Sample records for atom re-evaporation method

  1. Emission and evaporation properties of 75 at.% Re-25 at.% W mixed matrix impregnated cathode

    NASA Astrophysics Data System (ADS)

    Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; den Engelsen, Daniel; Miao, Naihua

    2018-01-01

    We present a comprehensive study on the phase, emission performance, surface composition, chemical states and evaporation properties of a 75 at.% Re-25 at.% W (75Re) mixed matrix impregnated cathode by several modern analyzers, including XRD, electron emission test device, in situ AES, XPS and Quartz Crystal Oscillation Instrument (QCOI). On the basis of experimental results, the adsorption energy and charge transfer of the Ba-O dipole adsorbed on cathode surface was investigated by the first-principles density functional theory calculations. The in situ AES analyses indicate that the atomic ratio of Ba:O of the active emission layer on the cathode surface converged to 3:2 for a conventional Ba-W cathode and to about 3:1 for the 75Re cathode. Due to the larger adsorption energy of Ba and Ba-O on 75Re cathode surface, the total evaporation rate of Ba and BaO in the 75Re cathode is much lower than that for the Ba-W cathode, which is agreed favorably with the experimental evaporation data. Our characterizations and calculations suggest that rhenium in the matrix of impregnated cathodes improves the stability of Ba-O dipole on the cathode surface and enhances the emission capability substantially.

  2. Simulation of Heterogeneous Atom Probe Tip Shapes Evolution during Field Evaporation Using a Level Set Method and Different Evaporation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Li, Dongsheng; Xu, Wei

    2015-04-01

    In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less

  3. Prediction of WBGT-based clothing adjustment values from evaporative resistance

    PubMed Central

    BERNARD, Thomas E.; ASHLEY, Candi D.; GARZON, Ximena P.; KIM, Jung-Hyun; COCA, Aitor

    2017-01-01

    Wet bulb globe temperature (WBGT) index is used by many professionals in combination with metabolic rate and clothing adjustments to assess whether a heat stress exposure is sustainable. The progressive heat stress protocol is a systematic method to prescribe a clothing adjustment value (CAV) from human wear trials, and it also provides an estimate of apparent total evaporative resistance (Re,T,a). It is clear that there is a direct relationship between the two descriptors of clothing thermal effects with diminishing increases in CAV at high Re,T,a. There were data to suggest an interaction of CAV and Re,T,a with relative humidity at high evaporative resistance. Because human trials are expensive, manikin data can reduce the cost by considering the static total evaporative resistance (Re,T,s). In fact, as the static evaporative resistance increases, the CAV increases in a similar fashion as Re,T,a. While the results look promising that Re,T,s can predict CAV, some validation remains, especially for high evaporative resistance. The data only supports air velocities near 0.5 m/s. PMID:29033404

  4. Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing

    NASA Astrophysics Data System (ADS)

    Jang, Junhyuk; Kim, Tackjin; Park, Sungbin; Kim, Gha-Young; Kim, Sihyoung; Lee, Sungjai

    2017-12-01

    The evaporation behaviors of Li, K, U, and rare earth (RE) chlorides were examined for the cathode process in pyroprocessing. The evaporation temperatures of the chlorides were evaluated in vacuum by measuring the weight decrease. In addition, an evaporation test up to 1473 K of the cathode process using a surrogate mixture of uranium and chlorides was conducted. It was found that LiCl evaporated more readily than the other chlorides. The weight of LiCl was rapidly decreased at temperatures above 981 K, while that of KCl was decreased above 1035 K, indicating the evaporation. UCl3 evaporated at temperatures above 1103 K. RE chlorides showed a similar evaporation behavior, evaporating first at 1158 K then rapidly evaporating at temperatures above 1230 K. Thus, the order of evaporation with increasing temperature was found to be LiCl < KCl < UCl3 < RE chlorides, with different RE chlorides evaporating at similar temperature. The surrogate test confirmed the observed evaporation trend of the chlorides during the cathode process, and revealed that the contamination of uranium remains by the back-reaction of RE chlorides is negligible.

  5. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  6. Dark Matter Detection Using Helium Evaporation and Field Ionization

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  7. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    PubMed

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  8. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Dmitriyenko, Margarita A.; Nyashina, Galina S.; Zhdanova, Alena O.; Vysokomornaya, Olga V.

    2016-02-01

    The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone) were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  9. Advance in multi-hit detection and quantization in atom probe tomography.

    PubMed

    Da Costa, G; Wang, H; Duguay, S; Bostel, A; Blavette, D; Deconihout, B

    2012-12-01

    The preferential retention of high evaporation field chemical species at the sample surface in atom-probe tomography (e.g., boron in silicon or in metallic alloys) leads to correlated field evaporation and pronounced pile-up effects on the detector. The latter severely affects the reliability of concentration measurements of current 3D atom probes leading to an under-estimation of the concentrations of the high-field species. The multi-hit capabilities of the position-sensitive time-resolved detector is shown to play a key role. An innovative method based on Fourier space signal processing of signals supplied by an advance delay-line position-sensitive detector is shown to drastically improve the time resolving power of the detector and consequently its capability to detect multiple events. Results show that up to 30 ions on the same evaporation pulse can be detected and properly positioned. The major impact of this new method on the quantization of chemical composition in materials, particularly in highly-doped Si(B) samples is highlighted.

  10. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    NASA Astrophysics Data System (ADS)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  11. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  12. Growth method for AIIIBV and AIVBVI heterostructures

    NASA Astrophysics Data System (ADS)

    Fedorchenko, I. V.; Kushkov, A. R.; Gaev, D. S.; Rabinovich, O. I.; Marenkin, S. F.; Didenko, S. I.; Legotin, S. A.; Orlova, M. N.; Krasnov, A. A.

    2018-02-01

    The results of nanoscale islet films grown by AIIIBV and AIVBVI incongruent evaporation compounds are discussed. The surface morphology structure was studied by atomic-force microscopy. It is shown that the distribution density and the characteristic dimensions of nanostructures depend on the evaporation temperature.

  13. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  14. Characteristics of growth of complex ferroelectric oxide films by plasma-ion sputtering

    NASA Astrophysics Data System (ADS)

    Mukhortov, V. M.; Golovko, Yu. I.; Mukhortov, Vl. M.; Dudkevich, V. P.

    1981-02-01

    An experimental investigation was made of the process of growth of a complex oxide film, such as BaTiO3 or (Ba, Sr)TiO3, by plasma-ion sputtering. It was found that ion bombardment of a ceramic target knocked out neutral excited atoms. These atoms lost energy away from the target by collisions and at a certain critical distance hcr they were capable of oxidation to produce BaO, TiO, TiO2, and SrO. Therefore, depending on the distance between the cathode and the substrate, the “construction” material arrived in the form of atoms or molecules of simple oxides. These two (atomic and molecular) deposition mechanisms corresponded to two mechanisms of synthesis and crystallization differing in respect of the dependences of the growth rate, unit cell parameters, and other structural properties on the deposition temperature. The role of re-evaporation and of oxidation-reduction processes was analyzed.

  15. Re-construction layer effect of LiNi0.8Co0.15Mn0.05O2 with solvent evaporation process

    NASA Astrophysics Data System (ADS)

    Park, Kwangjin; Park, Jun-Ho; Hong, Suk-Gi; Choi, Byungjin; Heo, Sung; Seo, Seung-Woo; Min, Kyoungmin; Park, Jin-Hwan

    2017-03-01

    The solvent evaporation method on the structural changes and surface chemistry of the cathode and the effect of electrochemical performance of Li1.0Ni0.8Co0.15Mn0.05O2 (NCM) has been investigated. After dissolving of Li residuals using minimum content of solvent in order to minimize the damage of pristine material and the evaporation time, the solvent was evaporated without filtering and remaining powder was re-heated at 700 °C in oxygen environment. Two kinds of solvent, de-ionized water and diluted nitric acid, were used as a solvent. The almost 40% of Li residuals were removed using solvent evaporation method. The NCM sample after solvent evaporation process exhibited an increase in the initial capacity (214.3 mAh/g) compared to the pristine sample (207.4 mAh/g) at 0.1C because of enhancement of electric conductivity caused by decline of Li residuals. The capacity retention of NCM sample after solvent evaporation process (96.0% at the 50th cycle) was also improved compared to that of the pristine NCM sample (90.6% at the 50th cycle). The uniform Li residual layer after solvent treated and heat treatment acted like a coating layer, leading to enhance the cycle performance. The NCM sample using diluted nitric acid showed better performance than that using de-ionized water.

  16. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    PubMed

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  17. Evaporative Cooling in a Holographic Atom Trap

    NASA Technical Reports Server (NTRS)

    Newell, Raymond

    2003-01-01

    We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.

  18. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    DOE PAGES

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  19. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  20. Comparison of rapid methods for chemical analysis of milligram samples of ultrafine clays

    USGS Publications Warehouse

    Rettig, S.L.; Marinenko, J.W.; Khoury, Hani N.; Jones, B.F.

    1983-01-01

    Two rapid methods for the decomposition and chemical analysis of clays were adapted for use with 20–40-mg size samples, typical amounts of ultrafine products (≤0.5-µm diameter) obtained by modern separation methods for clay minerals. The results of these methods were compared with those of “classical” rock analyses. The two methods consisted of mixed lithium metaborate fusion and heated decomposition with HF in a closed vessel. The latter technique was modified to include subsequent evaporation with concentrated H2SO4 and re-solution in HCl, which reduced the interference of the fluoride ion in the determination of Al, Fe, Ca, Mg, Na, and K. Results from the two methods agree sufficiently well with those of the “classical” techniques to minimize error in the calculation of clay mineral structural formulae. Representative maximum variations, in atoms per unit formula of the smectite type based on 22 negative charges, are 0.09 for Si, 0.03 for Al, 0.015 for Fe, 0.07 for Mg, 0.03 for Na, and 0.01 for K.

  1. Quantum Evaporation from Liquid 4He by Rotons

    NASA Astrophysics Data System (ADS)

    Hope, F. R.; Baird, M. J.; Wyatt, A. F. G.

    1984-04-01

    We have shown that rotons as well as phonons can evaporate 4He atoms in a single-quantum process. Measurements of the time of flight and the angular distribution of the evaporated atoms clearly distinguish between evaporation by phonons and rotons. The results indicate that energy and the parallel component of momentum are conserved at the free liquid surface.

  2. Fabrication of a trimer/single atom tip for gas field ion sources by means of field evaporation without tip heating.

    PubMed

    Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong

    2018-05-11

    A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.

  3. Thin film heater for removable volatile protecting coatings.

    PubMed

    Karim, Abid

    2013-01-01

    Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.

  4. Mapping energetics of atom probe evaporation events through first principles calculations.

    PubMed

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The influence of droplet evaporation on fuel-air mixing rate in a burner

    NASA Technical Reports Server (NTRS)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  6. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    PubMed

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  7. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu

    2011-09-15

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10{sup 7} atoms starting from 6.6x10{sup 9} thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically amore » possibility of producing large condensates, more than 10{sup 8} sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.« less

  8. Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation.

    PubMed

    Nasiri, Rasoul; Luo, Kai H

    2017-07-10

    For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.

  9. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  10. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    PubMed

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.

  11. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer

    PubMed Central

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer. PMID:26226439

  12. Method for synthesis of high quality graphene

    DOEpatents

    Lanzara, Alessandra [Piedmont, CA; Schmid, Andreas K [Berkeley, CA; Yu, Xiaozhu [Berkeley, CA; Hwang, Choonkyu [Albany, CA; Kohl, Annemarie [Beneditkbeuern, DE; Jozwiak, Chris M [Oakland, CA

    2012-03-27

    A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about 1500.degree. C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530.degree. C. or more, the carbon atoms self assemble themselves into graphene.

  13. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    PubMed

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  14. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  15. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  16. System Concept for Remote Measurement of Asteroid Molecular Composition

    NASA Astrophysics Data System (ADS)

    Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.

    2016-12-01

    We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.

  17. Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran B.; Lee, Paula B.; Updyke, Katelyn M.; Bones, David L.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A.

    2012-01-01

    Aqueous extracts of secondary organic aerosols (SOA) generated from the ozonolysis of d-limonene were subjected to dissolution, evaporation, and re-dissolution in the presence and absence of ammonium sulfate (AS). Evaporation with AS at pH 4-9 produced chromophores that were stable with respect to hydrolysis and had a distinctive absorption band at 500 nm. Evaporation accelerated the rate of chromophore formation by at least three orders of magnitude compared to the reaction in aqueous solution, which produced similar compounds. Absorption spectroscopy and high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry experiments suggested that the molar fraction of the chromophores was small (<2%), and that they contained nitrogen atoms. Although the colored products represented only a small fraction of SOA, their large extinction coefficients (>105 L mol-1 cm-1 at 500 nm) increased the effective mass absorption coefficient of the residual organics in excess of 103 cm2 g-1 - a dramatic effect on the optical properties from minor constituents. Evaporation of SOA extracts in the absence of AS resulted in the production of colored compounds only when the SOA extract was acidified to pH ˜ 2 with sulfuric acid. These chromophores were produced by acid-catalyzed aldol condensation, followed by a conversion into organosulfates. The presence of organosulfates was confirmed by high resolution mass spectrometry experiments. Results of this study suggest that evaporation of cloud or fog droplets containing dissolved organics leads to significant modification of the molecular composition and serves as a potentially important source of light-absorbing compounds.

  18. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  19. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    PubMed

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  20. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  1. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositionalmore » errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.« less

  2. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    PubMed

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    PubMed

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C 12 H 26 . All results were obtained by performing molecular dynamics simulations of liquid C 12 H 26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  4. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    PubMed

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nonvolatile and Cryogenic-compatible Quantum Memory Devices (QuMEM)

    DTIC Science & Technology

    2016-06-01

    construction including: • 4” SiO2 /Si substrates and wafer/sample holders • Tweezers and wafer scribe • Safety glasses , gloves, and fab wipes • Probe tips...Cleaving of NbSe2 with Scotch™ Tape method ............................................................ 56 59. Transfer of NbSe2 atomic crystals to SiO2 ...O2 plasma + optional CF4 5 Top superconductor electrode evaporation Thermal Evaporation at SDSU MEMS Lab P+ Si Handle Wafer SiO2 (Oxide

  6. Nonvolatile and Cryogenic-Compatible Quantum Memory Devices (QuMEM)

    DTIC Science & Technology

    2016-06-01

    construction including: • 4” SiO2 /Si substrates and wafer/sample holders • Tweezers and wafer scribe • Safety glasses , gloves, and fab wipes • Probe tips...Cleaving of NbSe2 with Scotch™ Tape method ............................................................ 56 59. Transfer of NbSe2 atomic crystals to SiO2 ...O2 plasma + optional CF4 5 Top superconductor electrode evaporation Thermal Evaporation at SDSU MEMS Lab P+ Si Handle Wafer SiO2 (Oxide

  7. Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation.

    PubMed

    Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui

    2017-11-01

    Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.

  8. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valderrama, B.; Henderson, H.B.; Gan, J.

    2015-04-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO 2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporationmore » regimes are present in UO 2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO 2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.« less

  9. Designing Superhard Materials by Incorporating Boron Into Heavy Transition Metals

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Li, Anhu; Zhao, Jianzhi; Zhang, Wenqing

    First-principles calculations on the incompressibility, elasticity and hardness of the Os, OsB2, Re, and ReB2 materials have systematically been performed by the plane-wave basis pseudopotential method. Transition metals Os and Re, which have high bulk modulus but low hardness, can be converted into hard materials by combining them with small B atoms. Moreover, electronic and structural mechanisms of ReB2 and OsB2 are analyzed in detail and compared. It is shown that incorporating small B atoms into heavy transition metals should be a valid pathway to obtain new superhard materials.

  10. Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest

    Treesearch

    Benjamin N. Sulman; Daniel Tyler Roman; Todd M. Scanlon; Lixin Wang; Kimberly A. Novick

    2016-01-01

    The eddy covariance (EC) method is routinely used to measure net ecosystem fluxes of carbon dioxide (CO2) and evapotranspiration (ET) in terrestrial ecosystems. It is often desirable to partition CO2 flux into gross primary production (GPP) and ecosystem respiration (RE), and to partition ET into evaporation and...

  11. Reflectance of evaporated rhenium and tungsten films in the vacuum ultraviolet from 300 to 2000 A.

    NASA Technical Reports Server (NTRS)

    Cox, J. T.; Hass, G.; Ramsey, J. B.; Hunter, W. R.

    1972-01-01

    Discussion of the dependence of the reflectance of Re and W on the substrate temperature during deposition, film thickness, and aging during exposure to air. Re and W of 99.99% purity were evaporated with a 6-kW fine-focused electron gun and deposited on glass and fused quartz plates of various temperatures ranging from 40 to 500 C. With Re, films of highest reflectance were obtained by evaporation onto unheated substrates, whereas with W, heating of the substrate greatly increased the reflectance of the deposited films. For both metals, the reflectance losses during extended exposure to air remained rather small, indicating that the oxide films formed on both film materials at room temperature were very thin.

  12. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less

  13. Dynamic atomic layer epitaxy of InN on/in +c-GaN matrix: Effect of “In+N” coverage and capping timing by GaN layer on effective InN thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp; Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015; Kusakabe, Kazuhide

    2016-01-11

    The growth front in the self-organizing and self-limiting epitaxy of ∼1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 600 °C, far higher than the typical upper critical temperature of 500 °C in MBE. It was confirmed that 2 ML-thick InN wells can be frozen/inserted in GaN matrix at 620 °C, but it was found that N atoms at the growth front tend to selectively re-evaporate more quickly than In atoms at temperatures highermore » than 650 °C. As a result, the effective thickness of inserted InN wells in the GaN matrix at 660–670 °C were basically 1 ML or sub-ML, even though they were capped by a GaN barrier at the time of 2 ML “In+N” coverage. Furthermore, it was found that the N atoms located below In atoms in the dynamic atomic layer epitaxy growth front had remarkably weaker bonding to the +c-GaN surface.« less

  14. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    PubMed

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  15. Method for producing uranium atomic beam source

    DOEpatents

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  16. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    PubMed

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  17. Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diercks, David R., E-mail: ddiercks@mines.edu; Gorman, Brian P.; Kirchhofer, Rita

    2013-11-14

    The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At themore » lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.« less

  18. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    NASA Astrophysics Data System (ADS)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  19. Quantized evaporation from liquid helium

    NASA Astrophysics Data System (ADS)

    Baird, M. J.; Hope, F. R.; Wyatt, A. F. G.

    1983-07-01

    The atomic-level kinetics of evaporation from a liquid surface are investigated experimentally for the case of liquid He-4. A pulse of phonons was injected by a submerged thin-film heater into purified He-4 (cooled to less than about 0.1 K) and collimated into a beam directed at the liquid surface; the atoms liberated at the surface were detected by a bolometer. The energy of the incident phonon and the kinetic energy of the liberated atom were calculated by determining the group velocity (from the minimum time elapsed between the beginning of the heater pulse and the arrival of the leading edge of the signal) and combining it with neutron-measured excitation dispersion data. Measurements were also made with a mixture of He-3 and He-4. The results are shown to be in good agreement with theoretical predictions of the phonon-induced quantum evaporation of surface atoms: the energy of the phonon is divided between the kinetic energy of the liberated atom and the energy required to overcome the binding forces.

  20. CHARGE BOTTLE FOR A MASS SEPARATOR

    DOEpatents

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  1. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    NASA Astrophysics Data System (ADS)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  2. Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions

    NASA Astrophysics Data System (ADS)

    Thompson, Michael C.; Baraban, Joshua H.; Stanton, John F.; Weber, J. Mathias

    2015-06-01

    We use Ar predissociation and vibrational autodetachment below 2100 wn to obtain vibrational spectra of the low-energy modes of nitromethane anion. We interpret the spectra using anharmonic calculations, which reveal strong mode coupling and Fermi resonances. Not surprisingly, the number of evaporated Ar atoms varies with photon energy, and we follow the propensity of evaporating two versus one Ar atoms as photon energy increases. The photodetachment spectrum is discussed in the context of threshold effects and the importance of hot bands.

  3. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  4. Effect of deposition rate on melting point of copper film catalyst substrate at atomic scale

    NASA Astrophysics Data System (ADS)

    Marimpul, Rinaldo; Syuhada, Ibnu; Rosikhin, Ahmad; Winata, Toto

    2018-03-01

    Annealing process of copper film catalyst substrate was studied by molcular dynamics simulation. This copper film catalyst substrate was produced using thermal evaporation method. The annealing process was limited in nanosecond order to observe the mechanism at atomic scale. We found that deposition rate parameter affected the melting point of catalyst substrate. The change of crystalline structure of copper atoms was observed before it had been already at melting point. The optimum annealing temperature was obtained to get the highest percentage of fcc structure on copper film catalyst substrate.

  5. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    NASA Astrophysics Data System (ADS)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  6. Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy.

    PubMed

    Lee, J H; Lee, B H; Kim, Y T; Kim, J J; Lee, S Y; Lee, K P; Park, C G

    2014-03-01

    Laser-assisted atom probe tomography has opened the way to three-dimensional visualization of nanostructures. However, many questions related to the laser-matter interaction remain unresolved. We demonstrate that the interface reaction can be activated by laser-assisted field evaporation and affects the quantification of the interfacial composition. At a vertical interface between Si and SiO2, a SiO2 molecule tends to combine with a Si atom and evaporate as a SiO molecule, reducing the evaporation field. The features of the reaction depend on the direction of the laser illumination and the inner structure of tip. A high concentration of SiO is observed at a vertical interface between Si and SiO2 when the Si column is positioned at the center of the tip, whereas no significant SiO is detected when the SiO2 layer is at the center. The difference in the interfacial compositions of two samples was due to preferential evaporation of the Si layer. This was explained using transmission electron microscopy observations before and after atom probe experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.

    2013-10-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.

  8. Preparation of Mo-Re-C samples containing Mo{sub 7}Re{sub 13}C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya

    Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less

  9. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement.

    PubMed

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ∼6nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  10. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  11. Effects of Na and secondary phases on physical properties of SnS thin film after sulfurization process

    NASA Astrophysics Data System (ADS)

    Kawano, Yu; Kodani, Yuto; Chantana, Jakapan; Minemoto, Takashi

    2016-09-01

    2.48%-efficient SnS thin film solar cell is obtained under thermal evaporation method by optimizing growth temperature. The method to fabricate SnS films is limited by growth temperature, which should not be over 200 °C to prevent re-evaporation of SnS. To further enhance SnS grains, SnS films were annealed in H2S gas from 200 to 500 °C, namely sulfurization process. SnS grain size was increased with sulfurization temperature of above 400 °C however, secondary phase grains on film’s surface were observed owing to the accumulated Na, diffused from soda-lime glass substrate into the film, thus deteriorating film’s quality, implied by Urbach energy.

  12. Effect of Mg or Ag addition on the evaporation field of Al.

    PubMed

    Aruga, Yasuhiro; Nako, Hidenori; Tsuneishi, Hidemasa; Hasegawa, Yuki; Tao, Hiroaki; Ichihara, Chikara; Serizawa, Ai

    2013-09-01

    It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al(2+) ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al(2+) ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    PubMed

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Programmable solid state atom sources for nanofabrication.

    PubMed

    Han, Han; Imboden, Matthias; Stark, Thomas; del Corro, Pablo G; Pardo, Flavio; Bolle, Cristian A; Lally, Richard W; Bishop, David J

    2015-06-28

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ∼1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.

  15. Uranium and Calcium Isotope Ratio Measurements using the Modified Total Evaporation Method in TIMS

    NASA Astrophysics Data System (ADS)

    Richter, S.; Kuehn, H.; Berglund, M.; Hennessy, C.

    2010-12-01

    A new version of the "modified total evaporation" (MTE) method for isotopic analysis by multi-collector thermal ionization mass spectrometry (TIMS), with high analytical performance and designed in a more user-friendly and routinely applicable way, is described in detail. It is mainly being used for nuclear safeguards measurements of U and Pu and nuclear metrology, but can readily be applied to other scientific tasks in geochemistry, e.g. for Sr, Nd and Ca, as well. The development of the MTE method was organized in collaboration of several "key nuclear mass spectrometry laboratories", namely the New Brunswick Laboratory (NBL), the Institute for Transuranium Elements (ITU), the Safeguards Analytical Laboratory (now Safeguards Analytical Services, SGAS) of the International Atomic Energy Agency (IAEA) and the Institute for Reference Materials and Measurements (IRMM), with IRMM taking the leading role. The manufacturer of the TRITON TIMS instrument, Thermo Fisher Scientific, integrated this method into the software of the instrument. The development has now reached its goal to become a user-friendly and routinely useable method for uranium isotope ratio measurements with high precision and accuracy. Due to the use of the “total evaporation” (TE) method the measurement of the "major" uranium isotope ratio 235U/238U is routinely being performed with a precision of 0.01% to 0.02%. The use of a (certified) reference material measured under comparable conditions is emphasized to achieve an accuracy at a level of 0.02% - depending on the stated uncertainty of the certified value of the reference material. In contrast to the total evaporation method (TE), in the MTE method the total evaporation sequence is interrupted on a regular basis to allow for correction for background from peak tailing, internal calibration of a secondary electron multiplier (SEM) detector versus the Faraday cups, and ion source re-focusing. Therefore, the most significant improvement using the MTE method is in the analytical performance achieved for the "minor" ratios 234U/238U and 236U/238U. The MTE method is now routinely used at all collaborating laboratories and possibly more in the future. Additional applications for the MTE method, e.g. to take advantage of the good external precision in combination with the possibilities of internal background and detector calibrations or mass jumps between different cup configurations, are presented as well. One interesting application concerns new absolute isotope ratio measurements for Ca with an unprecedented level of accuracy. This is important because up to now most reported Ca isotope data are only calculated as relative deviations from a standard like NIST-SRM 915. Using the MTE method measurements on new gravimetrically prepared Ca isotope mixtures were performed. A significantly improved level of accuracy at the level of about 0.02% for both the 42Ca/40Ca and 44Ca/40Ca ratios was obtained.

  16. Erosion and re-deposition of lithium and boron coatings under high-flux plasma bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler Wayne

    2015-01-01

    Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less

  17. Towards understanding the mechanism of rhenium and osmium precipitation in tungsten and its implication for tungsten-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Deng, Huiqiu; Lu, Gang; Lu, Guang-Hong

    2018-07-01

    Using a first-principles method in combination with thermodynamic models, we investigate the interaction between rhenium/osmium (Re/Os) and defects to explore the mechanism of radiation-induced Re/Os precipitation in tungsten (W). We demonstrate that radiation-induced defects play a key role in the solute precipitation in W, especially for self-interstitial atoms (SIAs). The presence of SIAs can significantly reduce the total nucleation free energy change of Re/Os, and thus facilitate the nucleation of Re/Os in W. Further, SIA is shown to be easily trapped by Re/Os once overcoming a low energy barrier, forming a W-Re/Os mixed dumbbell. Such W-Re/Os dumbbell forms a high stable Re/Os-Re/Os dumbbell structure with the substitutional Re/Os atoms, which can serve as a trapping centre for subsequent interstitial-Re/Os, leading to the growth of Re/Os-rich clusters. Consequently, an interstitial-mediated migration and aggregation mechanism for Re/Os precipitation in W has been proposed. Our results reveale that the alloying elements-defects interaction has significantly effect on their behaviors under irradiation, which should be considered in the design of W-based alloys for future fusion devices.

  18. Development of an Evaporation Sub-model and Simulation of Multiple Droplet Impingement in Volume of Fluid Method

    NASA Astrophysics Data System (ADS)

    Potham, Sathya Prasad

    Droplet collision and impingement on a substrate are widely observed phenomenon in many applications like spray injection of Internal Combustion Engines, spray cooling, spray painting and atomizers used in propulsion applications. Existing Lagrangian models do not provide a comprehensive picture of the outcome of these events and may involve model constants requiring experimental data for validation. Physics based models like Volume of Fluid (VOF) method involve no parametric tuning and are more accurate. The aim of this thesis is to extend the basic VOF method with an evaporation sub-model and implement in an open source Computational Fluid Dynamics (CFD) software, OpenFOAM. The new model is applied to numerically study the evaporation of spherical n-heptane droplets impinging on a hot wall at atmospheric pressure and a temperature above the Leidenfrost temperature. An additional vapor phase is introduced apart from the liquid and gas phases to understand the mixing and diffusion of vapor and gas phases. The evaporation model is validated quantitatively and qualitatively with fundamental problems having analytical solutions and published results. The effect of droplet number and arrangement on evaporation is studied by three cases with one (Case 1), two (Case 2) and four (Case 3) droplets impinging on hot wall in film boiling regime at a fixed temperature of wall and a constant non-dimensional distance between droplets. Droplet lift and spread, surface temperature, heat transfer, and evaporation rate are examined. It was observed that more liquid mass evaporated in Case 1 compared to the other cases. Droplet levitation begins early in Case 1 and very high levitation observed was partially due to contraction of its shape from elongated to a more circular form. Average surface temperature was also considerably reduced in Case 1 due to high droplet levitation.

  19. Super-Maxwellian helium evaporation from pure and salty water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the densitymore » profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.« less

  20. Epitaxial Growth of Rhenium with Sputtering

    DTIC Science & Technology

    2016-05-06

    corresponds to two atomic Re layers , considering that the c-axis lattice constant of the tri- atomic layered hcp Re unit cell is ~4.5 Å. Frequently, two...Å) corresponds to two Re atomic layers since the c-axis lattice constant of hcp Re, which is composed of three Re atomic layers , is ~4.5 Å...The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin (~2 nm) seed layer

  1. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jin; Kim, Dohyun, E-mail: dohyun.kim@mju.ac.kr; Chung, Minsub

    2015-01-15

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (−5.1 °C/s) and a low freezing temperature (−14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  2. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  3. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    PubMed

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  4. Crystal structure of the ternary silicide Gd2Re3Si5.

    PubMed

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å.

  5. Evaporation of Water Droplets Moving Through High-Temperature Gases

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Strizhak, P. A.

    2018-01-01

    With the use of high-speed recording and diagnostic facilities, an experimental study has been made of the evaporation of droplets (of characteristic size Rm ≈ 0.05-0.035 mm) of atomized flow of water-based suspensions with typical soil impurities (silt and clay) moving in a high-temperature (about 1100 K) gaseous medium (with the example of acetone combustion products). The relative mass concentration of soil components in the suspension was varied over the range of γ = 0-1%. A strong influence of the above impurities on the main characteristic of evaporation — the relative change in the droplet radius ΔR — has been established. The influence of the initial temperature (varied over the range of Tw = 278-320 K) of the atomized suspension on the evaporation rate of the latter has been determined. It has been shown that the values of integral characteristics of the process of evaporation of suspensions with soil impurities can be much (2-3 times) higher than for water without these components.

  6. Planar regions of GaAs (001) prepared by Ga droplet motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Changxi, E-mail: changxi.zheng@monash.edu; Tang, Wen-Xin; Jesson, David E., E-mail: jessonDE@cardiff.ac.uk

    2016-07-15

    The authors describe a simple method for obtaining planar regions of GaAs (001) suitable for surface science studies. The technique, which requires no buffer layer growth, atomic hydrogen source, or the introduction of As flux, employs controllable Ga droplet motion to create planar trail regions during Langmuir evaporation. Low-energy electron microscopy/diffraction techniques are applied to monitor the droplet motion and characterize the morphology and the surface reconstruction. It is found that the planar regions exhibit atomic flatness at the level of a high-quality buffer layer.

  7. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    NASA Astrophysics Data System (ADS)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  8. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  9. Theoretical studies on the electronic structures and photoelectron spectra of tri-rhenium oxide clusters: Re3O(n)(-) and Re3O(n) (n=1-6).

    PubMed

    Zhou, Qi; Gong, Wei-Chao; Xie, Lu; Zheng, Cun-Gong; Zhang, Wei; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2014-01-03

    Density functional theory (DFT) calculations are performed to study the structural and electronic properties of tri-rhenium oxide clusters Re3On(-/0) (n=1-6). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level are carried out to search for the global minima for both the anions and the neutrals. For the anions, the first two O atoms prefer the same corner position of a Re3 triangle. Whereas, Re3O3(-) possesses a C2v symmetry with one bridging and two terminal O atoms. The next three O atoms (n=4-6) are adding sequentially on the basis of Re3O3(-) motif, i.e., adding one terminal O atom for Re3O4(-), one terminal and one bridging O atoms for Re3O5(-), and one terminal and two bridging O atoms for Re3O6(-), respectively. Their corresponding neutral species are similar to the anions in geometry except Re3O4 and Re3O5. Molecular orbital analyses are employed to investigate the chemical bonding and structural evolution in these tri-rhenium oxide clusters. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    NASA Astrophysics Data System (ADS)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  11. Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers.

    PubMed

    Diercks, David R; Gorman, Brian P; Mulders, Johannes J L

    2017-04-01

    Six precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.

  12. Pulse regime in formation of fractal fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com

    The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gasmore » flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.« less

  13. Buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  14. Gold in natural water: A method of determination by solvent extraction and electrothermal atomization

    USGS Publications Warehouse

    McHugh, J.B.

    1984-01-01

    A method has been developed using electrothermal atomization to effectively determine the amount of gold in natural water within the nanogram range. The method has four basic steps: (1) evaporating a 1-L sample; (2) putting it in hydrobromic acid-bromine solution; (3) extracting the sample with methyl-isobutyl-ketone; and (4) determining the amount of gold using an atomic absorption spectrophotometer. The limit of detection is 0.001 ??g gold per liter. Results from three studies indicate, respectively, that the method is precise, effective, and free of interference. Specifically, a precision study indicates that the method has a relative standard deviation of 16-18%; a recovery study indicates that the method recovers gold at an average of 93%; and an interference study indicates that the interference effects are eliminated with solvent extraction and background correction techniques. Application of the method to water samples collected from 41 sites throughout the Western United States and Alaska shows a gold concentration range of < 0.001 to 0.036 ??g gold per liter, with an average of 0.005 ??g/L. ?? 1984.

  15. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, Steven D.

    1997-01-01

    A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.

  16. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen; Foltz, Heinrich

    2014-11-01

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited onmore » Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.« less

  17. Modeling and Prediction of Drug Dispersability in Polyvinylpyrrolidone-Vinyl Acetate Copolymer Using a Molecular Descriptor.

    PubMed

    DeBoyace, Kevin; Buckner, Ira S; Gong, Yuchuan; Ju, Tzu-Chi Rob; Wildfong, Peter L D

    2018-01-01

    The expansion of a novel in silico model for the prediction of the dispersability of 18 model compounds with polyvinylpyrrolidone-vinyl acetate copolymer is described. The molecular descriptor R3m (atomic mass weighted 3rd-order autocorrelation index) is shown to be predictive of the formation of amorphous solid dispersions at 2 drug loadings (15% and 75% w/w) using 2 preparation methods (melt quenching and solvent evaporation using a rotary evaporator). Cosolidified samples were characterized using a suite of analytical techniques, which included differential scanning calorimetry, powder X-ray diffraction, pair distribution function analysis, polarized light microscopy, and hot stage microscopy. Logistic regression was applied, where appropriate, to model the success and failure of compound dispersability in polyvinylpyrrolidone-vinyl acetate copolymer. R3m had combined prediction accuracy greater than 90% for tested samples. The usefulness of this descriptor appears to be associated with the presence of heavy atoms in the molecular structure of the active pharmaceutical ingredient, and their location with respect to the geometric center of the molecule. Given the higher electronegativity and atomic volume of these types of atoms, it is hypothesized that they may impact the molecular mobility of the active pharmaceutical ingredient, or increase the likelihood of forming nonbonding interactions with the carrier polymer. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Time-of-flight atom-probe field-ion microscope for the study of defects in metals. Report No. 2357. [W--25 at. % Re

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, T.M.; Wagner, A.; Berger, A.S.

    1975-06-01

    An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10/sup -6/ torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450/sup 0/K. Specimens can also be irradiated in-situ with any low-energymore » (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s/sup -1/. In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy. (auth)« less

  19. Crystal structure of the ternary silicide Gd2Re3Si5

    PubMed Central

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-01-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta­silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo­octa­hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å. PMID:25552967

  20. Electron beam assisted field evaporation of insulating nanowires/tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  1. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach

    NASA Astrophysics Data System (ADS)

    Merlin, O.; Stefan, V. G.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Gentine, P.; Tallec, T.; Ezzahar, J.; Bircher, S.; Beringer, J.; Khabba, S.

    2016-05-01

    A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency (SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil database composed of more than 30 sites around the world, a clay fraction range of 0.02-0.56, a sand fraction range of 0.05-0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance (rss) formulation based on surface soil moisture (θ) and two resistance parameters rss,ref and θefolding. The data-driven approach aims to express both parameters as a function of observable data including meteorological forcing, cut-off soil moisture value θ1/2 at which SEE=0.5, and first derivative of SEE at θ1/2, named Δθ1/2-1. An analytical relationship between >(rss,ref;θefolding) and >(θ1/2;Δθ1/2-1>) is first built by running a soil energy balance model for two extreme conditions with rss = 0 and rss˜∞ using meteorological forcing solely, and by approaching the middle point from the two (wet and dry) reference points. Two different methods are then investigated to estimate the pair >(θ1/2;Δθ1/2-1>) either from the time series of SEE and θ observations for a given site, or using the soil texture information for all sites. The first method is based on an algorithm specifically designed to accomodate for strongly nonlinear SEE>(θ>) relationships and potentially large random deviations of observed SEE from the mean observed SEE>(θ>). The second method parameterizes θ1/2 as a multi-linear regression of clay and sand percentages, and sets Δθ1/2-1 to a constant mean value for all sites. The new model significantly outperformed the evaporation modules of ISBA (Interaction Sol-Biosphère-Atmosphère), H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land), and CLM (Community Land Model). It has potential for integration in various land-surface schemes, and real calibration capabilities using combined thermal and microwave remote sensing data.

  2. Water-walled microfluidics for high-optical finesse cavities

    NASA Astrophysics Data System (ADS)

    Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal

    2016-01-01

    In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ~99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries.

  3. Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests.

    PubMed

    Le, Trang T; Simmons, W Kyle; Misaki, Masaya; Bodurka, Jerzy; White, Bill C; Savitz, Jonathan; McKinney, Brett A

    2017-09-15

    Classification of individuals into disease or clinical categories from high-dimensional biological data with low prediction error is an important challenge of statistical learning in bioinformatics. Feature selection can improve classification accuracy but must be incorporated carefully into cross-validation to avoid overfitting. Recently, feature selection methods based on differential privacy, such as differentially private random forests and reusable holdout sets, have been proposed. However, for domains such as bioinformatics, where the number of features is much larger than the number of observations p≫n , these differential privacy methods are susceptible to overfitting. We introduce private Evaporative Cooling, a stochastic privacy-preserving machine learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the privacy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic gases to perform backward stepwise privacy-preserving feature selection. On simulated data with main effects and statistical interactions, we compare accuracies on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reusable holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature selection and random forest classification. In simulations where interactions exist between attributes, private Evaporative Cooling provides higher classification accuracy without overfitting based on an independent validation set. In simulations without interactions, thresholdout with random forest and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods to human brain resting-state fMRI data from a study of major depressive disorder. Code available at http://insilico.utulsa.edu/software/privateEC . brett-mckinney@utulsa.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Imaging of radiation damage using complementary field ion microscopy and atom probe tomography.

    PubMed

    Dagan, Michal; Hanna, Luke R; Xu, Alan; Roberts, Steve G; Smith, George D W; Gault, Baptiste; Edmondson, Philip D; Bagot, Paul A J; Moody, Michael P

    2015-12-01

    Radiation damage in tungsten and a tungsten-tantalum alloy, both of relevance to nuclear fusion research, has been characterized using a combination of field ion microscopy (FIM) imaging and atom probe tomography (APT). While APT provides 3D analytical imaging with sub-nanometer resolution, FIM is capable of imaging the arrangements of single atoms on a crystal lattice and has the potential to provide insights into radiation induced crystal damage, all the way down to its smallest manifestation--a single vacancy. This paper demonstrates the strength of combining these characterization techniques. In ion implanted tungsten, it was found that atomic scale lattice damage is best imaged using FIM. In certain cases, APT reveals an identifiable imprint in the data via the segregation of solute and impurities and trajectory aberrations. In a W-5at%Ta alloy, a combined APT-FIM study was able to determine the atomic distribution of tantalum inside the tungsten matrix. An indirect method was implemented to identify tantalum atoms inside the tungsten matrix in FIM images. By tracing irregularities in the evaporation sequence of atoms imaged with FIM, this method enables the benefit of FIM's atomic resolution in chemical distinction between the two species. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Field evaporation of ZnO: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J.

    2015-07-14

    With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporationmore » field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.« less

  6. Determination of 99Tc in fresh water using TRU resin by ICP-MS.

    PubMed

    Guérin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila; de Silva, Nimal; Cornett, Jack; Dai, Xiongxin

    2017-10-02

    Technetium-99 ( 99 Tc) determination at trace level by inductively coupled plasma mass spectrometry (ICP-MS) is challenging because there is no readily available appropriate Tc isotopic tracer. A new method using Re as a recovery tracer to determine 99 Tc in fresh water samples, which does not require any evaporation step, was developed. Tc(VII) and Re(VII) were pre-concentrated on a small anion exchange resin (AER) cartridge from one litre of water sample. They were then efficiently eluted from the AER using a potassium permanganate (KMnO 4 ) solution. After the reduction of KMnO 4 in 2 M sulfuric acid solution, the sample was passed through a small TRU resin cartridge. Tc(VII) and Re(VII) retained on the TRU resin were eluted using near boiling water, which can be directly used for the ICP-MS measurement. The results for method optimisation, validation and application were reported. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  8. Breaking the icosahedra in boron carbide

    PubMed Central

    Xie, Kelvin Y.; An, Qi; Sato, Takanori; Breen, Andrew J.; Ringer, Simon P.; Goddard, William A.; Cairney, Julie M.; Hemker, Kevin J.

    2016-01-01

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials. PMID:27790982

  9. Compact setup for the production of {sup 87}Rb |F = 2, m{sub F} = + 2〉 Bose-Einstein condensates in a hybrid trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolli, Raffaele; Venturelli, Michela; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk

    We present a compact experimental apparatus for Bose-Einstein condensation of {sup 87}Rb in the |F  =  2, m{sub F} = + 2〉 state. A pre-cooled atomic beam of {sup 87}Rb is obtained by using an unbalanced magneto-optical trap, allowing controlled transfer of trapped atoms from the first vacuum chamber to the science chamber. Here, atoms are transferred to a hybrid trap, as produced by overlapping a magnetic quadrupole trap with a far-detuned optical trap with crossed beam configuration, where forced radiofrequency evaporation is realized. The final evaporation leading to Bose-Einstein condensation is then performed by exponentially lowering the optical trapmore » depth. Control and stabilization systems of the optical trap beams are discussed in detail. The setup reliably produces a pure condensate in the |F = 2, m{sub F} = + 2〉 state in 50 s, which includes 33 s loading of the science magneto-optical trap and 17 s forced evaporation.« less

  10. Grid Based Technologies for in silico Screening and Drug Design.

    PubMed

    Potemkin, Vladimir; Grishina, Maria

    2018-03-08

    Various techniques for rational drug design are presented in the paper. The methods are based on a substitution of antipharmacophore atoms of the molecules of training dataset by new atoms and/or group of atoms increasing the atomic bioactivity increments obtained at a SAR study. Furthermore, a design methodology based on the genetic algorithm DesPot for discrete optimization and generation of new drug candidate structures is described. Additionally, wide spectra of SAR approaches (3D/4D QSAR interior and exterior-based methods - BiS, CiS, ConGO, CoMIn, high-quality docking method - ReDock) using MERA force field and/or AlteQ quantum chemical method for correct prognosis of bioactivity and bioactive probability is described. The design methods are implemented now at www.chemosophia.com web-site for online computational services. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  12. Formation of thin film like assembly of exfoliated C3N4 nanoflakes by solvent non-evaporative method using centrifuge

    NASA Astrophysics Data System (ADS)

    Tejasvi, Ravi; Basu, Suddhasatwa

    2017-12-01

    A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.

  13. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    DTIC Science & Technology

    2007-03-30

    Langmuir - Blodgett and self-assembly methods, WNTs are patterned selectively onto various substrates [3,4]. hou et al. assembled SWNTs into aligned...dispersion usually decreases with increasing ionic concentration, it is suggested that chloride ions are produced by dissociating from acid chloride groups...patterns can be attributed to the Marangoni effect and diffusion-limited aggregation (DLA) in the liquid film during droplet evaporation t different

  14. A New Finite-Conductivity Droplet Evaporation Model Including Liquid Turbulence Effect

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing droplets of an evaporating spray is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen [9]. This finite conductivity model is based on the two-temperature film theory in which the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity for the liquid-side film thickness. Both one-way and two-way coupled calculations were performed to investigate the performance cf this model against the published experimental data.

  15. Evaluation of structural vacancies for 1/1-Al-Re-Si approximant crystals by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Suzuki, H.; Kitahata, H.; Matsushita, Y.; Nozawa, K.; Komori, F.; Yu, R. S.; Kobayashi, Y.; Ohdaira, T.; Oshima, N.; Suzuki, R.; Takagiwa, Y.; Kimura, K.; Kanazawa, I.

    2018-01-01

    The size of structural vacancies and structural vacancy density of 1/1-Al-Re-Si approximant crystals with different Re compositions were evaluated by positron annihilation lifetime and Doppler broadening measurements. Incident positrons were found to be trapped at the monovacancy-size open space surrounded by Al atoms. From a previous analysis using the maximum entropy method and Rietveld method, such an open space is shown to correspond to the centre of Al icosahedral clusters, which locates at the vertex and body centre. The structural vacancy density of non-metallic Al73Re17Si10 was larger than that of metallic Al73Re15Si12. The observed difference in the structural vacancy density reflects that in bonding nature and may explain that in the physical properties of the two samples.

  16. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, S.D.

    1997-10-14

    A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.

  17. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  18. Ion-barrier for memristors/ReRAM and methods thereof

    DOEpatents

    Haase, Gad S.

    2017-11-28

    The present invention relates to memristive devices including a resistance-switching element and a barrier element. In particular examples, the barrier element is a monolayer of a transition metal chalcogenide that sufficiently inhibits diffusion of oxygen atoms or ions out of the switching element. As the location of these atoms and ions determine the state of the device, inhibiting diffusion would provide enhanced state retention and device reliability. Other types of barrier elements, as well as methods for forming such elements, are described herein.

  19. Use of 2,4-dinitrophenylhydrazine for the purification of technical isoprene from carbonyl compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsova, Y.V.; Taranenko, S.A.; Mil'kina, T.N.

    1983-01-01

    Technical isoprene can be freed from carbonyl compounds by conversion into non-volatile derivatives - hydrazones, with subsequent liberation of the purified isoprene during re-evaporation. The reaction takes place at room temperature with a molar ratio of 2,4-dinitrophenylhydrazine/carbonyl compounds in the range 2-10 to 1. This method of purification may also be used in other situations where a hydrocarbon flow freed from aldehydes and ketones is required.

  20. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  1. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas Christopher

    2015-01-01

    Lithium and boron coatings are applied to the walls of many tokamaks to enhance performance and protect the underlying substrates. Li and B-coated high-Z substrates are planned for use in NSTX-U and are a candidate plasma-facing component (PFC) for DEMO. However, previous measurements of Li evaporation and thermal sputtering on low-flux devices indicate that the Li temperature permitted on such devices may be unacceptably low. Thus it is crucial to characterize gross and net Li erosion rates under high-flux plasma bombardment. Additionally, no quantitative measurements have been performed of the erosion rate of a boron-coated PFC during plasma bombardment. Amore » realistic model for the compositional evolution of a Li layer under D bombardment was developed that incorporates adsorption, implantation, and diffusion. A model was developed for temperature-dependent mixed-material Li-D erosion that includes evaporation, physical sputtering, chemical sputtering, preferential sputtering, and thermal sputtering. The re-deposition fraction of a Li coating intersecting a linear plasma column was predicted using atomic physics information and by solving the Li continuity equation. These models were tested in the Magnum-PSI linear plasma device at ion fluxes of 10^23-10^24 m^-2 s^-1 and Li surface temperatures less than 800 degrees C. Li erosion was measured during bombardment with a neon plasma that will not chemically react with Li and the results agreed well with the erosion model. Next the ratio of the total D fluence to the areal density of the Li coating was varied to quantify differences in Li erosion under D plasma bombardment as a function of the D concentration. The ratio of D/Li atoms was calculated using the results of MD simulations and good agreement is observed between measurements and the predictions of the mixed-material erosion model. Li coatings are observed to disappear from graphite much faster than from TZM Mo, indicating that fast Li diffusion into the bulk graphite substrate occurred, as predicted. Li re-deposition fractions very close to unity are observed in Magnum-PSI, as predicted by modeling. Finally, predictions of Li coating lifetimes in the NSTX-U divertor are calculated. The gross erosion rate of boron coatings was also measured for the first time in a high-flux plasma device.« less

  2. Researching the Possibility of Creating Highly Effective Catalysts for the Thermochemical Heat Regeneration and Hydrocarbon Reforming

    DTIC Science & Technology

    2006-11-01

    PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF

  3. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, A.; Dikshit, B.; Bhatia, M. S.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean valuemore » of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.« less

  4. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  5. Dynamical and electronic properties of rare-earth aluminides

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Sharma, Yamini

    2018-04-01

    Rare-earth dialuminides belong to a large family of compounds that stabilize in cubic MgCu2 structure. A large number of these compounds are superconducting, amongst these YAl2, LaAl2 and LuAl2 have been chosen as reference materials for studying 4f-electron systems. In order to understand the role of the RE atoms, we have applied the FPLAPW and PAW methods within the density functional theory (DFT). Our results show that the contribution of RE atoms is dominant in both electronic structure and phonon dispersion. The anomalous behavior of superconducting LaAl2 is well explained from an analysis of the electron localization function (ELF), Bader charge analysis, density of electronic states as well as the dynamical phonon vibrational modes. The interaction of phonon modes contributed by low frequency vibrations of La atoms with the high density La 5d-states at EF in LaAl2 lead to strong electron-phonon coupling.

  6. Sub- and super-Maxwellian evaporation of simple gases from liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kann, Z. R.; Skinner, J. L., E-mail: skinner@chem.wisc.edu

    2016-04-21

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H{sub 2} from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and itmore » is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.« less

  7. Quantitative Phase Analysis of Plasma-Treated High-Silica Materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Abzaev, Yu. A.; Vlasov, V. A.

    2018-06-01

    The paper presents the X-ray diffraction (XRD) analysis of the crystal structure of SiO2 in two modifications, namely quartzite and quartz sand before and after plasma treatment. Plasma treatment enables the raw material to melt and evaporate after which the material quenches and condenses to form nanoparticles. The Rietveld refinement method is used to identify the lattice parameters of SiO2 phases. It is found that after plasma treatment SiO2 oxides are in the amorphous state, which are modeled within the microcanonical ensemble. Experiments show that amorphous phases are stable, and model X-ray reflection intensities approximate the experimental XRD patterns with fine precision. Within the modeling, full information is obtained for SiO2 crystalline and amorphous phases, which includes atom arrangement, structural parameters, atomic population of silicon and oxygen atoms in lattice sites.

  8. Atom Probe Tomography of Geomaterials

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.

    2013-12-01

    From the electron microprobe to the secondary ion microprobe to laser-ablation ICP-MS, steady improvements in the spatial resolution and detection limits of geochemical micro-analysis have been central to generating new discoveries. Atom probe tomography (APT) is a relatively new technology that promises nm-scale spatial resolution (in three dimensions) with ppm level detection limits. The method is substantially different from traditional beam-based (electron, ion, laser) methods. In APT, the sample is shaped (usually with a dual-beam FIB) into a needle with typical dimensions of 1-2 μm height and 100-200 nm diameter. Within the atom probe, the needle is evaporated one atom (ideally) at a time by a high electric field (ten's of V per square nm at the needle tip). A femtosecond laser (12 ps pulse width) is used to assist in evaporating non-conducting samples. The two-dimensional detector locates where the atom was released from the needle's surface and so can reconstruct the positions of all detected atoms in three dimensions. It also records the time of flight of the ion, which is used to calculate the mass/charge ratio of the ion. We will discuss our results analyzing a range of geologic materials. In one case, naturally occurring platinum group alloys (PGA) from the Josephine Ophiolite have been imaged. Such alloys are of interest as recorders of the Os heterogeneity of the mantle [1,2]. Optimal ablation was achieved with a laser power of 120-240 pJ and laser pulse rates 500 kHz. Runs were stopped after 10 million atoms were imaged. An example analysis is: Pt 61(1), Fe 26.1(9), Rh 1.20(4), Ir 7.0(7), Ni 2.65(8), Ru 0.20(9), Cu 1.22(8), Co 0.00029(5). Values are in atomic %; values in parentheses are one-sigma standard deviations on five separate needles from the same FIB lift-out, which was 30 μm long. Assuming the sample is homogenous over the 30 μm from which the needle was extracted, the analyses suggest relative errors for major elements below 5% and for trace elements (100ppm level) below 20%. The images of the PGA grains have sub-nm spatial resolution, remarkably showing clear atomic planes of the hexoctahedral structure. Conducting materials such as the PGA grains are ideal materials for APT analysis. Silicates present a much more challenging target due to their electrical resistance and strong metal-oxygen bonds. The oxide bonds are difficult to break, resulting in ablation of oxide molecules with various charge states. These cause multiple interferences for many major elements of interest such as Si, Fe, Mg and Ca. We have imaged a range of olivine compositions (Fo0 to Fo90). Due to its higher electrical conductivity, fayalite evaporates at lower field voltages than more Mg-rich olivines. The spatial resolution is ~nm scale, so atomic planes are not resolvable. Chemical analyses are improved by low laser energies (<0.1pJ) at laser pulse rates of 500 kHz, as well as by large tip radii, which improves heat diffusion out of the needle. [1] Pearson et al 2007 Nature 449: 202-205 [2] Luguet et al 2008 Science 319: 453-456

  9. Electronic and magnetic properties of nonmetal atoms adsorbed ReS{sub 2} monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoou; Li, Qingfang, E-mail: qingfangli@nuist.edu.cn; Department of Physics, Nanjing University of Information Science and Technology, Nanjing 210044

    2015-08-14

    The stable configurations and electronic and magnetic properties of nonmetal atoms (H, N, P, O, S, F, and Cl) adsorbed ReS{sub 2} monolayers have been investigated by first-principles calculations. It is found that H, O, S, F, and Cl prefer to occupy the peak sites of S atoms, while both N and P atoms favor the valley sites of S atoms. The ReS{sub 2} sheet exhibits a good adsorption capability to nonmetal atoms. The reconstruction of the surface is pronounced in N- and P-adsorbed ReS{sub 2} monolayers. In H-adsorbed case, the Fermi level is pulled into the conduction band, whichmore » results in the semiconductor-metal transition. The same magnetic moment of 1μ{sub B} is found in the N-, P-, F-, and Cl-adsorbed ReS{sub 2} monolayers, while the mechanisms of forming magnetic moment for N (P)- and F (Cl)-adsorbed cases are different. In addition, the spatial extensions of spin density in P-, F-, and Cl-adsorbed cases are larger than that in N-adsorbed case, which is more suitable to achieve long-range magnetic coupling interaction at low defect concentrations. Our results provide insight for achieving metal-free magnetism and a tunable band gap for various electronic and spintronic devices based on ReS{sub 2}.« less

  10. Containerless study of metal evaporation by laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, Robert A.; Nordine, Paul C.

    1987-01-01

    Laser induced fluorescence (LIF) detection of atomic vapors was used to study evaporation from electromagnetically levitated and CW CO2 laser-heated molybdenum spheres and resistively-heated tungsten filaments. Electromagnetic (EM) levitation in combination with laser heating of tungsten, zirconium, and aluminum specimens was also investigated. LIF intensity vs temperature data were obtained for molybdenum atoms and six electronic states of atomic tungsten, at temperatures up to the melting point of each metal. The detected fraction of the emitted radiation was reduced by self-absorption effects at the higher experimental temperatures. Vaporization enthalpies derived from data for which less than half the LIF intensity was self-absorbed were -636 + or - 24 kJ/g-mol for Mo and 831 + or - 32 kJ/g-mol for W. Space-based applications of EM levitation in combination with radiative heating are discussed.

  11. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as anmore » absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.« less

  12. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  13. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

    PubMed Central

    Li, Kuo-Tseng; Yen, Ruey-Hsiang

    2018-01-01

    Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO2) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of glycerol to diols and alcohols in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) were used to characterize these nanoparticles. Effects of Ru/Si atomic ratio, Re addition, glycerol and catalyst concentrations, reaction time, temperature, and hydrogen pressure were investigated. Re addition retarded the reduction of ruthenium oxide, but increased the catalyst reactivity for glycerol hydrogenolysis. Due to its greater Ru content, Re-Ru@ SiO2 showed much better activity (reacted at much lower temperature) and more yields of 1,2-propanediol and overall liquid-phase products than Re-Ru/SiO2 (prepared by conventional impregnation method) reported before. The rate of glycerol disappearance exhibited first-order dependence on glycerol concentration and hydrogen pressure, with an activation energy of 107.8 kJ/mol. The rate constant increased linearly with increasing Ru/Si atomic ratio and catalyst amount. The yield of overall liquid-phase products correlated well with glycerol conversion. PMID:29522432

  14. Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum

    NASA Astrophysics Data System (ADS)

    Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.

    2018-05-01

    Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.

  15. Probing periodic potential of crystals via strong-field re-scattering

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu

    2018-06-01

    Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.

  16. Micro to Nanoscale Engineering of Surface Precipitates Using Reconfigurable Contact Lines.

    PubMed

    Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi

    2018-02-06

    Nanoscale engineering has traditionally adopted the chemical route of synthesis or optochemical techniques such as lithography requiring large process times, expensive equipment, and an inert environment. Directed self-assembly using evaporation of nanocolloidal droplet can be a potential low-cost alternative across various industries ranging from semiconductors to biomedical systems. It is relatively simple to scale and reorient the evaporation-driven internal flow field in an evaporating droplet which can direct dispersed matter into functional agglomerates. The resulting functional precipitates not only exhibit macroscopically discernible changes but also nanoscopic variations in the particulate assembly. Thus, the evaporating droplet forms an autonomous system for nanoscale engineering without the need for external resources. In this article, an indigenous technique of interfacial re-engineering, which is both simple and inexpensive to implement, is developed. Such re-engineering widens the horizon for surface patterning previously limited by the fixed nature of the droplet interface. It involves handprinting hydrophobic lines on a hydrophilic substrate to form a confinement of any selected geometry using a simple document stamp. Droplets cast into such confinements get modulated into a variety of shapes. The droplet shapes control the contact line behavior, evaporation dynamics, and complex internal flow pattern. By exploiting the dynamic interplay among these variables, we could control the deposit's macro- as well as nanoscale assembly not possible with simple circular droplets. We provide a detailed mechanism of the coupling at various length scales enabling a predictive capability in custom engineering, particularly useful in nanoscale applications such as photonic crystals.

  17. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-07-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  18. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-05-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  19. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  20. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  1. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    NASA Astrophysics Data System (ADS)

    Caldeira Filho, A. M.; Mulato, M.

    2011-04-01

    Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  2. High-temperature site preference and atomic short-range ordering characteristics of ternary alloying elements in γ'-Ni3Al intermetallics

    NASA Astrophysics Data System (ADS)

    Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2017-10-01

    Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.

  3. Analyse de l'interface cuivre/Teflon AF1600 par spectroscopie des photoelectrons rayons x

    NASA Astrophysics Data System (ADS)

    Popovici, Dan

    The speed of electrical signals through the microelectronic multilevel interconnects depends of the delay time R x C. In order to improve the transmission speed of future microdevices, the microelectronics industry requires the use of metals having lower resistivities and insulators having lower permittivities. Copper and fluoropolymers are interesting candidates for the replacement of the presently used Al/polyimide technology. This thesis presents an X-ray photoelectron spectroscopy (XPS) analysis of the Cu/Teflon AF1600 interface, in order to have a better understanding of those interfacial interactions leading to improved adhesion. Several deposition methods, such as evaporation, sputtering and laser-induced chemical deposition were analyzed and compared. X-ray photoelectron spectroscopy (XPS) was used as the primary characterization technique of the different surfaces and interfaces. In the case of evaporation and sputtering, the loss of fluorine and oxygen atoms leads to graphitization and the crosslinking of carbon chains. The extent of damage caused by copper deposition is higher for sputter deposition because of the higher energies of the incidents atoms. This energy (two orders of magnitude higher than the energy involved in the evaporation) is also responsible for the total reaction of Cu with F and C. For the physical depositions (sputtering and evaporation), an angle-resolved XPS diffusion study showed the copper distribution as a function of depth. (i) For sputter deposition, this distribution is uniform. (ii) In the case of evaporation, we computed the concentration profile using the inverse Laplace transform. Several samples, annealed at different temperatures, were used to calculate the diffusion coefficients for the Cu/Teflon AF1600 interface. The study of interactions at the interface between Teflon AF1600 and copper deposited by different metallization techniques permitted us to elucidate some aspects related to the chemistry and structure of the interface. The presence of the strong Cu-C bond may lead to an enhanced adhesion but a pretreatment (plasma RF, X-ray or excimer laser) is necessary to increase the surface concentration of reactive groups. (Abstract shortened by UMI.)

  4. Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H.

    2016-06-10

    A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS maskmore » using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.« less

  5. A study of the initial oxidation of evaporated thin films of aluminum by AES, ELS, and ESD

    NASA Technical Reports Server (NTRS)

    Bujor, M.; Larson, L. A.; Poppa, H.

    1982-01-01

    The room temperature, low pressure, oxidation of evaporated aluminum thin films has been studied by AES, ELS, and ESD. ESD was the most sensitive of the three methods to characterize a clean aluminum surface. Two oxidation stages were distinguished in the 0-3000 L oxygen exposure range. Between 0 and 50 L, the chemisorption of oxygen atoms was characterized by a fast decrease of the 67 eV AES Al peak and the 10 eV surface plasmon peak, and by a simultaneous increase of the oxygen AES and ESD signals. After 50 L, a change in slope in all AES and ESD signal variations was attributed to the slow growth of a thin layer of aluminum oxide, which after 3000 L was still only a few angstroms thick.

  6. Purification of ^4He through Differential Evaporation

    NASA Astrophysics Data System (ADS)

    Dubose, F.; Haase, D. G.; Huffman, P. R.

    2008-10-01

    The neutron electric dipole moment (nEDM) experiment, to be housed at the Spallation Neutron Source at Oak Ridge National Laboratories, will probe for a dipole moment at the level of 10-28 e cm. As part of the measurement process, neutrons precess in an environment of isotopically pure helium, doped with polarized ^3He. After this ^3He depolarizes it must be removed. We are developing an evaporative purification technique for this removal, lowering the concentration of ^3He in ^4He from 10-8 to 10-10, at an operating temperature of 300 -- 350 mK. Because the vapor pressure of ^3He is enhanced at temperatures below 500mK, ^3He atoms can be preferentially removed from the solution. The purifier requires a large liquid surface area, while minimizing superfluid film flow. The evaporated atoms are adsorbed on activated charcoal. We have built a device to measure ^3He/^4He ratios using a leak detector mass spectrometer and a residual gas analyzer.

  7. To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin

    2012-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .

  8. On the Mechanism of In Nanoparticle Formation by Exposing ITO Thin Films to Hydrogen Plasmas.

    PubMed

    Fan, Zheng; Maurice, Jean-Luc; Chen, Wanghua; Guilet, Stéphane; Cambril, Edmond; Lafosse, Xavier; Couraud, Laurent; Merghem, Kamel; Yu, Linwei; Bouchoule, Sophie; Roca I Cabarrocas, Pere

    2017-10-31

    We present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H 2 ) plasma exposure. In contrast to NP deposition from the vapor phase (i.e., evaporation), the ITO surface can be considered to be a solid reservoir of In atoms thanks to H 2 plasma reduction. On one hand, below the In melting temperature, solid In NP formation is governed by the island-growth mode, which is a self-limiting process because the H 2 plasma/ITO interaction will be gradually eliminated by the growing In NPs that cover the ITO surface. On the other hand, we show that above the melting temperature In droplets prefer to grow along the grain boundaries on the ITO surface and dramatic coalescence occurs when the growing NPs connect with each other. This growth-connection-coalescence behavior is even strengthened on In/ITO bilayers, where In particles larger than 10 μm can be formed, which are made of evaporated In atoms and in situ released ones. Thanks to this understanding, we manage to disperse dense evaporated In NPs under H 2 plasma exposure when inserting an ITO layer between them and substrate like c-Si wafer or glass by modifying the substrate surface chemistry. Further studies are needed for more precise control of this self-assembling method. We expect that our findings are not limited to ITO thin films but could be applicable to various metal NPs generation from the corresponding metal oxide thin films.

  9. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration

    NASA Astrophysics Data System (ADS)

    Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka

    2018-04-01

    Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.

  10. QUANTUM CALCULATIONS OF ENERGETICS OF RHENIUM CLUSTERS IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2015-09-22

    Density functional theory was employed to explore the energetic properties of clusters up to size 2 of Re in W. While WW<111> is the most stable intrinsic dumbbell, ReW<110> is more stable than ReW<111>. However, when they are trapped by a substitutional Re (Re_s), ReW<111> becomes more stable than ReW<110>. In this case, the most stable configuration forms a ReWRe crowdion with the W atom in between the Re atoms. Simulations of a ReW[111] (dumbbell’s vector is from Re to W) approaching a Re_s along [111] indicate that the binding energy decreases from 0.83 eV at the first nearest neighbormore » (NN1) to 0.10 eV at NN3 and ~0 at NN4. In addition, while ReW<111> and ReW<110> are stable near a Re_s at NN1, the ReW<100> instantaneously rotates toward ReW<111>.« less

  11. Characterization of rhenium nitride films produced by reactive pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, G.; Rosas, A.; Farias, M.H.

    2007-06-15

    Rhenium nitride (ReN {sub x}) films were grown on (100)-Si substrates by the reactive pulsed laser deposition (PLD) method using a high purity Re rod in an environment of molecular nitrogen. The resulting films are characterized by several techniques, which include in situ Auger electron spectroscopy, X-ray photoelectron spectroscopy and ex situ X-ray diffraction, scanning electron and atomic force microscopy. Additionally, the four-probe method is used to determine the sheet resistance of deposited layers. Results show that films with N/Re ratios (x) lower than 1.3 are very good conductors. In fact, the resistivity of ReN films for 0.2 < xmore » < 1.3 is of the order of 5% of that of Re films, while at x = 1.3 there is an abrupt increment in resistivity, resulting in dielectric films for 1.3 < x < 1.35. These results differ from the prior understanding that in transition metals, resistivity should increase with nitrogen incorporation.« less

  12. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.

  13. Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Kubicki, J. D.; Stolper, E. M.

    1993-01-01

    Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).

  14. Detection of Antiferromagnetic Correlations in the Fermi-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Hulet, Randall

    2014-05-01

    The Hubbard model, consisting of a cubic lattice with on-site interactions and kinetic energy arising from tunneling to nearest neighbors is a ``standard model'' of strongly correlated many-body physics, and it may also contain the essential ingredients of high-temperature superconductivity. While the Hamiltonian has only two terms it cannot be numerically solved for arbitrary density of spin-1/2 fermions due to exponential growth in the basis size. At a density of one spin-1/2 particle per site, however, the Hubbard model is known to exhibit antiferromagnetism at temperatures below the Néel temperature TN, a property shared by most of the undoped parent compounds of high-Tc superconductors. The realization of antiferromagnetism in a 3D optical lattice with atomic fermions has been impeded by the inability to attain sufficiently low temperatures. We have developed a method to perform evaporative cooling in a 3D cubic lattice by compensating the confinement envelope of the infrared optical lattice beams with blue-detuned laser beams. Evaporation can be controlled by the intensity of these non-retroreflected compensating beams. We observe significantly lower temperatures of a two-spin component gas of 6Li atoms in the lattice using this method. The cooling enables us to detect the development of short-range antiferromagnetic correlations using spin-sensitive Bragg scattering of light. Comparison with quantum Monte Carlo constrains the temperature in the lattice to 2-3 TN. We will discuss the prospects of attaining even lower temperatures with this method. Supported by DARPA/ARO, ONR, and NSF.

  15. Nanocrystal growth and morphology of PbTeSe-ZnSe composite thin films prepared by one-step synthesis method

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Abe, Seishi

    2016-10-01

    The microstructure of polycrystalline PbTe1-xSex-ZnSe composite thin films has been studied by scanning transmission electron microscopy and electron diffraction. The films were prepared by the one-step synthesis method using simultaneous evaporation of PbTe and ZnSe. The nanocrystals of PbTe1-xSex are formed in a ZnSe matrix. Tellurium concentration can be tuned by controlling the PbTe evaporation source temperatures between 753 K and 793 K. Binary PbSe nanocrystals were formed at 753 K, while ternary PbTe1-xSex nanocrystals were formed at 793 K. The nanocrystals grow in a granular shape at the initial stage of film growth, and the morphology changes to nanowire-shape as the film grows, irrespective of the Te concentration. The ternary PbTe1-xSex nanocrystals were composed of two phases with different Te concentration; Te-rich (Se-poor) granular crystals were formed near the bottom half parts of the film and Te-poor (Se-rich) nanowires were formed at the upper half parts of the film. Columnar ZnSe crystals contain high-density {111} stacking faults due to the low stacking fault energy of ZnSe. A balance of deposition and re-evaporation on the substrate during the film growth will be responsible for the resultant nanocrystal morphology.

  16. Recycling Of Cis Photovoltaic Waste

    DOEpatents

    Drinkard, Jr., William F.; Long, Mark O.; Goozner; Robert E.

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  17. A tungsten-rhenium interatomic potential for point defect studies

    DOE PAGES

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-28

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  18. A tungsten-rhenium interatomic potential for point defect studies

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  19. A tungsten-rhenium interatomic potential for point defect studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  20. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact and nondestructive measurement, such as RE, to extract key material parameters is beneficial for conveniently understanding the oxidation process that would ultimately enable copper oxide-based devices at manufacturing scales.

  1. Thin Metallic Films From Solvated Metal Atoms

    NASA Astrophysics Data System (ADS)

    Trivino, Galo C.; Klabunde, Kenneth J.; Dale, Brock

    1988-02-01

    Metals were evaporated under vacuum and the metal atoms solvated by excess organic solvents at low temperature. Upon warming stable colloidal metal particles were formed by controlled metal atom clustering. The particles were stabilized toward flocculation by solvation and electrostatic effects. Upon solvent removal the colloidal particles grew to form thin films that were metallic in appearance, but showed higher resistivities than pure metallic films. Gold, palladium, platinium, and especially indium are discussed.

  2. Acquire an Bruker Dimension FastScanTM Atomic Force Microscope (AFM) for Materials, Physical and Biological Science Research and Education

    DTIC Science & Technology

    2016-04-14

    study dynamic events such as melting, evaporation, crystallization, dissolution, self-assembly, membrane disruption, sample movement tracking. To... polymeric hairy nanopraticle, suprastructures REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S...the AFM will permit us to study dynamic events such as melting, evaporation, crystallization, dissolution, self-assembly, membrane disruption, sample

  3. Compositional accuracy of atom probe tomography measurements in GaN: Impact of experimental parameters and multiple evaporation events.

    PubMed

    Russo, E Di; Blum, I; Houard, J; Gilbert, M; Da Costa, G; Blavette, D; Rigutti, L

    2018-04-01

    A systematic study of the biases occurring in the measurement of the composition of GaN by Atom Probe Tomography was carried out, in which the role of surface electric field and laser pulse intensity has been investigated. Our data confirm that the electric field is the main factor influencing the measured composition, which exhibits a deficiency of N at low field and a deficiency of Ga at high field. The deficiency of Ga at high field is interpreted in terms of preferential evaporation of Ga. The detailed analysis of multiple evaporation events reveals that the measured composition is not affected by pile-up phenomena occurring in detection system. The analysis of correlation histograms yields the signature of the production of neutral N 2 due to the dissociation of GaN 3 2+ ions. However, the amount of N 2 neutral molecules that can be detected cannot account for the N deficiency found at low field. Therefore, we propose that further mechanisms of neutral N evaporation could be represented by dissociation reactions such as GaN + → Ga + + N and GaN 2+ → Ga 2 + + N. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Atmospheric pressure arc discharge with ablating graphite anode

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  5. Molecular and electronic structures of M 2O 7 (M = Mn, Tc, Re)

    DOE PAGES

    Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.; ...

    2017-02-21

    The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less

  6. Noncentrosymmetric rare-earth copper gallium chalcogenides RE3CuGaCh7 (RE=La-Nd; Ch=S, Se): An unexpected combination

    NASA Astrophysics Data System (ADS)

    Iyer, Abishek K.; Rudyk, Brent W.; Lin, Xinsong; Singh, Harpreet; Sharma, Arzoo Z.; Wiebe, Christopher R.; Mar, Arthur

    2015-09-01

    The quaternary rare-earth chalcogenides RE3CuGaS7 and RE3CuGaSe7 (RE=La-Nd) have been prepared by reactions of the elements at 1050 °C and 900 °C, respectively. They crystallize in the noncentrosymmetric La3CuSiS7-type structure (hexagonal, space group P63, Z=2) in which the a-parameter is largely controlled by the RE component (a=10.0-10.3 Å for the sulfides and 10.3-10.6 Å for the selenides) whereas the c-parameter is essentially fixed by the choice of Ga and chalcogen atoms within tetrahedral units (c=6.1 Å for the sulfides and 6.4 Å for the selenides). They extend the series RE3MGaCh7, previously known for divalent metal atoms (M=Mn-Ni), differing in that the Cu atoms in RE3CuGaCh7 occupy trigonal planar sites instead of octahedral sites. Among quaternary chalcogenides RE3MM‧Ch7, the combination of monovalent (M=Cu) and trivalent (M‧=Ga) metals is unusual because it appears to violate the condition of charge balance satisfied by most La3CuSiS7-type compounds. The possibility of divalent Cu atoms was ruled out by bond valence sum analysis, magnetic measurements, and X-ray photoelectron spectroscopy. The electron deficiency in RE3CuGaCh7 is accommodated through S-based holes at the top of the valence band, as shown by band structure calculations on La3CuGaS7. An optical band gap of about 2.0 eV was found for La3CuGaSe7.

  7. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team

    2014-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.

  8. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    PubMed

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  9. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization

    NASA Astrophysics Data System (ADS)

    Kavadiya, Shalinee; Raliya, Ramesh; Schrock, Michael; Biswas, Pratim

    2017-02-01

    Restacking of graphene oxide (GO) nanosheets results in loss of surface area and creates limitations in its widespread use for applications. Previously, two-dimensional (2D) GO sheets have been crumpled into 3D structures to prevent restacking using different techniques. However, synthesis of nanometer size crumpled graphene particles and their direct deposition onto a substrate have not been demonstrated under room temperature condition so far. In this work, the evaporative crumpling of GO sheets into very small size (<100 nm) crumpled structures using an electrohydrodynamic atomization technique is described. Systematic study of the effect of different electrohydrodynamic atomization parameters, such as (1) substrate-to-needle distance, (2) GO concentration in the precursor solution, and (3) flow rate (droplet size) on the GO crumpling, is explored. Crumpled GO (CGO) particles are characterized online using a scanning mobility particle sizer (SMPS) and off-line using electron microscopy. The relation between the confinement force and the factors affecting the crumpled structure is established. Furthermore, to expand the application horizons of the structure, crumpled GO-TiO2 nanocomposites are synthesized. The method described here allows a simple and controlled production of graphene-based particles/composites with direct deposition onto any kind of substrate for a variety of applications.

  10. Fermion Superfluidity

    NASA Technical Reports Server (NTRS)

    Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng

    2003-01-01

    Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.

  11. Method for making thick and/or thin film

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  12. [Performance comparison of material tests for cadmium and lead in food contact plastics].

    PubMed

    Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Ishii, Rie; Itoh, Yuko; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kaneko, Reiko; Kawamura, Yoko; Shibata, Hiroshi; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Nomura, Chie; Hikida, Akinori; Matsuyama, Sigetomo; Murakami, Ryo; Yamaguchi, Miku; Wada, Takenari; Watanabe, Kazunari; Akiyama, Hiroshi

    2014-01-01

    Based on the Japanese Food Sanitation Law, the performances of official and alternative material test methods for cadmium (Cd) and lead (Pb) in food contact plastics were compared. Nineteen laboratories participated to an interlaboratory study, and quantified Cd and Pb in three PVC pellets. in the official method, a sample is digested with H2SO4, taken up in HCl, and evaporated to dryness on a water bath, then measured by atomic absorption spectrometry (AAS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). Statistical treatment revealed that the trueness, repeatability (RSDr) and reproducibility (RSDr) were 86-95%, 3.1-9.4% and 8.6-22.1%, respectively. The values of the performance parameters fulfilled the requirements , and the performances met the test specifications. The combination of evaporation to dryness on a hot plate and measurement by AAS or ICP-OES is applicable as an alternative method. However, the trueness and RSDr were inferior to those of the official method. The performance parameters obtained by using the microwave digestion method (MW method) to prepare test solution were better than those of the official method. Thus, the MW method is available as an alternative method. Induced coupled plasma-mass spectrometry (ICP-MS) is also available as an alternative method. However, it is necessary to ensure complete digestion of the sample.

  13. Fitness: Stay Safe during Hot-Weather Exercise

    MedlinePlus

    ... you're used to exercising indoors or in cooler weather, take it easy at first when you ... loosefitting clothing helps sweat evaporate and keeps you cooler. Avoid dark colors, which can absorb heat. If ...

  14. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    USGS Publications Warehouse

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  15. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE PAGES

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less

  16. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrailh, P.; LAPLACE, CNRS, F-31062 Toulouse; Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion inmore » this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.« less

  17. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  18. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  19. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    PubMed Central

    Gray, Derek G.; Mu, Xiaoyue

    2015-01-01

    Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure. PMID:28793684

  20. Effect of Rapid Evaporation on Fuel Injection Processes

    NASA Astrophysics Data System (ADS)

    Sloss, Clayton A.; McCahan, Susan

    1996-11-01

    In the pursuit of developing more efficient fuel oil burners, ways of improving combustion efficiency through increased fuel atomization are being studied. By preheating the fuel prior to injection it may be possible to induce a superheated state in the l iquid during expansion through the nozzle. This increases the evaporation rate and improves atomization of the fluid. With enough superheat, and using fuels with sufficiently large specific heats, it is theoretically possible to achieve complete evaporati on. In this experiment dodecane, fuel oil, kerosene, and diesel fuel are injected from 10 bar to 1 bar while the upstream temperature is varied from 20^oC to 330^oC. A commercial oil burner nozzle is used to simulate a realistic injection environm ent and a plain converging nozzle is used under the same conditions to isolate and study the thermodynamic effects. Photographic observations of the commercial nozzle spray found smaller droplet sizes and decreased cone angles as the degree of superheat i ncreased. A coherent evaporation wave was observed in dodecane jets at high levels of superheat in the plain converging nozzle. * This work is supported by Imperial Oil/ESTAC

  1. An Interactive Microsoft(registered tm) Excel Program for Tracking a Single Evaporating Droplet in Crossflow

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Marek, C. J.

    2004-01-01

    Droplet interaction with a high temperature gaseous crossflow is important because of its wide application in systems involving two phase mixing such as in combustion requiring quick mixing of fuel and air with the reduction of pollutants and for jet mixing in the dilution zone of combustors. Therefore, the focus of this work is to investigate dispersion of a two-dimensional atomized and evaporating spray jet into a two-dimensional crossflow. An interactive Microsoft Excel program for tracking a single droplet in crossflow that has previously been developed will be modified to include droplet evaporation computation. In addition to the high velocity airflow, the injected droplets are also subjected to combustor temperature and pressure that affect their motion in the flow field. Six ordinary differential equations are then solved by 4th-order Runge-Kutta method using Microsoft Excel software. Microsoft Visual Basic programming and Microsoft Excel macrocode are used to produce the data and plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing the user to open other types of plotting programs. A user's manual on how to use the program is included.

  2. Synthesis of Large-Size 1T' ReS2x Se2(1-x) Alloy Monolayer with Tunable Bandgap and Carrier Type.

    PubMed

    Cui, Fangfang; Feng, Qingliang; Hong, Jinhua; Wang, Renyan; Bai, Yu; Li, Xiaobo; Liu, Dongyan; Zhou, Yu; Liang, Xing; He, Xuexia; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Zhai, Tianyou; Xu, Hua

    2017-12-01

    Chemical vapor deposition growth of 1T' ReS 2 x Se 2(1- x ) alloy monolayers is reported for the first time. The composition and the corresponding bandgap of the alloy can be continuously tuned from ReSe 2 (1.32 eV) to ReS 2 (1.62 eV) by precisely controlling the growth conditions. Atomic-resolution scanning transmission electron microscopy reveals an interesting local atomic distribution in ReS 2 x Se 2(1- x ) alloy, where S and Se atoms are selectively occupied at different X sites in each Re-X 6 octahedral unit cell with perfect matching between their atomic radius and space size of each X site. This structure is much attractive as it can induce the generation of highly desired localized electronic states in the 2D surface. The carrier type, threshold voltage, and carrier mobility of the alloy-based field effect transistors can be systematically modulated by tuning the alloy composition. Especially, for the first time the fully tunable conductivity of ReS 2 x Se 2(1- x ) alloys from n-type to bipolar and p-type is realized. Owing to the 1T' structure of ReS 2 x Se 2(1- x ) alloys, they exhibit strong anisotropic optical, electrical, and photoelectric properties. The controllable growth of monolayer ReS 2 x Se 2(1- x ) alloy with tunable bandgaps and electrical properties as well as superior anisotropic feature provides the feasibility for designing multifunctional 2D optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.

    2004-01-01

    Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.

  4. Evaporative cooling of air in an adiabatic channel with partially wetted zones

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Gorbachev, M. V.; Khafaji, H. Q.

    2016-03-01

    The paper deals with the numerical study of heat and mass transfer in the process of direct evaporation air cooling in the laminar flow of forced convection in a channel between two parallel insulated plates with alternating wet and dry zones along the length. The system of Navier-Stokes equations and equations of energy and steam diffusion are being solved in two-dimensional approximation. At the channel inlet, all thermal gas-dynamic parameters are constant over the cross section, and the channel walls are adiabatic. The studies were carried out with varying number of dry zones ( n = 0-16), their relative length ( s/l = 0-1) and Reynolds number Re = 50-1000 in the flow of dry air (φ0 = 0) with a constant temperature at the inlet (T 0 = 30 °C). The main attention is paid to optimization analysis of evaporation cell characteristics. It is shown that an increase in the number of alternating steps leads to an increase in the parameters of thermal and humid efficiency. With an increase in Re number and a decrease in the extent of wet areas, the efficiency parameter reduces.

  5. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy.

    PubMed

    Turk, C; Leitner, H; Schemmel, I; Clemens, H; Primig, S

    2017-07-01

    The physical and mechanical properties of intermetallic alloys can be tailored by controlling the degree of order of the solid solution by means of heat treatments. FeCo alloys with an appropriate composition exhibit an A2-disorder↔B2-order transition during continuous cooling from the disordered bcc region. The study of atomic order in intermetallic alloys by diffraction and its influence on the material properties is well established, however, investigating magnetic FeCo-based alloys by conventional methods such as X-ray diffraction is quite challenging. Thus, the imaging of ordered FeCo-nanostructures needs to be done with high resolution techniques. Transmission electron microscopy investigations of ordered FeCo domains are difficult, due to the chemical and physical similarity of Fe and Co atoms and the ferromagnetism of the samples. In this work it will be demonstrated, that the local atomic arrangement of ordered and disordered regions in an industrial Fe-Co-Mo alloy can be successfully imaged by atom probe measurements supported by field ion microscopy and transmission Kikuchi diffraction. Furthermore, a thorough atom probe parameter study will be presented and field evaporation artefacts as a function of crystallographic orientation in Fe-Co-samples will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2017-12-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  8. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2018-05-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  9. PDB_REDO: automated re-refinement of X-ray structure models in the PDB.

    PubMed

    Joosten, Robbie P; Salzemann, Jean; Bloch, Vincent; Stockinger, Heinz; Berglund, Ann-Charlott; Blanchet, Christophe; Bongcam-Rudloff, Erik; Combet, Christophe; Da Costa, Ana L; Deleage, Gilbert; Diarena, Matteo; Fabbretti, Roberto; Fettahi, Géraldine; Flegel, Volker; Gisel, Andreas; Kasam, Vinod; Kervinen, Timo; Korpelainen, Eija; Mattila, Kimmo; Pagni, Marco; Reichstadt, Matthieu; Breton, Vincent; Tickle, Ian J; Vriend, Gert

    2009-06-01

    Structural biology, homology modelling and rational drug design require accurate three-dimensional macromolecular coordinates. However, the coordinates in the Protein Data Bank (PDB) have not all been obtained using the latest experimental and computational methods. In this study a method is presented for automated re-refinement of existing structure models in the PDB. A large-scale benchmark with 16 807 PDB entries showed that they can be improved in terms of fit to the deposited experimental X-ray data as well as in terms of geometric quality. The re-refinement protocol uses TLS models to describe concerted atom movement. The resulting structure models are made available through the PDB_REDO databank (http://www.cmbi.ru.nl/pdb_redo/). Grid computing techniques were used to overcome the computational requirements of this endeavour.

  10. Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten

    NASA Astrophysics Data System (ADS)

    Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr < 10 Torr, LIBS-measured cRe agrees well with that from EDX (energy-dispersive X-ray micro-analysis), while cRe increases with an increase in PAr at >10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.

  11. A compact source for bunches of singly charged atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murböck, T.; Birkl, G.; Schmidt, S.

    2016-04-15

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10{sup 6} Mg{sup +}more » ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg{sup +} ions for sympathetic cooling of highly charged ions by laser-cooled {sup 24}Mg{sup +}.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.

    The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less

  13. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    NASA Astrophysics Data System (ADS)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  14. Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2007-01-01

    This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable.

  15. Choosing the best molecular precursor to prepare Li4Ti5O12 by the sol-gel method using (1)H NMR: evidence of [Ti3(OEt)13](-) in solution.

    PubMed

    García-Herbosa, Gabriel; Aparicio, Mario; Mosa, Jadra; Cuevas, José V; Torroba, Tomás

    2016-09-21

    (1)H NMR spectroscopy at 400 MHz in toluene-d8 of evaporated mixtures of lithium ethoxide and titanium(iv) isopropoxide in ethanol, used to prepare the spinel Li4Ti5O12 by the sol-gel method, may help clarify why the atomic ratio 5Li : 5Ti and not 4Li : 5Ti is the right choice to obtain the pure phase when performing hydrolysis at room temperature. The mixtures xLiOEt/yTi(OPr(i))4 in ethanol undergo alcohol exchange at room temperature, and the evaporated residues contain double lithium-titanium ethoxide [LiTi3(OEt)13] rather than simple mixtures of single metal alkoxides; this is of great relevance to truly understanding the chemistry and structural changes in the sol-gel process. Detailed inspection of the (1)H and (13)C VT NMR spectra of mixtures with different Li/Ti atomic ratios unequivocally shows the formation of [LiTi3(OEt)13] in a solution at low temperature. The methylene signals of free lithium ethoxide and Li[Ti3(OEt)13] coalesce at 20 °C when the atomic ratio is 5 : 5; however, the same coalescence is only observed above 60 °C when the atomic ratio is 4 : 5. We suggest that the highest chemical equivalence observed by (1)H NMR spectroscopy achieved through chemical exchange of ethoxide groups involves the highest microscopic structural homogeneity of the sol precursor and will lead to the best gel after hydrolysis. Variable temperature (1)H NMR spectra at 400 MHz of variable molar ratios of LiOEt/Ti(OPr(i))4 are discussed to understand the structural features of the sol precursor. While the precursor with the atomic ratio 5Li : 5Ti shows no signal of free LiOEt at 20 °C, both 4Li : 5Ti and 7Li : 5Ti show free LiOEt at 20 °C in their (1)H NMR spectra, indicating that the molar ratio 5Li : 5Ti gives the maximum rate of chemical exchange. DFT calculations have been performed to support the structure of the anion [Ti3(OEt)13](-) at room temperature.

  16. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    USGS Publications Warehouse

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 73 percent of the months. Use of the unmodified USWB method is appealing because it means estimates of average daily reservoir evaporation can be made from air temperature, relative humidity, wind speed, and solar radiation data collected from remote weather stations without the need to develop site-specific coefficients from historical pan data. Site-specific coefficients would need to be developed for the modified version of the Hamon method.

  17. Large atom number Bose-Einstein condensate machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.

    2006-02-15

    We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.

  18. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  19. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.

    PubMed

    Morley, A; Sha, G; Hirosawa, S; Cerezo, A; Smith, G D W

    2009-04-01

    Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe-Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.

  20. Electrical characterization of HgTe nanowires using conductive atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.

    Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less

  1. Liquid chromatography-hydride generation-atomic absorption spectrometry for the speciation of tin in seafoods.

    PubMed

    Viñas, Pilar; López-García, Ignacio; Merino-Meroño, Beatriz; Campillo, Natalia; Hernández-Cordóba, Manuel

    2004-04-01

    Liquid chromatography with hydride generation atomic absorption spectrometry as the detection system was applied to the separation and determination of inorganic tin, tributyltin, dibutyltin, monobutyltin, diphenyltin and monophenyltin. A reversed phase C18 column and a methanol/water/acetic acid (70:27:3, v/v/v) mixture containing 0.05%(v/v) triethylamine and 0.1%(w/v) tropolone as the mobile phase (isocratic elution) were used. Extraction of organotins from the samples was carried out using methanol containing 0.05%(w/v) tropolone, a process that was repeated twice. The supernatants were shaken with water and dichloromethane in a separating funnel and the organic phase was collected and evaporated to dryness. When the method was applied to the speciation of tin in fresh and canned mussels, no organotins above the detection limits were identified in any of the samples, inorganic tin being the only species detected. The reliability of the procedure was checked by analyzing the total tin content of the samples by electrothermal atomic absorption spectrometry and by speciation of tin in a certified reference material, mussel tissue (CRM 477). The method can be used for environmental monitoring of organotins contaminated samples.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehhalt, D.; Knott, K.; Nagel, J. F.

    The D and O¹⁸ contents of rain water are known to vary considerably with time and location. Dansgaard found a good correlation of the mean O¹⁸ content of rain with mean air temperature, which causes a latitudinal as well as a seasonal variation of O¹⁸ and a similar one for D. Under dry climatic conditions, as in South Africa, the D content appears to be strongly influenced by re-evaporation of the falling raindrops. This has the effect of obscuring the normal seasonal variations. The evaporation obviously takes place under kinetic conditions, thus increasing the separation factors especially for the oxygenmore » isotopes. A detailed study of a thunderstorm in Heidelberg shows that here too evaporation causes an enrichment in D. (auth)« less

  3. Protective coating and hyperthermal atomic oxygen texturing of optical fibers used for blood glucose monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2008-01-01

    Disclosed is a method of producing cones and pillars on polymethylmethacralate (PMMA) optical fibers for glucose monitoring. The method, in one embodiment, consists of using electron beam evaporation to deposit a non-contiguous thin film of aluminum on the distal ends of the PMMA fibers. The partial coverage of aluminum on the fibers is randomly, but rather uniformly distributed across the end of the optical fibers. After the aluminum deposition, the ends of the fibers are then exposed to hyperthermal atomic oxygen, which oxidizes the areas that are not protected by aluminum. The resulting PMMA fibers have a greatly increased surface area and the cones or pillars are sufficiently close together that the cellular components in blood are excluded from passing into the valleys between the cones and pillars. The optical fibers are then coated with appropriated surface chemistry so that they can optically sense the glucose level in the blood sample than that with conventional glucose monitoring.

  4. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  5. Crystal structure of a new amine nitrate: 4-dimethylaminopyridinium nitrate (C{sub 7}H{sub 11}N{sub 2})NO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhassan, D., E-mail: houcine-naili@yahoo.com; Rekik, W.; Naïli, H.

    2015-12-15

    The title compound (C{sub 7}H{sub 11}N{sub 2})NO{sub 3} (I) was obtained by the slow evaporation method at room temperature. Its crystal structure consists of organic cations (C{sub 7}H{sub 11}N{sub 2}){sup +} and nitrate anions (NO{sub 3}){sup –} linked by two types of hydrogen bonds. Each monoprotonated nitrogen atom, called bifurcated, is engaged in two N–H···O hydrogen bonds with two symmetric oxygen atoms. In addition, the crystal structure stability is established by C–H···O hydrogen bonds that ensure the formation of infinite layers, parallel to (001) plane. These layers are related together through π···π interactions established between aromatic amines.

  6. Vii. New Kr IV - VII Oscillator Strengths and an Improved Spectral Analysis of the Hot, Hydrogen-deficient Do-type White Dwarf RE 0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.

    2016-01-01

    For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Krivvii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTEmodel-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Krivvii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high SN ultraviolet (UV)observations of the hot white dwarf RE 0503.

  7. Fragmentation of ionized doped helium nanodroplets: theoretical evidence for a dopant ejection mechanism.

    PubMed

    Bonhommeau, D; Lewerenz, M; Halberstadt, N

    2008-02-07

    We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.

  8. The role of rare-earth dopants in tailoring the magnetism and magnetic anisotropy in Fe4N

    NASA Astrophysics Data System (ADS)

    Li, Zirun; Mi, Wenbo; Bai, Haili

    2018-05-01

    The magnetism and magnetic anisotropy of the rare-earth (RE) atom-substituted Fe4N are investigated by first-principles calculations. It is found that the substitution of one RE atom results in an antiferromagnetic coupling with the Fe atoms. The 4f-3d exchange interaction has an important influence on the density of states of Fe near the Fermi level. PrFe3N and NdFe3N with a tetragonal structure exhibit giant magnetic anisotropy energy larger than 5 meV/atom. The magnetic anisotropy depends on the distribution of partial states of d or f orbital near the Fermi level. As Eu substitutes Fe in Fe4N, the magnetic moment of Eu3FeN even exceeds 23 μB. Our theoretical predictions point out the possibilities of tuning the magnetism and magnetic anisotropy of Fe4N upon RE doping.

  9. A UHV compatible source for a highly polarized thermal atomic beam of radioactive 8Li

    NASA Astrophysics Data System (ADS)

    Jänsch, H. J.; Kirchner, G.; Kühlert, O.; Lisowski, M.; Paggel, J. J.; Platzer, R.; Schillinger, R.; Tilsner, H.; Weindel, C.; Winnefeld, H.; Fick, D.

    2000-12-01

    A beam of the radioactive isotope 8Li is prepared at thermal velocities. The nuclei are highly spin polarized by transverse optical pumping of the thermal beam. The installation is ultra-high vacuum (UHV) compatible in a non-UHV accelerator environment. Since the atomic beam is used in a surface science experiment, where contamination must be avoided, special emphasis is given to the vacuum coupling of the accelerator/ 8Li production/surface experimental areas. The atomic beam is produced by stopping the nuclear reaction products and evaporating them again from high-temperature graphite. To enhance the atomic beam, a novel tubular thermalizer is applied. The thermal polarized atomic beam intensity is approximately 5×10 8 atoms/s sr.

  10. Extending DFT-based genetic algorithms by atom-to-place re-assignment via perturbation theory: A systematic and unbiased approach to structures of mixed-metallic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigend, Florian, E-mail: florian.weigend@kit.edu

    2014-10-07

    Energy surfaces of metal clusters usually show a large variety of local minima. For homo-metallic species the energetically lowest can be found reliably with genetic algorithms, in combination with density functional theory without system-specific parameters. For mixed-metallic clusters this is much more difficult, as for a given arrangement of nuclei one has to find additionally the best of many possibilities of assigning different metal types to the individual positions. In the framework of electronic structure methods this second issue is treatable at comparably low cost at least for elements with similar atomic number by means of first-order perturbation theory, asmore » shown previously [F. Weigend, C. Schrodt, and R. Ahlrichs, J. Chem. Phys. 121, 10380 (2004)]. In the present contribution the extension of a genetic algorithm with the re-assignment of atom types to atom sites is proposed and tested for the search of the global minima of PtHf{sub 12} and [LaPb{sub 7}Bi{sub 7}]{sup 4−}. For both cases the (putative) global minimum is reliably found with the extended technique, which is not the case for the “pure” genetic algorithm.« less

  11. Selective field evaporation in field-ion microscopy for ordered alloys

    NASA Astrophysics Data System (ADS)

    Ge, Xi-jin; Chen, Nan-xian; Zhang, Wen-qing; Zhu, Feng-wu

    1999-04-01

    Semiempirical pair potentials, obtained by applying the Chen-inversion technique to a cohesion equation of Rose et al. [Phys. Rev. B 29, 2963 (1984)], are employed to assess the bonding energies of surface atoms of intermetallic compounds. This provides a new calculational model of selective field evaporation in field-ion microscopy (FIM). Based on this model, a successful interpretation of FIM image contrasts for Fe3Al, PtCo, Pt3Co, Ni4Mo, Ni3Al, and Ni3Fe is given.

  12. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  13. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. G.; Wang, Z.; Wang, W. H., E-mail: whw@iphy.ac.cn

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical andmore » mechanical properties of MGs.« less

  14. Strong Surface Diffusion Mediated Glancing-Angle Deposition: Growth, Recrystallization and Reorientation of Tin Nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Hua; Shi, Yi-Jian; William, Chu; Yigal, Blum

    2008-01-01

    Different from usual glancing-angle deposition where low surface diffusion is necessary to form nanorods, strong surface diffusion mediated glancing-angle deposition is exemplified by growing tin nanorod films on both silicon and glass substrates simultaneously via thermal evaporation. During growth, the nanorods were simultaneously baked by the high-temperature evaporator, and therefore re-crystallized into single crystals in consequence of strong surface diffusion. The monocrystalline tin nanorods have a preferred orientation perpendicular to the substrate surface, which is quite different from the usual uniformly oblique nanorods without recrystallization.

  15. Crystal structure of fac-aquatricarbonyl[(S)-valin-ato-κ(2) N,O]-rhenium(I).

    PubMed

    Piletska, Kseniia O; Domasevitch, Kostiantyn V; Shtemenko, Alexander V

    2016-04-01

    In the mol-ecule of the title compound, [Re(C5H10NO2)(CO)3(H2O)], the Re(I) atom adopts a distorted octa-hedral coordination sphere defined by one aqua and three carbonyl ligands as well as one amino N and one carboxyl-ate O atom of the chelating valinate anion. The carbonyl ligands are arranged in a fac-configuration around the Re(I) ion. In the crystal, an intricate hydrogen-bonding system under participation of two O-H, two N-H and one C-H donor groups and the carboxyl-ate and carbonyl O atoms as acceptor groups contribute to the formation of a three-dimensional supra-molecular network.

  16. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    PubMed

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was validated by national standards and the results are in agreement with certified values. The method is simple, rapid, is an advanced analytical method for the determination of trace amounts of geochemical samples' boron, molybdenum, silver, tin and lead, and has a certain practicality.

  17. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less

  18. Local mass and energy transports in evaporation processes from a vapor-liquid interface in a slit pore based on molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Shibahara, M.

    2018-02-01

    Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.

  19. Single-crystal growth, structure refinement and the properties of Bis(glycine) Strontium Chloride

    NASA Astrophysics Data System (ADS)

    Balaji, S. R.; Balu, T.; Rajasekaran, T. R.

    2018-02-01

    Single crystals of Bis (glycine) Strontium Chloride (BGSC) were grown by means of slow evaporation process by using analar grade Glycine and Strontium Chloride Hexahydrate as a parent compound from its aqueous solution at room temperature. The final chemical composition, [{{Sr}}{({{{C}}}2{{{H}}}5{{{NO}}}2)}2{{{Cl}}}2].{{{H}}}4{{{O}}}3+{{{H}}}8{{{O}}}3, formed were metallic light colorless block, about the size of 28 mm × 9 mm × 8 mm. A single-crystal x-ray diffraction study revealed an ordered superstructure with orthorhombic symmetry that could be assigned to the space group Pbcn. The structure in BGSC, revealed in the electron density distribution was analyzed by the direct methods (SHELXS-2014) and refined by least squares full matrix method (SHELXL-2014). The crystal structure, including anisotropic atomic displacement parameters for each atom and isotropic atomic displacement parameters for hydrogen atom, was refined to R1 = 0.0395, wR2 = 0.0776 using 1097 independent reflections. The FTIR spectrum of BGSC confirms the protonation of amino groups and the different molecular groups present in BGSC vibrate in different modes. Reverse Indentation Size Effect (RISE) was revealed in BGSC in the micro-hardness analysis using Vicker’s micro-hardness analysis. DTA and DSC results ruled out the possibility of structural change independent of mass change. The AFM studies shows fine nano size fiber like structure of the grown crystals.

  20. Study of nanostructure and ethanol vapor sensing performance of WO3 thin films deposited by e-beam evaporation method under different deposition angles: application in breath analysis devices

    NASA Astrophysics Data System (ADS)

    Amani, E.; Khojier, K.; Zoriasatain, S.

    2018-01-01

    This paper studies the effect of deposition angle on the crystallographic structure, surface morphology, porosity and subsequently ethanol vapor sensing performance of e-beam-evaporated WO3 thin films. The WO3 thin films were deposited by e-beam evaporation technique on SiO2/Si substrates under different deposition angles (0°, 30°, and 60°) and then post-annealed at 500 °C with a flow of oxygen for 4 h. Crystallographic structure and surface morphology of the samples were checked using X-ray diffraction method and atomic force microscopy, respectively. Physical adsorption isotherm was also used to measure the porosity and effective surface area of the samples. The electrical response of the samples was studied to different concentrations of ethanol vapor (10-50 ppm) at the temperature range of 140-260 °C and relative humidity of 80%. The results reveal that the WO3 thin film deposited under 30° angle shows more sensitivity to ethanol vapor than the other samples prepared in this work due to the more crystallinity, porosity, and effective surface area. The investigations also show that the sample deposited at 30° can be a good candidate as a breath analysis device at the operating temperature of 240 °C because of its high response, low detection limit, and reliability at high relative humidity.

  1. Many-Body Physics in Long-Range Interacting Quantum Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui

    Ultracold atomic and molecular systems provide a useful platform for understanding quantum many-body physics. Recent progresses in AMO experiments enable access to systems exhibiting long-range interactions, opening a window for exploring the interplay between long-range interactions and dissipation. In this thesis, I develop theoretical approaches to study non-equilibrium dynamics in systems where such interplay is crucial. I first focus on a system of KRb molecules, where dipolar interactions and fast chemical reactions coexist. Using a classical kinetic theory and Monte Carlo methods, I study the evaporative cooling in a quasi-two-dimensional trap, and develop a protocol to reach quantum degeneracy. I also study the case where molecules are loaded into an optical lattice, and show that the strong dissipation induces a quantum Zeno effect, which suppresses the molecule loss. The analysis requires including multiple bands to explain recent experimental measurements, and can be used to determine the molecular filling fraction. I also investigate a system of radiating atoms, which experience long-range elastic and dissipative interactions. I explore the collective behavior of atoms and the role of atomic motion. The model is validated by comparison with a recent light scattering experiment using Sr atoms. I also show that incoherently pumped dipoles can undergo a dynamical phase transition to synchronization, and study its signature in the quantum regime.

  2. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    PubMed

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  3. Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography.

    PubMed

    Meisenkothen, Frederick; Steel, Eric B; Prosa, Ty J; Henry, Karen T; Prakash Kolli, R

    2015-12-01

    In atom probe tomography (APT), some elements tend to field evaporate preferentially in multi-hit detection events. Boron (B) is one such element. It is thought that a large fraction of the B signal may be lost during data acquisition and is not reported in the mass spectrum or in the 3-D APT reconstruction. Understanding the relationship between the field evaporation behavior of B and the limitations for detecting multi-hit events can provide insight into the signal loss mechanism for B and may suggest ways to improve B detection accuracy. The present work reports data for nominally pure B and for B-implanted silicon (Si) (NIST-SRM2137) at dose levels two-orders of magnitude lower than previously studied by Da Costa, et al. in 2012. Boron concentration profiles collected from SRM2137 specimens qualitatively confirmed a signal loss mechanism is at work in laser pulsed atom probe measurements of B in Si. Ion correlation analysis was used to graphically demonstrate that the detector dead-time results in few same isotope, same charge-state (SISCS) ion pairs being properly recorded in the multi-hit data, explaining why B is consistently under-represented in quantitative analyses. Given the important role of detector dead-time as a signal loss mechanism, the results from three different methods of estimating the detector dead-time are presented. The findings of this study apply to all quantitative analyses that involve multi-hit data, but the dead-time will have the greatest effect on the elements that have a significant quantity of ions detected in multi-hit events. Published by Elsevier B.V.

  4. The Atom - The Final Link in the Division Process or the First Building Block? Pre-Instructional Conceptions about the Structure of Substances.

    ERIC Educational Resources Information Center

    Pfundt, Helga

    The hypothesis as to the atomic structure of any given substance is introduced in many physics and chemistry textbooks by conveying the idea of repetitive division of a given amount of substance, for example, by grinding, dissolving, or evaporating. The rationale for this approach is the assumption of students inferring that this process of…

  5. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    PubMed

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Transport in ultrathin gold films decorated with magnetic Gd atoms

    NASA Astrophysics Data System (ADS)

    Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances

    2008-03-01

    We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.

  7. Influence of Cr doping on the stability and structure of small cobalt oxide clusters.

    PubMed

    Tung, Nguyen Thanh; Tam, Nguyen Minh; Nguyen, Minh Tho; Lievens, Peter; Janssens, Ewald

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, ConO+m and Con-1CrO+m (n = 2, 3; m = 2-6 and n = 4; m = 3-8), has been investigated using photodissociation mass spectrometry. Oxygen-rich ConO+m clusters (m ≥ n + 1 for n = 2, 4 and m ≥ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Con-1 CrO+m clusters, except CoCrO+2 and CoCrO+3, prefer to decay by eliminating a neutral oxygen molecule. Co2O+2, Co4O+3, Co4O+4, and CoCrO+2 are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.

  8. The role of ultra-fast solvent evaporation on the directed self-assembly of block polymer thin films

    NASA Astrophysics Data System (ADS)

    Drapes, Chloe; Nelson, G.; Grant, M.; Wong, J.; Baruth, A.

    The directed self-assembly of nano-structures in block polymer thin films viasolvent vapor annealing is complicated by several factors, including evaporation rate. Solvent vapor annealing exposes a disordered film to solvent(s) in the vapor phase, increasing mobility and tuning surface energy, with the intention of producing an ordered structure. Recent theoretical predictions reveal the solvent evaporation affects the resultant nano-structuring. In a competition between phase separation and kinetic trapping during drying, faster solvent removal can enhance the propagation of a given morphology into the bulk of the thin film down to the substrate. Recent construction of a purpose-built, computer controlled solvent vapor annealing chamber provides control over forced solvent evaporation down to 15 ms. This is accomplished using pneumatically actuated nitrogen flow into and out of the chamber. Furthermore, in situ spectral reflectance, with 10 ms temporal resolution, monitors the swelling and evaporation. Presently, cylinder-forming polystyrene-block-polylactide thin films were swollen with 40% (by volume) tetrahydrofuran, followed by immediate evaporation under a variety of designed conditions. This includes various evaporation times, ranging from 15 ms to several seconds, and four unique rate trajectories, including linear, exponential, and combinations. Atomic force microscopy reveals specific surface, free and substrate, morphologies of the resultant films, dependent on specific evaporation conditions. Funded by the Clare Boothe Luce Foundation and Nebraska EPSCoR.

  9. Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.

    PubMed

    Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan

    2018-06-25

    We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.

  10. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    NASA Astrophysics Data System (ADS)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  11. Grating droplets with a mesh

    NASA Astrophysics Data System (ADS)

    Soto, Dan; Le Helloco, Antoine; Clanet, Cristophe; Quere, David; Varanasi, Kripa

    2016-11-01

    A drop thrown against a mesh can pass through its holes if impacting with enough inertia. As a result, although part of the droplet may remain on one side of the sieve, the rest will end up grated through the other side. This inexpensive method to break up millimetric droplets into micrometric ones may be of particular interest in a wide variety of applications: enhancing evaporation of droplets launched from the top of an evaporative cooling tower or preventing drift of pesticides sprayed above crops by increasing their initial size and atomizing them at the very last moment with a mesh. In order to understand how much liquid will be grated we propose in this presentation to start first by studying a simpler situation: a drop impacting a plate pierced with a single off centered hole. The study of the role of natural parameters such as the radius drop and speed or the hole position, size and thickness allows us to discuss then the more general situation of a plate pierced with multiple holes: the mesh.

  12. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  13. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team

    2011-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.

  14. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  15. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2014-12-01

    The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

  16. [Raman spectra of complexes of rare earth nitrate with histidine].

    PubMed

    Gao, S; Ji, M; Liu, J; Hou, Y; Chen, S

    1999-12-01

    Raman spectra of solid complexes RE(His)(NO3)3 x H2O (RE = La-Nd, Sm-Lu, Y; His = L-alpha-histidine ) have been investigated. The results indicate that RE3+ coordinates with one O atome of carboxyl group in the complex, while amino group and imidazole ring do not take part in coordination and NO3 is double coordination. The vibration peaks of carboxyl group delta(v)COO-(as-s) were plotted against the atomic number of the lanthanoids, which obeys Oddo-Harkins law.

  17. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  18. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  19. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    PubMed

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  20. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers

    NASA Astrophysics Data System (ADS)

    Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-01

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  1. Superior ionic and electronic properties of ReN2 monolayers for Na-ion battery electrodes.

    PubMed

    Zhang, Shi-Hao; Liu, Bang-Gui

    2018-08-10

    Excellent monolayer electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose two-dimensional ReN 2 monolayers as superior sodium-ion battery materials. Our total energy optimization results in a buckled tetragonal structure for the ReN 2 monolayer, and our phonon spectrum and elastic moduli prove that it is dynamically and mechanically stable. Further investigations show that it is metallic and still keeps its metallic feature after the adsorption of Na or K atoms, and the adsorption of Na (or K) atoms changes the lattice parameters by 3.2% (or 3.8%) at most. Its maximum capacity reaches 751 mA h g -1 for Na-ion batteries or 250 mA h g -1 for K-ion batteries, and the diffusion barrier is only 0.027 eV for the Na atom or 0.127 eV for the K atom. The small lattice changes, high storage capacity, metallic feature, and extremely low ion diffusion barriers make the ReN 2 monolayers a superior electrode material for Na-ion rechargeable batteries with ultrafast charging/discharging processes.

  2. Novel systems and methods for quantum communication, quantum computation, and quantum simulation

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey Vyacheslavovich

    Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.

  3. Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination

    NASA Technical Reports Server (NTRS)

    Prok, George M.

    1961-01-01

    The effects of surface preparation and gas flow on the recombination of nitrogen atoms at copper and platinum surfaces were determined. Atoms were generated by an electrodeless 2450-megacycle-per-second discharge, and their concentration was measured by gas-phase titration with nitric oxide. Test surfaces were either vacuum-evaporated films or spheres machined from bulk metal and cemented around small glass-bead thermistors. Heat released by recombination was measured as the difference in electrical energy required to maintain a given thermistor temperature with and without a catalytic surface exposed. Recombination coefficients measured at flow velocities of 1120, 1790, 2250, and 3460 centimeters per second and at pressures of 0.42 and 0.59 millimeter of mercury showed that flow conditions had no effect. The results were also independent of atom concentration. A rough indication of the temperature dependence was obtained; it was greater for copper than for platinum. Platinum films deposited on platinum or on glass had the same activity - about 3 percent of the atoms impinging recombined. With copper, however, the glass substrate greatly reduced the percent of atoms recombining over that of a bulk copper substrate where 4 percent of the impinging atoms recombined. This effect could be overcome by depositing a second film on top of the first. Bulk metal samples were subjected to various surface treatments including polishing, degreasing with a chlorinated hydrocarbon, washing with nitric acid, and rinsing with water. Polished, degreased platinum had low activity compared to an evaporated film, but nitric acid treatment made it equivalent. Polished, degreased copper was only slightly less active than a copper film; nitric acid etching decreased the activity still further, probably by preferentially exposing facets of low catalytic efficiency.

  4. Evaporation-driven clustering of microscale pillars and lamellae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young, E-mail: hyk@snu.ac.kr

    As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completelymore » dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.« less

  5. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.

    PubMed

    do Nascimento, Rodney Marcelo; Cottin-Bizonne, Cécile; Pirat, Christophe; Ramos, Stella M M

    2016-03-01

    We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition.

  6. Plasma-induced damage of tungsten coatings on graphite limiters

    NASA Astrophysics Data System (ADS)

    Fortuna, E.; Rubel, M. J.; Psoda, M.; Andrzejczuk, M.; Kurzydowski, K. J.; Miskiewicz, M.; Philipps, V.; Pospieszczyk, A.; Sergienko, G.; Spychalski, M.; Zielinski, W.

    2007-03-01

    Vaccum plasma sprayed tungsten coatings with an evaporated sandwich Re-W interlayer on graphite limiter blocks were studied after the experimental campaign in the TEXTOR tokamak. The coating morphology was modified by high-heat loads and co-deposition of species from the plasma. Co-deposits contained fuel species, carbon, boron and silicon. X-ray diffractometer phase analysis indicated the coexistence of metallic tungsten and its carbides (WC and W2C) and boride (W2B). In the Re-W layer the presence of carbon was detected in a several micrometres thick zone. In the overheated part of the limiter, the Re-W layer was transformed into a sigma phase.

  7. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  8. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  9. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    PubMed

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  10. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study

    PubMed Central

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-01-01

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207

  11. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  12. Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Fujii, Roger

    1990-01-01

    Methods to determine soluble concentrations of selenite, selenate, and organic Se were evaluated on saturation extracts of soil samples collected from three sites on the Panoche Creek alluvial fan in the western San Joaquin Valley, California. The methods were used in combination with hydride-generation atomic-absorption spectrometry for detection of Se, and included a selective chemical-digestion method and three chromatographic methods using XAD-8 resin, Sep-Pak C18 cartridge, and a combination of XAD-8 resin and activated charcoal. The chromatography methods isolate dissolved organic matter that can inhibit Se detection by hydride-generation atomic-absorption spectrometry. Isolation of hydrophobic organic matter with XAD-8 did not affect concentrations of selenite and selenate, and the isolated organic matter represents a minimal estimation of organic Se. Ninety-eight percent of the Se in the extracts was selenate and about 100% of the isolated organic Se was associated with the humic acid fraction of dissolved organic matter. The depth distribution of Se species in the soil saturation extracts support a hypothesis that the distribution of soluble Se and salinity in these soils is the result of evaporation from a shallow water table and leaching by irrigation water low in Se and salinity.

  13. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL

    2010-05-18

    A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

  14. Effect of two sweating simulation methods on clothing evaporative resistance in a so-called isothermal condition.

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui

    2016-07-01

    The effect of sweating simulation methods on clothing evaporative resistance was investigated in a so-called isothermal condition (T manikin  = T a  = T r ). Two sweating simulation methods, namely, the pre-wetted fabric "skin" (PW) and the water supplied sweating (WS), were applied to determine clothing evaporative resistance on a "Newton" thermal manikin. Results indicated that the clothing evaporative resistance determined by the WS method was significantly lower than that measured by the PW method. In addition, the evaporative resistances measured by the two methods were correlated and exhibited a linear relationship. Validation experiments demonstrated that the empirical regression equation showed highly acceptable estimations. The study contributes to improving the accuracy of measurements of clothing evaporative resistance by means of a sweating manikin.

  15. Atomization of liquid sheets in high pressure airflow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    An investigation of liquid sheet atomization is made with combustor simulated inlet air pressures varied from 0.10 to 2.1 MPa. Mean drop diameters are measured with an improved scanning radiometer and correlated with the liquid and air stream Reynolds numbers, RE(1) and RE(A) and the airstream pressure sensitive group GC(2). These data are used in the modeling of the combustion process.

  16. [Separation of PM2.5 from coal combustion with phase change].

    PubMed

    Yan, Jin-pei; Yang, Lin-jun; Zhang, Xia; Sun, Lu-juan; Zhang, Yu; Shen, Xiang-lin

    2008-12-01

    The influence of two methods of gas moisture conditioning on removal efficiency of PM2.5 from coal combustion with addition of atomized droplets and steam was investigated. The particles size distribution and number concentration were measured in real time by electrical low pressure impactor (ELPI). The results show that collection efficiency of PM2.5 from coal combustion can be highly improved with steam condensational enlargement. Particle stage collection efficiency increases with the particles, especially for those smaller than 0.3 microm. The separation efficiency can be improved by 60% with the size of particles increasing from 0.03 microm to 0.3 microm for 0.1 kg/m3 of steam addition. The removal efficiency is independent of the gas temperature at the inlet of conditioning chamber for steam addition. But it increases with the gas temperature obviously for atomized droplets addition, which can be improved by 30% with increasing gas temperature from 136 degrees C to 256 degrees C. High removal efficiency of PM2.5 from coal combustion can be obtained with atomized droplets evaporation in hot flue gas except for steam addition.

  17. Potential energy distribution function and its application to the problem of evaporation

    NASA Astrophysics Data System (ADS)

    Gerasimov, D. N.; Yurin, E. I.

    2017-10-01

    Distribution function on potential energy in a strong correlated system can be calculated analytically. In an equilibrium system (for instance, in the bulk of the liquid) this distribution function depends only on temperature and mean potential energy, which can be found through the specific heat of vaporization. At the surface of the liquid this distribution function differs significantly, but its shape still satisfies analytical correlation. Distribution function on potential energy nearby the evaporation surface can be used instead of the work function of the atom of the liquid.

  18. [Measurement and estimation methods and research progress of snow evaporation in forests].

    PubMed

    Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing

    2013-12-01

    Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.

  19. Trends in evaporation of a large subtropical lake

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2017-07-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  20. Spectroscopic and DFT-based computational studies on the molecular electronic structural characteristics and the third-order nonlinear property of an organic NLO crystal: (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide

    NASA Astrophysics Data System (ADS)

    Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.

    2017-04-01

    Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.

  1. Fullerenes formation in flames

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.

    1993-01-01

    Fullerenes are composed of carbon atoms arranged in approximately spherical or ellipsoidal cages resembling the geodesic domes designed by Buckminster Fuller, after whom the molecules were named. The approximately spherical fullerene, which resembles a soccer ball and contains sixty atoms (C60), is called buckminsterfullerene. The fullerene containing seventy carbon atoms (C70) is approximately ellipsoidal, similar to a rugby ball. Fullerenes were first detected in 1985, in carbon vapor produced by laser evaporation of graphite. The closed shell structure, which has no edge atoms vulnerable to reaction, was proposed to explain the observed high stability of certain carbon clusters relative to that of others at high temperatures and in the presence of an oxidizing gas.

  2. A theoretical model describing the one-dimensional growth of single crystals on free sustained substrates

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang

    2018-03-01

    We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.

  3. Atomizing-gas temperature effect on cryogenic spray dropsize

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1993-01-01

    Correlating expressions for two-phase flow breakup of liquid nitrogen, LN2, jets in sonic velocity nitrogen gasflows were obtained for an atomizing-gas temperature range of 111 to 442 K. The correlations were based on characteristic dropsize measurements obtained with a scattered-light scanner. The effect of droplet vaporization on the measurements of the volume-median dropsize was calculated by using previously determined heat and momentum transfer expressions for droplets evaporating in high-velocity gasflow. Finally, the dropsize of the originally unvaporized spray was calculated, normalized with respect to jet diameter and correlated with atomizing-gas flowrate and temperature.

  4. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can causemore » collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.« less

  5. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  6. Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012

    USGS Publications Warehouse

    Moreo, Michael T.; Swancar, Amy

    2013-01-01

    Evaporation from Lake Mead was measured using the eddy-covariance method for the 2-year period starting March 2010 and ending February 2012. When corrected for energy imbalances, annual eddy-covariance evaporation was 2,074 and 1,881 millimeters (81.65 and 74.07 inches), within the range of previous estimates. There was a 9-percent decrease in the evaporation rate and a 10-percent increase in the lake surface area during the second year of the study compared to the first. These offsetting factors resulted in a nearly identical 720 million cubic meters (584,000 acre feet) evaporation volume for both years. Monthly evaporation rates were best correlated with wind speed, vapor pressure difference, and atmospheric stability. Differences between individual monthly evaporation and mean monthly evaporation were as much as 20 percent. Net radiation provided most of the energy available for evaporative processes; however, advected heat from the Colorado River was an important energy source during the second year of the study. Peak evaporation lagged peak net radiation by 2 months because a larger proportion of the net radiation that reaches the lake goes to heating up the water column during the spring and summer months. As most of this stored energy is released, higher evaporation rates are sustained during fall months even though net radiation declines. The release of stored heat also fueled nighttime evaporation, which accounted for 37 percent of total evaporation. The annual energy-balance ratio was 0.90 on average and varied only 0.01 between the 2 years, thus implying that 90 percent of estimated available energy was accounted for by turbulent energy measured using the eddy-covariance method. More than 90 percent of the turbulent-flux source area represented the open-water surface, and 94 percent of 30-minute turbulent-flux measurements originated from wind directions where the fetch ranged from 2,000 to 16,000 meters. Evaporation uncertainties were estimated to be 5 to 7 percent. A secondary evaporation method, the Bowen ratio energy budget method, also was employed to measure evaporation from Lake Mead primarily as a validation of eddy-covariance evaporation measurements at annual timescales. There was good agreement between annual corrected eddy-covariance and Bowen ratio energy budget evaporation estimates, providing strong validation of these two largely independent methods. Annual Bowen ratio energy budget evaporation was 6 and 8 percent greater than eddy-covariance evaporation for the 2 study years, and both methods indicated there was a similar decrease in evaporation from the first to the second year. Both methods produced negative sensible heat fluxes during the same months, and there was a strong correlation between monthly Bowen ratios (R2 = 0.94). The correlation between monthly evaporation (R2 = 0.65), however, was not as strong. Monthly differences in evaporation were attributed primarily to heat storage estimate uncertainty.

  7. On the way to unveiling the atomic structure of superheavy elements

    NASA Astrophysics Data System (ADS)

    Laatiaoui, Mustapha

    2016-12-01

    Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.

  8. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  9. Stellar model chromospheres. VIII - 70 Ophiuchi A /K0 V/ and Epsilon Eridani /K2 V/

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.

    1978-01-01

    Model atmospheres for the late-type active-chromosphere dwarf stars 70 Oph A and Epsilon Eri are computed from high-resolution Ca II K line profiles as well as Mg II h and k line fluxes. A method is used which determines a plane-parallel homogeneous hydrostatic-equilibrium model of the upper photosphere and chromosphere which differs from theoretical models by lacking the constraint of radiative equilibrium (RE). The determinations of surface gravities, metallicities, and effective temperatures are discussed, and the computational methods, model atoms, atomic data, and observations are described. Temperature distributions for the two stars are plotted and compared with RE models for the adopted effective temperatures and gravities. The previously investigated T min/T eff vs. T eff relation is extended to Epsilon Eri and 70 Oph A, observed and computed Ca II K and Mg II h and k integrated emission fluxes are compared, and full tabulations are given for the proposed models. It is suggested that if less than half the observed Mg II flux for the two stars is lost in noise, the difference between an active-chromosphere star and a quiet-chromosphere star lies in the lower-chromospheric temperature gradient.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Abishek K.; Rudyk, Brent W.; Lin, Xinsong

    The quaternary rare-earth chalcogenides RE{sub 3}CuGaS{sub 7} and RE{sub 3}CuGaSe{sub 7} (RE=La–Nd) have been prepared by reactions of the elements at 1050 °C and 900 °C, respectively. They crystallize in the noncentrosymmetric La{sub 3}CuSiS{sub 7}-type structure (hexagonal, space group P6{sub 3}, Z=2) in which the a-parameter is largely controlled by the RE component (a=10.0–10.3 Å for the sulfides and 10.3–10.6 Å for the selenides) whereas the c-parameter is essentially fixed by the choice of Ga and chalcogen atoms within tetrahedral units (c=6.1 Å for the sulfides and 6.4 Å for the selenides). They extend the series RE{sub 3}MGaCh{sub 7}, previouslymore » known for divalent metal atoms (M=Mn–Ni), differing in that the Cu atoms in RE{sub 3}CuGaCh{sub 7} occupy trigonal planar sites instead of octahedral sites. Among quaternary chalcogenides RE{sub 3}MM′Ch{sub 7}, the combination of monovalent (M=Cu) and trivalent (M′=Ga) metals is unusual because it appears to violate the condition of charge balance satisfied by most La{sub 3}CuSiS{sub 7}-type compounds. The possibility of divalent Cu atoms was ruled out by bond valence sum analysis, magnetic measurements, and X-ray photoelectron spectroscopy. The electron deficiency in RE{sub 3}CuGaCh{sub 7} is accommodated through S-based holes at the top of the valence band, as shown by band structure calculations on La{sub 3}CuGaS{sub 7}. An optical band gap of about 2.0 eV was found for La{sub 3}CuGaSe{sub 7}. - Graphical abstract: The chalcogenides RE{sub 3}CuGaCh{sub 7} contain monovalent Cu in trigonal planes and trivalent Ga in tetrahedra; they are electron-deficient representatives of La{sub 3}CuSiS{sub 7}-type compounds, which normally satisfy charge balance. - Highlights: • Quaternary chalcogenides RE{sub 3}CuGaCh{sub 7} (RE=La–Nd; Ch=S, Se) were prepared. • Bond valence sums, magnetism, and XPS data give evidence for monovalent Cu. • Crystal structures reveal high anisotropy of Cu displacement. • Electron deficiency is accommodated by S-based holes in valence band.« less

  11. A model Ni-Al-Mo superalloy studied by ultraviolet pulsed-laser-assisted local-electrode atom-probe tomography.

    PubMed

    Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N

    2015-04-01

    This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.

  12. Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.

    PubMed

    Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K

    1993-01-01

    Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.

  13. The Z2/A dependence in heavy-ion fusion for the reactions of chlorine on thulium, lutetium, tantalum and tungsten. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiRienzo, A.C.

    1980-06-01

    Evaporation residues produced in the reactions 35Cl+169Tm and 37Cl+169Tm, 175Lu, 181Ta and 186W were observed at zero degree utilizing the Mass Inst of Tech.- Brookhaven Nat'l Lab Recoil Mass Spectrometer. The recoiling nuclei were separated from the beam and refocused onto a surface barrier detector by a combination of electrostatic and magnetic fields and magnetic quadrupole lenses. The residual nuclei are alpha radioactive and can thus be identified by a characteristic alpha line observed after the arrival pulse of the evaporation residue. The recoiling nuclei also pass through a gas ionization chamber whereas the decay alpha do not. A separatemore » anti-coincidence spectrum therefore displayed the alphas background free. Trends of evaporation residue cross section were charted versus Z sq (proton no.)/ A(atomic no.) and compared to statistical evaporation codes.« less

  14. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  15. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  16. Steady Method for the Analysis of Evaporation Dynamics.

    PubMed

    Günay, A Alperen; Sett, Soumyadip; Oh, Junho; Miljkovic, Nenad

    2017-10-31

    Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a given time interval. However, the transient nature coupled with the significant mass-transfer-governed gas dynamics occurring at the droplet three-phase contact line makes the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines makes the decoupling of these processes impossible with classical transient methods. Here, we present a method to measure the rate of evaporation of spatially and temporally steady droplets. By utilizing a piezoelectric dispenser to feed microscale droplets (R ≈ 9 μm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using our steady technique, we studied water evaporation of droplets having base radii ranging from 20 to 250 μm on surfaces of different functionalities (45° ≤ θ a,app ≤ 162°, where θ a,app is the apparent advancing contact angle). We benchmarked our technique with the classical unsteady method, showing an improvement of 140% in evaporation rate measurement accuracy. Our work not only characterizes the evaporation dynamics on functional surfaces but also provides an experimental platform to finally enable the decoupling of the complex physics governing the ubiquitous droplet evaporation process.

  17. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL

    2011-08-16

    A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

  18. Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ren, H. M.; Ding, Y. H.; Chang, F. H.; He, X.; Feng, J. Q.; Wang, C. F.; Jiang, Y.; Zhang, P.

    2012-12-01

    Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO2) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO2/graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.

  19. Electrical, structural and optical properties of tellurium thin films on silicon substrate

    NASA Astrophysics Data System (ADS)

    Arora, Swati; Vijay, Y. K.

    2018-05-01

    Tellurium (Te) thin films of various thicknesses (200nm, 275nm, 350nm & 500nm) were prepared on Silicon (Si) using thermal evaporation at vacuum of 10-5 torr. It is observed that the resistivity decreases exponentially with the Increases Temperature. A direct band gap between 0.368 eV to 0.395 eV is obtained at different temperatures with Four Probe Method which shows that when we increase the thickness of material the band gap will exponentially decreases. Samples were analysed through X-ray diffraction and atomic force microscopy to attain complete and reliable micro structural in order.

  20. Modeling of beryllium sputtering and re-deposition in fusion reactor plasma facing components

    NASA Astrophysics Data System (ADS)

    Zimin, A. M.; Danelyan, L. S.; Elistratov, N. G.; Gureev, V. M.; Guseva, M. I.; Kolbasov, B. N.; Kulikauskas, V. S.; Stolyarova, V. G.; Vasiliev, N. N.; Zatekin, V. V.

    2004-08-01

    Quantitative characteristics of Be-sputtering by hydrogen isotope ions in a magnetron sputtering system, the microstructure and composition of the sputtered and re-deposited layers were studied. The energies of H + and D + ions varied from 200 to 300 eV. The ion flux density was ˜3 × 10 21 m -2 s -1. The irradiation doses were up to 4 × 10 25 m -2. For modeling of the sputtered Be-atom re-deposition at increased deuterium pressures (up to 0.07 torr), a mode of operation with their effective return to the Be-target surface was implemented. An atomic ratio O/Be ≅ 0.8 was measured in the re-deposited layers. A ratio D/Be decreases from 0.15 at 375 K to 0.05 at 575 K and slightly grows in the presence of carbon and tungsten. The oxygen concentration in the sputtered layers does not exceed 3 at.%. The atomic ratio D/Be decreases there from 0.07 to 0.03 at target temperatures increase from 350 to 420 K.

  1. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymiummore » (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be obtained with a bulk film oxygen level of ∼0.54 oxygen as determined by microprobe analysis when an evaporation rate of ∼0.313 mg/cm{sup 2} min was used in an atmosphere of D{sub 2} or T{sub 2} gas at a system deposition pressure of 1 × 10{sup −3 }Torr (1.33 × 10{sup −1 }Pa) in an evaporation time of ∼2 min. Platelet type (i.e., a film microstructure showing an overlay of flat plates with large grain sizes) film structures were observed for most films with some film mechanical properties determined (i.e., grain size and Vickers μ-hardness), and reduced stress levels were seen with initial normalized differential (tensile) stress levels being (1.0–4.0) × 10{sup 8 }dyne/cm{sup 2} for tritium loaded samples and (1.5 ± 0.5) × 10{sup 9 }dyne/cm{sup 2} for deuterium loaded samples. Also, stress aging characteristics were determined for some hydride films prepared in a radioactive tritium gas atmosphere. Tritium loading, however, had the undesirable characteristic of having to dispose of the internal processing system fixtures, which can be minimized, but the reactive evaporation technique produced desirable thin films.« less

  2. Collective excitations in the transitional nuclei 163Re and 165Re

    NASA Astrophysics Data System (ADS)

    Davis-Merry, T. R.; Joss, D. T.; Page, R. D.; Simpson, J.; Paul, E. S.; Ali, F. A.; Bianco, L.; Carroll, R. J.; Cederwall, B.; Darby, I. G.; Drummond, M. C.; Eeckhaudt, S.; Ertürk, S.; Gómez-Hornillos, M. B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Peura, P.; Rahkila, P.; Revill, J. P.; Ruotsalainen, P.; Sandzelius, M.; Sapple, P. J.; Sarén, J.; Sayǧi, B.; Scholey, C.; Sorri, J.; Thomson, J.; Uusitalo, J.

    2015-03-01

    Excited states in the neutron-deficient nuclei 75163Re88 and 75165Re90 were populated in the 106Cd( 60Ni ,p 2 n γ ) and 92Mo( 78Kr , 3 p 2 n γ ) fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. γ rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for 163Re and 165Re were identified using recoil-decay correlation techniques. At low spin, the yrast bands of these isotopes consist of signature partner bands based on a single π h11 /2 quasiproton configuration. The bands display large energy splitting consistent with the soft triaxial shape typical of transitional nuclei above N =82 . The configurations of the excited states are proposed within the framework of the cranked shell model.

  3. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    NASA Astrophysics Data System (ADS)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  4. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?

    PubMed

    Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-08-01

    This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.

  5. Coupling pervaporation to AAS for inorganic and organic mercury determination. A new approach to speciation of Hg in environmental samples.

    PubMed

    Fernandez-Rivas, C; Muñoz-Olivas, R; Camara, C

    2001-12-01

    The design and development of a new approach for Hg speciation in environmental samples is described in detail. This method, consisting of the coupling of pervaporation and atomic absorption spectrometry, is based on a membrane phenomenon that combines the evaporation of volatile analytes and their diffusion through a polymeric membrane. It is proposed here as an alternative to gas chromatography for speciation of inorganic and organic Hg compounds, as the latter compounds are volatile and can be separated by applying the principles mentioned above. The interest of this method lies in its easy handling, low cost, and rapidity for the analysis of liquid and solid samples. This method has been applied to Hg speciation in a compost sample provided by a waste water treatment plant.

  6. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 1)].

    PubMed

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Tonooka, Hiroyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using three food-simulating solvents (water, 4% acetic acid and 20% ethanol), based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. For evaporation, a water bath was used in the official method, and a hot plate in the modified method. In most laboratories, the test solutions were heated until just prior to evaporation to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods, regardless of the heating equipment used. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method.

  7. (abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films

    NASA Technical Reports Server (NTRS)

    Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.

    1994-01-01

    Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.

  8. Cooling by spontaneous decay of highly excited antihydrogen atoms in magnetic traps.

    PubMed

    Pohl, T; Sadeghpour, H R; Nagata, Y; Yamazaki, Y

    2006-11-24

    An efficient cooling mechanism of magnetically trapped, highly excited antihydrogen (H) atoms is presented. This cooling, in addition to the expected evaporative cooling, results in trapping of a large number of H atoms in the ground state. It is found that the final fraction of trapped atoms is insensitive to the initial distribution of H magnetic quantum numbers. Expressions are derived for the cooling efficiency, demonstrating that magnetic quadrupole (cusp) traps provide stronger cooling than higher order magnetic multipoles. The final temperature of H confined in a cusp trap is shown to depend as approximately 2.2T(n0)n(0)(-2/3) on the initial Rydberg level n0 and temperature T(n0).

  9. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    PubMed

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  10. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  11. Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions

    NASA Astrophysics Data System (ADS)

    Marquis, Emmanuelle A.; Gault, Baptiste

    2008-10-01

    The method suggested by Kellogg [J. Appl. Phys. 52, 5320 (1981)] to estimate the temperature of a field emitter under laser pulsing irradiation is reconsidered in the case of a W-Re alloy. It is shown that the temperature obtained using this method is not the absolute temperature, but, if properly calibrated, a value that could be considered as a good approximation of the average temperature reached by the tip when illuminated by picosecond laser pulses.

  12. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  13. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  14. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  15. Storage rings for spin-polarized hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.; Lovelace, R.V.E.; Lee, D.

    1989-11-01

    A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.

  16. Non-Evaporative Cooling Using Spin-Exchange Collision in an Optical Trap

    DTIC Science & Technology

    2009-02-03

    transit time of the atoms across the optical trap should damp the atoms’ motion significantly. These processes are described in detail in Ref. [ 18]. The...potentials. Finally, since the optical trap was very shallow compared to a MOT, any light-assisted collision that resulted in almost any net acceleration...EXCHANGE COLLISION IN AN OPTICAL TRAP 5a. CONTRACT NUMBER FA9550-06-1-0190 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  17. Non-Evaporative Cooling via Inelastic Collisions in an Optical Trap

    DTIC Science & Technology

    2013-02-28

    Simultaneous loading of 85 Rb and 87 Rb into an optical trap from a Magneto - optic Trap (MOT) As was mentioned in the previous section, when both...potential in an 85 Rb magneto - optical trap , Phys. Rev. A 83, 033419 (2011) I.D Ultracold plasma response to few-cycle rf pulses As will be detailed in...ultracold atoms of each isotope were cooled into overlapping Magneto - optic Traps (MOTs). From there, the atoms were then loaded into a Far-off

  18. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffer, J.; Encalada, N.; Huang, M.

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  19. Rapid Evaporation in Fuel Injection

    NASA Astrophysics Data System (ADS)

    McCahan, S.; Kessler, C.

    1997-11-01

    Preheating fuel prior to injection through a nozzle can induce a superheated state during expansion. The resulting rapid evaporation improves atomization of the fluid and, therefore, may improve combustion efficiency. A sufficient degree of superheat im posed on a fuel with a high specific heat (retrograde fluid) can theoretically result in complete evaporation. In the work done by Sloss and McCahan (APS/DFD meeting 1996), dodecane, fuel oil, kerosene, and diesel oil were studied. In this continuation of the same study, decane and tetradecane are preheated to temperatures ranging from 20^oC to 330^oC at a p ressure of 10 bar and injected into a chamber at 1 bar. A simple converging nozzle is used. Photographs taken of the resulting sprays are used to determine cone angles and make qualitative observations of droplet size and spray structure.

  20. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  1. Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne

    2015-12-07

    In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We showmore » that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.« less

  2. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    PubMed

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Preliminary Evaluation of Atomization Characteristics of Improved Biodiesel for Gas Turbine Application

    NASA Astrophysics Data System (ADS)

    Kumaran, P.; Gopinathan, M.; Razali, N. M.; Kuperjans, Isabel; Hariffin, B.; Hamdan, H.

    2013-06-01

    Biodiesel is one of the clean burning alternative fuels derived from natural resources and animal fats which is promising fuel for gas turbine application. However, inferior properties of biodiesel such as high viscosity, density and surface tension results in inferior atomization and high emission, hence impedes the fuel compatible for gas turbine application and emits slightly higher emission pollutants due to inferior atomization. This research work focuses on preliminary evaluation of the atomization characteristics of derived from Malaysian waste cooking oil which is the physical properties are subsequently improved by a microwave assisted post treatment scheme. The results shows with improvement in physical properties achieved through the post treatment, biodiesel exhibits significantly better atomization characteristics in terms of spray angle, spray length, sauter mean diameter and shorter evaporation time compared to the biodiesel before improvement and fossil diesel.

  5. Collisional excitation of ArH+ by hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    The rotational excitation of the 36ArH+ ion in collisions with hydrogen atoms is investigated in this work. The potential energy surface (PES) describing the 36ArH+-H interaction, with the ion bond length r fixed at the average of r over the radial v = 0 vibrational state distribution, was obtained with a coupled cluster method that included single, double, and (perturbatively) triple excitations [RCCSD(T)]. A deep minimum (De = 3135 cm-1) in the PES was found in linear H-ArH+ geometry at an ion-atom separation Re = 4.80a0. Energy-dependent cross-sections and rate coefficients as a function of temperature for this collision pair were computed in close-coupling (CC) calculations. Since the PES possesses a deep well, this is a good system to test the performance of the quantum statistical (QS) method developed by Manolopoulos and co-workers as a more efficient method to compute the cross-sections. Good agreement was found between rate coefficients obtained by the CC and QS methods at several temperatures. In a simple application, the excitation of ArH+ is simulated for conditions under which this ion is observed in absorption.

  6. Method of making a coating of a microtextured surface

    DOEpatents

    Affinito, John D [Tucson, AZ; Graff, Gordon L [West Richland, WA; Martin, Peter M [Kennewick, WA; Gross, Mark E [Pasco, WA; Burrows, Paul E [Kennewick, WA; Sapochak, Linda S [Henderson, NV

    2004-11-02

    A method for conformally coating a microtextured surface. The method includes flash evaporating a polymer precursor forming an evaporate, passing the evaporate to a glow discharge electrode creating a glow discharge polymer precursor plasma from the evaporate, cryocondensing the glow discharge polymer precursor plasma on the microtextured surface and crosslinking the glow discharge polymer precursor plasma thereon, wherein the crosslinking resulting from radicals created in the glow discharge polymer precursor plasma.

  7. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  8. Droplet bubbling evaporatively cools a blowfly.

    PubMed

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  9. Fabrication of Josephson Junction without shadow evaporation

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  10. Effect of laser fluence and ambient gas pressure on surface morphology and chemical composition of hydroxyapatite thin films deposited using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroaki; Hasegawa, Tsukasa; Miyake, Akiko; Tashiro, Yuichiro; Komasa, Satoshi; Hashimoto, Yoshiya

    2018-01-01

    The dependence of the surface morphology and chemical composition of hydroxyapatite (HA) thin films on the laser fluence and ambient gas pressure during their formation by pulsed laser deposition was studied as the first step to investigate the effect of physical and chemical interactions between the ablated chemical species and ambient gas molecules on HA film formation. It was found that a higher fluence could decrease the number of large protrusions on the surface of HA thin films. However, too high a fluence caused a phosphorus deficiency from the stoichiometric value, particularly in the case of lower ambient gas pressure. It was also found that for lower fluences, the atomic species among the ablated chemical species were easily scattered by collision processes with ambient gas molecules. This was caused by the lower velocity of the ablated chemical species and higher ambient gas pressure, which induced a shorter mean free path. In addition, these collision processes played an important role in the adsorption, migration, and re-evaporation of the ablated chemical species on the substrate via chemical reactions.

  11. Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Winter, T.C.; Buso, D.C.; Rosenberry, D.O.; Likens, G.E.; Sturrock, A.M.; Mau, D.P.

    2003-01-01

    Evaporation was determined by the energy-budget method for Mirror Lake during the open water periods of 1982-1987. For all years, evaporation rates were low in spring and fall and highest during the summer. However, the times of highest evaporation rates varied during the 6 yr. Evaporation reached maximum rates in July for three of the years, in June for two of the years, and in August for one of the years. The highest evaporation rate during the 6-yr study was 0.46 cm d-1 during 27 May-4 June 1986 and 15-21 July 1987. Solar radiation and atmospheric radiation input to the lake and long-wave radiation emitted from the lake were by far the largest energy fluxes to and from the lake and had the greatest effect on evaporation rates. Energy advected to and from the lake by precipitation, surface water, and ground water had little effect on evaporation rates. In the energy-budget method, average evaporation rates are determined for energy-budget periods, which are bounded by the dates of thermal surveys of the lake. Our study compared evaporation rates calculated for short periods, usually ???1 week, with evaporation rates calculated for longer periods, usually ???2 weeks. The results indicated that the shorter periods showed more variability in evaporation rates, but seasonal patterns, with few exceptions, were similar.

  12. A comparison of methods of estimating potential evapotranspiration from climatological data in arid and subhumid environments

    USGS Publications Warehouse

    Cruff, R.W.; Thompson, T.H.

    1967-01-01

    This study compared potential evapotranspiration, computed from climatological data by each of six empirical methods, with pan evaporation adjusted to equivalent lake evaporation by regional coefficients. The six methods tested were the Thornthwaite, U.S. Weather Bureau (a modification of the Permian method), Lowry-Johnson, Blaney-Criddle, Lane, and Hamon methods. The test was limited to 25 sites in the arid and subhumid parts of Arizona, California, and Nevada, where pan evaporation and concurrent climatological data were available. However, some of the sites lacked complete climatological data for the application of all six methods. Average values of adjusted pan evaporation and computed potential evapotransp4ration were compared for two periods---the calendar year and the 6-month period from May 1 through October 31. The 25 sites sampled a wide range of climatic conditions. Ten sites (group 1) were in a highly arid environment and four (group 2) were in an arid environment that was modified by extensive irrigation. The remaining 11 sites (group 3) were in a subhumid environment. Only the Weather Bureau method gave estimates of potential evapotranspiration that closely agreed with the adjusted pan evaporation at all sites where the method was used. However, lack of climatological data restricted the use of the Weather Bureau method to seven sites. Results obtained by use of the Thornthwaite, Lowry-Johnson, and Hamon methods were consistently low. Results obtained by use of the Lane method agreed with adjusted pan evaporation at the group 1 sites but were consistently high at the group 2 and 3 sites. During the analysis it became apparent that adjusted pan evaporation in an arid environment (group 1 sites) was a spurious standard for evaluating the reliability of .the methods that were tested. Group 1 data were accordingly not considered when making conclusions as ,to which of the six methods tested was best. The results of this study for group 2 and 3 data indicated that the Blaney-Criddle method, which uses climatological data that can be readily obtained or deduced, was the most practical of the six methods for estimating potential evapotranspiration. At all 15 sites in the two environments, potential evapotranspiration computed by the Blaney-Criddle method checked the adjusted pan evaporation within ?22 percent. This percentage range is generally considered to be the range of reliability for estimating lake evaporation from evaporation pans.

  13. Preparation and characterization of degradable nanocapsules that release pesticides over an extended period of time

    USDA-ARS?s Scientific Manuscript database

    Pesticide efficacy is limited by evaporation and precipitation. These processes can result in the need for costly pesticide re-application. By using a nanocapsule to contain the pesticide, these two problems can be greatly reduced. Produced nanocapsules adsorb on the surface of the plant and are not...

  14. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula [Livermore, CA; Zalk, David [San Jose, CA; Hoffman, D Mark [Livermore, CA

    2011-04-12

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  15. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2012-07-10

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  16. Melt growth of zinc aluminate spinel single crystal by the micro-pulling down method under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kamada, K.; Shoji, Y.; Yamaji, A.; Kurosawa, S.; Yokota, Yuui; Ohashi, Y.; Kim, Kyoung Jin; Ivanov, M.; Kochurikhin, V. V.; Yoshikawa, A.

    2018-06-01

    ZnAl2O4 crystals were grown using few starting compositions with various ZnO:AlO3/2 ratio using an Ir wire seed and Ir + Re crucible under ordinary pressure with Ar + 2%O2 atmosphere by the radiofrequency heating μ-PD furnace. The ZnAl2O4 spinel single crystal with 4 mm diameter could be successfully grown by the μ-PD method by optimization of starting melt composition considering with Zinc oxide evaporation. During 10 min of growth under normal pressure the formation of ZnAl2O4 single phase observed even at high vapor pressure of ZnO. The transmittance spectra and X-ray locking curve were measured for evaluating of grown ZnAl2O4 crystals quality.

  17. Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Cramer, Richard; Speck, James S.

    2017-06-01

    Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.

  18. Atomic layer deposition and etching methods for far ultraviolet aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Hennessy, John; Moore, Christopher S.; Balasubramanian, Kunjithapatham; Jewell, April D.; Carter, Christian; France, Kevin; Nikzad, Shouleh

    2017-09-01

    High-performance aluminum mirrors at far ultraviolet wavelengths require transparent dielectric materials as protective coatings to prevent oxidation. Reducing the thickness of this protective layer can result in additional performance gains by minimizing absorption losses, and provides a path toward high Al reflectance in the challenging wavelength range of 90 to 110 nm. We have pursued the development of new atomic layer deposition processes (ALD) for the metal fluoride materials of MgF2, AlF3 and LiF. Using anhydrous hydrogen fluoride as a reactant, these films can be deposited at the low temperatures required for large-area surface-finished optics and polymeric diffraction gratings. We also report on the development and application of an atomic layer etching (ALE) procedure to controllably etch native aluminum oxide. Our ALE process utilizes the same chemistry used in the ALD of AlF3 thin films, allowing for a combination of high-performance evaporated Al layers and ultrathin ALD encapsulation without requiring vacuum transfer. Progress in demonstrating the scalability of this approach, as well as the environmental stability of ALD/ALE Al mirrors are discussed in the context of possible future applications for NASA LUVOIR and HabEx mission concepts.

  19. Shock wave loading of a magnetic guide

    NASA Astrophysics Data System (ADS)

    Kindt, L.

    2011-10-01

    The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.

  20. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopymore » and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.« less

  1. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.

  2. The Calculation Study of Electronic Properties of Doped RE (Eu, Er and Tm)-GaN using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zaharo, Aflah; Purqon, Acep

    2017-07-01

    The calculation of the structure and electronic properties of Rare Earth (RE) at the wurtzite Gallium Nitride (GaN) based on DFT has completed. GGA approximation used for exchange correlation and Ultra soft pseudo potential too. The stability structure of GaN is seen that difference lattice parameter 11% lower than another calculation and experiment result. It is shown the stability structure GaN have direct band gap energy on Gamma point hexagonal lattice Brillouin zone. The width Eg is 2.6 eV. When one atom Ga is substituted with one atom RE, the bond length is change 12 % longest. An in good agreement with theoretical doping RE concentration increases, the edge of energy level shifted towards to make the band gap narrow which is allow the optical transitions and help to improve the optical performance of GaN. The RE doped GaN is potentially applicable for various color of LED with lower energy consumption and potentially energy saving application

  3. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    PubMed

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an aqueous microenvironment surrounding the protein.

  4. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer.

    PubMed

    Collery, Philippe; Mohsen, Ahmed; Kermagoret, Anthony; Corre, Samantha; Bastian, Gérard; Tomas, Alain; Wei, Ming; Santoni, François; Guerra, Nadia; Desmaële, Didier; d'Angelo, Jean

    2015-08-01

    Rhenium (I)-diselenother (Re-diselenoether) is a water soluble metal-based compound, combining one atom of rhenium and two atoms of selenium. This compound has been reported to exhibit marked activities against several solid tumor cell lines. We now disclose an improved synthesis of this complex. The Re-diselenoether showed a potent inhibitory effect on MDA-MB231 cell division in vitro, which lasted when the complex was no longer present in the culture. Re-diselenoether induced a remarkable reduction of the volume of the primitive breast tumors and of the pulmonary metastases without clinical signs of toxicity, in mice-bearing a MDA-MB231 Luc+ tumor, orthotopically transplanted, after a daily oral administration at the dose of 10 mg/kg/d. Interestingly, an antagonism was observed when cisplatin was administered as a single i.p. injection 1 week after the end of the Re-diselenoether administration. In an effort to gain insight of the mechanisms of action of Re-diselenoether complex, interaction with 9-methylguanine as a nucleic acid base model was studied. We have shown that Re-diselenoether gave both mono- and bis-guanine Re adducts, the species assumed to be responsible for the DNA intrastrand lesions.

  5. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  6. Kinetics of Si and Ge nanowires growth through electron beam evaporation

    PubMed Central

    2011-01-01

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted. PMID:21711696

  7. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    PubMed

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  8. Survey of ion plating sources

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Ion plating is a plasma deposition technique where ions of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be ion plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gaseous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  9. On Dalton and evaporation research - a passage in the footsteps of scientific discovery (John Dalton Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Or, Dani

    2017-04-01

    It may seem peculiar that John Dalton known primarily for his pioneering contributions to chemistry with the development of gas laws and modern atomic theory is somehow associated with hydrology. Dalton conducted some of earliest and definitive experiments and analyses to deduce regional water balance (1799) and subsequently expanded into "Essay on Evaporation" in 1802 maintaining keen interest in hydrometeorology throughout his adult life. A striking aspect of Dalton's pioneering work is the conviction in the generality of the laws of nature - in the conclusion of his 1799 water balance study he writes: "I think we may fairly conclude - that the rain and dew of this country are equivalent to the quantity of water carried off by evaporation and rivers", Dalton then adds "and as nature acts upon general laws, we ought to infer that it must be the case in every other country, till the contrary is proved". The presentation will trace key steps in evaporation research inspired by Dalton's vision and motivated by historical and contemporary discoveries of this key process central to hydrology, climate, and life on Earth.

  10. Kinetics of Si and Ge nanowires growth through electron beam evaporation.

    PubMed

    Artoni, Pietro; Pecora, Emanuele Francesco; Irrera, Alessia; Priolo, Francesco

    2011-02-21

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted.

  11. Simulation of transformations of thin metal films heated by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Balandin, V. Yu.; Niedrig, R.; Bostanjoglo, O.

    1995-01-01

    The ablation of free-standing thin aluminum films by a nanosecond laser pulse was investigated by time-resolved transmission electron microscopy and numerical simulation. It was established that thin film geometry is particularly suited to furnish information on the mechanism of evaporation and the surface tension of the melt. In the case of aluminum the surface tension sigma as function of temperature can be approximated by two linear sections with a coefficient -0.3 x 10(exp -3) N/K m from the melting point 933 K up to 3000 K and -0.02 x 10(exp -3) N/K m above 3000 K, respectively, with sigma(993 K) = 0.9 N/m and sigma(8500 K) = 0. At lower pulse energies the films disintegrated predominantly by thermocapillary flow. Higher pulse energies produced volume evaporation, and a nonmonotonous flow, explained by recoil from evaporating atoms and thermocapillarity. The familiar equations of energy and motion, which presuppose separate and coherent vapor and liquid phases, were not adequate to describe the ablation of the hottest zone. Surface evaporation seemed to be marginal at all laser pulse energies used.

  12. Crystal structure of fac-tri-carbonyl-chlorido-bis-(4-hy-droxy-pyridine)-rhenium(I)-pyridin-4(1H)-one (1/1).

    PubMed

    Argibay-Otero, Saray; Carballo, Rosa; Vázquez-López, Ezequiel M

    2017-10-01

    The asymmetric unit of the title compound, [ReCl(C 5 H 5 NO) 2 (CO) 3 ]·C 5 H 5 NO, contains one mol-ecule of the complex fac -[ReCl(4-pyOH) 2 (CO) 3 ] (where 4-pyOH represents 4-hy-droxy-pyridine) and one mol-ecule of pyridin-4(1 H )-one (4-HpyO). In the mol-ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa-hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol-ecules bridge between two mol-ecules of the complex using the O=C group as acceptor for two different HO- groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N-H groups of the 4-HpyO mol-ecule and the chloride ligands. The chains are further stabilized by π-stacking inter-actions.

  13. Probing the fusion of neutron-rich nuclei with re-accelerated radioactive beams

    NASA Astrophysics Data System (ADS)

    Vadas, J.; Singh, Varinderjit; Wiggins, B. B.; Huston, J.; Hudan, S.; deSouza, R. T.; Lin, Z.; Horowitz, C. J.; Chbihi, A.; Ackermann, D.; Famiano, M.; Brown, K. W.

    2018-03-01

    We report the first measurement of the fusion excitation functions for K,4739+28Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time of flight with high geometric efficiency. At the lowest incident energy, the cross section measured for the neutron-rich 47K-induced reaction is ≈6 times larger than that of the β -stable system. This experimental approach, both in measurement and in analysis, demonstrates how to efficiently measure fusion with low-intensity re-accelerated radioactive beams, establishing the framework for future studies.

  14. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  15. A report on the implementation aspects of the International Atomic Energy Agency's first doctoral coordinated research project, "Management of liver cancer using radionuclide methods with special emphasis on trans-arterial radio-conjugate therapy and internal dosimetry".

    PubMed

    Padhy, Ajit Kumar; Dondi, Maurizio

    2008-03-01

    Liver cancer is one of the most dreaded cancers, and it is highly prevalent in the developing countries, where the resources are extremely scarce to deal with this disease using the current commercially available and expensive therapeutic radiopharmaceuticals. The International Atomic Energy Agency (IAEA), in pursuit of its mandate to promote the application of nuclear technology in the health care in its Member States, has developed and clinically evaluated a new and cost-effective therapeutic radio-conjugate, rhenium-188 ((188)Re)-lipiodol for the treatment of hepatocellular carcinoma through its first Doctoral Coordinated Research Project. The ready availability of no-carrier-added (188)Re from the tungsten-188/(188)Re generator represents a potentially important source of a therapeutic radioisotope for a broad range of therapeutic applications in nuclear medicine. The alumina-based tungsten-188/(188)Re generator system comes with reasonable cost and exhibits attractive therapeutic properties, excellent performance and very long useful shelf-life. Because of the long shelf-life of several months, the use of this generator offers a unique opportunity for the cost-effective and routine availability of a versatile therapeutic radioisotope on an on-demand basis. Further, using its extensive global network and outreach, the IAEA has also transferred the technology of the in-house preparation and use of (188)Re-labeled lipiodol to many institutions around the world, which can now prepare (188)Re-labeled lipiodol in their own radiopharmacy laboratories and treat patients. This effort of the IAEA in trying to address some of the challenges of liver cancer therapy in developing countries has been and truly a global venture with involvement and contributions from several organizations, institutions and numerous individuals. This article discusses some of the implementation aspects of this very important activity of the Agency.

  16. Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method.

    PubMed

    Ai, Zhipin; Wang, Qinxue; Yang, Yonghui; Manevski, Kiril; Zhao, Xin; Eer, Deni

    2017-12-19

    Evaporation from land surfaces is a critical component of the Earth water cycle and of water management strategies. The complementary method originally proposed by Bouchet, which describes a linear relation between actual evaporation (E), potential evaporation (E po ) and apparent potential evaporation (E pa ) based on routinely measured weather data, is one of the various methods for evaporation calculation. This study evaluated the reformulated version of the original method, as proposed by Brutsaert, for forest land cover in Japan. The new complementary method is nonlinear and based on boundary conditions with strictly physical considerations. The only unknown parameter (α e ) was for the first time determined for various forest covers located from north to south across Japan. The values of α e ranged from 0.94 to 1.10, with a mean value of 1.01. Furthermore, the calculated evaporation with the new method showed a good fit with the eddy-covariance measured values, with a determination coefficient of 0.78 and a mean bias of 4%. Evaluation results revealed that the new nonlinear complementary relation performs better than the original linear relation in describing the relationship between E/E pa and E po /E pa , and also in depicting the asymmetry variation between E pa /E po and E/E po .

  17. Crystal structure refinement of ReSi1.75 with an ordered arrangement of silicon vacancies

    NASA Astrophysics Data System (ADS)

    Harada, Shunta; Hoshikawa, Hiroaki; Kuwabara, Kosuke; Tanaka, Katsushi; Okunishi, Eiji; Inui, Haruyuki

    2011-08-01

    The crystal structure and microstructure of ReSi1.75 were investigated by synchrotron X-ray diffraction combined with scanning transmission electron microscopy. ReSi1.75 contains an ordered arrangement of vacancies in Si sites in the underlying tetragonal C11b lattice of the MoSi2-type and the crystal structure is monoclinic with the space group Cm. Atomic positions of Si atoms near vacancies are considerably displaced from the corresponding positions in the parent C11b structure, and they exhibit anomalously large local thermal vibration accompanied by large values of atomic displacement parameter. There are four differently-oriented domains with two of them being related to each other by the 90° rotation about the c-axis of the underlying C11b lattice and the other two being their respective twins. The habit planes for domain boundaries observed experimentally are consistent with those predicted with ferroelastic theory.

  18. Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in Al-Zr-Y alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Haiyan, E-mail: gaohaiyan@sjtu.edu.cn

    Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in aged Al-Zr-Y alloy was investigated through atom probe tomography (APT) and transmission electron microscope (TEM) analysis and first principles calculations. The results show that short-bar-shaped D0{sub 19}-Al{sub 3}Y with some Zr atoms dissolved in precipitated at the very beginning of decomposition and worked as heterogeneous nuclei for L1{sub 2}-Al{sub 3}Zr with spherical morphology after being aged at 400 °C for 2 h. Quasi-static coarsening happened as the aging treatment lasted from 2 h to 200 h. However, distribution of Zr and Y atoms in Al{sub 3}(Zr,Y) is nearly uniform and Al{submore » 3}(Zr,Y) do not have the typical “Al{sub 3}RE core-Al{sub 3}Zr shell” structure which observed in other RE containing Al-Zr-RE alloys with L1{sub 2}-Al{sub 3}RE as nuclei. First principles calculations revealed that binding energy between Y and Zr is strong during the growth of Al{sub 3}(Zr,Y), which led to the co-precipitation of Y and Zr atoms and attribute to the evolution of Al{sub 3}(Zr,Y). - Highlights: •Al{sub 3}Y precipitated firstly and then became nuclei for Al{sub 3}Zr during aging of Al-Zr-Y. •Al{sub 3}(Zr,Y) precipitates do not have the typical “Al{sub 3}Y core-Al{sub 3}Zr shell” structure. •Strong binding between Y and Zr led to the co-precipitation of Y and Zr atoms.« less

  19. Large-scale Growth and Simultaneous Doping of Molybdenum Disulfide Nanosheets

    PubMed Central

    Kim, Seong Jun; Kang, Min-A; Kim, Sung Ho; Lee, Youngbum; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok

    2016-01-01

    A facile method that uses chemical vapor deposition (CVD) for the simultaneous growth and doping of large-scale molybdenum disulfide (MoS2) nanosheets was developed. We employed metalloporphyrin as a seeding promoter layer for the uniform growth of MoS2 nanosheets. Here, a hybrid deposition system that combines thermal evaporation and atomic layer deposition (ALD) was utilized to prepare the promoter. The doping effect of the promoter was verified by X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the carrier density of the MoS2 nanosheets was manipulated by adjusting the thickness of the metalloporphyrin promoter layers, which allowed the electrical conductivity in MoS2 to be manipulated. PMID:27044862

  20. Quaternary rare-earth sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE=La–Nd, Sm; M=Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Abishek K.; Yin, Wenlong; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900

    The two metal-deficient series of quaternary Ge-containing sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE = La–Nd, Sm; M = Co, Ni), as well as the related Si-containing sulfide Y{sub 3}Pd{sub 0.5}SiS{sub 7}, were prepared by reactions of the elements at 1050 °C. Single-crystal X-ray diffraction analysis performed on all compounds confirmed noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z =2) with cell parameters in the ranges of a =10.0–10.3 Å and c =5.7–5.8 Å for RE{sub 3}Co{sub 0.5}GeS{sub 7} and RE{sub 3}Ni{sub 0.5}GeS{sub 7}, or a =9.7891(3) Å and c =5.6840(4) Å for Y{sub 3}Pd{sub 0.5}SiS{sub 7}. They are classified asmore » La{sub 3}Mn{sub 0.5}SiS{sub 7}-type structures, with M atoms centred within octahedra (in contrast to La{sub 3}CuSiS{sub 7}-type structures in which M atoms occupy trigonal planar sites) and Ge atoms centred within tetrahedra, both types of polyhedra being arranged in one-dimensional stacks aligned along the c-direction. Charge balance requirements dictate half-occupancy of the M sites. However, bond valence sum arguments indicated that the M atoms are somewhat underbonded within these octahedral sites, so that there is evidence that in some compounds, they can also enter the trigonal planar site at low occupancy (~5%). Magnetic measurements on RE{sub 3}Co{sub 0.5}GeS{sub 7} (RE = Ce, Pr, Sm) revealed paramagnetic behaviour for the Ce and Pr members and apparent antiferromagnetic ordering (T{sub N} =14 K) for the Sm member; fitting to the Curie-Weiss law gave effective magnetic moments consistent with the presence of RE{sup 3+} and Co{sup 2+} species. Band structure calculations on ordered models of La{sub 3}M{sub 0.5}GeS{sub 7} (M = Co, Ni) showed that the Fermi level cuts through M 3d states in the DOS curve and supported the presence of strong M–S and Ge–S bonding interactions. - Graphical abstract: RE{sub 3}M{sub 0.5}GeS{sub 7} (M = Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7} contain M atoms partially occupying octahedral and, in some cases, trigonal planar sites within noncentrosymmetric hexagonal structures. - Highlights: • The missing M = Co and Ni series in hexagonal RE{sub 3}M{sub 0.5}GeS{sub 7} have been prepared. • Charge balance is ensured through half occupancy of octahedral M sites. • In some cases, a secondary trigonal planar M site is occupied at very low levels. • Magnetic measurements on RE{sub 3}Co{sub 0.5}GeS{sub 7} support presence of RE{sup 3+} and Co{sup 2+}.« less

  1. Atomic clusters and atomic surfaces in icosahedral quasicrystals.

    PubMed

    Quiquandon, Marianne; Portier, Richard; Gratias, Denis

    2014-05-01

    This paper presents the basic tools commonly used to describe the atomic structures of quasicrystals with a specific focus on the icosahedral phases. After a brief recall of the main properties of quasiperiodic objects, two simple physical rules are discussed that lead one to eventually obtain a surprisingly small number of atomic structures as ideal quasiperiodic models for real quasicrystals. This is due to the fact that the atomic surfaces (ASs) used to describe all known icosahedral phases are located on high-symmetry special points in six-dimensional space. The first rule is maximizing the density using simple polyhedral ASs that leads to two possible sets of ASs according to the value of the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second rule is maximizing the number of complete orbits of high symmetry to construct as large as possible atomic clusters similar to those observed in complex intermetallic structures and approximant phases. The practical use of these two rules together is demonstrated on two typical examples of icosahedral phases, i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).

  2. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  3. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract

    EPA Science Inventory

    Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

  4. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.

    1986-01-01

    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  5. Toward the growth of an aligned single-layer MoS2 film.

    PubMed

    Kim, Daeho; Sun, Dezheng; Lu, Wenhao; Cheng, Zhihai; Zhu, Yeming; Le, Duy; Rahman, Talat S; Bartels, Ludwig

    2011-09-20

    Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth. © 2011 American Chemical Society

  6. Metallic-covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants.

    PubMed

    Takagiwa, Yoshiki; Kimura, Kaoru

    2014-08-01

    In this article, we review the characteristic features of icosahedral cluster solids, metallic-covalent bonding conversion (MCBC), and the thermoelectric properties of Al-based icosahedral quasicrystals and approximants. MCBC is clearly distinguishable from and closely related to the well-known metal-insulator transition. This unique bonding conversion has been experimentally verified in 1/1-AlReSi and 1/0-Al 12 Re approximants by the maximum entropy method and Rietveld refinement for powder x-ray diffraction data, and is caused by a central atom inside the icosahedral clusters. This helps to understand pseudogap formation in the vicinity of the Fermi energy and establish a guiding principle for tuning the thermoelectric properties. From the electron density distribution analysis, rigid heavy clusters weakly bonded with glue atoms are observed in the 1/1-AlReSi approximant crystal, whose physical properties are close to icosahedral Al-Pd-TM (TM: Re, Mn) quasicrystals. They are considered to be an intermediate state among the three typical solids: metals, covalently bonded networks (semiconductor), and molecular solids. Using the above picture and detailed effective mass analysis, we propose a guiding principle of weakly bonded rigid heavy clusters to increase the thermoelectric figure of merit ( ZT ) by optimizing the bond strengths of intra- and inter-icosahedral clusters. Through element substitutions that mainly weaken the inter-cluster bonds, a dramatic increase of ZT from less than 0.01 to 0.26 was achieved. To further increase ZT , materials should form a real gap to obtain a higher Seebeck coefficient.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    USGS Publications Warehouse

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  8. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    NASA Astrophysics Data System (ADS)

    Jöckel, Andreas; Faber, Aline; Kampschulte, Tobias; Korppi, Maria; Rakher, Matthew T.; Treutlein, Philipp

    2015-01-01

    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 1010. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.

  9. An evaporation model of multicomponent solution drops

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Deepti; Rayaprol, S.; Siruguri, V.

    We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less

  11. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    NASA Astrophysics Data System (ADS)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  12. Comparison of evaporation computation methods, Pretty Lake, Lagrange County, northeastern Indiana

    USGS Publications Warehouse

    Ficke, John F.

    1972-01-01

    The different methods, although poor, agree that evaporation when there is ice cover is generally small (less than 0.1 cm day" 1 ), but the evaporation rates during the few days just before freezeup or just after ice breakup are significant

  13. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambersmore » are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).« less

  14. Impact of local electrostatic field rearrangement on field ionization

    NASA Astrophysics Data System (ADS)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  15. Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian; Graber, Christof; Liburdy, James

    This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon.more » Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out. (author)« less

  16. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  17. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  18. Atom chips in the real world: the effects of wire corrugation

    NASA Astrophysics Data System (ADS)

    Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.

    2005-02-01

    We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.

  19. Smoothed particle hydrodynamics method for evaporating multiphase flows.

    PubMed

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  20. The handling, hazards, and maintenance of heavy liquids in the geologic laboratory

    USGS Publications Warehouse

    Hauff, Phoebe L.; Airey, Joseph

    1980-01-01

    In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.

  1. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke; Hagino, Harutoshi

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We proposemore » that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.« less

  2. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of whole-water recoverable arsenic, boron, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    2000-01-01

    Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.

  3. Reconciling Isotopic Partitioning Estimates of Moisture Fluxes in Semi-arid Landscapes Through a New Modeling Approach for Evaporation

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.

    2017-12-01

    The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller drop pools may produce a similarly weaker kinetic effect.

  4. Atoms and Molecules: Do They Have a Place in Primary Science?

    ERIC Educational Resources Information Center

    Lee, Kam-Wah Lucille; Tan, Swee-Ngin

    2004-01-01

    In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…

  5. From Air Temperature to Lake Evaporation on a Daily Time Step: A New Empirical Approach

    NASA Astrophysics Data System (ADS)

    Welch, C.; Holmes, T. L.; Stadnyk, T. A.

    2016-12-01

    Lake evaporation is a key component of the water balance in much of Canada due to the vast surface area covered by open water. Hence, incorporating this flux effectively into hydrological simulation frameworks is essential to effective water management. Inclusion has historically been limited by the intensive data required to apply the energy budget methods previously demonstrated to most effectively capture the timing and volume of the evaporative flux. Widespread, consistent, lake water temperature and net radiation data are not available across much of Canada, particularly the sparsely populated boreal shield. We present a method to estimate lake evaporation on a daily time step that consists of a series of empirical equations applicable to lakes of widely varying morphologies. Specifically, estimation methods that require the single meteorological variable of air temperature are presented for lake water temperature, net radiation, and heat flux. The methods were developed using measured data collected at two small Boreal shield lakes, Lake Winnipeg North and South basins, and Lake Superior in 2008 and 2009. The mean average error (MAE) of the lake water temperature estimates is generally 1.5°C, and the MAE of the heat flux method is 50 W m-2. The simulated values are combined to estimate daily lake evaporation using the Priestley-Taylor method. Heat storage within the lake is tracked and limits the potential heat flux from a lake. Five-day running averages compare well to measured evaporation at the two small shield lakes (Bowen Ratio Energy Balance) and adequately to Lake Superior (eddy covariance). In addition to air temperature, the method requires a mean depth for each lake. The method demonstrably improves the timing and volume of evaporative flux in comparison to existing evaporation methods that depend only on temperature. The method will be further tested in a semi-distributed hydrological model to assess the cumulative effects across a lake-dominated catchment in the Lower Nelson River basin.

  6. Radiation-Spray Coupling for Realistic Flow Configurations

    NASA Technical Reports Server (NTRS)

    El-Asrag, Hossam; Iannetti, Anthony C.

    2011-01-01

    Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.

  7. Photoemission studies of CdTe(100) and the Ag-CdTe(100) interface: Surface structure, growth behavior, Schottky barrier, and surface photovoltage

    NASA Astrophysics Data System (ADS)

    John, P.; Miller, T.; Hsieh, T. C.; Shapiro, A. P.; Wachs, A. L.; Chiang, T.-C.

    1986-11-01

    The clean CdTe(100) surface prepared by sputtering and annealing was studied with high-energy electron diffraction (HEED) and photoemission. HEED showed the surface to be a one-domain, (2×1) reconstruction. Photoemission spectra showed two surface-shifted components for the Cd 4d core level, with an intensity ratio of about 1:3, accounting for nearly an entire atomic layer. No surface-induced shifts for the Te 4d core level were detected. A model is proposed for the surface structure in which the surface layer is free of Te, and Cd atoms form dimers resulting in a (2×1) reconstruction; in addition, about (1/4) of the surface area is covered by excess loosely attached Cd atoms. Ag was evaporated on the surface at room temperature and found to grow three dimensionally in the [111] direction. The Ag was found to interact only weakly with the substrate, although the Cd atoms originally loosely bound on top of the surface were found to float on the evaporated Ag islands. A small coverage-dependent surface photovoltage, induced by the synchrotron radiation used for photoemission, was observed; with this effect taken into account, band bending was monitored, the final Fermi-level position being near 0.96 eV above the valence-band maximum. This corresponds to a Schottky-barrier height of about 0.60 eV for the n-type sample used in this experiment. The mechanism for generation of the surface photovoltage will be discussed.

  8. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application.

    PubMed

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM.

  9. A Simpler Way to Tame Multiple-Effect Evaporators.

    ERIC Educational Resources Information Center

    Joye, Donald D.; Koko, F. William Jr.

    1988-01-01

    Presents a new method to teach the subject of evaporators which is both simple enough to use in the classroom and accurate and flexible enough to be used as a design tool in practice. Gives an example using a triple evaporator series. Analyzes the effect of this method. (CW)

  10. Oxorhenium complexes bearing the water-soluble tris(pyrazol-1-yl)methanesulfonate, 1,3,5-triaza-7-phosphaadamantane, or related ligands, as catalysts for Baeyer-Villiger oxidation of ketones.

    PubMed

    Martins, Luísa M D R S; Alegria, Elisabete C B A; Smoleński, Piotr; Kuznetsov, Maxim L; Pombeiro, Armando J L

    2013-04-15

    New rhenium(VII or III) complexes [ReO3(PTA)2][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4]I (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)2][ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(η(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)3, pz = pyrazolyl], [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)3(-)] and [ReCl2{N2C(O)Ph}(PTA)3] (7) have been prepared from the Re(VII) oxide Re2O7 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.

  11. Unprecedented linking of two polyoxometalate units with a metal-metal multiple bond.

    PubMed

    Sokolov, Maxim N; Korenev, Vladimir S; Izarova, Natalya V; Peresypkina, Eugenia V; Vicent, Cristian; Fedin, Vladimir P

    2009-03-02

    The reaction of (Bu(4)N)(2)[Re(2)Cl(8)] with lacunary Keggin polyoxometalate K(7)[PW(11)O(39)] in water produces a new dumbbell-shaped heteropolyoxometalate anion, [Re(2)(PW(11)O(39))(2)](8-), whose structure contains a central Re(2) core with a quadruple bond between Re atoms (Re-Re 2.25 A), coordinated to two polyoxometalate units. This complex represents the first example of the direct linking of two polyoxometalate units via a metal-metal multiple bond. The compounds were characterized by X-ray analysis, IR, and electrospray ionization mass spectrometry.

  12. Atomic Layer Deposition of Rhenium Disulfide.

    PubMed

    Hämäläinen, Jani; Mattinen, Miika; Mizohata, Kenichiro; Meinander, Kristoffer; Vehkamäki, Marko; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku

    2018-06-01

    2D materials research is advancing rapidly as various new "beyond graphene" materials are fabricated, their properties studied, and materials tested in various applications. Rhenium disulfide is one of the 2D transition metal dichalcogenides that has recently shown to possess extraordinary properties such as that it is not limited by the strict monolayer thickness requirements. The unique inherent decoupling of monolayers in ReS 2 combined with a direct bandgap and highly anisotropic properties makes ReS 2 one of the most interesting 2D materials for a plethora of applications. Here, a highly controllable and precise atomic layer deposition (ALD) technique is applied to deposit ReS 2 thin films. Film growth is demonstrated on large area (5 cm × 5 cm) substrates at moderate deposition temperatures between 120 and 500 °C, and the films are extensively characterized using field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, X-ray diffractometry using grazing incidence, atomic force microscopy, focused ion beam/transmission electron microscopy, X-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The developed ReS 2 ALD process highlights the potential of the material for applications beyond planar structure architectures. The ALD process also offers a route to an upgrade to an industrial scale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GPU implementation of the linear scaling three dimensional fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Wang, Jue; Chi, Xuebin; Wang, Lin-Wang

    2017-02-01

    LS3DF, namely linear scaling three-dimensional fragment method, is an efficient linear scaling ab initio total energy electronic structure calculation code based on a divide-and-conquer strategy. In this paper, we present our GPU implementation of the LS3DF code. Our test results show that the GPU code can calculate systems with about ten thousand atoms fully self-consistently in the order of 10 min using thousands of computing nodes. This makes the electronic structure calculations of 10,000-atom nanosystems routine work. This speed is 4.5-6 times faster than the CPU calculations using the same number of nodes on the Titan machine in the Oak Ridge leadership computing facility (OLCF). Such speedup is achieved by (a) carefully re-designing of the computationally heavy kernels; (b) redesign of the communication pattern for heterogeneous supercomputers.

  14. Method of junction formation for CIGS photovoltaic devices

    DOEpatents

    Delahoy, Alan E.

    2006-03-28

    Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.

  15. Method of junction formation for CIGS photovoltaic devices

    DOEpatents

    Delahoy, Alan E.

    2010-01-26

    Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.

  16. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    EPA Science Inventory


    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  17. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA

    USGS Publications Warehouse

    Rosenberry, D.O.; Winter, T.C.; Buso, D.C.; Likens, G.E.

    2007-01-01

    Few detailed evaporation studies exist for small lakes or reservoirs in mountainous settings. A detailed evaporation study was conducted at Mirror Lake, a 0.15 km2 lake in New Hampshire, northeastern USA, as part of a long-term investigation of lake hydrology. Evaporation was determined using 14 alternate evaporation methods during six open-water seasons and compared with values from the Bowen-ratio energy-budget (BREB) method, considered the standard. Values from the Priestley-Taylor, deBruin-Keijman, and Penman methods compared most favorably with BREB-determined values. Differences from BREB values averaged 0.19, 0.27, and 0.20 mm d-1, respectively, and results were within 20% of BREB values during more than 90% of the 37 monthly comparison periods. All three methods require measurement of net radiation, air temperature, change in heat stored in the lake, and vapor pressure, making them relatively data intensive. Several of the methods had substantial bias when compared with BREB values and were subsequently modified to eliminate bias. Methods that rely only on measurement of air temperature, or air temperature and solar radiation, were relatively cost-effective options for measuring evaporation at this small New England lake, outperforming some methods that require measurement of a greater number of variables. It is likely that the atmosphere above Mirror Lake was affected by occasional formation of separation eddies on the lee side of nearby high terrain, although those influences do not appear to be significant to measured evaporation from the lake when averaged over monthly periods. ?? 2007 Elsevier B.V. All rights reserved.

  18. MoRe-based tunnel junctions and their characteristics

    NASA Astrophysics Data System (ADS)

    Shaternik, V.; Larkin, S.; Noskov, V.; Chubatyy, V.; Sizontov, V.; Miroshnikov, A.; Karmazin, A.

    2008-02-01

    Perspective Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide-normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (~50-100 nm) MoRe superconducting films are deposited on Al2O3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency, clear Shapiro steps in the measured I-V curves were observed and discussed.

  19. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  20. Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al{sub 0.25}Ga{sub 0.75}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigutti, L., E-mail: lorenzo.rigutti@univ-rouen.fr; Mancini, L.; Hernández-Maldonado, D.

    2016-03-14

    The ternary semiconductor alloy Al{sub 0.25}Ga{sub 0.75}N has been analyzed by means of correlated photoluminescence spectroscopy and atom probe tomography (APT). We find that the composition measured by APT is strongly dependent on the surface electric field, leading to erroneous measurements of the alloy composition at high field, due to the different evaporation behaviors of Al and Ga atoms. After showing how a biased measurement of the alloy content leads to inaccurate predictions on the optical properties of the material, we develop a correction procedure which yields consistent transition and localization energies for the alloy photoluminescence.

  1. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  2. Thermal Evaporation Loss Measurements on Quasicrystal (Ti-Zr-Ni) and Glass Forming (Vit 106 and Vit 106a) Liquids

    NASA Astrophysics Data System (ADS)

    Blodgett, M. E.; Gangopadhyay, A. K.; Kelton, K. F.

    2015-04-01

    Thermal evaporation loss measurements made using the electrostatic levitation (ESL) technique for one binary Ti-Zr, two ternary Ti-Zr-Ni, and two glass-forming (Vit 106 and Vit 106a) alloy liquids are reported. The containerless environment enables measurements not only for the equilibrium liquids but also for the metastable supercooled liquids. The data follow the Langmuir equation when the activity coefficient of the solute atoms, a measure for the deviation from the ideal solution behavior, is taken into account. An estimate for the activity coefficient of Ni in the Ti-Zr liquid is made from these data, demonstrating the effectiveness of ESL for such measurements.

  3. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.

    PubMed

    Aranda, Ramon; Ramirez-Manzanares, Alonso; Rivera, Mariano

    2015-12-01

    On the analysis of the Diffusion-Weighted Magnetic Resonance Images, multi-compartment models overcome the limitations of the well-known Diffusion Tensor model for fitting in vivo brain axonal orientations at voxels with fiber crossings, branching, kissing or bifurcations. Some successful multi-compartment methods are based on diffusion dictionaries. The diffusion dictionary-based methods assume that the observed Magnetic Resonance signal at each voxel is a linear combination of the fixed dictionary elements (dictionary atoms). The atoms are fixed along different orientations and diffusivity profiles. In this work, we present a sparse and adaptive diffusion dictionary method based on the Diffusion Basis Functions Model to estimate in vivo brain axonal fiber populations. Our proposal overcomes the following limitations of the diffusion dictionary-based methods: the limited angular resolution and the fixed shapes for the atom set. We propose to iteratively re-estimate the orientations and the diffusivity profile of the atoms independently at each voxel by using a simplified and easier-to-solve mathematical approach. As a result, we improve the fitting of the Diffusion-Weighted Magnetic Resonance signal. The advantages with respect to the former Diffusion Basis Functions method are demonstrated on the synthetic data-set used on the 2012 HARDI Reconstruction Challenge and in vivo human data. We demonstrate that improvements obtained in the intra-voxel fiber structure estimations benefit brain research allowing to obtain better tractography estimations. Hence, these improvements result in an accurate computation of the brain connectivity patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Probing the fusion of neutron-rich nuclei with re-accelerated radioactive beams

    DOE PAGES

    Vadas, J.; Singh, Varinderjit; Wiggins, B. B.; ...

    2018-03-27

    Here, we report the first measurement of the fusion excitation functions for 39,47K + 28Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time-of-flight with high geometric efficiency. At the lowest incident energy, the cross section measured for the neutron-rich 47K-induced reaction is ≈6 times larger than that of the β-stable system. This experimental approach, both in measurement and in analysis, demonstrates how to efficiently measure fusion with low-intensity re-accelerated radioactive beams, establishing the framework for future studies.

  5. Probing the fusion of neutron-rich nuclei with re-accelerated radioactive beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadas, J.; Singh, Varinderjit; Wiggins, B. B.

    Here, we report the first measurement of the fusion excitation functions for 39,47K + 28Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time-of-flight with high geometric efficiency. At the lowest incident energy, the cross section measured for the neutron-rich 47K-induced reaction is ≈6 times larger than that of the β-stable system. This experimental approach, both in measurement and in analysis, demonstrates how to efficiently measure fusion with low-intensity re-accelerated radioactive beams, establishing the framework for future studies.

  6. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  7. STM studies of GeSi thin layers epitaxially grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  8. Free fall and evaporation of N-Octane droplets in the atmosphere as applied to the jettisoning of aviation gasoline at altitude

    NASA Technical Reports Server (NTRS)

    Lowell, Herman H

    1953-01-01

    In connection with proposed rapid jettisoning of aviation gasoline at altitude, a theoretical study was made of the free fall and evaporation of N-octane droplets in the atmosphere ; N-octane was selected for study because of the expected similarity of over-all evaporation behavior of N-octane and gasoline. It was concluded that gasoline (or N-octane) droplets larger than 2000 microns in diameter would be unstable ; terminal speeds and Reynolds numbers were obtained for droplets not larger than 2000 microns at altitudes to 11,000 feet. The motion data were used in the calculation of N-octane evaporation rates under various conditions. It was found that a droplet having an original diameter of 2000 microns would fall about 4000 feet from 6000 feet under NACA standard atmosphere conditions before coming virtually to rest. Finally, it was concluded that temperature effects are of paramount importance; at highest air temperatures a 1000-foot ground clearance would probably be adequate to prevent ground contamination, whereas at lowest air temperatures only an atomizing spray arrangement would prevent ground contamination, irrespective of ground clearance.

  9. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    PubMed

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Atomic and molecular data for spacecraft re-entry plasmas

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.

    2016-06-01

    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.

  11. Superconducting and Magnetic Properties of Vanadium/iron Superlattices.

    NASA Astrophysics Data System (ADS)

    Wong, Hong-Kuen

    A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).

  12. A simple method to determine evaporation and compensate for liquid losses in small-scale cell culture systems.

    PubMed

    Wiegmann, Vincent; Martinez, Cristina Bernal; Baganz, Frank

    2018-04-24

    Establish a method to indirectly measure evaporation in microwell-based cell culture systems and show that the proposed method allows compensating for liquid losses in fed-batch processes. A correlation between evaporation and the concentration of Na + was found (R 2  = 0.95) when using the 24-well-based miniature bioreactor system (micro-Matrix) for a batch culture with GS-CHO. Based on these results, a method was developed to counteract evaporation with periodic water additions based on measurements of the Na + concentration. Implementation of this method resulted in a reduction of the relative liquid loss after 15 days of a fed-batch cultivation from 36.7 ± 6.7% without volume corrections to 6.9 ± 6.5% with volume corrections. A procedure was established to indirectly measure evaporation through a correlation with the level of Na + ions in solution and deriving a simple formula to account for liquid losses.

  13. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this PhD dissertation provide insight into the evaporative behavior and pattern formation in droplets of simplified model biological fluids (aqueous lysozyme + NaCl). The patterns that form depend sensitively on the evaporation conditions, characteristic time and length scales, and the physiochemical properties of the solutions. The patterns are unique, dependent on solution chemistry, and may therefore act as a "fingerprint" in identifying fluid properties.

  14. Method for improving accuracy in full evaporation headspace analysis.

    PubMed

    Xie, Wei-Qi; Chai, Xin-Sheng

    2017-05-01

    We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full-evaporation-based headspace analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Correction of the heat loss method for calculating clothing real evaporative resistance.

    PubMed

    Wang, Faming; Zhang, Chengjiao; Lu, Yehu

    2015-08-01

    In the so-called isothermal condition (i.e., Tair [air temperature]=Tmanikin [manikin temperature]=Tr [radiant temperature]), the actual energy used for moisture evaporation detected by most sweating manikins was underestimated due to the uncontrolled fabric 'skin' temperature Tsk,f (i.e., Tsk,f

  16. Swift heavy ion induced topography changes of Tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj K.; Kumar, Avesh; Kanjilal, D.; Mohanty, T.

    2012-12-01

    Monodisperse tin oxide nanocrystalline thin films are grown on silicon substrates by electron beam evaporation method followed by 100 MeV silver ion bombardment with varying ion fluence from 5 × 1011 ions cm-2 to 1 × 1013 ions cm-2 at constant ion flux. Enhancement of crystallinity of thin films with fluence is observed from glancing angle X-ray diffraction studies. Morphological studies by atomic force microscopy reveal the changes in grain size from 25 nm to 44 nm with variation in ion fluence. The effect of initial surface roughness and adatom mobility on topography is reported. In this work correlation between ion beam induced defect concentration with topography and grain size distribution is emphasized.

  17. Rapid prototyping of versatile atom chips for atom interferometry applications.

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  18. The effect of evaporative air chilling and storage temperature on quality and shelf life of fresh chicken carcasses.

    PubMed

    Mielnik, M B; Dainty, R H; Lundby, F; Mielnik, J

    1999-07-01

    The effect of evaporative air chilling on quality of fresh chicken carcasses was compared with air chilling as reference method. Cooling efficiency and total heat loss were significantly higher for evaporative air chilling. The chilling method was of great importance for weight loss. Chicken chilled in cold air lost considerably more weight than chicken cooled by evaporative air chilling; the difference was 1.8%. The chilling method also affected the skin color and the amount of moisture on skin surface. After evaporative air chilling, the chicken carcasses had a lighter color and more water on the back and under the wings. The moisture content in skin and meat, cooking loss, and pH were not affected by chilling method. Odor attributes of raw chicken and odor and flavor attributes of cooked chicken did not show any significant differences between the two chilling methods. The shelf life of chicken stored at 4 and -1 C were not affected significantly by chilling method. Storage time and temperature appeared to be the decisive factors for sensory and microbiological quality of fresh chicken carcasses.

  19. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  20. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    PubMed

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  1. Laboratory simulation of processes of evaporation, condensation, and sputtering taking place on the surface of the moon

    NASA Technical Reports Server (NTRS)

    Nusinov, M. D.; Kochnev, V. A.; Chernyak, Y. B.; Kuznetsov, A. V.; Kosolapov, A. I.; Yakovlev, O. I.

    1974-01-01

    Study of evaporation, condensation and sputtering on the moon can provide information on the same processes on other planets, and reveal details of the formation of the lunar regolith. Simulation methods include vacuum evaporation, laser evaporation, and bubbling gas through melts.

  2. Secondary atomization of single coal-water fuel droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassel, G.R.; Scaroni, A.W.

    1989-03-01

    The evaporative behavior of single, well characterized droplets of a lignite coal-water slurry fuel (CWSF) and a carbon black in water slurry was studied as a function of heating rate and droplet composition. Induced droplet heating rates were varied from 0 to 10{sup 5} K/s. Droplets studied were between 97 and 170 {mu}m in diameter, with compositions ranging from 25 to 60% solids by weight. The effect of a commercially available surfactant additive package on droplet evaporation rate, explosive boiling energy requirements, and agglomerate formation was assessed. Surfactant concentrations were varied from none to 2 and 4% by weight solutionmore » (1.7 and 3.6% by weight of active species on a dry coal basis). The experimental system incorporated an electrodynamic balance to hold single, free droplets, a counterpropagating pulsed laser heating arrangement, and both video and high speed cinematographic recording systems. Data were obtained for ambient droplet evaporation by monitoring the temporal size, weight, and solids concentration changes. 49 refs., 31 figs.« less

  3. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.; Tamura, H.

    1978-01-01

    Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.

  4. Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two - step process

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Gordillo, G.

    2009-05-01

    Cu3BiS3 thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu3BiS3 phase. It was also found that the Cu3BiS3 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  5. A Novel Gravito-Optical Surface Trap for Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Xie, Chun-Xia; Wang, Zhengling; Yin, Jian-Ping

    2006-04-01

    We propose a novel gravito-optical surface trap (GOST) for neutral atoms based on one-dimensional intensity gradient cooling. The surface optical trap is composed of a blue-detuned reduced semi-Gaussian laser beam (SGB), a far-blue-detuned dark hollow beam and the gravity field. The SGB is produced by the diffraction of a collimated Gaussian laser beam passing through the straight edge of a semi-infinite opaque plate and then is reduced by an imaging lens. We calculate the intensity distribution of the reduced SGB, and study the dynamic process of the SGB intensity-gradient induced Sisyphus cooling for 87Rb atoms by using Monte Carlo simulations. Our study shows that the proposed GOST can be used not only to trap cold atoms loaded from a standard magneto-optical trap, but also to cool the trapped atoms to an equilibrium temperature of 3.47 μK from ~120 μK, even to realize an all-optical two-dimensional Bose-Einstein condensation by using optical-potential evaporative cooling.

  6. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  7. Selfbound quantum droplets

    NASA Astrophysics Data System (ADS)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  8. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.

    PubMed

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  9. Numerical investigation of cryogen re-gasification in a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz

    2017-12-01

    The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.

  10. Development of comprehensive numerical schemes for predicting evaporating gas-droplets flow processes of a liquid-fueled combustor

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1990-01-01

    An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.

  11. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  12. Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Burt, Eric A.

    2010-01-01

    A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.

  13. Synthesis, Characterization, Detonation Performance, and DFT Calculation of HMX/PNO Cocrystal Explosive

    NASA Astrophysics Data System (ADS)

    Lin, He; Chen, Jian-Fu; Zhu, Shun-Guan; Li, Hong-Zhen; Huang, Yong

    2017-01-01

    A novel 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)/pyridine-N-oxide (PNO) cocrystal at 1:1 molar ratio was synthesized by a solvent evaporation method, and its crystal structure was determined using X-ray diffraction (XRD). It crystallizes in the orthorhombic system with the Pbcn space group and cell parameters a = 12.712(3)Å, b = 9.315(3)Å, c = 12.909(3)Å. In addition, detonation performance of this cocrystal was estimated. The predicted detonation velocity and detonation pressure of this cocrystal are 7.47 km/s and 23.20 GPa, respectively, suggesting that it is less powerful than β-HMX. Finally, density functional theory, involving binding energy, atoms in molecule (AIM) theory, natural bond orbital (NBO) analysis, band structure, and density of states, was adopted to characterize the driving forces for the formation of this cocrystal. The results show that driving forces are dominated by the interactions between O atoms of PNO and methylene groups of HMX. It is expected that this research provides some bases for further HMX cocrystal design and preparation.

  14. Capturing Gases in Carbon Honeycomb

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  15. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray.

    PubMed

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-04-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.

  16. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray

    PubMed Central

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-01-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography. PMID:27877483

  17. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray

    NASA Astrophysics Data System (ADS)

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-04-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.

  18. Comparison of evaporative fluxes from porous surfaces resolved by remotely sensed and in-situ temperature and soil moisture data

    NASA Astrophysics Data System (ADS)

    Wallen, B.; Trautz, A.; Smits, K. M.

    2014-12-01

    The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.

  19. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley-Taylor, and Penman estimates

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph

    2018-02-01

    The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0.92 and 0.97. In summary, this study introduces a new approach to measure lake evaporation with a station located at the shoreline, which is also transferable to other lakes. It provides the first directly measured Dead Sea evaporation rates as well as applicable methods for evaporation calculation. The first one enables us to further close the Dead Sea water budget, and the latter one enables us to facilitate water management in the region.

  20. Soliton microdynamics of the generation of new-type nonlinear surface vibrations, dissociation, and surfing diffusion in diatomic crystals of the uranium nitride type

    NASA Astrophysics Data System (ADS)

    Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.

    2014-09-01

    The microdynamics of large-amplitude nonlinear vibrations of uranium nitride diatomic lattices has been investigated using the computer simulation and neutron scattering methods at temperatures T = 600-2500°C near the thresholds of the dissociation and destruction of the reactor fuel materials. It has been found using the computer simulation that, in the spectral gap between the frequency bands of acoustic and optical phonons in crystals with an open surface, there are resonances of new-type harmonic surface vibrations and a gap-filling band of their genetic successors, i.e., nonlinear surface vibrations. Experimental measurements of the slow neutron scattering spectra of uranium nitride on the DIN-2PI neutron spectrometer have revealed resonances and bands of these surface vibrations in the spectral gap, as well as higher optical vibration overtones. It has been shown that the solitons and bisolitons initiate the formation and collapse of dynamic pores with the generation of surface vibrations at the boundaries of the cavities, evaporation of atoms and atomic clusters, formation of cracks, and destruction of the material. It has been demonstrated that the mass transfer of nitrogen in cracks and along grain boundaries can occur through the revealed microdynamics mechanism of the surfing diffusion of light nitrogen atoms at large-amplitude soliton waves propagating in the stabilizing sublattice of heavy uranium atoms and in the nitrogen sublattice.

  1. Does non-ionizing radiant energy affect determination of the evaporation rate by the gradient method?

    PubMed

    Kjartansson, S; Hammarlund, K; Oberg, P A; Sedin, G

    1991-01-01

    A study was performed to investigate whether measurements of the evaporation rate from the skin of newborn infants by the gradient method are affected by the presence of non-ionizing radiation from phototherapy equipment or a radiant heater. The evaporation rate was measured experimentally with the measuring sensors either exposed to or protected from non-ionizing radiation. Either blue light (phototherapy) or infrared light (radiant heater) was used; in the former case the evaporation rate was measured from a beaker of water covered with a semipermeable membrane, and in the latter case from the hand of an adult subject, aluminium foil or with the measuring probe in the air. No adverse effect on the determinations of the evaporation rate was found in the presence of blue light. Infrared radiation caused an error of 0.8 g/m2h when the radiant heater was set at its highest effect level or when the ambient humidity was high. At low and moderate levels the observed evaporation rate was not affected. It is concluded that when clinical measurements are made from the skin of newborn infants nursed under a radiant heater, the evaporation rate can appropriately be determined by the gradient method.

  2. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    PubMed

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  3. A Kolmogorov-Brutsaert Structure Function Model for Evaporation from a Rough Surface into a Turbulent Atmosphere

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Liu, Heping

    2017-04-01

    In his 1881 acceptance letter of the Rumford Medal, Gibbs declared that "One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity". Guided by this quotation, the subject of evaporation into the atmosphere from rough surfaces by turbulence offered in a 1965 study by Brutsaert is re-examined. Brutsaert proposed a model that predicted mean evaporation rate E from rough surfaces to scale with the 3/4 power-law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. This result was supported by a large corpus of experiments and spawned a number of studies on inter-facial transfer of scalars, evaporation from porous media at single and multiple pore scales, bulk evaporation from bare soil surfaces, as well as isotopic fractionation in hydrological applications. It also correctly foreshadowed the much discussed 1/4 'universal' scaling of liquid transfer coefficients of sparingly soluble gases in air-sea exchange studies. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The anzats explored here is that E ˜√Dm-u∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous-cutoff thereby by-passing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E may be more general than its original derivation assumed. Extensions to canopy surfaces as well as other scalars with different molecular Schmidt numbers are also featured.

  4. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  5. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data.

    PubMed

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2018-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  6. Efficiency of using solid wood fuels in maple syrup evaporators

    Treesearch

    Lawrence D. Garrett

    1981-01-01

    A study of commercial, wood-fired evaporators revealed that normal expected thermal efficiencies are between 35 and 50 percent. The moisture content and quality of wood fuels used and the design and method of firing the evaporator are critical in determining evaporator efficiency and the economic implications of using wood.

  7. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    NASA Astrophysics Data System (ADS)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  8. Control methods and systems for indirect evaporative coolers

    DOEpatents

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  9. Evaluation of the energy budget method of determining evaporation at Williams Lake, Minnesota, using alternative instrumentation and study approaches

    USGS Publications Warehouse

    Rosenberry, D.O.; Sturrock, A.M.; Winter, T.C.

    1993-01-01

    Best estimates of evaporation at Williams Lake, north central Minnesota, were determined by the energy budget method using optimum sensors and optimum placement of sensors. These best estimates are compared with estimates derived from using substitute data to determine the effect of using less accurate sensors, simpler methods, or remotely measured data. Calculations were made for approximately biweekly periods during five open water seasons. For most of the data substitutions that affected the Bowen ratio, new values of evaporation differed little from best estimates. The three data substitution methods that caused the largest deviations from the best evaporation estimates were (1) using changes in the daily average surface water temperature as an indicator of the lake heat storage term, (2) using shortwave radiation, air temperature, and atmospheric vapor pressure data from a site 110 km away, and (3) using an analog surface water temperature probe. Recalculations based on these data substitutions resulted in differences from the best estimates as much as 89%, 21%, and 10%, respectively. The data substitution method that provided evaporation values that most closely matched the best estimates was measurement of the lake heat storage term at one location in the lake, rather than at 16 locations. Evaporation values resulting from this substitution method usually were within 2% of the best estimates.

  10. Systematic optimization of laser cooling of dysprosium

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick

    2018-06-01

    We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.

  11. Synthesis and photocatalytic activity of boron-doped TiO(2) in aqueous suspensions under UV-A irradiation.

    PubMed

    Xekoukoulotakis, N P; Mantzavinos, D; Dillert, R; Bahnemann, D

    2010-01-01

    Boron-doped TiO(2) photocatalysts were synthesized employing a sol-gel method. Boric acid was used as the boron source and titanium tetra-isopropoxide as the TiO(2) precursor, both dissolved in isopropanol. Nominal boron to titanium atomic ratios were in the range 0 to 4%. After the hydrolysis step, two different procedures for the recovery of TiO(2) were followed, based on either centrifugation of the resulting reaction mixture or evaporation of the solvent under reduced pressure, both followed by a subsequent calcination step performed at 400 or 500 degrees C. The photocatalytic efficiency of the synthesized photocatalysts was assessed by measuring the photocatalytic mineralization of dichloroacetic acid in aqueous suspensions under UV-A irradiation and it was compared to the corresponding efficiency of the commercial Degussa P 25 TiO(2). Photocatalytic efficiency of the synthesized catalysts was higher for the boron-doped TiO(2) synthesized at 2% boron to titanium nominal atomic ratio, centrifuged after the hydrolysis step followed by calcinations at 400 degrees C. However, all photocatalysts synthesized in this work showed lower photocatalytic activity than Degussa P 25 TiO(2), thus highlighting the need of further improvements of the proposed method.

  12. Overview of iodine generation for oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Jirásek, Vít.

    2012-01-01

    A review of the methods for generation of iodine for oxygen-iodine lasers (OIL) is presented. The chemical and physical methods for production of both atomic (AI) and molecular (MI) iodine have been searched in order to improve the efficiency and/or technology of OILs. These trials were motivated by the estimations that a substantial part of singlet oxygen (SO) could be saved with these methods and the onset of the laser active medium will be accelerated. Vapour of MI can be generated by the evaporation of solid or pressurized liquid I2, or synthesized in situ by the reaction of Cl2 with either HI or CuI2. The chemical methods of generation of AI are based on the substitution of I atom in a molecule of HI or ICl by another halogen atom produced usually chemically. The discharge methods include the dissociation of various iodine compounds (organic iodides, I2, HI) in the RF, MW, DC-pulsed or DC-vortex stabilized discharge. Combined methods use discharge dissociation of molecules (H2, F2) to gain atoms which subsequently react to replace AI from the iodine compound. The chemical methods were quite successful in producing AI (up to the 100% yield), but the enhancement of the laser performance was not reported. The discharge methods had been subsequently improving and are today able to produce up to 0.4 mmol/s of AI at the RF power of 500 W. A substantial enhancement of the discharge- OIL performance (up to 40%) was reported. In the case of Chemical-OIL, the enhancement was reported only under the conditions of a low I2/O2 ratio, where the "standard" I2 dissociation by SO is slow. The small-signal gain up to 0.3 %/cm was achieved on the supersonic COIL using the HI dissociated in the RF discharge. Due to the complicated kinetics of the RI-I-I2-SO system and a strong coupling with the gas flow and mixing, the theoretical description of the problem is difficult. It, however, seems that we can expect the major improvement of the OIL performance for those systems, where the SO yield is rather low (DOIL) or for the high-pressure COIL, where the quenching processes are important and the shortage of the distance needed for the preparation of active media is essential.

  13. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  14. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  15. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition

    PubMed Central

    Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R.; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio

    2015-01-01

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices. PMID:26067454

  16. Diagnostic Assessment of the Difficulty Using Direct Policy Search in Many-Objective Reservoir Control

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Herman, J. D.; Giuliani, M.; Castelletti, A.

    2014-12-01

    Globally reservoir operations provide fundamental services to water supply, energy generation, recreation, and ecosystems. The pressures of expanding populations, climate change, and increased energy demands are motivating a significant investment in re-operationalizing existing reservoirs or defining operations for new reservoirs. Recent work has highlighted the potential benefits of exploiting recent advances in many-objective optimization and direct policy search (DPS) to aid in addressing these systems' multi-sector demand tradeoffs. This study contributes to a comprehensive diagnostic assessment of multi-objective evolutionary optimization algorithms (MOEAs) efficiency, effectiveness, reliability, and controllability when supporting DPS for the Conowingo dam in the Lower Susquehanna River Basin. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Seven benchmark and state-of-the-art MOEAs are tested on deterministic and stochastic instances of the Susquehanna test case. In the deterministic formulation, the operating objectives are evaluated over the historical realization of the hydroclimatic variables (i.e., inflows and evaporation rates). In the stochastic formulation, the same objectives are instead evaluated over an ensemble of stochastic inflows and evaporation rates realizations. The algorithms are evaluated in their ability to support DPS in discovering reservoir operations that compose the tradeoffs for six multi-sector performance objectives with thirty-two decision variables. Our diagnostic results highlight that many-objective DPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg MOEA, are statistically superior for the six-objective Susquehanna instance of this important class of problems. Additionally, shifting from deterministic history-based DPS to stochastic DPS significantly increases the difficulty of the problem.

  17. Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires

    NASA Astrophysics Data System (ADS)

    Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.

    2018-05-01

    In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.

  18. Nanocomposite TiN films with embedded MoS2 inorganic fullerenes produced by combining supersonic cluster beam deposition with cathodic arc reactive evaporation

    NASA Astrophysics Data System (ADS)

    Piazzoni, C.; Blomqvist, M.; Podestà, A.; Bardizza, G.; Bonati, M.; Piseri, P.; Milani, P.; Davies, C.; Hatto, P.; Ducati, C.; Sedláčková, K.; Radnóczi, G.

    2008-01-01

    We report the production and characterization of nanocomposite thin films consisting of a titanium nitride matrix with embedded molybdenum disulphide fullerene-like nanoparticles. This was achieved by combining a cluster source generating a pulsed supersonic beam of MoS2 clusters with an industrial cathodic arc reactive evaporation apparatus used for TiN deposition. Cluster-assembled films show the presence of MoS2 nanocages and nanostructures and the survival of such structures dispersed in the TiN matrix in the co-deposited samples. Nanotribological characterization by atomic force microscopy shows that the presence of MoS2 nanoparticles even in very low concentration modifies the behaviour of the TiN matrix.

  19. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    PubMed

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  20. Evaporation estimates from the Dead Sea and their implications on its water balance

    NASA Astrophysics Data System (ADS)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  1. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-05

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Investigation of Capillary Limit in a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper presets an experimental study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers made it possible to observe interactions among various components after the capillary limit was exceeded. The capillary limit at low powers was achieved by imposing additional pressure drops on the vapor line through the use of a metering valve. A differential pressure transducer was also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in a partial dry-out of the evaporator and a rapid increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at the higher temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure. Moreover, the loop can recover from a partial dry-out by reducing the heat load without a re-start.

  3. Weak values of spin and momentum in atomic systems.

    NASA Astrophysics Data System (ADS)

    Flack, Robert; Hiley, Basil; Barker, Peter; Monachello, Vincenzo; Morley, Joel

    2017-04-01

    Weak values have a long history and were first considered by Landau and London in connection with superfluids. Hirschfelder called them sub-observables and Dirac anticipatied them when discussing non-commutative geometry in quantum mechanics. The idea of a weak value has returned to prominence due to Aharonov, Albert and Vaidman showing how they can be measured. They are not eigenvalues of the system and can not be measured by a collapse of the wave function with the traditional Von Neumann (strong) measurement which is a single stage process. In contrast the weak measurement process has three stages; preselection, weak stage and finally a post selection. Although weak values have been observed using photons and neutrons, we are building two experiments to observe weak values of spin and momentum in atomic systems. For spin we are following the method outlined by Duck et al which is a variant on the original Stern-Gerlach experiment using a metastable, 23S1 , form of helium. For momentum we are using a method similar to that used by Kocsis with excited argon atoms in the 3P2 state, passing through a 2-slit interferometer. The design, simulation and re John Fetzer Memorial Trust.

  4. Table Salt from Seawater (Solar Evaporation). What We Take from Our Environment. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module discusses methods of obtaining table salt from seawater. Topic areas considered include: (1) obtaining salt by solar evaporation of seawater in holes; (2) obtaining salt by boiling seawater in pots; (3) how table salt is obtained from seawater in the Philippines; and (4) methods of making salt by solar evaporation of seawater in the…

  5. Concerning Units.

    ERIC Educational Resources Information Center

    Wadlinger, Robert L.

    1983-01-01

    SI units come in two distinct types: fundamental (kilogram, meter) and descriptive (atom, molecule). Proper/improper uses of atom/molecule from historical cases are presented followed by a re-introduction of a light "wave (cycle)" unit and the clearly defined photon model which is deduced. Also examines omission of the fundamental unit "radon."…

  6. Evaporation kinetics in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented; these results are applied to 18 different drop and well arrangements commonly encountered in the laboratory, taking into account the chemical nature of the salt, the drop size and shape, the drop concentration, the well size, the well concentration, and the temperature. It is found that the rate of evaporation increases with temperature, drop size, and with the salt concentration difference between the drop and the well. The evaporation possesses no unique half-life. Once the salt in the drop achieves about 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  7. A Physical Model to Help Explain Evaporation

    ERIC Educational Resources Information Center

    Branca, M.; Soletta, I.

    2014-01-01

    One of the basic ideas when studying science is that matter is composed of particles (atoms or molecules) and these are in a constant state of agitation. In the solid or liquid state the molecules are attracted to each other, while in the gaseous state they have sufficient energy to overcome the forces of cohesion and can move away from one…

  8. Hexagonal OsB 2 reduction upon heating in H 2 containing environment

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2014-10-23

    The stability of hexagonal ReB 2 type OsB 2 powder upon heating under reforming gas was investigated. Pure Os metal particles were detected by powder X-ray diffraction starting at 375⁰ C and complete transformation of OsB 2 to metallic Os was observed at 725⁰ C. The mechanisms of precipitation of metallic Os is proposed and changes in the lattice parameters of OsB 2 upon heating are analysed in terms of the presence of oxygen or water vapour in the heating chamber. Previous studies suggested that Os atoms possess (0) valence, while B atoms possess both (+3) and ( 3) valencesmore » in the alternating boron/osmium sheet structure of hexagonal (P63/mmc, No. 194) OsB 2; if controllable method for Os removal from the lattice could be found, the opportunity would arise to form two-dimensional (2D) layers consisting of pure B atoms.« less

  9. Phase space theory of evaporation in neon clusters: the role of quantum effects.

    PubMed

    Calvo, F; Parneix, P

    2009-12-31

    Unimolecular evaporation of neon clusters containing between 14 and 148 atoms is theoretically investigated in the framework of phase space theory. Quantum effects are incorporated in the vibrational densities of states, which include both zero-point and anharmonic contributions, and in the possible tunneling through the centrifugal barrier. The evaporation rates, kinetic energy released, and product angular momentum are calculated as a function of excess energy or temperature in the parent cluster and compared to the classical results. Quantum fluctuations are found to generally increase both the kinetic energy released and the angular momentum of the product, but the effects on the rate constants depend nontrivially on the excess energy. These results are interpreted as due to the very few vibrational states available in the product cluster when described quantum mechanically. Because delocalization also leads to much narrower thermal energy distributions, the variations of evaporation observables as a function of canonical temperature appear much less marked than in the microcanonical ensemble. While quantum effects tend to smooth the caloric curve in the product cluster, the melting phase change clearly keeps a signature on these observables. The microcanonical temperature extracted from fitting the kinetic energy released distribution using an improved Arrhenius form further suggests a backbending in the quantum Ne(13) cluster that is absent in the classical system. Finally, in contrast to delocalization effects, quantum tunneling through the centrifugal barrier does not play any appreciable role on the evaporation kinetics of these rather heavy clusters.

  10. Monthly evaporation forecasting using artificial neural networks and support vector machines

    NASA Astrophysics Data System (ADS)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  11. Characterization of material surfaces exposed to atomic oxygen on space shuttle missions

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.

    1985-01-01

    Material samples prepared for exposure to ambient atomic oxygen encountered during space shuttle flights in low Earth orbit were characterized by the experimental techniques of ELLIPSOMETRY, ESCA, PIXE, and RBS. The first group of samples, which were exposed during the STS-8 mission, exhibited some very interesting results. The second group of samples, which are to be exposed during the upcoming STS-17 mission, have been especially prepared to yield quantitative information on the optical changes, oxygen solution, and surface layer formation on metal films of silver, gold, nickel, chromium, aluminum, platinum, and palladium evaporated onto optically polished silicon wafers.

  12. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    PubMed

    Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana

    2015-03-01

    A fast and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection was developed and validated for the simultaneous quantitation of five antiarrhythmic drugs (metoprolol, propranolol, carvedilol, diltiazem, and verapamil) in human plasma samples. It involves dispersive liquid-liquid microextraction (DLLME) of the desired drugs from 660 µL plasma and separation using isocratic elution with UV detection at 200 nm. The complete separation of all analytes was achieved within 7 min. Acetonitrile (as disperser solvent) resulting from the protein precipitation procedure was mixed with 100 µL dichloromethane (as an extraction solvent) and rapidly injected into 5 mL aqueous solution (pH 11.5) containing 1% (w/v), NaCl. After centrifugation, the sedimented phase containing enriched analytes was collected and evaporated to dryness. The residue was re-dissolved in 50 µL de-ionized water (acidified to pH 3) and injected into the HPLC system for analysis. Under the optimal conditions, the enrichment factors and extraction recoveries ranged between 4.4-10.8 and 33-82%, respectively. The suggested method was linear (r(2) ≥0.997) over a dynamic range of 0.02-0.80 µg mL(-1) in plasma. The intra- and inter-days relative standard deviation (RSD%) and relative error (RE%) values of the method were below 20%, which shows good precision and accuracy. Finally, this method was applied to the analysis of real plasma samples obtained from the patients treated with these drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2008-03-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 μm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re=~10 μm, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in re due to evaporation.

  14. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    NASA Astrophysics Data System (ADS)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2005-10-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 µm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re~10 µm, continues to be significant during the cloud's mixing with the entrained air, canceling out the decrease in re due to evaporation.

  15. Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis

    NASA Technical Reports Server (NTRS)

    Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III

    1979-01-01

    The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.

  16. Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film

    NASA Astrophysics Data System (ADS)

    Abid, S.; Raza, Z. A.; Rehman, A.

    2016-10-01

    Polymeric nanostructures have gained importance in medical science as drug delivery carriers due to their biocompatibility and biodegradability. Polyhydroxybutyrate (PHB) is one of the natural biodegradable polymers used to deliver drugs in the form of nano/microcapsules. In this study, solvent evaporation method has been used for the synthesis of PHB nanospheres using poly(vinyl) alcohol (PVA) both as emulsifier and stabilizer. The produced PHB nanospheres were analyzed using dynamic light scattering and scanning electron microscopy. The size of nanospheres decreased whereas the zeta potential increased on increasing the concentration of emulsifier. The PHB nanospheres were then deposited into porous thin film on a glass surface and characterized against bulk PHB film by using atomic force microscopy, contact angle measurement and x-ray diffraction.

  17. Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification

    PubMed Central

    Dankovich, Theresa A.

    2014-01-01

    This work reports an environmentally benign method for the in situ preparation of silver nanoparticles (AgNPs) in paper using microwave irradiation. Through thermal evaporation, microwave heating with an excess of glucose relative to the silver ion precursor yields nanoparticles on the surface of cellulose fibers within three minutes. Paper sheets were characterized by electron microscopy, UV-Visible reflectance spectroscopy, and atomic absorption spectroscopy. Antibacterial activity and silver release from the AgNP sheets were assessed for model Escherichia coli and Enterococci faecalis bacteria in deionized water and in suspensions that also contained with various influent solution chemistries, i.e. with natural organic matter, salts, and proteins. The paper sheets containing silver nanoparticles were effective in inactivating the test bacteria as they passed through the paper. PMID:25400935

  18. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    NASA Astrophysics Data System (ADS)

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-07-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

  19. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    PubMed Central

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-01-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening. PMID:27435638

  20. Supported rhenium complexes: almost uniform rhenium tricarbonyls synthesized from CH3Re(CO)5 and HY zeolite.

    PubMed

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-11-02

    Supported rhenium complexes were prepared from CH(3)Re(CO)(5) and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH(3)Re(CO)(5) with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bonded near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the ν(CO) region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH(3)Re(CO)(5) on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the ν(CO) bands in the IR spectra. The results show the importance of zeolite H(+) sites for the formation of uniform supported rhenium carbonyls from CH(3)Re(CO)(5); the formation of such uniform complexes did not occur on the NaY zeolite.

  1. Comparison of Total Evaporation (TE) and Direct Total Evaporation (DTE) methods in TIMS by using NBL CRMs

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Mathew, Kattathu; Wegener, Michael

    2013-04-01

    The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.

  2. Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices.

    PubMed

    Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias

    2018-03-01

    Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D < 0) covering a broad range of physico-chemical properties in three different aqueous matrices. The multi-layer solid-phase extraction (mlSPE) and evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.

  3. Properties of Transition Metal Doped Alumina

    NASA Astrophysics Data System (ADS)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  4. 27 CFR 30.32 - Determination of proof obscuration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... evaporation method may be used only for spirits in the range of 80-100 degrees at gauge proof. (b) Evaporation... evaporation of 25 milliliters 0.125 gram, the amount of solids present in 100 milliliters of the spirits is 0...

  5. 27 CFR 30.32 - Determination of proof obscuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... evaporation method may be used only for spirits in the range of 80-100 degrees at gauge proof. (b) Evaporation... evaporation of 25 milliliters 0.125 gram, the amount of solids present in 100 milliliters of the spirits is 0...

  6. 27 CFR 30.32 - Determination of proof obscuration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... evaporation method may be used only for spirits in the range of 80-100 degrees at gauge proof. (b) Evaporation... evaporation of 25 milliliters 0.125 gram, the amount of solids present in 100 milliliters of the spirits is 0...

  7. 27 CFR 30.32 - Determination of proof obscuration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... evaporation method may be used only for spirits in the range of 80-100 degrees at gauge proof. (b) Evaporation... evaporation of 25 milliliters 0.125 gram, the amount of solids present in 100 milliliters of the spirits is 0...

  8. Stellar laboratories. VII. New Kr iv - vii oscillator strengths and an improved spectral analysis of the hot, hydrogen-deficient DO-type white dwarf RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.

    2016-05-01

    Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: New Kr iv-vii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTE model-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods: We calculated Kr iv-vii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high S/N ultraviolet (UV) observations of the hot white dwarf RE 0503-289. Results: We reanalyzed the effective temperature and surface gravity and determined Teff = 70000 ± 2000 K and log (g/ cm s-2) = 7.5 ± 0.1. We newly identified ten Kr v lines and one Kr vi line in the spectrum of RE 0503-289. We measured a Kr abundance of -3.3 ± 0.3 (logarithmic mass fraction). We discovered that the interstellar absorption toward RE 0503-289 has a multi-velocity structure within a radial-velocity interval of -40 km s-1

  9. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  10. Investigation of the Fermi-Hubbard model with 6Li in an optical lattice

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T.-L.; Hulet, R. G.

    2013-05-01

    We present our results on investigation of the physics of the Fermi-Hubbard model using an ultracold gas of 6Li loaded into an optical lattice. We use all-optical methods to efficiently cool and load the lattice beginning with laser cooling on the 2S1 / 2 --> 2P3 / 2 transition and then further cooling using the narrow 2S1 / 2 --> 3P3 / 2 transition to T ~ 59 μK. The second stage of laser cooling greatly enhances loading to an optical dipole trap where a two spin state mixture of atoms is evaporatively cooled to degeneracy. We then adiabatically load ~106 degenerate fermions into a 3D optical lattice formed by three orthogonal standing waves of 1064 nm light. Overlapped with each of the three lattice beams is a non-retroreflected beam at 532 nm. This light cancels the harmonic trapping caused by the lattice beams, which extends the number of lattice sites over which a Néel phase can exist and may allow evaporative cooling in the lattice. By using Bragg scattering of light, we investigate the possibility of observing long-range antiferromagnetic ordering of spins in the lattice. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  11. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    PubMed

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the <110> direction, which is theoretically predicted to produce a high Curie temperature.

  12. Field-Dependent Measurement of GaAs Composition by Atom Probe Tomography.

    PubMed

    Di Russo, Enrico; Blum, Ivan; Houard, Jonathan; Da Costa, Gérald; Blavette, Didier; Rigutti, Lorenzo

    2017-12-01

    The composition of GaAs measured by laser-assisted atom probe tomography may be inaccurate depending on the experimental conditions. In this work, we assess the role of the DC field and the impinging laser energy on such compositional bias. The DC field is found to have a major influence, while the laser energy has a weaker one within the range of parameters explored. The atomic fraction of Ga may vary from 0.55 at low-field conditions to 0.35 at high field. These results have been interpreted in terms of preferential evaporation of Ga at high field. The deficit of As is most likely explained by the formation of neutral As complexes either by direct ejection from the tip surface or upon the dissociation of large clusters. The study of multiple detection events supports this interpretation.

  13. Sub-grid scale precipitation in ALCMs: re-assessing the land surface sensitivity using a single column model

    NASA Astrophysics Data System (ADS)

    Pitman, Andrew J.; Yang, Zong-Liang; Henderson-Sellers, Ann

    1993-10-01

    The sensitivity of a land surface scheme to the distribution of precipitation within a general circulation model's grid element is investigated. Earlier experiments which showed considerable sensitivity of the runoff and evaporation simulation to the distribution of precipitation are repeated in the light of other results which show no sensitivity of evaporation to the distribution of precipitation. Results show that while the earlier results over-estimated the sensitivity of the surface hydrology to the precipitation distribution, the general conclusion that the system is sensitive is supported. It is found that changing the distribution of precipitation from falling over 100% of the grid square to falling over 10% leads to a reduction in evaporation from 1578 mm y-1 to 1195 mm y -1 while runoff increases from 278 mm y-1 to 602 mm y-1. The sensitivity is explained in terms of evaporation being dominated by available energy when precipitation falls over nearly the entire grid square, but by moisture availability (mainly intercepted water) when it falls over little of the grid square. These results also indicate that earlier work using stand-alone forcing to drive land surface schemes ‘off-line’, and to investigate the sensitivity of land surface codes to various parameters, leads to results which are non-repeatable in single column simulations.

  14. Experimental analysis of a Flat Plate Pulsating Heat Pipe with Self-ReWetting Fluids during a parabolic flight campaign

    NASA Astrophysics Data System (ADS)

    Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves

    2018-06-01

    A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.

  15. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.

    2010-11-15

    Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less

  16. Controlled synthesis of racemic indenyl rare-earth metal complexes via the cooperation between the intramolecular coordination of donor atoms and a bridge.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Zhou, Lingmin; Wang, Shaowu; Zhang, Lijun; Zhu, Xiancui; Wei, Yun; Zhai, Jinhua; Wu, Jie

    2013-06-03

    The reactions of Me2Si(C9H6CH2CH2-DG)2 (DG = NMe2 (1), CH2NMe2 (2), OMe (3), and N(CH2CH2)2O (4)) with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 in toluene afforded a series of racemic divalent rare-earth metal complexes: {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2-DG)2}RE (DG = NMe2, RE = Yb (6) and Eu (7); DG = CH2NMe2, RE = Yb (8), Eu (9), and Sm (10); DG = OMe, RE = Yb (11) and Eu (12); DG = N(CH2CH2)2O, RE = Yb (13) and Eu (14)). Similarly, the racemic divalent rare-earth metal complexes {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2CH2NMe2)(C9H5CH2CH2OMe)}RE (RE = Yb (15) and Eu (16)) were also obtained. The reaction of Me2Si(C9H5CH2CH2OMe)2Li2 with NdCl3 gave a racemic dimeric neodymium chloride {η(5):η(1):η(5)-Me2Si(C9H5CH2CH2OMe)2NdCl}2 (17), whereas the reaction of Me2Si(C9H5CH2CH2NMe2)2Li2 with SmCl3 afforded a racemic dinuclear samarium chloride bridged by lithium chloride {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2NMe2)2SmCl}2(μ-LiCl) (18). Further reaction of complex 18 with LiCH2SiMe3 provided an unexpected rare-earth metal alkyl complex {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Sm (19) through the activation of an sp(3) C-H bond α-adjacent to the nitrogen atom. Complexes 19 and {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Y (20) were also obtained by one-pot reactions of Me2Si(C9H5CH2CH2NMe2)2Li2 with RECl3 followed by treatment with LiCH2SiMe3. All compounds were fully characterized by spectroscopic methods and elemental analysis. Complexes 6-10 and 14-20 were further characterized by single-crystal X-ray diffraction analysis. All of the prepared rare-earth metal complexes were racemic, suggesting that racemic organo rare-earth metal complexes could be controllably synthesized by the cooperation between a bridge and the intramolecular coordination of donor atoms.

  17. Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control

    NASA Astrophysics Data System (ADS)

    Meyer, John Louis Lamb

    A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing intermetallic. Although Al is necessary for industrial superalloy production, the Ni-Cr base alloy system was selected as a simplified system more amenable to characterization. This was done in an effort to better study the effects of processing parameters. Consolidation and heat-treatment were performed to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nanometric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiment that found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloys, but the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was easier to characterize, and make observations on the effects of processing parameters, the Ti-containing system was used for experimental atomization trials. An internal oxidation model was used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed to investigate the effects of gas atomization pressure and reactive-gas concentration on the particle size distribution (PSD). Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated as a function of reactive-gas composition and bulk alloy composition. The results indicate that the pulsation mechanism and optimum PSDs reported in the literature were not observed. Also, it was determined that reactive gas may marginally improve the PSD, but further experiments are required. The oxygen content in the gas was also not found to be detrimental to the microstructure (i.e., did not catalyze nucleation), but may have removed potent catalytic nucleation sites, although not enough to significantly alter the microstructure. Overall, the downstream injection of oxygen was not found to significantly affect either the PSD or undercooling (as inferred from microstructure and XRD observations), but injection further upstream, including in the gas atomization nozzle, remains to be investigated.

  18. Learning-assisted theorem proving with millions of lemmas☆

    PubMed Central

    Kaliszyk, Cezary; Urban, Josef

    2015-01-01

    Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck. PMID:26525678

  19. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    NASA Astrophysics Data System (ADS)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat

    2015-02-01

    TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReNx (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa (± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al2O3 balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti2O3 for RT tests and TiO2 for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO2, Tisbnd Osbnd N, ReO2 and Re2O7 for both test temperatures. Re2O7 provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  20. PRODUCTION ENGINEERING AND MARKETING ANALYSIS OF THE ROTATING DISK EVAPORATOR

    EPA Science Inventory

    Recent EPA-funded research into the onsite, mechanical evaporation of wastewater from single family homes revealed that a rotating disk evaporator (RDE) could function in a nondischarging mode. Such a device has potential use where site limitations preclude conventional methods o...

  1. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  2. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  3. Evaporation components of a boreal forest: variations during the growing season

    NASA Astrophysics Data System (ADS)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  4. Spray combustion model improvement study, 1

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.

  5. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  6. Electrical and optical properties of C46H22N8O4KM (M=Co, Fe, Pb) molecular-material thin films prepared by the vacuum thermal evaporation technique.

    PubMed

    Sánchez-Vergara, M E; Ruiz Farfán, M A; Alvarez, J R; Ponce Pedraza, A; Ortiz, A; Alvarez Toledano, C

    2007-03-01

    In this work, the synthesis of new materials formed from metallic phthalocyanines (Pcs) and double potassium salt from 1,8-dihydroxianthraquinone is reported. The newly synthesized materials were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), infrared (IR) and Ultraviolet-visible (UV-vis) spectroscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds as in the IR spectroscopy studies, which suggests that the thermal evaporation process does not alter these bonds. The effect of temperature on conductivity and electrical conduction mechanism was measured in the thin films (approximately 137 nm thickness). They showed a semiconductor-like behaviour with an optical activation energy arising from indirect transitions of 2.15, 2.13 and 3.6eV for the C(46)H(22)N(8)O(4)KFe, C(46)H(22)N(8)O(4)KPb and C(46)H(22)N(8)O(4)KCo thin films.

  7. Rapid Evaporation of Binary Mixture Injections

    NASA Astrophysics Data System (ADS)

    McCahan, S.; Kessler, C.

    1998-11-01

    When a fuel under pressure is heated above its normal boiling point and expanded through a nozzle into atmospheric conditions, rapid evaporation can occur. The resulting sprays typically exhibit increased atomization and shorter liquid penetration lengths. When heavy fuels with high specific heats are used, complete evaporation is theoretically possible. This is a continuation of work done by Sloss and McCahan (APS/DFD meeting 1996), in which dodecane, fuel oil, kerosene, and diesel oil were studied, and McCahan and Kessler (APS/DFD meeting 1997), in which preliminary results were presented on decane and tetradecane. At a pressure of 10 bar, the working fluid (decane/tetradecane mixture) is preheated to temperatures ranging from room temperature to the decane saturation temperature and then expanded through a simple converging nozzle into a chamber at 1 bar. From the photographic and mass flow rate data, the effect of degree of superheat on the spray cone angle and mass flow rate is observed. Results show that the addition of a heavier hydrocarbon has the expected damping effects on the spray characteristics.

  8. Collision-induced evaporation of water clusters and contribution of momentum transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Berthias, Francis; Feketeová, Linda; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2017-05-01

    The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  9. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate.

    PubMed

    Fazaeli, Mahboubeh; Hojjatpanah, Ghazale; Emam-Djomeh, Zahra

    2013-02-01

    Black mulberry juice was concentrated by different heating methods, including conventional heating and microwave heating, at different operational pressures (7.3, 38.5 and 100 kPa). The effects of each method on evaporation rate, quality attributes of concentrated juice were investigated. The final juice concentration of 42° Brix was achieved in 140, 120, and 95 min at 100, 38.5, and 7.3 kPa respectively by using a rotary evaporator. Applying microwave energy decreased required times to 115, 95, and 60 min. The changes in color, anthocyanin content during the concentration processes were investigated. Hunter parameters (L, a, and b) were measured to estimate the intensity of color loss. All Hunter color parameters decreased with time. Results showed that the degradation of color and consequently anthocyanins, was more pronounced in rotary evaporation compared to microwave heating method.

  10. A portable microevaporator for low temperature single atom studies by scanning tunneling and dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Rust, H.-P.; König, T.; Simon, G. H.; Nowicki, M.; Simic-Milosevic, V.; Thielsch, G.; Heyde, M.; Freund, H.-J.

    2009-11-01

    Here, we present a microevaporator setup for single adatom deposition at low temperature, which is a prerequisite for most single atom studies with scanning probe techniques. The construction of the microevaporator is based on the tungsten filament of a modified halogen lamp, covered with the required adsorbate. Very stable evaporation conditions were obtained, which were controlled by the filament current. The installation of this microevaporator on a manipulator enabled its transportation directly to the sample at the microscope kept at 5 K. In this way, the controlled deposition of Li onto Ag(100), Li, Pd, and Au onto MgO/Ag(001) as well as Au onto alumina/NiAl(110) at low temperature has been performed. The obtained images recorded after the deposition show the presence of single Li/Au atoms on the sample surfaces as a prove for successful dispersion of single atoms onto the sample surface using this technique.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less

  12. Fast Atom Ionization in Strong Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  13. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    NASA Astrophysics Data System (ADS)

    Fink, Reinhold F.

    2009-02-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.

  14. A Computer Model of the Evaporator for the Development of an Automatic Control System

    NASA Astrophysics Data System (ADS)

    Kozin, K. A.; Efremov, E. V.; Kabrysheva, O. P.; Grachev, M. I.

    2016-08-01

    For the implementation of a closed nuclear fuel cycle it is necessary to carry out a series of experimental studies to justify the choice of technology. In addition, the operation of the radiochemical plant is impossible without high-quality automatic control systems. In the technologies of spent nuclear fuel reprocessing, the method of continuous evaporation is often used for a solution conditioning. Therefore, the effective continuous technological process will depend on the operation of the evaporation equipment. Its essential difference from similar devices is a small size. In this paper the method of mathematic simulation is applied for the investigation of one-effect evaporator with an external heating chamber. Detailed modelling is quite difficult because the phase equilibrium dynamics of the evaporation process is not described. Moreover, there is a relationship with the other process units. The results proved that the study subject is a MIMO plant, nonlinear over separate control channels and not selfbalancing. Adequacy was tested using the experimental data obtained at the laboratory evaporation unit.

  15. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  16. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.« less

  17. Analytic modified embedded atom potentials for HCP metals

    NASA Astrophysics Data System (ADS)

    Hu, Wangyu; Zhang, Bangwei; Huang, Baiyun; Gao, Fei; Bacon, David J.

    2001-02-01

    Analytic modified embedded atom method (AMEAM) type many-body potentials have been constructed for ten hcp metals: Be, Co, Hf, Mg, Re, Ru, Sc, Ti, Y and Zr. The potentials are parametrized using analytic functions and fitted to the cohesive energy, unrelaxed vacancy formation energy, five independent second-order elastic constants and two equilibrium conditions. Hence, each of the constructed potentials represents a stable hexagonal close-packed lattice with a particular non-ideal c/a ratio. In order to treat the metals with negative Cauchy pressure, a modified term has been added to the total energy. For all the metals considered, the hcp lattice is shown to be energetically most stable when compared with the fcc and bcc structure and the hcp lattice with ideal c/a. The activation energy for vacancy diffusion in these metals has been calculated. They agree well with experimental data available and those calculated by other authors for both monovacancy and divacancy mechanisms and the most possible diffusion paths are predicted. Stacking fault and surface energy have also been calculated and their values are lower than typical experimental data. Finally, the self-interstitial atom (SIA) formation energy and volume have been evaluated for eight possible sites. This calculation suggests that the basal split or crowdion is the most stable configuration for metals with a rather large deviation from the ideal c/a value and the non-basal dumbbell (C or S) is the most stable configuration for metals with c/a near ideal. The relationship between SIA formation energy and melting temperature roughly obeys a linear relation for most metals except Ru and Re.

  18. Iterative combining rules for the van der Waals potentials of mixed rare gas systems

    NASA Astrophysics Data System (ADS)

    Wei, L. M.; Li, P.; Tang, K. T.

    2017-05-01

    An iterative procedure is introduced to make the results of some simple combining rules compatible with the Tang-Toennies potential model. The method is used to calculate the well locations Re and the well depths De of the van der Waals potentials of the mixed rare gas systems from the corresponding values of the homo-nuclear dimers. When the ;sizes; of the two interacting atoms are very different, several rounds of iteration are required for the results to converge. The converged results can be substantially different from the starting values obtained from the combining rules. However, if the sizes of the interacting atoms are close, only one or even no iteration is necessary for the results to converge. In either case, the converged results are the accurate descriptions of the interaction potentials of the hetero-nuclear dimers.

  19. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    PubMed

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  20. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

Top