichel, Benoit; Fusco, Thierry

    2016-07-01

    Over the last few years the Laboratoire d'Astrophysique de Marseille (LAM) has been heavily involved in R&D for adaptive optics systems dedicated to future large telescopes, particularly in preparation for the European Extremely Large Telescope (E-ELT). Within this framework an investigation into a Pyramid wave-front sensor is underway. The Pyramid sensor is at the cutting edge of high order, high precision wave-front sensing for ground based telescopes. Investigations have demonstrated the ability to achieve a greater sensitivity than the standard Shack-Hartmann wave-front sensor whilst the implementation of a Pyramid sensor on the Large Binocular Telescope (LBT) has provided compelling operational results.1, 2 The Pyramid now forms part of the baseline for several next generation Extremely Large Telescopes (ELTs). As such its behaviour under realistic operating conditions must be further understood in order to optimise performance. At LAM a detailed investigation into the performance of the Pyramid aims to fully characterise the behaviour of this wave-front sensor in terms of linearity, sensitivity and operation. We have implemented a Pyramid sensor using a high speed OCAM2 camera (with close to 0 readout noise and a frame rate of 1.5kHz) in order to study the performance of the Pyramid within a full closed loop adaptive optics system. This investigation involves tests on all fronts, from theoretical models and numerical simulations to experimental tests under controlled laboratory conditions, with an aim to fully understand the Pyramid sensor in both modulated and non-modulated configurations. We include results demonstrating the linearity of the Pyramid signals, compare measured interaction matrices with those derived in simulation and evaluate the performance in closed loop operation. The final goal is to provide an on sky comparison between the Pyramid and a Shack-Hartmann wave-front sensor, at Observatoire de la Côte d'Azur (ONERA-ODISSEE bench). Here we

  15. Enhancement of Synaptic Potentials in Rabbit CA1 Pyramidal Neurons Following Classical Conditioning

    NASA Astrophysics Data System (ADS)

    Loturco, Joseph J.; Coulter, Douglas A.; Alkon, Daniel L.

    1988-03-01

    A synaptic potential elicited by high-frequency stimulation of the Schaffer collaterals was enhanced in hippocampal CA1 pyramidal cells from rabbits that were classically conditioned relative to cells from control rabbits. In addition, confirming previous reports, the after-hyperpolarization was reduced in cells from conditioned animals. We suggest that reduced after-hyperpolarization and enhanced synaptic responsiveness in cells from conditioned animals work in concert to contribute to the functioning of hippocampal CA1 pyramidal cells during classical conditioning.

  16. Location-Dependent Excitatory Synaptic Interactions in Pyramidal Neuron Dendrites

    PubMed Central

    Behabadi, Bardia F.; Polsky, Alon; Jadi, Monika; Schiller, Jackie; Mel, Bartlett W.

    2012-01-01

    Neocortical pyramidal neurons (PNs) receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors. PMID:22829759

  17. Independent rate and temporal coding in hippocampal pyramidal cells

    PubMed Central

    Huxter, John; Burgess, Neil; O’Keefe, John

    2009-01-01

    Hippocampal pyramidal cells use temporal 1 as well as rate coding 2 to signal spatial aspects of the animal’s environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal EEG theta rhythm (Figure 1​; 1). These two codes could each represent a different variable 3,4. However, this requires that rate and phase can vary independently, in contrast to recent suggestions 5,6 that they are tightly coupled: both reflecting the amplitude of the cell’s input. Here we show that the time of firing and firing rate are dissociable and can represent two independent variables, viz, the animal’s location within the place field and its speed of movement through the field, respectively. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory 7 8 or a more general role in relational/declarative memory9,10. PMID:14574410

  18. Synaptic background activity influences spatiotemporal integration in single pyramidal cells.

    PubMed Central

    Bernander, O; Douglas, R J; Martin, K A; Koch, C

    1991-01-01

    The standard one-dimensional Rall cable model assumes that the electrotonic structure of neurons does not change in response to synaptic input. This model is used in a great number of both theoretical and anatomical-physiological structure-function studies. In particular, the membrane time constant, tau m, the somatic input resistance, Rin, and the electrotonic length are used to characterize single cells. However, these studies do not take into account that neurons are embedded in a network of spontaneously active cells. Synapses from these cells will contribute significantly to the membrane conductance, especially if recent evidence of very high specific membrane resistance, Rm = 100 k omega.cm2, is taken into account. We numerically simulated the electrical behavior of an anatomically reconstructed layer V cortical pyramidal cell receiving input from 4000 excitatory and 1000 inhibitory cells firing spontaneously at 0-7 Hz. We found that, over this range of synaptic background activity, tau m and Rin change by a factor of 10 (80-7 msec, 110-14 M omega) and the electrotonic length of the cell changes by a factor of 3. We show that this significantly changes the response of the cell to temporal desynchronized versus temporal synchronized synaptic input distributed throughout the neuron. Thus, the global activity of the network can control how individual cells perform spatial and temporal integration. PMID:1763072

  19. Pyramidal Neuron Number in Layer 3 of Primary Auditory Cortex of Subjects with Schizophrenia

    PubMed Central

    Dorph-Petersen, Karl-Anton; Delevich, Kristen M.; Marcsisin, Michael J.; Zhang, Wei; Sampson, Allan R.; Gundersen, Hans Jørgen G.; Lewis, David A.; Sweet, Robert A.

    2009-01-01

    Individuals with schizophrenia demonstrate impairments of sensory processing within primary auditory cortex. We have previously identified lower densities of dendritic spines and axon boutons, and smaller mean pyramidal neuron somal volume, in layer 3 of the primary auditory cortex in subjects with schizophrenia, all of which might reflect fewer layer 3 pyramidal neurons in schizophrenia. To examine this hypothesis, we developed a robust stereological method based upon unbiased principles for estimation of total volume and pyramidal neuron numbers for each layer of a cortical area. Our method generates both a systematic, uniformly random set of mapping sections as well as a set of randomly rotated sections cut orthogonal to the pial surface, within the region of interest. We applied our approach in twelve subjects with schizophrenia, each matched to a normal comparison subject. Primary auditory cortex volume was assessed using Cavalieri’s method. The relative and absolute volume of each cortical layer and, within layer 3, the number and density of pyramidal neurons was estimated using our novel approach. Subject groups did not differ in regional volume, layer volumes, or pyramidal neuron number, although pyramidal neuron density was significantly greater in subjects with schizophrenia. These findings suggest that previously observed lower densities of dendritic spines and axon boutons reflect fewer numbers per neuron, and contribute to greater neuronal density via a reduced neuropil. Our approach represents a powerful new method for stereologic estimation of features of interest within individual layers of cerebral cortex, with applications beyond the current study. PMID:19524554

  20. Two-Sided Pyramid Wavefront Sensor in the Direct Phase Mode

    SciTech Connect

    Phillion, D; Baker, K

    2006-04-12

    The two-sided pyramid wavefront sensor has been extensively simulated in the direct phase mode using a wave optics code. The two-sided pyramid divides the focal plane so that each half of the core only interferes with the speckles in its half of the focal plane. A relayed image of the pupil plane is formed at the CCD camera for each half. Antipodal speckle pairs are separated so that a pure phase variation causes amplitude variations in the two images. The phase is reconstructed from the difference of the two amplitudes by transforming cosine waves into sine waves using the Hilbert transform. There are also other corrections which have to be applied in Fourier space. The two-sided pyramid wavefront sensor performs extremely well: After two or three iterations, the phase error varies purely in y. The two-sided pyramid pair enables the phase to be completely reconstructed. Its performance has been modeled closed loop with atmospheric turbulence and wind. Both photon noise and read noise were included. The three-sided and four-sided pyramid wavefront sensors have also been studied in direct phase mode. Neither performs nearly as well as does the two-sided pyramid wavefront sensor.

  1. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  2. GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Yu, X.; Syed, Z. Ahmed; Shen, S.; Bai, J.; Wang, T.

    2016-11-01

    A prototype photoelectrode has been fabricated using a GaN nano-pyramid array structure grown on a cost-effective Si (111) substrate, demonstrating a significant improvement in performance of solar-powered water splitting compared with any planar GaN photoelectrode. Such a nano-pyramid structure leads to enhanced optical absorption as a result of a multi-scattering process which can effectively produce a reduction in reflectance. A simulation based on a finite-difference time-domain approach indicates that the nano-pyramid architecture enables incident light to be concentrated within the nano-pyramids as a result of micro-cavity effects, further enhancing optical absorption. Furthermore, the shape of the nano-pyramid further facilitates the photo-generated carrier transportation by enhancing a hole-transfer efficiency. All these features as a result of the nano-pyramid configuration lead to a large photocurrent of 1 mA cm-2 under an illumination density of 200 mW cm-2, with a peak incident photon-to-current conversion efficiency of 46.5% at ˜365 nm, around the band edge emission wavelength of GaN. The results presented are expected to pave the way for the fabrication of GaN based photoelectrodes with a high energy conversion efficiency of solar powered water splitting.

  3. An evaluation of dietary guidance graphic alternatives: the evolution of the eating right pyramid.

    PubMed

    1992-09-01

    The pyramid graphic was found to be most effective in conveying the messages of moderation and proportionality. The pyramid design might be further strengthened in conveying the total moderation message by including both FOS pictures and symbols in the same graphic. The pyramid also has considerable strength in promoting the message of variety. More important, the pyramid graphic did not convey misinformation about variety, proportionality, and moderation or about the importance of consuming foods in adequate amounts from all the major food groups to achieve a healthful diet. The bowl design was found to be far less effective in promoting the moderation and proportionality messages, but did illustrate the variety message somewhat better than the pyramid. Although respondents indicated a preference for the bowel shape, it is important to note that even in the groups where preference for the bowl was the strongest (i.e., younger, less educated, ethnic minority, and low-income respondents), the pyramid was more likely to be identified as the graphic that suggested the moderation-of-fat message most clearly. Further, preference for the bowl was not linked to effectiveness of intended messages in those groups. In this study, the shape a respondent preferred was of less importance to policy development than the amount of intended information conveyed by each graphic.

  4. The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons.

    PubMed

    Miao, Sheng; Chen, Renchao; Ye, Jiahao; Tan, Guo-He; Li, Shuai; Zhang, Jing; Jiang, Yong-hui; Xiong, Zhi-Qi

    2013-01-02

    Pyramidal neurons have a highly polarized dendritic morphology, characterized by one long apical dendrite and multiple short basal dendrites. They function as the primary excitatory cells of the mammalian prefrontal cortex and the corticospinal tract. However, the molecular mechanisms underlying the development of polarized dendrite morphology in pyramidal neurons remain poorly understood. Here, we report that the Angelman syndrome (AS) protein ubiquitin-protein ligase E3A (Ube3a) plays an important role in specifying the polarization of pyramidal neuron dendritic arbors in mice. shRNA-mediated downregulation of Ube3a selectively inhibited apical dendrite outgrowth and resulted in impaired dendrite polarity, which could be rescued by coexpressing mouse Ube3a isoform 2, but not isoform 1 or 3. Ube3a knockdown also disrupted the polarized distribution of the Golgi apparatus, a well established cellular mechanism for asymmetric dendritic growth in pyramidal neurons. Furthermore, downregulation of Ube3a completely blocked Reelin-induced rapid deployment of Golgi into dendrite. Consistently, we also observed selective inhibition of apical dendrite outgrowth in pyramidal neurons in a mouse model of AS. Overall, these results show that Ube3a is required for the specification of the apical dendrites and dendrite polarization in pyramidal neurons, and suggest a novel pathological mechanism for AS.

  5. The obesity crisis: don't blame it on the pyramid.

    PubMed

    Goldberg, Jeanne P; Belury, Martha A; Elam, Peggy; Finn, Susan Calvert; Hayes, Dayle; Lyle, Roseann; St Jeor, Sachiko; Warren, Michelle; Hellwig, Jennifer P

    2004-07-01

    Since its release in 1992, the Food Guide Pyramid has become one of the most recognized nutrition education tools in US history. As such, it has been subject to criticism, particularly in several recent media reports that implicate it as the culprit in America's current obesity epidemic. What these reports often overlook, however, is that the diets of many Americans do not adhere to the dietary guidelines illustrated by the Pyramid, refuting the notion that the Pyramid is the cause of the nation's obesity problem. Data indicate that the more likely causes of escalating obesity rates are increased per capita caloric consumption and larger portion sizes, along with a lack of adequate physical activity. Although the Pyramid graphic was designed more than a decade ago, it still communicates three key concepts that continue to be the cornerstone of federal dietary guidance: variety, proportionality, and moderation. As such, it remains a viable and relevant nutrition education tool, especially when used by dietetics professionals as a component of individualized, comprehensive nutrition education and behavior modification interventions. As the United States Department of Agriculture begins to investigate whether the food intake patterns illustrated by the Pyramid are in need of updating, research is urgently needed to determine how nutrition education tools, including the Pyramid, can be most effectively implemented to help consumers adopt healthful eating behaviors and to improve the public health of America.

  6. GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting.

    PubMed

    Hou, Y; Yu, X; Syed, Z Ahmed; Shen, S; Bai, J; Wang, T

    2016-11-11

    A prototype photoelectrode has been fabricated using a GaN nano-pyramid array structure grown on a cost-effective Si (111) substrate, demonstrating a significant improvement in performance of solar-powered water splitting compared with any planar GaN photoelectrode. Such a nano-pyramid structure leads to enhanced optical absorption as a result of a multi-scattering process which can effectively produce a reduction in reflectance. A simulation based on a finite-difference time-domain approach indicates that the nano-pyramid architecture enables incident light to be concentrated within the nano-pyramids as a result of micro-cavity effects, further enhancing optical absorption. Furthermore, the shape of the nano-pyramid further facilitates the photo-generated carrier transportation by enhancing a hole-transfer efficiency. All these features as a result of the nano-pyramid configuration lead to a large photocurrent of 1 mA cm(-2) under an illumination density of 200 mW cm(-2), with a peak incident photon-to-current conversion efficiency of 46.5% at ∼365 nm, around the band edge emission wavelength of GaN. The results presented are expected to pave the way for the fabrication of GaN based photoelectrodes with a high energy conversion efficiency of solar powered water splitting.

  7. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    NASA Astrophysics Data System (ADS)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-09-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  8. New Phenomena in Physics Related with Single-Atom Electron Sources

    NASA Astrophysics Data System (ADS)

    Akamine, Yuta; Fujiwara, Kazuto; Cho, Bokulae; Oshima, Chuhei

    We have reviewed new phenomena in physics related with development of single-atom electron sources. A collimated electron beam was emitted from the single-atom situated at the top of the nano-pyramids. The following three topics have been discussed. (1) High brightness of electron beam: High-density electrons come out of the source, and overlapping of wave functions presumably produces new phenomena including anti-bunching of electrons in vacuum. Energy spectra showed characteristic features of single-atom electron sources; additional shoulders appeared in the normal spectra. 3) Stable electron emission originates from the field evaporation.

  9. Laboratory Apparatus Generates Dual-Species Cold Atomic Beam

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Klipstein, William; Kohel, James; Maleki, Lute; Lundblad, Nathan; Ramirez-Serrano, Jaime; Aveline, Dave; Yu, Nan; Enzer, Daphna

    2004-01-01

    A laser cooling apparatus that generates a cold beam of rubidium and cesium atoms at low pressure has been constructed as one of several intermediate products of a continuing program of research on laser cooling and atomic physics. Laser-cooled atomic beams, which can have temperatures as low as a microkelvin, have been used in diverse applications that include measurements of fundamental constants, atomic clocks that realize the international standard unit of time, atom-wave interferometers, and experiments on Bose-Einstein condensation. The present apparatus is a prototype of one being evaluated for use in a proposed microgravitational experiment called the Quantum Interferometric Test of Equivalence (QuITE). In this experiment, interferometric measurements of cesium and rubidium atoms in free fall would be part of a test of Einstein s equivalence principle. The present apparatus and its anticipated successors may also be useful in other experiments, in both microgravity and normal Earth gravity, in which there are requirements for dual-species atomic beams, low temperatures, and low pressures. The apparatus includes a pyramidal magneto-optical trap in which the illumination is provided by multiple lasers tuned to frequencies characteristic of the two atomic species. The inlet to the apparatus is located in a vacuum chamber that contains rubidium and cesium atoms at a low pressure; the beam leaving through the outlet of the apparatus is used to transfer the atoms to a higher-vacuum (lower-pressure) chamber in which measurements are performed. The pyramidal magneto-optical trap is designed so that the laser cooling forces in one direction are unbalanced, resulting in a continuous cold beam of atoms that leak out of the trap (see figure). The radiant intensity (number of atoms per unit time per unit solid angle) of the apparatus is the greatest of any other source of the same type reported to date. In addition, this is the first such apparatus capable of producing

  10. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  11. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder

    PubMed Central

    Arion, Dominique; Corradi, John P.; Tang, Shaowu; Datta, Dibyadeep; Boothe, Franklyn; He, Aiqing; Cacace, Angela M.; Zaczek, Robert; Albright, Charles F.; Tseng, George; Lewis, David A.

    2014-01-01

    Schizophrenia is associated with alterations in working memory that reflect dysfunction of dorsolateral prefrontal cortex (DLPFC) circuitry. Working memory depends on the activity of excitatory pyramidal cells in DLPFC layer 3, and to a lesser extent in layer 5. Although many studies have profiled gene expression in DLPFC gray matter in schizophrenia, little is known about cell type-specific transcript expression in these two populations of pyramidal cells. We hypothesized that interrogating gene expression specifically in DLPFC layer 3 or 5 pyramidal cells would reveal new and/or more robust schizophrenia-associated differences that would provide new insights into the nature of pyramidal cell dysfunction in the illness. We also sought to determine the impact of other variables, such as a diagnosis of schizoaffective disorder or medication use at time of death, on the patterns of gene expression in pyramidal neurons. Individual pyramidal cells in DLPFC layers 3 or 5 were captured by laser microdissection from 36 subjects with schizophrenia or schizoaffective disorder and matched normal comparison subjects. The mRNA from cell collections was subjected to transcriptome profiling by microarray followed by qPCR validation. Expression of genes involved in mitochondrial (MT) or ubiquitin-proteasome system (UPS) functions were markedly down-regulated in the patient group (p values for MT-related and UPS-related pathways were <10−7 and <10−5 respectively). MT-related gene alterations were more prominent in layer 3 pyramidal cells, whereas UPS-related gene alterations were more prominent in layer 5 pyramidal cells. Many of these alterations were not present, or found to a lesser degree, in samples of DLPFC gray matter from the same subjects, suggesting that they are pyramidal cell-specific. Furthermore, these findings principally reflected alterations in the schizophrenia subjects, were not present or present to a lesser degree in the schizoaffective disorder subjects

  12. Action potential initiation and propagation in rat neocortical pyramidal neurons.

    PubMed

    Stuart, G; Schiller, J; Sakmann, B

    1997-12-15

    1. Initiation and propagation of action potentials evoked by extracellular synaptic stimulation was studied using simultaneous dual and triple patch pipette recordings from different locations on neocortical layer 5 pyramidal neurons in brain slices from 4-week-old rats (P26-30) at physiological temperatures. 2. Simultaneous cell-attached and whole-cell voltage recordings from the apical trunk (up to 700 microns distal to the soma) and the soma indicated that proximal synaptic stimulation (layer 4) initiated action potentials first at the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative potentials prior to somatic action potentials following stimulation at higher intensity. 3. Somatic action potentials, once initiated, propagated back into the apical dendrites in a decremented manner which was frequency dependent. The half-width of back propagating action potentials increased and their maximum rate of rise decreased with distance from the soma, with the peak of these action potentials propagating with a conduction velocity of approximately 0.5 m s-1. 4. Back-propagation of action potentials into the dendritic tree was associated with dendritic calcium electrogenesis, which was particularly prominent during bursts of somatic action potentials. 5. When dendritic regenerative potentials were evoked prior to somatic action potentials, the more distal the dendritic recording was made from the soma the longer the time between the onset of the dendritic regenerative potential relative to somatic action potential. This suggested that dendritic regenerative potentials were initiated in the distal apical dendrites, possibly in the apical tuft. 6. At any one stimulus intensity, the initiation of dendritic regenerative potentials prior to somatic action potentials could fluctuate, and was modulated by depolarizing somatic or hyperpolarizing dendritic current injection. 7. Dendritic regenerative potentials could be initiated prior to

  13. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.

    PubMed

    Acker, Corey D; Hoyos, Erika; Loew, Leslie M

    2016-01-01

    EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5-30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (Rneck) plays in spine EPSP amplitudes. Simulations used to estimate Rneck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23-420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean R eck estimate of 204 MΩ (range, 52-521 MΩ; N = 34).

  14. Extracellular sodium modulates the excitability of cultured hippocampal pyramidal cells

    PubMed Central

    Arakaki, Xianghong; Foster, Hailey; Su, Lei; Do, Huy; Wain, Andrew J.; Fonteh, Alfred N.; Zhou, Feimeng; Harrington, Michael G.

    2011-01-01

    Recent studies demonstrated a photophobia mechanism with modulation of nociceptive, cortico-thalamic neurons by retinal ganglion cell projections, however, little is known about how their neuronal homeostasis is disrupted. Since we have found that lumbar cerebrospinal fluid (CSF) sodium increases during migraine and that cranial sodium increases in a rat migraine model, the purpose of this study was to examine the effects of extracellular sodium ([Na+]o) on the intrinsic excitability of hippocampal pyramidal neurons. We monitored excitability by whole cell patch using a multiplex micropipette with a common outlet to change artificial CSF (ACSF) [Na+]o at cultured neurons accurately (SD < 7 mM) and rapidly (< 5 s) as determined by a sodium selective micro-electrode of the same size and at the same location as a neuronal soma. Changing [Na+]o in ACSF from 100 to 160 mM, choline-balanced at 310 – 320 mOsm, increased the action potential (AP) amplitude, decreased AP width, and augmented firing rate by 28%. These effects were reversed on returning the ACSF [Na+]o to 100 mM. Testing up to 180 mM [Na+]o required ACSF with higher osmolarity (345 – 355 mOsm), at which the firing rate increased by 36% between 100 to 180 mM [Na +]o, with higher amplitude and narrower APs. In voltage clamp mode, the sodium and potassium currents increased significantly at higher [Na+]o. These results demonstrate that fluctuations in [Na+]o modulate neuronal excitability by a sodium current mechanism, and that excessively altered neuronal excitability may contribute to hypersensitivity symptoms. PMID:21679932

  15. Compression of Laplacian pyramids through orthogonal transforms and improved prediction.

    PubMed

    Rath, Gagan; Yang, Wenxian; Guillemot, Christine

    2008-09-01

    Scalable representation of visual signals, such as image and video signals, has become a subject of active research since early 1980s. Scalability allows the adaptation of the bit rate and/or the resolution of the transmitted data to the network bandwidth and/or the rendering capability of the receiving device. For many years, spatial scalability has been achieved through wavelets, but recently the Laplacian pyramid (LP) has become an alternative choice because of reduced aliasing in the lower resolutions. In this paper, we focus on the coding efficiency of the LP with a view to transmitting it over a communication channel. In particular, we aim to improve the compression efficiency of the LP detail layers through improved interlayer prediction and orthogonal spatial transforms. First, we consider an LP in the open-loop configuration and propose to improve its rate-distortion performance by compressing it to a critically sampled representation. We derive four different orthogonal spatial transforms from the upsampling and downsampling filters that can achieve this representation, and apply them on the detail layers. The application of these transforms to the detail layers renders a fixed number of transform coefficients either zero or redundant, thus making their transmission unnecessary. Then we consider the compression of an LP in the closed-loop configuration through similar spatial transforms. Because of the introduction of quantization in the prediction loop, these spatial transforms applied on the detail layers do not produce the same number of zero or redundant transform coefficients as in the open-loop case. Nevertheless, the insight obtained from the open-loop coding leads us to enhance the interlayer prediction, and the subsequent application of the spatial transforms to the new detail layers aims to achieve better energy compaction.

  16. High Atom Number in Microsized Atom Traps

    DTIC Science & Technology

    2015-12-14

    cooling of some atoms in atomic beam. We have reconfigured the apparatus for applying bichromatic forces transverse to the atomic beam, as it will be...apparatus for applying bichromatic forces transverse to the atomic beam, as it will be easier to extend this to two dimensions. Research to develop

  17. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum.

    PubMed Central

    Tóth, K; Freund, T F; Miles, R

    1997-01-01

    1. Slices were prepared from rat forebrain to include both the septum and the hippocampus in order to examine the effects of septal stimulation on hippocampal inhibitory circuits. 2. Repetitive stimulation of septo-hippocampal fibres caused a maintained decrease in the frequency of spontaneous IPSPs recorded from CA3 pyramidal cells in the presence of antagonists of excitatory amino acid receptors and of muscarine receptors. 3. In records made from pyramidal cells with CsCl-filled electrodes, IPSPs were examined at potentials both more positive and more negative than their reversal potential. Single septal stimuli hyperpolarized pyramidal cells when IPSPs were depolarizing events and depolarized them when IPSPs were hyperpolarizing. The GABAA receptor antagonist picrotoxin abolished the effects of septal stimulation. 4. Activation of septal afferents initiated an IPSP in hippocampal inhibitory cells but not in pyramidal cells. Septal IPSPs had similar kinetics to those initiated by local hippocampal stimulation and could suppress inhibitory cell discharge. 5. In pyramidal cells recorded with potassium acetate-filled electrodes, septal stimuli initiated a depolarization that increased with the driving force for Cl- and that could cause firing. 6. Rhythmic stimulation of septo-hippocampal fibres at 5 Hz initiated, in the hippocampus, a maintained out-of-phase oscillation of pyramidal cell discharge and inhibitory cell firing, as detected by the occurrence of spontaneous IPSPs. 7. These results suggest that GABAergic septo-hippocampal afferents selectively inhibit hippocampal inhibitory cells and so disinhibit pyramidal cells. This disinhibition could contribute to the transmission of the theta rhythm from the septum to the hippocampus. Images Figure 1 PMID:9147330

  18. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity.

    PubMed

    Yan, Wenjing; Xu, Liguang; Xu, Chuanlai; Ma, Wei; Kuang, Hua; Wang, Libing; Kotov, Nicholas A

    2012-09-12

    Chirality at the nanometer scale represents one of the most rapidly developing areas of research. Self-assembly of DNA-nanoparticle (NP) hybrids enables geometrically precise assembly of chiral isomers. The concept of a discrete chiral nanostructure of tetrahedral shape and topology fabricated from four different NPs located in the corners of the pyramid is fundamental to the field. While the first observations of optical activity of mixed pyramidal assemblies were made in 2009 (Chen, W.; Nano Lett. 2009, 9, 2153-2159), further studies are difficult without finely resolved optical data for precisely organized NP pyramidal enantiomers. Here we describe the preparation of a family of self-assembled chiral pyramids made from multiple metal and/or semiconductor NPs with a yield as high as 80%. Purposefully made R- and S-enantiomers of chiral pyramids with four different NPs from three different materials displayed strong chiroptical activity, with anisotropy g-factors as high as 1.9 × 10(-2) in the visible spectral range. Importantly, all NP constituents contribute to the chiroptical activity of the R/S pyramids. We were able to observe three different circular dichroism signals in the range of 350-550 nm simultaneously. They correspond to the plasmonic oscillations of gold, silver, and bandgap transitions of quantum dots. Tunability of chiroptical bands related to these transitions is essential from fundamental and practical points of view. The predictability of optical properties of pyramids, the simplicity of their self-assembly in comparison with lithography, and the possibility for polymerase chain reaction-based automation of their synthesis are expected to facilitate their future applications.

  19. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells.

    PubMed

    Maurer, Andrew P; Cowen, Stephen L; Burke, Sara N; Barnes, Carol A; McNaughton, Bruce L

    2006-12-27

    Although hippocampal interneurons typically do not show discrete regions of elevated firing in an environment, such as seen in pyramidal cell place fields, they do exhibit significant spatial modulation (McNaughton et al., 1983a). Strong monosynaptic coupling between pyramidal neurons and nearby interneurons in the CA1 stratum pyramidale has been strongly implicated on the basis of significant, short-latency peaks in cross-correlogram plots (Csicsvari et al., 1998). Furthermore, interneurons receiving a putative monosynaptic connection from a simultaneously recorded pyramidal cell appear to inherit the spatial modulation of the latter (Marshall et al., 2002). Buzsaki and colleagues hypothesize that interneurons may also adopt the firing phase dynamics of their afferent place cells, which show a phase shift relative to the hippocampal theta rhythm as a rat passes through the place field ("phase precession"). This study confirms and extends the previous reports by showing that interneurons in the dorsal and middle hippocampus with putative monosynaptic connections with place cells recorded on the same tetrode share other properties with their pyramidal cell afferents, including the spatial scale of the place field of pyramidal cell, a characteristic of the septotemporal level of the hippocampus from which the cells are recorded, and the rate of phase precession, which is slower in middle regions. Furthermore, variations in pyramidal cell place field scale within each septotemporal level attributable to task variations are similarly associated with variations in interneuron place field scale. The available data strongly suggest that spatial selectivity of CA1 stratum pyramidale interneurons is inherited from a small cluster of local pyramidal cells and is not a consequence of spatially selective synaptic input from CA3 or other sources.

  20. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  1. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids.

    PubMed

    He, Lining; Lai, Donny; Wang, Hao; Jiang, Changyun; Rusli

    2012-06-11

    An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

  2. IK1 channels do not contribute to the slow afterhyperpolarization in pyramidal neurons

    PubMed Central

    Wang, Kang; Mateos-Aparicio, Pedro; Hönigsperger, Christoph; Raghuram, Vijeta; Wu, Wendy W; Ridder, Margreet C; Sah, Pankaj; Maylie, Jim; Storm, Johan F; Adelman, John P

    2016-01-01

    In pyramidal neurons such as hippocampal area CA1 and basolateral amygdala, a slow afterhyperpolarization (sAHP) follows a burst of action potentials, which is a powerful regulator of neuronal excitability. The sAHP amplitude increases with aging and may underlie age related memory decline. The sAHP is due to a Ca2+-dependent, voltage-independent K+ conductance, the molecular identity of which has remained elusive until a recent report suggested the Ca2+-activated K+ channel, IK1 (KCNN4) as the sAHP channel in CA1 pyramidal neurons. The signature pharmacology of IK1, blockade by TRAM-34, was reported for the sAHP and underlying current. We have examined the sAHP and find no evidence that TRAM-34 affects either the current underling the sAHP or excitability of CA1 or basolateral amygdala pyramidal neurons. In addition, CA1 pyramidal neurons from IK1 null mice exhibit a characteristic sAHP current. Our results indicate that IK1 channels do not mediate the sAHP in pyramidal neurons. DOI: http://dx.doi.org/10.7554/eLife.11206.001 PMID:26765773

  3. Dense and overlapping innervation of pyramidal neurons by neocortical chandelier cells

    PubMed Central

    Inan, Melis; Blázquez-Llorca, Lidia; Merchán-Perez, Angel; Anderson, Stewart A.; DeFelipe, Javier; Yuste, Rafael

    2013-01-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and thus could have an important role controlling the activity of cortical circuits. To understand their connectivity we labeled upper layers chandelier cells (ChCs) from mouse neocortex with a genetic strategy and studied how their axons contact local populations of pyramidal neurons, using immunohistochemical detection of axon initial segments. We studied ChCs located in the border of layers 1 and 2 from primary somatosensory cortex and find that practically all ChC axon terminals contact axon initial segments with an average of 3–5 boutons per cartridge. By measuring the number of putative synapses in initial segments we estimate that each pyramidal neuron is innervated, on average, by at least 4 ChCs. Additionally, each individual ChC contacts 35–50% of pyramidal neurons within its axonal arbor, with pockets of high innervation density. Finally, we find that ChC axons seems to have a conserved innervation pattern at different postnatal ages (P18–90), with only relatively small lateral expansions of their arbor and increases in the total number of their cartridges during the developmental period analyzed. We conclude that ChCs innervate neighboring pyramidal neurons in a dense and overlapping manner, an innervation pattern which could enable ChCs exert a widespread influence on their local circuits. PMID:23365230

  4. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex.

    PubMed

    Zhang, Xuying; Sullivan, Chelsea S; Kratz, Megan B; Kasten, Michael R; Maness, Patricia F; Manis, Paul B

    2017-01-01

    The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated.

  5. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex

    PubMed Central

    Zhang, Xuying; Sullivan, Chelsea S.; Kratz, Megan B.; Kasten, Michael R.; Maness, Patricia F.; Manis, Paul B.

    2017-01-01

    The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated. PMID:28386219

  6. The National Cancer Institute diet history questionnaire: validation of pyramid food servings.

    PubMed

    Millen, Amy E; Midthune, Douglas; Thompson, Frances E; Kipnis, Victor; Subar, Amy F

    2006-02-01

    The performance of the National Cancer Institute's food frequency questionnaire, the Diet History Questionnaire (DHQ), in estimating servings of 30 US Department of Agriculture Food Guide Pyramid food groups was evaluated in the Eating at America's Table Study (1997-1998), a nationally representative sample of men and women aged 20-79 years. Participants who completed four nonconsecutive, telephone-administered 24-hour dietary recalls (n = 1,301) were mailed a DHQ; 965 respondents completed both the 24-hour dietary recalls and the DHQ. The US Department of Agriculture's Pyramid Servings Database was used to estimate intakes of pyramid servings for both diet assessment tools. The correlation (rho) between DHQ-reported intake and true intake and the attenuation factor (lambda) were estimated using a measurement error model with repeat 24-hour dietary recalls as the reference instrument. Correlations for energy-adjusted pyramid servings of foods ranged from 0.43 (other starchy vegetables) to 0.84 (milk) among women and from 0.42 (eggs) to 0.80 (total dairy food) among men. The mean rho and lambda after energy adjustment were 0.62 and 0.60 for women and 0.63 and 0.66 for men, respectively. This food frequency questionnaire validation study of foods measured in pyramid servings allowed for a measure of food intake consistent with national dietary guidance.

  7. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    PubMed Central

    2009-01-01

    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner. PMID:20015370

  8. Structural Transition of Gold Nanoclusters: From the Golden Cage to the Golden Pyramid

    SciTech Connect

    Huang, Wei; Bulusu, Satya; Pal, R.; Zeng, Xiao Cheng; Wang, Lai S.

    2009-05-01

    How nanoclusters transform from one structural type to another as a function of size is a critical issue in cluster science. Here we report a study of the structural transition from the golden cage Au16- to the pyramidal Au20-. We obtained distinct experimental evidence that the cage-to-pyramid crossover occurs at Au18- , for which the cage and pyramidal isomers are nearly degenerate and coexist experimentally. The two isomers are observed and identified by their different interactions with O2 and Ar. The cage isomer is observed to be more reactive with O2 and can be preferentially "titrated" from the cluster beam, whereas the pyramidal isomer has slightly stronger interactions with Ar and is favored in the Au18Arx- van der Waals complexes. The current study allows the detailed structural evolution and growth routes from the hollow cage to the compact pyramid to be understood and provides information about the structure-function relationship of the Au18- cluster.

  9. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex

    PubMed Central

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. PMID:26762857

  10. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-06-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex.

  11. Early establishment of multiple release site connectivity between interneurons and pyramidal neurons in the developing hippocampus.

    PubMed

    Groc, Laurent; Gustafsson, Bengt; Hanse, Eric

    2003-05-01

    The strength of the synaptic transmission between two neurons critically depends on the number of release sites connecting the neurons. Here we examine the development of connectivity between gamma-aminobutyric acid (GABA)ergic interneurons and CA1 pyramidal neurons in the hippocampus. GABAergic postsynaptic currents (PSCs) were recorded in whole-cell voltage-clamped CA1 pyramidal neurons. By comparing spontaneous and miniature (action potential-independent) GABAergic PSCs, we found that multiple release site connectivity is established already at the first postnatal day and that the degree of connectivity remains unaltered into adulthood. During the same time there is a dramatic increase in the number of GABAergic synapses on each pyramidal neuron as indicated by the increase in frequency of miniature GABAergic PSCs. These results indicate that during development a given interneuron contacts an increasing number of target pyramidal neurons but with the same multiple release site connectivity. It has been shown previously that the connectivity between CA3 and CA1 pyramidal neurons is initially restricted to one release site, and develops gradually. The present result thus suggests different mechanisms to govern the maturation of excitatory and inhibitory synaptic transmissions.

  12. Development of a novel electrochemical DNA biosensor based on elongated hexagonal-pyramid CdS and poly-isonicotinic acid composite film.

    PubMed

    Zheng, Delun; Wang, Qingxiang; Gao, Feng; Wang, Qinghua; Qiu, Weiwei; Gao, Fei

    2014-10-15

    Three CdS materials with different shapes (i.e., irregular, rod-like, and elongated hexagonal-pyramid) were hydrothermally synthesized through controlling the molar ratio of Cd(2+) to thiourea. Electrochemical experiments showed that the elongated hexagonal-pyramid CdS (eh-CdS) modified on glassy carbon electrode (GCE) had the higher electrical conductivity than the other two forms. Then the eh-CdS modified GCE was further modified with a layer of poly-isonicotinic acid (PIA) through electro-polymerization in IA solution to enhance the stability and functionality of the interface. The layer-by-layer modification process was characterized by atomic force microscopy and electrochemistry. Then 5'-amino functionalized DNA was immobilized on the electrode surface through coupling with the carboxylic groups derived from PIA-eh-CdS composite film. The hybridization performance of the developed biosensor was evaluated using methylene blue as redox indicator, and the results showed that the peak currents of methylene blue varied with target concentrations in a wide linear range from 1.0 × 10(-14)M to 1.0 × 10(-9)M with a low detection limit of 3.9 × 10(-15)M. The biosensor also showed high stability and good discrimination ability to the one-base, three-base mismatched and non-complementary sequence.

  13. Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe₂ by sulfur-assisted chemical vapor deposition.

    PubMed

    Chen, Liang; Liu, Bilu; Abbas, Ahmad N; Ma, Yuqiang; Fang, Xin; Liu, Yihang; Zhou, Chongwu

    2014-11-25

    Two-dimensional (2D) layered tungsten diselenides (WSe2) material has recently drawn a lot of attention due to its unique optoelectronic properties and ambipolar transport behavior. However, direct chemical vapor deposition (CVD) synthesis of 2D WSe2 is not as straightforward as other 2D materials due to the low reactivity between reactants in WSe2 synthesis. In addition, the growth mechanism of WSe2 in such CVD process remains unclear. Here we report the observation of a screw-dislocation-driven (SDD) spiral growth of 2D WSe2 flakes and pyramid-like structures using a sulfur-assisted CVD method. Few-layer and pyramid-like WSe2 flakes instead of monolayer were synthesized by introducing a small amount of sulfur as a reducer to help the selenization of WO3, which is the precursor of tungsten. Clear observations of steps, helical fringes, and herringbone contours under atomic force microscope characterization reveal the existence of screw dislocations in the as-grown WSe2. The generation and propagation mechanisms of screw dislocations during the growth of WSe2 were discussed. Back-gated field-effect transistors were made on these 2D WSe2 materials, which show on/off current ratios of 10(6) and mobility up to 44 cm(2)/(V·s).

  14. Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons

    PubMed Central

    Kubota, Yoshiyuki; Kondo, Satoru; Nomura, Masaki; Hatada, Sayuri; Yamaguchi, Noboru; Mohamed, Alsayed A; Karube, Fuyuki; Lübke, Joachim; Kawaguchi, Yasuo

    2015-01-01

    Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition. DOI: http://dx.doi.org/10.7554/eLife.07919.001 PMID:26142457

  15. Sparse aperture differential piston measurements using the pyramid wave-front sensor

    NASA Astrophysics Data System (ADS)

    Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong

    2016-07-01

    In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.

  16. Investigation of mechanism: spoof SPPs on periodically textured metal surface with pyramidal grooves

    PubMed Central

    Tian, Lili; Liu, Jianlong; Zhou, Keya; Gao, Yang; Liu, Shutian

    2016-01-01

    In microwave and terahertz frequency band, a textured metal surface can support spoof surface plasmon polaritons (SSPPs). In this paper, we explore a SSPPs waveguide composed of a metal block with pyramidal grooves. Under the deep subwavelength condition, theoretical formulas for calculation of dispersion relations are derived based on the modal expansion method (MEM). Using the obtained formulas, a general analysis is given about the properties of the SSPPs in the waveguides with upright and downward pyramidal grooves. It is demonstrated that the SSPPs waveguides with upright pyramidal grooves give better field-confinement. Numerical simulations are used to check the theoretical analysis and show good agreement with the analytical results. In addition, the group velocity of the SSPPs propagating along the waveguide is explored and two structures are designed to show how to trap the SSPPs on the metal surface. The calculation methodology provided in this paper can also be used to deal with the SSPPs waveguides with irregular grooves. PMID:27557872

  17. Morphology Control of Hot-Wall MOCVD Selective Area Grown Hexagonal GaN Pyramids

    NASA Astrophysics Data System (ADS)

    Lundskog, Anders; Forsberg, Urban; Holtz, Per Olof; Janzen, Erik

    2012-11-01

    Morphological variations of gallium polar (0001)-oriented hexagonal GaN pyramids grown by hot wall metal organic chemical vapor deposition under various growth conditions are investigated. The stability of the semipolar {1 (1) over bar 02} and nonpolar {1 (1) over bar 00} facets is particularly discussed. The presence of the {1 (1) over bar 02} facets near the apex of the pyramid was found to be controllable by tuning the absolute flow rate of ammonia during the growth Vertical nonpolar {1 (1) over bar 00} facets appeared in gallium rich conditions, which automatically were created when the growth time was prolonged beyond pyramid completion. The result was attributed to a gallium passivation of the {1 (1) over bar 00} surface.

  18. Fractal Analysis of Laplacian Pyramidal Filters Applied to Segmentation of Soil Images

    PubMed Central

    de Castro, J.; Méndez, A.; Tarquis, A. M.

    2014-01-01

    The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957

  19. Temporal synchrony and gamma to theta power conversion in the dendrites of CA1 pyramidal neurons

    PubMed Central

    Vaidya, Sachin P.; Johnston, Daniel

    2014-01-01

    Timing is a crucial aspect of synaptic integration. For pyramidal neurons that integrate thousands of synaptic inputs spread across hundreds of microns, it is thus a challenge to maintain the timing of incoming inputs at the axo-somatic integration site. Here we show that pyramidal neurons in the rodent hippocampus use a gradient of inductance in the form of HCN channels as an active mechanism to counteract location-dependent temporal differences of dendritic inputs at the soma. Using simultaneous multi-site whole cell recordings complemented by computational modeling, we find that this intrinsic biophysical mechanism produces temporal synchrony of rhythmic inputs in the theta and gamma frequency ranges across wide regions of the dendritic tree. While gamma and theta oscillations are known to synchronize activity across space in neuronal networks, our results identify a novel mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors. PMID:24185428

  20. Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front

    NASA Astrophysics Data System (ADS)

    Chan, Hardy; Wei, Juncheng

    2017-05-01

    Using the method of sub-super-solution, we construct a solution of (- Δ) s u - cuz - f (u) = 0 on R3 of pyramidal shape. Here (- Δ) s is the fractional Laplacian of sub-critical order 1 / 2 < s < 1 and f is a bistable nonlinearity. Hence, the existence of a traveling wave solution for the parabolic fractional Allen-Cahn equation with pyramidal front is asserted. The maximum of planar traveling wave solutions in various directions gives a sub-solution. A super-solution is roughly defined as the one-dimensional profile composed with the signed distance to a rescaled mollified pyramid. In the main estimate we use an expansion of the fractional Laplacian in the Fermi coordinates.

  1. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex.

    PubMed

    Ray, Saikat; Naumann, Robert; Burgalossi, Andrea; Tang, Qiusong; Schmidt, Helene; Brecht, Michael

    2014-02-21

    Little is known about how microcircuits are organized in layer 2 of the medial entorhinal cortex. We visualized principal cell microcircuits and determined cellular theta-rhythmicity in freely moving rats. Non-dentate-projecting, calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum, and cholinergic inputs. Calbindin-negative, dentate-gyrus-projecting stellate cells were distributed across layer 2 but avoided centers of calbindin-positive patches. Cholinergic drive sustained theta-rhythmicity, which was twofold stronger in pyramidal than in stellate neurons. Theta-rhythmicity was cell-type-specific but not distributed as expected from cell-intrinsic properties. Layer 2 divides into a weakly theta-locked stellate cell lattice and spatiotemporally highly organized pyramidal grid. It needs to be assessed how these two distinct principal cell networks contribute to grid cell activity.

  2. Investigating spike backpropagation induced Ca2+ influx in models of hippocampal and cortical pyramidal neurons.

    PubMed

    Marsálek, P; Santamaría, F

    1998-01-01

    We modeled the influx of calcium ions into dendrites following active backpropagation of spike trains in a dendritic tree, using compartmental models of anatomically reconstructed pyramidal cells in a GENESIS program. Basic facts of ion channel densities in pyramidal cells were taken into account. The time scale of the backpropagating spike train development was longer than in previous models. We also studied the relationship between intracellular calcium dynamics and membrane voltage. Comparisons were made between two pyramidal cell prototypes and in simplified model. Our results show that: (1) sodium and potassium channels are enough to explain regenerative backpropagating spike trains; (2) intracellular calcium concentration changes are consistent in the range of milliseconds to seconds; (3) the simulations support several experimental observations in both hippocampal and neocortical cells. No additional parameter search optimization was necessary. Compartmental models can be used for investigating the biology of neurons, and then simplified for constructing neural networks.

  3. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings

    NASA Astrophysics Data System (ADS)

    Alshal, Mohamed A.; Allam, Nageh K.

    2016-11-01

    A design for a highly efficient modified grating crystalline silicon (c-Si) thin film solar cell is demonstrated and analyzed using the two-dimensional (2-D) finite element method. The suggested grating has a double-sided pyramidal structure. The incorporation of the modified grating in a c-Si thin film solar cell offers a promising route to harvest light into the few micrometers active layer. Furthermore, a layer of silicon nitride is used as an antireflection coating (ARC). Additionally, the light trapping through the suggested design is significantly enhanced by the asymmetry of the top and bottom pyramids. The effects of the thickness of the active layer and facet angle of the pyramid on the spectral absorption, ultimate efficiency ( η), and short-circuit current density ( J sc) are investigated. The numerical results showed 87.9% efficiency improvement over the conventional thin film c-Si solar cell counterpart without gratings.

  4. Tale of the Huanglongbing Disease Pyramid in the Context of the Citrus Microbiome.

    PubMed

    Wang, Nian; Stelinski, Lukasz L; Pelz-Stelinski, Kirsten S; Graham, James H; Zhang, Yunzeng

    2017-02-06

    The Huanglongbing (HLB) disease pyramid is composed of Liberibacters, psyllid vectors, citrus hosts, and the environment. The epidemiological outcomes for Liberibacter-associated plant diseases are collectively determined by the inherent relationships among plant-Liberibacters-psyllids, and how various environmental factors affect plant-Liberibacter-psyllid interactions. Citrus-Liberibacter-psyllid interactions occur in a complex microbiome system. In this review, we focus on the progress in understanding the HLB disease pyramid, and how the microbiome affects the HLB disease pyramid including the interaction between HLB and the citrus microbiome; the interaction between Liberibacters and psyllids; the interaction between Liberibacters and gut microbiota in psyllids; and the effect of HLB on selected above- and belowground citrus pathogens. Their implications for HLB management are also discussed.

  5. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses.

    PubMed

    Rutherford, L C; Nelson, S B; Turrigiano, G G

    1998-09-01

    Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB-IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.

  6. The atomic orbitals of the topological atom.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  7. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  8. Housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

    PubMed

    Bhat, M Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2007-03-01

    The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  9. De novo expression of the neurokinin 1 receptor in spinal lamina I pyramidal neurons in polyarthritis.

    PubMed

    Almarestani, L; Waters, S M; Krause, J E; Bennett, G J; Ribeiro-da-Silva, A

    2009-05-20

    Spinal lamina I (LI) neurons play a major role in the transmission and integration of pain-related information that is relayed to higher centers. Alterations in the excitability of these neurons influence chronic pain development, and expression of the neurokinin 1 receptor (NK-1r) is thought to play a major role in such changes. Novel expression of NK-1r may underlie hyperexcitability in new populations of LI neurons. LI projection neurons can be classified morphologically into fusiform, pyramidal, and multipolar cells, differing in their functional properties, with the pyramidal type being nonnociceptive. In agreement with this, we have shown that spinoparabrachial pyramidal neurons seldom express NK-1r, in contrast with the other two cell types. In this study we investigated in the rat the long-term changes in NK-1r expression by spinoparabrachial LI neurons following the unilateral injection in the hindpaw plantar surface of complete Freund's adjuvant (CFA). Cholera toxin subunit B (CTb) was injected unilaterally into the parabrachial nucleus. Our results revealed that, ipsilaterally, pyramidal neurons were seldom immunoreactive for NK-1r both in saline-injected and in CFA-injected rats, up to 10 days post-CFA. However, a considerable number of pyramidal cells were immunoreactive for NK-1r at 15, 21, and 30 days post-CFA. Our data raise the possibility -- which needs to be confirmed by electrophysiology -- that most LI projection neurons of the pyramidal type are likely nonnociceptive in naive animals but might become nociceptive following the development of arthritis.

  10. [INCIDENCE AND SURGICAL IMPORTANCE OF PYRAMIDAL LOBE AND TUBERCLE OF THE THYROID GLAND: A PROSPECTIVE STUDY].

    PubMed

    Kovacić, Marijan; Kovadcić, Ivan

    2015-01-01

    The pyramidal lobe and tubercles are common anatomic variations of the thyroid gland, and their frequency is highly represented. While pyramidal lobe requires additional seriousness in identifying and its removal, especially in patients with hyperthyroidism and thyroid cancer, the presence of tubercles is desirable. Tubercle is covered by recurrent laryngeal nerve and directs the surgeon in his search and besides this, serves to facilitate detection of the upper parathyroid glands. In this prospective study we analysed 342 patients who underwent total thyroidectomy in the period from January 2009 to March 2015. We looked at the incidence and anatomic characteristics of pyramidal lobe and tubercles of the thyroid gland. The pyramidal lobe was present in 52.3% of the patients with more frequent central and left placement. Bilateral tubercles were present in 14.9%, while position right-sided phenomenon was represented in 39.5% and 18.5% in lower left (64.3% patients). Their prevalence by gender showed no significant difference (p = 0.59; p = 0.2). Associated presence of pyramidal lobe and tubercles on one or both sides is highly represented in our group of patients (34%), also with no differences by gender (p = 0.29). Length of the pyramidal lobe ranged from 1.3 to 4.7 cm (average 2.3 cm), and the size of tubercles in 36% of patients was over 1 cm. Recurrent laryngeal nerve was only in 1.8% placed laterally of tubercles, and the upper parathyroid gland in 95.4% was located above tubercle. Considering that only 16.5% of our patients did not have any of these anatomical variations, their presence during surgery is the rule, not the exception.

  11. Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex

    PubMed Central

    Loucif, Alexandre J. C.; Schubert, Dirk; Möck, Martin

    2016-01-01

    Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the outcome of cortical columnar signal processing to distant target areas. At the same time they contribute to local tactile information processing by emitting recurrent axonal collaterals into the columnar microcircuitry. It is, however, not known how exactly the two types of pyramidal cells, called slender-tufted and thick-tufted, contribute to the local circuitry. Here, we investigated in the rat barrel cortex the detailed quantitative morphology of biocytin-filled layer Vb pyramidal cells in vitro, which were characterized for their intrinsic electrophysiology with special emphasis on their action potential firing pattern. Since we stained the same slices for cytochrome oxidase, we could also perform layer- and column-related analyses. Our results suggest that in layer Vb the unambiguous action potential firing patterns "regular spiking (RS)" and "repetitive burst spiking (RB)" (previously called intrinsically burst spiking) correlate well with a distinct morphology. RS pyramidal cells are somatodendritically of the slender-tufted type and possess numerous local intralaminar and intracolumnar axonal collaterals, mostly reaching layer I. By contrast, their transcolumnar projections are less well developed. The RB pyramidal cells are somatodendritically of the thick-tufted type and show only relatively sparse local axonal collaterals, which are preferentially emitted as long horizontal or oblique infragranular collaterals. However, contrary to many previous slice studies, a substantial number of these neurons also showed axonal collaterals reaching layer I. Thus, electrophysiologically defined pyramidal cells of layer Vb show an input and output pattern which suggests RS cells to be more "locally segregating" signal processors whereas RB cells seem to act more on a "global integrative" scale. PMID:27706253

  12. Reduced pyramidal cell somal volume in auditory association cortex of subjects with schizophrenia.

    PubMed

    Sweet, Robert A; Pierri, Joseph N; Auh, Sungyoung; Sampson, Allan R; Lewis, David A

    2003-03-01

    Subjects with schizophrenia have decreased gray matter volume of auditory association cortex in structural imaging studies, and exhibit deficits in auditory sensory memory processes subserved by this region. In dorsal prefrontal cortex (dPFC), similar in vivo observations of reduced regional volume and working memory deficits in subjects with schizophrenia have been related to reduced somal volume of deep layer 3 pyramidal cells. We hypothesized that deep layer 3 pyramidal cell somal volume would also be reduced in auditory association cortex (BA42) in schizophrenia. We used the nucleator to estimate the somal volume of pyramidal neurons in deep layer 3 of BA42 in 18 subjects with schizophrenia, each of whom was matched to one normal comparison subject for gender, age, and post-mortem interval. For all subject pairs, somal volume of pyramidal neurons in deep layer 3 of dPFC (BA9) had previously been determined. In BA42, somal volume was reduced by 13.1% in schizophrenic subjects (p=0.03). Reductions in somal volume were not associated with the history of antipsychotic use, alcohol dependence, schizoaffective disorder, or death by suicide. The percent change in somal volume within-subject pairs was highly correlated between BA42 and BA9 (r=0.67, p=0.002). Deep layer 3 pyramidal cell somal volume is reduced in BA42 of subjects with schizophrenia. This reduction may contribute to impairment in auditory function. The correlated reductions of somal volume in BA42 and BA9 suggest that a common factor may affect deep layer 3 pyramidal cells in both regions.

  13. In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons.

    PubMed

    Chorev, Edith; Brecht, Michael

    2012-09-01

    Spikelets, small spikelike membrane potential deflections, are prominent in the activity of hippocampal pyramidal neurons in vivo. The origin of spikelets is still a source of much controversy. Somatically recorded spikelets have been postulated to originate from dendritic spikes, ectopic spikes, or spikes in an electrically coupled neuron. To differentiate between the different proposed mechanisms we used a dual recording approach in which we simultaneously recorded the intracellular activity of one CA1 pyramidal neuron and the extracellular activity in its vicinity, thus monitoring extracellularly the activity of both the intracellularly recorded cell as well as other units in its surroundings. Spikelets were observed in a quarter of our recordings (n = 36). In eight of these nine recordings a second extracellular unit fired in correlation with spikelet occurrences. This observation is consistent with the idea that the spikelets reflect action potentials of electrically coupled nearby neurons. The extracellular spikes of these secondary units preceded the onset of spikelets. While the intracellular spikelet amplitude was voltage dependent, the simultaneously recorded extracellular unit remained unchanged. Spikelets often triggered action potentials in neurons, resulting in a characteristic 1- to 2-ms delay between spikelet onset and firing. Here we show that this relationship is bidirectional, with spikes being triggered by and also triggering spikelets. Secondary units, coupled to pyramidal neurons, showed discharge patterns similar to the recorded pyramidal neuron. These findings suggest that spikelets reflect spikes in an electrically coupled neighboring neuron, most likely of pyramidal cell type. Such coupling might contribute to the synchronization of pyramidal neurons with millisecond precision.

  14. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons

    PubMed Central

    Guan, D; Tkatch, T; Surmeier, D J; Armstrong, W E; Foehring, R C

    2007-01-01

    We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K+ currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and ∼80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K+ current by 25–50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 nm) also inhibited ∼40% of the slowly inactivating K+ current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody- and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential. PMID:17379638

  15. Electronic microscopy and EDX characterization of Teotihuacan prehispanic mortar from the cave under the Sun Pyramid.

    PubMed

    Martinez, T; Martinez, G; Mendoza, D; Juarez, F; Cabrera, L

    2005-01-01

    A cave (102 m long) under the structure of the Sun pyramid of the prehispanic Teotihuacan City indicates the importance of the pyramid. Studies of the cave mortar samples using energy dispersive X-ray (EDX) fluorescence, scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed no difference in the chemical elemental composition. The elements can be distributed in three groups: major, minor and trace elements. The minerals identified were compatible with the origins of the cave and with the magnetic pattern.

  16. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons.

    PubMed

    Hoffman, D A; Magee, J C; Colbert, C M; Johnston, D

    1997-06-26

    Pyramidal neurons receive tens of thousands of synaptic inputs on their dendrites. The dendrites dynamically alter the strengths of these synapses and coordinate them to produce an output in ways that are not well understood. Surprisingly, there turns out to be a very high density of transient A-type potassium ion channels in dendrites of hippocampal CA1 pyramidal neurons. These channels prevent initiation of an action potential in the dendrites, limit the back-propagation of action potentials into the dendrites, and reduce excitatory synaptic events. The channels act to prevent large, rapid dendritic depolarizations, thereby regulating orthograde and retrograde propagation of dendritic potentials.

  17. On crack nucleation in zinc upon interaction of basal and pyramidal dislocations

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Tyalin, Yu. I.; Tyalina, V. A.

    2010-01-01

    The interaction of intersecting basal and pyramidal dislocation pileups in single-crystal zinc has been analyzed. Different versions of the formation of sessile (1/3[4 bar 2bar 2 3]) and cleavage ([0001]) dislocations (microcrack nuclei) are considered. The merging of the head dislocations in pyramidal pileups is shown to be preferred. The conditions for thermally activated dislocation merging are derived. The conditions for crack opening according to the Gilman-Rozhanskiĭ mechanism are discussed. It is analytically established that the breaking stress, normal to the (0001) plane in the region of microcrack nucleation, exceeds the theoretical strength.

  18. Are there one million nerve fibres in the human medullary pyramid?

    PubMed

    Wada, A; Goto, J; Goto, N; Kawamura, N; Matsumoto, K

    2001-03-01

    It has been the accepted opinion that there are one million nerve fibres in the human medullary pyramid. This seemed to be confirmed in several old reports. But we cannot agree with this opinion. We made nitrocellulose-embedded sections from three normal male brains, and stained them by our modification of Masson-Goldner method. With this method, myelinated axons appeared in blue, whereas the glial processes were coloured in red, which allowed easy discrimination between the two. After morphometric evaluation of the pyramidal axons under the microscope, it appeared without the slightest doubt, that the number of axons does not exceed one-tenth of one million.

  19. Motor effects of cortical stimulation after chronic lesion of medullary pyramid in the dog.

    PubMed

    Górska, T; Woolsey, C N; Wetzel, A

    1980-01-01

    In dogs with unilateral pyramidal lesions the motor cortex on both hemispheres was stimulated under Nembutal anesthesia to study the effects of pyramidotomy upon cortically induced movements. Pyramidal lesions resulted in an almost complete abolition of foretoes flexions and marked reduction of wrist ventriflexions. Other movements were not noticeably affected, except for their increased thresholds. The increase in the thresholds of movements elicited from the affected hemispheres diminished as a function of the length of postoperative survival period, so that 6 mo after pyramidotomy the thresholds on the operated side approximated the values obtained on the normal hemispheres.

  20. High-order optimal edge elements for pyramids, prisms and hexahedra

    NASA Astrophysics Data System (ADS)

    Bergot, Morgane; Duruflé, Marc

    2013-01-01

    Edge elements are a popular method to solve Maxwell's equations especially in time-harmonic domain. However, when non-affine elements are considered, elements of the Nédélec's first family [19] are not providing an optimal rate of the convergence of the numerical solution toward the solution of the exact problem in H(curl)-norm. We propose new finite element spaces for pyramids, prisms, and hexahedra in order to recover the optimal convergence. In the particular case of pyramids, a comparison with other existing elements found in the literature is performed. Numerical results show the good behavior of these new finite elements.

  1. Evaluation of the USDA’s Food Guide Pyramid Using College Students’ Dietary Intake Data

    DTIC Science & Technology

    1993-01-01

    group intake was evaluated for food scores by 2 systems: 1) at least 1 serving from each of the 5 food groups in the Food Guide Pyramid and 2) minimum...number of servings from each food group . Although 70% of students obtained a MAR-6 >75, only 34% of the students consumed a 1 serving from each food... group and 12% of students consumed the minimum number of servings of Food Guide Pyramid. Less than 1% of diets were nutritionally adequate by the MAR-6

  2. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion.

  3. Separation of multiple images via directional guidance using structured prism and pyramid arrays.

    PubMed

    Lee, Hyemin; Seo, Hyein; Kang, Sunghwan; Yoon, Hyunsik

    2016-09-05

    We propose a new concept of separating images through a directional guide of multi-visuals by using structured prism or pyramid arrays. By placing prism arrays onto two different image arrays, the two collective images below the facets are guided to different directions. Using optical calculations, we identify a condition for successful image separation. Transparent pyramid arrays are used to separate four images into four directions. The direction of refracted rays can be controlled by the refractive index of prisms and liquid filled into the voids. In addition, the images can be switched by stretching and releasing an elastomeric prism array.

  4. Tuning the Thickness and Orientation of Single Au Pyramids for Improved Refractive Index Sensitivities.

    PubMed

    Lee, Jeunghoon; Hasan, Warefta; Odom, Teri W

    2009-02-12

    This paper describes three ways to tune the multipolar surface plasmon resonances of Au pyramidal particles: (1) by varying their thickness; (2) by controlling their relative orientation on a surface; and (3) by changing the refractive index of the surrounding media. We found that as the index of the medium was increased that the plasmon resonances red-shifted linearly from visible to near infrared wavelengths. By screening the different geometric parameters, we found that 25-nm thick pyramids in a tip-up orientation produced the largest refractive index sensitivities.

  5. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  6. The "Teaching Pyramid": A Model for the Implementation of Classroom Practices within a Program-Wide Approach to Behavior Support

    ERIC Educational Resources Information Center

    Hemmeter, Mary Louise; Fox, Lise

    2009-01-01

    The "Teaching Pyramid" (Fox, Dunlap, Hemmeter, Joseph, & Strain, 2003) is a framework for organizing evidence-based practices for promoting social-emotional development and preventing and addressing challenging behavior in preschool programs. In this article, we briefly describe the "Teaching Pyramid" as a framework for implementing effective…

  7. Evaluating the Implementation of the "Pyramid Model for Promoting Social-Emotional Competence" in Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Hemmeter, Mary Louise; Snyder, Patricia A.; Fox, Lise; Algina, James

    2016-01-01

    We conducted a potential efficacy trial examining the effects of classroom-wide implementation of the "Pyramid Model for Promoting Young Children's Social-Emotional Competence" on teachers' implementation of "Pyramid Model" practices and children's social-emotional skills and challenging behavior. Participants were 40 preschool…

  8. Coaching Early Educators to Implement Effective Practices: Using the Pyramid Model to Promote Social-Emotional Development

    ERIC Educational Resources Information Center

    Fox, Lise; Hemmeter, Mary Louise

    2011-01-01

    The Pyramid Model is a conceptual framework for organizing practices for promoting young children's social-emotional development and preventing and addressing challenging behavior. The authors describe a coaching approach that is focused on supporting early educators' implementation of the Pyramid Model. The authors provide a description of the…

  9. MyPyramid intakes and snacking patterns of U.S. adults: What We Eat In America, 2007-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goals of this study were to determine the frequency of snacking by adults, measure the contribution of snacks to MyPyramid food group intakes, and determine whether snacking is associated with total intake of MyPyramid food groups and components. Twenty-four hour dietary recall data from 5,334 ...

  10. Rapid pyramiding major resistance genes into parental lines in tomato hybrid breeding employing marker-assisted backcrossing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of marker-assisted pyramiding major resistance genes depends upon several factors, including the closeness between the markers and the target gene, the number of target genes to be pyramided, the kind of molecular markers to be used, and available technical facilities. This talk will dis...

  11. Moving beyond the Three Tier Intervention Pyramid toward a Comprehensive Framework for Student and Learning Supports. A Center Policy Brief

    ERIC Educational Resources Information Center

    Center for Mental Health in Schools at UCLA, 2011

    2011-01-01

    Introduction into federal policy of response to intervention (RTI) and positive behavior intervention and supports (PBIS) led to widespread adoption and adaptation of the three tier intervention pyramid. As originally presented, the pyramid highlights three different levels of intervention and suggests the percent of students at each level. While…

  12. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  13. Lanthanide-Connecting and Lone-Electron-Pair Active Trigonal-Pyramidal-AsO3 Inducing Nanosized Poly(polyoxotungstate) Aggregates and Their Anticancer Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Wei; Li, Hai-Lou; Ma, Xing; Xie, Zhigang; Chen, Li-Juan; Zhu, Yongsheng

    2016-05-01

    By virtue of the stereochemical effect of the lone-electron pair located on the trigonal-pyramidal-AsO3 groups and the one-pot self-assembly strategy in the conventional aqueous solution, a series of novel lanthanide-bridging and lone-electron-pair active trigonal-pyramidal-AsO3 inducing nanosized poly(polyoxotungstate) aggregates [H2N(CH3)2]6 Na24H16{[Ln10W16(H2O)30O50](B-α-AsW9O33)8}·97H2O [Ln = EuIII (1), SmIII (2), GdIII (3), TbIII (4), DyIII (5), HoIII (6), ErIII (7), TmIII (8)] were prepared and further characterized by elemental analyses, IR spectra, UV spectra, thermogravimetric (TG) analyses and single-crystal X-ray diffraction. The most remarkable structural feature is that the polyanionic skeleton of {[Ln10W16(H2O)30O50](B-α-AsW9O33)8}46‑ is constructed from eight trivacant Keggin [B-α-AsW9O33]9‑ fragments through ten Ln centers and sixteen bridging W atoms in the participation of fifty extraneous oxygen atoms. Notably, 4 and 8 can be stable in the aqueous solution not only for eight days but also in the range of pH = 3.9–7.5. Moreover, the cytotoxicity tests of 4 and 8 toward human cervical cancer (HeLa) cells, human breast cancer (MCF–7) cells and mouse fibroblast (L929) cells were performed by the 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and the cell apoptosis processes were characterized by calcein AM/PI staining experiments, annexin V-FITC/PI staining experiments and morphological changes.

  14. Lanthanide-Connecting and Lone-Electron-Pair Active Trigonal-Pyramidal-AsO3 Inducing Nanosized Poly(polyoxotungstate) Aggregates and Their Anticancer Activities

    PubMed Central

    Zhao, Jun-Wei; Li, Hai-Lou; Ma, Xing; Xie, Zhigang; Chen, Li-Juan; Zhu, Yongsheng

    2016-01-01

    By virtue of the stereochemical effect of the lone-electron pair located on the trigonal-pyramidal-AsO3 groups and the one-pot self-assembly strategy in the conventional aqueous solution, a series of novel lanthanide-bridging and lone-electron-pair active trigonal-pyramidal-AsO3 inducing nanosized poly(polyoxotungstate) aggregates [H2N(CH3)2]6 Na24H16{[Ln10W16(H2O)30O50](B-α-AsW9O33)8}·97H2O [Ln = EuIII (1), SmIII (2), GdIII (3), TbIII (4), DyIII (5), HoIII (6), ErIII (7), TmIII (8)] were prepared and further characterized by elemental analyses, IR spectra, UV spectra, thermogravimetric (TG) analyses and single-crystal X-ray diffraction. The most remarkable structural feature is that the polyanionic skeleton of {[Ln10W16(H2O)30O50](B-α-AsW9O33)8}46− is constructed from eight trivacant Keggin [B-α-AsW9O33]9− fragments through ten Ln centers and sixteen bridging W atoms in the participation of fifty extraneous oxygen atoms. Notably, 4 and 8 can be stable in the aqueous solution not only for eight days but also in the range of pH = 3.9–7.5. Moreover, the cytotoxicity tests of 4 and 8 toward human cervical cancer (HeLa) cells, human breast cancer (MCF–7) cells and mouse fibroblast (L929) cells were performed by the 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and the cell apoptosis processes were characterized by calcein AM/PI staining experiments, annexin V-FITC/PI staining experiments and morphological changes. PMID:27193961

  15. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  16. Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.

    PubMed

    Pan, Jui-Wen; Wang, Chia-Shen

    2012-09-10

    We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.

  17. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination

    SciTech Connect

    Batuk, Maria; Batuk, Dmitry; Abakumov, Artem M.; Hadermann, Joke

    2014-07-01

    A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5–550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. The structure is built of truncated Pb{sub 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μ{sub B} and 3.86(5) μ{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. • The structure has been refined using neutron powder diffraction data at 1.5–550 K. • It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. • Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}≈450 K.

  18. Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing.

    PubMed

    Dvorak-Carbone, H; Schuman, E M

    1999-12-01

    CA1 pyramidal cells are the primary output neurons of the hippocampus, carrying information about the result of hippocampal network processing to the subiculum and entorhinal cortex (EC) and thence out to the rest of the brain. The primary excitatory drive to the CA1 pyramidal cells comes via the Schaffer collateral (SC) projection from area CA3. There is also a direct projection from EC to stratum lacunosum-moleculare (SLM) of CA1, an input well positioned to modulate information flow through the hippocampus. High-frequency stimulation in SLM evokes an inhibition sufficiently strong to prevent CA1 pyramidal cells from spiking in response to SC input, a phenomenon we refer to as spike-blocking. We characterized the spike-blocking efficacy of burst stimulation (10 stimuli at 100 Hz) in SLM and found that it is greatest at approximately 300-600 ms after the burst, consistent with the time course of the slow GABA(B) signaling pathway. Spike-blocking efficacy increases in potency with the number of SLM stimuli in a burst, but also decreases with repeated presentations of SLM bursts. Spike-blocking was eliminated in the presence of GABA(B) antagonists. We have identified a candidate population of interneurons in SLM and distal stratum radiatum (SR) that may mediate this spike-blocking effect. We conclude that the output of CA1 pyramidal cells, and hence the hippocampus, is modulated in an input pattern-dependent manner by activation of the direct pathway from EC.

  19. Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.

    PubMed

    León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto

    2012-01-01

    The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.

  20. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors

    PubMed Central

    Ballesteros-Yáñez, Inmaculada; Benavides-Piccione, Ruth; Bourgeois, Jean-Pierre; Changeux, Jean-Pierre; DeFelipe, Javier

    2010-01-01

    The neuronal nicotinic acetylcholine receptors (nAChRs) are allosteric membrane proteins involved in multiple cognitive processes, including attention, learning, and memory. The most abundant form of heterooligomeric nAChRs in the brain contains the β2- and α4- subunits and binds nicotinic agonists with high affinity. In the present study, we investigated in the mouse the consequences of the deletion of one of the nAChR components: the β2-subunit (β2−/−) on the microanatomy of cortical pyramidal cells. Using an intracellular injection method, complete basal dendritic arbors of 650 layer III pyramidal neurons were sampled from seven cortical fields, including primary sensory, motor, and associational areas, in both β2−/− and WT animals. We observed that the pyramidal cell phenotype shows significant quantitative differences among different cortical areas in mutant and WT mice. In WT mice, the density of dendritic spines was rather similar in all cortical fields, except in the prelimbic/infralimbic cortex, where it was significantly higher. In the absence of the β2-subunit, the most significant reduction in the density of spines took place in this high-order associational field. Our data suggest that the β2-subunit is involved in the dendritic morphogenesis of pyramidal neurons and, in particular, in the circuits that contribute to the high-order functional connectivity of the cerebral cortex. PMID:20534523

  1. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  2. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus

    PubMed Central

    Kim, Jennifer A.; Connors, Barry W.

    2012-01-01

    Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM) interneurons (identified by green fluorescent protein (GFP) expression in the GIN mouse line). Warming to 41°C caused depolarization, spontaneous action potentials, reduced input resistance and membrane time constant, and increased spontaneous synaptic activity of most pyramidal cells and O-LM interneurons. Pyramidal neurons of area CA3 were more strongly excited by hyperthermia than those of area CA1. About 90% of O-LM interneurons in both CA1 and CA3 increased their firing rates at hyperthermic temperatures; interneurons in CA3 fired faster than those in CA1 on average. Blockade of fast synaptic transmission did not abolish the effect of hyperthermia on neuronal excitability. Our results suggest that hyperthermia increases hippocampal excitability, particularly in seizure-prone area CA3, by altering the intrinsic membrane properties of pyramidal cells and interneurons. PMID:22783167

  3. Comparison of the solar concentrating properties of truncated hexagonal, pyramidal and circular cones

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Shealy, D. L.; Strobel, G. L.

    1977-01-01

    The concentrating properties of specularly reflecting pyramids, hexagons and circular cones are examined. The concentration factor is determined as a function of the coefficient of reflection and the shape and orientation of the incident sunlight. Reflector designs allowing multiple reflections for both normal and oblique incidence are considered.

  4. Can Low-income Americans Afford to Satisfy MyPyramid Fruit and Vegetable Guidelines?

    ERIC Educational Resources Information Center

    Stewart, Hayden; Hyman, Jeffrey; Frazao, Elizabeth; Buzby, Jean C.; Carlson, Andrea

    2011-01-01

    Objective: To estimate the costs of satisfying MyPyramid fruit and vegetable guidelines, with a focus on whether low-income households can bear these costs. Design: Descriptive analysis of the 2008 National Consumer Panel with information on the food purchases of 64,440 households across the contiguous United States was used to analyze the cost of…

  5. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    SciTech Connect

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  6. Large pyramid shaped single crystals of BiFeO3 by solvothermal synthesis method

    NASA Astrophysics Data System (ADS)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara

    2012-06-01

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO3. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  7. Hot press molding process for pyramid-type glass optical multiplexer

    NASA Astrophysics Data System (ADS)

    Ko, Myeong-Jin; Park, Soon-Sub

    2014-12-01

    By developing a pyramid-shaped reflector, we were able to remove the optical filter that causes the decline in light efficiency in existing systems. A pyramid-type glass optical multiplexer (MUX) can be designed for beam coupling efficiency >60% in a combined module. The module was designed and optimized using CODE V, which utilizes nonlinear curve fitting numerical analysis. Based on optical design data, aspheric grinding paths were developed using ULG APS software. Tungsten carbide optical MUX mold cores were fabricated with an ultraprecision grinding machining device [ULG-100C(H3)] and optimum grinding machining of optical surface roughness (<60 nm, angle tolerance <±0.05 deg). Pyramid-type optical MUX was fabricated using the hot press molding technique, and it was measured by using a contact geometry measuring device for reflection angle and angle uniformity. The measurement data were suitable for 49±0.05 deg, which was the design criterion. In addition, angle uniformity was >99.985%. A pyramid-type glass optical MUX molding technique was developed using an optical mold design, ultraprecision grinding machining technology, and a hot press molding system.

  8. Spectral-spatial hyperspectral image classification using super-pixel-based spatial pyramid representation

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian

    2016-10-01

    Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.

  9. Pyramiding B genes in cotton achieves broader but not always higher resistance to bacterial blight.

    PubMed

    Essenberg, Margaret; Bayles, Melanie B; Pierce, Margaret L; Verhalen, Laval M

    2014-10-01

    Near-isogenic lines of upland cotton (Gossypium hirsutum) carrying single, race-specific genes B4, BIn, and b7 for resistance to bacterial blight were used to develop a pyramid of lines with all possible combinations of two and three genes to learn whether the pyramid could achieve broad and high resistance approaching that of L. A. Brinkerhoff's exceptional line Im216. Isogenic strains of Xanthomonas axonopodis pv. malvacearum carrying single avirulence (avr) genes were used to identify plants carrying specific resistance (B) genes. Under field conditions in north-central Oklahoma, pyramid lines exhibited broader resistance to individual races and, consequently, higher resistance to a race mixture. It was predicted that lines carrying two or three B genes would also exhibit higher resistance to race 1, which possesses many avr genes. Although some enhancements were observed, they did not approach the level of resistance of Im216. In a growth chamber, bacterial populations attained by race 1 in and on leaves of the pyramid lines decreased significantly with increasing number of B genes in only one of four experiments. The older lines, Im216 and AcHR, exhibited considerably lower bacterial populations than any of the one-, two-, or three-B-gene lines. A spreading collapse of spray-inoculated AcBIn and AcBInb7 leaves appears to be a defense response (conditioned by BIn) that is out of control.

  10. Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting

    PubMed Central

    Shai, Adam S.; Anastassiou, Costas A.; Larkum, Matthew E.; Koch, Christof

    2015-01-01

    L5 pyramidal neurons are the only neocortical cell type with dendrites reaching all six layers of cortex, casting them as one of the main integrators in the cortical column. What is the nature and mode of computation performed in mouse primary visual cortex (V1) given the physiology of L5 pyramidal neurons? First, we experimentally establish active properties of the dendrites of L5 pyramidal neurons of mouse V1 using patch-clamp recordings. Using a detailed multi-compartmental model, we show this physiological setup to be well suited for coincidence detection between basal and apical tuft inputs by controlling the frequency of spike output. We further show how direct inhibition of calcium channels in the dendrites modulates such coincidence detection. To establish the singe-cell computation that this biophysics supports, we show that the combination of frequency-modulation of somatic output by tuft input and (simulated) calcium-channel blockage functionally acts as a composite sigmoidal function. Finally, we explore how this computation provides a mechanism whereby dendritic spiking contributes to orientation tuning in pyramidal neurons. PMID:25768881

  11. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    SciTech Connect

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N.; Karlin, R.; Baskin, R.; Louie, J.; Pullammanappallil, S.

    2016-08-01

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  12. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    SciTech Connect

    Dudley, Colton; Dorsey, Alison; Louie, John; Schwering, Paul; Pullammanappallil, Satish

    2016-08-01

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  13. Culturally Responsive Pyramid Model Practices: Program-Wide Positive Behavior Support for Young Children

    ERIC Educational Resources Information Center

    Allen, Rosemarie; Steed, Elizabeth A.

    2016-01-01

    This conceptual article reviews current research on racial disparities in disciplinary practices in early childhood education and work to address these issues within a positive behavior support (PBS) framework. Building largely on the Pyramid Model, recommendations and a culturally responsive approach are suggested for use within a program-wide…

  14. Pyramid wavefront sensing with a laser guide star for an ELT

    NASA Astrophysics Data System (ADS)

    Le Roux, Brice

    2010-07-01

    The wavefront sensor [WFS] is a key element of an Adaptive Optics [AO] system. It gives access to a direct measurement of the turbulent phase, its curvature or its slope, from which the mirror voltages are computed. The ability of the system to correct efficiently the atmospheric turbulence is strongly dependent on the performance of the WFS in estimating the turbulent phase. The Shack-Hartmann [SH] WFS has been for a long time the standard used in AO systems. In 1996, it has been proposed1 a new generation WFS, the pyramid WFS. It is a focal plane WFS, based on the principle of a Foucault knife-edge. It has been demonstrated that it provides a consistent gain with respect to the Shack-Hartmann.2,5-7 More recently, improvements were proposed to increase the pyramid performance.3, 4 On the framework of the developpement of extremely large telescopes, the interest of a pyramid wave front sensor appears clearly. But its behaviour with laser guide stars [LGS], most probably necessary in any Extremely Large Telescope [ELT], is still relatively unknown. Some WFS dedicated to LGS wave front sensing has already been proposed8,9 but a full study of the pyramid WFS behaviour is still necessary. This work's aim is to bring answers to this topic.

  15. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  16. Let the pyramid guide your food choices: capturing the total diet concept.

    PubMed

    Dixon, L B; Cronin, F J; Krebs-Smith, S M

    2001-02-01

    This paper discusses how the guideline "Eat a variety of foods" became "Let the Pyramid guide your food choices," presents background information on the food guidance system upon which the Food Guide Pyramid is based and reviews methods that have been used to assess aspects of the total diet, i.e., the variety, moderation and proportionality, promoted by this guidance. The methods include measures of dietary variety, patterns based on Pyramid food group intakes and scoring methods comprised of multiple dietary components. Highlights of results from these methods include the following. Although approximately one third of the U.S. population eat at least some food from all Pyramid food groups, only approximately 1-3% eat the recommended number of servings from all food groups on a given day. Fruits are the most commonly omitted food group. Vegetables and meat are the groups most commonly met by adults, and dairy the most commonly met by youth. Intakes of specific types of vegetables (i.e., dark green, deep yellow) and of grains (i.e., whole grains) are well below that recommended; intakes of total fat and added sugars exceed current recommendations. Scoring methods show those diets of the majority of the population require improvement, and that diets improve with increases in education and income. This paper also discusses the limitations and strengths of these approaches, and concludes with suggestions to improve current food guidance and methods to assess the total diet.

  17. Food Guide Pyramid Menus for Preschoolers--Adequacy of Selected Nutrients.

    ERIC Educational Resources Information Center

    Hertzler, Ann A.; And Others

    1996-01-01

    Menus planned by nonnutritionists for preschoolers were evaluated using the Food Guide Pyramid. Protein averaged above 100% of Recommended Daily Allowance (RDA); calcium and vitamins C and A were around 100%; and one-quarter of menus were below 70% of the iron RDA. Lack of variety of food choices, especially infrequent use of dark green and…

  18. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.

    PubMed

    Molchanova, Svetlana M; Huupponen, Johanna; Lauri, Sari E; Taira, Tomi

    2016-08-01

    Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization.

  19. What To Do When the Pyramid Crumbles: The Path from XA to YB Leadership.

    ERIC Educational Resources Information Center

    Schambier, Robert F.

    Teachers are alienated and dissatisfied with their jobs and often "burn out" because they must work in a bureaucratic structure in which all or most decisions are made by administrators and are expected to be carried out by the professionals, rather than being made by the professionals or in collaboration. This pyramidal structure or organization…

  20. Group Coaching on Pre-School Teachers' Implementation of Pyramid Model Strategies: A Program Description

    ERIC Educational Resources Information Center

    Fettig, Angel; Artman-Meeker, Kathleen

    2016-01-01

    The purpose of this article was to describe a group coaching model and present preliminary evidence of its impact on teachers' implementation of Pyramid Model practices. In particular, we described coaching strategies used to support teachers in reflecting and problem solving on the implementation of the evidence-based strategies. Preliminary…

  1. Effects of Distance Coaching on Teachers' Use of Pyramid Model Practices: A Pilot Study

    ERIC Educational Resources Information Center

    Artman-Meeker, Kathleen; Hemmeter, Mary Louise; Snyder, Patricia

    2014-01-01

    The purpose of this pilot study was to compare the effects of 2 professional development approaches on teachers' implementation of the "Pyramid" model, a classroom-wide approach for fostering social-emotional development and addressing challenging behavior. The study had 2 goals: (a) to examine the differential effects of workshop…

  2. Science Student Teachers' Cognitive Structure on the Concept of "Food Pyramid"

    ERIC Educational Resources Information Center

    Çinar, Derya

    2016-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food pyramid. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely…

  3. "Reaching Every Student" with a Pyramid of Intervention Approach: One District's Journey

    ERIC Educational Resources Information Center

    Howery, Kathy; McClellan, Tony; Pedersen-Bayus, Karen

    2013-01-01

    This paper presents a description of ongoing work of an Alberta school district that is working to support and enhance effective inclusive practices that reach and teach every student. The district is implementing a Pyramid of Supports model that is built upon four critical elements: a belief in social justice and the value of every child, a…

  4. The pyramidal neuron in cerebral cortex following prenatal X-irradiation

    SciTech Connect

    Donoso, J.A.; Norton, S.

    1982-07-01

    Pregnant rats were subjected to whole body X-irradiation amounting to 125 R, on gestational day 15. Cortical pyramidal neurons were examined in irradiated and control offspring at 4 weeks and 4 to 6 months postnatally. All gestationally irradiated rats developed ectopic cortex located below the corpus callosum adjacent to the caudate nucleus in the forebrain. With the rapid Golgi stain, counts were made of dendritic spines on the apical dendrites of layer 5 pyramidal cells in the normally-located cortex and compared with similar neurons in the ectopias. Dendritic spines were present on all pyramidal cells but spines were more sparse on ectopic pyramidal cells. Electron microscopic examination of ectopic and layered cortex in irradiated rats showed axodendritic synapses on the spines and shafts of the dendrites and axosomatic synapses, all of which were indistinguishable morphologically from synapses in control cortex. As a result of the observations made with the light and electron microscopes, it is concluded that the ectopic cortex may contain functional cells in spite of the abnormal location of the tissue.

  5. Installation, operation, and maintenance for the pyramidal optics solar system installed at Yacht Cove, Columbia, SC

    SciTech Connect

    Not Available

    1980-09-01

    Information is presented concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water. Included are such items as principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system. Also included are trouble-shooting charts and maintenance schedules.

  6. Resistance monitoring of Heliothis virescens to pyramided cotton varieties with a hydrateable, artificial cotton leaf bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proof of concept was demonstrated for a practical, off the shelf bioassay to monitor for tobacco budworm resistance to pyramided Bt cotton using plant eluants. The bioassay was based on a previously described feeding disruption test using hydrateable artificial diet containing a blue indicator dye, ...

  7. Expected gain in the pyramid wavefront sensor with limited Strehl ratio

    NASA Astrophysics Data System (ADS)

    Viotto, V.; Ragazzoni, R.; Bergomi, M.; Magrin, D.; Farinato, J.

    2016-09-01

    Context. One of the main properties of the pyramid wavefront sensor is that, once the loop is closed, and as the reference star image shrinks on the pyramid pin, the wavefront estimation signal-to-noise ratio can considerably improve. This has been shown to translate into a gain in limiting magnitude when compared with the Shack-Hartmann wavefront sensor, in which the sampling on the wavefront is performed before the light is split into four quadrants, which does not allow the quality of the focused spot to increase. Since this property is strictly related to the size of the re-imaged spot on the pyramid pin, the better the wavefront correction, the higher the gain. Aims: The goal of this paper is to extend the descriptive and analytical computation of this gain that was given in a previous paper, to partial wavefront correction conditions, which are representative for most of the wide field correction adaptive optics systems. Methods: After focusing on the low Strehl ratio regime, we analyze the minimum spatial sampling required for the wavefront sensor correction to still experience a considerable gain in sensitivity between the pyramid and the Shack-Hartmann wavefront sensors. Results: We find that the gain can be described as a function of the sampling in terms of the Fried parameter.

  8. High density micro-pyramids with silicon nanowire array for photovoltaic applications.

    PubMed

    Rahman, Tasmiat; Navarro-Cía, Miguel; Fobelets, Kristel

    2014-12-05

    We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs.

  9. Using History of Mathematics to Teach Volume Formula of Frustum Pyramids: Dissection Method

    ERIC Educational Resources Information Center

    Butuner, Suphi Onder

    2015-01-01

    Within recent years, history of mathematics (HoM) has become an increasingly popular topic. Studies have shown that student reactions to it depend on the ways they use history of mathematics. The present action research study aimed to make students deduce volume rules of frustum pyramids using the dissection method. Participants were 24 grade…

  10. External magnetic field-induced mesoscopic organization of Fe3O4 pyramids and carbon sheets.

    PubMed

    Pol, S V; Pol, V G; Gedanken, A; Felner, I; Sung, M-G; Asai, S

    2007-06-11

    The current investigation is centered on the thermal decomposition of iron(II) acetyl acetonate, Fe(C5H7O2)2, in a closed cell at 700 degrees C, which is conducted under a magnetic field (MF) of 10 T. The product is compared with a similar reaction that was carried out without a MF. This article shows how the reaction without a MF produces spherical Fe3O4 particles coated with carbon. The same reaction in the presence of a 10 T MF causes the rejection of the carbon from the surface of pyramid-shaped Fe3O4 particles, increases the Fe3O4 particle diameter, forms separate carbon particles, and leads to the formation of an anisotropic (long cigarlike) orientation of Fe3O4 pyramids and C sheets. The macroscopic orientation of Fe3O4 pyramids+C sheets is stable even after the removal of an external MF. The suggested process can be used to fabricate large arrays of uniform wires comprised of some magnetic nanoparticles, and to improve the magnetic properties of nanoscale magnetic materials. The probable mechanism is developed for the growth and assembly behavior of magnetic Fe3O4 pyramids+C sheets under an external MF. The effect of an applied MF to synthesize morphologically different, but structurally the same, products with mesoscopic organization is the key theme of the present paper.

  11. Strengthening Socio-Emotional Competencies in a School Setting: Data from the Pyramid Project

    ERIC Educational Resources Information Center

    Ohl, Madeleine; Fox, Pauline; Mitchell, Kathryn

    2013-01-01

    Background: Development of socio-emotional competencies is key to children's successful social interaction at home and at school. Aims: This study examines the efficacy of a UK primary school-based intervention, the Pyramid project, in strengthening children's socio-emotional competencies. Sample: Participants were 385 children from seven schools…

  12. Mineral resource potential map of the Pyramid Roadless Area, El Dorado County, Colorado

    USGS Publications Warehouse

    Armstrong, Augustus K.; Chaffee, Maurice A.; Scott, Douglas F.

    1983-01-01

    Studies show., there is low potential for small deposits of gold, silver, and base metals in the Pyramid Roadless Area. There are two uranium claims (Cliff Ridge mining claims) located within the roadless area, but samples from this site showed no uranium. There are no indications of geothermal resources, coal, oil, or gas.

  13. The Diffusion of the Learning Pyramid Myths in Academia: An Exploratory Study

    ERIC Educational Resources Information Center

    Letrud, Kåre; Hernes, Sigbjørn

    2016-01-01

    This article examines the diffusion and present day status of a family of unsubstantiated learning-retention myths, some of which are referred to as "the learning pyramid". We demonstrate through an extensive search in academic journals and field-specific encyclopaedias that these myths are indeed widely publicised in academia and that…

  14. Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories.

    PubMed

    Janeczek, Monica; Gefen, Tamar; Samimi, Mehrnoosh; Kim, Garam; Weintraub, Sandra; Bigio, Eileen; Rogalski, Emily; Mesulam, M-Marsel; Geula, Changiz

    2017-03-01

    We described an extensive network of cortical pyramidal neurons in the human brain with abundant acetylcholinesterase (AChE) activity. Emergence of these neurons during childhood/adolescence, attainment of highest density in early adulthood, and virtual absence in other species led us to hypothesize involvement of AChE within these neurons in higher cortical functions. The current study quantified the density and staining intensity of these neurons using histochemical procedures. Few faintly stained AChE-positive cortical pyramidal neurons were observed in children/adolescents. These neurons attained their highest density and staining intensity in young adulthood. Compared with the young adult group, brains of cognitively normal elderly displayed no significant change in numerical density but a significant decrease in staining intensity of AChE-positive cortical pyramidal neurons. Brains of elderly above age 80 with unusually preserved memory performance (SuperAgers) showed significantly lower staining intensity and density of these neurons when compared with same-age peers. Conceivably, low levels of AChE activity could enhance the impact of acetylcholine on pyramidal neurons to counterbalance other involutional factors that mediate the decline of memory capacity during average aging. We cannot yet tell if elderly with superior memory capacity have constitutively low neuronal AChE levels or if this feature reflects adaptive neuroplasticity.

  15. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus.

    PubMed

    Kim, Jennifer A; Connors, Barry W

    2012-01-01

    Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM) interneurons (identified by green fluorescent protein (GFP) expression in the GIN mouse line). Warming to 41°C caused depolarization, spontaneous action potentials, reduced input resistance and membrane time constant, and increased spontaneous synaptic activity of most pyramidal cells and O-LM interneurons. Pyramidal neurons of area CA3 were more strongly excited by hyperthermia than those of area CA1. About 90% of O-LM interneurons in both CA1 and CA3 increased their firing rates at hyperthermic temperatures; interneurons in CA3 fired faster than those in CA1 on average. Blockade of fast synaptic transmission did not abolish the effect of hyperthermia on neuronal excitability. Our results suggest that hyperthermia increases hippocampal excitability, particularly in seizure-prone area CA3, by altering the intrinsic membrane properties of pyramidal cells and interneurons.

  16. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus.

    PubMed

    Lunko, O O; Isaev, D S; Krishtal, O O; Isaeva, E V

    2015-01-01

    Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.

  17. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A. K.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Pullammanappallil, S.

    2010-12-01

    The Pyramid Lake fault zone is located in a critical region of the Northern Walker Lane where transtension is accommodated through a complex pattern of dextral strike-slip and normal faulting. To the north, Sierra Nevada microplate motion is accommodated through a series of mostly dextral strike-slip faults (e.g., Honey Lake fault zone); in contrast to this more straightforward geometry, transtension to the south is expressed through a series of north-south-striking, normal fault bounded basins (e.g., Lake Tahoe basin) with small amounts of opening or fanning to the north that is accommodated through north-east striking sinstral faulting. The Pyramid Lake basin straddles this critical boundary between these different domains within the Northern Walker Lane, and thus, forms an ideal laboratory to study key aspects in the development of incipient rifting within transtensional systems (i.e., early Gulf of California). In June 2010, the University of Nevada, Reno, Scripps institution of Oceanography, and the USGS, Salt Lake City conducted a ten-day-long, high-resolution seismic CHIRP survey of Pyramid Lake. During this expedition, more than 500 line-kilometers of data were collected, spanning all regions of the lake. The Pyramid Lake fault, which enters the basin from the south, extending along the west side of the lake, near the shoreline, changes from a dextral strike-slip fault system south of the basin, to include a down-to-the-east normal component as it approaches and enters the lake. As the Pyramid Lake fault dies near mid-lake, the East Pyramid Lake fault becomes dominant and displays down-to-the-west motion; thereafter, splays into a series of dextral dip-slip faults on the northwest end of the lake. The Pyramid Lake basin shows strong segmentation and distinct polarity flips between the north and south ends of the lake. This region provides a natural laboratory to understand how strain is partitioned and how it evolves through time within a proto-rift that is

  18. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons

    PubMed Central

    Carstens, Kelly E.; Phillips, Mary L.; Pozzo-Miller, Lucas; Weinberg, Richard J.

    2016-01-01

    Long-term potentiation of excitatory synapses on pyramidal neurons in the stratum radiatum rarely occurs in hippocampal area CA2. Here, we present evidence that perineuronal nets (PNNs), a specialized extracellular matrix typically localized around inhibitory neurons, also surround mouse CA2 pyramidal neurons and envelop their excitatory synapses. CA2 pyramidal neurons express mRNA transcripts for the major PNN component aggrecan, identifying these neurons as a novel source for PNNs in the hippocampus. We also found that disruption of PNNs allows synaptic potentiation of normally plasticity-resistant excitatory CA2 synapses; thus, PNNs play a role in restricting synaptic plasticity in area CA2. Finally, we found that postnatal development of PNNs on CA2 pyramidal neurons is modified by early-life enrichment, suggesting that the development of circuits containing CA2 excitatory synapses are sensitive to manipulations of the rearing environment. SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are thought to play a major role in restricting synaptic plasticity during postnatal development, and are altered in several models of neurodevelopmental disorders, such as schizophrenia and Rett syndrome. Although PNNs have been predominantly studied in association with inhibitory neurons throughout the brain, we describe a dense expression of PNNs around excitatory pyramidal neurons in hippocampal area CA2. We also provide insight into a previously unrecognized role for PNNs in restricting plasticity at excitatory synapses and raise the possibility of an early critical period of hippocampal plasticity that may ultimately reveal a key mechanism underlying learning and memory impairments of PNN-associated neurodevelopmental disorders. PMID:27277807

  19. AMPA receptor modulators have different impact on hippocampal pyramidal cells and interneurons.

    PubMed

    Xia, Y-F; Arai, A C

    2005-01-01

    Positive modulators of AMPA receptors enhance synaptic plasticity and memory encoding. Facilitation of AMPA receptor currents not only results in enhanced activation of excitatory neurons but also increases the activity of inhibitory interneurons by up-modulating their excitatory input. However, little is known about the effects of these modulators on cells other than pyramidal neurons and about their impact on local microcircuits. This study examined the effects of members from three subfamilies of modulators (mainly CX516, CX546 and cyclothiazide) on excitatory synaptic responses in four classes of hippocampal CA1 neurons and on excitatory and disynaptically induced inhibitory field potentials in hippocampal slices. Effects on excitatory postsynaptic currents (EPSCs) were examined in pyramidal cells, in two types of inhibitory interneurons located in stratum radiatum and oriens, and in stratum radiatum giant cells, a novel type of excitatory neuron. With CX516, increases in EPSC amplitude in pyramidal cells were two to three times larger than in interneurons and six times larger than in radiatum giant cells. The effects of CX546 on response duration similarly were largest in pyramidal cells. However, this drug also strongly differentiated between stratum oriens and radiatum interneurons with increases being four times larger in the latter. In contrast, cyclothiazide had similar effects on response duration in all cell types. In field recordings, CX516 was several times more potent in enhancing excitatory postsynaptic potentials (EPSPs) than feedback or feedforward circuits, as expected from its larger influence on pyramidal cells. In contrast, BDP-20, a CX546 analog, was more potent in enhancing feedforward inhibition than either EPSPs or feedback inhibition. This preference for feedforward over feedback circuits is probably related to its higher potency in stratum radiatum versus oriens interneurons. Taken together, AMPA receptor modulators differ substantially

  20. Brief Dopaminergic Stimulations Produce Transient Physiological Changes in Prefrontal Pyramidal Neurons

    PubMed Central

    Moore, Anna R.; Zhou, Wen-Liang; Potapenko, Evgeniy S.; Kim, Eun-Ji; Antic, Srdjan D.

    2010-01-01

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2 sec) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an “inverted U curve” (Vijayraghavan et al., 2007), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5 sec of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40 seconds. PMID:21059342

  1. Can astronomy enhance UNESCO World Heritage recognition? The paradigm of 4th Dynasty Egyptian pyramids

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    2015-08-01

    The pyramids of Egypt, notably those of the 4th Dinasty as Giza, have always be considered an unmistikable part of human world heritage as the only surviving wonders of the Ancient World. Their majesty, technical hability and innovative character have always beeen considered as representative of ancient Egyptian ingenuity. However, past and present fringe theories about the pyramids and astronomy have always polluted the role of our discipline in the design, construction and symbolism of these impressive monuments. This is indeed unfear. Fortunately, things have started to change in the last couple of decades and now astronomy is interpreted as a neccessary tool for the correct interpretation of the astral eschatology present in the 5th and 6th Dynasty Texts of the Pyramids. Although the pyramid complexes of the 4th Dynasty are mute, there is however recent research showing that a strong astral symbolism could be hidden in many aspects of the complex architecture and in the design of these exceptional monuments. This idea comes from several hints obtained not only from planning and construction, but also from epigraphy and the analysis of celestial and local landscapes. Chronology also plays a most relevant role on this. The pyramid complexes of the 4th Dynasty at Meidum, Dahshur, Giza and Abu Rowash -- all of which enjoy UNESCO World Heritage recognition -- willl be scrutinized. As a consequence, we will show how astronomy can certainly enhance the face value of these extraordinary monuments as a definitive proof of the ancient Egyptian quest for Ma'at, i.e. their perennial obsesion for Cosmic Order.

  2. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology

    PubMed Central

    Elston, Guy N.; Fujita, Ichiro

    2014-01-01

    Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex. PMID:25161611

  3. (11)B MAS NMR and First-Principles Study of the [OBO3] Pyramids in Borates.

    PubMed

    Zhou, Bing; Sun, Wei; Zhao, Biao-Chun; Mi, Jin-Xiao; Laskowski, Robert; Terskikh, Victor; Zhang, Xi; Yang, Lingyun; Botis, Sanda M; Sherriff, Barbara L; Pan, Yuanming

    2016-03-07

    Borates are built from the [Bϕ3] planar triangles and the [Bϕ4] tetrahedral groups, where ϕ denotes O or OH. However, the [Bϕ4] groups in some borates are highly distorted to include three normal B-O bonds and one anomalously long B-O bond and, therefore, are best described as the [OBO3] pyramids. Four synthetic borates of the boracite-type structures (Mg3B7O13Br, Cu3B7O13Br, Zn3B7O13Cl, and Mg3B7O13Cl) containing a range of [OBO3] pyramids were investigated by multifield (7.05, 14.1, and 21.1 T) (11)B magic-angle spinning nuclear magnetic resonance (MAS NMR), triple quantum (3Q) MAS NMR experiments, as well as density functional theory calculations. The high-resolution (11)B MAS NMR spectra supported by theoretical predictions show that the [OBO3] pyramids are characterized by isotropic chemical shifts δiso((11)B) from 1.4(1) to 4.9(1) ppm and nuclear quadrupole parameters CQ((11)B) up to 1.3(1) MHz, both significantly different from those of the [BO4] and [BO3] groups in borates. These δiso((11)B) and CQ((11)B) values indicate that the [OBO3] pyramids represent an intermediate state between the [BO4] tetrahedra and [BO3] triangles and demonstrate that the (11)B NMR parameters of four-coordinate boron oxyanions are sensitive to local structural environments. The orientation of the calculated unique electronic field gradient tensor element Vzz of the [OBO3] pyramids is aligned approximately along the direction of the anomalously long B-O bond, corresponding to B-2pz with the lowest electron density.

  4. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  5. Atomic structure of defects in GaN:Mg grown with Ga polarity

    SciTech Connect

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; O'Keef e, M.A.

    2004-04-15

    The atomic structure of characteristic defects (Mg-rich hexagonal pyramids and truncated pyramids) in GaN:Mg thin films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects. The inside walls of the cavities were covered by GaN which grew with reverse polarity compared to the matrix. It was proposed that lateral overgrowth of the cavities restores matrix polarity on the defect base. Exchange of Ga and N sublattices within the defect compared to the matrix lead to a 0.6 +- 0.2 Angstrom displacement between the Ga sublattices of these two areas. A [1100]/3 shift with change from AB stacking in the matrix to BC within the entire pyramid is observed. Changes in the shape of the NKa edge and oxygen presence on the defect walls were detected using electron energy loss spectroscopy. These observations explain the Mg compensation and decrease of acceptor concentration in heavily doped GaN:Mg.

  6. Development of a pyramidal wavefront sensor test-bench at INO

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François

    2013-12-01

    The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P

  7. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  8. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor…

  9. Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors

    PubMed Central

    Graves, Austin R; Moore, Shannon J; Bloss, Erik B; Mensh, Brett D; Kath, William L; Spruston, Nelson

    2012-01-01

    Summary Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class, or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information. PMID:23177962

  10. Clusters of synaptic inputs on dendrites of layer 5 pyramidal cells in mouse visual cortex

    PubMed Central

    Gökçe, Onur; Bonhoeffer, Tobias; Scheuss, Volker

    2016-01-01

    The spatial organization of synaptic inputs on the dendritic tree of cortical neurons plays a major role for dendritic integration and neural computations, yet, remarkably little is known about it. We mapped the spatial organization of glutamatergic synapses between layer 5 pyramidal cells by combining optogenetics and 2-photon calcium imaging in mouse neocortical slices. To mathematically characterize the organization of inputs we developed an approach based on combinatorial analysis of the likelihoods of specific synapse arrangements. We found that the synapses of intralaminar inputs form clusters on the basal dendrites of layer 5 pyramidal cells. These clusters contain 4 to 14 synapses within ≤30 µm of dendrite. According to the spatiotemporal characteristics of synaptic summation, these numbers suggest that there will be non-linear dendritic integration of synaptic inputs during synchronous activation. DOI: http://dx.doi.org/10.7554/eLife.09222.001 PMID:27431612

  11. Vertebral artery dolicoectasia with brainstem compression: role of microvascular decompression in relieving pyramidal weakness.

    PubMed

    Sadashiva, Nishanth; Shukla, Dhaval; Bhat, Dhananjaya I; Devi, Bhagavatula Indira

    2016-04-01

    Vertebral artery dolicoectasia (VAD) can cause brainstem compression and dysfunction. Reports of pyramidal tract involvement by brainstem compression and the surgical benefits and its long-term results are sparsely reported. We hereby report three cases of medullary compression by VAD causing pyramidal weakness. Two patients with bilateral compression with quadriparesis did not want surgical treatment and were still disabled at 58 months and 50 months of follow-up, respectively. One patient with unilateral medullary compression with hemiparesis underwent microvascular decompression using Teflon sling retraction. This patient was relieved of symptoms and is asymptomatic at 14-month follow-up. This report emphasizes the need of surgical decompression in cases of brainstem compression by VAD with caution about appropriate case selection.

  12. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.

    PubMed

    Shatokhina, Iuliia; Obereder, Andreas; Rosensteiner, Matthias; Ramlau, Ronny

    2013-04-20

    We present a fast method for the wavefront reconstruction from pyramid wavefront sensor (P-WFS) measurements. The method is based on an analytical relation between pyramid and Shack-Hartmann sensor (SH-WFS) data. The algorithm consists of two steps--a transformation of the P-WFS data to SH data, followed by the application of cumulative reconstructor with domain decomposition, a wavefront reconstructor from SH-WFS measurements. The closed loop simulations confirm that our method provides the same quality as the standard matrix vector multiplication method. A complexity analysis as well as speed tests confirm that the method is very fast. Thus, the method can be used on extremely large telescopes, e.g., for eXtreme adaptive optics systems.

  13. Resolution Enhancement by Prediction of the High-Frequency Image Based on the Laplacian Pyramid

    NASA Astrophysics Data System (ADS)

    Jeon, Bo-Won; Park, Rae-Hong; Yang, Seungjoon

    2006-12-01

    According to recent advances in digital image processing techniques, interest in high-quality images has been increased. This paper presents a resolution enhancement (RE) algorithm based on the pyramid structure, in which Laplacian histogram matching is utilized for high-frequency image prediction. The conventional RE algorithms yield blurring near-edge boundaries, degrading image details. In order to overcome this drawback, we estimate an HF image that is needed for RE by utilizing the characteristics of the Laplacian images, in which the normalized histogram of the Laplacian image is fitted to the Laplacian probability density function (pdf), and the parameter of the Laplacian pdf is estimated based on the Laplacian image pyramid. Also, we employ a control function to remove overshoot artifacts in reconstructed images. Experiments with several test images show the effectiveness of the proposed algorithm.

  14. SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Man, B. Y.; Jiang, S. Z.; Yang, C.; Liu, M.; Chen, C. S.; Xu, S. C.; Qiu, H. W.; Li, Z.

    2015-08-01

    A novel surface-enhanced Raman spectroscopy (SERS) substrate based on uniform silver nanoparticles/silicon nanoporous pyramid arrays (Ag/PS) is prepared and SERS behaviors to adenosine are discussed and compared. With a low concentration of 10-7 M, the characteristic Raman bands of adenosine demonstrate the significantly high SERS sensitivity of the prepared Ag/PS substrate. A reasonable linear correlation is obtained between the intensity of SERS signal and the adenosine concentration from 10-2 to 10-7M in log scale. These results imply that the Ag/PS with regular pyramids array might be an effective substrate for performing label-free sensitive SERS detections of biomolecule.

  15. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    PubMed Central

    Perez-Cruz, Claudia; Müller-Keuker, Jeanine I. H.; Heilbronner, Urs; Fuchs, Eberhard; Flügge, Gabriele

    2007-01-01

    The prefrontal cortex (PFC) plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL) of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL) of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx) of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx. PMID:18253468

  16. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight.

    PubMed

    Maruthasalam, S; Kalpana, K; Kumar, K K; Loganathan, M; Poovannan, K; Raja, J A J; Kokiladevi, E; Samiyappan, R; Sudhakar, D; Balasubramanian, P

    2007-06-01

    Elite indica rice cultivars were cotransformed with genes expressing a rice chitinase (chi11) and a thaumatin-like protein (tlp) conferring resistance to fungal pathogens and a serine-threonine kinase (Xa21) conferring bacterial blight resistance, through particle bombardment, with a view to pyramiding sheath blight and bacterial blight resistance. Molecular analyses of putative transgenic lines by polymerase chain reaction, Southern Blot hybridization, and Western Blotting revealed stable integration and expression of the transgenes in a few independent transgenic lines. Progeny analyses showed the stable inheritance of transgenes to their progeny. Coexpression of chitinase and thaumatin-like protein in the progenies of a transgenic Pusa Basmati1 line revealed an enhanced resistance to the sheath blight pathogen, Rhizoctonia solani, as compared to that in the lines expressing the individual genes. A transgenic Pusa Basmati1 line pyramided with chi11, tlp, and Xa21 showed an enhanced resistance to both sheath blight and bacterial blight.

  17. Treatment of basal cell carcinoma of the nasal pyramid with intralesional interferon alfa-2b.

    PubMed

    Fernández-Vozmediano, José Manuel; Armario-Hita, José Carlos

    2010-04-01

    For patients with basal cell carcinoma (BCC) in whom surgical intervention is not optimal, local treatment with interferon alfa-2b is an alternative. In this study, patients with BCC of the nasal pyramid were treated with intralesional interferon alfa-2b (five million international units three times per week) for four to eight weeks. Cutaneous biopsies were performed before and after treatment for histologic examination. Twelve patients, primarily with the infiltrative histologic form (80%), were treated. Complete clinical and histologic regression was confirmed in all cases, and the aesthetic results were excellent. After four years' follow-up, no tumor persistence was observed in any patient. The most frequent adverse events were transient, mild-to-moderate flu-like symptoms in 95% of patients and asymptomatic leukopenia or neutropenia in 25%. These results suggest that intralesional interferon alfa-2b is a safe and effective nonsurgical alternative approach to treat BCC of the nasal pyramid.

  18. The Upper Respiratory Pyramid: Early Factors and Later Treatment Utilization in World Trade Center Exposed Firefighters

    PubMed Central

    Niles, Justin K.; Webber, Mayris P.; Liu, Xiaoxue; Zeig-Owens, Rachel; Hall, Charles B.; Cohen, Hillel W.; Glaser, Michelle S.; Weakley, Jessica; Schwartz, Theresa M.; Weiden, Michael D.; Nolan, Anna; Aldrich, Thomas K.; Glass, Lara; Kelly, Kerry J.; Prezant, David J.

    2015-01-01

    Background We investigated early post 9/11 factors that could predict rhinosinusitis healthcare utilization costs up to 11 years later in 8,079 World Trade Center-exposed rescue/recovery workers. Methods We used bivariate and multivariate analytic techniques to investigate utilization outcomes; we also used a pyramid framework to describe rhinosinusitis healthcare groups at early (by 9/11/2005) and late (by 9/11/2012) time points. Results Multivariate models showed that pre-9/11/2005 chronic rhinosinusitis diagnoses and nasal symptoms predicted final year healthcare utilization outcomes more than a decade after WTC exposure. The relative proportion of workers on each pyramid level changed significantly during the study period. Conclusions Diagnoses of chronic rhinosinusitis within 4 years of a major inhalation event only partially explain future healthcare utilization. Exposure intensity, early symptoms and other factors must also be considered when anticipating future healthcare needs. PMID:24898816

  19. Sources of error and nutritional adequacy of the food guide pyramid.

    PubMed

    Tavelli, S; Beerman, K; Shultz, J E; Heiss, C

    1998-09-01

    The authors assessed the accuracy of college students' use of the Food Guide Pyramid (FGP) in their diets and evaluated sources of error and nutritional adequacy of the pyramid. Students enrolled in an undergraduate nutrition class (N = 346) completed 3-day dietary records that were analyzed, using computer software, to determine individual recommended dietary allowance (RDA) values and the extent to which the students' diets met those values. The students' most common error in using the FGP was underestimating serving sizes. Only 8% of the students consumed the minimum recommended number of servings for all food groups, but diets that satisfied FGP recommendations also tended to satisfy RDA requirements. Less than 2% of the students who met the minimal number of FGP servings did not satisfy their RDA values, but less than 45% of the survey participants, regardless of gender or residence, met the recommended intake for dietary fiber. The FGP was judged to be a good indicator of dietary adequacy.

  20. Different Ca2+ source for slow AHP in completely adapting and repetitive firing pyramidal neurons.

    PubMed

    Pineda, J C; Galarraga, E; Foehring, R C

    1999-06-23

    Intracellular recordings in an in vitro neocortical slice preparation from immature rats were used to investigate the Ca2 source for slow afterhyperpolarization (sAHP) generation in pyramidal neurons that exhibit complete spike frequency adaptation (CA neurons). In pyramidal neurons that maintain repetitive firing for long periods of time (RF neurons), N-, P- and Q-type Ca2+ channels supply Ca2+ for sAHP generation. In CA neurons, the sAHP was reduced by only 50% by the combination of antagonists for these Ca2+ channel types and L-type channels. Ryanodine and dantrolene, blockers of Ca2(+)-induced Ca2+ release, reduced the sAHP by approximately 45% in CA neurons, but caused no reduction of the sAHP in RF neurons. Dantrolene application caused CA neurons to fire throughout a 1s suprathreshold current injection (as do RF neurons).

  1. Performances analysis and comparison of the CCPC and pyramid shaped solar concentrators for CPV

    NASA Astrophysics Data System (ADS)

    El Himer, S.; El Yahyaoui, S.; Benmohammad, Z.; Mechaqrane, A.; Ahaitouf, A.

    2016-07-01

    This study presents a comparison of two optical concentrators: A crossed Compound Parabolic Concentrator (CCPC) and a pyramidused as a secondary optical element with and without the primary stage, a Fresnel lens. Results show that the optical efficiency is higher in the case of the pyramid if used alone, andevidently decreases when a primary stage is added. Compared to CCPC, the pyramid as secondary optical element is more efficient. Regarding the size of the elements, it is found thatthe length and the inlet radius of each optical element decrease when the acceptance angle increases. The CPC presents the larger inlet radius and the longer length for as long as the acceptance angle is less than 45°, beyond this value, the two lengths are equal.

  2. Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration.

    PubMed

    Epsztein, Jérôme; Lee, Albert K; Chorev, Edith; Brecht, Michael

    2010-01-22

    In vivo intracellular recordings of hippocampal neurons reveal the occurrence of fast events of small amplitude called spikelets or fast prepotentials. Because intracellular recordings have been restricted to anesthetized or head-fixed animals, it is not known how spikelet activity contributes to hippocampal spatial representations. We addressed this question in CA1 pyramidal cells by using in vivo whole-cell recording in freely moving rats. We observed a high incidence of spikelets that occurred either in isolation or in bursts and could drive spiking as fast prepotentials of action potentials. Spikelets strongly contributed to spiking activity, driving approximately 30% of all action potentials. CA1 pyramidal cell firing and spikelet activity were comodulated as a function of the animal's location in the environment. We conclude that spikelets have a major impact on hippocampal activity during spatial exploration.

  3. Using the base-of-the-pyramid perspective to catalyze interdependence-based collaborations

    PubMed Central

    London, Ted; Anupindi, Ravi

    2012-01-01

    Improving food security and nutrition in the developing world remains among society's most intractable challenges and continues despite a wide variety of investments. Both donor- and enterprise-led initiatives, for example, have explored including smallholder farmers in their value chains. However, these efforts have had only modest success, partly because the private and development sectors prefer to maintain their independence. Research from the base-of-the-pyramid domain offers new insights into how collaborative interdependence between sectors can enhance the connection between profits and the alleviation of poverty. In this article, we identify the strengths and weaknesses of donor-led and enterprise-led value chain initiatives. We then explore how insights from the base-of-the-pyramid domain yield a set of interdependence-based collaboration strategies that can achieve more sustainable and scalable outcomes. PMID:21482752

  4. Video stabilization in atmosphere turbulent conditions based on the Laplacian-Riesz pyramid.

    PubMed

    Xue, Bindang; Liu, Yi; Cui, Linyan; Bai, Xiangzhi; Cao, Xiaoguang; Zhou, Fugen

    2016-11-28

    Video stabilization in atmosphere turbulent conditions is aimed at removing spatiotemporally varying distortions from video recordings. Conventional shaky video stabilization approaches do not perform effectively under turbulent circumstances due to the erratic motion common to those conditions. Using complex-valued image pyramids, we propose a method to mitigate this erratic motion in videos. First, each frame of a video is decomposed into different spatial frequencies using the Laplacian pyramid. Second, a Riesz transform is adopted to extract the local amplitude and the local phase of each sub-band. Next, low-pass filters are designed to attenuate the local amplitude and phase variations to remove turbulence-induced distortions. Experimental results show that the proposed approach is efficient and provides stabilizing video in atmosphere turbulent conditions.

  5. Using the base-of-the-pyramid perspective to catalyze interdependence-based collaborations.

    PubMed

    London, Ted; Anupindi, Ravi

    2012-07-31

    Improving food security and nutrition in the developing world remains among society's most intractable challenges and continues despite a wide variety of investments. Both donor- and enterprise-led initiatives, for example, have explored including smallholder farmers in their value chains. However, these efforts have had only modest success, partly because the private and development sectors prefer to maintain their independence. Research from the base-of-the-pyramid domain offers new insights into how collaborative interdependence between sectors can enhance the connection between profits and the alleviation of poverty. In this article, we identify the strengths and weaknesses of donor-led and enterprise-led value chain initiatives. We then explore how insights from the base-of-the-pyramid domain yield a set of interdependence-based collaboration strategies that can achieve more sustainable and scalable outcomes.

  6. Formation of pyramid-like nanostructures in MBE grown Si films on Si(001)

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Garzon, L.; Rodriguez-Cañas, E.; Munuera, Carmen; Esteban-Betegon, F.; Varela del Arco, Maria; Ocal, Carmen; Alonso, Maria; Ruiz, Ana

    2010-01-01

    The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometric scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks and square pit (inverted pyramids) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nano-scale entities (islands or pits) display certain self assembly and ordering, concerning size, shape and spacing. Film growth sequence follows the islands-coalescence-2D growth pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature.

  7. Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons

    PubMed Central

    Lourenço, Joana; Pacioni, Simone; Rebola, Nelson; van Woerden, Geeske M.; Marinelli, Silvia; DiGregorio, David; Bacci, Alberto

    2014-01-01

    In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information. PMID:25003184

  8. Adherence to the Food Guide Pyramid recommendations among Japanese Americans, Native Hawaiians, and whites: results from the Multiethnic Cohort Study.

    PubMed

    Sharma, Sangita; Murphy, Suzanne P; Wilkens, Lynne R; Shen, Lucy; Hankin, Jean H; Henderson, Brian; Kolonel, Laurence N

    2003-09-01

    The Food Guide Pyramid is designed to help Americans make healthful food choices. Whereas national data have been collected to examine adherence to the pyramid recommendations in whites, African-Americans, and Latinos, there are virtually no data available for Japanese Americans or Native Hawaiians. Here we present data on intakes of the Food Guide Pyramid food groups (as servings per day) as well as of the components of the pyramid tip (discretionary fat, added sugar, and alcohol) in these ethnic groups and examine adherence to each of the food group recommendations. Degree of adherence to the fruit group recommendation was similar among the ethnic groups and energy-intake categories, but adherence to the other recommendations was greatest for those consuming more than 2,800 kilocalories per day. However, subjects in this energy-intake group also consumed more than three times as much discretionary fat, added sugar, and alcohol.

  9. Optical characterization of GaAs pyramid microstructures formed by molecular beam epitaxial regrowth on pre-patterned substrates

    SciTech Connect

    Pritchard, R. E.; Oulton, R. F.; Stavrinou, P. N.; Parry, G.; Williams, R. S.; Ashwin, M. J.; Neave, J. H.; Jones, T. S.

    2001-07-01

    Arrays of GaAs pyramids with square (001) bases of length 1{endash}5 {mu}m have been fabricated by molecular beam epitaxy regrowth on pre-patterned GaAs (001) substrates. The optical properties of the pyramid faces have been studied by microreflection and microtransmission imaging measurements with light ({lambda}=900{endash}1000nm) incident through the pyramid base. Digitized charge coupled device images indicate that total internal reflection occurs at the {l_brace}110{r_brace} pyramid facets and that their reflectivities are greater than 80%, provided overgrowth of the facets does not occur. These properties suggest that such structures may be suitable as the top mirror in novel micron-scale vertical microcavity devices. {copyright} 2001 American Institute of Physics.

  10. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    PubMed

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  11. Static Posturography and Falls According to Pyramidal, Sensory and Cerebellar Functional Systems in People with Multiple Sclerosis

    PubMed Central

    Kalron, Alon; Givon, Uri; Frid, Lior; Dolev, Mark; Achiron, Anat

    2016-01-01

    Balance impairment is common in people with multiple sclerosis (PwMS) and frequently impacts quality of life by decreasing mobility and increasing the risk of falling. However, there are only scarce data examining the contribution of specific neurological functional systems on balance measures in MS. Therefore, the primary aim of our study was to examine the differences in posturography parameters and fall incidence according to the pyramidal, cerebellar and sensory systems functional systems in PwMS. The study included 342 PwMS, 211 women and mean disease duration of 8.2 (S.D = 8.3) years. The study sample was divided into six groups according to the pyramidal, cerebellar and sensory functional system scores, derived from the Expanded Disability Status Scale (EDSS) data. Static postural control parameters were obtained from the Zebris FDM-T Treadmill (zebris® Medical GmbH, Germany). Participants were defined as "fallers" and "non-fallers" based on their fall history. Our findings revealed a trend that PwMS affected solely in the pyramidal system, have reduced stability compared to patients with cerebellar and sensory dysfunctions. Moreover, the addition of sensory impairments to pyramidal dysfunction does not exacerbate postural control. The patients in the pure sensory group demonstrated increased stability compared to each of the three combined groups; pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups. As for fall status, the percentage of fallers in the pure pyramidal, cerebellar and sensory groups were 44.3%, 33.3% and 19.5%, respectively. As for the combined functional system groups, the percentage of fallers in the pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups were 59.7%, 40.7% and 65%, respectively. This study confirms that disorders in neurological functional systems generate different effects on postural control and incidence of falls in the MS population. From a clinical standpoint, the

  12. Postnatal Development of Synaptic Structure Proteins in Pyramidal Neuron Axon Initial Segments in Monkey Prefrontal Cortex

    PubMed Central

    Cruz, Dianne A.; Lovallo, Emily M.; Stockton, Steven; Rasband, Matthew; Lewis, David A.

    2009-01-01

    In the primate prefrontal cortex (PFC), the functional maturation of the synaptic connections of certain classes of GABA neurons is very complex. For example, the levels of both pre- and post-synaptic proteins that regulate GABA neurotransmission from the chandelier class of cortical interneurons to the axon initial segment (AIS) of pyramidal neurons undergo marked changes during both the perinatal period and adolescence in the monkey PFC. In order to understand the potential molecular mechanisms associated with these developmental refinements, we quantified the relative densities, laminar distributions, and lengths of pyramidal neuron AIS immunoreactive for ankyrin-G, ßIV spectrin, or gephyrin, three proteins involved in regulating synapse structure and receptor localization, in the PFC of rhesus monkeys ranging in age from birth through adulthood. Ankyrin-G- and ßIV spectrin-labeled AIS declined in density and length during the first six months postnatal, but then remained stable through adolescence and into adulthood. In contrast, the density of gephyrin-labeled AIS was stable until approximately 15 months of age and then markedly declined during adolescence. Thus, molecular determinants of the structural features that define GABA inputs to pyramidal neuron AIS in monkey PFC undergo distinct developmental trajectories with different types of changes occurring during the perinatal period and adolescence. In concert with previous data, these findings reveal a two-phase developmental process of GABAergic synaptic stability and GABA neurotransmission at chandelier cell inputs to pyramidal neurons that likely contributes to the protracted maturation of behaviors mediated by primate PFC circuitry. PMID:19330819

  13. Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones

    PubMed Central

    Keren, Naomi; Bar-Yehuda, Dan; Korngreen, Alon

    2009-01-01

    Constructing physiologically relevant compartmental models of neurones is critical for understanding neuronal activity and function. We recently suggested that measurements from multiple locations along the soma, dendrites and axon are necessary as a data set when using a genetic optimization algorithm to constrain the parameters of a compartmental model of an entire neurone. However, recordings from L5 pyramidal neurones can routinely be performed simultaneously from only two locations. Now we show that a data set recorded from the soma and apical dendrite combined with a parameter peeling procedure is sufficient to constrain a compartmental model for the apical dendrite of L5 pyramidal neurones. The peeling procedure was tested on several compartmental models showing that it avoids local minima in parameter space. Based on the requirements of this analysis procedure, we designed and performed simultaneous whole-cell recordings from the soma and apical dendrite of rat L5 pyramidal neurones. The data set obtained from these recordings allowed constraining a simplified compartmental model for the apical dendrite of L5 pyramidal neurones containing four voltage-gated conductances. In agreement with experimental findings, the optimized model predicts that the conductance density gradients of voltage-gated K+ conductances taper rapidly proximal to the soma, while the density gradient of the voltage-gated Na+ conductance tapers slowly along the apical dendrite. The model reproduced the back-propagation of the action potential and the modulation of the resting membrane potential along the apical dendrite. Furthermore, the optimized model provided a mechanistic explanation for the back-propagation of the action potential into the apical dendrite and the generation of dendritic Na+ spikes. PMID:19171651

  14. Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons.

    PubMed

    Chen, Xixi; Johnston, Daniel

    2006-12-01

    The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayed-rectifier K(+) channel in shaping the dendritic action potential at different membrane potentials.

  15. Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields

    NASA Astrophysics Data System (ADS)

    Müller, M.; Milchev, A.; Binder, K.; Landau, D. P.

    2008-08-01

    The interplay between surface and interface effects on binary AB mixtures that are confined in unconventional geometries is investigated by Monte Carlo simulations and phenomenological considerations. Both double-wedge and bi-pyramid confinements are considered and competing surface fields are applied at the two opposing halves of the system. Below the bulk critical temperature, domains of opposite order parameter are stabilized at the corresponding corners and an interface runs across the middle of the bi-partite geometry. Upon decreasing the temperature further one encounters a phase transition at which the AB symmetry is broken. The interface is localized in one of the two wedges or pyramids, respectively, and the order parameter is finite. In both cases, the transition becomes discontinuous in the thermodynamic limit but it is not a first-order phase transition. In an antisymmetric double wedge geometry the transition is closely related to the wedge-filling transition. Choosing the ratio of the cross-section L × L of the wedge and its length L y according to L y / L 3 = const., simulations and phenomenological consideration show that the new type of phase transition is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4 for the specific heat, order parameter, and susceptibility, respectively. In an antisymmetric bi-pyramid the transition occurs at the cone-filling transition of a single pyramid. The important critical fluctuations are associated with the uniform translation of the interface and they can be described by a Landau-type free energy. Monte Carlo results provide evidence that the coefficients of this Landau-type free energy exhibit a system-size dependence, which gives rise to critical amplitudes that diverge with system size and result in a transition that becomes discontinuous in the thermodynamic limit.

  16. Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells.

    PubMed

    Wooh, Sanghyuk; Yoon, Hyunsik; Jung, Jae-Hyun; Lee, Yong-Gun; Koh, Jai Hyun; Lee, Byoungho; Kang, Yong Soo; Char, Kookheon

    2013-06-11

    3D TiO2 photoanodes in dye-sensitized solar cells (DSCs) are fabricated by the soft lithographic technique for efficient light trapping. An extended strategy to the construction of randomized pyramid structure is developed by the conventional wet-etching of a silicon wafer for low-cost fabrication. Moreover, the futher enhancement of light absorption resulting in photocurrent increase is achieved by combining the 3D photoanode with a conventional scattering layer.

  17. Study of the lithology, petrology and rock chemistry for the Pyramid Mountains, New Mexico

    NASA Technical Reports Server (NTRS)

    Grant, S. K.

    1985-01-01

    Rock and soil samples were collected at 24 sites within the Pyramid Mountains of southwestern New Mexico. The site locations are specified as 10-acre plots within the Section, Township, and Range land survey system. Hand specimen are described. The specimen were analyzed by X-ray fluorescence. The technique is designed to obtain good analysis for silica. The other elements are run so that matrix factor logic can be used to adjust the silica intensities, and to compensate for the element interaction.

  18. Extreme Inverted Trophic Pyramid of Reef Sharks Supported by Spawning Groupers.

    PubMed

    Mourier, Johann; Maynard, Jeffrey; Parravicini, Valeriano; Ballesta, Laurent; Clua, Eric; Domeier, Michael L; Planes, Serge

    2016-08-08

    The extent of the global human footprint [1] limits our understanding of what is natural in the marine environment. Remote, near-pristine areas provide some baseline expectations for biomass [2, 3] and suggest that predators dominate, producing an inverted biomass pyramid. The southern pass of Fakarava atoll-a biosphere reserve in French Polynesia-hosts an average of 600 reef sharks, two to three times the biomass per hectare documented for any other reef shark aggregations [4]. This huge biomass of predators makes the trophic pyramid inverted. Bioenergetics models indicate that the sharks require ∼90 tons of fish per year, whereas the total fish production in the pass is ∼17 tons per year. Energetic theory shows that such trophic structure is maintained through subsidies [5-9], and empirical evidence suggests that sharks must engage in wide-ranging foraging excursions to meet energy needs [9, 10]. We used underwater surveys and acoustic telemetry to assess shark residency in the pass and feeding behavior and used bioenergetics models to understand energy flow. Contrary to previous findings, our results highlight that sharks may overcome low local energy availability by feeding on fish spawning aggregations, which concentrate energy from other local trophic pyramids. Fish spawning aggregations are known to be targeted by sharks, but they were previously believed to play a minor role representing occasional opportunistic supplements. This research demonstrates that fish spawning aggregations can play a significant role in the maintenance of local inverted pyramids in pristine marine areas. Conservation of fish spawning aggregations can help conserve shark populations, especially if combined with shark fishing bans.

  19. Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning.

    PubMed

    He, Hongbo; Mahnke, Amanda H; Doyle, Sukhjeevan; Fan, Ni; Wang, Chih-Chieh; Hall, Benjamin J; Tang, Ya-Ping; Inglis, Fiona M; Chen, Chu; Erickson, Jeffrey D

    2012-11-07

    The level and integrity of glutamate transmission during critical periods of postnatal development plays an important role in the refinement of pyramidal neuron dendritic arbor, synaptic plasticity, and cognition. Presently, it is not clear how excitatory transmission via the two predominant isoforms of the vesicular glutamate transporter (VGLUT1 and VGLUT2) participate in this process. To assess a neurodevelopmental role for VGLUT2 in pyramidal neuron maturation, we generated recombinant VGLUT2 knock-out mice and inactivated VGLUT2 throughout development using Emx1-Cre(+/+) knock-in mice. We show that VGLUT2 deficiency in corticolimbic circuits results in reduced evoked glutamate transmission, release probability, and LTD at hippocampal CA3-CA1 synapses during a formative developmental period (postnatal days 11-14). In adults, we find a marked reduction in the amount of dendritic arbor across the span of the dendritic tree of CA1 pyramidal neurons and reduced long-term potentiation and levels of synaptic markers spinophilin and VGLUT1. Loss of dendritic arbor is accompanied by corresponding reductions in the number of dendritic spines, suggesting widespread alterations in synaptic connectivity. Conditional VGLUT2 knock-out mice exhibit increased open-field exploratory activity yet impaired spatial learning and memory, endophenotypes similar to those of NMDA receptor knock-down mice. Remarkably, the impairment in learning can be partially restored by selectively increasing NMDA receptor-mediated glutamate transmission in adult mice by prolonged treatment with d-serine and a d-amino acid oxidase inhibitor. Our data indicate that VGLUT2 expression is pivotal to the proper development of mature pyramidal neuronal architecture and plasticity, and that such glutamatergic deficiency leads to cognitive malfunction as observed in several neurodevelopmental psychiatric disorders.

  20. Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells.

    PubMed

    Swann, J W; Brady, R J

    1984-02-01

    Penicillin's ability to produce epileptiform discharges in the CA3 region of hippocampus was examined both extracellularly and intracellularly in slices taken from immature rats 3-25 days of age. Comparisons were made to similar recordings from slices taken from mature rats. Between postnatal days 9 and 19 penicillin treatment resulted in spontaneous extracellular epileptiform bursts and coincident intracellular depolarization shifts. These events were more prolonged and less frequent than in slices from mature rats, and the bursts were followed by prolonged afterdischarges, often 20-30 s in duration. Intracellularly these afterdischarges consisted of large, rhythmic slow depolarizing potentials, which resulted in one or more action potentials in individual CA3 pyramidal cells. Extracellular field recordings showed these events to be simultaneous with synchronous discharges of a large population of CA3 pyramidal cells. In pups 1-2 weeks of age the ability of hippocampus to produce prolonged afterdischarges was associated with a slow depolarizing afterpotential, which followed the downstroke of the depolarization shift. Coincident with this afterpotential was a prolonged negative field in the CA3 pyramidal cell body layer. By postnatal days 24 and 25 the tendency to generate afterdischarges was greatly reduced. In addition, afterdischarges were observed infrequently in slices taken during the first postnatal week. Spike trains produced by prolonged intracellular current injection in slices taken on postnatal days 9-19 were followed by large afterhyperpolarizations and were unable to produce afterdischarges in individual CA3 pyramidal cells. Intracellular recordings from presumed glial cells suggest that extracellular K+ accumulation may play a role in the pronounced capacity of hippocampus from 1- and 2-week-old rat pups to generate prolonged afterdischarges.