Sample records for atom sia clusters

  1. A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe

    NASA Astrophysics Data System (ADS)

    Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.

    2018-03-01

    The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).

  2. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy

    PubMed Central

    Amino, T.; Arakawa, K.; Mori, H.

    2016-01-01

    The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352

  3. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780 × Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect atmore » a transition energy which occurs at approximately 250 × Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5 Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.« less

  4. The role of nickel in radiation damage of ferritic alloys

    DOE PAGES

    Osetsky, Y.; Anento, Napoleon; Serra, Anna; ...

    2014-11-26

    According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this study, we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe–Ni alloys. We have foundmore » that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1 nm (37SIAs) cluster is practically immobile at T < 500 K in the Fe–0.8 at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. Finally, this effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe–Ni ferritic alloys.« less

  5. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-07-01

    Object kinetic Monte Carlo (OKMC) simulations have been performed to investigate various aspects of cascade aging in bulk tungsten and to determine the sensitivity of the results to the kinetic parameters. The primary focus is on how the kinetic parameters affect the initial recombination of defects in the first few ns of a simulation. The simulations were carried out using the object kinetic Monte Carlo (OKMC) code KSOME (kinetic simulations of microstructure evolution), using a database of cascades obtained from results of molecular dynamics (MD) simulations at various primary knock-on atom (PKA) energies and directions at temperatures of 300, 1025more » and 2050 K. The OKMC model was parameterized using defect migration barriers and binding energies from ab initio calculations. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters in tungsten, annealing is dominated by SIA migration even at temperatures as high as 2050 K. For 100 keV cascades initiated at 300 K recombination is dominated by annihilation of large defect clusters. But for all other PKA energies and temperatures most of the recombination is due to the migration and rotation of small SIA clusters, while all the large SIA clusters escape the cubic simulation cell. The inverse U-shape behavior exhibited by the annealing efficiency as a function of temperature curve, especially for cascades of large PKA energies, is due to asymmetry in SIA and vacancy clustering assisted by the large difference in mobilities of SIAs and vacancies. This annealing behavior is unaffected by the dimensionality of SIA migration persists over a broad range of relative mobilities of SIAs and vacancies.« less

  6. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    NASA Astrophysics Data System (ADS)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  7. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. Configurations of the three most stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clustersmore » is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented.« less

  9. The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters.

    PubMed

    Lewis, Amanda L; Hensler, Mary E; Varki, Ajit; Nizet, Victor

    2006-04-21

    Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.

  10. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibitsmore » an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.« less

  11. Towards understanding the mechanism of rhenium and osmium precipitation in tungsten and its implication for tungsten-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Deng, Huiqiu; Lu, Gang; Lu, Guang-Hong

    2018-07-01

    Using a first-principles method in combination with thermodynamic models, we investigate the interaction between rhenium/osmium (Re/Os) and defects to explore the mechanism of radiation-induced Re/Os precipitation in tungsten (W). We demonstrate that radiation-induced defects play a key role in the solute precipitation in W, especially for self-interstitial atoms (SIAs). The presence of SIAs can significantly reduce the total nucleation free energy change of Re/Os, and thus facilitate the nucleation of Re/Os in W. Further, SIA is shown to be easily trapped by Re/Os once overcoming a low energy barrier, forming a W-Re/Os mixed dumbbell. Such W-Re/Os dumbbell forms a high stable Re/Os-Re/Os dumbbell structure with the substitutional Re/Os atoms, which can serve as a trapping centre for subsequent interstitial-Re/Os, leading to the growth of Re/Os-rich clusters. Consequently, an interstitial-mediated migration and aggregation mechanism for Re/Os precipitation in W has been proposed. Our results reveale that the alloying elements-defects interaction has significantly effect on their behaviors under irradiation, which should be considered in the design of W-based alloys for future fusion devices.

  12. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    NASA Astrophysics Data System (ADS)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  13. Generalized Rate Theory for Void and Bubble Swelling and its Application to Delta-Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, P. G.; Wall, M. A.; Wolfer, W. G.

    2016-10-04

    A rate theory for void and bubble swelling is derived that allows both vacancies and self-interstitial atoms to be generated by thermal activation at all sinks. In addition, they can also be produced by displacement damage from external and internal radiation. This generalized rate theory (GRT) is applied to swelling of gallium-stabilized δ-plutonium in which α-decay causes the displacement damage. Since the helium atoms produced also become trapped in vacancies, a distinction is made between empty and occupied vacancies. The growth of helium bubbles observed by transmission electron microscopy (TEM) in weapons-grade and in material enriched with Pu238 is analyzed,more » using different values for the formation energy of self-interstitial atoms (SIA) and two different sets of relaxation volumes for the vacancy and for the SIA. One set allows preferential capture of SIA at dislocations, while the other set gives equal preference to both vacancy and SIA. It is found that the helium bubble diameters observed are in better agreement with GRT predictions if no preferential capture occurs at dislocations. Therefore, helium bubbles in δ-plutonium will not evolve into voids. The helium density within the bubbles remains sufficiently high to cause thermal emission of SIA. Based on a helium density between two to three helium atoms per vacant site, the sum of formation and migration energies must be around 2.0 eV for SIA in δ-plutonium.« less

  14. The energy and stability of helium-related cluster in nickel: A study of molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gong, Hengfeng; Wang, Chengbin; Zhang, Wei; Xu, Jian; Huai, Ping; Deng, Huiqiu; Hu, Wangyu

    2016-02-01

    Using molecular dynamics simulation, we investigated the energy and stability of helium-related cluster in nickel. All the binding energies of the He-related clusters are demonstrated to be positive and increase with the cluster sizes. Due to the pre-existed self-interstitial nickel atom, the trapping capability of vacancy to defects becomes weak. Besides, the minimum energy configurations of He-related clusters exhibit the very high symmetry in the local atomistic environment. And for the HeN and HeNV1SIA1 clusters, the average length of He-He bonds shortens, but it elongates for the HeNV1 clusters with helium cluster sizes. The helium-to-vacancy ratio plays a decisive role on the binding energies of HeNVM cluster. These results can provide some excellent clues to insight the initial stage of helium bubbles nucleation and growth in the Ni-based alloys for the Generation-IV Molten Salt Reactor.

  15. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.

    2016-10-01

    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along <1 1 1> direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to <1 1 1> has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  16. Measles and rubella vaccination coverage in Haiti, 2012: progress towards verifying and challenges to maintaining measles and rubella elimination

    PubMed Central

    Tohme, Rania A.; François, Jeannot; Wannemuehler, Kathleen; Magloire, Roc; Danovaro-Holliday, M. Carolina; Flannery, Brendan; Cavallaro, Kathleen F.; Fitter, David L.; Purcell, Nora; Dismer, Amber; Tappero, Jordan W.; Vertefeuille, John F.; Hyde, Terri B.

    2015-01-01

    Objectives We conducted a nationwide survey to assess measles containing vaccine (MCV) coverage among children aged 1–9 years in Haiti and identify factors associated with vaccination before and during the 2012 nationwide supplementary immunisation activities (SIA). Methods Haiti was stratified into five geographic regions (Metropolitan Port-au-Prince, North, Centre, South and West), 40 clusters were randomly selected in each region, and 35 households were selected per cluster. Results Among the 7000 visited households, 75.8% had at least one child aged 1–9 years; of these, 5279 (99.5%) households consented to participate in the survey. Of 9883 children enrolled, 91% received MCV before and/or during the SIA; 31% received MR for the first time during the SIA, and 50.7% received two doses of MCV (one before and one during the 2012 SIA). Among the 1685 unvaccinated children during the SIA, the primary reason of non-vaccination was caregivers not being aware of the SIA (31.0%). Children aged 1–4 years had significantly lower MR SIA coverage than those aged 5–9 years (79.5% vs. 84.8%) (P < 0.0001). A higher proportion of children living in the West (12.3%) and Centre (11.2%) regions had never been vaccinated than in other regions (4.8–9.1%). Awareness, educational level of the mother and region were significantly associated with MR vaccination during and before the SIA (P < 0.001). Conclusions The 2012 SIA successfully increased MR coverage; however, to maintain measles and rubella elimination, coverage needs to be further increased among children aged 1–4 years and in regions with lower coverage. PMID:25041586

  17. Measles and rubella vaccination coverage in Haiti, 2012: progress towards verifying and challenges to maintaining measles and rubella elimination.

    PubMed

    Tohme, Rania A; François, Jeannot; Wannemuehler, Kathleen; Magloire, Roc; Danovaro-Holliday, M Carolina; Flannery, Brendan; Cavallaro, Kathleen F; Fitter, David L; Purcell, Nora; Dismer, Amber; Tappero, Jordan W; Vertefeuille, John F; Hyde, Terri B

    2014-09-01

    We conducted a nationwide survey to assess measles containing vaccine (MCV) coverage among children aged 1-9 years in Haiti and identify factors associated with vaccination before and during the 2012 nationwide supplementary immunisation activities (SIA). Haiti was stratified into five geographic regions (Metropolitan Port-au-Prince, North, Centre, South and West), 40 clusters were randomly selected in each region, and 35 households were selected per cluster. Among the 7000 visited households, 75.8% had at least one child aged 1-9 years; of these, 5279 (99.5%) households consented to participate in the survey. Of 9883 children enrolled, 91% received MCV before and/or during the SIA; 31% received MR for the first time during the SIA, and 50.7% received two doses of MCV (one before and one during the 2012 SIA). Among the 1685 unvaccinated children during the SIA, the primary reason of non-vaccination was caregivers not being aware of the SIA (31.0%). Children aged 1-4 years had significantly lower MR SIA coverage than those aged 5-9 years (79.5% vs. 84.8%) (P < 0.0001). A higher proportion of children living in the West (12.3%) and Centre (11.2%) regions had never been vaccinated than in other regions (4.8-9.1%). Awareness, educational level of the mother and region were significantly associated with MR vaccination during and before the SIA (P < 0.001). The 2012 SIA successfully increased MR coverage; however, to maintain measles and rubella elimination, coverage needs to be further increased among children aged 1-4 years and in regions with lower coverage. © 2014 John Wiley & Sons Ltd.

  18. Ncam1a and Ncam1b: two carriers of polysialic acid with different functions in the developing zebrafish nervous system.

    PubMed

    Langhauser, Melanie; Ustinova, Jana; Rivera-Milla, Eric; Ivannikov, Darja; Seidl, Carmen; Slomka, Christin; Finne, Jukka; Yoshihara, Yoshihiro; Bastmeyer, Martin; Bentrop, Joachim

    2012-02-01

    Polysialic acid (polySia) is mainly described as a glycan modification of the neural cell adhesion molecule NCAM1. PolySia-NCAM1 has multiple functions during the development of vertebrate nervous systems including axon extension and fasciculation. Phylogenetic analyses reveal the presence of two related gene clusters, NCAM1 and NCAM2, in tetrapods and fishes. Within the ncam1 cluster, teleost fishes express ncam1a (ncam) and ncam1b (pcam) as duplicated paralogs which arose from a second round of ray-finned fish-specific genome duplication. Tetrapods, in contrast, express a single NCAM1 gene. Using the zebrafish model, we identify Ncam1b as a novel major carrier of polySia in the nervous system. PolySia-Ncam1a is expressed predominantly in rostral regions of the developing nervous system, whereas polySia-Ncam1b prevails caudally. We show that ncam1a and ncam1b have different expression domains which only partially overlap. Furthermore, Ncam1a and Ncam1b and their polySia modifications serve different functions in axon guidance. Formation of the posterior commissure at the forebrain/midbrain junction requires polySia-Ncam1a on the axons for proper fasciculation, whereas Ncam1b, expressed by midbrain cell bodies, serves as an instructive guidance cue for the dorso-medially directed growth of axons. Spinal motor axons, on the other hand, depend on axonally expressed Ncam1b for correct growth toward their target region. Collectively, these findings suggest that the genome duplication in the teleost lineage has provided the basis for a functional diversification of polySia carriers in the nervous system.

  19. Stability of concentration-related self-interstitial atoms in fusion material tungsten

    NASA Astrophysics Data System (ADS)

    Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen

    2016-05-01

    Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the <110> and <111> formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, <110> SIAs are more likely to exist, <111> SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).

  20. Psychometric properties of the Social Interaction Anxiety Scale and separation criterion between Spanish youths with and without subtypes of social anxiety.

    PubMed

    Zubeidat, Ihab; Salinas, José María; Sierra, Juan Carlos; Fernández-Parra, Antonio

    2007-01-01

    In this study, we analyzed the reliability and validity of the Social Interaction Anxiety Scale (SIAS) and propose a separation criterion between youths with specific and generalized social anxiety and youths without social anxiety. A sample of 1012 Spanish youths attending school completed the SIAS, the Liebowitz Social Anxiety Scale, the Social Avoidance and Distress Scale, the Fear of Negative Evaluation Scale, the Youth Self-Report for Ages 11-18 and the Minnesota Multiphasic Personality Inventory-Adolescent. The factor analysis suggests the existence of three factors in the SIAS, the first two of which explain most of the variance of the construct assessed. Internal consistency is adequate in the first two factors. The SIAS features an adequate theoretical validity with the scores of different variables related to social interaction. Analysis of the criterion scores yields three groups pertaining to three clearly differentiated clusters. In the third cluster, two of social anxiety groups - specific and generalized - have been identified by means of a quantitative separation criterion.

  1. Impact of measles supplementary immunisation activities on utilisation of maternal and child health services in low-income and middle-income countries.

    PubMed

    Postolovska, Iryna; Helleringer, Stéphane; Kruk, Margaret E; Verguet, Stéphane

    2018-01-01

    Measles supplementary immunisation activities (SIAs) are an integral component of measles elimination in low-income and middle-income countries (LMICs). Despite their success in increasing vaccination coverage, there are concerns about their negative consequences on routine services. Few studies have conducted quantitative assessments of SIA impact on utilisation of health services. We analysed the impact of SIAs on utilisation of selected maternal and child health services using Demographic and Health Surveys and Multiple Indicator Cluster Surveys from 28 LMICs, where at least one SIA occurred over 2000-2014. Logistic regressions were conducted to investigate the association between SIAs and utilisation of the following services: facility delivery, postnatal care and outpatient sick child care (for fever, diarrhoea, cough). SIAs do not appear to significantly impact utilisation of maternal and child services. We find a reduction in care-seeking for treatment of child cough (OR 0.67; 95% CI 0.48 to 0.95); and a few significant effects at the country level, suggesting the need for further investigation of the idiosyncratic effects of SIAs in each country. The paper contributes to the debate on vertical versus horizontal programmes to ensure universal access to vaccination. Measles SIAs do not seem to affect care-seeking for critical conditions.

  2. HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2013-09-30

    Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional Hemore » is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.« less

  3. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

    PubMed Central

    Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge

    2013-01-01

    Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271

  4. Impact of measles supplementary immunisation activities on utilisation of maternal and child health services in low-income and middle-income countries

    PubMed Central

    Postolovska, Iryna; Helleringer, Stéphane; Kruk, Margaret E; Verguet, Stéphane

    2018-01-01

    Background Measles supplementary immunisation activities (SIAs) are an integral component of measles elimination in low-income and middle-income countries (LMICs). Despite their success in increasing vaccination coverage, there are concerns about their negative consequences on routine services. Few studies have conducted quantitative assessments of SIA impact on utilisation of health services. Methods We analysed the impact of SIAs on utilisation of selected maternal and child health services using Demographic and Health Surveys and Multiple Indicator Cluster Surveys from 28 LMICs, where at least one SIA occurred over 2000–2014. Logistic regressions were conducted to investigate the association between SIAs and utilisation of the following services: facility delivery, postnatal care and outpatient sick child care (for fever, diarrhoea, cough). Results SIAs do not appear to significantly impact utilisation of maternal and child services. We find a reduction in care-seeking for treatment of child cough (OR 0.67; 95% CI 0.48 to 0.95); and a few significant effects at the country level, suggesting the need for further investigation of the idiosyncratic effects of SIAs in each country. Conclusion The paper contributes to the debate on vertical versus horizontal programmes to ensure universal access to vaccination. Measles SIAs do not seem to affect care-seeking for critical conditions. PMID:29755760

  5. Modal analysis of dislocation vibration and reaction attempt frequency

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-02-04

    Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less

  6. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters.

    PubMed

    Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván

    2015-12-01

    CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN BULK TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-09-22

    We used our recently developed lattice based OKMC code; KSOME [1] to carryout simulations of radiation damage in bulk W. We study the effect of dimensionality of self interstitial atom (SIA) diffusion i.e. 1D versus 3D on the defect accumulation during irradiation with a primary knock-on atom (PKA) energy of 100 keV at 300 K for the dose rates of 10-5 and 10-6 dpa/s. As expected 3D SIA diffusion significantly reduces damage accumulation due to increased probability of recombination events. In addition, dose rate, over the limited range examined here, appears to have no effect in both cases of SIAmore » diffusion.« less

  8. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    NASA Astrophysics Data System (ADS)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the <111 > direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of <111 > defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a <111 > orientation of the defect.

  9. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    NASA Astrophysics Data System (ADS)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  10. Cluster lot quality assurance sampling: effect of increasing the number of clusters on classification precision and operational feasibility.

    PubMed

    Okayasu, Hiromasa; Brown, Alexandra E; Nzioki, Michael M; Gasasira, Alex N; Takane, Marina; Mkanda, Pascal; Wassilak, Steven G F; Sutter, Roland W

    2014-11-01

    To assess the quality of supplementary immunization activities (SIAs), the Global Polio Eradication Initiative (GPEI) has used cluster lot quality assurance sampling (C-LQAS) methods since 2009. However, since the inception of C-LQAS, questions have been raised about the optimal balance between operational feasibility and precision of classification of lots to identify areas with low SIA quality that require corrective programmatic action. To determine if an increased precision in classification would result in differential programmatic decision making, we conducted a pilot evaluation in 4 local government areas (LGAs) in Nigeria with an expanded LQAS sample size of 16 clusters (instead of the standard 6 clusters) of 10 subjects each. The results showed greater heterogeneity between clusters than the assumed standard deviation of 10%, ranging from 12% to 23%. Comparing the distribution of 4-outcome classifications obtained from all possible combinations of 6-cluster subsamples to the observed classification of the 16-cluster sample, we obtained an exact match in classification in 56% to 85% of instances. We concluded that the 6-cluster C-LQAS provides acceptable classification precision for programmatic action. Considering the greater resources required to implement an expanded C-LQAS, the improvement in precision was deemed insufficient to warrant the effort. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Training Activities on Radioactive Waste Management at Moscow SIA -Radon-: Experience, Practice, Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Arustamov, A.E.; Dmitriev, S.A.

    Management of radioactive waste relates to the category of hazardous activities. Hence the requirements to the professional level of managers and personnel working in this industry are very high. Education, training and examination of managers, operators and workers are important elements of assuring safe and efficient operation of radioactive waste management sites. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 10 years. The paper summarizes the current experiencemore » of the SIA 'Radon' in the organisation and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)« less

  12. Four Years of Practical Arrangements between IAEA and Moscow SIA 'Radon': Preliminary Results - 13061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Karlina, O.K.; Neveikin, P.P.

    The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 15 years. Since 1997, the educational system of the enterprise with the support of the IAEA has acquired an international character: more than 470 experts from 35 countries- IAEA Member States completed the professional development. Training is conducted at various thematic courses or fellowships for individual programs and seminars on IAEA technical projects. In June 2008 a direct agreement (Practicalmore » Arrangements) was signed between SIA 'Radon' and the IAEA on cooperation in the field of development of new technologies, expert's advice to IAEA Member States, and, in particular, the training of personnel in the field of radioactive waste management (RWM), which opens up new perspectives for fruitful cooperation of industry professionals. The paper summarizes the current experience of the SIA 'Radon' in the organization and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)« less

  13. Preservation Methods Alter Carbon and Nitrogen Stable Isotope Values in Crickets (Orthoptera: Grylloidea)

    PubMed Central

    Jesus, Fabiene Maria; Pereira, Marcelo Ribeiro; Rosa, Cassiano Sousa; Moreira, Marcelo Zacharias; Sperber, Carlos Frankl

    2015-01-01

    Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ 15N, δ 13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ 13C and δ 15N and C/N atomic values. Chemical preservatives caused δ 13C enrichment as great as 1.5‰, and δ 15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ 15N depletion up to 1.8‰. Freezing depleted δ 13C and δ 15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets. PMID:26390400

  14. Preservation Methods Alter Carbon and Nitrogen Stable Isotope Values in Crickets (Orthoptera: Grylloidea).

    PubMed

    Jesus, Fabiene Maria; Pereira, Marcelo Ribeiro; Rosa, Cassiano Sousa; Moreira, Marcelo Zacharias; Sperber, Carlos Frankl

    2015-01-01

    Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ15N, δ13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ13C and δ15N and C/N atomic values. Chemical preservatives caused δ13C enrichment as great as 1.5‰, and δ15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ15N depletion up to 1.8‰. Freezing depleted δ13C and δ15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets.

  15. Social phobia subtypes in the general population revealed by cluster analysis.

    PubMed

    Furmark, T; Tillfors, M; Stattin, H; Ekselius, L; Fredrikson, M

    2000-11-01

    Epidemiological data on subtypes of social phobia are scarce and their defining features are debated. Hence, the present study explored the prevalence and descriptive characteristics of empirically derived social phobia subgroups in the general population. To reveal subtypes, data on social distress, functional impairment, number of social fears and criteria fulfilled for avoidant personality disorder were extracted from a previously published epidemiological study of 188 social phobics and entered into an hierarchical cluster analysis. Criterion validity was evaluated by comparing clusters on the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS). Finally, profile analyses were performed in which clusters were compared on a set of sociodemographic and descriptive characteristics. Three clusters emerged, consisting of phobics scoring either high (generalized subtype), intermediate (non-generalized subtype) or low (discrete subtype) on all variables. Point prevalence rates were 2.0%, 5.9% and 7.7% respectively. All subtypes were distinguished on both SPS and SIAS. Generalized or severe social phobia tended to be over-represented among individuals with low levels of educational attainment and social support. Overall, public-speaking was the most common fear. Although categorical distinctions may be used, the present data suggest that social phobia subtypes in the general population mainly differ dimensionally along a mild moderate-severe continuum, and that the number of cases declines with increasing severity.

  16. Comparative study of displacement cascades simulated with 'magnetic' potentials and Mendelev-type potential in α-Fe

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2017-04-01

    Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.

  17. Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage.

    PubMed

    Davies, Leela R L; Pearce, Oliver M T; Tessier, Matthew B; Assar, Siavash; Smutova, Victoria; Pajunen, Maria; Sumida, Mizuki; Sato, Chihiro; Kitajima, Ken; Finne, Jukka; Gagneux, Pascal; Pshezhetsky, Alexey; Woods, Robert; Varki, Ajit

    2012-08-17

    The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.

  18. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  19. Parental perceptions surrounding polio and self-reported non-participation in polio supplementary immunization activities in Karachi, Pakistan: a mixed methods study.

    PubMed

    Khowaja, Asif Raza; Khan, Sher Ali; Nizam, Naveeda; Omer, Saad Bin; Zaidi, Anita

    2012-11-01

    To assess parent's knowledge and perceptions surrounding polio and polio vaccination, self-reported participation in polio supplementary immunization activities (SIAs) targeting children aged < 5 years, and reasons for non-participation. The mixed methods study began with a cross-sectional survey in Karachi, Pakistan. A structured questionnaire was administered to assess parental knowledge of polio and participation in polio SIAs conducted in September and October 2011. Additionally, 30 parents of Pashtun ethnicity (a high-risk group) who refused to vaccinate their children were interviewed in depth to determine why. Descriptive and bivariate analyses by ethnic and socioeconomic group were performed for quantitative data; thematic analysis was conducted for qualitative interviews with Pashtun parents. Of 1017 parents surveyed, 412 (41%) had never heard of polio; 132 (13%) did not participate in one SIA and 157 (15.4%) did not participate in either SIA. Among non-participants, 34 (21.6%) reported not having been contacted by a vaccinator; 116 (73.9%) reported having refused to participate, and 7 (4.5%) reported that the child was absent from home when the vaccinator visited. Refusals clustered in low-income Pashtun (43/441; 9.8%) and high-income families of any ethnic background (71/153; 46.4%). Low-income Pashtuns were more likely to not have participated in polio SIAs than low-income non-Pashtuns (odds ratio, OR: 7.1; 95% confidence interval, CI: 3.47-14.5). Reasons commonly cited among Pashtuns for refusing vaccination included fear of sterility; lack of faith in the polio vaccine; scepticism about the vaccination programme, and fear that the vaccine might contain religiously forbidden ingredients. In Karachi, interruption of polio transmission requires integrated and participatory community interventions targeting high-risk populations.

  20. [Distorted cognition of bodily sensations in subtypes of social anxiety].

    PubMed

    Kanai, Yoshihiro; Sasaki, Shoko; Iwanaga, Makoto; Seiwa, Hidetoshi

    2010-02-01

    The purpose of this study was to investigate the relationship between subtypes of social anxiety and distorted cognition of bodily sensations. The package of questionnaires including the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) was administered to 582 undergraduate students. To identify subtypes of social anxiety, cluster analysis was conducted using scores of the SPS and SIAS. Five clusters were identified and labeled as follows: Generalized type characterized by intense anxiety in most social situations, Non-anxious type characterized by low anxiety levels in social situations, Averaged type whose anxiety levels are averaged, Interaction anxiety type who feels anxiety mainly in social interaction situations, and Performance anxiety type who feels anxiety mainly in performance situations. Results of an ANOVA indicated that individuals with interaction type fear the negative evaluation from others regarding their bodily sensations whereas individuals with performance type overestimate the visibility of their bodily sensations to others. Differences in salient aspects of cognitive distortion among social anxiety subtypes may show necessity to select intervention techniques in consideration of subtypes.

  1. Approach to training of personnel to manage radioactive wastes offered by education training Centre at Moscow Sia Radon under sponsorship of IAEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Dmitriev, S.A.; Ojovan, M.I.

    The availability of qualified personnel is crucial to the licensing and efficient and safe operation of waste management facilities and for the improvement of the existing waste management practices. The countries with some degree of waste management activities are of special concerns, since their narrow waste management experience and personal capabilities may be a limiting factor to manage radioactive waste in a safe and technically optimal manner. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided trainingmore » to waste management personnel for the last 10 years. During this period, more than 300 specialists from 26 European and Asian countries, (mostly) sponsored by the IAEA, have increased their knowledge and skills in radioactive waste management. The current experience of the SIA 'Radon' in the organisation of the IAEA sponsored training is summarized and an outline of some strategic educational elements, which IETC will continue to pursue in the coming years, is provided. (authors)« less

  2. Comparing Multiple Criteria for Species Identification in Two Recently Diverged Seabirds

    PubMed Central

    Militão, Teresa; Gómez-Díaz, Elena; Kaliontzopoulou, Antigoni; González-Solís, Jacob

    2014-01-01

    Correct species identification is a crucial issue in systematics with key implications for prioritising conservation effort. However, it can be particularly challenging in recently diverged species due to their strong similarity and relatedness. In such cases, species identification requires multiple and integrative approaches. In this study we used multiple criteria, namely plumage colouration, biometric measurements, geometric morphometrics, stable isotopes analysis (SIA) and genetics (mtDNA), to identify the species of 107 bycatch birds from two closely related seabird species, the Balearic (Puffinus mauretanicus) and Yelkouan (P. yelkouan) shearwaters. Biometric measurements, stable isotopes and genetic data produced two stable clusters of bycatch birds matching the two study species, as indicated by reference birds of known origin. Geometric morphometrics was excluded as a species identification criterion since the two clusters were not stable. The combination of plumage colouration, linear biometrics, stable isotope and genetic criteria was crucial to infer the species of 103 of the bycatch specimens. In the present study, particularly SIA emerged as a powerful criterion for species identification, but temporal stability of the isotopic values is critical for this purpose. Indeed, we found some variability in stable isotope values over the years within each species, but species differences explained most of the variance in the isotopic data. Yet this result pinpoints the importance of examining sources of variability in the isotopic data in a case-by-case basis prior to the cross-application of the SIA approach to other species. Our findings illustrate how the integration of several methodological approaches can help to correctly identify individuals from recently diverged species, as each criterion measures different biological phenomena and species divergence is not expressed simultaneously in all biological traits. PMID:25541978

  3. IMPLEMENTATION OF FIRST-PASSAGE TIME APPROACH FOR OBJECT KINETIC MONTE CARLO SIMULATIONS OF IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2014-06-30

    The objective of the work is to implement a first-passage time (FPT) approach to deal with very fast 1D diffusing SIA clusters in KSOME (kinetic simulations of microstructural evolution) [1] to achieve longer time-scales during irradiation damage simulations. The goal is to develop FPT-KSOME, which has the same flexibility as KSOME.

  4. Parental perceptions surrounding polio and self-reported non-participation in polio supplementary immunization activities in Karachi, Pakistan: a mixed methods study

    PubMed Central

    Khowaja, Asif Raza; Khan, Sher Ali; Nizam, Naveeda; Omer, Saad Bin

    2012-01-01

    Abstract Objective To assess parent’s knowledge and perceptions surrounding polio and polio vaccination, self-reported participation in polio supplementary immunization activities (SIAs) targeting children aged < 5 years, and reasons for non-participation. Methods The mixed methods study began with a cross-sectional survey in Karachi, Pakistan. A structured questionnaire was administered to assess parental knowledge of polio and participation in polio SIAs conducted in September and October 2011. Additionally, 30 parents of Pashtun ethnicity (a high-risk group) who refused to vaccinate their children were interviewed in depth to determine why. Descriptive and bivariate analyses by ethnic and socioeconomic group were performed for quantitative data; thematic analysis was conducted for qualitative interviews with Pashtun parents. Findings Of 1017 parents surveyed, 412 (41%) had never heard of polio; 132 (13%) did not participate in one SIA and 157 (15.4%) did not participate in either SIA. Among non-participants, 34 (21.6%) reported not having been contacted by a vaccinator; 116 (73.9%) reported having refused to participate, and 7 (4.5%) reported that the child was absent from home when the vaccinator visited. Refusals clustered in low-income Pashtun (43/441; 9.8%) and high-income families of any ethnic background (71/153; 46.4%). Low-income Pashtuns were more likely to not have participated in polio SIAs than low-income non-Pashtuns (odds ratio, OR: 7.1; 95% confidence interval, CI: 3.47–14.5). Reasons commonly cited among Pashtuns for refusing vaccination included fear of sterility; lack of faith in the polio vaccine; scepticism about the vaccination programme, and fear that the vaccine might contain religiously forbidden ingredients. Conclusion In Karachi, interruption of polio transmission requires integrated and participatory community interventions targeting high-risk populations. PMID:23226894

  5. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    PubMed

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  6. Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Benetello, Francesca; Harrison, Roy M.; Formenton, Gianni; De Gaspari, Francesco; Pavoni, Bruno

    2015-09-01

    The Veneto region lies in the eastern part of the Po Valley (Italy). This is one of the hotspots in Europe for air quality, where efforts to meet the European standard for PM2.5 according to current and future legislation have been generally unsuccessful. Recent data indicating that ammonium, nitrate and sulphate account for about one third of total PM2.5 mass show that secondary inorganic aerosol (SIA) plays a key role in the exceedence of the standards. A sampling campaign for PM2.5 was carried out simultaneously in six major cities (2012-2013). The water soluble inorganic ions were quantified and data processed to: (1) investigate the seasonal trends and the spatial variations of the ionic component of aerosol; (2) identify chemical characteristics at the regional-scale and (3) assess the potential effects of long-range transport using back-trajectory cluster analysis and concentration-weighted trajectory (CWT) models. Results indicated that PM2.5 and SIA ions have an increasing gradient in concentrations from North (mountain) to South (lowland) and from East (coastal) to West (more continental), whereas K+ and Ca2+ levels are quite uniformly distributed. Similar seasonal trends in PM2.5 and ions are seen across the region. Simultaneous daily changes were observed and interpreted as a consequence of similar emission sources, secondary pollutant generation and accumulation/removal processes. Sulphate and nitrate were not directly related to the concentrations of their precursor gases and were generally largely, but not completely, neutralised by ammonium. The clustering of back-trajectories and CWT demonstrate that the long-range movement of the air masses has a major impact upon PM2.5 and ion concentrations: an area spreading from Eastern to Central Europe was identified as a main potential source for most ions. The valley sites are also heavily influenced by local emissions in slow moving northerly air masses. Finally, two episodes of high nitrate levels were investigated to explain why some sites are experiencing much higher concentrations than others. This study identifies some key features in the generation of SIA in the Po Valley, demonstrating that SIA generation is a regional pollution phenomenon and mitigation policies are required at regional, national and even European scales.

  7. Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus

    PubMed Central

    Barnard, Karen N.; Ossiboff, Robert J.; Khedri, Zahra; Feng, Kurtis H.; Yu, Hai; Chen, Xi; Varki, Ajit

    2017-01-01

    ABSTRACT Sialic acids (Sias) are important glycans displayed on the cells and tissues of many different animals and are frequent targets for binding and modification by pathogens, including influenza viruses. Influenza virus hemagglutinins bind Sias during the infection of their normal hosts, while the encoded neuraminidases and/or esterases remove or modify the Sia to allow virion release or to prevent rebinding. Sias naturally occur in a variety of modified forms, and modified Sias can alter influenza virus host tropisms through their altered interactions with the viral glycoproteins. However, the distribution of modified Sia forms and their effects on pathogen-host interactions are still poorly understood. Here we used probes developed from viral Sia-binding proteins to detect O-acetylated (4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl) Sias displayed on the tissues of some natural or experimental hosts for influenza viruses. These modified Sias showed highly variable displays between the hosts and tissues examined. The 9-O-acetyl (and 7,9-) modified Sia forms were found on cells and tissues of many hosts, including mice, humans, ferrets, guinea pigs, pigs, horses, dogs, as well as in those of ducks and embryonated chicken egg tissues and membranes, although in variable amounts. The 4-O-acetyl Sias were found in the respiratory tissues of fewer animals, being primarily displayed in the horse and guinea pig, but were not detected in humans or pigs. The results suggest that these Sia variants may influence virus tropisms by altering and selecting their cell interactions. IMPORTANCE Sialic acids (Sias) are key glycans that control or modulate many normal cell and tissue functions while also interacting with a variety of pathogens, including many different viruses. Sias are naturally displayed in a variety of different forms, with modifications at several positions that can alter their functional interactions with pathogens. In addition, Sias are often modified or removed by enzymes such as host or pathogen esterases or sialidases (neuraminidases), and Sia modifications can alter those enzymatic activities to impact pathogen infections. Sia chemical diversity in different hosts and tissues likely alters the pathogen-host interactions and influences the outcome of infection. Here we explored the display of 4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl modified Sia forms in some target tissues for influenza virus infection in mice, humans, birds, guinea pigs, ferrets, swine, horses, and dogs, which encompass many natural and laboratory hosts of those viruses. PMID:28904995

  8. Evolution of displacement cascades in Fe-Cr structures with different [001] tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Abu-Shams, M.; Haider, W.; Shabib, I.

    2017-06-01

    Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12 wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe-Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10 keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner-Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17 GB is found to trap more defects than Σ5 and Σ13 GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.

  9. Rational design of an orthogonal noncovalent interaction system at the MUPP1 PDZ11 complex interface with CaMKIIα-derived peptides in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng

    2017-09-26

    The recognition and association between the Ca 2+ /calmodulin-activated protein kinase II-α (CaMKIIα) and the multi-PDZ domain protein 1 (MUPP1) plays an important role in the sperm acrosome reaction and human fertilization. Previously, we have demonstrated that the MUPP1 PDZ11 domain is the primary binding partner of the CaMKIIα C-terminal tail, which can be targeted by a rationally designed sia peptide with nanomolar affinity. Here, we further introduced an orthogonal noncovalent interaction (ONI) system between a native hydrogen bond and a designed halogen bond across the complex interface of the PDZ11 domain with the sia [Asn-1Phe] peptide mutant, where the halogen bond was formed by substituting the o-hydrogen atom of the benzene ring of the peptide Phe-1 residue with a halogen atom (F, Cl, Br or I). Molecular dynamics simulations and high-level theoretical calculations suggested that bromine (Br) is a good compromise between the halogen-bonding strength and steric hindrance effect due to introduction of a bulkier halogen atom into the tightly packed complex interface. Fluorescence spectroscopy assays revealed that the resulting o-Br-substituted peptide (K d = 18 nM) exhibited an ∼7.6-fold affinity increase relative to its native counterpart (K d = 137 nM). In contrast, the p-Br-substituted peptide, a negative control that is unable to establish the ONI according to structure-based analysis, has decreased affinity (K d = 210 nM) upon halogenation.

  10. Analytic modified embedded atom potentials for HCP metals

    NASA Astrophysics Data System (ADS)

    Hu, Wangyu; Zhang, Bangwei; Huang, Baiyun; Gao, Fei; Bacon, David J.

    2001-02-01

    Analytic modified embedded atom method (AMEAM) type many-body potentials have been constructed for ten hcp metals: Be, Co, Hf, Mg, Re, Ru, Sc, Ti, Y and Zr. The potentials are parametrized using analytic functions and fitted to the cohesive energy, unrelaxed vacancy formation energy, five independent second-order elastic constants and two equilibrium conditions. Hence, each of the constructed potentials represents a stable hexagonal close-packed lattice with a particular non-ideal c/a ratio. In order to treat the metals with negative Cauchy pressure, a modified term has been added to the total energy. For all the metals considered, the hcp lattice is shown to be energetically most stable when compared with the fcc and bcc structure and the hcp lattice with ideal c/a. The activation energy for vacancy diffusion in these metals has been calculated. They agree well with experimental data available and those calculated by other authors for both monovacancy and divacancy mechanisms and the most possible diffusion paths are predicted. Stacking fault and surface energy have also been calculated and their values are lower than typical experimental data. Finally, the self-interstitial atom (SIA) formation energy and volume have been evaluated for eight possible sites. This calculation suggests that the basal split or crowdion is the most stable configuration for metals with a rather large deviation from the ideal c/a value and the non-basal dumbbell (C or S) is the most stable configuration for metals with c/a near ideal. The relationship between SIA formation energy and melting temperature roughly obeys a linear relation for most metals except Ru and Re.

  11. Maintaining high rates of measles immunization in Africa.

    PubMed

    Lessler, J; Moss, W J; Lowther, S A; Cummings, D A T

    2011-07-01

    Supplementary immunization activities (SIAs) are important in achieving high levels of population immunity to measles virus. Using data from a 2006 survey of measles vaccination in Lusaka, Zambia, we developed a model to predict measles immunity following routine vaccination and SIAs, and absent natural infection. Projected population immunity was compared between the current programme and alternatives, including supplementing routine vaccination with a second dose, or SIAs at 1-, 2-, 3-, 4- and 5-year intervals. Current routine vaccination plus frequent SIAs could maintain high levels of population immunity in children aged <5 years, even if each frequent SIA has low coverage (e.g. ≥ 72% for bi-annual 60% coverage SIAs vs. ≥ 69% for quadrennial 95% coverage SIAs). A second dose at 12 months with current coverage could achieve 81% immunity. Circulating measles virus will only increase population immunity. Public health officials should consider frequent SIAs when resources for a two-dose strategy are unavailable.

  12. Kinetics of self-interstitial migration in bcc and fcc transition metals

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  13. Evaluating the use of Social Impact Assessment in the context of agricultural development projects in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadvand, Mostafa, E-mail: ahmadvand_2000@yahoo.co; Karami, Ezatollah, E-mail: ekarami@shirazu.ac.i; Zamani, Gholam Hossein, E-mail: zamani@shirazu.ac.i

    2009-11-15

    The utilisation of Social Impact Assessment (SIA) in Iran is analysed in terms of its policy context and its application in practice. Five case studies where SIA was employed in conjunction with Environmental Impact Assessments (EIA) for agricultural development projects are evaluated. In addition, the performance of the policy context is assessed. This research revealed that there are legal and institutional constraints to the effective functioning of SIA in Iran, and that there are deficiencies in the operating guidelines. There were serious problems associated with the way SIA was undertaken in all five case studies. Recommendations to improve the policymore » framework for the conduct of SIA are made. The recommendations advocate for a higher profile of SIA within legislation, for social issues to have greater emphasis in official guidelines for the conduct of EIA and SIA, and for a range of measures to increase the professionalism of SIA practice.« less

  14. Controlling measles using supplemental immunization activities: A mathematical model to inform optimal policy

    PubMed Central

    Verguet, Stéphane; Johri, Mira; Morris, Shaun K.; Gauvreau, Cindy L.; Jha, Prabhat; Jit, Mark

    2015-01-01

    Background The Measles & Rubella Initiative, a broad consortium of global health agencies, has provided support to measles-burdened countries, focusing on sustaining high coverage of routine immunization of children and supplementing it with a second dose opportunity for measles vaccine through supplemental immunization activities (SIAs). We estimate optimal scheduling of SIAs in countries with the highest measles burden. Methods We develop an age-stratified dynamic compartmental model of measles transmission. We explore the frequency of SIAs in order to achieve measles control in selected countries and two Indian states with high measles burden. Specifically, we compute the maximum allowable time period between two consecutive SIAs to achieve measles control. Results Our analysis indicates that a single SIA will not control measles transmission in any of the countries with high measles burden. However, regular SIAs at high coverage levels are a viable strategy to prevent measles outbreaks. The periodicity of SIAs differs between countries and even within a single country, and is determined by population demographics and existing routine immunization coverage. Conclusions Our analysis can guide country policymakers deciding on the optimal scheduling of SIA campaigns and the best combination of routine and SIA vaccination to control measles. PMID:25541214

  15. Development of a short form Social Interaction Anxiety (SIAS) and Social Phobia Scale (SPS) using nonparametric item response theory: the SIAS-6 and the SPS-6.

    PubMed

    Peters, Lorna; Sunderland, Matthew; Andrews, Gavin; Rapee, Ronald M; Mattick, Richard P

    2012-03-01

    Shortened forms of the Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS) were developed using nonparametric item response theory methods. Using data from socially phobic participants enrolled in 5 treatment trials (N = 456), 2 six-item scales (the SIAS-6 and the SPS-6) were developed. The validity of the scores on the SIAS-6 and the SPS-6 was then tested using traditional methods for their convergent validity in an independent clinical sample and a student sample, as well as for their sensitivity to change and diagnostic sensitivity in the clinical sample. The scores on the SIAS-6 and the SPS-6 correlated as well as the scores on the original SIAS and SPS, with scores on measures of related constructs, discriminated well between those with and without a diagnosis of social phobia, providing cutoffs for diagnosis and were as sensitive to measuring change associated with treatment as were the SIAS and SPS. Together, the SIAS-6 and the SPS-6 appear to be an efficient method of measuring symptoms of social phobia and provide a brief screening tool.

  16. Combinations of Quality and Frequency of Immunization Activities to Stop and Prevent Poliovirus Transmission in the High-Risk Area of Northwest Nigeria

    PubMed Central

    Duintjer Tebbens, Radboud J.; Pallansch, Mark A.; Wassilak, Steven G. F.; Cochi, Stephen L.; Thompson, Kimberly M.

    2015-01-01

    Background Frequent supplemental immunization activities (SIAs) with the oral poliovirus vaccine (OPV) represent the primary strategy to interrupt poliovirus transmission in the last endemic areas. Materials and Methods Using a differential-equation based poliovirus transmission model tailored to high-risk areas in Nigeria, we perform one-way and multi-way sensitivity analyses to demonstrate the impact of different assumptions about routine immunization (RI) and the frequency and quality of SIAs on population immunity to transmission and persistence or emergence of circulating vaccine-derived polioviruses (cVDPVs) after OPV cessation. Results More trivalent OPV use remains critical to avoid serotype 2 cVDPVs. RI schedules with or without inactivated polio vaccine (IPV) could significantly improve population immunity if coverage increases well above current levels in under-vaccinated subpopulations. Similarly, the impact of SIAs on overall population immunity and cVDPV risks depends on their ability to reach under-vaccinated groups (i.e., SIA quality). Lower SIA coverage in the under-vaccinated subpopulation results in a higher frequency of SIAs needed to maintain high enough population immunity to avoid cVDPVs after OPV cessation. Conclusions National immunization program managers in northwest Nigeria should recognize the benefits of increasing RI and SIA quality. Sufficiently improving RI coverage and improving SIA quality will reduce the frequency of SIAs required to stop and prevent future poliovirus transmission. Better information about the incremental costs to identify and reach under-vaccinated children would help determine the optimal balance between spending to increase SIA and RI quality and spending to increase SIA frequency. PMID:26068928

  17. Combinations of Quality and Frequency of Immunization Activities to Stop and Prevent Poliovirus Transmission in the High-Risk Area of Northwest Nigeria.

    PubMed

    Duintjer Tebbens, Radboud J; Pallansch, Mark A; Wassilak, Steven G F; Cochi, Stephen L; Thompson, Kimberly M

    2015-01-01

    Frequent supplemental immunization activities (SIAs) with the oral poliovirus vaccine (OPV) represent the primary strategy to interrupt poliovirus transmission in the last endemic areas. Using a differential-equation based poliovirus transmission model tailored to high-risk areas in Nigeria, we perform one-way and multi-way sensitivity analyses to demonstrate the impact of different assumptions about routine immunization (RI) and the frequency and quality of SIAs on population immunity to transmission and persistence or emergence of circulating vaccine-derived polioviruses (cVDPVs) after OPV cessation. More trivalent OPV use remains critical to avoid serotype 2 cVDPVs. RI schedules with or without inactivated polio vaccine (IPV) could significantly improve population immunity if coverage increases well above current levels in under-vaccinated subpopulations. Similarly, the impact of SIAs on overall population immunity and cVDPV risks depends on their ability to reach under-vaccinated groups (i.e., SIA quality). Lower SIA coverage in the under-vaccinated subpopulation results in a higher frequency of SIAs needed to maintain high enough population immunity to avoid cVDPVs after OPV cessation. National immunization program managers in northwest Nigeria should recognize the benefits of increasing RI and SIA quality. Sufficiently improving RI coverage and improving SIA quality will reduce the frequency of SIAs required to stop and prevent future poliovirus transmission. Better information about the incremental costs to identify and reach under-vaccinated children would help determine the optimal balance between spending to increase SIA and RI quality and spending to increase SIA frequency.

  18. A Infrared Absorption Study of Dopant-Hydrogen Complexes in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kozuch, David Michael

    1992-01-01

    Hydrogen passivation of shallow electrical dopants in semiconductors has been investigated. In particular, the passivation of the shallow dopants tin, carbon, and silicon in gallium arsenide has been studied via Fourier transform infrared spectroscopy, thermal annealing, Hall effect, secondary ion mass spectroscopy, and uniaxial stress. The bond-stretching and bond-wagging vibrational modes of the rm Sn_{Ga} - H complex in GaAs have been identified at 1327.8 cm^{-1} and 967.7 cm ^{-1}, respectively. The presence of hydrogen in the defect pair is confirmed by the deuterium -shifted bond-stretching signal at 746.6 cm^ {-1}. Infrared and Hall data correlated the passivation of Sn_{rm Ga } donors with the formation of the rm Sn_{Ga} - H complexes. A series of isochronal anneals probed the thermal stability of the complex. Arguments supporting an antibonding configuration for the rm Sn_{Ga} - H complex are presented. Infrared measurements on highly carbon doped epi -layers reveal new absorption signals at 2643, 2651, and 2688 cm^{-1} in addition to the previously identified rm C_ {As} - H stretching vibration at 2636 cm^{-1}. These new signals are related to a family of carbon-hydrogen complexes: rm C_{x} - H. Deuterium -shifted counterparts for all these signals have been observed for the first time. Sources of hydrogen have been traced to the metalorganic precursors and carrier gas used during epi-layer growth. Hydrogen-containing annealing ambients were surprisingly effective for introducing hydrogen into the epi-layers. Several atomic arrangements for the new rm C_{x} - H complexes have been considered with the most likely candidate being a rm C_{As} - H complex perturbed by another C_{rm As} acceptor in a second nearest neighbor position. The first uniaxial stress measurements have been performed on the rm Si_{As} - H complex in GaAs. The stress-induced frequency shifts and the intensity ratios of the stress-split components of the 2094.45 cm^{-1} stretching frequency reveal that the complex has trigonal symmetry. Reorientation of the stress-aligned complexes occurred by thermally activated jumps of the hydrogen atom with an activation energy of E_{rm A} = 0.26 eV. The piezospectroscopic tensor of the rm Si_{As} - H complex has been determined. The similarities between the stress data for the rm Si_{As } - H complex and the well-studied B - H complex in silicon suggest a bond-centered configuration for the rm Si_{As} - H defect pair.

  19. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts.

    PubMed

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-10-26

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM 2.5 ) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO 2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m 3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM 2.5 pollution.

  20. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-10-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.

  1. Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts

    PubMed Central

    Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming

    2016-01-01

    Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166

  2. Psychometric properties of the Stroke Impairment Assessment Set (SIAS).

    PubMed

    Liu, Meigen; Chino, Naoichi; Tuji, Testuya; Masakado, Yoshihisa; Hase, Kimitaka; Kimura, Akio

    2002-12-01

    To review the psychometric properties of the Stroke Impairment Assessment Set (SAS), which was developed in 1990 as a comprehensive instrument to assess stroke impairment. Articles related to the SIAS were retrieved from the MEDLINE and the Folia Centro Japonica. Thirty-five articles were retrieved and analyzed. 1) Scale quality: Rasch analysis demonstrated the unidimensionality of the SIAS. Factor analysis produced factors corresponding to the 6 SIAS subscales. 2) Interrater reliability: The weighted kappas were high except for the unaffected side quadriceps item for which the score distribution was skewed. 3) Concurrent validity: Significant correlations were found between a) SIAS motor items and the Motricity Index or the Brunnstrom stage, b) SIAS lower extremity scores and the Functional Independence Measure (FIMSM) locomotion scores, c) trunk scores and abdominal manual muscle testing, d) visuospatial scores and line bisection and copying task scores, and e) speech scores and the FIMSM communication scores. 4) Predictive validity: Three studies attempting to predict discharge functional status demonstrated that adding the SIAS as one of the predictors enhanced the predictive power 5) Responsiveness: The SIAS was more responsive to changes than the Motricity Index, the Brunnstrom stage, or the National Institutes of Health Stroke Scale. The SIAS is a useful measure of stroke impairment with well-established psychometric properties.

  3. Roles of social impact assessment practitioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Cecilia H.M., E-mail: ceciliawonghm@gmail.com; Ho, Wing-chung, E-mail: wingcho@cityu.edu.hk

    The effectiveness of social impact assessment (SIA) hinges largely on the capabilities and ethics of the practitioners, yet few studies have dedicated to discuss the expectations for these professionals. Recognising this knowledge gap, we employed the systemic review approach to construct a framework of roles of SIA practitioners from literature. Our conceptual framework encompasses eleven roles, namely project manager of SIA, practitioner of SIA methodologies, social researcher, social strategy developer, social impact management consultant, community developer, visionary, public involvement specialist, coordinator, SIA researcher, and educator. Although these roles have been stratified into three overarching categories, the project, community and SIAmore » development, they are indeed interrelated and should be examined together. The significance of this study is threefold. First, it pioneers the study of the roles of SIA practitioners in a focused and systematic manner. Second, it informs practitioners of the expectations of them thereby fostering professionalism. Third, it prepares the public for SIAs by elucidating the functions and values of the assessment. - Highlights: • We adopt systematic review to construct a framework of roles of social impact assessment (SIA) practitioners from literature. • We use three overarching categorises to stratify the eleven roles we proposed. • This work is a novel attempt to study the work as a SIA practitioner and build a foundation for further exploration. • The framework informs practitioners of the expectations on them thus reinforcing professionalism. • The framework also prepares the public for SIAs by elucidating the functions and values of the assessment.« less

  4. Sialic Acid Metabolic Engineering: A Potential Strategy for the Neuroblastoma Therapy

    PubMed Central

    Gnanapragassam, Vinayaga S.; Bork, Kaya; Galuska, Christina E.; Galuska, Sebastian P.; Glanz, Dagobert; Nagasundaram, Manimozhi; Bache, Matthias; Vordermark, Dirk; Kohla, Guido; Kannicht, Christoph; Schauer, Roland; Horstkorte, Rüdiger

    2014-01-01

    Background Sialic acids (Sia) represent negative-charged terminal sugars on most glycoproteins and glycolipids on the cell surface of vertebrates. Aberrant expression of tumor associated sialylated carbohydrate epitopes significantly increases during onset of cancer. Since Sia contribute towards cell migration ( =  metastasis) and to chemo- and radiation resistance. Modulation of cellular Sia concentration and composition poses a challenge especially for neuroblastoma therapy, due to the high heterogeneity and therapeutic resistance of these cells. Here we propose that Metabolic Sia Engineering (MSE) is an effective strategy to reduce neuroblastoma progression and metastasis. Methods Human neuroblastoma SH-SY5Y cells were treated with synthetic Sia precursors N-propanoyl mannosamine (ManNProp) or N-pentanoyl mannosamine (ManNPent). Total and Polysialic acids (PolySia) were investigated by high performance liquid chromatography. Cell surface polySia were examined by flow-cytometry. Sia precursors treated cells were examined for the migration, invasion and sensitivity towards anticancer drugs and radiation treatment. Results Treatment of SH-SY5Y cells with ManNProp or ManNPent (referred as MSE) reduced their cell surface sialylation significantly. We found complete absence of polysialylation after treatment of SH-SY5Y cells with ManNPent. Loss of polysialylation results in a reduction of migration and invasion ability of these cells. Furthermore, radiation of Sia-engineered cells completely abolished their migration. In addition, MSE increases the cytotoxicity of anti-cancer drugs, such as 5-fluorouracil or cisplatin. Conclusions Metabolic Sia Engineering (MSE) of neuroblastoma cells using modified Sia precursors reduces their sialylation, metastatic potential and increases their sensitivity towards radiation or chemotherapeutics. Therefore, MSE may serve as an effective method to treat neuroblastoma. PMID:25148252

  5. Supplementary polio immunization activities and prior use of routine immunization services in non-polio-endemic sub-Saharan Africa.

    PubMed

    Helleringer, Stephane; Frimpong, Jemima A; Abdelwahab, Jalaa; Asuming, Patrick; Touré, Hamadassalia; Awoonor-Williams, John Koku; Abachie, Thomas; Guidetti, Flavia

    2012-07-01

    To determine participation in polio supplementary immunization activities (SIAs) in sub-Saharan Africa among users and non-users of routine immunization services and among users who were compliant or non-compliant with the routine oral poliovirus vaccine (OPV) immunization schedule. Data were obtained from household-based surveys in non-polio-endemic sub-Saharan African countries. Routine immunization service users were children (aged < 5 years) who had ever had a health card containing their vaccination history; non-users were children who had never had a health card. Users were considered compliant with the OPV routine immunization schedule if, by the SIA date, their health card reflected receipt of required OPV doses. Logistic regression measured associations between SIA participation and use of both routine immunization services and compliance with routine OPV among users. Data from 21 SIAs conducted between 1999 and 2010 in 15 different countries met inclusion criteria. Overall SIA participation ranged from 70.2% to 96.1%. It was consistently lower among infants than among children aged 1-4 years. In adjusted analyses, participation among routine immunization services users was > 85% in 12 SIAs but non-user participation was >85% in only 5 SIAs. In 18 SIAs, participation was greater among users (P < 0.01 in 16, 0.05 in 1 and < 0.10 in 1) than non-users. In 14 SIAs, adjusted analyses revealed lower participation among non-compliant users than among compliant users (P < 0.01 in 10, < 0.05 in 2 and < 0.10 in 2). Large percentages of children participated in SIAs. Prior use of routine immunization services and compliance with the routine OPV schedule showed a strong positive association with SIA participation.

  6. Defect structures induced by high-energy displacement cascades in γ uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya

    Displacement cascade simulations were conducted for the c uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorizedmore » into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {110} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated c uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.« less

  7. Impact of an Intervention to Use a Measles, Rubella, and Polio Mass Vaccination Campaign to Strengthen Routine Immunization Services in Nepal.

    PubMed

    Wallace, Aaron S; Bohara, Rajendra; Stewart, Steven; Subedi, Giri; Anand, Abhijeet; Burnett, Eleanor; Giri, Jagat; Shrestha, Jagat; Gurau, Suraj; Dixit, Sameer; Rajbhandari, Rajesh; Schluter, W William

    2017-07-01

    The potential to strengthen routine immunization (RI) services through supplementary immunization activities (SIAs) is an important benefit of global measles and rubella elimination and polio eradication strategies. However, little evidence exists on how best to use SIAs to strengthen RI. As part the 2012 Nepal measles-rubella and polio SIA, we developed an intervention package designed to improve RI processes and evaluated its effect on specific RI process measures. The intervention package was incorporated into existing SIA activities and materials to improve healthcare providers' RI knowledge and practices throughout Nepal. In 1 region (Central Region) we surveyed the same 100 randomly selected health facilities before and after the SIA and evaluated the following RI process measures: vaccine safety, RI planning, RI service delivery, vaccine supply chain, and RI data recording practices. Data collection included observations of vaccination sessions, interviews with the primary healthcare provider who administered vaccines at each facility, and administrative record reviews. Pair-matched analytical methods were used to determine whether statistically significant changes in the selected RI process measures occurred over time. After the SIA, significant positive changes were measured in healthcare provider knowledge of adverse events following immunization (11% increase), availability of RI microplans (+17%) and maps (+12%), and awareness of how long a reconstituted measles vial can be used before it must be discarded (+14%). For the SIA, 42% of providers created an SIA high-risk villages list, and >50% incorporated this information into RI outreach session site planning. Significant negative changes occurred in correct knowledge of measles vaccination contraindications (-11%), correct definition for a measles outbreak (-21%), and how to treat a child with a severe adverse event following immunization (-10%). Twenty percent of providers reported cancelling ≥1 RI sessions during the SIA. Many RI process measures were at high proportions (>90%) before the SIA and remained high afterward, including proper vaccine administration techniques, proper vaccine waste management, and availability of vaccine carriers and vaccine registers. Focusing on activities that are easily linked between SIAs and RI services, such as using SIA high-risk village list to strengthen RI microplanning and examining ways to minimize the impact of an SIA on RI session scheduling, should be prioritized when implementing SIAs. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration.

    PubMed

    Steinhaus, Stephanie; Stark, Yvonne; Bruns, Stephanie; Haile, Yohannes; Scheper, Thomas; Grothe, Claudia; Behrens, Peter

    2010-04-01

    The immobilization of polysialic acid (polySia) on glass substrates has been investigated with regard to the applicability of this polysaccharide as a novel, biocompatible and bioresorbable material for tissue engineering, especially with regard to its use in nerve regeneration. PolySia, a homopolymer of alpha-2,8-linked sialic acid, is involved in post-translational modification of the neural cell adhesion molecule (NCAM). The degradation of polySia can be controlled which makes it an interesting material for coating and for scaffold construction in tissue engineering. Here, we describe the immobilization of polySia on glass surfaces via an epoxysilane linker. Whereas glass surfaces will not actually be used in nerve regeneration scaffolds, they provide a simple and efficient means for testing various methods for the investigation of immobilized polySia. The modified surfaces were investigated with contact angle measurements and the quantity of immobilized polySia was examined by the thiobarbituric acid assay and a specific polySia-ELISA. The interactions between the polySia-modified surface and immortalized Schwann cells were evaluated via cell adhesion and cell viability assays. The results show that polySia can be immobilized on glass surfaces via the epoxysilane linker and that surface-bound polySia has no toxic effects on Schwann cells. Therefore, as a key substance in the development of vertebrates and as a favourable substrate for the cultivation of Schwann cells, it offers interesting features for the use in nerve guidance tubes for treatment of peripheral nerve injuries.

  9. How social impact assessment can contribute to conflict management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prenzel, Paula V., E-mail: p.v.prenzel@student.rug.nl; Vanclay, Frank, E-mail: frank.vanclay@rug.nl

    2014-02-15

    The potential for conflict is omnipresent in all projects, and even in all human interactions, and conflict itself leads to many second-order social impacts. This article examines the contribution of the methodological approach used in social impact assessment (SIA) to conflict management. We view conflict as a process that has its own dynamic, and is to be expected in all situations. By using game theory (prisoner's dilemma), we describe and conceptualize this process and highlight the importance of communication in managing conflict. We demonstrate the potential use of SIA in preventing, managing and resolving conflict. Emphasis is placed on themore » participatory character of SIA and the role of public media. In contrast to existing literature, our focus is not restricted to the typical fields of study of SIA (e.g. environmental conflicts), but understands conflict itself as a field of application. In this sense, conflict-sensitive SIA can be understood both as an extension to the SIA tool kit and a broadening of the scope of SIA application. -- Highlights: • Conflict is omnipresent and creates both positive and negative social impacts. • Conflict itself represents a possible field of application for SIA. • Conflict escalation is a process that can be modeled in a game-theoretic framework. • There needs to be concerted effort to prevent escalation to avoid harmful outcomes. • Conflict-sensitive SIA can support conflict management and sustainable resolution.« less

  10. Chemical Synthesis and Evaluation of a Disialic Acid-Containing Dextran Polymer as an Inhibitor for the Interaction between Siglec 7 and Its Ligand.

    PubMed

    Yamaguchi, Sho; Yoshimura, Atsushi; Yasuda, Yu; Mori, Airi; Tanaka, Hiroshi; Takahashi, Takashi; Kitajima, Ken; Sato, Chihiro

    2017-07-04

    A new sialic acid (Sia)-containing glycopolymer-a fluorescent probe with high-density disialic acid (diSia) on the surface of polysaccharide dextran (diSia-Dex)-was synthesized as a key molecule to regulate the Sia recognition lectins, Siglecs, that are involved in the immune system. According to our original methods, diSia was synthesized by α-selective sialylation, and a dextran template possessing terminal acetylenes and amino groups was prepared. A diSia and a fluorescent molecule were subsequently introduced to surface-modified dextran by Hüisgen reaction and amidation, respectively. The modulatory activity of Siglec7 was evaluated by using synthetic probes. DiSia-Dex showed high binding avidity toward Siglec7, with a K D value of 5.87×10 -10  m, and a high inhibitory activity for the interaction between Siglec7 and a ligand (GD3), with a IC 50 value of 1.0 nm. Notably, diSia-Dex was able to release Siglec7 from the pre-existing Siglec7-GD3 complex, possibly due to its unique properties of a slow dissociation rate and a high association rate. Together, these data show that diSia-Dex can be widely applicable as a modulator of Siglec7 functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supplementary immunization activities to achieve measles elimination: experience of the European Region.

    PubMed

    Khetsuriani, Nino; Deshevoi, Sergei; Goel, Ajay; Spika, John; Martin, Rebecca; Emiroglu, Nedret

    2011-07-01

    Supplementary immunization activities (SIAs) using measles-containing vaccine (MCV) have had a substantial impact on reducing mortality associated with measles worldwide. To assess impact of SIAs on measles incidence in the World Health Organization European Region and their role at the final stages of measles elimination efforts in Europe, we reviewed information on SIAs, measles surveillance, and routine vaccination coverage during 2000-2009. During 2000-2009, >57 million persons received MCV through SIAs in 16 countries. The Region primarily focused on catch-up campaigns with wider target age groups than in other regions and subsequently relied on routine vaccination rather than periodic follow-up SIAs for the second MCV dose. In addition, the concept of SIAs has been expanded from short-term (<30 days) mass campaigns implemented in other regions to incorporate vaccination efforts over longer periods and outbreak response vaccination. In 2009, 14 of 16 countries that conducted SIAs reported no measles cases or <1 case per 1,000,000 population, reflecting the post-SIA decrease in incidence. SIAs have made a substantial contribution to the success of measles elimination efforts and will likely remain an important strategy for interrupting measles virus transmission in the European Region, although specific approaches will vary by country. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2011.

  12. Evaluation of nationwide supplementary immunization in Lao People's Democratic Republic: Population-based seroprevalence survey of anti-measles and anti-rubella IgG in children and adults, mathematical modelling and a stability testing of the vaccine

    PubMed Central

    Miyano, Shinsuke; Mori, Yoshio; Vynnycky, Emilia; Keungsaneth, Phath; Vongphrachanh, Phengta; Xeuatvongsa, Anonh; Sisouk, Thongchanh; Som-Oulay, Vilasak; Khamphaphongphane, Bouaphan; Sengkeopaseuth, Bounthanom; Pathammavong, Chansay; Phounphenghak, Kongxay; Kitamura, Tomomi; Takeda, Makoto; Komase, Katsuhiro

    2018-01-01

    Background Measles outbreaks have occurred in some countries despite supplementary immunization activities (SIA) using measles-containing vaccine with high vaccination coverage. We conducted a cross-sectional seroprevalence survey to estimate population immunity in Lao People's Democratic Republic where repeated mass immunization has failed to eliminate measles. Methods and findings In this nationwide multistage cluster sampling survey conducted in 2014 based on probability proportionate to size sampling, blood samples were collected from 2,135 children and adults living in 52 randomly selected villages. Anti-measles and anti-rubella IgG were measured, and IgG prevalence was calculated. We applied mathematical modelling to estimate the number of cases of congenital rubella syndrome (CRS) in 2013 that were averted by the 2011 SIA. A stability testing was applied to the MR vaccine at 4°C, 25°C, and 35°C to examine stability differences between measles and rubella vaccine components. Measles IgG prevalence was significantly lower in the target age groups (5–21 years) of the 2011 SIA using a combination vaccine for measles and rubella vaccine (MR vaccine) than in young adults (22–39 years) (86.8% [95% CI: 83.0–90.6] vs. 99.0% [98.3–99.8]; p<0.001), whereas rubella IgG prevalence was significantly higher (88.2% [84.5–91.8] vs. 74.6% [70.7–78.5]; p<0.001). In the SIA target age groups, prevalence of measles IgG, but not rubella IgG, increased with age. CRS cases prevented in 2013 ranged from 16 [0–50] to 92 [32–180] if the force of infection had remained unchanged or had been reduced by 75%, respectively. In freeze-dried conditions, the measles vaccine component was more heat sensitive than the rubella component. Conclusions Inconsistent IgG prevalence between measles and rubella in Lao PDR can be partly explained by different stability of the measles and rubella vaccine components under heat exposure. Suboptimal vaccine handling may cause insufficient immunogenicity for measles, which subsequently leads to an outbreak despite high SIA coverage, while direct evidence is lacking. Temperature monitoring of the vaccine should be conducted. PMID:29596472

  13. Evaluation of nationwide supplementary immunization in Lao People's Democratic Republic: Population-based seroprevalence survey of anti-measles and anti-rubella IgG in children and adults, mathematical modelling and a stability testing of the vaccine.

    PubMed

    Hachiya, Masahiko; Miyano, Shinsuke; Mori, Yoshio; Vynnycky, Emilia; Keungsaneth, Phath; Vongphrachanh, Phengta; Xeuatvongsa, Anonh; Sisouk, Thongchanh; Som-Oulay, Vilasak; Khamphaphongphane, Bouaphan; Sengkeopaseuth, Bounthanom; Pathammavong, Chansay; Phounphenghak, Kongxay; Kitamura, Tomomi; Takeda, Makoto; Komase, Katsuhiro

    2018-01-01

    Measles outbreaks have occurred in some countries despite supplementary immunization activities (SIA) using measles-containing vaccine with high vaccination coverage. We conducted a cross-sectional seroprevalence survey to estimate population immunity in Lao People's Democratic Republic where repeated mass immunization has failed to eliminate measles. In this nationwide multistage cluster sampling survey conducted in 2014 based on probability proportionate to size sampling, blood samples were collected from 2,135 children and adults living in 52 randomly selected villages. Anti-measles and anti-rubella IgG were measured, and IgG prevalence was calculated. We applied mathematical modelling to estimate the number of cases of congenital rubella syndrome (CRS) in 2013 that were averted by the 2011 SIA. A stability testing was applied to the MR vaccine at 4°C, 25°C, and 35°C to examine stability differences between measles and rubella vaccine components. Measles IgG prevalence was significantly lower in the target age groups (5-21 years) of the 2011 SIA using a combination vaccine for measles and rubella vaccine (MR vaccine) than in young adults (22-39 years) (86.8% [95% CI: 83.0-90.6] vs. 99.0% [98.3-99.8]; p<0.001), whereas rubella IgG prevalence was significantly higher (88.2% [84.5-91.8] vs. 74.6% [70.7-78.5]; p<0.001). In the SIA target age groups, prevalence of measles IgG, but not rubella IgG, increased with age. CRS cases prevented in 2013 ranged from 16 [0-50] to 92 [32-180] if the force of infection had remained unchanged or had been reduced by 75%, respectively. In freeze-dried conditions, the measles vaccine component was more heat sensitive than the rubella component. Inconsistent IgG prevalence between measles and rubella in Lao PDR can be partly explained by different stability of the measles and rubella vaccine components under heat exposure. Suboptimal vaccine handling may cause insufficient immunogenicity for measles, which subsequently leads to an outbreak despite high SIA coverage, while direct evidence is lacking. Temperature monitoring of the vaccine should be conducted.

  14. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: Tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes

    PubMed Central

    2008-01-01

    Background The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing on the ST8Sia family, we investigated the origin of the three groups of α2,8-sialyltransferases demonstrated in vertebrates to carry out poly-, oligo- and mono-α2,8-sialylation. Results We identified in the genome of invertebrate deuterostomes, orthologs to the common ancestor for each of the three vertebrate ST8Sia groups and a set of novel genes named ST8Sia EX, not found in vertebrates. All these ST8Sia sequences share a new conserved family-motif, named "C-term" that is involved in protein folding, via an intramolecular disulfide bridge. Interestingly, sequences from Branchiostoma floridae orthologous to the common ancestor of polysialyltransferases possess a polysialyltransferase domain (PSTD) and those orthologous to the common ancestor of oligosialyltransferases possess a new ST8Sia III-specific motif similar to the PSTD. In osteichthyans, we have identified two new subfamilies. In addition, we describe the expression profile of ST8Sia genes in Danio rerio. Conclusion Polysialylation appeared early in the deuterostome lineage. The recent release of several deuterostome genome databases and paralogons combined with synteny analysis allowed us to obtain insight into events at the gene level that led to the diversification of the ST8Sia genes, with their corresponding enzymatic activities, in both invertebrates and vertebrates. The initial expansion and subsequent divergence of the ST8Sia genes resulted as a consequence of a series of ancient duplications and translocations in the invertebrate genome long before the emergence of vertebrates. A second subset of ST8sia genes in the vertebrate genome arose from whole genome duplication (WGD) R1 and R2. Subsequent selective ST8Sia gene loss is responsible for the characteristic ST8Sia gene expression pattern observed today in individual species. PMID:18811928

  15. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.

    PubMed

    Harduin-Lepers, Anne; Petit, Daniel; Mollicone, Rosella; Delannoy, Philippe; Petit, Jean-Michel; Oriol, Rafael

    2008-09-23

    The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing on the ST8Sia family, we investigated the origin of the three groups of alpha2,8-sialyltransferases demonstrated in vertebrates to carry out poly-, oligo- and mono-alpha2,8-sialylation. We identified in the genome of invertebrate deuterostomes, orthologs to the common ancestor for each of the three vertebrate ST8Sia groups and a set of novel genes named ST8Sia EX, not found in vertebrates. All these ST8Sia sequences share a new conserved family-motif, named "C-term" that is involved in protein folding, via an intramolecular disulfide bridge. Interestingly, sequences from Branchiostoma floridae orthologous to the common ancestor of polysialyltransferases possess a polysialyltransferase domain (PSTD) and those orthologous to the common ancestor of oligosialyltransferases possess a new ST8Sia III-specific motif similar to the PSTD. In osteichthyans, we have identified two new subfamilies. In addition, we describe the expression profile of ST8Sia genes in Danio rerio. Polysialylation appeared early in the deuterostome lineage. The recent release of several deuterostome genome databases and paralogons combined with synteny analysis allowed us to obtain insight into events at the gene level that led to the diversification of the ST8Sia genes, with their corresponding enzymatic activities, in both invertebrates and vertebrates. The initial expansion and subsequent divergence of the ST8Sia genes resulted as a consequence of a series of ancient duplications and translocations in the invertebrate genome long before the emergence of vertebrates. A second subset of ST8sia genes in the vertebrate genome arose from whole genome duplication (WGD) R1 and R2. Subsequent selective ST8Sia gene loss is responsible for the characteristic ST8Sia gene expression pattern observed today in individual species.

  16. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor

    2007-09-21

    Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.

  17. Impact of measles supplementary immunization activities on reaching children missed by routine programs.

    PubMed

    Portnoy, Allison; Jit, Mark; Helleringer, Stéphane; Verguet, Stéphane

    2018-01-02

    Measles supplementary immunization activities (SIAs) are vaccination campaigns that supplement routine vaccination programs with a recommended second dose opportunity to children of different ages regardless of their previous history of measles vaccination. They are conducted every 2-4 years and over a few weeks in many low- and middle-income countries. While SIAs have high vaccination coverage, it is unclear whether they reach the children who miss their routine measles vaccine dose. Determining who is reached by SIAs is vital to understanding their effectiveness, as well as measure progress towards measles control. We examined SIAs in low- and middle-income countries from 2000 to 2014 using data from the Demographic and Health Surveys. Conditional on a child's routine measles vaccination status, we examined whether children participated in the most recent measles SIA. The average proportion of zero-dose children (no previous routine measles vaccination defined as no vaccination date before the SIA) reached by SIAs across 14 countries was 66%, ranging from 28% in São Tomé and Príncipe to 91% in Nigeria. However, when also including all children with routine measles vaccination data, this proportion decreased to 12% and to 58% when imputing data for children with vaccination reported by the mother and vaccination marks on the vaccination card across countries. Overall, the proportions of zero-dose children reached by SIAs declined with increasing household wealth. Some countries appeared to reach a higher proportion of zero-dose children using SIAs than others, with proportions reached varying according to the definition of measles vaccination (e.g., vaccination dates on the vaccination card, vaccination marks on the vaccination card, and/or self-reported data). This suggests that some countries could improve their targeting of SIAs to children who miss other measles vaccine opportunities. Across all countries, SIAs played an important role in reaching children from poor households. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Supplementary polio immunization activities and prior use of routine immunization services in non-polio-endemic sub-Saharan Africa

    PubMed Central

    Frimpong, Jemima A; Abdelwahab, Jalaa; Asuming, Patrick; Touré, Hamadassalia; Awoonor-Williams, John Koku; Abachie, Thomas; Guidetti, Flavia

    2012-01-01

    Abstract Objective To determine participation in polio supplementary immunization activities (SIAs) in sub-Saharan Africa among users and non-users of routine immunization services and among users who were compliant or non-compliant with the routine oral poliovirus vaccine (OPV) immunization schedule. Methods Data were obtained from household-based surveys in non-polio-endemic sub-Saharan African countries. Routine immunization service users were children (aged < 5 years) who had ever had a health card containing their vaccination history; non-users were children who had never had a health card. Users were considered compliant with the OPV routine immunization schedule if, by the SIA date, their health card reflected receipt of required OPV doses. Logistic regression measured associations between SIA participation and use of both routine immunization services and compliance with routine OPV among users. Findings Data from 21 SIAs conducted between 1999 and 2010 in 15 different countries met inclusion criteria. Overall SIA participation ranged from 70.2% to 96.1%. It was consistently lower among infants than among children aged 1–4 years. In adjusted analyses, participation among routine immunization services users was > 85% in 12 SIAs but non-user participation was > 85% in only 5 SIAs. In 18 SIAs, participation was greater among users (P < 0.01 in 16, 0.05 in 1 and < 0.10 in 1) than non-users. In 14 SIAs, adjusted analyses revealed lower participation among non-compliant users than among compliant users (P < 0.01 in 10, < 0.05 in 2 and < 0.10 in 2). Conclusion Large percentages of children participated in SIAs. Prior use of routine immunization services and compliance with the routine OPV schedule showed a strong positive association with SIA participation. PMID:22807595

  19. Epilepsy-associated long-term mortality after aneurysmal subarachnoid hemorrhage.

    PubMed

    Huttunen, Jukka; Lindgren, Antti; Kurki, Mitja I; Huttunen, Terhi; Frösen, Juhana; Koivisto, Timo; von Und Zu Fraunberg, Mikael; Immonen, Arto; Jääskeläinen, Juha E; Kälviäinen, Reetta

    2017-07-18

    To elucidate the epilepsy-associated causes of death and subsequent excess long-term mortality among 12-month survivors of subarachnoid hemorrhage from saccular intracranial aneurysm (SIA-SAH). The Kuopio SIA Database (kuopioneurosurgery.fi) includes all SIA-SAH patients admitted to the Kuopio University Hospital from its defined catchment population in Eastern Finland. The study cohort consists of 779 patients, admitted from 1995 to 2007, who were alive at 12 months after SIA-SAH. Their use of reimbursable antiepileptic drugs and the causes of death (ICD-10) were fused from the Finnish national registries from 1994 to 2014. The 779 12-month survivors were followed up until death (n = 197) or December 31, 2014, a median of 12.0 years after SIA-SAH. Epilepsy had been diagnosed in 121 (15%) patients after SIA-SAH, and 34/121 (28%) had died at the end of follow-up, with epilepsy as the immediate cause of death in 7/34 (21%). In the 779 patients alive at 12 months after SIA-SAH, epilepsy was an independent risk factor for mortality (hazard ratio 1.8, 95% confidence interval 1.1-3.0). Comorbid epilepsy in 12-month survivors of SIA-SAH is associated with increased risk of death in long-term follow-up. Survivors of SIA-SAH require long-term dedicated follow-up, including identification and effective treatment of comorbid epilepsy to prevent avoidable deaths. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  20. Updating the evidence base on the operational costs of supplementary immunization activities for current and future accelerated disease control, elimination and eradication efforts

    PubMed Central

    2014-01-01

    Background To achieve globally or regionally defined accelerated disease control, elimination and eradication (ADC/E/E) goals against vaccine-preventable diseases requires complementing national routine immunization programs with intensive, time-limited, and targeted Supplementary Immunization Activities (SIAs). Many global and country-level SIA costing efforts have historically relied on what are now outdated benchmark figures. Mobilizing adequate resources for successful implementation of SIAs requires updated estimates of non-vaccine costs per target population. Methods This assessment updates the evidence base on the SIA operational costs through a review of literature between 1992 and 2012, and an analysis of actual expenditures from 142 SIAs conducted between 2004 and 2011 and documented in country immunization plans. These are complemented with an analysis of budgets from 31 SIAs conducted between 2006 and 2011 in order to assess the proportion of total SIA costs per person associated with various cost components. All results are presented in 2010 US dollars. Results Existing evidence indicate that average SIA operational costs were usually less than US$0.50 per person in 2010 dollars. However, the evidence is sparse, non-standardized, and largely out of date. Average operational costs per person generated from our analysis of country immunization plans are consistently higher than published estimates, approaching US$1.00 for injectable vaccines. The results illustrate that the benchmarks often used to project needs underestimate the true costs of SIAs and the analysis suggests that SIA operational costs have been increasing over time in real terms. Our assessment also illustrates that operational costs vary across several dimensions. Variations in the actual costs of SIAs likely to reflect the extents to which economies of scale associated with campaign-based delivery can be attained, the underlying strength of the immunization program, sensitivities to the relative ease of vaccine administration (i.e. orally, or by injection), and differences in disease-specific programmatic approaches. The assessment of SIA budgets by cost component illustrates that four cost drivers make up the largest proportion of costs across all vaccines: human resources, program management, social mobilization, and vehicles and transportation. These findings suggest that SIAs leverage existing health system infrastructure, reinforcing the fact that strong routine immunization programs are an important pre-requisite for achieving ADC/E/E goals. Conclusions The results presented here will be useful for national and global-level actors involved in planning, budgeting, resource mobilization, and financing of SIAs in order to create more realistic assessments of resource requirements for both existing ADC/E/E efforts as well as for new vaccines that may deploy a catch-up campaign-based delivery component. However, limitations of our analysis suggest a need to conduct further research into operational costs of SIAs. Understanding the changing face of delivery costs and cost structures for SIAs will continue to be critical to avoid funding gaps and in order to improve vaccination coverage, reduce health inequities, and achieve the ADC/E/E goals many of which have been endorsed by the World Health Assembly and are included in the Decade of Vaccines Global Vaccine Action Plan. PMID:24450832

  1. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles - variability and change

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Martin, T.; Behrens, L. K.; Latif, M.

    2015-02-01

    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5), when compared to the previous CMIP3 model ensemble and considering the whole Arctic, were found to be more consistent with the observed changes in sea ice extent during the recent decades. Some CMIP5 models project strongly accelerated (non-linear) sea ice loss during the first half of the 21st century. Here, complementary to previous studies, we compare results from CMIP3 and CMIP5 with respect to regional Arctic sea ice change. We focus on September and March sea ice. Sea ice area (SIA) variability, sea ice concentration (SIC) variability, and characteristics of the SIA seasonal cycle and interannual variability have been analysed for the whole Arctic, termed Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA changes to changes in Northern Hemisphere (NH) averaged temperature is investigated and several important dynamical links between SIA and natural climate variability involving the Atlantic Meridional Overturning Circulation (AMOC), North Atlantic Oscillation (NAO) and sea level pressure gradient (SLPG) in the western Barents Sea opening serving as an index of oceanic inflow to the Barents Sea are studied. The CMIP3 and CMIP5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle and in the aforementioned dynamical links. The spatial patterns of SIC variability improve in the CMIP5 ensemble, particularly in summer. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes. Our analysis suggests that, on average, the sensitivity of SIA to external forcing is enhanced in the CMIP5 models. The Arctic SIA variability response to anthropogenic forcing is different in CMIP3 and CMIP5. While the CMIP3 models simulate increased variability in March and September, the CMIP5 ensemble shows the opposite tendency. A noticeable improvement in the simulation of summer SIA by the CMIP5 models is often accompanied by worse results for winter SIA characteristics. The relation between SIA and mean AMOC changes is opposite in September and March, with March SIA changes being positively correlated with AMOC slowing. Finally, both CMIP ensembles demonstrate an ability to capture, at least qualitatively, important dynamical links of SIA to decadal variability of the AMOC, NAO and SLPG. SIA in the Barents Sea is strongly overestimated by the majority of the CMIP3 and CMIP5 models, and projected SIA changes are characterized by a large spread giving rise to high uncertainty.

  2. Updating the evidence base on the operational costs of supplementary immunization activities for current and future accelerated disease control, elimination and eradication efforts.

    PubMed

    Gandhi, Gian; Lydon, Patrick

    2014-01-22

    To achieve globally or regionally defined accelerated disease control, elimination and eradication (ADC/E/E) goals against vaccine-preventable diseases requires complementing national routine immunization programs with intensive, time-limited, and targeted Supplementary Immunization Activities (SIAs). Many global and country-level SIA costing efforts have historically relied on what are now outdated benchmark figures. Mobilizing adequate resources for successful implementation of SIAs requires updated estimates of non-vaccine costs per target population. This assessment updates the evidence base on the SIA operational costs through a review of literature between 1992 and 2012, and an analysis of actual expenditures from 142 SIAs conducted between 2004 and 2011 and documented in country immunization plans. These are complemented with an analysis of budgets from 31 SIAs conducted between 2006 and 2011 in order to assess the proportion of total SIA costs per person associated with various cost components. All results are presented in 2010 US dollars. Existing evidence indicate that average SIA operational costs were usually less than US$0.50 per person in 2010 dollars. However, the evidence is sparse, non-standardized, and largely out of date. Average operational costs per person generated from our analysis of country immunization plans are consistently higher than published estimates, approaching US$1.00 for injectable vaccines. The results illustrate that the benchmarks often used to project needs underestimate the true costs of SIAs and the analysis suggests that SIA operational costs have been increasing over time in real terms. Our assessment also illustrates that operational costs vary across several dimensions. Variations in the actual costs of SIAs likely to reflect the extents to which economies of scale associated with campaign-based delivery can be attained, the underlying strength of the immunization program, sensitivities to the relative ease of vaccine administration (i.e. orally, or by injection), and differences in disease-specific programmatic approaches. The assessment of SIA budgets by cost component illustrates that four cost drivers make up the largest proportion of costs across all vaccines: human resources, program management, social mobilization, and vehicles and transportation. These findings suggest that SIAs leverage existing health system infrastructure, reinforcing the fact that strong routine immunization programs are an important pre-requisite for achieving ADC/E/E goals. The results presented here will be useful for national and global-level actors involved in planning, budgeting, resource mobilization, and financing of SIAs in order to create more realistic assessments of resource requirements for both existing ADC/E/E efforts as well as for new vaccines that may deploy a catch-up campaign-based delivery component. However, limitations of our analysis suggest a need to conduct further research into operational costs of SIAs. Understanding the changing face of delivery costs and cost structures for SIAs will continue to be critical to avoid funding gaps and in order to improve vaccination coverage, reduce health inequities, and achieve the ADC/E/E goals many of which have been endorsed by the World Health Assembly and are included in the Decade of Vaccines Global Vaccine Action Plan.

  3. How is environmental conflict addressed by SIA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, C.J., E-mail: c.j.barrow@swansea.ac.u

    2010-09-15

    The fields of Environmental Conflict Management (ECM), Environmental Conflict Resolution (ECR), and Peace and Conflict Impact Assessment (PCIA) have become well established; however, as yet there has not been much use of Social Impact Assessment (SIA) to manage environmental conflicts. ECM, ECR and PCIA are mainly undertaken when problems are advanced or, more likely, have run their course (post-conflict). This paper examines how conflict is addressed by SIA and whether there is potential to develop it for more proactive assessment of conflicts (pre-conflict or while things develop). SIA has the potential to identify and clarify the cause(s) of environmental andmore » natural resources conflicts, and could possibly enable some avoidance or early mitigation. A promising approach may be for 'conflict-aware' SIA to watch for critical conflict stages or thresholds and to monitor stakeholders. Effective conflict-aware SIA might also significantly contribute to efforts to achieve sustainable development.« less

  4. Enterovirus D68 receptor requirements unveiled by haploid genetics

    PubMed Central

    Baggen, Jim; Thibaut, Hendrik Jan; Staring, Jacqueline; Jae, Lucas T.; Liu, Yue; Guo, Hongbo; Slager, Jasper J.; de Bruin, Jost W.; van Vliet, Arno L. W.; Blomen, Vincent A.; Overduin, Pieter; Sheng, Ju; de Haan, Cornelis A. M.; de Vries, Erik; Meijer, Adam; Rossmann, Michael G.; Brummelkamp, Thijn R.; van Kuppeveld, Frank J. M.

    2016-01-01

    Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease. PMID:26787879

  5. Determinants of performance of supplemental immunization activities for polio eradication in Uttar Pradesh, India: social mobilization activities of the Social mobilization Network (SM Net) and Core Group Polio Project (CGPP)

    PubMed Central

    2013-01-01

    Background The primary strategy to interrupt transmission of wild poliovirus in India is to improve supplemental immunization activities (SIAs) and routine immunization coverage in priority districts. The CORE Group, part of the Social Mobilization Network (SM Net), has been successful in improving SIA coverage in high-risk areas of Uttar Pradesh (UP). The SM Net works through community level mobilisers (from the CORE Group and UNICEF) and covers more than 2 million children under the age of five. In this paper, we examine the reasons the CORE Group had been successful through exploration of which social mobilization activities of the CORE Group predicted better performance of SIAs. Methods We carried out a secondary data analysis of routine monitoring information collected by the CORE Group and the Government of India for SIAs. These data included information about vaccination outcomes of SIAs in CORE Group areas and non-CORE Group areas within the districts where the CORE Group operates, along with information about the number of various social mobilization activities carried out for each SIA. We employed Generalized Linear Latent and Mixed Model (GLLAMM) statistical analysis methods to identify which social mobilization activities predicted SIA performance, and to account for the intra-class correlation (ICC) between multiple observations within the same geographic areas over time. Results The number of mosque announcements carried out was the most consistent determinant of improved SIA performance across various performance measures. The number of Bullawa Tollies carried out also appeared to be an important determinant of improved SIA performance. The number of times other social mobilization activities were carried out did not appear to determine better SIA performance. Conclusions Social mobilization activities can improve the performance of mass vaccination campaigns. In the CORE Group areas, the number of mosque announcements and Bullawa Tollies carried out were important determinants of desired SIA outcomes. The CORE Group and SM Net should conduct sufficient numbers of these activities in support of each SIA. It is likely, however, that the quality of social mobilization activities (not studied here) is as or more important than the quantity of activities; quality measures of social mobilization activities should be investigated in the future as to how they determine vaccination performance. PMID:23327427

  6. NCAM polysialylation during adherence transitions: live cell monitoring using an antibody-mimetic EGFP-endosialidase and the viability dye DRAQ7.

    PubMed

    Smith, Paul J; Furon, Emeline; Wiltshire, Marie; Chappell, Sally; Patterson, Laurence H; Shnyder, Steven D; Falconer, Robert A; Errington, Rachel J

    2013-07-01

    Polysialylation of neural cell adhesion molecule (NCAM) in small-cell lung cancer (SCLC) is thought to regulate NCAM-mediated cell-surface interactions, imparting antiadhesive properties to cells. However, SCLC cells in culture demonstrate anchorage-independent growth and spontaneously generate adherent forms. Here, the ability of polySia-NCAM to influence cell proliferation and adherence is unclear. We analyzed live SCLC cell polySia-NCAM expression by flow cytometry, using the novel combination of a polySia antibody-mimetic eGFP-tagged endosialidase and the viability dye DRAQ7. Enrichment for adherence (<30 population doublings) in SCLC cell lines resolved populations with increased (SHP-77 and COR-L279) or negligible (NCI-H69) polysialylation compared with nonadherent parent populations. Adherent forms retained NCAM expression as confirmed by immunofluorescence and immunoblotting. Initial transition to adherence and loss of polysialylation in NCI-H69 was linked to a reduced proliferation rate with no increase in cell death. This reduced proliferation rate was reiterated in vivo as determined by the growth of noninvasive subcutaneous xenografts in mice. Continued selection for enhanced substrate adherence in NCI-H69 (>150 population doublings) resolved cells with stable re-expression of polySia and increased growth rates both in vitro and in vivo. Endoneuraminidase removal of polySia from re-expressing cells showed that rapid adherence to extracellular matrix components was functionally independent of polySia. PolySia expression was not altered when isolated adherent forms underwent enforced cell-cell contact in three-dimensional culture. Coculture of polySia expression variants modulated overall polySia expression profiles indicating an influence of SCLC microcommunity composition independent of substrate adherence potential. We conclude that an obligatory linkage between substrate adherence potential and polySia expression is rejected for SCLC cells. We suggest that a degree of homeostasis operates to regulate polysialylation within heterogeneous cell populations. The findings suggest a new model for SCLC progression while the application of live cell profiling of polysialylation could be used to assess polySia-NCAM-targeted therapies. Copyright © 2013 International Society for Advancement of Cytometry.

  7. Manual or automated measuring of antipsychotics' chemical oxygen demand.

    PubMed

    Pereira, Sarah A P; Costa, Susana P F; Cunha, Edite; Passos, Marieta L C; Araújo, André R S T; Saraiva, M Lúcia M F S

    2018-05-15

    Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less

  9. Social impact assessments: Developing a consolidated conceptual framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arce-Gomez, Antonio, E-mail: aarcegomez@swin.edu.au; Donovan, Jerome D., E-mail: jdonovan@swin.edu.au; Bedggood, Rowan E., E-mail: rbedggood@swin.edu.au

    Social Impact Assessments (SIAs) have played an increasingly important role in the conduct of planned interventions, providing proponents the capacity to assess and manage the social consequences of their activities. Whilst the SIA field has experienced significant conceptual and practical development over the last decade, efforts at consolidating this within one framework have been limited. In this paper, we incorporate this new knowledge by redeveloping and thus updating the SIA procedural framework developed by Interorganizational Committee on Guidelines and Principles for Social Impact Assessment. In doing so, this updated procedural framework has attempted to incorporate current ‘best practice’ that focusesmore » on participatory approaches to undertaking an SIA. This involved making adaptions to two steps, expansions to five steps, integration of a stronger participatory approach to six steps, and the development of a new step, Management and Evaluation reflecting moves towards ex-post use of SIA processes. It is hoped that this consolidation of the literature of a decade's worth of key findings in SIA research will lead to further efforts towards a meta-evaluation of SIA literature and a platform from which newer developments may be further investigated.« less

  10. Social Impact Assessment: The lesser sibling in the South African EIA process?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrandt, L., E-mail: Leandri.hildebrandt@nwu.ac.za; Sandham, L.A., E-mail: luke.sandham@nwu.ac.za

    2014-09-15

    Social Impact Assessment has developed as an integral but neglected component of EIA in South Africa since it became mandatory in 1997, and has therefore been referred to as the “orphan” or “lesser sibling” of EIA, as has SIA in the UK and the US. The aim of this paper is to test this claim by reviewing the quality of a sample of SIA reports, and also to establish whether there has been any improvement in quality following the introduction of revised EIA regulations in 2006. The results confirm that SIA can be called “the lesser sibling” due to themore » weak grades achieved in the quality review, but also reveal that there has been a slight and consistent improvement in quality, most likely driven by best practice considerations in the absence of prescriptive regulations for SIA. Suggestions and recommendations for addressing observed weakness in SIA performance are advanced. - Highlights: • The quality of a sample of SIA reports was evaluated using a review package. • SIA reports received mostly weak grades. • Limited improvement observed from first to second regulatory regime. • Improvements most likely due to best practice considerations.« less

  11. Stability chart of small mixed 4He-3He clusters

    NASA Astrophysics Data System (ADS)

    Guardiola, R.; Navarro, J.

    2003-11-01

    A stability chart of mixed 4He and 3He clusters has been obtained by means of the diffusion Monte Carlo method, using both the Aziz HFD-B and the Tang-Toennies-Yiu atom-atom interaction. The investigated clusters contain up to eight 4He atoms and up to 20 3He atoms. One single 4He binds 20 3He atoms, and two 4He bind 1, 2, 8, and more than 14 3He atoms. All clusters with three or more 4He atoms are bound, although the combinations 4He33He9,10,11 and 4He34He9 are metastable. Clusters with 2, 8, and 20 3He atoms are particularly stable and define magic 3He numbers.

  12. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    PubMed

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  13. Silos and Social Identity: The Social Identity Approach as a Framework for Understanding and Overcoming Divisions in Health Care

    PubMed Central

    Kreindler, Sara A; Dowd, Damien A; Dana Star, Noah; Gottschalk, Tania

    2012-01-01

    Context One of health care's foremost challenges is the achievement of integration and collaboration among the groups providing care. Yet this fundamentally group-related issue is typically discussed in terms of interpersonal relations or operational issues, not group processes. Methods We conducted a systematic search for literature offering a group-based analysis and examined it through the lens of the social identity approach (SIA). Founded in the insight that group memberships form an important part of the self-concept, the SIA encompasses five dimensions: social identity, social structure, identity content, strength of identification, and context. Findings Our search yielded 348 reports, 114 of which cited social identity. However, SIA-citing reports varied in both compatibility with the SIA's metatheoretical paradigm and applied relevance to health care; conversely, some non-SIA-citers offered SIA-congruent analyses. We analyzed the various combinations and interpretations of the five SIA dimensions, identifying ten major conceptual currents. Examining these in the light of the SIA yielded a cohesive, multifaceted picture of (inter)group relations in health care. Conclusions The SIA offers a coherent framework for integrating a diverse, far-flung literature on health care groups. Further research should take advantage of the full depth and complexity of the approach, remain sensitive to the unique features of the health care context, and devote particular attention to identity mobilization and context change as key drivers of system transformation. Our article concludes with a set of “guiding questions” to help health care leaders recognize the group dimension of organizational problems, identify mechanisms for change, and move forward by working with and through social identities, not against them. PMID:22709391

  14. Cerebral signal intensity abnormalities on T2-weighted MR images in HIV patients with highly active antiretroviral therapy: relationship with clinical parameters and interval changes.

    PubMed

    Hanning, Uta; Husstedt, Ingo W; Niederstadt, Thomas-Ulrich; Evers, Stefan; Heindel, Walter; Kloska, Stephan P

    2011-09-01

    The aim of this study was to assess the relationship between immune state and cerebral signal intensity abnormalities (SIAs) on T2-weighted magnetic resonance images in subjects with human immunodeficiency virus type 1 infection and highly active antiretroviral therapy. Thirty-two subjects underwent a total of 109 magnetic resonance studies. The presence of human immunodeficiency virus-associated neurocognitive disorder, categorized CD4(+) T lymphocyte count, and plasma viral load were assessed for relationship with the severity and interval change of SIAs for different anatomic locations of the brain. Subjects with multifocal patterns of SIAs had CD4(+) cell counts < 200 cells/μL in 66.0%, whereas subjects with diffuse patterns of SIAs had CD4(+) cell counts < 200 cells/μL in only 31.4% (P < .001). Subjects without SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 37.0%, whereas subjects with minor and moderate SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 78.3% and 80.0%, respectively (P < .005). The percentage of subjects with CD4(+) cell counts < 200 cells/μL was 85.7% when there were progressive periventricular SIA changes and 45.5% when periventricular SIA changes were stable in follow-up (P < .05). The presence and progression of cerebral SIAs on T2-weighted magnetic resonance images reflecting cerebral infection with human immunodeficiency virus are significantly related to impaired immune state as measured by CD4(+) cell count. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  15. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  16. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  17. Polysialic acid in human milk. CD36 is a new member of mammalian polysialic acid-containing glycoprotein.

    PubMed

    Yabe, Uichiro; Sato, Chihiro; Matsuda, Tsukasa; Kitajima, Ken

    2003-04-18

    The neural cell adhesion molecule and the voltage-sensitive sodium channel alpha-subunit are the only two molecules in mammals known to be modified by alpha-2,8-linked polysialic acid (polySia). We found a new polySia-containing glycoprotein in human milk and identified it as CD36, a member of the B class of the scavenger receptor superfamily. The polySia-containing glycan chain(s) were removed by alkaline treatment but not by peptide:N-glycanase F digestion, indicating that milk CD36 contained polySia on O-linked glycan chain(s). Polysialylation of CD36 occurs not only in human milk but also in mouse milk. However, CD36 in human platelets is not polysialylated. PolySia CD36 is secreted in milk at any lactation stage and reaches peak level at 1 month after parturition. Thus, it is suggested that polySia of milk CD36 is significant for neonatal development in terms of protection and nutrition.

  18. System dynamic simulation: A new method in social impact assessment (SIA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karami, Shobeir, E-mail: shobeirkarami@gmail.com; Karami, Ezatollah, E-mail: ekarami@shirazu.ac.ir; Buys, Laurie, E-mail: l.buys@qut.edu.au

    Many complex social questions are difficult to address adequately with conventional methods and techniques, due to the complicated dynamics, and hard to quantify social processes. Despite these difficulties researchers and practitioners have attempted to use conventional methods not only in evaluative modes but also in predictive modes to inform decision making. The effectiveness of SIAs would be increased if they were used to support the project design processes. This requires deliberate use of lessons from retrospective assessments to inform predictive assessments. Social simulations may be a useful tool for developing a predictive SIA method. There have been limited attempts tomore » develop computer simulations that allow social impacts to be explored and understood before implementing development projects. In light of this argument, this paper aims to introduce system dynamic (SD) simulation as a new predictive SIA method in large development projects. We propose the potential value of the SD approach to simulate social impacts of development projects. We use data from the SIA of Gareh-Bygone floodwater spreading project to illustrate the potential of SD simulation in SIA. It was concluded that in comparison to traditional SIA methods SD simulation can integrate quantitative and qualitative inputs from different sources and methods and provides a more effective and dynamic assessment of social impacts for development projects. We recommend future research to investigate the full potential of SD in SIA in comparing different situations and scenarios.« less

  19. Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cheng, Daojian; Huang, Shiping; Wang, Wenchuan

    2006-11-01

    Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.

  20. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  1. Structures of 38-atom gold-platinum nanoalloy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atomsmore » are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.« less

  2. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  3. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  4. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  5. Identification and analysis of o-acetylated sialoglycoproteins.

    PubMed

    Mandal, Chandan; Mandal, Chitra

    2013-01-01

    5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.

  6. Melting of size-selected gallium clusters with 60-183 atoms.

    PubMed

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  7. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    PubMed

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  8. Can Stereotype Threat Be Measured? A Validation of the Social Identities and Attitudes Scale (SIAS)

    ERIC Educational Resources Information Center

    Picho, Katherine; Brown, Scott W.

    2011-01-01

    This study reported the development and validation of the Social Identities and Attitudes Scale (SIAS), a stereotype threat susceptibility measure. Exploratory and confirmatory factor analyses conducted with college students indicate that the scale possesses strong psychometric properties. The SIAS explained 65% of the variance in the items…

  9. Comparison of surgically induced astigmatism in patients with horizontal rectus muscle recession

    PubMed Central

    Çakmak, Harun; Kocatürk, Tolga; Dündar, Sema Oruç

    2014-01-01

    AIM To compare surgically induced astigmatism (SIA) following horizontal rectus muscle recession surgery between suspension recession with both the “hang-back” technique and conventional recession technique. METHODS Totally, 48 eyes of 24 patients who had undergone horizontal rectus muscle recession surgery were reviewed retrospectively. The patients were divided into two groups. Twelve patients were operated on by the hang-back technique (Group 1), and 12 by the conventional recession technique (Group 2). SIA was calculated on the 1st wk, 1st and in the 3rd mo after surgery using the SIA calculator. RESULTS SIA was statistically higher in the Group 1 all postoperative follow-up. SIA was the highest in the 1st wk, and decreased gradually in both groups. CONCLUSION The suspension recession technique induced much more SIA than the conventional recession technique. This difference also continued in the following visits. Therefore, the refractive power should be checked postoperatively in order to avoid refractive amblyopia. Conventional recession surgery should be the preferred method so as to minimize the postoperative refractive changes in patients with amblyopia. PMID:25161948

  10. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters.

  11. The directed self-assembly for the surface patterning by electron beam II

    NASA Astrophysics Data System (ADS)

    Nakagawa, Sachiko T.

    2015-03-01

    When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.

  12. Hund’s rule in superatoms with transition metal impurities

    PubMed Central

    Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford

    2011-01-01

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542

  13. Hund's rule in superatoms with transition metal impurities.

    PubMed

    Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford

    2011-06-21

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.

  14. Local discrepancies in measles vaccination opportunities: results of population-based surveys in Sub-Saharan Africa

    PubMed Central

    2014-01-01

    Background The World Health Organization recommends African children receive two doses of measles containing vaccine (MCV) through routine programs or supplemental immunization activities (SIA). Moreover, children have an additional opportunity to receive MCV through outbreak response immunization (ORI) mass campaigns in certain contexts. Here, we present the results of MCV coverage by dose estimated through surveys conducted after outbreak response in diverse settings in Sub-Saharan Africa. Methods We included 24 household-based surveys conducted in six countries after a non-selective mass vaccination campaign. In the majority (22/24), the survey sample was selected using probability proportional to size cluster-based sampling. Others used Lot Quality Assurance Sampling. Results In total, data were collected on 60,895 children from 2005 to 2011. Routine coverage varied between countries (>95% in Malawi and Kirundo province (Burundi) while <35% in N’Djamena (Chad) in 2005), within a country and over time. SIA coverage was <75% in most settings. ORI coverage ranged from >95% in Malawi to 71.4% [95% CI: 68.9-73.8] in N’Djamena (Chad) in 2005. In five sites, >5% of children remained unvaccinated after several opportunities. Conversely, in Malawi and DRC, over half of the children eligible for the last SIA received a third dose of MCV. Conclusions Control pre-elimination targets were still not reached, contributing to the occurrence of repeated measles outbreak in the Sub-Saharan African countries reported here. Although children receiving a dose of MCV through outbreak response benefit from the intervention, ensuring that programs effectively target hard to reach children remains the cornerstone of measles control. PMID:24559281

  15. The impact of Supplementary Immunization Activities on the epidemiology of measles in Tianjin, China

    PubMed Central

    Wagner, Abram L.; Zhang, Ying; Mukherjee, Bhramar; Ding, Yaxing; Wells, Eden V.; Boulton, Matthew L.

    2016-01-01

    Summary Objectives China has repeatedly used supplemental immunization activities (SIAs) to work towards measles elimination, but it is unknown if the SIAs are reaching non-locals, migrants from rural to urban areas. This study characterizes temporal trends in measles incidence by local and non-local residency and evaluates the impact of SIAs on measles incidence in Tianjin, China. Methods Daily measles case counts were tabulated separately by residency. These two datasets were combined so that each day had two observations. We conducted Poisson regression using generalized estimating equations with an exchangeable working correlation structure to estimate rate ratios (RRs). Results There were 12,465 measles cases in Tianjin over the 10-year period. The rate of measles was higher in non-locals than locals before the 2008 SIA (RR: 3.60, 95% CI: 3.27, 3.96), but this attenuates to a RR of 1.22 between the 2008 and 2010 SIAs (95% CI: 1.02, 1.45). Following the 2010 SIA, non-locals had a lower rate of measles (RR: 0.78, 95% CI: 0.69, 0.87). Conclusions The disparity in measles incidence between locals and non-locals was reduced following two SIAs. Sustained public health interventions will be needed to maintain low measles incidence among non-locals given ongoing migration of people throughout China. PMID:26972042

  16. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the angular distribution parameter values of the two-spin-orbit components from Ar 2p clusters are slightly different. When comparing the beta values for Ar between atoms and clusters, we found different results between Ar 3s atoms and clusters, and between Ar 3p atoms and clusters. Argon cluster resonance from surface and bulk were also measured. Furthermore, the angular distribution parameters of Ar cluster photoelectrons and Ar atom photoelectrons in the 3s → np ionization region were obtained.

  17. Atomically precise cluster catalysis towards quantum controlled catalysts

    PubMed Central

    Watanabe, Yoshihide

    2014-01-01

    Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. PMID:27877723

  18. Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C-C Bond Formation.

    PubMed

    Liu, Yuanyuan; Chai, Xiaoqi; Cai, Xiao; Chen, Mingyang; Jin, Rongchao; Ding, Weiping; Zhu, Yan

    2018-06-19

    Clusters with an exact number of atoms are of particular research interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Herein we explore the effects of the single-foreign-atom (Au, Pd and Pt) doping into the core of an Ag cluster with 25-atoms on the catalytic properties, where the foreign atom is protected by 24 Ag atoms (i.e., Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster is found to have a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C-C bond formation to produce propiolic acid. Our studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Multiple valence superatoms.

    PubMed

    Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W

    2006-12-05

    We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.

  20. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.

  1. The actions of the social insurance agency regarding long-term sickness absentees before and after a medical assessment--a study of 384 case files.

    PubMed

    Marklund, Staffan; Lundh, Göran; Gustafsson, Klas; Linder, Jürgen; Svedberg, Pia; Alexanderson, Kristina

    2015-01-01

    The purpose of this article is to investigate actions taken by the Social Insurance Agency (SIA) for long-term sickness absentees and possible associations of this with future sick leave or disability pension. For 384 long-term sickness absentees who had had a multidisciplinary medical assessment (MMA) during 2001-2006, three types of data were obtained: (1) case file information about SIA actions, (2) suggested rehabilitation measures from the MMA and (3) sickness absence and disability pension data. Most individuals had been subject to a range of actions by the SIA. Sixty percent had been invited to a coordination meeting, and half of those who assessed by the MMA for vocational rehabilitation were approved to get it by the SIA. Few SIA actions were associated with full or partial return to work. Although the studied individuals had been on sick leave for a long time, the number of SIA actions related to vocational rehabilitation was limited and came late in the sick-leave spell. The information from the MMA was often not used as a basis for further SIA action and seldom resulted in return to work. The positive MMA views on the potential of vocational rehabilitation were not met by SIA actions. Suggestions on vocational rehabilitation from a medical assessment was in many cases not used by the social insurance agency in relationship to long-term sickness absentees. Active rehabilitation measures by the social insurance agency were few and came late in the sickness absence process. Few of the activities taken by the social insurance agency enhanced return to work.

  2. Meta-atom cluster acoustic metamaterial with broadband negative effective mass density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin

    2014-02-07

    We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expectmore » that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM.« less

  3. Analysis of labour risks in the Spanish industrial aerospace sector.

    PubMed

    Laguardia, Juan; Rubio, Emilio; Garcia, Ana; Garcia-Foncillas, Rafael

    2016-01-01

    Labour risk prevention is an activity integrated within Safety and Hygiene at Work in Spain. In 2003, the Electronic Declaration for Accidents at Work, Delt@ (DELTA) was introduced. The industrial aerospace sector is subject to various risks. Our objective is to analyse the Spanish Industrial Aerospace Sector (SIAS) using the ACSOM methodology to assess its labour risks and to prioritise preventive actions. The SIAS and the Services Subsector (SS) were created and the relevant accident rate data were obtained. The ACSOM method was applied through double contrast (deviation and translocation) of the SIAS or SS risk polygon with the considered pattern, accidents from all sectors (ACSOM G) or the SIAS. A list of risks was obtained, ordered by action phases. In the SIAS vs. ACSOM G analysis, radiation risks were the worst, followed by overstrains. Accidents caused by living beings were also significant in the SS vs. SIAE, which will be able to be used to improve Risk Prevention. Radiation is the most significant risk in the SIAS and the SS. Preventive actions will be primary and secondary. ACSOM has shown itself to be a valid tool for the analysis of labour risks.

  4. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood.

    PubMed

    Tantra, Martesa; Kröcher, Tim; Papiol, Sergi; Winkler, Daniela; Röckle, Iris; Jatho, Jasmin; Burkhardt, Hannelore; Ronnenberg, Anja; Gerardy-Schahn, Rita; Ehrenreich, Hannelore; Hildebrandt, Herbert

    2014-12-15

    The neural cell adhesion molecule (NCAM) and its functionally linked polysialyltransferases, ST8SIA2 and ST8SIA4, are crucial for synaptic plasticity. Variations in encoding genes have been associated with mental illness. Since cannabinoids can alter NCAM polysialylation, we hypothesized that delta-9-tetrahydrocannabinol (Δ9-THC) might act as environmental 'second hit' regarding cognition of St8sia2(-/-) mice. These mice show per se minor behavioral abnormalities, consisting of reduced anxiety and mild cognitive deficits. Chronic Δ9-THC treatment of juvenile male wildtype mice (St8sia2(+/+)) (7mg/kg every other day over 3 weeks) did not appreciably affect cognition. St8sia2(-/-) mice, however, displayed a synergistic negative consequence of Δ9-THC on learning/memory, accompanied by polysialic acid-free NCAM-180 reduction in hippocampus and polysialic acid increase in dentate outer molecular layer. These synergistic effects became obvious only months after the last Δ9-THC. We conclude that juvenile cannabis exposure may cause delayed but lasting damage on cognition in subjects genetically predisposed to altered NCAM polysialylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Leishmania donovani Utilize Sialic Acids for Binding and Phagocytosis in the Macrophages through Selective Utilization of Siglecs and Impair the Innate Immune Arm.

    PubMed

    Roy, Saptarshi; Mandal, Chitra

    2016-08-01

    Leishmania donovani, belonging to a unicellular protozoan parasite, display the differential level of linkage-specific sialic acids on their surface. Sialic acids binding immunoglobulin-like lectins (siglecs) are a class of membrane-bound receptors present in the haematopoetic cell lineages interact with the linkage-specific sialic acids. Here we aimed to explore the utilization of sialic acids by Leishmania donovani for siglec-mediated binding, phagocytosis, modulation of innate immune response and signaling pathways for establishment of successful infection in the host. We have found enhanced binding of high sialic acids containing virulent strains (AG83+Sias) with siglec-1 and siglec-5 present on macrophages compared to sialidase treated AG83+Sias (AG83-Sias) and low sialic acids-containing avirulent strain (UR6) by flow cytometry. This specific receptor-ligand interaction between sialic acids and siglecs were further confirmed by confocal microscopy. Sialic acids-siglec-1-mediated interaction of AG83+Sias with macrophages induced enhanced phagocytosis. Additionally, sialic acids-siglec-5 interaction demonstrated reduced ROS, NO generation and Th2 dominant cytokine response upon infection with AG83+Sias in contrast to AG83-Sias and UR6. Sialic acids-siglecs binding also facilitated multiplication of intracellular amastigotes. Moreover, AG83+Sias induced sialic acids-siglec-5-mediated upregulation of host phosphatase SHP-1. Such sialic acids-siglec interaction was responsible for further downregulation of MAPKs (p38, ERK and JNK) and PI3K/Akt pathways followed by the reduced translocation of p65 subunit of NF-κβ to the nucleus from cytosol in the downstream signaling pathways. This sequence of events was reversed in AG83-Sias and UR6-infected macrophages. Besides, siglec-knockdown macrophages also showed the reversal of AG83+Sias infection-induced effector functions and downstream signaling events. Taken together, this study demonstrated that virulent parasite (AG83+Sias) establish a unique sialic acids-mediated binding and subsequent phagocytosis in the host cell through the selective exploitation of siglec-1. Additionally, sialic acids-siglec-5 interaction altered the downstream signaling pathways which contributed impairment of immune effector functions of macrophages. To the best of our knowledge, this is a comprehensive report describing sialic acids-siglec interactions and their role in facilitating uptake of the virulent parasite within the host.

  6. Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun

    2018-02-01

    Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.

  7. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    PubMed

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction <011> occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  8. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  9. The study of structures and properties of PdnHm(n=1-10, m=1,2) clusters by density functional theory

    NASA Astrophysics Data System (ADS)

    Wen, Jun-Qing; Chen, Guo-Xiang; Zhang, Jian-Min; Wu, Hua

    2018-04-01

    The geometrical evolution, local relative stability, magnetism and charge transfer characteristics of PdnHm(n = 1-10, m = 1,2) have been systematically calculated by using density functional theory. The studied results show that the most stable geometries of PdnH and PdnH2 (n = 1-10) can be got by doping one or two H atoms on the sides of Pdn clusters except Pd6H and Pd6H2. It is found that doping one or two H atoms on Pdn clusters cannot change the basic framework of Pdn. The analysis of stability shows that Pd2H, Pd4H, Pd7H, Pd2H2, Pd4H2 and Pd7H2 clusters have higher local relative stability than neighboring clusters. The analysis of magnetic properties demonstrates that absorption of hydrogen atoms decreases the average atomic magnetic moments compared with pure Pdn clusters. More charges transfer from H atoms to Pd atoms for Pd6H and Pd6H2 clusters, demonstrating the adsorption of hydrogen atoms change from side adsorption to surface adsorption.

  10. Dynamics of Helium-Loaded Grain Boundaries under Shear Deformation in α-Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Yang, Li; Heinisch, Howard L.

    2014-03-30

    The defects produced in collision cascades will interact with microstructural features in materials, such as GBs and dislocations. The coupled motion of GBs under stress has been widely observed in simulations and experiments. Two symmetric tilt GBs with a common <110> tilt axis (Σ3 and Σ11) in bcc iron are used to investigate the coupled motion of GBs under shear deformation. Also, we have explored the effect of self-interstitial atoms (SIAs) loading on the GB motion, with different concentrations of interstitials randomly inserted around the GB plane. The simulation results show that the interstitial loading reduces the critical stress ofmore » the GB coupled motion for the Σ3 GB. Furthermore, the interstitials and vacancies are inserted randomly at the GB plane and at a distance of 1 nm away from the GB plane, respectively, to understand the self-healing mechanism of GBs under stress. The behavior of the defect-loaded GBs depends on the GB structure. The loaded interstitials in the Σ3 GB easily form <111> interstitial clusters that do not move along with the GB. The vacancies in the Σ3 GB impede the GB motion. However, the interstitials move along with the Σ11 GB and annihilate with vacancies when the GB moves into the vacancy-rich region, leading to the self-healing and damage recovery of the Σ11 GB.« less

  11. Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures

    NASA Astrophysics Data System (ADS)

    Angelié, C.; Soudan, J.-M.

    2017-05-01

    The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes towards a more stable structure without regularity. The 38 atom cluster exhibits a nearly glassy relaxation, through a cascade of six metastable states of long life. This behaviour, as that of the 147 atom cluster towards the amorphous state, shows that difficulties to reach ergodicity in the lower half of the solid zone are related to particular features of the potential energy landscape, and not necessarily to a too large size of the system. Comparisons of the cEAM iron system with published results about Lennard-Jones systems and DFT calculations are made. The results of the previous clusters have been combined with that of Paper II to plot the cohesive energy Ec and the melting temperature Tm in terms of the cluster atom number Nat. The Nat -1 /3 linear dependence of the melting temperature (Pawlow law) is observed again for Nat > 150. In contrast, for Nat < 150, the curve diverges strongly from the Pawlow law, giving it an overall V-shape, with a linear increase of Tm when Nat goes from 55 to 13 atoms. Surprisingly, the 38 atom cluster is anomalously below the overall curve.

  12. Structure and Stability of GeAu{sub n}, n = 1-10 clusters: A Density Functional Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyanka,; Dharamvir, Keya; Sharma, Hitesh

    2011-12-12

    The structures of Germanium doped gold clusters GeAu{sub n} (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu{sub n} clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu{sub n} clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding siliconmore » doped gold cluster. The HUMO-LOMO gap for Au{sub n}Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.« less

  13. Atomic dynamics and the problem of the structural stability of free clusters of solidified inert gases

    NASA Astrophysics Data System (ADS)

    Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.

    2003-05-01

    The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.

  14. Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.

    PubMed

    Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang

    2018-01-16

    The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.

  15. The effect of targeted wide age range SIAs in reducing measles incidence in the African Region.

    PubMed

    Masresha, Balcha; Luce, Richard; Katsande, Regis; Fall, Amadou; Eshetu, Meseret; Mihigo, Richard

    2017-01-01

    Periodic measles supplemental immunisation activities (SIAs) increase population immunity and thereby reduce the pool of accumulated susceptible children. They are typically conducted every 2 - 4 years, and most often target children up to five years of age. Between 2012 and 2015, after surveillance data indicated a shift in the epidemiological profile of measles towards older age groups, 11 countries were supported to conduct wide age range SIAs based on their local epidemiological patterns. Six other countries conducted SIAs with measles-rubella vaccines targeting ages 9 months to 14 years as an initial step of introducing rubella vaccine into the immunization program. In subsequent years, the incidence of confirmed measles dropped significantly in 13 of the 17 countries reviewed. The findings emphasize the importance of well-functioning surveillance systems, and the benefits of using of surveillance data to determine the specific target age-range for periodic SIAs to accelerate progress towards measles elimination.

  16. The effect of targeted wide age range SIAs in reducing measles incidence in the African Region

    PubMed Central

    Masresha, Balcha; Luce, Richard; Katsande, Regis; Fall, Amadou; Eshetu, Meseret; Mihigo, Richard

    2017-01-01

    Periodic measles supplemental immunisation activities (SIAs) increase population immunity and thereby reduce the pool of accumulated susceptible children. They are typically conducted every 2 – 4 years, and most often target children up to five years of age. Between 2012 and 2015, after surveillance data indicated a shift in the epidemiological profile of measles towards older age groups, 11 countries were supported to conduct wide age range SIAs based on their local epidemiological patterns. Six other countries conducted SIAs with measles-rubella vaccines targeting ages 9 months to 14 years as an initial step of introducing rubella vaccine into the immunization program. In subsequent years, the incidence of confirmed measles dropped significantly in 13 of the 17 countries reviewed. The findings emphasize the importance of well-functioning surveillance systems, and the benefits of using of surveillance data to determine the specific target age-range for periodic SIAs to accelerate progress towards measles elimination. PMID:29296148

  17. Can SIA empower communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, C.; Hirsch, P.; Howitt, R.

    1993-07-01

    Public participation in social impact assessment (SIA) has been identified as a source of improved decision-making about resource development in several countries, with an implicit assumption that this sort of participation provides an avenue for empowerment of affected communities in these decision-making processes. This paper provides a critical discussion of the effectiveness of SIA as a means of local empowerment through case studies of resource projects in Australia, Canada, and Southeast Asia.

  18. Clinical validation of a non-heteronormative version of the Social Interaction Anxiety Scale (SIAS).

    PubMed

    Lindner, Philip; Martell, Christopher; Bergström, Jan; Andersson, Gerhard; Carlbring, Per

    2013-12-19

    Despite welcomed changes in societal attitudes and practices towards sexual minorities, instances of heteronormativity can still be found within healthcare and research. The Social Interaction Anxiety Scale (SIAS) is a valid and reliable self-rating scale of social anxiety, which includes one item (number 14) with an explicit heteronormative assumption about the respondent's sexual orientation. This heteronormative phrasing may confuse, insult or alienate sexual minority respondents. A clinically validated version of the SIAS featuring a non-heteronormative phrasing of item 14 is thus needed. 129 participants with diagnosed social anxiety disorder, enrolled in an Internet-based intervention trial, were randomly assigned to responding to the SIAS featuring either the original or a novel non-heteronormative phrasing of item 14, and then answered the other item version. Within-subject, correlation between item versions was calculated and the two scores were statistically compared. The two items' correlations with the other SIAS items and other psychiatric rating scales were also statistically compared. Item versions were highly correlated and scores did not differ statistically. The two items' correlations with other measures did not differ statistically either. The SIAS can be revised with a non-heteronormative formulation of item 14 with psychometric equivalence on item and scale level. Implications for other psychiatric instruments with heteronormative phrasings are discussed.

  19. Social interaction anxiety and personality traits predicting engagement in health risk sexual behaviors.

    PubMed

    Rahm-Knigge, Ryan L; Prince, Mark A; Conner, Bradley T

    2018-06-01

    Individuals with social interaction anxiety, a facet of social anxiety disorder, withdraw from or avoid social encounters and generally avoid risks. However, a subset engages in health risk sexual behavior (HRSB). Because sensation seeking, emotion dysregulation, and impulsivity predict engagement in HRSB among adolescents and young adults, the present study hypothesized that latent classes of social interaction anxiety and these personality traits would differentially predict likelihood of engagement in HRSB. Finite mixture modeling was used to discern four classes: two low social interaction anxiety classes distinguished by facets of emotion dysregulation, positive urgency, and negative urgency (Low SIAS High Urgency and Low SIAS Low Urgency) and two high social interaction anxiety classes distinguished by positive urgency, negative urgency, risk seeking, and facets of emotion dysregulation (High SIAS High Urgency and High SIAS Low Urgency). HRSB were entered into the model as auxiliary distal outcomes. Of importance to this study were findings that the High SIAS High Urgency class was more likely to engage in most identified HRSB than the High SIAS Low Urgency class. This study extends previous findings on the heterogeneity of social interaction anxiety by identifying the effects of social interaction anxiety and personality on engagement in HRSB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.

    PubMed

    Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T

    2012-04-01

    Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  1. Measles mortality reduction--West Africa, 1996-2002.

    PubMed

    2004-01-23

    The World Health Organization (WHO) estimates that, during 2000, measles accounted for approximately 777,000 deaths worldwide, of which 452,000 (58%) occurred in Africa. In response, in 2000, WHO's African Regional Office (AFRO) adopted a plan to reduce measles mortality >50% by 2005. The plan recommended 1) increasing measles vaccination by strengthening routine health services; 2) providing a second opportunity for measles vaccination for all children, primarily through wide--age-range supplemental immunization activities (SIAs); 3) enhancing measles surveillance; and 4) improving management of measles cases. The initial wide--age-range SIA targets all children aged 9 months-14 years, regardless of history of measles disease or vaccination. Follow-up SIAs are needed 3-5 years after the initial SIA to provide a second opportunity for vaccination to children born since the previous SIA (i.e., those aged 9 months-4 years). During the 1990s, the countries of the Americas and seven countries in southern Africa used this strategy to reduce the number of measles deaths to near zero. This report describes the recent implementation of this strategy in three West African countries, where reported measles cases declined 83%-97% during the first year after SIAs. Successful implementation of this strategy by other African countries should result in achieving the goal of >50% reduction in measles mortality by 2005.

  2. Many particle spectroscopy of atoms, molecules, clusters and surfaces: international conference MPS-2016

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, Alexei N.; Popov, Yuri V.; Gryzlova, Elena V.; Solov'yov, Andrey V.

    2017-07-01

    The conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS-2016) brought together near to a hundred scientists in the field of electronic, photonic, atomic and molecular collisions, and spectroscopy from around the world. We deliver an Editorial of a topical issue presenting original research results from some of the participants on both experimental and theoretical studies involving many particle spectroscopy of atoms, molecules, clusters and surfaces. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu.V. Popov, and A.V. Solov'yov.

  3. Observation of a barium xenon exciplex within a large argon cluster.

    PubMed

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  4. Cluster adsorption on amorphous and crystalline surfaces - A molecular dynamics study of model Pt on Cu and model Pd on Pt

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Halicioglu, T.; Pound, G. M.

    1981-01-01

    Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.

  5. The stroke impairment assessment set: its internal consistency and predictive validity.

    PubMed

    Tsuji, T; Liu, M; Sonoda, S; Domen, K; Chino, N

    2000-07-01

    To study the scale quality and predictive validity of the Stroke Impairment Assessment Set (SIAS) developed for stroke outcome research. Rasch analysis of the SIAS; stepwise multiple regression analysis to predict discharge functional independence measure (FIM) raw scores from demographic data, the SIAS scores, and the admission FIM scores; cross-validation of the prediction rule. Tertiary rehabilitation center in Japan. One hundred ninety stroke inpatients for the study of the scale quality and the predictive validity; a second sample of 116 stroke inpatients for the cross-validation study. Mean square fit statistics to study the degree of fit to the unidimensional model; logits to express item difficulties; discharge FIM scores for the study of predictive validity. The degree of misfit was acceptable except for the shoulder range of motion (ROM), pain, visuospatial function, and speech items; and the SIAS items could be arranged on a common unidimensional scale. The difficulty patterns were identical at admission and at discharge except for the deep tendon reflexes, ROM, and pain items. They were also similar for the right- and left-sided brain lesion groups except for the speech and visuospatial items. For the prediction of the discharge FIM scores, the independent variables selected were age, the SIAS total scores, and the admission FIM scores; and the adjusted R2 was .64 (p < .0001). Stability of the predictive equation was confirmed in the cross-validation sample (R2 = .68, p < .001). The unidimensionality of the SIAS was confirmed, and the SIAS total scores proved useful for stroke outcome prediction.

  6. Probing the Structural, Electronic, and Magnetic Properties of Ag n V (n = 1-12) Clusters.

    PubMed

    Xiong, Ran; Die, Dong; Xiao, Lu; Xu, Yong-Gen; Shen, Xu-Ying

    2017-12-16

    The structural, electronic, and magnetic properties of Ag n V (n = 1-12) clusters have been studied using density functional theory and CALYPSO structure searching method. Geometry optimizations manifest that a vanadium atom in low-energy Ag n V clusters favors the most highly coordinated location. The substitution of one V atom for an Ag atom in Ag n + 1 (n ≥ 5) cluster modifies the lowest energy structure of the host cluster. The infrared spectra, Raman spectra, and photoelectron spectra of Ag n V (n = 1-12) clusters are simulated and can be used to determine the most stable structure in the future. The relative stability, dissociation channel, and chemical activity of the ground states are analyzed through atomic averaged binding energy, dissociation energy, and energy gap. It is found that V atom can improve the stability of the host cluster, Ag 2 excepted. The most possible dissociation channels are Ag n V = Ag + Ag n - 1 V for n = 1 and 4-12 and Ag n V = Ag 2  + Ag n - 2 V for n = 2 and 3. The energy gap of Ag n V cluster with odd n is much smaller than that of Ag n + 1 cluster. Analyses of magnetic property indicate that the total magnetic moment of Ag n V cluster mostly comes from V atom and varies from 1 to 5 μ B . The charge transfer between V and Ag atoms should be responsible for the change of magnetic moment.

  7. Site-specific polarizabilities as descriptors of metallic behavior in atomic clusters

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar; Jellinek, Julius

    The electric dipole polarizability of a cluster is a measure of its response to an applied electric field. The site specific polarizability method decomposes the total cluster polarizability into contributions from individual atoms and also allows it to be partitioned into charge transfer and electric dipole contributions. By systematically examining the trends in these quantities for several types of metal atom clusters over a wide range of cluster sizes, we find common characteristics that uniquely link the behavior of the clusters to that of the corresponding bulk metals for clusters as small as 10 atoms. We discuss these trends and compare and contrast them with results for non-metal clusters. This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy under Grant SC0001330 (KAJ) and Contract No. DE-AC02-06CH11357 (JJ).

  8. Quasi-planar elemental clusters in pair interactions approximation

    NASA Astrophysics Data System (ADS)

    Chkhartishvili, Levan

    2016-01-01

    The pair-interactions approximation, when applied to describe elemental clusters, only takes into account bonding between neighboring atoms. According to this approach, isomers of wrapped forms of 2D clusters - nanotubular and fullerene-like structures - and truly 3D clusters, are generally expected to be more stable than their quasi-planar counterparts. This is because quasi-planar clusters contain more peripheral atoms with dangling bonds and, correspondingly, fewer atoms with saturated bonds. However, the differences in coordination numbers between central and peripheral atoms lead to the polarization of bonds. The related corrections to the molar binding energy can make small, quasi-planar clusters more stable than their 2D wrapped allotropes and 3D isomers. The present work provides a general theoretical frame for studying the relative stability of small elemental clusters within the pair interactions approximation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kira, M., E-mail: mackillo.kira@physik.uni-marburg.de

    Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approachmore » are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.« less

  10. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes

    NASA Astrophysics Data System (ADS)

    Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping

    2017-02-01

    To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.

  11. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  12. Does Each Atom Count in the Reactivity of Vanadia Nanoclusters?

    PubMed

    Zhang, Mei-Qi; Zhao, Yan-Xia; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2017-01-11

    Vanadium oxide cluster anions (V 2 O 5 ) n V x O y - (n = 1-31; x = 0, 1; and x + y ≤ 5) with different oxygen deficiencies (Δ = 2y-1-5x = 0, ± 1, and ±2) have been prepared by laser ablation and reacted to abstract hydrogen atoms from alkane molecules (n-butane) in a fast flow reactor. When the cluster size n is less than 25, the Δ = 1 series [(V 2 O 5 ) n O - clusters] that can contain atomic oxygen radical anions (O •- ) generally have much higher reactivity than the other four cluster series (Δ = -2, -1, 0, and 2), indicating that each atom counts in the hydrogen-atom abstraction (HAA) reactivity. Unexpectedly, all of the five cluster series have similar HAA reactivity when the cluster size is greater than 25. The critical dimension of vanadia particles separating the cluster behavior (each atom counts) from the bulk behavior (each atom contributes a little part) is thus about 1.6 nm (∼V 50 O 125 ). The strong electron-phonon coupling of the vanadia particles has been proposed to create the O •- radicals (V 5+ = O 2- + heat → V 4+ -O •- ) for the n > 25 clusters with Δ = -2, -1, 0, and 2. Such a mechanism is supported by a comparative study with the scandium system [(Sc 2 O 3 ) n Sc x O y - (n = 1-29; x = 0, 1; and x + y ≤ 4)] for which the Δ = 1 series [(Sc 2 O 3 ) n O - clusters] always have much higher HAA reactivity than the other cluster series.

  13. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    PubMed

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay, relative activities toward Sia derivatives have been obtained. The preference of mouse CSS toward Neu5Ac and the ability of the rainbow trout enzyme to activate both KDN and Neu5Ac were confirmed. Thus, this simple and time-saving method is suitable for a systematic comparison of enzyme activity of structurally mutated enzymes based on the relative specific activity.

  14. Comparison of Surgically Induced Astigmatism and Morphologic Features Resulting From Femtosecond Laser and Manual Clear Corneal Incisions for Cataract Surgery.

    PubMed

    Ferreira, Tiago B; Ribeiro, Filomena J; Pinheiro, João; Ribeiro, Paulo; O'Neill, João G

    2018-05-01

    To compare the surgically induced astigmatism (SIA) vector, flattening effect, torque, and wound architecture following femtosecond laser and manual clear corneal incisions (CCIs). In a double-armed, randomized, prospective case series, cataract surgery was performed for 600 eyes using femtosecond laser (300 eyes) or manual (300 eyes) 2.4-mm CCIs in temporal or superior oblique locations. SIA, flattening effect, torque, and the summated vector mean for SIA were calculated. Correlation with individual features was established and incision morphology was investigated by anterior segment optical coherence tomography at 3 months of follow-up. The SIA, flattening effect, and torque were lower in the femtosecond laser group for both incision locations, although the differences were not significant (all P > .05). The femtosecond laser group showed less dispersion of SIA magnitude and flattening effect. Temporal and superior oblique incisions resulted in flattening effect values of -0.11 and -0.21 diopters (D), respectively, in the femtosecond laser group and -0.13 and -0.34 D, respectively, in the manual group. Significant correlations with individual features were only found in the femtosecond laser group, with preoperative astigmatism being the only significant SIA predictor by multiple regression analysis (P = .003). Femtosecond laser CCIs showed less deviation from the intended length, wound enlargement, endothelial misalignment, and Descemet membrane detachments (all P < .037). Femtosecond laser CCIs were more reproducible. Although SIAs were smaller in femtosecond laser CCIs than in manual CCIs for both temporal and superior oblique incisions, the difference was not statistically significant. Association with individual features is highly variable. [J Refract Surg. 2018;34(5):322-329.]. Copyright 2018, SLACK Incorporated.

  15. Measles prevention in adolescents: lessons learnt from implementing a high school catch-up vaccination programme in New South Wales, Australia, 2014–2015

    PubMed Central

    Seale, Holly; Sheppeard, Vicky; Campbell-Lloyd, Sue

    2016-01-01

    Introduction In response to a significant increase of measles cases and a high percentage of unvaccinated adolescents in New South Wales, Australia, a measles high school catch-up vaccination programme was implemented between August and December 2014. This study aimed to explore the factors affecting school-based supplementary immunization activities (SIAs) and to inform future SIA and routine school-based vaccination programme implementation and service provision. Methods Focus group analysis was conducted among public health unit (PHU) staff responsible for implementing the SIA catch-up programme. Key areas discussed were pre-programme planning, implementation, resources, consent materials, media activity and future directions for school vaccination programme delivery. Sessions were audio recorded, transcribed verbatim and reviewed. Thematic analysis was conducted to identify the major themes. Results Two independent focus groups with 32 participants were conducted in January 2015. Barriers to the SIA implementation included lead time, consent processes, interagency collaboration, access to the targeted cohort and the impact of introducing a SIA to an already demanding curriculum and school programme immunization schedule. A positive PHU school coordinator rapport and experience of PHU staff facilitated the implementation. Consideration of different approaches for pre-clinic vaccination status checks, student involvement in the vaccination decision, online consent, workforce sharing between health districts and effective programme planning time were identified for improving future SIA implementation. Conclusion Although many barriers to school programme implementation have been identified in this study, with adequate resourcing and lead time, SIAs implemented via a routine school vaccination programme are an appropriate model to target adolescents. PMID:27757258

  16. Social impact assessment in mining projects in Northern Finland: Comparing practice to theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suopajärvi, Leena, E-mail: leena.suopajarvi@ulapland.fi

    The paper discusses social impact assessments (SIA) for mining projects in light of the international principles and guidelines for such assessments and the academic literature in the field. The data consist of environmental impact assessment (EIA) programmes and reports for six mining projects that have started up in northern Finland in the 2000s. A first observation is that the role of the SIAs in the EIA programmes and reports studied was quite minor: measured in number of pages, the assessments account for three or four percent of the total. This study analyses the data collection, research methodology and conceptual premisesmore » used in the SIAs. It concludes that the assessments do not fully meet the high standards of the international principles and guidelines set out for them: for example, elderly men are over-represented in the data and no efforts were made to identify and bring to the fore vulnerable groups. Moreover, the reliability of the assessments is difficult to gauge, because the qualitative methods are not described and where quantitative methods were used, details such as non-response rates to questionnaires are not discussed. At the end of the paper, the SIAs are discussed in terms of Jürgen Habermas' theory of knowledge interests, with the conclusion that the assessments continue the empirical analytical tradition of the social sciences and exhibit a technical knowledge interest. -- Highlights: • Paper investigates social impact assessments in Finnish mining projects. • Role of social impact assessment is minor in whole EIA-process. • Mining SIAs give the voice for elderly men, vulnerable groups are not identified. • Assessment of SIAs is difficult because of lacking transparency in reporting. • SIAs belong to empirical analytical tradition with technical knowledge interest.« less

  17. A novel dual-valve sequential injection manifold (DV-SIA) for automated liquid-liquid extraction. Application for the determination of picric acid.

    PubMed

    Skrlíková, Jana; Andruch, Vasil; Sklenárová, Hana; Chocholous, Petr; Solich, Petr; Balogh, Ioseph S

    2010-05-07

    A novel dual-valve sequential injection system (DV-SIA) for online liquid-liquid extraction which resolves the main problems of LLE utilization in SIA has been designed. The main idea behind this new design was to construct an SIA system by connecting two independent units, one for aqueous-organic mixture flow and the second specifically for organic phase flow. As a result, the DV-SIA manifold consists of an Extraction unit and a Detection unit. Processing a mixture of aqueous-organic phase in the Extraction unit and a separated organic phase in the Detection unit solves the problems associated with the change of phases having different affinities to the walls of the Teflon tubing used in the SI-system. The developed manifold is a simple, user-friendly and universal system built entirely from commercially available components. The system can be used for a variety of samples and organic solvents and is simple enough to be easily handled by operators less familiar with flow systems. The efficiency of the DV-SIA system is demonstrated by the extraction of picric acid in the form of an ion associate with 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium reagent, with subsequent spectrophotometric detection. The suggested DV-SIA concept can be expected to stimulate new experiments in analytical laboratories and can be applied to the elaboration of procedures for the determination of other compounds extractable by organic solvents. It could thus form a basis for the design of simple, single-purpose commercial instruments used in LLE procedures. 2010 Elsevier B.V. All rights reserved.

  18. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoung Ho; Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr; Troy, Frederic A., E-mail: fatroy@ucdavis.edu

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC withmore » epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.« less

  19. Social anxiety in the general population: introducing abbreviated versions of SIAS and SPS.

    PubMed

    Kupper, Nina; Denollet, Johan

    2012-01-01

    Social anxiety is characterized by the experience of stress, discomfort and fear in social situations, and is associated with substantial personal and societal burden. Two questionnaires exist that assess the aspects of social anxiety, i.e. social interaction anxiety (SIAS) and social phobia (SPS). There is no agreement in literature on the dimensionality of social anxiety. Further, the length of a questionnaire may negatively affect response rates and participation at follow-up occasions. To explore the structure of social anxiety in the general population, and to examine psychosocial and sociodemographic correlates. Our second aim was to construct abbreviated versions of SIAS and SPS that can be easily used and with minimal burden. A total of 1598 adults from the general Dutch population completed a survey asking information on social anxiety, mood and demographics. Exploratory and confirmatory factor analyses as well as reliability analysis with item-total statistics were performed. Confirmatory factor analysis revealed a 3-factor structure for social phobia, and a 2-factor structure for the SIAS, with the second factor containing both reversely scored items. The abbreviated versions of SPS (11 items) and SIAS (10 items) show excellent discriminant and construct validity (Cronbach's α=.90 and .92), while specificity analysis showed that gender, marital status and educational level (SIAS(10): p<.0005; SPS(11): p<.0005) are important determinants of social anxiety. In the general population, social interaction anxiety and social phobia are two aspects of a higher-order factor of social anxiety. Social anxiety is validly captured by the short versions of SPS and SIAS, reducing the questionnaire burden for participants in epidemiological and biobehavioral research. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effects of polio eradication activities on routine immunization: lessons from the 2013 outbreak response in Somali region of Ethiopia.

    PubMed

    Tafesse, Belete; Tekle, Ephrem; Wondwossen, Liya; Bogale, Mengistu; Fiona, Braka; Nsubuga, Peter; Tomas, Karengera; Kassahun, Aron; Kathleen, Gallagher; Teka, Aschalew

    2017-01-01

    Ethiopia experienced several WPV importations with a total of 10 WPV1 cases confirmed during the 2013 outbreak alone before it is closed in 2015. We evaluated supplemental immunization activities (SIAs), including lessons learned for their effect on the routine immunization program during the 2013 polio outbreak in Somali regional state. We used descriptive study to review documents and analyse routine health information system reports from the polio outbreak affected Somali regional state. All data and technical reports of the 15 rounds of polio SIAs from June 2013 through June 2015 and routine immunization coverages for DPT-Hib-HepB 3 and measles were observed. More than 93% of the SIAs were having administrative coverage above 95%. The trend of routine immunization for the two antigens, over the five years (2011 through 2015) did not show a consistent pattern against the number of SIAs. Documentations showed qualitative positive impacts of the SIAs strengthening the routine immunization during all courses of the campaigns. The quantitative impact of polio SIAs on routine immunization remained not so impressive in this study. Clear planning, data consistencies and completeness issues need to be cleared for the impact assessment in quantitative terms, in polio legacy planning as well as for the introduction of injectable polio vaccine through the routine immunization.

  1. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina.

    PubMed

    Karlstetter, Marcus; Kopatz, Jens; Aslanidis, Alexander; Shahraz, Anahita; Caramoy, Albert; Linnartz-Gerlach, Bettina; Lin, Yuchen; Lückoff, Anika; Fauser, Sascha; Düker, Katharina; Claude, Janine; Wang, Yiner; Ackermann, Johannes; Schmidt, Tobias; Hornung, Veit; Skerka, Christine; Langmann, Thomas; Neumann, Harald

    2017-02-01

    Age-related macular degeneration (AMD) is a major cause of blindness in the elderly population. Its pathophysiology is linked to reactive oxygen species (ROS) and activation of the complement system. Sialic acid polymers prevent ROS production of human mononuclear phagocytes via the inhibitory sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC11) receptor. Here, we show that low-dose intravitreal injection of low molecular weight polysialic acid with average degree of polymerization 20 (polySia avDP20) in humanized transgenic mice expressing SIGLEC11 on mononuclear phagocytes reduced their reactivity and vascular leakage induced by laser coagulation. Furthermore, polySia avDP20 prevented deposition of the membrane attack complex in both SIGLEC11 transgenic and wild-type animals. In vitro, polySia avDP20 showed two independent, but synergistic effects on the innate immune system. First, polySia avDP20 prevented tumor necrosis factor-α, vascular endothelial growth factor A, and superoxide production by SIGLEC11-positive phagocytes. Second, polySia avDP20 directly interfered with complement activation. Our data provide evidence that polySia avDP20 ameliorates laser-induced damage in the retina and thus is a promising candidate to prevent AMD-related inflammation and angiogenesis. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  3. Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters.

    PubMed

    Yuan, D W; Wang, Yang; Zeng, Zhi

    2005-03-15

    Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.

  4. Structural and electronic properties of Aun-xPtx (n = 2-14; x ⩽ n) clusters: The density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Yuan, H. K.; Kuang, A. L.; Tian, C. L.; Chen, H.

    2014-03-01

    The structural evolutions and electronic properties of bimetallic Aun-xPtx (n = 2-14; x ⩽ n) clusters are investigated by using the density functional theory (DFT) with the generalized gradient approximation (GGA). The monatomic doping Aun-1Pt clusters are emphasized and compared with the corresponding pristine Aun clusters. The results reveal that the planar configurations are favored for both Aun-1Pt and Aun clusters with size up to n = 13, and the former often employ the substitution patterns based on the structures of the latter. The most stable clusters are Au6 and Au6Pt, which adopt regular planar triangle (D3h) and hexagon-ring (D6h) structures and can be regarded as the preferential building units in designing large clusters. For Pt-rich bimetallic clusters, their structures can be obtained from the substitution of Pt atoms by Au atoms from the Ptn structures, where Pt atoms assemble together and occupy the center yet Au atoms prefer the apex positions showing a segregation effect. With respect to pristine Au clusters, AunPt clusters exhibit somewhat weaker and less pronounced odd-even oscillations in the highest occupied and lowest unoccupied molecular-orbital gaps (HOMO-LUMO gap), electron affinity (EA), and ionization potential (IP) due to the partially released electron pairing effect. The analyses of electronic structure indicate that Pt atoms in AuPt clusters would delocalize their one 6s and one 5d electrons to contribute the electronic shell closure. The sp-d hybridizations as well as the d-d interactions between the host Au and dopant Pt atoms result in the enhanced stabilities of AuPt clusters.

  5. Elucidation of several neglected reactions in the GC-MS identification of sialic acids as heptafluorobutyrates calls for an urgent reassessment of previous claims.

    PubMed

    Rota, Paola; Anastasia, Luigi; Allevi, Pietro

    2015-05-07

    The current analytical protocol used for the GC-MS determination of free or 1,7-lactonized natural sialic acids (Sias), as heptafluorobutyrates, overlooks several transformations. Using authentic reference standards and by combining GC-MS and NMR analyses, flaws in the analytical protocol were pinpointed and elucidated, thus establishing the scope and limitations of the method. It was demonstrated that (a) Sias 1,7-lactones, even if present in biological samples, decompose under the acidic hydrolysis conditions used for their release; (b) Sias 1,7-lactones are unpredicted artifacts, accidentally generated from their parent acids; (c) the N-acetyl group is quantitatively exchanged with that of the derivatizing perfluorinated anhydride; (d) the partial or complete failure of the Sias esterification-step with diazomethane leads to the incorrect quantification and structure attribution of all free Sias. While these findings prompt an urgent correction and improvement of the current analytical protocol, they could be instrumental for a critical revision of many incorrect claims reported in the literature.

  6. "Silicone related symptoms" are common in patients with fibromyalgia: no evidence for a new disease.

    PubMed

    Wolfe, F

    1999-05-01

    To ascertain if the symptom content and rate of symptoms in patients with fibromyalgia (FM) are similar to those in what has been called silicone implant associated syndrome (SIAS), and to determine if SIAS is indeed a new disease or whether it is largely recognizable as FM. Mailed survey to 901 patients in Wichita, KS, Portland, OR, Los Angeles, CA, Peoria, IL, Boston, MA, San Antonio, TX, and eastern Kansas who were participating in a longterm outcome study of FM. Laboratory data were available from Wichita patients. Content of symptoms was similar to that in SIAS, and rates were generally as high or higher in patients with FM than in SIAS. In patients with FM, 37.2% had all of the following 5 items: arthralgias, myalgias, sicca complex, atypical rash, and symptoms of a peripheral neuropathy; and 55.2% had 4 of the 5 items. These data do not suggest that SIAS is an unrecognized new disease, but suggest the opposite, that such symptoms are well known and previously recognized, and are common among those with musculoskeletal complaints and those seen in rheumatology clinics.

  7. Use of measles supplemental immunization activities (SIAs) as a delivery platform for other maternal and child health interventions: opportunities and challenges.

    PubMed

    Johri, Mira; Sharma, Jitendar K; Jit, Mark; Verguet, Stéphane

    2013-02-18

    Measles supplementary immunization activities (SIAs) offer children in countries with weaker immunization delivery systems like India a second opportunity for measles vaccination. They could also provide a platform to deliver additional interventions, but the feasibility and acceptability of including add-ons is uncertain. We surveyed Indian programme officers involved in the current (2010-2012) measles SIAs concerning opportunities and challenges of using SIAs as a delivery platform for other maternal and child health interventions. Respondents felt that an expanded SIA strategy including add-ons could be of great value in improving access and efficiency. They viewed management challenges, logistics, and safety as the most important potential barriers. They proposed that additional interventions be selected using several criteria, of which importance of the health problem, safety, and contribution to health equity figured most prominently. For children, they recommended inclusion of basic interventions to address nutritional deficiencies, diarrhoea and parasites over vaccines. For mothers, micronutrient interventions were highest ranked. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.

    PubMed

    Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo

    2017-11-16

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

  9. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster

    PubMed Central

    Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.; Santiago, Ulises; Plascencia-Villa, German; Weiss, Simon C.; de la Cruz, M. Jason; Black, David M.; Alvarez, Marcos M.; Lopez-Lozano, Xochitl; Barnes, Christopher O.; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L.; Gonen, Tamir; Jose-Yacaman, Miguel; Calero, Guillermo

    2018-01-01

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au146(p-MBA)57 (p-MBA: para-mercaptobenzoic acid), solved by electron diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault. PMID:29072840

  10. EFFECT OF STRAIN FIELD ON THRESHOLD DISPLACEMENT ENERGY OF TUNGSTEN STUDIED BY MOLECULAR DYNAMICS SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D.; Gao, Ning; Setyawan, Wahyu

    The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly thanmore » for a vacancy such that Ed decreased with applied strain from compression to tension.« less

  11. Relaxation channels of multi-photon excited xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  12. Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms

    NASA Astrophysics Data System (ADS)

    Wu, Genhua; Sun, Yan; Wu, Xia; Chen, Run; Wang, Yan

    2017-10-01

    The stable structures of Cu-Au-Pt clusters up to 147 atoms are optimized by using an improved adaptive immune optimization algorithm (AIOA-IC method), in which several motifs, such as decahedron, icosahedron, face centered cubic, sixfold pancake, and Leary tetrahedron, are randomly selected as the inner cores of the starting structures. The structures of Cu8AunPt30-n (n = 1-29), Cu8AunPt47-n (n = 1-46), and partial 75-, 79-, 100-, and 147-atom clusters are analyzed. Cu12Au93Pt42 cluster has onion-like Mackay icosahedral motif. The segregation phenomena of Cu, Au and Pt in clusters are explained by the atomic radius, surface energy, and cohesive energy.

  13. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?

    PubMed

    Zhang, Min; Zhao, Quanli; Xue, Peiying; Zhang, Shijie; Li, Bowen; Liu, Wenju

    2017-10-01

    Silicon (Si) may decrease the uptake and accumulation of arsenic (As) in rice. However, the effects of Si/As ratios in growth medium on arsenic uptake, arsenite efflux to the external medium and translocation of arsenite in rice are currently unclear. Rice seedlings (Oryza sativa L.) were exposed to nutrient solutions with 10 μM arsenite [As(III)] or 10 μM arsenate [As(V)] to explore the influence of different silicic acid concentrations (0, 10, 100, 1000 μM) on arsenic uptake and translocation of arsenite with or without 91 μM phosphate for 24 h. Arsenic speciation was determined in nutrient solutions, roots, and shoots. In the arsenite treatments, different Si/As ratios (1:1, 10:1, 100:1) did not affect As(III) uptake by rice roots, however they did inhibit translocation of As(III) from roots to shoots significantly (P < 0.001) in the absence of P. In the arsenate treatments, a Si/As ratio of 100:1 significantly decreased As(V) uptake and As(III) efflux compared with the control (Si/As at 0:1), accounting for decreases of 27.4% and 15.1% for -P treatment and 47.8% and 61.1% for + P treatment, respectively. As(III) is the predominant species of arsenic in rice roots and shoots. A Si/As ratio of 100:1 reduced As(III) translocation from roots to shoots markedly without phosphate. When phosphate was supplied, As(III) translocation from roots to shoots was significantly inhibited by Si/As ratios of 10:1 and 100:1. The results indicated that in the presence of P, different silicic acid concentrations did not impact arsenite uptake and transport in rice when arsenite was supplied. However, a Si/As ratio of 100:1 inhibited As(V) uptake, as well as As(III) efflux and translocation from roots to shoots when arsenate was supplied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Contribution of amygdala CRF neurons to chronic pain.

    PubMed

    Andreoli, Matthew; Marketkar, Tanvi; Dimitrov, Eugene

    2017-12-01

    We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over-activation of amygdala CRF neurons is very likely an important contributing factor for pain chronification. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    NASA Astrophysics Data System (ADS)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.

  16. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  17. Population immunity to measles virus and the effect of HIV-1 infection after a mass measles vaccination campaign in Lusaka, Zambia: a cross-sectional survey.

    PubMed

    Lowther, Sara A; Curriero, Frank C; Kalish, Brian T; Shields, Timothy M; Monze, Mwaka; Moss, William J

    2009-03-21

    Measles control efforts are hindered by challenges in sustaining high vaccination coverage, waning immunity in HIV-1-infected children, and clustering of susceptible individuals. Our aim was to assess population immunity to measles virus after a mass vaccination campaign in a region with high HIV prevalence. 3 years after a measles supplemental immunisation activity (SIA), we undertook a cross-sectional survey in Lusaka, Zambia. Households were randomly selected from a satellite image. Children aged 9 months to 5 years from selected households were eligible for enrolment. A questionnaire was administered to the children's caregivers to obtain information about measles vaccination history and history of measles. Oral fluid samples were obtained from children and tested for antibodies to measles virus and HIV-1 by EIA. 1015 children from 668 residences provided adequate specimens. 853 (84%) children had a history of measles vaccination according to either caregiver report or immunisation card. 679 children (67%) had antibodies to measles virus, and 64 (6%) children had antibodies to HIV-1. Children with antibodies to HIV-1 were as likely to have no history of measles vaccination as those without antibodies to HIV-1 (odds ratio [OR] 1.17, 95% CI 0.57-2.41). Children without measles antibodies were more likely to have never received measles vaccine than those with antibodies (adjusted OR 2.50, 1.69-3.71). In vaccinated children, 33 (61%) of 54 children with antibodies to HIV-1 also had antibodies to measles virus, compared with 568 (71%) of 796 children without antibodies to HIV-1 (p=0.1). 3 years after an SIA, population immunity to measles was insufficient to interrupt measles virus transmission. The use of oral fluid and satellite images for sampling are potential methods to assess population immunity and the timing of SIAs.

  18. Interaction of intense laser pulses with hydrogen atomic clusters

    NASA Astrophysics Data System (ADS)

    Du, Hong-Chuan; Wang, Hui-Qiao; Liu, Zuo-Ye; Sun, Shao-Hua; Li, Lu; Ma, Ling-Ling; Hu, Bi-Tao

    2010-03-01

    The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.

  19. The stability of vacancy clusters and their effect on helium behaviors in 3C-SiC

    NASA Astrophysics Data System (ADS)

    Sun, Jingjing; Li, B. S.; You, Yu-Wei; Hou, Jie; Xu, Yichun; Liu, C. S.; Fang, Q. F.; Wang, Z. G.

    2018-05-01

    We have carried out systematical ab initio calculations to study the stability of vacancy clusters and their effect on helium behaviors in 3C-SiC. It is found that the formation energies of vacancy clusters containing only carbon vacancies are the lowest although the vacancies are not closest to each other, while the binding energies of vacancy clusters composed of both silicon and carbon vacancies in the closest neighbors to each other are the highest. Vacancy clusters can provide with free space for helium atoms to aggregate, while interstitial sites are not favorable for helium atoms to accumulate. The binding energies of vacancy clusters with helium atoms increase almost linearly with the ratio of helium to vacancy, n/m. The binding strength of vacancy cluster having the participation of the silicon vacancy with helium is relatively stronger than that without silicon vacancy. The vacancy clusters with more vacancies can trap helium atoms more tightly. With the presence of vacancy clusters in the material, the diffusivity of helium will be significantly reduced. Moreover, the three-dimension electron density is calculated to analyze the interplay of vacancy clusters with helium.

  20. Electronic levels and charge distribution near the interface of nickel

    NASA Technical Reports Server (NTRS)

    Waber, J. T.

    1982-01-01

    The energy levels in clusters of nickel atoms were investigated by means of a series of cluster calculations using both the multiple scattering and computational techniques (designated SSO) which avoids the muffin-tin approximation. The point group symmetry of the cluster has significant effect on the energy of levels nominally not occupied. This influences the electron transfer process during chemisorption. The SSO technique permits the approaching atom or molecule plus a small number of nickel atoms to be treated as a cluster. Specifically, molecular levels become more negative in the O atom, as well as in a CO molecule, as the metal atoms are approached. Thus, electron transfer from the nickel and bond formation is facilitated. This result is of importance in understanding chemisorption and catalytic processes.

  1. Point defect induced segregation of alloying solutes in α-Fe

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2016-10-01

    Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom 〈110〉 dumbbell is also found to tightly bind with multiple solute atoms. The 〈110〉-S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.

  2. About the atomic structures of icosahedral quasicrystals

    NASA Astrophysics Data System (ADS)

    Quiquandon, Marianne; Gratias, Denis

    2014-01-01

    This paper is a survey of the crystallographic methods that have been developed these last twenty five years to decipher the atomic structures of the icosahedral stable quasicrystals since their discovery in 1982 by D. Shechtman. After a brief recall of the notion of quasiperiodicity and the natural description of Z-modules in 3-dim as projection of regular lattices in N>3-dim spaces, we give the basic geometrical ingredients useful to describe icosahedral quasicrystals as irrational 3-dim cuts of ordinary crystals in 6-dim space. Atoms are described by atomic surfaces (ASs) that are bounded volumes in the internal (or perpendicular) 3-dim space and the intersections of which with the physical space are the actual atomic positions. The main part of the paper is devoted to finding the major properties of quasicrystalline icosahedral structures. As experimentally demonstrated, they can be described with a surprisingly few high symmetry ASs located at high symmetry special points in 6-dim space. The atomic structures are best described by aggregations and intersections of high symmetry compact interpenetrating atomic clusters. We show here that the experimentally relevant clusters are derived from one generic cluster made of two concentric triacontahedra scaled by τ and an external icosidodecahedron. Depending on which ones of the orbits of this cluster are eventually occupied by atoms, the actual atomic clusters are of type Bergman, Mackay, Tsai and others….

  3. Self-organized formation of quantum dots of a material on a substrate

    DOEpatents

    Zhang, Zhenyu; Wendelken, John F.; Chang, Ming-Che; Pai, Woei Wu

    2001-01-01

    Systems and methods are described for fabricating arrays of quantum dots. A method for making a quantum dot device, includes: forming clusters of atoms on a substrate; and charging the clusters of atoms such that the clusters of atoms repel one another. The systems and methods provide advantages because the quantum dots can be ordered with regard to spacing and/or size.

  4. Surgically induced astigmatism following trabeculectomy.

    PubMed

    Kim, Gyu Ah; Lee, Si Hyung; Lee, Sang Yeop; Kwon, Hee Jung; Bae, Hyoung Won; Seong, Gong Je; Kim, Chan Yun

    2018-03-14

    Surgically induced astigmatism (SIA) has attracted much interest in recent times because changes in corneal astigmatism can lead to decreased uncorrected visual acuity and patient discomfort. This study aimed to evaluate SIA and to identify factors correlated therewith after trabeculectomy. We retrospectively reviewed medical charts of patients who were treated with trabeculectomy at 120° meridian (superotemporal area on right eye and superonasal area on left eye) by the same surgeon. Preoperative keratometric data were compared with data collected from 2 months to 12 months postoperatively. SIA was evaluated using Naeser's polar value analysis. Using Naeser's method, ΔKP(120) was calculated as 0.7 ± 0.7 (0.82@104°), which indicates a with-the-rule change. After surgery, the combined mean polar values changed significantly (Hotelling T 2  = 22.47; p < 0.001). Multivariate analysis of variance indicated that postoperative intraocular pressure and location of surgery were independent factors that were significantly associated with SIA (p = 0.002 and 0.03, respectively). Trabeculectomy at the 120° meridian was not astigmatically neutral. In addition, the SIA after trabeculectomy appears to be greater in eyes with low postoperative intraocular pressure and a superonasal surgical wound rather than a superotemporal wound.

  5. The location of incision in cataract surgery and its impact on induced astigmatism.

    PubMed

    Hashemi, Hassan; Khabazkhoob, Mehdi; Soroush, Sara; Shariati, Reyhane; Miraftab, Mohammad; Yekta, Abbasali

    2016-01-01

    The purpose of the present study is a systematic review of previous studies on choosing the best incision site for the correction of astigmatism in cataract surgery and assessing the amount of surgically induced astigmatism (SIA) with each approach. Regardless of astigmatism axis, studies show that using an on-axis incision is associated with favorable results for 0.5-1.0 diopter (D) of astigmatism. In cases with more than 1.0 D astigmatism, paired on-axis incisions can be appreciably efficient in astigmatism correction and cause at least 1.5 D SIA. Considering the amount of SIA, a temporal incision is the best approach when the patient has minimal amounts of corneal astigmatism preoperatively. At higher levels of astigmatism, if no other astigmatism correction method is used simultaneously, the temporal incision is used less frequently; however, since it is associated with the least SIA, it is still the choice site when another correction method is used. The temporal incisions in cataract surgery are associated with little SIA and are appropriate choices for mild preoperative astigmatism. At higher levels of preoperative astigmatism, superior incisions are associated with better results when combined methods are not applied.

  6. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Chul; Kim, Su-Jin; Kim, Kyung-Sup; Shin, Hang-Cheol; Yoon, Ji-Won

    2000-11-01

    A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of β cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic β cells by autoimmune responses specific to β cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic β cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.

  7. Comparison of surgically induced astigmatism in various incisions in manual small incision cataract surgery.

    PubMed

    Jauhari, Nidhi; Chopra, Deepak; Chaurasia, Rajan Kumar; Agarwal, Ashutosh

    2014-01-01

    To determine the surgically induced astigmatism (SIA) in Straight, Frown and Inverted V shape (Chevron) incisions in manual small incision cataract surgery (SICS). A prospective cross sectional study was done on a total of 75 patients aged 40y and above with senile cataract. The patients were randomly divided into three groups (25 each). Each group received a particular type of incision (Straight, Frown or Inverted V shape incisions). Manual SICS with intraocular lens (IOL) implantation was performed. The patients were compared 4wk post operatively for uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA) and SIA. All calculations were performed using the SIA calculator version 2.1, a free software program. The study was analyzed using SPSS version 15.0 statistical analysis software. The study found that 89.5% of patients in Straight incision group, 94.2% in Frown incision group and 95.7% in Inverted V group attained BCVA post-operatively in the range of 6/6 to 6/18. Mean SIA was minimum (-0.88±0.61D×90 degrees) with Inverted V incision which was statistically significant. Inverted V (Chevron) incision gives minimal SIA.

  8. Impurity-doped Si10 cluster: Understanding the structural and electronic properties from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Majumder, Chiranjib; Kulshreshtha, S. K.

    2004-12-01

    Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.

  9. Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth-Characterization and Electrocatalysis.

    PubMed

    Zhou, Min; Dick, Jeffrey E; Bard, Allen J

    2017-12-06

    We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.

  10. Leaf bidirectional reflectance and transmittance in corn and soybean

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Norman, J. M.; Blad, B. L.

    1989-01-01

    Bidirectional optical properties of leaves must be adequately characterized to develop comprehensive and reliably predictive canopy radiative-transfer models. Directional reflectance and transmittance factors of individual corn and soybean leaves were measured at source incidence angles (SIAs) 20, 45, and 70 deg and numerous view angles in the visible and NIR. Bidirectional reflectance distributions changed with increasing SIA, with forward scattering most pronounced at 70 deg. Directional-hemispherical reflectance generally increased and transmittance decreased with increased SIA. Directional-hemispherical reflectance factors were higher and transmittances were lower than the nadir-viewed reflectance component.

  11. Probing the structural and electronic properties of cationic rubidium-gold clusters: [AunRb]+ (n = 1-10)

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Ru; Zhang, Hai-Rong; Qian, Yu; Duan, Xu-Chao; Hu, Yan-Fei

    2016-03-01

    Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1-10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even-odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1-10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study.

  12. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison.

    PubMed

    Nikose, Archana Sunil; Saha, Dhrubojyoti; Laddha, Pradnya Mukesh; Patil, Mayuri

    2018-01-01

    Cataract surgery has undergone various advances since it was evolved from ancient couching to the modern phacoemulsification cataract surgery. Surgically induced astigmatism (SIA) remains one of the most common complications. The introduction of sutureless clear corneal incision has gained increasing popularity worldwide because it offers several advantages over the traditional sutured limbal incision and scleral tunnel. A clear corneal incision has the benefit of being bloodless and having an easy approach, but SIA is still a concern. In this study, we evaluated the SIA in clear corneal incisions with temporal approach and superior approach phacoemulsification. Comparisons between the two incisions were done using keratometric readings of preoperative and postoperative refractive status. It was a hospital-based prospective interventional comparative randomized control trial of 261 patients conducted in a rural-based tertiary care center from September 2012 to August 2014. The visual acuity and detailed anterior segment and posterior segment examinations were done and the cataract was graded according to Lens Opacification Classification System II. Patients were divided for phacoemulsification into two groups, group A and group B, who underwent temporal and superior clear corneal approach, respectively. The patients were followed up on day 1, 7, 30, and 90 postoperatively. The parameters recorded were uncorrected visual acuity, best-corrected visual acuity, slit lamp examination, and keratometry. The mean difference of SIA between 30th and 90th day was statistically evaluated using paired t -test, and all the analyses were performed using SPSS 18.0 (SPSS Inc.) software. The mean postoperative SIA in group A was 0.998 D on the 30th day, which reduced to 0.768 D after 90 days, and in group B the SIA after 30 days was 1.651 D, whereas it reduced to 1.293 D after 90 days. Temporal clear corneal incision is evidently better than superior clear corneal incision as far as SIA is concerned.

  13. Trend in proportions of missed children during polio supplementary immunization activities in the African Region: evidence from independent monitoring data 2010-2012.

    PubMed

    Okeibunor, Joseph; Gasasira, Alex; Mihigo, Richard; Salla, Mbaye; Poy, Alain; Orkeh, Godwin; Shaba, Keith; Nshimirimana, Deo

    2014-02-19

    This is a comparative analysis of independent monitoring data collected between 2010 and 2012, following the implementation of supplementary immunization activities (SIAs) in countries in the three sub regional blocs of World Health Organization in the African Region. The sub regional blocs are Central Africa, West Africa, East and Southern Africa. In addition to the support for SIAs, the Central and West African blocs, threatened with importation and re-establishment of polio transmission received intensive coordination through weekly teleconferences. The later, East and Southern African bloc with low polio threats was not engaged in the intensive coordination through teleconferences. The key indicator of the success of SIAs is the proportion of children missed during SIAs. The results showed that generally there was a decrease in the proportion of children missed during SIAs in the region, from 7.94% in 2010 to 5.95% in 2012. However, the decrease was mainly in the Central and West African blocs. The East and Southern African bloc had countries with as much as 25% missed children. In West Africa and Central Africa, where more coordinated SIAs were conducted, there were progressive and consistent drops, from close to 20-10% at the maximum. At the country and local levels, steps were undertaken to ameliorate situation of low immunization uptake. Wherever an area is observed to have low coverage, local investigations were conducted to understand reasons for low coverage, plans to improve coverage are made and implemented in a coordinated manner. Lessons learned from close monitoring of polio eradication SIAs are will be applied to other campaigns being conducted in the African Region to accelerate control of other vaccine preventable diseases including cerebrospinal meningitis A, measles and yellow fever. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Interaction of scandium and titanium atoms with a carbon surface containing five- and seven-membered rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnov, P. O., E-mail: kpo1980@gmail.com; Eliseeva, N. S.; Kuzubov, A. A., E-mail: alex_xx@rambler.ru

    2012-01-15

    The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.

  15. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  16. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    PubMed

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.

    Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less

  18. Ligand-protected gold clusters: the structure, synthesis and applications

    NASA Astrophysics Data System (ADS)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  19. Catalysis applications of size-selected cluster deposition

    DOE PAGES

    Vajda, Stefan; White, Michael G.

    2015-10-23

    In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less

  20. Contemporary management of critical lower limb ischemia in TASC D lesions with subintimal angioplasty in femoro-popliteal lesions, tibial angioplasty and sequential compression biomechanical device for infra-inguinal arterial occlusion. Experience and quality of life outcome learned over 25 years.

    PubMed

    Sultan, S; Hynes, N

    2014-12-01

    Patients with end-stage critical limb ischemia (CLI) survive on borrowed time and amputation is inevitable if an aggressive management stratagem is not instigated. Our primary aim was to equate effectiveness of subintimal angioplasty (SIA) and tibial balloon angioplasty (TBA) in sustaining clinical improvement and amputation free survival (AFS) in patients with CLI TASD II D. Moreover, patients with severe CLI, who were not suitable for revascularization and who were offered therapy with a sequential compression biomechanical device (SCBD) were scrutinised as part of a comprehensive lower limb salvage program. From 2002-2012, 5876 patients were referred with peripheral vascular disease (PVD); 987 presented with CLI and 798 had intervention; 189 patients presenting with CLI were not candidates for revascularisation, out of which 171 were offered SCBD. We formed a prospective observational group study of 441 patient who had TASC D disease. All of these patients presented as emergencies and were allocated to the next available treatment list. Duplex ultrasound arterial mapping (DUAM) was the sole preoperative investigation tool in 92% of all cases. Of the 441 patients studied, 190 patients (206 procedures) has SIA for TASC D femero-popliteal occlusions, 80 patients (89 procedures) had TBA and cool eximer laser angioplasty (CELA) for tibial artery occlusions and 171 patients with severe CLI were not suitable for revascularization and joined the SCBD program. Mean age (SIA 73±13 years vs. TBA/CELA 74±8 years vs. SCBD 75±13 years), and comorbidity severity scores (P>0.05) were similar between groups. Perioperative mortality within the SIA group was 1.6% vs. 0% within the TBA group and 0.6% in SCBD. Length of hospital stay within the TBA group was 3.8±2 days vs. SIA 14±16 days, P<0.0001. The 5-year freedom from major adverse events (MAE) for the SIA group was 68% that was comparable to the results obtained for both the TBA group; 59%, and SCBD group: 62.5% (P=0.1935). Five-year freedom from target lesion revascularization was 85.9% within the SIA group and 79% within the TBA group. A sustained clinical improvement was seen in 82.8% of primary SIA and 68% of TBA, which mimics the outcome of SCBD at 68% at one year. A total of 83% SCBD patients had no rest pain within one week of starting the program and gangrene remained dry and non-progressive. Ulceration healed in all but 12 patients. There were no device-related complications. Limb salvage was 94% at 5 years. All-cause survival was 69%. Quality time spent without symptoms of disease or toxicity of treatment (Q-TWiST) was 24.7 months for SIA and 8.5 months for TBA and was 38.13 for SCBD for a total of 708 months of usage. Cost per quality adjusted-life years (QALY) for SIA was € 5662.79, € 12,935.18 for TBA and € 2943.56 for SCBD. All treatment pathways augmented patient-specific Q-TWiST with substantial cost reduction. SIA, TBA and SCBD expand AFS and symptom-free survival. All treatment modalities are minimally invasive and allow for a high patient turnover without compromising limb salvage, once they are performed by experienced vascular surgeons in high deliberate practice volume centers.

  1. Endohedral beryllium atoms in germanium clusters with eight and fewer vertices: how small can a cluster be and still encapsulate a central atom?

    PubMed

    Uţă, M M; King, R B

    2012-05-31

    Structures of the beryllium-centered germanium clusters Be@Ge(n)(z) (n = 8, 7, 6; z = -4, -2, 0, +2) have been investigated by density functional theory to provide some insight regarding the smallest metal cluster that can encapsulate an interstitial atom. The lowest energy structures of the eight-vertex Be@Ge(8)(z) clusters (z = -4, -2, 0, +2) all have the Be atom at the center of a closed polyhedron, namely, a D(4d) square antiprism for Be@Ge(8)(4-), a D(2d) bisdisphenoid for Be@Ge(8)(2-), an ideal O(h) cube for Be@Ge(8), and a C(2v) distorted cube for Be@Ge(8)(2+). The Be-centered cubic structures predicted for Be@Ge(8) and Be@Ge(8)(2+) differ from the previously predicted lowest energy structures for the isoelectronic Ge(8)(2-) and Ge(8). This appears to be related to the larger internal volume of the cube relative to other closed eight-vertex polyhedra. The lowest energy structures for the smaller seven- and six-vertex clusters Be@Ge(n)(z) (n = 7, 6; z = -4, -2, 0, +2) no longer have the Be atom at the center of a closed Ge(n) polyhedron. Instead, either the Ge(n) polyhedron has opened up to provide a larger volume for the Be atom or the Be atom has migrated to the surface of the polyhedron. However, higher energy structures are found in which the Be atom is located at the center of a Ge(n) (n = 7, 6) polyhedron. Examples of such structures are a centered C(2v) capped trigonal prismatic structure for Be@Ge(7)(2-), a centered D(5h) pentagonal bipyramidal structure for Be@Ge(7), a centered D(3h) trigonal prismatic structure for Be@Ge(6)(4-), and a centered octahedral structure for Be@Ge(6). Cluster buildup reactions of the type Be@Ge(n)(z) + Ge(2) → Be@Ge(n+2)(z) (n = 6, 8; z = -4, -2, 0, +2) are all predicted to be highly exothermic. This suggests that interstitial clusters having an endohedral atom inside a bare post transition element polyhedron with eight or fewer vertices are less than the optimum size. This is consistent with the experimental observation of several types of 10-vertex polyhedral bare post transition element clusters with interstitial atoms but the failure to observe such clusters with external polyhedra having eight or fewer vertices.

  2. Differences in spirometry interpretation algorithms: influence on decision making among primary-care physicians.

    PubMed

    He, Xiao-Ou; D'Urzo, Anthony; Jugovic, Pieter; Jhirad, Reuven; Sehgal, Prateek; Lilly, Evan

    2015-03-12

    Spirometry is recommended for the diagnosis of asthma and chronic obstructive pulmonary disease (COPD) in international guidelines and may be useful for distinguishing asthma from COPD. Numerous spirometry interpretation algorithms (SIAs) are described in the literature, but no studies highlight how different SIAs may influence the interpretation of the same spirometric data. We examined how two different SIAs may influence decision making among primary-care physicians. Data for this initiative were gathered from 113 primary-care physicians attending accredited workshops in Canada between 2011 and 2013. Physicians were asked to interpret nine spirograms presented twice in random sequence using two different SIAs and touch pad technology for anonymous data recording. We observed differences in the interpretation of spirograms using two different SIAs. When the pre-bronchodilator FEV1/FVC (forced expiratory volume in one second/forced vital capacity) ratio was >0.70, algorithm 1 led to a 'normal' interpretation (78% of physicians), whereas algorithm 2 prompted a bronchodilator challenge revealing changes in FEV1 that were consistent with asthma, an interpretation selected by 94% of physicians. When the FEV1/FVC ratio was <0.70 after bronchodilator challenge but FEV1 increased >12% and 200 ml, 76% suspected asthma and 10% suspected COPD using algorithm 1, whereas 74% suspected asthma versus COPD using algorithm 2 across five separate cases. The absence of a post-bronchodilator FEV1/FVC decision node in algorithm 1 did not permit consideration of possible COPD. This study suggests that differences in SIAs may influence decision making and lead clinicians to interpret the same spirometry data differently.

  3. Effects of supplemental measles immunization on cases of measles admitted at the Wesley Guild Hospital, Ilesa, Nigeria.

    PubMed

    Peter, Kuti Bankole; Ademola, Adegoke Samuel; Oyeku, Oyelami Akibu

    2014-03-01

    Measles is a highly contagious vaccine-preventable infection which continues to be a significant cause of childhood morbidity and mortality in developing countries particularly those with poor routine immunisation coverage. Supplemental immunisation activities (SIAs) were thus introduced to improve vaccine coverage. This study was carried out to assess the impact of the supplemental measles vaccinations on the cases of measles admitted at a tertiary health facility in South west Nigeria. Weretrospectivelylooked at therecords of cases of measles in children admitted to the Wesley Guild Hospital, Ilesa over a ten year period (2001 - 2010); five years before and five years after the nationwide commencement of supplemental measles immunisation activities (SIAs) in the region in 2006. Measles cases were defined using the WHO case definition. Over the ten year study period, a total of 12,139 children were admitted andmanaged; out of which 302 (2.5%) were cases of complicated measles. There was no difference in the mean (SD) of children admitted in the years before and after the introduction of the SIAs {6040 (122.7) vs.6099 (120.2); t-test 0.02, p =0.988.} There was however a remarkable reduction in the proportion of the cases of measles admitted after the introduction of SIAs compared to the period before SIAs (4.3% vs. 0.6% x2=169.580; p < 0.001). SIAs have remarkably reduced morbidity and mortality associated with measles in the region. We advocate for sustenance of these efforts as well as improvement in routine immunisation coverage to avoid a backlash which can lead to devastating measles outbreak.

  4. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditmire, Todd

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor ofmore » 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and tested a cluster generator based on the Laser Ablation of Microparticles (LAM) method.« less

  5. Addition of a thallium vertex to empty and centered nine-atom deltahedral zintl ions of germanium and tin.

    PubMed

    Rios, Daniel; Gillett-Kunnath, Miriam M; Taylor, Jacob D; Oliver, Allen G; Sevov, Slavi C

    2011-03-21

    Nickel atoms were inserted into nine-atom deltahedral Zintl ions of E(9)(4-) (E = Ge, Sn) via reactions with Ni(cod)(2) (cod = cyclooctadiene), and [Ni@Sn(9)](3-) was structurally characterized. Both the empty and the Ni-centered clusters react with TlCp (Cp = cyclopentadienyl anion) and add a thallium vertex to form the deltahedral ten-atom closo-species [E(9)Tl](3-) and [Ni@E(9)Tl](3-), respectively. The structures of [Ge(9)Tl](3-) and [Ni@Sn(9)Tl](3-) showed that, as expected, the geometry of the ten-atom clusters is that of a bicapped square antiprism where the Tl-atom occupies one of the two capping vertices. This illustrates that centering a nine-atom cluster with a nickel atom does not change its reactivity toward TlCp. All compounds were characterized by electrospray mass spectrometry.

  6. Preventing Vaccine-Derived Poliovirus Emergence during the Polio Endgame

    PubMed Central

    Burns, Cara C.; Lyons, Hil; Blake, Isobel M.; Oberste, M. Steven; Kew, Olen M.; Grassly, Nicholas C.

    2016-01-01

    Reversion and spread of vaccine-derived poliovirus (VDPV) to cause outbreaks of poliomyelitis is a rare outcome resulting from immunisation with the live-attenuated oral poliovirus vaccines (OPVs). Global withdrawal of all three OPV serotypes is therefore a key objective of the polio endgame strategic plan, starting with serotype 2 (OPV2) in April 2016. Supplementary immunisation activities (SIAs) with trivalent OPV (tOPV) in advance of this date could mitigate the risks of OPV2 withdrawal by increasing serotype-2 immunity, but may also create new serotype-2 VDPV (VDPV2). Here, we examine the risk factors for VDPV2 emergence and implications for the strategy of tOPV SIAs prior to OPV2 withdrawal. We first developed mathematical models of VDPV2 emergence and spread. We found that in settings with low routine immunisation coverage, the implementation of a single SIA increases the risk of VDPV2 emergence. If routine coverage is 20%, at least 3 SIAs are needed to bring that risk close to zero, and if SIA coverage is low or there are persistently “missed” groups, the risk remains high despite the implementation of multiple SIAs. We then analysed data from Nigeria on the 29 VDPV2 emergences that occurred during 2004−2014. Districts reporting the first case of poliomyelitis associated with a VDPV2 emergence were compared to districts with no VDPV2 emergence in the same 6-month period using conditional logistic regression. In agreement with the model results, the odds of VDPV2 emergence decreased with higher routine immunisation coverage (odds ratio 0.67 for a 10% absolute increase in coverage [95% confidence interval 0.55−0.82]). We also found that the probability of a VDPV2 emergence resulting in poliomyelitis in >1 child was significantly higher in districts with low serotype-2 population immunity. Our results support a strategy of focused tOPV SIAs before OPV2 withdrawal in areas at risk of VDPV2 emergence and in sufficient number to raise population immunity above the threshold permitting VDPV2 circulation. A failure to implement this risk-based approach could mean these SIAs actually increase the risk of VDPV2 emergence and spread. PMID:27384947

  7. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  8. Accelerating atomic structure search with cluster regularization

    NASA Astrophysics Data System (ADS)

    Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.

    2018-06-01

    We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.

  9. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters.

    PubMed

    Cheng, Daojian; Wang, Wenchuan; Huang, Shiping

    2008-05-14

    Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.

  10. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  11. Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen

    NASA Astrophysics Data System (ADS)

    Fadanelli, R. C.; Grande, P. L.; Schiwietz, G.

    2008-03-01

    The electronic energy loss of molecular clusters as a function of impact parameter is far less understood than atomic energy losses. For instance, there are no analytical expressions for the energy loss as a function of impact parameter for cluster ions. In this work, we describe two procedures to evaluate the combined energy loss of molecules: Ab initio calculations within the semiclassical approximation and the coupled-channels method using atomic orbitals; and simplified models for the electronic cluster energy loss as a function of the impact parameter, namely the molecular perturbative convolution approximation (MPCA, an extension of the corresponding atomic model PCA) and the molecular unitary convolution approximation (MUCA, a molecular extension of the previous unitary convolution approximation UCA). In this work, an improved ansatz for MPCA is proposed, extending its validity for very compact clusters. For the simplified models, the physical inputs are the oscillators strengths of the target atoms and the target-electron density. The results from these models applied to an atomic hydrogen target yield remarkable agreement with their corresponding ab initio counterparts for different angles between cluster axis and velocity direction at specific energies of 150 and 300 keV/u.

  12. Autoionization following nanoplasma formation in atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Schütte, Bernd; Lahl, Jan; Oelze, Tim; Krikunova, Maria; Vrakking, Marc J. J.; Rouzée, Arnaud

    2016-05-01

    Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  13. Phase stability and electronic structure of UMo2Al20: A first-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Peng-Chuang; Xian, Ya-Jiang; Wang, Xin; Zhang, Yu-Ting; Zhang, Peng-Cheng

    2017-09-01

    In this paper, the phase stability of UMo2Al20 was explored using cluster formula in combination with first-principles calculations. Cluster formula analysis uncovered that the compound was composed of two principal clusters, i.e. [Mo-Al12] and [U-Al16]. The electronic interactions between U, Mo and Al atoms in this compound were discussed using elastic property, Bader charges and energy-resolved local bonding analysis, as well as the electronic interactions between Mo and Al atoms in [Mo-Al12] cluster and between U and Al atoms in [U-Al16] cluster. It revealed that UMo2Al20 satisfied the mechanical stability criterion for cubic system, and exhibited near ionic bonding character with weak bonding directionality. The calculations within both standard DFT and HSE frameworks demonstrated that U and Al atoms acted as an electron donor while Mo atoms acted as electron acceptor. The intrinsic stability of UMo2Al20 mainly stemmed from the bonding states of Mo-Al bonds and Al-Al bonds in [Mo-Al12] cluster. These calculations provide a further insight on the CeCr2Al20-type ternary compounds.

  14. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  15. Evaluation of Solute Clusters Associated with Bake-Hardening Response in Isothermal Aged Al-Mg-Si Alloys Using a Three-Dimensional Atom Probe

    NASA Astrophysics Data System (ADS)

    Aruga, Yasuhiro; Kozuka, Masaya; Takaki, Yasuo; Sato, Tatsuo

    2014-12-01

    Temporal changes in the number density, size distribution, and chemical composition of clusters formed during natural aging at room temperature and pre-aging at 363 K (90 °C) in an Al-0.62Mg-0.93Si (mass pct) alloy were evaluated using atom probe tomography. More than 10 million atoms were examined in the cluster analysis, in which about 1000 clusters were obtained for each material after various aging treatments. The statistically proven records show that both number density and the average radius of clusters in pre-aged materials are larger than in naturally aged materials. It was revealed that the fraction of clusters with a low Mg/Si ratio after natural aging for a short time is higher than with other aging treatments, regardless of cluster size. This indicates that Si-rich clusters form more easily after short-period natural aging, and that Mg atoms can diffuse into the clusters or possibly form another type of Mg-Si cluster after prolonged natural aging. The formation of large clusters with a uniform Mg/Si ratio is encouraged by pre-aging. It can be concluded that an increase of small clusters with various Mg/Si ratios does not promote the bake-hardening (BH) response, whereas large clusters with a uniform Mg/Si ratio play an important role in hardening during the BH treatment at 443 K (170 °C).

  16. Zintl phase with a layered network structure, KSi/sub 3/As/sub 3/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurng, W.M.; Corbett, J.D.; Wang, S.L.

    The title compound is obtained in high yield from a two-step reaction of K with Si in sealed tantalum and then of that product with As in silica at 800-900/sup 0/C. Ion exchange with NaI at 500 /sup 0/C gives the sodium derivative. The structure of the purple KSi/sub 3/A/sub 3/ crystals has been established by x-ray diffraction means at room temperature (orthorhombic, space group Pbam, Z = 4, a = 10.010 (4) A, b = 19.139 (8) A, c = 3.664 (1) A, R = 0.044 for 674 reflections, 2theta < 55/sup 0/). The infinity /sup 2/(Si/sub 3/As/sub 3/)/supmore » -/ anion layers may be generated by Si-Si bonding between puckered Si/sub 3/As/sub 3/(As) rings to form chains followed by side-by-side condensation of these to sheets. The structure may be derived from the layered structure of SiAs in a concerted way through reductive ring opening and Si-Si bond formation. Comparisons are also made with more reduced Si-As anion chains and clusters and with the closely related Li/sub 3/NaSi/sub 6/. K/sub 2/SiAs/sub 2/ has also been synthesized and shown to be isostructural with K/sub 2/SiP/sub 2/. 20 references, 4 figures, 4 tables.« less

  17. Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.

    PubMed

    Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F

    2018-04-23

    We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.

  18. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  19. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    NASA Technical Reports Server (NTRS)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  20. The interaction between atomic displacement cascades and tilt symmetrical grain boundaries in α-zirconium

    NASA Astrophysics Data System (ADS)

    Kapustin, P.; Svetukhin, V.; Tikhonchev, M.

    2017-06-01

    The atomic displacement cascade simulations near symmetric tilt grain boundaries (GBs) in hexagonal close packed-Zirconium were considered in this paper. Further defect structure analysis was conducted. Four symmetrical tilt GBs -∑14?, ∑14? with the axis of rotation [0 0 0 1] and ∑32?, ∑32? with the axis of rotation ? - were considered. The molecular dynamics method was used for atomic displacement cascades' simulation. A tendency of the point defects produced in the cascade to accumulate near the GB plane, which was an obstacle to the spread of the cascade, was discovered. The results of the point defects' clustering produced in the cascade were obtained. The clusters of both types were represented mainly by single point defects. At the same time, vacancies formed clusters of a large size (more than 20 vacancies per cluster), while self-interstitial atom clusters were small-sized.

  1. Sequential desorption energy of hydrogen from nickel clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepika,; Kumar, Rakesh, E-mail: rakesh@iitrpr.ac.in; R, Kamal Raj.

    2015-06-24

    We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage andmore » regeneration of Hydrogen as a clean energy carrier.« less

  2. A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids.

    PubMed

    Khedri, Zahra; Xiao, An; Yu, Hai; Landig, Corinna Susanne; Li, Wanqing; Diaz, Sandra; Wasik, Brian R; Parrish, Colin R; Wang, Lee-Ping; Varki, Ajit; Chen, Xi

    2017-01-20

    9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac 2 ). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac 2 , with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac 2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable.

  3. Structural, electronic, and magnetic properties of Y(n)O (n=2-14) clusters: Density functional study.

    PubMed

    Yang, Zhi; Xiong, Shi-Jie

    2008-09-28

    The geometries stability, electronic properties, and magnetism of Y(n)O clusters up to n=14 are systematically studied with density functional theory. In the lowest-energy structures of Y(n)O clusters, the equilibrium site of the oxygen atom gradually moves from an outer site of the cluster, via a surface site, and finally, to an interior site as the number of the Y atoms increases from 2 to 14. Starting from n=12, the O atom falls into the center of the cluster with the Y atoms forming the outer frame. The results show that clusters with n=2, 4, 8, and 12 are more stable than their respective neighbors, and that the total magnetic moments of Y(n)O clusters are all quite small except Y(12)O cluster. The lowest-energy structure of Y(12)O cluster is a perfect icosahedron with a large magnetic moment 6mu(B). In addition, we find that the total magnetic moments are quenched for n=2, 6, and 8 due to the closed-shell electronic configuration. The calculated ionization potentials and electron affinities are in good agreement with the experimental results, which imply that the present theoretical treatments are satisfactory.

  4. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  5. C 60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer

    DOE PAGES

    Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.

    2015-12-03

    Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less

  6. Theoretical studies on structural, magnetic, and spintronic characteristics of sandwiched Eu(n)COT(n+1) (n = 1-4) clusters.

    PubMed

    Zhang, Xiuyun; Ng, Man-Fai; Wang, Yanbiao; Wang, Jinlan; Yang, Shuo-Wang

    2009-09-22

    Europium (Eu)-cyclootetatrene (COT = C(8)H(8)) multidecker clusters (Eu(n)COT(n+1), n = 1-4) are studied by relativistic density functional theory calculations. These clusters are found to be thermodynamically stable with freely rotatable COT rings, and their total magnetic moments (MMs) increase linearly along with the number of Eu atoms. Each Eu atom contributes about 7 mu(B) to the cluster. Meanwhile, the internal COT rings have little MM contribution while the external COT rings have about 1 mu(B) MM aligned in opposite direction to that of the Eu atoms. The total MM of the Eu(n)COT(n+1) clusters can thus be generalized as 7n - 2 mu(B) where n is the number of Eu atoms. Besides, the ground states of these clusters are ferromagnetic and energetically competitive with the antiferromagnetic states, meaning that their spin states are very unstable, especially for larger clusters. More importantly, we uncover an interesting bonding characteristic of these clusters in which the interior ionic structure is capped by two hybrid covalent-ionic terminals. We suggest that such a characteristic makes the Eu(n)COT(n+1) clusters extremely stable. Finally, we reveal that for the positively charged clusters, the hybrid covalent-ionic terminals will tip further toward the interior part of the clusters to form deeper covalent-ionic caps. In contrast, the negatively charged clusters turn to pure ionic structures.

  7. Differences in spirometry interpretation algorithms: influence on decision making among primary-care physicians

    PubMed Central

    He, Xiao-Ou; D’Urzo, Anthony; Jugovic, Pieter; Jhirad, Reuven; Sehgal, Prateek; Lilly, Evan

    2015-01-01

    Background: Spirometry is recommended for the diagnosis of asthma and chronic obstructive pulmonary disease (COPD) in international guidelines and may be useful for distinguishing asthma from COPD. Numerous spirometry interpretation algorithms (SIAs) are described in the literature, but no studies highlight how different SIAs may influence the interpretation of the same spirometric data. Aims: We examined how two different SIAs may influence decision making among primary-care physicians. Methods: Data for this initiative were gathered from 113 primary-care physicians attending accredited workshops in Canada between 2011 and 2013. Physicians were asked to interpret nine spirograms presented twice in random sequence using two different SIAs and touch pad technology for anonymous data recording. Results: We observed differences in the interpretation of spirograms using two different SIAs. When the pre-bronchodilator FEV1/FVC (forced expiratory volume in one second/forced vital capacity) ratio was >0.70, algorithm 1 led to a ‘normal’ interpretation (78% of physicians), whereas algorithm 2 prompted a bronchodilator challenge revealing changes in FEV1 that were consistent with asthma, an interpretation selected by 94% of physicians. When the FEV1/FVC ratio was <0.70 after bronchodilator challenge but FEV1 increased >12% and 200 ml, 76% suspected asthma and 10% suspected COPD using algorithm 1, whereas 74% suspected asthma versus COPD using algorithm 2 across five separate cases. The absence of a post-bronchodilator FEV1/FVC decision node in algorithm 1 did not permit consideration of possible COPD. Conclusions: This study suggests that differences in SIAs may influence decision making and lead clinicians to interpret the same spirometry data differently. PMID:25763716

  8. Comparison of surgically induced astigmatism following different glaucoma operations.

    PubMed

    Tanito, Masaki; Matsuzaki, Yukari; Ikeda, Yoshifumi; Fujihara, Etsuko

    2017-01-01

    To compare surgically induced astigmatism (SIA) among glaucomatous eyes treated with trabeculectomy (LEC), EX-PRESS ® shunt (EXP), ab externo trabeculotomy (exLOT), or microhook ab interno trabeculotomy (μLOT). Eighty right eyes of 80 subjects who underwent LEC (n=20), EXP (n=20), exLOT (n=20), or μLOT (n=20) were included. The dataset including the best-corrected visual acuity (BCVA), intraocular pressure (IOP), and keratometry recordings preoperatively and 3 months postoperatively was collected by chart review. The means of the vector magnitude, vector meridian, and arithmetic magnitude of the preoperative and postoperative astigmatism and SIA were calculated. The correlations among the SIA magnitude, postoperative BCVA, and IOP were assessed. The mean astigmatic arithmetic magnitudes did not differ significantly ( P =0.0732) preoperatively among the four groups, but the magnitude was significantly ( P =0.0002) greater in the LEC group than the other groups postoperatively. The mean SIA vectors were calculated to be 1.01 D at 56°, 0.62 D at 74°, 0.23 D at 112°, and 0.12 D at 97° for the LEC, EXP, exLOT, and μLOT groups, respectively. The mean SIA arithmetic magnitudes were significantly ( P <0.0001) greater in the LEC group than the other groups. Three months postoperatively, the SIA magnitude was correlated positively with the logarithm of the minimum angle of resolution (logMAR) BCVA ( r =0.3538) and negatively with the IOP ( r =-0.3265); the logMAR BCVA was correlated negatively with the IOP ( r =-0.3105). EXP, exLOT, and μLOT induce less corneal astigmatism than LEC in the early postoperative period.

  9. Antecedent causes of a measles resurgence in the Democratic Republic of the Congo

    PubMed Central

    Scobie, Heather Melissa; Ilunga, Benoît Kebela; Mulumba, Audry; Shidi, Calixte; Coulibaly, Tiekoura; Obama, Ricardo; Tamfum, Jean-Jacques Muyembe; Simbu, Elisabeth Pukuta; Smit, Sheilagh Brigitte; Masresha, Balcha; Perry, Robert Tyrrell; Alleman, Mary Margaret; Kretsinger, Katrina; Goodson, James

    2015-01-01

    Introduction Despite accelerated measles control efforts, a massive measles resurgence occurred in the Democratic Republic of the Congo (DRC) starting in mid-2010, prompting an investigation into likely causes. Methods We conducted a descriptive epidemiological analysis using measles immunization and surveillance data to understand the causes of the measles resurgence and to develop recommendations for elimination efforts in DRC. Results During 2004-2012, performance indicator targets for case-based surveillance and routine measles vaccination were not met. Estimated coverage with the routine first dose of measles-containing vaccine (MCV1) increased from 57% to 73%. Phased supplementary immunization activities (SIAs) were conducted starting in 2002, in some cases with sub-optimal coverage (≤95%). In 2010, SIAs in five of 11 provinces were not implemented as planned, resulting in a prolonged interval between SIAs, and a missed birth cohort in one province. During July 1, 2010-December 30, 2012, high measles attack rates (>100 cases per 100,000 population) occurred in provinces that had estimated MCV1 coverage lower than the national estimate and did not implement planned 2010 SIAs. The majority of confirmed case-patients were aged <10 years (87%) and unvaccinated or with unknown vaccination status (75%). Surveillance detected two genotype B3 and one genotype B2 measles virus strains that were previously identified in the region. Conclusion The resurgence was likely caused by an accumulation of unvaccinated, measles-susceptible children due to low MCV1 coverage and suboptimal SIA implementation. To achieve the regional goal of measles elimination by 2020, efforts are needed in DRC to improve case-based surveillance and increase two-dose measles vaccination coverage through routine services and SIAs. PMID:26401224

  10. Integrated package approach in delivering interventions during immunisation campaigns in a complex environment in Papua New Guinea: a case study.

    PubMed

    Vince, John David; Datta, Siddhartha Sankar; Toikilik, Steven; Lagani, William

    2014-08-06

    Papua New Guinea's difficult and varied topography, poor transport infrastructure, changing dynamics of population and economy in recent times and understaffed and poorly financed health service present major challenges for successful delivery of vaccination and other preventative health interventions to both the rural majority and urban populations, thereby posing risks for vaccine preventable disease outbreaks in the country. The country has struggled to meet the vaccination coverage targets required for the eradication of poliomyelitis and elimination of measles. Escalation of inter and intra country migration resulting from major industrial developments, particularly in extraction industries, has substantially increased the risk of infectious disease importation. This case study documents the evolution of immunisation programmes since the introduction of supplementary immunisation activities (SIAs). Single antigen SIAs have advantages and disadvantages. In situations in which the delivery of preventative health interventions is difficult, it is likely that the cost benefit is greater for multiple than for single intervention. The lessons learned from the conduct of single antigen SIAs can be effectively used for programmes delivering multiple SIA antigens, routine immunisations, and other health interventions. This paper describes a successful and cost effective multiple intervention programme in Papua New Guinea. The review of the last SIA in Papua New Guinea showed relatively high coverage of all the interventions and demonstrated the operational feasibility of delivering multiple interventions in resource constrained settings. Studies in other developing countries such as Lesotho and Ethiopia have also successfully integrated health interventions with SIA. In settings such as Papua New Guinea there is a strong case for integrating supplementary immunisation activity with routine immunisation and other health interventions through a comprehensive outreach programme. Copyright © 2014 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  11. Maintenance and Intensification of Bivalent Oral Poliovirus Vaccine Use Prior to its Coordinated Global Cessation

    PubMed Central

    Tebbens, Radboud J Duintjer; Hampton, Lee M; Wassilak, Steven G F; Pallansch, Mark A; Cochi, Stephen L; Thompson, Kimberly M

    2017-01-01

    Objective To examine the impact of different bivalent oral poliovirus vaccine (bOPV) supplemental immunization activity (SIA) strategies on population immunity to serotype 1 and 3 poliovirus transmission and circulating vaccine-derived poliovirus (cVDPV) risks before and after globally-coordinated cessation of serotype 1 and 3 oral poliovirus vaccine (OPV13 cessation). Methods We adapt mathematical models that previously informed vaccine choices ahead of the trivalent oral poliovirus vaccine to bOPV switch to estimate the population immunity to serotype 1 and 3 poliovirus transmission needed at the time of OPV13 cessation to prevent subsequent cVDPV outbreaks. We then examine the impact of different frequencies of SIAs using bOPV in high risk populations on population immunity to serotype 1 and 3 transmission, on the risk of serotype 1 and 3 cVDPV outbreaks, and on the vulnerability to any imported bOPV-related polioviruses. Results Maintaining high population immunity to serotype 1 and 3 transmission using bOPV SIAs significantly reduces 1) the risk of outbreaks due to imported serotype 1 and 3 viruses, 2) the emergence of indigenous cVDPVs before or after OPV13 cessation, and 3) the vulnerability to bOPV-related polioviruses in the event of non-synchronous OPV13 cessation or inadvertent bOPV use after OPV13 cessation. Conclusion Although some reduction in global SIA frequency can safely occur, countries with suboptimal routine immunization coverage should each continue to conduct at least one annual SIA with bOPV, preferably more, until global OPV13 cessation. Preventing cVDPV risks after OPV13 cessation requires investments in bOPV SIAs now through the time of OPV13 cessation. PMID:28690915

  12. Comparing short forms of the Social Interaction Anxiety Scale and the Social Phobia Scale.

    PubMed

    Carleton, R Nicholas; Thibodeau, Michel A; Weeks, Justin W; Teale Sapach, Michelle J N; McEvoy, Peter M; Horswill, Samantha C; Heimberg, Richard G

    2014-12-01

    The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS; Mattick & Clarke, 1998) are companion scales developed to measure anxiety in social interaction and performance situations, respectively. The measures have strong discriminant and convergent validity; however, their factor structures remain debated, and furthermore, the combined administration length (i.e., 39 items) can be prohibitive for some settings. There have been 4 attempts to assess the factor structures of the scales and reduce the item content: the 14-item Social Interaction Phobia Scale (SIPS; Carleton et al., 2009), the 12-item SIAS-6/SPS-6 (Peters, Sunderland, Andrews, Rapee, & Mattick, 2012), the 21-item abbreviated SIAS/SPS (ASIAS/ASPS; Kupper & Denollet, 2012), and the 12-item Readability SIAS and SPS (RSIAS/RSPS; Fergus, Valentiner, McGrath, Gier-Lonsway, & Kim, 2012). The current study compared the short forms on (a) factor structure, (b) ability to distinguish between clinical and non-clinical populations, (c) sensitivity to change following therapy, and (d) convergent validity with related measures. Participants included 3,607 undergraduate students (55% women) and 283 patients with social anxiety disorder (43% women). Results of confirmatory factor analyses, sensitivity analyses, and correlation analyses support the robust utility of items in the SIPS and the SPS-6 and SIAS-6 relative to the other short forms; furthermore, the SIPS and the SPS-6 and SIAS-6 were also supported by convergent validity analyses within the undergraduate sample. The RSIAS/RSPS and the ASIAS/ASPS were least supported, based on the current results and the principle of parsimony. Accordingly, researchers and clinicians should consider carefully which of the short forms will best suit their needs. (c) 2014 APA, all rights reserved.

  13. Antecedent causes of a measles resurgence in the Democratic Republic of the Congo.

    PubMed

    Scobie, Heather Melissa; Ilunga, Benoît Kebela; Mulumba, Audry; Shidi, Calixte; Coulibaly, Tiekoura; Obama, Ricardo; Tamfum, Jean-Jacques Muyembe; Simbu, Elisabeth Pukuta; Smit, Sheilagh Brigitte; Masresha, Balcha; Perry, Robert Tyrrell; Alleman, Mary Margaret; Kretsinger, Katrina; Goodson, James

    2015-01-01

    Despite accelerated measles control efforts, a massive measles resurgence occurred in the Democratic Republic of the Congo (DRC) starting in mid-2010, prompting an investigation into likely causes. We conducted a descriptive epidemiological analysis using measles immunization and surveillance data to understand the causes of the measles resurgence and to develop recommendations for elimination efforts in DRC. During 2004-2012, performance indicator targets for case-based surveillance and routine measles vaccination were not met. Estimated coverage with the routine first dose of measles-containing vaccine (MCV1) increased from 57% to 73%. Phased supplementary immunization activities (SIAs) were conducted starting in 2002, in some cases with sub-optimal coverage (≤95%). In 2010, SIAs in five of 11 provinces were not implemented as planned, resulting in a prolonged interval between SIAs, and a missed birth cohort in one province. During July 1, 2010-December 30, 2012, high measles attack rates (>100 cases per 100,000 population) occurred in provinces that had estimated MCV1 coverage lower than the national estimate and did not implement planned 2010 SIAs. The majority of confirmed case-patients were aged <10 years (87%) and unvaccinated or with unknown vaccination status (75%). Surveillance detected two genotype B3 and one genotype B2 measles virus strains that were previously identified in the region. The resurgence was likely caused by an accumulation of unvaccinated, measles-susceptible children due to low MCV1 coverage and suboptimal SIA implementation. To achieve the regional goal of measles elimination by 2020, efforts are needed in DRC to improve case-based surveillance and increase two-dose measles vaccination coverage through routine services and SIAs.

  14. Comparison of surgically induced astigmatism following different glaucoma operations

    PubMed Central

    Tanito, Masaki; Matsuzaki, Yukari; Ikeda, Yoshifumi; Fujihara, Etsuko

    2017-01-01

    Aim To compare surgically induced astigmatism (SIA) among glaucomatous eyes treated with trabeculectomy (LEC), EX-PRESS® shunt (EXP), ab externo trabeculotomy (exLOT), or microhook ab interno trabeculotomy (μLOT). Subjects and methods Eighty right eyes of 80 subjects who underwent LEC (n=20), EXP (n=20), exLOT (n=20), or μLOT (n=20) were included. The dataset including the best-corrected visual acuity (BCVA), intraocular pressure (IOP), and keratometry recordings preoperatively and 3 months postoperatively was collected by chart review. The means of the vector magnitude, vector meridian, and arithmetic magnitude of the preoperative and postoperative astigmatism and SIA were calculated. The correlations among the SIA magnitude, postoperative BCVA, and IOP were assessed. Results The mean astigmatic arithmetic magnitudes did not differ significantly (P=0.0732) preoperatively among the four groups, but the magnitude was significantly (P=0.0002) greater in the LEC group than the other groups postoperatively. The mean SIA vectors were calculated to be 1.01 D at 56°, 0.62 D at 74°, 0.23 D at 112°, and 0.12 D at 97° for the LEC, EXP, exLOT, and μLOT groups, respectively. The mean SIA arithmetic magnitudes were significantly (P<0.0001) greater in the LEC group than the other groups. Three months postoperatively, the SIA magnitude was correlated positively with the logarithm of the minimum angle of resolution (logMAR) BCVA (r=0.3538) and negatively with the IOP (r=−0.3265); the logMAR BCVA was correlated negatively with the IOP (r=−0.3105). Conclusion EXP, exLOT, and μLOT induce less corneal astigmatism than LEC in the early postoperative period. PMID:29238159

  15. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    PubMed

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers and study staff monitoring immunization coverage. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Helium cluster isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Higgins, John Paul

    Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.

  17. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  18. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model.

    PubMed

    Gomez, Rapson; Watson, Shaun D

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants ( N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed.

  19. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model

    PubMed Central

    Gomez, Rapson; Watson, Shaun D.

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants (N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed. PMID:28210232

  20. Validation of Self-Image of Aging Scale for Chinese elders.

    PubMed

    Bai, Xue; Chan, K S; Chow, Nelson

    2012-01-01

    Researchers are increasingly interested in the "image of aging" concept. Models on the image of aging abound, but few have rigorously tested measures that are culturally sensitive and domain-specific. This study first translates Levy et al.'s (2004) Image of Aging Scale into the Chinese language and revises it into the Chinese Version of the Self-Image of Aging Scale (SIAS-C). Based on the results of a survey of 445 elderly people in Wuhan-China, it then reports the factorial structure of SIAS-C and some of its psychometric properties. Confirmatory factor analysis (CFA) supports a conceptually meaningful five-factor model, as suggested in an exploratory factor analysis (EFA). The 14-item SIAS-C vindicates an acceptable level of internal consistency and test-retest reliability. Its criteria-referenced validity is demonstrated by its correlation with several criteria in expected directions. In conclusion, the SIAS-C is a psychometrically sound instrument which is recommended for use among Chinese older people.

  1. Effect of charge and composition on the structural fluxionality and stability of nine atom tin-bismuth Zintl analogues.

    PubMed

    Gupta, Ujjwal; Reber, Arthur C; Clayborne, Penee A; Melko, Joshua J; Khanna, Shiv N; Castleman, A W

    2008-12-01

    Synergistic studies of bismuth doped tin clusters combining photoelectron spectra with first principles theoretical investigations establish that highly charged Zintl ions, observed in the condensed phase, can be stabilized as isolated gas phase clusters through atomic substitution that preserves the overall electron count but reduces the net charge and thereby avoids instability because of coulomb repulsion. Mass spectrometry studies reveal that Sn(8)Bi(-), Sn(7)Bi(2)(-), and Sn(6)Bi(3)(-) exhibit higher abundances than neighboring species, and photoelectron spectroscopy show that all of these heteroatomic gas phase Zintl analogues (GPZAs) have high adiabatic electron detachment energies. Sn(6)Bi(3)(-) is found to be a particularly stable cluster, having a large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. Theoretical calculations demonstrate that the Sn(6)Bi(3)(-) cluster is isoelectronic with the well know Sn(9)(-4) Zintl ion; however, the fluxionality reported for Sn(9)(-4) is suppressed by substituting Sn atoms with Bi atoms. Thus, while the electronic stability of the clusters is dominated by electron count, the size and position of the atoms affects the dynamics of the cluster as well. Substitution with Bi enlarges the cage compared with Sn(9)(-4) making it favorable for endohedral doping, findings which suggest that these cages may find use for building blocks of cluster assembled materials.

  2. Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters

    NASA Astrophysics Data System (ADS)

    Dillinger, Sebastian; Mohrbach, Jennifer; Niedner-Schatteburg, Gereon

    2017-11-01

    We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5-20, m = 1 - mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.

  3. Quantifying the quality of hand movement in stroke patients through three-dimensional curvature.

    PubMed

    Osu, Rieko; Ota, Kazuko; Fujiwara, Toshiyuki; Otaka, Yohei; Kawato, Mitsuo; Liu, Meigen

    2011-10-31

    To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test) scores ranging from 2 (incomplete performance) to 4 (mild clumsiness) were recruited. Nine healthy participant with a SIAS score of 5 (normal) also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC) correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable from paretic movements. Measurement based on curvature was able to quantify movement irregularities and matched well with the examiner's observations. The results suggest that the quality of paretic movements is well characterized using spatial smoothness represented by curvature. The smaller computational costs associated with this measurement suggest that this method has potential clinical utility. © 2011 Osu et al; licensee BioMed Central Ltd.

  4. Quantifying the quality of hand movement in stroke patients through three-dimensional curvature

    PubMed Central

    2011-01-01

    Background To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements using an ordinal scale based on the examiner's observations. In this study, we focused on three-dimensional curvature of hand trajectory to quantify movement, and aimed to establish a novel measurement that is independent of movement duration. We compared the proposed measurement with the SIAS score and the jerk measure representing temporal smoothness. Methods Sixteen stroke patients with SIAS upper limb proximal motor function (Knee-Mouth test) scores ranging from 2 (incomplete performance) to 4 (mild clumsiness) were recruited. Nine healthy participant with a SIAS score of 5 (normal) also participated. Participants were asked to grasp a plastic glass and repetitively move it from the lap to the mouth and back at a conformable speed for 30 s, during which the hand movement was measured using OPTOTRAK. The position data was numerically differentiated and the three-dimensional curvature was computed. To compare against a previously proposed measure, the mean squared jerk normalized by its minimum value was computed. Age-matched healthy participants were instructed to move the glass at three different movement speeds. Results There was an inverse relationship between the curvature of the movement trajectory and the patient's SIAS score. The median of the -log of curvature (MedianLC) correlated well with the SIAS score, upper extremity subsection of Fugl-Meyer Assessment, and the jerk measure in the paretic arm. When the healthy participants moved slowly, the increase in the jerk measure was comparable to the paretic movements with a SIAS score of 2 to 4, while the MedianLC was distinguishable from paretic movements. Conclusions Measurement based on curvature was able to quantify movement irregularities and matched well with the examiner's observations. The results suggest that the quality of paretic movements is well characterized using spatial smoothness represented by curvature. The smaller computational costs associated with this measurement suggest that this method has potential clinical utility. PMID:22040326

  5. Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials

    NASA Astrophysics Data System (ADS)

    Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.

    2000-12-01

    Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.

  6. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  7. Metal-atom Interactions and Clustering in Organic Semiconductor Systems

    NASA Astrophysics Data System (ADS)

    Tomita, Yoko; Park, Tea-uk; Nakayama, Takashi

    2017-07-01

    The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.

  8. Development of an MKIDs-Based THz Superconducting Imaging Array (TeSIA) at 0.85 THz

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-Cai; Li, Jing; Lin, Zhen-Hui; Yang, Jin-Ping; Liu, Dong; Duan, Wen-Ying; Lou, Zheng; Shi, Qing; Li, Zhi; Zhang, Wen; Miao, Wei; Yao, Qi-Jun

    2018-06-01

    Dome A, the highest point of the cold and dry Antarctic ice sheet, offers the best access to atmospheric windows at THz/FIR wavelengths on Earth. China is planning to build a 5-m THz telescope (DATE5) there. To achieve its scientific goals associated with large sky surveys, we are developing a THz superconducting imaging array (TeSIA) at 0.85 THz (350-μm window) with a pixel number of 32 × 32 and targeting background-limited sensitivity. In this paper, detailed system design and performance of the TeSIA based on aluminum MKIDs are presented.

  9. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    NASA Astrophysics Data System (ADS)

    Michailov, M.

    The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.

  10. Electronic and magnetic properties of small rhodium clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework.more » The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.« less

  11. Structural and magnetic properties of FeGen-/0 (n = 3-12) clusters: Mass-selected anion photoelectron spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Jiao; Kong, Xiang-Yu; Liang, Xiaoqing; Yang, Bin; Xu, Hong-Guang; Xu, Xi-Ling; Feng, Gang; Zheng, Wei-Jun

    2017-12-01

    The structural, electronic, and magnetic properties of FeGen-/0 (n = 3-12) clusters were investigated by using anion photoelectron spectroscopy in combination with density functional theory calculations. For both anionic and neutral FeGen (n = 3-12) clusters with n ≤ 7, the dominant structures are exohedral. The FeGe8-/0 clusters have half-encapsulated boat-shaped structures, and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage from n = 9 to 11. The structures of FeGe10-/0 can be viewed as two Ge atoms symmetrically capping the opening of the boat-shaped structure of FeGe8, and those of FeGe12-/0 are distorted hexagonal prisms with the Fe atom at the center. Natural population analysis shows that there is an electron transfer from the Ge atoms to the Fe atom at n = 8-12. The total magnetic moment of FeGen-/0 and local magnetic moment of the Fe atom have not been quenched.

  12. Density functional theory study of small X-doped Mg(n) (X = Fe, Co, Ni, n = 1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties.

    PubMed

    Kong, Fanjie; Hu, Yanfei

    2014-03-01

    The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).

  13. Statistical analysis of atom probe data: detecting the early stages of solute clustering and/or co-segregation.

    PubMed

    Hyde, J M; Cerezo, A; Williams, T J

    2009-04-01

    Statistical analysis of atom probe data has improved dramatically in the last decade and it is now possible to determine the size, the number density and the composition of individual clusters or precipitates such as those formed in reactor pressure vessel (RPV) steels during irradiation. However, the characterisation of the onset of clustering or co-segregation is more difficult and has traditionally focused on the use of composition frequency distributions (for detecting clustering) and contingency tables (for detecting co-segregation). In this work, the authors investigate the possibility of directly examining the neighbourhood of each individual solute atom as a means of identifying the onset of solute clustering and/or co-segregation. The methodology involves comparing the mean observed composition around a particular type of solute with that expected from the overall composition of the material. The methodology has been applied to atom probe data obtained from several irradiated RPV steels. The results show that the new approach is more sensitive to fine scale clustering and co-segregation than that achievable using composition frequency distribution and contingency table analyses.

  14. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y.; Nobusada, Katsuyuki; Jin, Rongchao

    2016-03-01

    Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications. Electronic supplementary information (ESI) available: The pump dependent transient absorption spectra and the corresponding global analysis results. See DOI: 10.1039/c6nr01008c

  15. A Critical Evaluation of Refractive Outcomes Following LASIK for Moderate to High Astigmatism Using Two Excimer Laser Platforms.

    PubMed

    Patel, Sudi; Bohac, Maja; Biscevic, Alma; Koncarevic, Mateja; Anticic, Marija; Gabric, Nikica

    2017-02-01

    To calculate the surgically induced astigmatism (SIA) following LASIK and identify any association between SIA and the target induced astigmatism (TIA) at 1 year postoperatively. The SIA was calculated using the TIA and residual astigmatism values for [A] myopic astigmatism and [B] mixed astigmatism treated with either the [I] WaveLight Allegretto EyeQ 400-Hz (Alcon Laboratories, Inc. Fort Worth, TX) or [II] Schwind Amaris 750S (Schwind eye-tech-solutions, Kleinostheim, Germany) platforms. The TIA and corresponding SIA results were analyzed using various techniques. Key findings were the negative SIA power (y 1 ) was significantly correlated with negative TIA power (x 1 ) and sine of the TIA axis (x 2 ) as follows: [A] I, y 1 = 0.829x 1 -0.403x 2 -0.325 (F = 87.76, r = 0.804, P < .001, n = 127); II, y 1 = 0.891x 1 -0.037x 2 -0.192 (F = 240.06, r = 0.901, P < .001, n = 119) and [B] I, y 1 = 1.063x 1 +0.233x 2 +0.411 (F = 990.99, r = 0.881, P < .001, n = 61); II, y 1 = 1.029x 1 -0.115x 2 +0.322 (F = 270.12, r = 0.908, P < 0.001, n = 111). The sine of negative SIA axis (y 2 ) was significantly correlated with negative TIA power (x 1 ) and TIA axis (x 2 ) as follows: [A] I, y 2 = 0.951x 2 -0.007x 1 +0.008 (F = 446.58, r = 0.950, P < .001, n = 127); II, y 2 = 0.856x 2 +0.007x 1 +0.105 (F = 277.18, r = 0.912, P< .001, n = 119) and [B] I, y 2 = 0.953x 2 +0.009x 1 +0.075 (F = 362.6, r = 0.963, P < .001, n = 61); II, y 2 = 0.977x 2 -0.004x 1 +0.002 (F = 2910.9, r = 0.990, P < .001, n = 111). The predicted SIA power was up to 12% less than expected in cases of -6.00 diopters cylinder treated for myopic astigmatism using the Allegretto platform. The mean predicted angle of error (the angle between the SIA and TIA axes) was less than 4°, increasing to 12° for against-the-rule astigmatism. The Allegretto platform tended toward a clockwise axis rotational error, whereas the Amaris platform tended toward the opposite. [J Refract Surg. 2017;33(2):104-109.]. Copyright 2017, SLACK Incorporated.

  16. Classical plasma dynamics of Mie-oscillations in atomic clusters

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; El-Khawaldeh, A.

    2018-04-01

    Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].

  17. Molecular dynamics investigation of dynamical heterogeneity and local structure in the supercooled liquid and glass states of Al

    NASA Astrophysics Data System (ADS)

    Li, Maozhi; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ho, Kai-Ming

    2008-05-01

    Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of β relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of β relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long time scale.

  18. Is social isolation/alienation confounded with, and non-independent of, emotional distress in its association with early onset of coronary artery disease?

    PubMed

    Ketterer, Mark; Rose, Benjamin; Knysz, Walter; Farha, Amjad; Deveshwar, Sangita; Schairer, John; Keteyian, Steven J

    2011-03-01

    Both emotional distress (ED) and social isolation/alienation (SI/A) have been found to prospectively predict adverse cardiac events, but few studies have tested the confounding/redundancy of these measures as correlates/predictors of outcomes. In this study, 163 patients with documented coronary artery disease (CAD) were interviewed for multiple indices of SI/A and administered the Symptom Checklist 90 - Revised (SCL90R). A spouse or friend provided an independent rating of ED using the spouse/friend version of the Ketterer Stress Symptom Frequency Checklist (KSSFC). The measures of ED and SI/A covaried. All three scales from the KSSFC (depression, anxiety, and "AIAI" - aggravation, irritation, anger, and impatience), and three scales from the SCL90R (anxiety, depression, and psychoticism), were associated with early Age at Initial Diagnosis (AAID) of CAD. Neither three scales derived from the SCL90R (shyness, feeling abused, and feeling lonely) nor the interview indices of SI/A (married, living alone, having a confidant, self description as a lone wolf, and self-description as lonely) were associated with early AAID. Thus, it is concluded that the present results indicate that ED and SI/A are confounded and that, even when tested head-to-head in a multivariate analysis, only ED is associated with AAID.

  19. The effect of corneal anterior surface eccentricity on astigmatism after cataract surgery.

    PubMed

    Park, Choul Yong; Chuck, Roy S; Channa, Prabjot; Lim, Chi-Yeon; Ahn, Byung-Jin

    2011-01-01

    To evaluate the effect of cornea eccentricity on induced astigmatism after cataract surgery. The study included 125 eyes of 87 patients. Preoperative corneal astigmatism, pachymetry, and eccentricity were measured. During cataract surgery, the location of the main incision (2.8-mm clear corneal) was selected to be either superior, superior-nasal, superior-temporal, nasal, or temporal to decrease the preexisting corneal astigmatism. Aspheric intraocular lenses were implanted. Keratometry and manifest refraction were recorded 6 months after surgery. Astigmatism was calculated using vector subtraction software. Three parameters significantly affected postoperative astigmatism: preoperative amount of corneal astigmatism, eccentricity of anterior cornea, and location of the main incision. The mean surgically induced astigmatism (SIA) was calculated to be: superior = 0.82 diopters (D), superior-nasal = 0.50 D, superior-temporal = 0.63 D, temporal = 0.45 D, and nasal = 0.55 D. Superior incision induced the greatest SIA and temporal incision induced the smallest SIA. The eccentricity of anterior cornea showed significantly positive correlation with the amount of SIA (P < .001). The preoperative corneal cylinder power showed significantly positive correlation with the amount of SIA (P < .001). Postoperative astigmatism was affected by various factors in cataract surgery. The greatest postoperative astigmatism is expected in corneas with high anterior eccentricity, high preoperative corneal astigmatism, and superior location of the main incision. Copyright 2011, SLACK Incorporated.

  20. Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis.

    PubMed

    Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy

    2018-05-01

    This study aims to cast light on the nature of interactions and cooperativity that exists in linear dimethyl sulfoxide (DMSO) clusters using dispersion corrected density functional theory. In the linear DMSO, DMSO molecules in the middle of the clusters are bound strongly than at the terminal. The plot of the total binding energy of the clusters vs the cluster size and mean polarizabilities vs cluster size shows an excellent linearity demonstrating the presence of cooperativity effect. The computed incremental binding energy of the clusters remains nearly constant, implying that DMSO addition at the terminal site can happen to form an infinite chain. In the linear clusters, two σ-hole at the terminal DMSO molecules were found and the value on it was found to increase with the increase in cluster size. The quantum theory of atoms in molecules topography shows the existence of hydrogen and SO⋯S type in linear tetramer and larger clusters. In the dimer and trimer SO⋯OS type of interaction exists. In 2D non-covalent interactions plot, additional peaks in the regions which contribute to the stabilization of the clusters were observed and it splits in the trimer and intensifies in the larger clusters. In the trimer and larger clusters in addition to the blue patches due to hydrogen bonds, additional, light blue patches were seen between the hydrogen atom of the methyl groups and the sulphur atom of the nearby DMSO molecule. Thus, in addition to the strong H-bonds, strong electrostatic interactions between the sulphur atom and methyl hydrogens exists in the linear clusters. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  2. Surface passivation for tight-binding calculations of covalent solids.

    PubMed

    Bernstein, N

    2007-07-04

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  3. Surface passivation for tight-binding calculations of covalent solids

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2007-07-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  4. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  5. Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, Si(n)Co (n = 10-12).

    PubMed

    Li, Yejun; Tam, Nguyen Minh; Claes, Pieterjan; Woodham, Alex P; Lyon, Jonathan T; Ngan, Vu Thi; Nguyen, Minh Tho; Lievens, Peter; Fielicke, André; Janssens, Ewald

    2014-09-18

    The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.

  6. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  7. The role of charge transfer in the oxidation state change of Ce atoms in the TM13-CeO2(111) systems (TM = Pd, Ag, Pt, Au): a DFT + U investigation.

    PubMed

    Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F

    2015-05-28

    Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and hence, also affecting the location of the Ce(III) cations and the structure of the TM13 clusters.

  8. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al(6)CuLi(3), the C-phase Al(37)Cu(3)Li(21)Mg(3), and GaMg(2)Zn(3).

    PubMed

    Pauling, L

    1988-06-01

    Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.

  9. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al6CuLi3, the C-phase Al37Cu3Li21Mg3, and GaMg2Zn3

    PubMed Central

    Pauling, Linus

    1988-01-01

    Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929

  10. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  11. Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.

  12. Formation of fivefold axes in the FCC-metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Myasnichenko, Vladimir S.; Starostenkov, Mikhail D.

    2012-11-01

    Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.

  13. Equilibrium geometries, electronic and magnetic properties of small AunNi- (n = 1-9) clusters

    NASA Astrophysics Data System (ADS)

    Tang, Cui-Ming; Chen, Xiao-Xu; Yang, Xiang-Dong

    2014-05-01

    Geometrical, electronic and magnetic properties of small AunNi- (n = 1-9) clusters have been investigated based on density functional theory (DFT) at PW91P86 level. An extensive structural search shows that the relative stable structures of AunNi- (n = 1-9) clusters adopt 2D structure for n = 1-5, 7 and 3D structure for n = 6, 8-9. And the substitution of a Ni atom for an Au atom in the Au-n+1 cluster obviously changes the structure of the host cluster. Moreover, an odd-even alternation phenomenon has been found for HOMO-LUMO energy gaps, indicating that the relative stable structures of the AunNi- clusters with odd-numbered gold atoms have a higher relative stability. Finally, the natural population analysis (NPA) and the vertical detachment energies (VDE) are studied, respectively. The theoretical values of VDE are reported for the first time to our best knowledge.

  14. Catalysis by clusters with precise numbers of atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyo, Eric C.; Vajda, Stefan

    2015-07-03

    Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less

  15. Thermodynamic properties of small aggregates of rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Kaelberer, J.

    1975-01-01

    The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.

  16. Photodissociation and caging of HBr and HI molecules on the surface of large rare gas clusters.

    PubMed

    Baumfalk, R; Nahler, N H; Buck, U

    2001-01-01

    Photodissociation experiments were carried out at a wavelength of 243 nm for single HBr and HI molecules adsorbed on the surface of large Nen, Arn, Krn and Xen clusters. The average size is about = 130; the size ranges = 62-139 for the system HBr-Arn and = 110-830 for HI-Xen were covered. In this way the dependence of the photodissociation dynamics on both the size and the rare gas host cluster was investigated. The main observable is the kinetic energy distribution of the outgoing H atoms. The key results are that we do not find any size dependence for either system but that we observe a strong dependence on the rare gas clusters. All systems exhibit H atoms with no energy loss that indicate direct cage exit and those with nearly zero energy that are an indication of complete caging. The intensity ratio of caged to uncaged H atoms is largest for Nen, decreases with increasing mass of the cage atoms, and is weakest for Xen. On the basis of accompanying calculations this behaviour is attributed to the large amplitude motion of the light H atom. This leads to direct cage exit and penetration of the atom through the cluster with different energy transfer per collision depending on the rare gas atoms. The differences between HBr and HI molecules are attributed to different surface states, a flat and an encapsulated site.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Numakura, H.

    The structure and the formation mechanism of oxides during internal oxidation have attracted much attention, and extensive studies have been carried out on this subject. Recently, Jang et al. reported the results of atom-probe microanalysis of oxide particles, or solute-oxygen clusters, in an internally oxidized Cu-0.16 at.% Mg alloy. They found that the composition varies from particle to particle even in the same specimen, and reported that some clusters consist only of magnesium atoms. On the basis of the results, they suggested that the oxidation proceeds in this alloy as follows: (1) the solute atoms form clusters, (2) the clustersmore » absorb oxygen atoms to form both hypo- and hyperstoichiometric oxide particles, (3) the particles grow to form the stoichiometric oxide, MgO. They show the presence of Mg atom clusters with no oxygen association. By assuming that the analyzed area is in the unoxidized region, i.e., ahead of the oxidation front, they interpret this observation as evidence for clustering of the solute atoms prior to oxide formation. However, according to the phase diagram, such clustering is not expected in the absence of oxygen, since the solute concentration, 0.16 at.%, is far below the solubility limit at the oxidation temperature of 900[degree]C, about 3.5 at.%. In atom probe experiments, it sometimes happens that detection efficiencies for different ion species are considerably different because some experimental parameters are not chosen properly. It seems possible that the data resulted from an unusually low detection efficiency for O ions. Since their conclusion raises an important issue on the mechanism of internal oxidation, it is desirable to examine experimental conditions carefully, and to check the reproducibility of data.« less

  18. Tuning optical properties of magic number cluster (SiO2)4O2H4 by substitutional bonding with gold atoms.

    PubMed

    Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun

    2009-04-30

    By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.

  19. Structures and stability of metal-doped Ge nM (n = 9, 10) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  20. Structures and stability of metal-doped Ge nM (n = 9, 10) clusters

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  1. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-01

    The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  2. [Applications of stable isotope analysis in the trophic ecology studies of cephalopods].

    PubMed

    Li, Yun-Kai; Gong, Yi; Chen, Xin-Jun

    2014-05-01

    Cephalopods play an important role in marine food webs, however, knowledge about their complex life history, especially their feeding ecology, remains limited. With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement of traditional methods for investigating the trophic ecology and migration patterns of invertebrates. Here, after summarizing the current methods for trophic ecology investigation of cephalopods, applications of SIA in studying the trophic ecology of cephalopods were reviewed, including the key issues such as standardization of available tissues for SIA analyzing, diet shift and migration patterns of cephalopods, with the aim of advancing its application in the biology of cephalopods in the future.

  3. Structural, electronic and vibrational properties of small GaxNy (x+y = 2 5) nanoclusters: a B3LYP-DFT study

    NASA Astrophysics Data System (ADS)

    Yadav, P. S.; Yadav, R. K.; Agrawal, B. K.

    2007-02-01

    An ab initio study of the stability, structural and electronic properties has been made for 49 gallium nitride nanoclusters, GaxNy (x+y = 2-5). Among the various configurations corresponding to a fixed x+y = n value, the configuration possessing the maximum value of binding energy (BE) is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize the geometries of the nanoclusters fully. The binding energies (BEs), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps and the bond lengths have been obtained for all the clusters. We have considered the zero-point energy (ZPE) corrections ignored by the earlier workers. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have been investigated for the most stable structures. The configurations containing the N atoms in majority are seen to be the most stable structures. The strong N-N bond has an important role in stabilizing the clusters. For clusters containing one Ga atom and all the others as N atoms, the BE increases monotonically with the number of the N atoms. The HOMO-LUMO gap and IP fluctuate with the cluster size n, having larger values for the clusters containing odd number of N atoms. On the other hand, the EA decreases with the cluster size up to n = 3, and shows slow fluctuations thereafter for the larger clusters. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA) because of the lower energies of the most stable ground state of the cationic (anionic) clusters. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in experiments.

  4. Simultaneous determination of potassium and total fluoride in toothpastes using a SIA system with two potentiometric detectors.

    PubMed

    Pérez-Olmos, R; Soto, J C; Zárate, N; Díez, I

    2008-05-12

    A sequential injection analysis (SIA) system has been developed for the first time to quantify potassium and total fluoride in toothpastes and gels used to prevent both dentinal hypersensitivity and dental caries. To enable this simultaneous determination, potentiometric detection, using a conventional fluoride electrode and a tubular potassium selective electrode, formed by a PVC membrane containing valinomycin as ionophore, was carried out. A manifold that uses a three-way solenoid valve was designed. The former under binary sampling conditions, provides reproducible mixing ratios of two solutions. This fact facilitates that the system automatically generates, on-line, the calibration curves required by the analytical procedure. The calibration ranged from 1.0 x 10(-4) to 1.0 x 10(-3) mol L(-1) for both potassium and total fluoride determinations. The R.S.D. (11 readings) resulted to be less than 1.5% for both determinations. Off-line studies related to the dissolution of the solid samples, the transformation of monofluorophosphate in fluoride, the elimination of organic matrix interference onto the plastic membrane of the potassium electrode, and the selection of the most adequate TISAB solution for fluoride determination, were also considered. A sampling rate of 18 samples h(-1) for both determinations was attained, their precisions and accuracies being statistically indistinguishable from those achieved by atomic emission spectroscopy (for potassium determination) and by a conventional batch potentiometry (for total fluoride determination) adopted as reference techniques.

  5. Thermal O-H Bond Activation of Water as Mediated by Heteronuclear [Al2Mg2O5]•+: Evidence for Oxygen-Atom Scrambling.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schwarz, Helmut

    2018-06-25

    Mechanistic insight into the thermal O-H bond activation of water by the cubane-like, prototypical heteronuclear oxide cluster [Al 2 Mg 2 O 5 ] •+ has been derived from a combined experimental/computational study. Experiments in the highly diluted gas phase using Fourier transform ion-cyclotron resonance mass spectrometry show that hydrogen-atom abstraction from water by the cluster cation [Al 2 Mg 2 O 5 ] •+ occurs at ambient conditions accompanied by the liberation of an OH • radical. Due to a complete randomization of all oxygen atoms prior to fragmentation about 83% of the oxygen atoms of the hydroxyl radical released originate from the oxide cluster itself. The experimental findings are supported by detailed high-level quantum chemical calculations. The theoretical analysis reveals that the transfer of a formal hydrogen atom from water to the metal-oxide cation can proceed mechanistically via proton- or hydrogen-atom transfer exploiting different active sites of the cluster oxide. In addition to the unprecedented oxygen-atom scrambling, one of the more general and quite unexpected findings concerns the role of spin density at the hydrogen-acceptor oxide atom. While this feature is so crucial for [M-O] + /CH 4 couples, it is much less important in the O-H bond activation of water.

  6. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    PubMed

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  7. Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Yamashita, Koichi

    2001-01-01

    Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].

  8. Influence of Cr doping on the stability and structure of small cobalt oxide clusters.

    PubMed

    Tung, Nguyen Thanh; Tam, Nguyen Minh; Nguyen, Minh Tho; Lievens, Peter; Janssens, Ewald

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, ConO+m and Con-1CrO+m (n = 2, 3; m = 2-6 and n = 4; m = 3-8), has been investigated using photodissociation mass spectrometry. Oxygen-rich ConO+m clusters (m ≥ n + 1 for n = 2, 4 and m ≥ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Con-1 CrO+m clusters, except CoCrO+2 and CoCrO+3, prefer to decay by eliminating a neutral oxygen molecule. Co2O+2, Co4O+3, Co4O+4, and CoCrO+2 are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.

  9. Surface heating of electrons in atomic clusters irradiated by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Krainov, V. P.; Sofronov, A. V.

    2014-04-01

    We consider a mechanism for electron heating in atomic clusters at the reflections of free electrons from the cluster surface. Electrons acquire energy from the external laser field during these reflections. A simple analytical expression has been obtained for acquired electron kinetic energy during the laser pulse. We find conditions when this mechanism dominates compared to the electron heating due to the well-known induced inverse bremsstrahlung at the electron-ion collisions inside clusters.

  10. Magic Numbers in Small Iron Clusters: A First-Principles Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eunja; Mohrland, Andrew B.; Weck, Philippe F.

    2014-10-03

    We perform ab initio spin-polarized density functional calculations of Fen aggregates with n ≤ 17 atoms to reveal the origin of the observed magic numbers, which indicate particularly high stability of clusters with 7, 13 and 15 atoms. Our results clarify the controversy regarding the ground state geometry of clusters such as Fe5and indicate that magnetism plays an important role in determining the stability and magic numbers in small iron clusters.

  11. CORRESPONDENCE OF STABLE ISOTOPE AND GUT CONTENTS ANALYSES IN DETERMINING TROPHIC POSITION OF STREAM FISHES

    EPA Science Inventory

    It is generally accepted that both stable isotope analysis (SIA) and gut contents analysis (GCA) be used in food web studies; however, few researchers have analyzed these data in concert. We utilized SIA and GCA to determine if longitudinal and seasonal variation in diet affects...

  12. Comparing trophic position of stream fishes using stable isotope and gut contents analyses

    EPA Science Inventory

    Stable isotope analysis (SIA) and gut content analysis (GCA) are commonly used in food web studies, but few studies analyze these data in concert. We used SIA and GCA to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ord...

  13. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    PubMed

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  14. Outbreak of Type 2 Vaccine-Derived Poliovirus in Nigeria: Emergence and Widespread Circulation in an Underimmunized Population

    PubMed Central

    Pate, Muhammad Ali; Wannemuehler, Kathleen; Jenks, Julie; Burns, Cara; Chenoweth, Paul; Abanida, Emmanuel Ade; Adu, Festus; Baba, Marycelin; Gasasira, Alex; Iber, Jane; Mkanda, Pascal; Williams, A. J.; Shaw, Jing; Pallansch, Mark; Kew, Olen

    2011-01-01

    Wild poliovirus has remained endemic in northern Nigeria because of low coverage achieved in the routine immunization program and in supplementary immunization activities (SIAs). An outbreak of infection involving 315 cases of type 2 circulating vaccine-derived poliovirus (cVDPV2; >1% divergent from Sabin 2) occurred during July 2005–June 2010, a period when 23 of 34 SIAs used monovalent or bivalent oral poliovirus vaccine (OPV) lacking Sabin 2. In addition, 21 “pre-VDPV2” (0.5%–1.0% divergent) cases occurred during this period. Both cVDPV and pre-VDPV cases were clinically indistinguishable from cases due to wild poliovirus. The monthly incidence of cases increased sharply in early 2009, as more children aged without trivalent OPV SIAs. Cumulative state incidence of pre-VDPV2/cVDPV2 was correlated with low childhood immunization against poliovirus type 2 assessed by various means. Strengthened routine immunization programs in countries with suboptimal coverage and balanced use of OPV formulations in SIAs are necessary to minimize risks of VDPV emergence and circulation. PMID:21402542

  15. Progress in measles control--Kenya 2002-2007.

    PubMed

    2007-09-21

    In 2000, countries represented by the World Health Organization (WHO) Regional Office for Africa established a goal to reduce, by the end of 2005, measles mortality to 50% of the 506,000 deaths from measles estimated in 1999. Strategies adopted included strengthening routine vaccination, providing a second opportunity for measles vaccination through supplemental immunization activities (SIAs), monitoring disease trends, and improving measles case management. In Kenya, an east African country with a population estimated at 33.4 million in 2005, the Kenya Expanded Programme on Immunization (KEPI) in the Ministry of Health began implementing these strategies in 2002 with a wide age range catch-up SIA and reduced the number of reported measles cases by >99%, from 11,304 in 2001 to 20 in 2004. A follow-up SIA, initially scheduled for July 2005, was postponed to 2006 to include concurrent distribution of long-lasting insecticide-treated bednets (LLINs). This report documents progress made in reducing measles morbidity and mortality in Kenya and describes the consequences of a large measles outbreak, beginning in September 2005, on the integrated measles follow-up SIA.

  16. Finding Semirigid Domains in Biomolecules by Clustering Pair-Distance Variations

    PubMed Central

    Schreiner, Wolfgang

    2014-01-01

    Dynamic variations in the distances between pairs of atoms are used for clustering subdomains of biomolecules. We draw on a well-known target function for clustering and first show mathematically that the assignment of atoms to clusters has to be crisp, not fuzzy, as hitherto assumed. This reduces the computational load of clustering drastically, and we demonstrate results for several biomolecules relevant in immunoinformatics. Results are evaluated regarding the number of clusters, cluster size, cluster stability, and the evolution of clusters over time. Crisp clustering lends itself as an efficient tool to locate semirigid domains in the simulation of biomolecules. Such domains seem crucial for an optimum performance of subsequent statistical analyses, aiming at detecting minute motional patterns related to antigen recognition and signal transduction. PMID:24959586

  17. Comparative investigation of pure and mixed rare gas atoms on coronene molecules.

    PubMed

    Rodríguez-Cantano, Rocío; Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; González-Lezana, Tomás; Villarreal, Pablo; Pérez de Tudela, Ricardo; Pirani, Fernando; Hernández-Rojas, Javier; Bretón, José

    2017-01-21

    Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

  18. Probing structure, thermochemistry, electron affinity, and magnetic moment of thulium-doped silicon clusters TmSi n (n = 3-10) and their anions with density functional theory.

    PubMed

    Huang, Xintao; Yang, Jucai

    2017-12-26

    The most stable structures and electronic properties of TmSi n (n = 3-10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n + 1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n = 3-10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n = 3-10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.

  19. Putting social impact assessment to the test as a method for implementing responsible tourism practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCombes, Lucy, E-mail: l.mccombes@leedsbeckett.ac.uk; Vanclay, Frank, E-mail: frank.vanclay@rug.nl; Evers, Yvette, E-mail: y.evers@tft-earth.org

    The discourse on the social impacts of tourism needs to shift from the current descriptive critique of tourism to considering what can be done in actual practice to embed the management of tourism's social impacts into the existing planning, product development and operational processes of tourism businesses. A pragmatic approach for designing research methodologies, social management systems and initial actions, which is shaped by the real world operational constraints and existing systems used in the tourism industry, is needed. Our pilot study with a small Bulgarian travel company put social impact assessment (SIA) to the test to see if itmore » could provide this desired approach and assist in implementing responsible tourism development practice, especially in small tourism businesses. Our findings showed that our adapted SIA method has value as a practical method for embedding a responsible tourism approach. While there were some challenges, SIA proved to be effective in assisting the staff of our test case tourism business to better understand their social impacts on their local communities and to identify actions to take. - Highlights: • Pragmatic approach is needed for the responsible management of social impacts of tourism. • Our adapted Social impact Assessment (SIA) method has value as a practical method. • SIA can be embedded into tourism businesses existing ‘ways of doing things’. • We identified challenges and ways to improve our method to better suit small tourism business context.« less

  20. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications

    PubMed Central

    Post, Deborah M. B.; Ketterer, Margaret R.; Coffin, Jeremy E.; Reinders, Lorri M.; Munson, Robert S.; Bair, Thomas; Murphy, Timothy F.; Foster, Eric D.; Gibson, Bradford W.

    2016-01-01

    Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease. PMID:26729761

  1. Real-Time Monitoring of Vaccination Campaign Performance Using Mobile Phones - Nepal, 2016.

    PubMed

    Oh, David H; Dabbagh, Alya; Goodson, James L; Strebel, Peter M; Thapa, Sanjita; Giri, Jagat Narain; Shakya, Sagar Ratna; Khanal, Sudhir

    2016-10-07

    In 2012, the Global Vaccine Action Plan* established a goal to achieve measles and rubella elimination in five of the six World Health Organization (WHO) regions (194 countries) by 2020 (1). Measles elimination strategies aim to achieve ≥95% coverage with 2 routine doses of measles-containing vaccine (2), and implement supplementary immunization activities (SIAs) † in settings where routine coverage is low or where there are subpopulations at high risk. To ensure SIA quality and to achieve ≥95% SIA coverage nationally, rapid convenience monitoring (RCM) is used during or immediately after SIAs (3,4). The objective of RCM is to find unvaccinated children and to identify reasons for nonvaccination in areas with persons at high risk, to enable immediate implementation of corrective actions (e.g., reassigning teams to poorly vaccinated areas, modifying the timing of vaccination, or conducting mop-up vaccination activities). This report describes pilot testing of RCM using mobile phones (RCM-MP) during the second phase of an SIA in Nepal in 2016. Use of RCM-MP resulted in 87% timeliness and 94% completeness of data reporting and found that, although 95% of children were vaccinated, 42% of areas required corrective vaccination activities. RCM-MP challenges included connecting to mobile networks, small phone screen size, and capturing Global Positioning System (GPS) coordinates. Nonetheless, use of RCM-MP led to faster data transmission, analysis, and decision-making and to increased accountability among levels of the health system.

  2. Progress toward poliomyelitis eradication--Nigeria, January 2007-August 12, 2008.

    PubMed

    2008-08-29

    Nigeria is one of only four countries that have never interrupted poliovirus transmission (the others are Afghanistan, India, and Pakistan). A resurgence in wild poliovirus (WPV) transmission occurred in Nigeria during 2003-2004 after a loss of public confidence in oral poliovirus vaccine (OPV) and suspension of supplementary immunization activities (SIAs)* in several northern states. Subsequently, WPV spread within Nigeria and ultimately into 20 previously polio-free countries during 2003-2006. Even after national SIAs resumed, limited acceptance and ongoing operational problems resulted in low polio vaccination coverage and continued WPV transmission. Beginning in 2006, health authorities in Nigeria introduced new initiatives to control the spread of WPV, including a focus on interrupting type 1 WPV (WPV1) transmission and use of monovalent type 1 OPV (mOPV1) for most of the SIAs to increase vaccine effectiveness. Nigeria also instituted changes in SIA implementation to increase community acceptance of vaccination. Subsequently, 285 polio cases were reported in Nigeria in 2007, the lowest number since sensitive surveillance has been in place. As of August 12, 2008, confirmed polio cases reported in Nigeria totaled 556 (including 511 WPV1 cases), compared with 176 cases (53 WPV1) reported during the same period in 2007. This report updates overall progress toward polio eradication in Nigeria during 2007-2008. Given the increase in WPV transmission thus far in 2008, urgent measures are needed to reach all children during SIAs to bring WPV under control in Nigeria.

  3. Preliminary study of the association between corneal histocytological changes and surgically induced astigmatism after phacoemulsification.

    PubMed

    Du, Xing; Zhao, Guiqiu; Wang, Qing; Yang, Xian; Gao, Ang; Lin, Jing; Wang, Qian; Xu, Qiang

    2014-11-20

    Surgically induced astigmatism (SIA) was one of the factors that influences the desirable refractive outcome, and it was related to the length, type, location, structure of the incision and to the suture closure technique, etc. The aim was to evaluate the association of corneal histocytological changes with SIA after phacoemulsification. The study enrolled 68 cases of cataract patient (68 eyes). Corneal histocytological parameters at corneal incision, central cornea and contralateral incision obtained by confocal microscope through focusing (CMTF) were compared preoperatively and 1 week, 2 weeks, 1 month, 3 months and 6 months postoperatively. These biometric parameters included the endothelial cell density, keratocyte density of posterior stromal layer, and the morphological changes. SIA was calculated by Jaffe's vector analysis. 1 From preoperatively to 1 week, 2 weeks, 1 month, 3 months and 6 months postoperatively, the endothelail cell density was decreased significantly (p < 0.05). Keratocyte density of posterior stroma layer was increased significantly only at 1 week, 2 weeks, 1 month, 3 months postoperatively (p <0.05), but not statistically significant (p = 0.173) at 6 months postoperatively compared to preoperative values. 2 The histocytological observations indicated that the morphology changed significantly postoperatively at the corneal incision, including the cell absent area, wave-like area, dot-like and mass-like hyperreflection, stripe-like absent area, in the endothelial layer, and the keratocyte activation, microfolds, irregular hyporeflective or hyperreflective belt, and a little dot-like hyperreflection in the posterior stroma layer. 3 The reduction of the endothelial cell density at the corneal incision at 1 week, 2 weeks, 1 month postoperatively, were positively correlated with SIA (P1 week = 0.003, P2 weeks = 0.003, P1 month = 0.032), while others were not associated with SIA statistically. The reduction of endothelail cell density and the histocytological changes at the corneal incision were associated with SIA. The underlining mechanism needs further study.

  4. Fluorescent carbohydrate probes for cell lectins

    NASA Astrophysics Data System (ADS)

    Galanina, Oxana; Feofanov, Alexei; Tuzikov, Alexander B.; Rapoport, Evgenia; Crocker, Paul R.; Grichine, Alexei; Egret-Charlier, Marguerite; Vigny, Paul; Le Pendu, Jacques; Bovin, Nicolai V.

    2001-09-01

    Fluorescein labeled carbohydrate (Glyc) probes were synthesized as analytical tools for the study of cellular lectins, i.e. SiaLe x-PAA-flu, Sia 2-PAA-flu, GlcNAc 2-PAA-flu, LacNAc-PAA-flu and a number of similar ones, with PAA a soluble polyacrylamide carrier. The binding of SiaLe x-PAA-flu was assessed using CHO cells transfected with E-selectin, and the binding of Sia 2-PAA-flu was assessed by COS cells transfected with siglec-9. In flow cytometry assays, the fluorescein probes demonstrated a specific binding to the lectin-transfected cells that was inhibited by unlabeled carbohydrate ligands. The intense binding of SiaLe x-PAA- 3H to the E-selectin transfected cells and the lack of binding to both native and permeabilized control cells lead to the conclusion that the polyacrylamide carrier itself and the spacer arm connecting the carbohydrate moiety with PAA did not contribute anymore to the binding. Tumors were obtained from nude mice by injection of CHO E-selectin or mock transfected cells. The fluorescent SiaLe x-PAA-flu probe could bind to the tumor sections from E-selectin positive CHO cells, but not from the control ones. Thus, these probes can be used to reveal specifically the carbohydrate binding sites on cells in culture as well as cells in tissue sections. The use of the confocal spectral imaging technique with Glyc-PAA-flu probes offered the unique possibility to detect lectins in different cells, even when the level of lectin expression was rather low. The confocal mode of spectrum recording provided an analysis of the probe localization with 3D submicron resolution. The spectral analysis (as a constituent part of the confocal spectral imaging technique) enabled interfering signals of the probe and intrinsic cellular fluorescence to be accurately separated, the distribution of the probe to be revealed and its local concentration to be measured.

  5. Interpreting the transmissibility of measles in two different post periods of supplementary immunization activities in Hubei, China.

    PubMed

    Chong, Ka Chun; Zhang, Chi; Zee, Benny Chung Ying; Luo, Tongyong; Wang, Lei; Tam, Greta Chun Huen; Jia, Katherine Min; Sun, Riyang; Wang, Maggie Haitian; Guan, Xuhua

    2017-02-15

    Although evidence has shown that supplementary immunization activity (SIA) campaigns greatly reduce the incidence of measles, their effects on disease transmissibility have seldom been monitored. A great decrease in the number of cases may be a false signal of early success towards measles elimination to policy makers. By interpreting the transmissibility in two different post-SIA periods in Hubei, China, the current study showed sustained measles transmissions despite a reduced number of cases. Two population-based cross-sectional serological surveys of measles antibodies were conducted in Hubei province in mid-2010 and mid-2011 after the implementation of SIAs. Immunoglobulin G (IgG) antibodies against measles were measured by enzyme-linked immunosorbent assay (ELISA). Based on the estimated age-specific susceptibility levels, the effective reproduction number (R), a key indicator of disease transmissibility, was determined by the next generation matrix in transmission model. The results revealed an overall IgG seroprevalence of 88.0% (95% confidence interval [CI]: 85.6-90.4%) and 89.6% (95%CI: 88.0-91.2%), respectively, in the two different periods. Comparatively lower seroprevalence rates were observed among children less than 24months of age and young adults 15 to 19years of age in 2011. The Rs were 0.76 and 1.53 for the two study periods. In conclusion, even though the incidence was reduced to below 1/100,000 in both 2010 and 2011, the reproduction number in 2011 indicates a high risk for sustained measles transmission. This finding was potentially due to a lower seropositivity rate among young adults that had not been covered in the first SIA. Thus, implementation of SIA targeted to appropriate age groups is recommended. Regular monitoring of seroprevalence is also suggested to track disease transmissibility and to align SIA with the appropriate age groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry.

    PubMed

    Karalewitz, Andrew P-A; Fu, Zhuji; Baldwin, Michael R; Kim, Jung-Ja P; Barbieri, Joseph T

    2012-11-23

    How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. BoNT/C utilizes dual gangliosides as host cell receptors. BoNT/C accesses gangliosides on the plasma membrane. Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.

  7. Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4-7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron.

    PubMed

    Forck, Richard M; Pradzynski, Christoph C; Wolff, Sabine; Ončák, Milan; Slavíček, Petr; Zeuch, Thomas

    2012-03-07

    Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.

  8. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters.

    PubMed

    Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y; Nobusada, Katsuyuki; Jin, Rongchao

    2016-04-07

    Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.

  9. Effects of single atom doping on the ultrafast electron dynamics of M 1Au 24(SR) 18 (M = Pd, Pt) nanoclusters

    DOE PAGES

    Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y.; ...

    2016-02-29

    Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M 1@Au 24(SR) 18 (M = Pd, Pt; R = CH 2CH 2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M 1Au 12 core states; (2) core to shell relaxation in a few picoseconds; and (3)more » relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au 25(SR) 18 cluster. As a result, the detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.« less

  10. Cluster size dependence of high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.

    2017-08-01

    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Haifeng; Lin, Sen; Goetze, Joris

    CeO2 supports are unique in their ability to trap ionic Pt, providing exceptional stability for isolated single atoms of Pt. Here, we explore the reactivity and stability of single atom Pt species for the industrially important reaction of light alkane dehydrogenation. The single atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but we observe no selectivity towards propene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when Sn is added to ceria, the single atom Pt catalyst undergoes an activation phase where it transforms into Pt-Sn clusters under reaction conditions. Formation ofmore » small Pt-Sn clusters allows the catalyst to achieve high selectivity towards propene, due to facile desorption of the product. The CeO2-supported Pt-Sn clusters are very stable, even during extended reaction at 680 °C. By adding water vapor to the feed, coke formation can almost completely be suppressed. Furthermore, the Pt-Sn clusters can be readily transformed back to the atomically dispersed species on ceria via oxidation, making Pt-Sn/CeO2 a fully regenerable catalyst.« less

  12. Equilibrium structure and atomic vibrations of Nin clusters

    NASA Astrophysics Data System (ADS)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  13. Density-functional theory study of the geometries, stabilities, and electronic properties of Au n Rb (n = 1-10) clusters: comparison with pure gold clusters

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Fei; Jiang, Gang; Meng, Da-Qiao

    2012-01-01

    The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n = 1-10) and pure gold Au n (n ≤ 11) clusters. For the geometric structures of the Au n Rb (n = 1-10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n -1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n = 4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even-odd alternation phenomenon. The same pronounced even-odd alternations are found for the HOMO-LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster.

  14. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE PAGES

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  15. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  16. Classification of ligand molecules in PDB with graph match-based structural superposition.

    PubMed

    Shionyu-Mitsuyama, Clara; Hijikata, Atsushi; Tsuji, Toshiyuki; Shirai, Tsuyoshi

    2016-12-01

    The fast heuristic graph match algorithm for small molecules, COMPLIG, was improved by adding a structural superposition process to verify the atom-atom matching. The modified method was used to classify the small molecule ligands in the Protein Data Bank (PDB) by their three-dimensional structures, and 16,660 types of ligands in the PDB were classified into 7561 clusters. In contrast, a classification by a previous method (without structure superposition) generated 3371 clusters from the same ligand set. The characteristic feature in the current classification system is the increased number of singleton clusters, which contained only one ligand molecule in a cluster. Inspections of the singletons in the current classification system but not in the previous one implied that the major factors for the isolation were differences in chirality, cyclic conformations, separation of substructures, and bond length. Comparisons between current and previous classification systems revealed that the superposition-based classification was effective in clustering functionally related ligands, such as drugs targeted to specific biological processes, owing to the strictness of the atom-atom matching.

  17. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    PubMed

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  18. Titanium embedded cage structure formation in Al{sub n}Ti{sup +} clusters and their interaction with Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, M. B., E-mail: begonia@ubu.es; Vega, A.; Balbás, L. C.

    2014-05-07

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic propertiesmore » of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For n{sub c} = 21, the smallest size of endohedral Ti doped cationic clusters, the Ar binding energy decreases drastically, whereas the Ar-cluster distance increases substantially, point to Ar physisorption, as assumed by the experimentalists. Calculated Ar adsorption energies agree well with available experimental binding energies.« less

  19. Sigma-phase packing of icosahedral clusters in 780-atom tetragonal crystals of Cr5Ni3Si2 and V15Ni10Si that by twinning achieve 8-fold rotational point-group symmetry

    PubMed Central

    Pauling, Linus

    1988-01-01

    A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 Å is assigned to rapidly solidified Cu5Ni3Si2 and V15Ni10Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45° twinning on the basal plane. PMID:16593915

  20. Sigma-phase packing of icosahedral clusters in 780-atom tetragonal crystals of Cr(5)Ni(3)Si(2) and V(15)Ni(10)Si that by twinning achieve 8-fold rotational point-group symmetry.

    PubMed

    Pauling, L

    1988-04-01

    A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 A is assigned to rapidly solidified Cu(5)Ni(3)Si(2) and V(15)Ni(10)Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45 degrees twinning on the basal plane.

  1. Cluster Beam Studies.

    DTIC Science & Technology

    1988-04-01

    Continue on reverse if necessary and identify by block number) Cluster beams offer a means of depositing high-quality thin films at low...either directly inclustered vapors of nonvolatile materials or Indirectly by bombarding the film duringdeposition with clusters of inert gases. When a...electron volt energy per atom. The suprathermal energy of thej depositing atoms is thought to produce unique thin films (either in quality, or in the ability

  2. Evaluating the component contribution to nonlinear optical performances using stable [Ni4O4] cuboidal clusters as models.

    PubMed

    Hao, Zhi-Min; Chao, Meng-Yao; Liu, Yan; Song, Ying-Lin; Yang, Jun-Yi; Ding, Lifeng; Zhang, Wen-Hua; Lang, Jian-Ping

    2018-06-19

    Five stable clusters sharing the cuboidal [Ni4O4] skeleton are subjected to third-order nonlinear optical (NLO) property measurements. Preliminary results suggest that the NLO property is largely defined by the cluster core skeleton and the directly coordinated atoms, with limited contribution from the heavy atoms peripherally attached to the aromatic ligands.

  3. Sequential-Injection Analysis: Principles, Instrument Construction, and Demonstration by a Simple Experiment

    ERIC Educational Resources Information Center

    Economou, A.; Tzanavaras, P. D.; Themelis, D. G.

    2005-01-01

    The sequential-injection analysis (SIA) is an approach to sample handling that enables the automation of manual wet-chemistry procedures in a rapid, precise and efficient manner. The experiments using SIA fits well in the course of Instrumental Chemical Analysis and especially in the section of Automatic Methods of analysis provided by chemistry…

  4. Special Interest Areas and Employment Skills Programming for Secondary Students with Autism

    ERIC Educational Resources Information Center

    Bross, Leslie Ann; Travers, Jason C.

    2017-01-01

    Many students with autism spectrum disorder (ASD) have specialized interests and passions that are highly reinforcing. Such special interest areas (SIAs) are more than mere hobbies or simple curiosities. Rather, the SIAs of an individual with autism may be characterized by (a) significant depth and breadth of knowledge about the area, (b)…

  5. Development of the Sport Injury Anxiety Scale

    ERIC Educational Resources Information Center

    Rex, Camille C.; Metzler, Jonathan N.

    2016-01-01

    The purpose of this research was to develop a measure of sport injury anxiety (SIA), defined as the tendency to make threat appraisals in sport situations where injury is seen as possible and/or likely. The Sport Injury Anxiety Scale (SIAS) was developed in three stages. In Stage 1, expert raters evaluated items to determine their adequacy. In…

  6. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.

    PubMed

    Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M

    2005-08-18

    Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of the structural variations present in the cluster species studied shows an increase in C-H bond lengths with cluster size that closely correlates with the increased thermodynamic drive to full dehydrogenation. This correlation strongly suggests that all steps in the reaction are barrierless, and that weakening of the C-H bonds is directly reflected in the thermodynamics of the overall dehydrogenation process. It is also demonstrated that reaction exergonicity in the initial partial dehydrogenation step must be carried through as excess internal energy into the second dehydrogenation step.

  7. The factor structure and screening utility of the Social Interaction Anxiety Scale.

    PubMed

    Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G; Liebowitz, Michael R; Schneier, Franklin R

    2006-06-01

    The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that accounted for differences due to item wording (i.e., reverse scoring) provided superior fit. It was further found that clients and undergraduates approached some items differently, and the SIAS may be somewhat overly conservative in selecting analogue participants from an undergraduate sample. Overall, this study provides support for the excellent properties of the SIAS's straightforwardly worded items, although questions remain regarding its reverse-scored items. Copyright 2006 APA, all rights reserved.

  8. Ion mobility studies of PdC{sub n}{sup +} clusters: Where are the fullerenes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelimov, K.B.; Jarrold, M.F.

    1995-12-14

    Gas-phase ion mobility measurements have been used to study the structures and isomerization of PdC{sub n}{sup +} (n = 10-60) clusters. Non-fullerene isomers of PdC{sub n}{sup +} clusters are similar to those of C{sub n}{sup +} and MC{sub n}{sup +} (M = La and Nb) clusters, and include metal-containing mono- and bicyclic rings and graphite sheets. Neither endohedral nor nonendohedral PdC{sub n} {sup +} fullerene isomers are detected. When collisionally heated, PdC{sub n}{sup +} clusters efficiently convert into fullerenes, but the exothermicity of this process results in the loss of the Pd atom and the formation of a pure carbonmore » cluster cation. PdC{sub n}{sup +} bicyclic rings with an odd number of carbon atoms efficiently isomerize into monocyclic rings, while no evidence is found for this isomerization process for bicyclic rings with an even number of carbon atoms. 18 refs., 4 figs.« less

  9. Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian

    2015-11-01

    We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.

  10. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    PubMed

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  11. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

    PubMed Central

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367

  12. Atomic structure of a decagonal Al-Pd-Mn phase

    NASA Astrophysics Data System (ADS)

    Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer

    2017-12-01

    We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.

  13. Bonding reactivity descriptor from conceptual density functional theory and its applications to elucidate bonding formation

    NASA Astrophysics Data System (ADS)

    Zhou, Pan-Pan; Liu, Shubin; Ayers, Paul W.; Zhang, Rui-Qin

    2017-10-01

    Condensed-to-atom Fukui functions which reflect the atomic reactivity like the tendency susceptible to either nucleophilic or electrophilic attack demonstrate the bonding trend of an atom in a molecule. Accordingly, Fukui functions based concepts, that is, bonding reactivity descriptors which reveal the bonding properties of molecules in the reaction were put forward and then applied to pericyclic and cluster reactions to confirm their effectiveness and reliability. In terms of the results from the bonding descriptors, a covalent bond can readily be predicted between two atoms with large Fukui functions (i.e., one governs nucleophilic attack while the other one governs electrophilic attack, or both of them govern radical attacks) for pericyclic reactions. For SinOm clusters' reactions, the clusters with a low O atom ratio readily form a bond between two Si atoms with big values of their Fukui functions in which they respectively govern nucleophilic and electrophilic attacks or both govern radical attacks. Also, our results from bonding descriptors show that Si—Si bonds can be formed via the radical mechanism between two Si atoms, and formations of Si—O and O—O bonds are possible when the O content is high. These results conform with experimental findings and can help experimentalists design appropriate clusters to synthesize Si nanowires with high yields. The approach established in this work could be generalized and applied to study reactivity properties for other systems.

  14. A screened independent atom model for the description of ion collisions from atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom

    2018-05-01

    We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

  15. Treatment of delocalized electron transfer in periodic and embedded cluster DFT calculations: The case of Cu on ZnO (10(1)0).

    PubMed

    Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti

    2015-12-15

    We assess the consequences of the interface model-embedded-cluster or periodic-slab model-on the ability of DFT calculations to describe charge transfer (CT) in a particularly challenging case where periodic-slab calculations indicate a delocalized charge-transfer state. Our example is Cu atom adsorption on ZnO(10(1)0), and in fact the periodic slab calculations indicate three types of CT depending on the adsorption site: full CT, partial CT, and no CT. Interestingly, when full CT occurs in the periodic calculations, the calculated Cu atom adsorption energy depends on the underlying ZnO substrate supercell size, since when the electron enters the ZnO it delocalizes over as many atoms as possible. In the embedded-cluster calculations, the electron transferred to the ZnO delocalizes over the entire cluster region, and as a result the calculated Cu atom adsorption energy does not agree with the value obtained using a large periodic supercell, but instead to the adsorption energy obtained for a periodic supercell of roughly the same size as the embedded cluster. Different density functionals (of GGA and hybrid types) and basis sets (local atom-centered and plane-waves) were assessed, and we show that embedded clusters can be used to model Cu adsorption on ZnO(10(1)0), as long as care is taken to account for the effects of CT. © 2015 Wiley Periodicals, Inc.

  16. Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wei, E-mail: qinw@qdu.edu.cn; Xia, Lin-Hua; Zhao, Li-Zhen

    The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  17. Related Structure Characters and Stability of Structural Defects in a Metallic Glass

    PubMed Central

    Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng

    2018-01-01

    Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298

  18. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R

    2009-04-02

    In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).

  19. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  20. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    PubMed

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  1. Quantifying the impact of expanded age group campaigns for polio eradication.

    PubMed

    Wagner, Bradley G; Behrend, Matthew R; Klein, Daniel J; Upfill-Brown, Alexander M; Eckhoff, Philip A; Hu, Hao

    2014-01-01

    A priority of the Global Polio Eradication Initiative (GPEI) 2013-2018 strategic plan is to evaluate the potential impact on polio eradication resulting from expanding one or more Supplementary Immunization Activities (SIAs) to children beyond age five-years in polio endemic countries. It has been hypothesized that such expanded age group (EAG) campaigns could accelerate polio eradication by eliminating immunity gaps in older children that may have resulted from past periods of low vaccination coverage. Using an individual-based mathematical model, we quantified the impact of EAG campaigns in terms of probability of elimination, reduction in polio transmission and age stratified immunity levels. The model was specifically calibrated to seroprevalence data from a polio-endemic region: Zaria, Nigeria. We compared the impact of EAG campaigns, which depend only on age, to more targeted interventions which focus on reaching missed populations. We found that EAG campaigns would not significantly improve prospects for polio eradication; the probability of elimination increased by 8% (from 24% at baseline to 32%) when expanding three annual SIAs to 5-14 year old children and by 18% when expanding all six annual SIAs. In contrast, expanding only two of the annual SIAs to target hard-to-reach populations at modest vaccination coverage-representing less than one tenth of additional vaccinations required for the six SIA EAG scenario-increased the probability of elimination by 55%. Implementation of EAG campaigns in polio endemic regions would not improve prospects for eradication. In endemic areas, vaccination campaigns which do not target missed populations will not benefit polio eradication efforts.

  2. Supplementary immunization activities (SIAs) in South Africa: comprehensive economic evaluation of an integrated child health delivery platform.

    PubMed

    Verguet, Stéphane; Jassat, Waasila; Bertram, Melanie Y; Tollman, Stephen M; Murray, Christopher J L; Jamison, Dean T; Hofman, Karen J

    2013-03-01

    Supplementary immunization activity (SIA) campaigns provide children with an additional dose of measles vaccine and deliver other interventions, including vitamin A supplements, deworming medications, and oral polio vaccines. To assess the cost-effectiveness of the full SIA delivery platform in South Africa (SA). We used an epidemiologic cost model to estimate the cost-effectiveness of the 2010 SIA campaign. We used province-level campaign data sourced from the District Health Information System, SA, and from planning records of provincial coordinators of the Expanded Programme on Immunization. The data included the number of children immunized with measles and polio vaccines, the number of children given vitamin A supplements and Albendazole tablets, and costs. The campaign cost $37 million and averted a total of 1,150 deaths (95% uncertainty range: 990-1,360). This ranged from 380 deaths averted in KwaZulu-Natal to 20 deaths averted in the Northern Cape. Vitamin A supplementation alone averted 820 deaths (95% UR: 670-1,040); measles vaccination alone averted 330 deaths (95% UR: 280-370). Incremental cost-effectiveness was $27,100 (95% UR: $18,500-34,400) per death averted nationally, ranging from $11,300 per death averted in the Free State to $91,300 per death averted in the Eastern Cape. Cost-effectiveness of the SIA child health delivery platform varies substantially across SA provinces, and it is substantially more cost-effective when vitamin A supplementation is included in the interventions administered. Cost-effectiveness assessments should consider health system delivery platforms that integrate multiple interventions, and they should be conducted at the sub-national level.

  3. The effect of a multi-component camp-based weight-loss program on children's motor skills and physical fitness: a randomized controlled trial.

    PubMed

    Larsen, Kristian Traberg; Huang, Tao; Larsen, Lisbeth Runge; Olesen, Line Grønholt; Andersen, Lars Bo; Møller, Niels Christian

    2016-07-15

    Many weight-loss programs in children are performed without specific foci on training both physical fitness and motor skills. The aim of this study was to describe the effect of a one-year weight-loss program on children's motor skills and physical fitness. Participants included 115 overweight fifth-grade children (12.0 years) randomized into either a Day-Camp Intervention Arm (DCIA), with a subsequent family-based support program or a low-intense Standard Intervention Arm (SIA). Physical fitness was assessed by vertical jump, hand grip strength, and a progressive cardio-respiratory fitness test. Motor skills were assessed by the Movement Assessment Battery for Children - second edition (M-ABC-2), age band 3. Loss to follow-up after 52 weeks was 19 % and 32 % in the DCIA and SIA, respectively. Balance skills were improved post-camp, but not after 52 weeks in children from the DCIA compared to the SIA. Contrary to the expected, children from the SIA improved aiming and catching skills relative to the DCIA children. Overall z-scores of the physical fitness components and cardio-respiratory fitness improved more in children from the DCIA compared to children from the SIA. In conclusion, the day-camp intervention led to improvements in physical fitness but not in motor skills compared to the standard intervention. Including both motor skills and physical fitness could advantageously be considered in future immersive intervention programmes. Clinicaltrials NCT01574352, March 26, 2012 (retrospectively registered).

  4. 1997 Technical Digest Series. Volume 7: Applications of High Field and Short Wavelength Sources VII

    DTIC Science & Technology

    1997-03-01

    clusters irradiated with ultrashort , high intensity laser pulses can exhibit "ionization ig- nition" which leads...8, 9]. 25-atom Ne clusters and 25-atom Ar clusters are modelled as irradiated by a 800 nm, 15 fs (fwhm) laser pulse with peak intensities ranging...Measurements of the spatial and spectral properties of ultrashort , intense laser pulses propagating in underdense plasmas demonstrate

  5. Spectra of helium clusters with up to six atoms using soft-core potentials

    NASA Astrophysics Data System (ADS)

    Gattobigio, M.; Kievsky, A.; Viviani, M.

    2011-11-01

    In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.

  6. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  7. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE PAGES

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; ...

    2018-03-15

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  8. Perspective: Size selected clusters for catalysis and electrochemistry

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  9. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    NASA Astrophysics Data System (ADS)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  10. Molecular dynamics study of the melting of a supported 887-atom Pd decahedron.

    PubMed

    Schebarchov, D; Hendy, S C; Polak, W

    2009-04-08

    We employ classical molecular dynamics simulations to investigate the melting behaviour of a decahedral Pd(887) cluster on a single layer of graphite (graphene). The interaction between Pd atoms is modelled with an embedded-atom potential, while the adhesion of Pd atoms to the substrate is approximated with a Lennard-Jones potential. We find that the decahedral structure persists at temperatures close to the melting point, but that just below the melting transition, the cluster accommodates to the substrate by means of complete melting and then recrystallization into an fcc structure. These structural changes are in qualitative agreement with recently proposed models, and they verify the existence of an energy barrier preventing softly deposited clusters from 'wetting' the substrate at temperatures below the melting point.

  11. Melting of isolated tin nanoparticles

    PubMed

    Bachels; Guntherodt; Schafer

    2000-08-07

    The melting of isolated neutral tin cluster distributions with mean sizes of about 500 atoms has been investigated in a molecular beam experiment by calorimetrically measuring the clusters' formation energies as a function of their internal temperature. For this purpose the possibility to adjust the temperature of the clusters' internal degrees of freedom by means of the temperature of the cluster source's nozzle was exploited. The melting point of the investigated tin clusters was found to be lowered by 125 K and the latent heat of fusion per atom is reduced by 35% compared to bulk tin. The melting behavior of the isolated tin clusters is discussed with respect to the occurrence of surface premelting.

  12. 29 CFR (non - mandatory) Appendix C to Subpart L of Part 1926-List of National Consensus Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false mandatory) Appendix C to Subpart L of Part 1926-List of National Consensus Standards (Non Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... Consensus Standards ANSI/SIA A92.2-1990Vehicle-Mounted Elevating and Rotating Aerial Devices ANSI/SIA A92.3...

  13. A framework for combining social impact assessment and risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoudi, Hossein, E-mail: mahmoudi@uni-hohenheim.de; Environmental Sciences Research Institute, Shahid Beheshti University, G.C.; Renn, Ortwin

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify the common features of social impact assessment (SIA) and social risk assessment (SRA), and discuss the merits of a combined approach. A hybrid model combining SIA and SRA to form a new approach called, ‘risk and social impact assessment’ (RSIA) is introduced. RSIA expands the capacity of SIA to evaluate and manage the socialmore » impacts of risky projects such as nuclear energy as well as natural hazards and disasters such as droughts and floods. We outline the three stages of RSIA, namely: impact identification, impact assessment, and impact management. -- Highlights: • A hybrid model to combine SIA and SRA namely RSIA is proposed. • RSIA can provide the proper mechanism to assess social impacts of natural hazards. • RSIA can play the role of ex-post as well as ex-ante assessment. • For some complicated and sensitive cases like nuclear energy, conducting a RSIA is necessary.« less

  14. The Macrophage Galactose-Type Lectin Can Function as an Attachment and Entry Receptor for Influenza Virus

    PubMed Central

    Ng, Wy Ching; Liong, Stella; Tate, Michelle D.; Irimura, Tatsuro; Denda-Nagai, Kaori; Brooks, Andrew G.; Londrigan, Sarah L.

    2014-01-01

    Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV. PMID:24257596

  15. A review of measles supplementary immunization activities and the implications for Pacific Island countries and territories.

    PubMed

    Clements, C John; Soakai, Taniela Sunia; Sadr-Azodi, Nahad

    2017-02-01

    Standard measles control strategies include achieving high levels of measles vaccine coverage using routine delivery systems, supplemented by mass immunization campaigns as needed to close population immunity gaps. Areas covered: This review looks at how supplementary immunization activities (SIAs) have contributed to measles control globally, and asks whether such a strategy has a place in Pacific Islands today. Expert commentary: Very high coverage with two doses of measles vaccine seems to be the optimal strategy for controlling measles. By 2015, all but two Pacific Islands had introduced a second dose in the routine schedule; however, a number of countries have not yet reached high coverage with their second dose. The literature and the country reviews reported here suggest that a high coverage SIA combined with one dose of measles vaccine given in the routine system will also do the job. The arguments for and against the use of SIAs are complex, but it is clear that to be effective, SIAs need to be well designed to meet specific needs, must be carried out effectively and safely with very high coverage, and should, when possible, carry with them other public health interventions to make them even more cost-effective.

  16. The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS): a comparison of two short-form versions.

    PubMed

    Fergus, Thomas A; Valentiner, David P; Kim, Hyun-Soo; McGrath, Patrick B

    2014-12-01

    The widespread use of Mattick and Clarke's (1998) Social Interaction Anxiety Scale (SIAS) and Social Phobia Scale (SPS) led 2 independent groups of researchers to develop short forms of these measures (Fergus, Valentiner, McGrath, Gier-Lonsway, & Kim, 2012; Peters, Sunderland, Andrews, Rapee, & Mattick, 2012). This 3-part study examined the psychometric properties of Fergus et al.'s and Peters et al.'s short forms of the SIAS and SPS using an American nonclinical adolescent sample in Study 1 (N = 98), American patient sample with an anxiety disorder in Study 2 (N = 117), and both a South Korean college student sample (N = 341) and an American college student sample (N = 550) in Study 3. Scores on both sets of short forms evidenced adequate internal consistency, interitem correlations, and measurement invariance. Scores on Fergus et al.'s short forms, particularly their SIAS short form, tended to capture more unique variance in scores of criterion measures than did scores on Peters et al.'s short forms. Implications for the use of these 2 sets of short forms are discussed. (c) 2014 APA, all rights reserved.

  17. Group B Streptococcus Engages an Inhibitory Siglec through Sialic Acid Mimicry to Blunt Innate Immune and Inflammatory Responses In Vivo

    PubMed Central

    Chang, Yung-Chi; Olson, Joshua; Beasley, Federico C.; Tung, Christine; Zhang, Jiquan; Crocker, Paul R.; Varki, Ajit; Nizet, Victor

    2014-01-01

    Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-κB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection. PMID:24391502

  18. [The effective evaluation on the supplementary immunization activities among the migrant pre-school children in Chaoyang District of Beijing].

    PubMed

    Luo, Feng-ji; Liu, Fang; Zhang, Jing

    2009-06-01

    To evaluate the effect of Supplementary Immunization Activities (SIAs) among the migrant preschool children in Chaoyang district of Beijing since 2005 to 2007, and to provide reference for formulating the strategies for Expanded Program on Immunization (EPI). The descriptive epidemiology was used to analyze the data of SIAs among the migrant preschool children in Chaoyang district since 2005 to 2007. The SIAs data demonstrated an increasing number of the floating preschool children in Chaoyang district from 2005 to 2007, and the increase rate of year-on-year in 2006 to 2007 was 12.67% and 4.60% respectively. The registration rates of immunization card and identification among the floating preschool children increased by years from 2005 to 2007. The zero-dose rates of Oral Polio Vaccine (OPV), Measles Vaccine (MV), Diphtheria-Pertus-sis-Tetaus vaccine (DPT), Meningococcal Polysaccharide Vaccine (MPV) and Japanese Encephalitis Vaccine (JEV) showed a decrease trends since 2005 to 2007. The age special incidence rate and proportion of vaccine-preventable diseases for the people who were 1- 4-years-old decreased. It is an effective management pattern that the government plays a dominated role in Supplementary Immunization Activities (SIAs).

  19. Structural and magnetic evolution of bimetallic MnAu clusters driven by asymmetric atomic migration.

    PubMed

    Wei, Xiaohui; Zhou, Rulong; Lefebvre, Williams; He, Kai; Le Roy, Damien; Skomski, Ralph; Li, Xingzhong; Shield, Jeffrey E; Kramer, Matthew J; Chen, Shuang; Zeng, Xiao Cheng; Sellmyer, David J

    2014-03-12

    The nanoscale structural, compositional, and magnetic properties are examined for annealed MnAu nanoclusters. The MnAu clusters order into the L1(0) structure, and monotonic size-dependences develop for the composition and lattice parameters, which are well reproduced by our density functional theory calculations. Simultaneously, Mn diffusion forms 5 Å nanoshells on larger clusters inducing significant magnetization in an otherwise antiferromagnetic system. The differing atomic mobilities yield new cluster nanostructures that can be employed generally to create novel physical properties.

  20. Ultra-small rhenium clusters supported on graphene.

    PubMed

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José

    2015-03-28

    The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.

  1. Ultra-small rhenium clusters supported on graphene

    PubMed Central

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  2. Melting of Cu nanoclusters by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying

    2003-04-01

    We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to Tm, N= Tm,Bulk- αN-1/3, dropping from Tm,Bulk=1360 K to Tm,456=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.

  3. Solving the scalability issue in quantum-based refinement: Q|R#1.

    PubMed

    Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P

    2017-12-01

    Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.

  4. Optical Turbulence Measurement - Investigations for Analysis of Laser Designator Spot Patterns.

    DTIC Science & Technology

    1983-05-01

    34,R,-SQCN,Q,-EXT COEF",E,-AVLNGTH-,W,"OBJ LZ NS",O 120: ent "OBS/OBJ",B," SCALL ",rll;sprt 6,R,Q,E,rJ,O,j3,r11 121: OSYSTEM DATA-Ii-eAVLNTki IN AETERS O...bars in the grating, and the wavelength cf the iser i_-e knDwn, -he scale factor 7an be calculated from the relation sia (theta) = A/d (3. 1) sia ...cos (P*r) If INVERSEFXFOR3 = True then F ;7<== 1 76 FA;7<== 0 End If P<== sia (P*r) *(1-2*Flg7) Do f~r r = 2*R0*I~l to 2*RO*3+RO Rl<== RDArk(II R2

  5. [Review on the feeding ecology and migration patterns of sharks using stable isotopes].

    PubMed

    Li, Yun-Kai

    2014-09-01

    With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement to traditional methods for investigating the trophic ecology of animals. Sharks play a keystone role in marine food webs as the apex predators and are recently becoming the frontier topic of food web studies and marine conservation because of their unique characteristics of evolution. Recently, SIA has recently been applied to trophic ecology studies of shark species. Here, we reviewed the current applications of SIA in shark species, focusing on available tissues for analyzing, standardized analytical approaches, diet-tissue discrimination factors, diet shift investigation, migration patterns predictions and niche-width analyses, with the aim of getting better understanding of stable-isotope dynamics in shark biology and ecology research.

  6. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    PubMed Central

    Dahms, Sven O.; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E.

    2013-01-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradeca­bromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome. PMID:23385464

  7. Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study

    NASA Astrophysics Data System (ADS)

    Goswami, Sohini; Saha, Sushmita; Yadav, R. K.

    2015-11-01

    An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in the experiments.

  8. Self-Learning Off-Lattice Kinetic Monte Carlo method as applied to growth on metal surfaces

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Kara, Abdelkader; Rahman, Talat

    2007-03-01

    We propose a new development in the Self-Learning Kinetic Monte Carlo (SLKMC) method with the goal of improving the accuracy with which atomic mechanisms controlling diffusive processes on metal surfaces may be identified. This is important for diffusion of small clusters (2 - 20 atoms) in which atoms may occupy Off-Lattice positions. Such a procedure is also necessary for consideration of heteroepitaxial growth. The new technique combines an earlier version of SLKMC [1] with the inclusion of off-lattice occupancy. This allows us to include arbitrary positions of adatoms in the modeling and makes the simulations more realistic and reliable. We have tested this new approach for the case of the diffusion of small 2D Cu clusters diffusion on Cu(111) and found good performance and satisfactory agreement with results obtained from previous version of SLKMC. The new method also helped reveal a novel atomic mechanism contributing to cluster migration. We have also applied this method to study the diffusion of Cu clusters on Ag(111), and find that Cu atoms generally prefer to occupy off-lattice sites. [1] O. Trushin, A. Kara, A. Karim, T.S. Rahman Phys. Rev B 2005

  9. Atomically manufactured nickel-silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-Yih; Fisher, Brandon L.; Guisinger, Nathan P.; Lilley, Carmen M.

    2017-12-01

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni-Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni-Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I-V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. All of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.

  10. Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    DOE PAGES

    Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.; ...

    2017-05-22

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less

  11. Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less

  12. Synthesis, Structure and Electrochemistry of Tetranuclear Oxygen-Centered Copper(II) Clusters with Acetylacetone and Benz-pyrazole Hydrolyzed Derivatives as Ligand.

    PubMed

    Vafazadeh, Rasoul; Willis, Anthony C

    2016-01-01

    Two copper(II) clusters Cu(4)OCl(6)(pyrazole)4, 1, and Cu(4)OBr(6)(Br-pyrazole)4, 2, have been synthesized by reacting acetylacetone and benzohydrazide (1:1 ratio) with CuX(2) (X = Cl for 1 and X= Br for 2) in methanol solutions. The structures of both clusters have been established by X-ray crystallography. The clusters contain four Cu, one O, six μ(2)-X atoms, and four pyrazole ligands. The pyrazoles was prepared in situ by the reaction of acetylacetone with benzohydrazide in methanol under reflux. In 2, the methine hydrogens of the pyrazole ligands have been replaced by bromine atoms. The four copper atoms encapsulate the central O atom in a tetrahedral arrangement. All copper atoms are five-coordinate and have similar coordination environments with slightly distorted trigonal bipyramidal geometry. The cyclic voltammogram of the clusters 1 and 2 show a one-electron quasi-reversible reduction wave in the region 0.485 to 0.731 V, and a one-electron quasi-reversible oxidation wave in the region 0.767 to 0.898 V. In 1, one irreversible oxidative response is observed on the positive of side of the voltammogram at 1.512 V and this can be assigned to Cu(II) to Cu(III) oxidation.

  13. Factors driving stable growth of He clusters in W: first-principles study

    NASA Astrophysics Data System (ADS)

    Feng, Y. J.; Xin, T. Y.; Xu, Q.; Wang, Y. X.

    2018-07-01

    The evolution of helium (He) bubbles is responsible for the surface morphology variation and subsequent degradation of the properties of plasma-facing materials (PFMs) in nuclear fusion reactors. These severe problems unquestionably trace back to the behavior of He in PFMs, which is closely associated with the interaction between He and the matrix. In this paper, we decomposed the binding energy of the He cluster into three parts, those from W–W, W–He, and He–He interactions, using density functional theory. As a result, we clearly identified the main factors that determine a steplike decrease in the binding energy with increasing number of He atoms, which explains the process of self-trapping and athermal vacancy generation during He cluster growth in the PFM tungsten. The three interactions were found to synergetically shape the features of the steplike decrease in the binding energy. Fairly strong He–He repulsive forces at a short distance, which stem from antibonding states between He atoms, need to be released when additional He atoms are continuously bonded to the He cluster. This causes the steplike feature in the binding energy. The bonding states between W and He atoms in principle facilitate the decreasing trend of the binding energy. The decrease in binding energy with increasing number of He atoms implies that He clusters can grow stably.

  14. Lithium-air batteries, method for making lithium-air batteries

    DOEpatents

    Vajda, Stefan; Curtiss, Larry A.; Lu, Jun; Amine, Khalil; Tyo, Eric C.

    2016-11-15

    The invention provides a method for generating Li.sub.2O.sub.2 or composites of it, the method uses mixing lithium ions with oxygen ions in the presence of a catalyst. The catalyst comprises a plurality of metal clusters, their alloys and mixtures, each cluster consisting of between 3 and 18 metal atoms. The invention also describes a lithium-air battery which uses a lithium metal anode, and a cathode opposing the anode. The cathode supports metal clusters, each cluster consisting of size selected clusters, taken from a range of between approximately 3 and approximately 18 metal atoms, and an electrolyte positioned between the anode and the cathode.

  15. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster.

    PubMed

    Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M

    2016-01-18

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale scanning electrochemical microscopy (SECM) imaging to resolve the electrocatalytic activity of individual electrodeposited NPs within an ensemble sample yielding consistent high k 0 values of ≥2 cm/s for the hydrogen oxidation reaction (HOR) at different NPs. We envision that our advanced electrochemical approaches will enable us to systematically address structure effects on the catalytic activity, thus providing a quantitative guideline for electrocatalysts in energy-related applications.

  17. Estimating carbon cluster binding energies from measured Cn distributions, n <= 10

    NASA Astrophysics Data System (ADS)

    Pargellis, A. N.

    1990-08-01

    Experimental data are presented for the cluster distribution of sputtered negative carbon clusters, C-n, with n≤10. Additionally, clusters have been observed with masses indicating they are CsC-2n, with n≤4. The C-n data are compared with the data obtained by other groups, for neutral and charged clusters, using a variety of sources such as evaporation, sputtering, and laser ablation. The data are used to estimate the cluster binding energies En, using the universal relation, En=(n-1)ΔHn+RTe [ln(Jn/J1)+0.5 ln(n)-α-(ΔSn-ΔS1)/R], derived from basic kinetic and thermodynamic relations. The estimated values agree astonishingly well with values from the literature, varying from published values by at most a few percent. In this equation, Jn is the observed current of n-atom clusters, ΔHn is the heat of vaporization, ΔH1=7.41 eV, and Te ≊0.25 eV (2900 K) is the effective source temperature. The relative change in cluster entropy during sublimation from the solid to vapor phase is approximated to first order by the relation (ΔSn-ΔS1)/R =3.1+0.9(n-2), and is fit to published data for n between 2 and 5 and temperatures between 2000 and 4000 K. The parameter α is empirical, obtained by fitting the data to known binding energies for Cn≤5 clusters. For evaporation sources, α must be zero, but α˜7 when sputtering with Cs+ ions, indicating the sputtered clusters appear to be in thermodynamic equilibrium, but not the atoms. Several possible mechanisms for the formation of clusters during sputtering are examined. One plausible mechanism is that atoms diffuse on the graphite surface to form clusters which are then desorbed by energetic, recoil atoms created in subsequent sputtering events.

  18. Cluster generator

    DOEpatents

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  19. Infectious Disease Risk and Vaccination in Northern Syria after 5 Years of Civil War: The MSF Experience.

    PubMed

    de Lima Pereira, Alan; Southgate, Rosamund; Ahmed, Hikmet; O'Connor, Penelope; Cramond, Vanessa; Lenglet, Annick

    2018-02-02

    In 2015, following an influx of population into Kobanê in northern Syria, Médecins Sans Frontières (MSF) in collaboration with the Kobanê Health Administration (KHA) initiated primary healthcare activities. A vaccination coverage survey and vaccine-preventable disease (VPD) risk analysis were undertaken to clarify the VPD risk and vaccination needs. This was followed by a measles Supplementary Immunization Activity (SIA). We describe the methods and results used for this prioritisation activity around vaccination in Kobanê in 2015. We implemented a pre-SIA survey in 135 randomly-selected households in Kobanê using a vaccination history questionnaire for all children <5 years. We conducted a VPD Risk Analysis using MSF 'Preventive Vaccination in Humanitarian Emergencies' guidance to prioritize antigens with the highest public health threat for mass vaccination activities. A Measles SIA was then implemented and followed by vaccine coverage survey in 282 randomly-selected households targeting children <5 years. The pre-SIA survey showed that 168/212 children (79.3%; 95%CI=72.7-84.6%) had received one vaccine or more in their lifetime. Forty-three children (20.3%; 95%CI: 15.1-26.6%) had received all vaccines due by their age; only one was <12 months old and this child had received all vaccinations outside of Syria. The VPD Risk Analysis prioritised measles, Haemophilus Influenza type B (Hib) and Pneumococcus vaccinations. In the measles SIA, 3410 children aged 6-59 months were vaccinated. The use of multiple small vaccination sites to reduce risks associated with crowds in this active conflict setting was noted as a lesson learnt. The post-SIA survey estimated 82% (95%CI: 76.9-85.9%; n=229/280) measles vaccination coverage in children 6-59 months. As a result of the conflict in Syria, the progressive collapse of the health care system in Kobanê has resulted in low vaccine coverage rates, particularly in younger age groups. The repeated displacements of the population, attacks on health institutions and exodus of healthcare workers, challenge the resumption of routine immunization in this conflict setting and limit the use of SIAs to ensure sustainable immunity to VPDs. We have shown that the risk for several VPDs in Kobanê remains high. We call on all health actors and the international community to work towards re-establishment of routine immunisation activities as a priority to ensure that children who have had no access to vaccination in the last five years are adequately protected for VPDs as soon as possible.

  20. Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes

    NASA Astrophysics Data System (ADS)

    Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng

    2016-06-01

    Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19-centered-2-electron (19c-2e) π bond, 10 π electrons in total. This perfectly planar structure reveals the viability of creating a new class of hetero-borophenes and metallo-borophenes by doping metal atoms into the plane of monolayer boron atoms. This gives a new approach to design perspective hetero-borophenes and metallo-borophenes materials with tunable chemical, magnetic and optical properties.

  1. Electronic structures and thermochemical properties of the small silicon-doped boron clusters B(n)Si (n=1-7) and their anions.

    PubMed

    Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho

    2011-11-18

    We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A 3D-analysis of cluster formation and dynamics of the X(-)-benzene (X = F, Cl, Br, I) ionic dimer solvated by Ar atoms.

    PubMed

    Albertí, Margarita; Huarte-Larrañaga, Fermín; Aguilar, Antonio; Lucas, José M; Pirani, Fernando

    2011-05-14

    The specific influence of X(-) ions (X = F,Cl, Br, I) in the solvation process of halide-benzene (X(-)-Bz) ionic heterodimers by Ar atoms is investigated by means of molecular dynamic (MD) simulations. The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering ensembles of n (n = 1-15 and n = 30) Ar atoms around the X(-)-Bz stable ionic dimers. The potential energy surfaces employed are based on an atom/ion-atom and atom/ion-bond decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions (RDF) and tridimensional (3D) probability densities.

  3. Insights into geometries, stabilities, electronic structures, reactivity descriptors, and magnetic properties of bimetallic Nim Cun-m (m = 1, 2; n = 3-13) clusters: Comparison with pure copper clusters.

    PubMed

    Singh, Raman K; Iwasa, Takeshi; Taketsugu, Tetsuya

    2018-05-25

    A long-range corrected density functional theory (LC-DFT) was applied to study the geometric structures, relative stabilities, electronic structures, reactivity descriptors and magnetic properties of the bimetallic NiCu n -1 and Ni 2 Cu n -2 (n = 3-13) clusters, obtained by doping one or two Ni atoms to the lowest energy structures of Cu n , followed by geometry optimizations. The optimized geometries revealed that the lowest energy structures of the NiCu n -1 and Ni 2 Cu n -2 clusters favor the Ni atom(s) situated at the most highly coordinated position of the host copper clusters. The averaged binding energy, the fragmentation energies and the second-order energy differences signified that the Ni doped clusters can continue to gain an energy during the growth process. The electronic structures revealed that the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies of the LC-DFT are reliable and can be used to predict the vertical ionization potential and the vertical electron affinity of the systems. The reactivity descriptors such as the chemical potential, chemical hardness and electrophilic power, and the reactivity principle such as the minimum polarizability principle are operative for characterizing and rationalizing the electronic structures of these clusters. Moreover, doping of Ni atoms into the copper clusters carry most of the total spin magnetic moment. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Secondary Inorganic Aerosols over an Urban Location in North-Western Himalayan Region: Seasonal Variation in Composition and Formation Process(es)

    NASA Astrophysics Data System (ADS)

    Kaushal, D.; Tandon, A.

    2017-12-01

    Oxidative photo-chemical transformation of precursor gases, mainly of anthropogenic origin, produces secondary aerosols. Secondary inorganic aerosols constitute a significant fraction of total aerosol load over urban locations especially high altitude in wet-temperate climatic set-up. Towns situated in North-Western Himalayan region (NWHR) with sizable population and attractive tourist destinations have been facing ever increasing problem of gaseous and particulate air pollution from exponential increase in vehicular traffic and other anthropogenic emissions. The present study has been planned to investigate the seasonal variations in atmospheric processes responsible for the formation of Secondary Inorganic Aerosols (SIA) and to estimate contribution of SIA to PM­10 load over an Urban location, Dharamshala, in Dhauladhar region of NWHR. Twenty four hourly PM10 aerosol samples were collected, on quartz micro fibre filters in Dharamshala (1350 amsl) on weekly basis for complete one year time-period (February 2015 - January 2016). These samples were analyzed for Water Soluble Inorganic Ions (WSII) using Ion-Chromatographic System. On annual basis, SO42- ions contributed maximum (52%) followed by NO3- (13%) and NH4+ (12%) to WSII. Based upon Principal Component Analysis (PCA), dominant sources contributing to PM10 associated WSII were identified as: Fossil-Fuel and Bio-mass burning, Vehicular (mainly diesel) emissions and gaseous emissions from the microbial degradation of dead bio-mass. Throughout the year, significantly high proportion of SO42- and considerable thermodynamic stability of (NH4)2SO2 at ambient temperatures, made it the major contributor to SIA over NH4NO3 and NH4Cl. On seasonal basis, maximum contribution of SIA to PM10 was observed in monsoon followed by the winter season. Low ambient temperature in winter season favoured formation of NH4NO3 with significant contribution to SIA. It could be concluded that observed variability in the composition and concentration of SIA was a combined out-come of variation in the emission of gaseous precursors and in meteorological conditions.

  5. Theoretical research program to predict the properties of molecules and clusters containing transition metal atoms

    NASA Technical Reports Server (NTRS)

    Walch, S.

    1984-01-01

    The primary focus of this research has been the theoretical study of transition metal (TM) chemistry. A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method in the iron hydrogen studies is the cluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results.

  6. Theoretical predictions of a bucky-diamond SiC cluster.

    PubMed

    Yu, Ming; Jayanthi, C S; Wu, S Y

    2012-06-15

    A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).

  7. Structure and properties of B20Si-/0/+ clusters

    NASA Astrophysics Data System (ADS)

    Lu, Qi Liang; Luo, Qi Quan; Li, Yi De; Huang, Shou Guo

    2018-06-01

    A global search for the lowest energy structure of B20Si-, B20Si0 and B20Si+ clusters is conducted. Structural transitions at different charge states are observed. B20Si- is a 2D planar configuration with no polygonal holes, and Si atom occupies a peripheral position. B20Si+ adopts a 3D tubular shape, and each Si is bonded with four B atoms. But for B20Si0, competition among quasi-planar, tubular and cage like structures is found. These structures differ greatly from that of pure B21 - cluster. The structural transition may result from changes in the framework of bonding, sp 2 hybridization, and structural mechanics. Some of the clusters' properties including frontier molecular orbital, on-site charge on Si atom, electron density, and magnetism are also discussed.

  8. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yourshaw, Ivan

    1998-07-09

    The diatomic halogen atom-rare gas diatomic complexes KrBr -, XeBr -, and KrCl - are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar nBr - (n = 2-9) and Ar nI - (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halidemore » clusters. In these studies we obtain information about both the anionic and neutral clusters.« less

  9. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  10. Study of crystallization mechanisms of Fe nanoparticle

    NASA Astrophysics Data System (ADS)

    Kien, P. H.; Trang, G. T. T.; Hung, P. K.

    2017-06-01

    In this paper, the nanoparticle (NP) Fe was investigated by means of molecular dynamics simulation. The crystallization mechanism was studied through the time evolution of crystal cluster and potential energies of different atom types. The simulation shows that the NP was crystallized into bcc crystal structure when it was annealed at 900 K for long times. At early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which create the stable clusters in the core of NP. After that the crystal clusters grow in the direction to cover the core and then to spread into the surface of NP. Analyzing the energies of different type atoms, we found that the crystal growth is originated from specific atomic arrangement in the boundary region of crystal clusters.

  11. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    PubMed

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  12. Detonation of Meta-stable Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetahmore » code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.« less

  13. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  14. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE PAGES

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; ...

    2016-01-07

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  15. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Bibi, Maryam

    2017-04-01

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO2, whereas two IR active and one Raman active modes were observed for CeO2. The comparative analysis indicates that the hybrid cluster CeTiO4 contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO4 to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  16. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2016-10-21

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH) 1-3 - cluster anions are lower than those found for their respective FeS 1-3 - cluster anions. The experimental first VDEs for FeS 1-3 - clusters are observed to increase for the first two S atoms bound to Fe - ; however, due to the formation of an S-S bond for the FeS 3 - cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS 2 - cluster. The first VDEs of Fe(SH) 1-3 - cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS 1-3 - and Fe(SH) 1-3 - clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH) - is lower than that for FeS 2 - , but higher than that for Fe(SH) 2 - ; the first VDEs for FeS 2 (SH) - and FeS(SH) 2 - are close to that for FeS 3 - , but higher than that for Fe(SH) 3 - . The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.

  17. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yin, Shi; Bernstein, Elliot R.

    2016-10-01

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3- cluster anions are lower than those found for their respective FeS1-3- cluster anions. The experimental first VDEs for FeS1-3- clusters are observed to increase for the first two S atoms bound to Fe-; however, due to the formation of an S-S bond for the FeS3- cluster, its first VDE is found to be ˜0.41 eV lower than the first VDE for the FeS2- cluster. The first VDEs of Fe(SH)1-3- cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3- and Fe(SH)1-3- clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)- is lower than that for FeS2-, but higher than that for Fe(SH)2-; the first VDEs for FeS2(SH)- and FeS(SH)2- are close to that for FeS3-, but higher than that for Fe(SH)3-. The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.

  18. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as superpositions of atomic states with surface states appearing close to the atomic excitation energies and interior states being blue shifted by up to ≈2 eV. The dynamics resulting from excitation of He_7 were subsequently explored using ab initio molecular dynamics (AIMD). These simulations were performed with classical adiabatic dynamics coupled to a new state-following algorithm on CIS potential energy surfaces. Most clusters were found to completely dissociate and resulted in a single excited atomic state (90%), however, some trajectories formed bound, He*2 (3%), and a few yielded excited trimers (<0.5%). Comparisons were made with available experimental information on much larger clusters. Various applications of this state following algorithm are also presented. In addition to AIMD, these include excited-state geometry optimization and minimal energy path finding via the growing string method. When using state following we demonstrate that more physical results can be obtained with AIMD calculations. Also, the optimized geometries of three excited states of cytosine, two of which were not found without state following, and the minimal energy path between the lowest two singlet excited states of protonated formaldimine are offered as example applications. Finally, to address large clusters, a local variation of CIS was developed. This method exploits the properties of absolutely localized molecular orbitals (ALMOs) to limit the total number of excitations to scaling only linearly with cluster size, which results in formal scaling with the third power of the system size. The derivation of the equations and design of the algorithm are discussed in detail, and computational timings as well as a pilot application to the size dependence of the helium cluster spectrum are presented.

  19. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    PubMed Central

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  20. Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells.

    PubMed

    Inoue, Sadako; Sato, Chihiro; Kitajima, Ken

    2010-06-01

    N-Glycolylneuraminic acid (Neu5Gc) is the second most populous sialic acid (Sia). The only known biosynthetic pathway of Neu5Gc is the hydroxylation of cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), catalyzed by CMP-Neu5Ac hydroxylase (CMAH). Neu5Gc is abundantly found in mammals except for human, in which CMAH is inactivated due to mutation in the CMAH gene. Evidence has accumulated to show occurrence of Neu5Gc-containing glycoconjugates in sera of cancer patients, human cancerous tissues and cultured human cell lines. Recently, occurrence of natural antibodies against Neu5Gc was shown in healthy humans and is a serious problem for clinical xenotransplantation and stem cell therapies. Studying human occurrence of Neu5Gc is of importance and interest in a broad area of medical sciences. In this study, using a fluorometric high performance liquid chromatography method, we performed quantitative analyses of Sias both inside and in the external environment of the cell and found that (i) incorporation of Neu5Gc was most prominent in soluble glycoproteins found both in the extracellular space and inside the cell as the major Sia compounds. (ii) Of the total Neu5Gc in the Sia compounds that the cells synthesized, 90% was found in the secreted sialoglycoproteins, whereas for Neu5Ac, 70% was found in the secreted sialoglycoproteins. (iii) The Neu5Gc ratio was higher in the secreted sialoglycoproteins (as high as 40% of total Sias) than in intracellular sialoglycoproteins. (iv) The majority of the secreted sialoglycoproteins was anchored on the culture dishes and solubilized by brief trypsin treatment. Based on these findings, a new idea on the mechanism of accumulation of Neu5Gc in cancer cells was proposed.

  1. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients

    PubMed Central

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V.; Hacker, Neville F.; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2–6 vs. α2–3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers. PMID:27764122

  2. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients.

    PubMed

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2-6 vs. α2-3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers.

  3. Supplementary immunization activities (SIAs) in South Africa: comprehensive economic evaluation of an integrated child health delivery platform

    PubMed Central

    Verguet, Stéphane; Jassat, Waasila; Bertram, Melanie Y.; Tollman, Stephen M.; Murray, Christopher J. L.; Jamison, Dean T.; Hofman, Karen J.

    2013-01-01

    Background Supplementary immunization activity (SIA) campaigns provide children with an additional dose of measles vaccine and deliver other interventions, including vitamin A supplements, deworming medications, and oral polio vaccines. Objective To assess the cost-effectiveness of the full SIA delivery platform in South Africa (SA). Design We used an epidemiologic cost model to estimate the cost-effectiveness of the 2010 SIA campaign. We used province-level campaign data sourced from the District Health Information System, SA, and from planning records of provincial coordinators of the Expanded Programme on Immunization. The data included the number of children immunized with measles and polio vaccines, the number of children given vitamin A supplements and Albendazole tablets, and costs. Results The campaign cost $37 million and averted a total of 1,150 deaths (95% uncertainty range: 990–1,360). This ranged from 380 deaths averted in KwaZulu-Natal to 20 deaths averted in the Northern Cape. Vitamin A supplementation alone averted 820 deaths (95% UR: 670–1,040); measles vaccination alone averted 330 deaths (95% UR: 280–370). Incremental cost-effectiveness was $27,100 (95% UR: $18,500–34,400) per death averted nationally, ranging from $11,300 per death averted in the Free State to $91,300 per death averted in the Eastern Cape. Conclusions Cost-effectiveness of the SIA child health delivery platform varies substantially across SA provinces, and it is substantially more cost-effective when vitamin A supplementation is included in the interventions administered. Cost-effectiveness assessments should consider health system delivery platforms that integrate multiple interventions, and they should be conducted at the sub-national level. PMID:23458088

  4. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Ultrasound-detected subclinical inflammation was better reflected by the disease activity score (DAS-28) in patients with suspicion of inflammatory arthritis compared to established rheumatoid arthritis.

    PubMed

    Ciurtin, Coziana; Wyszynski, Karol; Clarke, Robert; Mouyis, Maria; Manson, Jessica; Marra, Giampiero

    2016-10-01

    Limited data are available about the ultrasound (US)-detected inflammatory features in patients with suspicion of inflammatory arthritis (S-IA) vs. established rheumatoid arthritis (RA). Our study aimed to assess if the presence of power Doppler (PD) can be predicted by a combination of clinical, laboratory and US parameters. We conducted a real-life, retrospective cohort study comparing clinical, laboratory and US parameters of 108 patients with established RA and 93 patients with S-IA. We propose a PD signal prediction model based on a beta-binomial distribution for PD variable using a mix of outcome measures. Patients with RA in clinical remission had significantly more active inflammation and erosions on US when compared with patients with S-IA with similar disease scores (p = 0.03 and p = 0.01, respectively); however, RA patients with different disease activity score (DAS-28) scores had similar PD scores (p = 0.058). The PD scores did not correlate with erosions (p = 0.38) or DAS-28 scores (p = 0.28) in RA patients, but they correlated with high disease activity in S-IA patients (p = 0.048). Subclinical inflammation is more common in patients with RA in clinical remission or with low disease activity than in patients with S-IA; therefore, US was more useful in assessing for true remission in RA rather than diagnosing IA in patients with low disease activity scores. This is the first study to propose a PD prediction model integrating several outcome measures in the two different groups of patients. Further research into validating this model can minimise the risk of underdiagnosing subclinical inflammation.

  6. Acidosis-mediated regulation of the NHE1 isoform of the Na⁺/H⁺ exchanger in renal cells.

    PubMed

    Odunewu, Ayodeji; Fliegel, Larry

    2013-08-01

    The mammalian Na⁺/H⁺ exchanger isoform 1 (NHE1) is a ubiquitous plasma membrane protein that regulates intracellular pH by removing a proton in exchange for extracellular sodium. Renal tissues are subject to metabolic and respiratory acidosis, and acidosis has been shown to acutely activate NHE1 activity in other cell types. We examined if NHE1 is activated by acute acidosis in HEK293 and Madin-Darby canine kidney (MDCK) cells. Acute sustained intracellular acidosis (SIA) activated NHE1 in both cell types. We expressed wild-type and mutant NHE1 cDNAs in MDCK cells. All the cDNAs had a L163F/G174S mutation, which conferred a 100-fold resistance to EMD87580, an NHE1-specific inhibitor. We assayed exogenous NHE1 activity while inhibiting endogenous activity with EMD87580 and while inhibiting the NHE3 isoform of the Na⁺/H⁺ exchanger using the isoform-specific inhibitor S3226. We examined the activation and phosphorylation of the wild-type and mutant NHE1 proteins in response to SIA. In MDCK cells we demonstrated that the amino acids Ser⁷⁷¹, Ser⁷⁷⁶, Thr⁷⁷⁹, and Ser⁷⁸⁵ are important for NHE1 phosphorylation and activation after acute SIA. SIA activated ERK-dependent pathways in MDCK cells, and this was blocked by treatment with the MEK inhibitor U0126. Treatment with U0126 also blocked activation of NHE1 by SIA. These results suggest that acute acidosis activates NHE1 in mammalian kidney cells and that in MDCK cells this activation occurs through an ERK-dependent pathway affecting phosphorylation of a distinct set of amino acids in the cytosolic regulatory tail of NHE1.

  7. Control of Wannier orbitals for generating tunable Ising interactions of ultracold atoms in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro

    2014-12-04

    In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.

  8. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster.

    PubMed

    Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Wang, Lai-Sheng; Boldyrev, Alexander I

    2013-10-14

    The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24(-) possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moiety is puckered out of plane by 0.9 Å, reminiscent of the six-atom pentagonal caps of the well-known B12 icosahedral unit. The next closest isomer at the ROCCSD(T) level of theory has a tubular double-ring structure. Comparison of the simulated spectra with the experimental data shows that the global minimum quasi-planar B24(-) isomer is the major contributor to the observed photoelectron spectrum, while the tubular isomer has no contribution to the experiment. Chemical bonding analyses reveal that the periphery of the quasi-planar B24 constitutes 15 classical 2c-2e B-B σ-bonds, whereas delocalized σ- and π-bonds are found in the interior of the cluster with one unique 6c-2e π-bond responsible for bonding in the B-centered pentagon. The current work suggests that the 24-atom boron cluster continues to be quasi-2D, albeit the tendency to form filled pentagonal units, characteristic of 3D cage-like structures of bulk boron, is observed.

  9. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 10 24 m –3 and 1.2 × 10 24 m –3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y andmore » O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less

  10. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    DOE PAGES

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.; ...

    2017-03-28

    Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less

  11. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.

    Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less

  12. Monitoring progress toward measles elimination by genetic diversity analysis of measles viruses in China 2009-2010.

    PubMed

    Zhang, Y; Wang, H; Xu, S; Mao, N; Zhu, Z; Shi, J; Huang, G; Liu, C; Bo, F; Feng, D; Lu, P; Liu, Y; Wang, Y; Lei, Y; Chen, M; Chen, H; Wang, C; Fu, H; Li, C; He, J; Gao, H; Gu, S; Wang, S; Ling, H; Liu, Y; Ding, Z; Ba, Z; Feng, Y; Zheng, H; Tang, X; Lei, Y; Xiong, Y; Bellini, W J; Rota, P A; Jee, Y; Xu, W

    2014-09-01

    With the achievement of high coverage for routine immunization and supplementary immunization activities (SIAs), measles incidence in mainland China reached its lowest level in 2010. The proportion of measles cases in the vaccination-targeted population decreased during 2007-2010 after the SIAs. More than 60% of measles cases were in adults or infants, especially in the coastal and eastern provinces during 2009 and 2010. A total 567 isolates of measles virus were obtained from clinical specimens from 27 of 31 provinces in mainland China during 2009 and 2010. Except for two vaccine-associated cases, one genotype D4 strain, two genotype D9 strains, and four genotype D11 strains, the other 558 strains were genotype H1 cluster H1a. Genotype H1 has been the only endemic genotype detected in China since surveillance began in 1993. Only genotype H1 was found in mainland China during 1993-2008, except for one detection of genotype H2. More recently, multiple genotypes of imported measles were detected even with the background of endemic genetotype H1 viruses. Analysis of the 450-nucleotide sequencing window of the measles virus N gene showed that the overall genetic diversity of the recent geneotype H1 strains decreased between 2008 and 2010. The lower genetic diversity of H1 strains suggested that enhanced vaccination may have reduced the co-circulating lineages of endemic genotype H1 strains in mainland China. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  13. Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts.

    PubMed

    Li, Shu-Long; Yin, Hui; Kan, Xiang; Gan, Li-Yong; Schwingenschlögl, Udo; Zhao, Yong

    2017-11-15

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C 3 N 4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C 3 N 4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C 3 N 4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C 3 N 4 gives rise to promising single-atom catalysts at low temperature.

  14. Penning ionization electron spectroscopy of CO 2 clusters in collision with metastable rare gas atoms

    NASA Astrophysics Data System (ADS)

    Maruyama, Ryo; Tanaka, Hideyasu; Yamakita, Yoshihiro; Misaizu, Fuminori; Ohno, Koichi

    2000-09-01

    Penning ionization electron spectra (PIES) of CO 2 clusters have been observed for the first time. An unusually fast electron band with excess kinetic energies of 1.4-2.9 eV with respect to the monomer band for the ionic X state was observed for CO 2 clusters in collision with He*(2 3S) atoms. While for PIES with Ne*(3 3P), no such unusual band was observed. The unusual band is ascribed to autoionization into stable structures of ionic clusters to which direct ionization processes are almost impossible due to very small Franck-Condon overlaps associated with a very large geometry difference between the ionic and neutral clusters.

  15. Al6H18: A baby crystal of γ-AlH3

    NASA Astrophysics Data System (ADS)

    Kiran, B.; Kandalam, Anil K.; Xu, Jing; Ding, Y. H.; Sierka, M.; Bowen, K. H.; Schnöckel, H.

    2012-10-01

    Using global-minima search methods based on the density functional theory calculations of (AlH3)n (n = 1-8) clusters, we show that the growth pattern of alanes for n ≥ 4 is dominated by structures containing hexa-coordinated Al atoms. This is in contrast to the earlier studies where either linear or ring structures of AlH3 were predicted to be the preferred structures in which the Al atoms can have a maximum of five-fold coordination. Our calculations also reveal that the Al6H18 cluster, with its hexa-coordination of the Al atoms, resembles the unit-cell of γ-AlH3, thus Al6H18 is designated as the "baby crystal." The fragmentation energies of the (AlH3)n (n = 2-8) along with the dimerization energies for even n clusters indicate an enhanced stability of the Al6H18 cluster. Both covalent (hybridization) and ionic (charge) contribution to the bonding are the driving factors in stabilizing the isomers containing hexa-coordinated Al atoms.

  16. Recent development in deciphering the structure of luminescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  17. Do Ag{sub n} (up to n = 8) clusters retain their identity on graphite? Insights from first-principles calculations including dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Akansha; Sen, Prasenjit, E-mail: prasen@hri.res.in; Majumder, Chiranjib

    Adsorption of pre-formed Ag{sub n} clusters for n = 1 − 8 on a graphite substrate is studied within the density functional theory employing the vdW-DF2 functional to treat dispersion interactions. Top sites above surface layer carbon atoms turn out to be most favorable for a Ag adatom, in agreement with experimental observations. The same feature is observed for clusters of almost all sizes which have the lowest energies when the Ag atoms are positioned over top sites. Most gas phase isomers retain their structures over the substrate, though a couple of them undergo significant distortions. Energetics of the adsorptionmore » can be understood in terms of a competition between energy cost of disturbing Ag–Ag bonds in the cluster and energy gain from Ag–C interactions at the surface. Ag{sub 3} turns out to be an exceptional candidate in this regard that undergoes significant structural distortion and has only two of the Ag atoms close to surface C atoms in its lowest energy structure.« less

  18. Evolution of the properties of Al(n)N(n) clusters with size.

    PubMed

    Costales, Aurora; Blanco, M A; Francisco, E; Pandey, Ravindra; Martín Pendás, A

    2005-12-29

    A global optimization of stoichiometric (AlN)(n) clusters (n = 1-25, 30, 35, ..., 95, 100) has been performed using the basin-hopping (BH) method and describing the interactions with simple and yet realistic interatomic potentials. The results for the smaller isomers agree with those of previous electronic structure calculations, thus validating the present scheme. The lowest-energy isomers found can be classified in three different categories according to their structural motifs: (i) small clusters (n = 2-5), with planar ring structures and 2-fold coordination, (ii) medium clusters (n = 6-40), where a competition between stacked rings and globular-like empty cages exists, and (iii) large clusters (n > 40), large enough to mix different elements of the previous stage. All the atoms in small and medium-sized clusters are in the surface, while large clusters start to display interior atoms. Large clusters display a competition between tetrahedral and octahedral-like features: the former lead to a lower energy interior in the cluster, while the latter allow for surface terminations with a lower energy. All of the properties studied present different regimes according to the above classification. It is of particular interest that the local properties of the interior atoms do converge to the bulk limit. The isomers with n = 6 and 12 are specially stable with respect to the gain or loss of AlN molecules.

  19. Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology

    PubMed Central

    Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof

    2011-01-01

    Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323

  20. Pre-evaluation of metal ions as a catalyst on chemiluminometric sequential injection analysis with luminol-H2O2 system.

    PubMed

    Takayanagi, Toshio; Inaba, Yuya; Kanzaki, Hiroyuki; Jyoichi, Yasutaka; Motomizu, Shoji

    2009-09-15

    Catalytic effect of metal ions on luminol chemiluminescence (CL) was investigated by sequential injection analysis (SIA). The SIA system was set up with two solenoid micropumps, an eight-port selection valve, and a photosensor module with a fountain-type chemiluminescence cell. The SIA system was controlled and the CL signals were collected by a LabVIEW program. Aqueous solutions of luminol, H(2)O(2), and a sample solution containing metal ion were sequentially aspirated to the holding coil, and the zones were immediately propelled to the detection cell. After optimizing the parameters using 1 x 10(-5)M Fe(3+) solution, catalytic effect of some metal species was compared. Among 16 metal species examined, relatively strong CL responses were obtained with Fe(3+), Fe(2+), VO(2+), VO(3)(-), MnO(4)(-), Co(2+), and Cu(2+). The limits of detection by the present SIA system were comparable to FIA systems. Permanganate ion showed the highest CL sensitivity among the metal species examined; the calibration graph for MnO(4)(-) was linear at the concentration level of 10(-8)M and the limit of detection for MnO(4)(-) was 4.0 x 10(-10)M (S/N=3).

  1. Differential expression of the polysialyl capsule during blood-to-brain transit of neuropathogenic Escherichia coli K1.

    PubMed

    Zelmer, Andrea; Bowen, Mark; Jokilammi, Anne; Finne, Jukka; Luzio, J Paul; Taylor, Peter W

    2008-08-01

    Escherichia coli K1 isolates synthesize a polysialic acid (polySia) capsule, are components of the adult gastrointestinal microbiota and may cause lethal bacteraemia and meningitis if acquired maternally by newborn infants. We used a neonatal rat pup K1 infection model to establish that prompt administration of a selective capsule depolymerase reverses the bacteraemic state and prevents death of almost all pups. In untreated animals, bacteria colonize the gastrointestinal tract and gain entry to the blood compartment, where they express the non-O-acetylated form of polySia. The bacteria invade the major organs of the host; histological and histochemical analysis of brain sections revealed that at least some bacteria enter the central nervous system through the blood-cerebrospinal fluid barrier at the choroid plexus prior to colonization of the meninges. Once in this location, they cease expression of polySia. The unexpected abrogation of polySia, a factor associated with the pathogenesis of meningitis and essential for transit through the blood, suggests that the neuropathogen dispenses with its protective capsule once it has colonized protected niches. Thus, systemic infections due to encapsulated pathogens may be resolved by capsule depolymerization only if the enzyme modifies the bacteria whilst they are in the blood compartment.

  2. Sixteenth International Conference on the physics of electronic and atomic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  3. Plasmon excitations in doped square-lattice atomic clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yaxin; Yu, Ya-Bin

    2017-12-01

    Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).

  4. Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry

    NASA Astrophysics Data System (ADS)

    Qian, Elaine A.; Wixtrom, Alex I.; Axtell, Jonathan C.; Saebi, Azin; Jung, Dahee; Rehak, Pavel; Han, Yanxiao; Moully, Elamar Hakim; Mosallaei, Daniel; Chow, Sylvia; Messina, Marco S.; Wang, Jing Yang; Royappa, A. Timothy; Rheingold, Arnold L.; Maynard, Heather D.; Král, Petr; Spokoyny, Alexander M.

    2017-04-01

    The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.

  5. Surface structure. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters.

    PubMed

    Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J

    2015-04-17

    Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.

  6. Gold atoms and dimers on amorphous SiO(2): calculation of optical properties and cavity ringdown spectroscopy measurements.

    PubMed

    Del Vitto, Annalisa; Pacchioni, Gianfranco; Lim, Kok Hwa; Rösch, Notker; Antonietti, Jean-Marie; Michalski, Marcin; Heiz, Ulrich; Jones, Harold

    2005-10-27

    We report on the optical absorption spectra of gold atoms and dimers deposited on amorphous silica in size-selected fashion. Experimental spectra were obtained by cavity ringdown spectroscopy. Issues on soft-landing, fragmentation, and thermal diffusion are discussed on the basis of the experimental results. In parallel, cluster and periodic supercell density functional theory (DFT) calculations were performed to model atoms and dimers trapped on various defect sites of amorphous silica. Optically allowed electronic transitions were calculated, and comparisons with the experimental spectra show that silicon dangling bonds [[triple bond]Si(.-)], nonbridging oxygen [[triple bond]Si-O(.-)], and the silanolate group [[triple bond]Si-O(-)] act as trapping centers for the gold particles. The results are not only important for understanding the chemical bonding of atoms and clusters on oxide surfaces, but they will also be of fundamental interest for photochemical studies of size-selected clusters on surfaces.

  7. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  8. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    NASA Astrophysics Data System (ADS)

    M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier

    2012-11-01

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  9. Tight-binding study of Si2Cn (n = 3 to 42) fullerene-like or nanodiamonds microclusters: are Si atoms isolated or adjacent?

    NASA Astrophysics Data System (ADS)

    Leleyter, M.; Olivi-Tran, N.

    2008-12-01

    We studied in tight-binding approximation involving spν hybridization (ν=2,3), some Si2Cn (n=3 to 42) microclusters. We then investigated, on one hand, fragments of fullerene-like structures (sp2), and on the other hand, nanodiamonds (sp3) of adamantane-type or a 44-atom nanodiamond (with 2 inner atoms which are assumed to play the role of bulk atoms). We compared the stabilities, i.e. the electronic energies of these clusters, according to the various positions of the 2 Si atoms. Results are very different in the two kinds of hybridization. Besides, they can be analysed according to two different points of view: either the clusters are considered as small particles with limited sizes, or they are assumed to be used as models in order to simulate the Si-atom behaviour in very larger systems. In sp2 hybridization (fullerene-like geometries), the most stable isomer is always encountered when the 2 Si atoms build a Si2 group, and this result holds for both viewpoints quoted above. Conversely, in sp3 hybridization (nanodiamonds), since Si atoms “prefer” sites having the minimum connectivity, they are never found in adjacent sites. We see that with a simple and fast computational method we can explain an experimental fact which is very interesting such as the relative position of two heteroatoms in the cluster. This enhances the generality and the fecondity in the tight binding approximation due essentially to the link between this model and the graph theory, link based on the topology of the clusters.

  10. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novelmore » catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.« less

  11. Atomic-scale structure and electronic properties of GaN/GaAs superlattices

    NASA Astrophysics Data System (ADS)

    Goldman, R. S.; Feenstra, R. M.; Briner, B. G.; O'Steen, M. L.; Hauenstein, R. J.

    1996-12-01

    We have investigated the atomic-scale structure and electronic properties of GaN/GaAs superlattices produced by nitridation of a molecular beam epitaxially grown GaAs surface. Using cross-sectional scanning tunneling microscopy (STM) and spectroscopy, we show that the nitrided layers are laterally inhomogeneous, consisting of groups of atomic-scale defects and larger clusters. Analysis of x-ray diffraction data in terms of fractional area of clusters (determined by STM), reveals a cluster lattice constant similar to bulk GaN. In addition, tunneling spectroscopy on the defects indicates a conduction band state associated with an acceptor level of NAs in GaAs. Therefore, we identify the clusters and defects as nearly pure GaN and NAs, respectively. Together, the results reveal phase segregation in these arsenide/nitride structures, in agreement with the large miscibility gap predicted for GaAsN.

  12. Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat

    USGS Publications Warehouse

    Nagy, K.L.; Manceau, A.; Gasper, J.D.; Ryan, J.N.; Aiken, G.R.

    2011-01-01

    Strong mercury(II)-sulfur (Hg-SR) bonds in natural organic matter, which influence mercury bioavailability, are difficult to characterize. We report evidence for two new Hg-SR structures using X-ray absorption spectroscopy in peats from the Florida Everglades with added Hg. The first, observed at a mole ratio of organic reduced S to Hg (Sred/Hg) between 220 and 1140, is a Hg4Sx type of cluster with each Hg atom bonded to two S atoms at 2.34 ?? and one S at 2.53 ??, and all Hg atoms 4.12 ?? apart. This model structure matches those of metal-thiolate clusters in metallothioneins, but not those of HgS minerals. The second, with one S atom at 2.34 ?? and about six C atoms at 2.97 to 3.28 ??, occurred at S red/Hg between 0.80 and 4.3 and suggests Hg binding to a thiolated aromatic unit. The multinuclear Hg cluster indicates a strong binding environment to cysteinyl sulfur that might impede methylation. Along with a linear Hg(SR)2 unit with Hg - S bond lengths of 2.34 ?? at Sred/Hg of about 10 to 20, the new structures support a continuum in Hg-SR binding strength in natural organic matter. ?? 2011 American Chemical Society.

  13. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patanen, M.; Benkoula, S.; Nicolas, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  14. Comparative study of local atomic structures in Zr2CuxNi1-x (x = 0, 0.5, 1) metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2015-11-01

    Extensive analysis has been performed to understand the key structural motifs accounting for the difference in glass forming ability in the Zr-Cu and Zr-Ni binary alloy systems. Here, the reliable atomic structure models of Zr2CuxNi1-x (x = 0, 0.5, 1) are constructed using the combination of X-ray diffraction experiments, ab initio molecular dynamics simulations and a constrained reverse Monte Carlo method. We observe a systematic variation of the interatomic distance of different atomic pairs with respect to the alloy composition. The ideal icosahedral content in all samples is limited, despite the high content of five-fold symmetry motifs. We also demonstrate that the population of Z-clusters in Zr2Cu glass is much higher than that in the Zr2Ni and Zr2Cu0.5Ni0.5 samples. And Z12 ⟨0, 0, 12, 0⟩ Voronoi polyhedra clusters prefer to form around Cu atoms, while Ni-centered clusters are more like Z11 ⟨0, 2, 8, 1⟩ clusters, which is less energetically stable compared to Z12 clusters. These two different structural properties may account for the higher glass forming ability of Zr2Cu alloy than that of Zr2Ni alloy.

  15. Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors.

    PubMed

    Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan

    2014-06-25

    Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated oxygen atoms on the surface of the super-reduced POM(27-) polyanion allows the huge Coulombic repulsion due to the presence of the excess electrons to be counterbalanced by the presence of Li countercations, which partially penetrate into the outer oxygen shell. This "semiporous molecular capacitor" structure is likely the reason for the effective electron uptake in POMs.

  16. Special and general superatoms.

    PubMed

    Luo, Zhixun; Castleman, A Welford

    2014-10-21

    Bridging the gap between atoms and macroscopic matter, clusters continue to be a subject of increasing research interest. Among the realm of cluster investigations, an exciting development is the realization that chosen stable clusters can mimic the chemical behavior of an atom or a group of the periodic table of elements. This major finding known as a superatom concept was originated experimentally from the study of aluminum cluster reactivity conducted in 1989 by noting a dramatic size dependence of the reactivity where cluster anions containing a certain number of Al atoms were unreactive toward oxygen while the other species were etched away. This observation was well interpreted by shell closings on the basis of the jellium model, and the related concept (originally termed "unified atom") spawned a wide range of pioneering studies in the 1990s pertaining to the understanding of factors governing the properties of clusters. Under the inspiration of a superatom concept, advances in cluster science in finding stable species not only shed light on magic clusters (i.e., superatomic noble gas) but also enlightened the exploration of stable clusters to mimic the chemical behavior of atoms leading to the discovery of superhalogens, alkaline-earth metals, superalkalis, etc. Among them, certain clusters could enable isovalent isomorphism of precious metals, indicating application potential for inexpensive superatoms for industrial catalysis, while a few superalkalis were found to validate the interesting "harpoon mechanism" involved in the superatomic cluster reactivity; recently also found were the magnetic superatoms of which the cluster-assembled materials could be used in spin electronics. Up to now, extensive studies in cluster science have allowed the stability of superatomic clusters to be understood within a few models, including the jellium model, also aromaticity and Wade-Mingos rules depending on the geometry and metallicity of the cluster. However, the scope of application of the jellium model and modification of the theory to account for nonspherical symmetry and nonmetal-doped metal clusters are still illusive to be further developed. It is still worth mentioning that a superatom concept has also been introduced in ligand-stabilized metal clusters which could also follow the major shell-closing electron count for a spherical, square-well potential. By proposing a new concept named as special and general superatoms, herein we try to summarize all these investigations in series, expecting to provide an overview of this field with a primary focus on the joint undertakings which have given rise to the superatom concept. To be specific, for special superatoms, we limit to clusters under a strict jellium model and simply classify them into groups based on their valence electron counts. While for general superatoms we emphasize on nonmetal-doped metal clusters and ligand-stabilized metal clusters, as well as a few isovalent cluster systems. Hopefully this summary of special and general superatoms benefits the further development of cluster-related theory, and lights up the prospect of using them as building blocks of new materials with tailored properties, such as inexpensive isovalent systems for industrial catalysis, semiconductive superatoms for transistors, and magnetic superatoms for spin electronics.

  17. Probing the Structures and Electronic Properties of Dual-Phosphorus-Doped Gold Cluster Anions (AunP-2, n = 1–8): A Density functional Theory Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong

    2015-07-29

    The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1–8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cis–trans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. Themore » higher stability of AunP-2 clusters relative to Au-n+2 (n = 1–8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1–8) clusters. We found that AunP-2 clusters exhibit the 2D–3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1–8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1–8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.« less

  18. Probing the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters by density functional calculations

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Jie

    2018-05-01

    We present a theoretical investigation on the structural evolution and bonding properties of PtnC2-/0 (n = 1-7) clusters using density functional theoretical calculations. The results showed that both anionic and neutral PtnC2 (n = 1-7) clusters primarily adopt 2D planar chain-shaped or ring-based structures. The two C atoms directly interact with each other to form a Csbnd C bond for n = 1-3, while the two C atoms are separated by the Pt atoms for n = 4-7, except for neutral Pt5C2. Pt4C2- anion and Pt4C2 neutral both show σ plus π double delocalized bonding patterns.

  19. Correlation study of sodium-atom chemisorption on the GaAs(110) surface

    NASA Astrophysics Data System (ADS)

    Song, K. M.; Khan, D. C.; Ray, A. K.

    1994-01-01

    Different possible adsorption sites of sodium atoms on a gallium arsenide surface have been investigated using ab initio self-consistent unrestricted Hartree-Fock total-energy cluster calculations with Hay-Wadt effective core potentials. The effects of electron correlation have been included by invoking the concepts of many-body perturbation theory and are found to be highly significant. We find that the Na-atom adsorption at a site modeled with an NaGa5As4H12 cluster is most favored energetically followed by Na adsorption at the site modeled with the NaGa4As5H12 cluster. The effects of charge transfer from Na to the GaAs surface as also possibilities of metallization are also analyzed and discussed.

  20. The Dutch Social Interaction Anxiety Scale and the Social Phobia Scale: Reliability, Validity, and Clinical Utility

    PubMed Central

    Tielen, Deirdre; Wollmann, Lisa

    2014-01-01

    The social interaction anxiety scale (SIAS) and the social phobia scale (SPS) assess anxiety in social interactions and fear of scrutiny by others. This study examines the psychometric properties of the Dutch versions of the SIAS and SPS using data from a large group of patients with social phobia and a community-based sample. Confirmatory factor analysis revealed that the SIAS is unidimensional, whereas the SPS is comprised of three subscales. The internal consistency of the scales and subscales was good. The concurrent and discriminant validity was supported and the scales were well able to discriminate between patients and community-based respondents. Cut-off values with excellent sensitivity and specificity are presented. Of all self-report measures included, the SPS was the most sensitive for treatment effects. Normative data are provided which can be used to assess whether clinically significant change has occurred in individual patients. PMID:24701560

  1. The dutch social interaction anxiety scale and the social phobia scale: reliability, validity, and clinical utility.

    PubMed

    de Beurs, Edwin; Tielen, Deirdre; Wollmann, Lisa

    2014-01-01

    The social interaction anxiety scale (SIAS) and the social phobia scale (SPS) assess anxiety in social interactions and fear of scrutiny by others. This study examines the psychometric properties of the Dutch versions of the SIAS and SPS using data from a large group of patients with social phobia and a community-based sample. Confirmatory factor analysis revealed that the SIAS is unidimensional, whereas the SPS is comprised of three subscales. The internal consistency of the scales and subscales was good. The concurrent and discriminant validity was supported and the scales were well able to discriminate between patients and community-based respondents. Cut-off values with excellent sensitivity and specificity are presented. Of all self-report measures included, the SPS was the most sensitive for treatment effects. Normative data are provided which can be used to assess whether clinically significant change has occurred in individual patients.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Bosin; Wong Siuwai; Lau, Milton Chi-hong

    This study examines the current prospects for and obstacles facing the implementation of social impact assessment (SIA) and participatory planning in the People's Republic of China. During the past two decades, rapid urbanisation and the conversion of rural land for urban development have led to numerous social conflicts and tensions between the Chinese government and its people. SIA and public participation in development decisions have received increasing attention from the Chinese authorities as possible ways to tackle the problem. Based on a Guangzhou case study, this paper argues that the assessment and mitigation of adverse impacts on the community frommore » urban development have been carried out with different objectives, core values and principles when compared with those in Western societies. It concludes that the poor prospects of SIA and collaborative planning in China lie not only in the weak framework for environmental legislation, but also in all institutions concerning state-society relations, the socialist governing ideology and traditional Chinese culture.« less

  3. Cost-effectiveness of three different vaccination strategies against measles in Zambian children.

    PubMed

    Dayan, Gustavo H; Cairns, Lisa; Sangrujee, Nalinee; Mtonga, Anne; Nguyen, Van; Strebel, Peter

    2004-01-02

    The vaccination program in Zambia includes one dose of measles vaccine at 9 months of age. The objective of this study was to compare the cost-effectiveness of the current one-dose measles vaccination program with an immunization schedule in which a second dose is provided either through routine health services or through supplemental immunization activities (SIAs). We simulated the expected cost and impact of the vaccination strategies for an annual cohort of 400,000 children, assuming 80% vaccination coverage in both routine and SIAs and an analytic horizon of 15 years. A vaccination program which includes SIAs reaching children not previously vaccinated would prevent on additional 29,242 measles cases and 1462 deaths for each vaccinated birth cohort when compared with a one-dose program. Given the parameters established for this analysis, such a program would be cost-saving and the most cost-effective vaccination strategy for Zambia.

  4. Spinal sagittal balance substantially influences locomotive syndrome and physical performance in community-living middle-aged and elderly women.

    PubMed

    Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Ishiguro, Naoki; Hasegawa, Yukiharu

    2016-03-01

    Spinal sagittal imbalance has been well known risk factor of decreased quality of life in the field of adult spinal deformity. However, the impact of spinal sagittal balance on locomotive syndrome and physical performance in community-living elderly has not yet been clarified. The present study investigated the influence of spinal sagittal alignment on locomotive syndrome (LS) and physical performance in community-living middle-aged and elderly women. A total of 125 women between the age of 40-88 years (mean 66.2 ± 9.7 years) who completed the questionnaires, spinal mouse test, physical examination and physical performance tests in Yakumo study were enrolled in this study. Participants answered the 25-Question Geriatric Locomotive Function Scale (GLFS-25), the visual analog scale (VAS) for low back pain (LBP), knee pain. LS was defined as having a score of >16 points on the GLFS-25. Using spinal mouse, spinal inclination angle (SIA), thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacral slope angle (SSA), thoracic spinal range of motion (TSROM), lumbar spinal range of motion (LSROM) were measured. Timed-up-and-go test (TUG), one-leg standing time with eyes open (OLS), and maximum stride, back muscle strength were also measured. The relationship between spinal sagittal parameters and GLFS-25, VAS and physical performance tests were analyzed. 26 people were diagnosed as LS and 99 were diagnosed as non-LS. LBP and knee pain were greater, physical performance tests were poorer, SIA were greater, LLA were smaller in LS group compared to non-LS group even after adjustment by age. SIA significantly correlated with GLFS-25, TUG, OLS and maximum stride even after adjustment by age. The cutoff value of SIA for locomotive syndrome was 6°. People with a SIA of 6° or greater were grouped as "Inclined" and people with a SIA of less than 6° were grouped as "Non-inclined". 21 people were "Inclined" and 104 were "Non-inclined". Odds ratio to fall in LS of Inclined group compared to Non-inclined group is 5.0. GLFS-25 were significantly higher, VAS for LBP were greater, TUG, OLS and maximum stride were poorer in Inclined group compared to Non-inclined group even after adjustment by age. The present study demonstrated that spinal sagittal balance influences the LS and physical performance in community-living middle-aged and elderly women. SIA is a useful spinal parameter to evaluate the risk of LS, and its cutoff value is 6°. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  5. Infectious Disease Risk and Vaccination in Northern Syria after 5 Years of Civil War: The MSF Experience

    PubMed Central

    de Lima Pereira, Alan; Southgate, Rosamund; Ahmed, Hikmet; O’Connor, Penelope; Cramond, Vanessa; Lenglet, Annick

    2018-01-01

    Introduction: In 2015, following an influx of population into Kobanê in northern Syria, Médecins Sans Frontières (MSF) in collaboration with the Kobanê Health Administration (KHA) initiated primary healthcare activities. A vaccination coverage survey and vaccine-preventable disease (VPD) risk analysis were undertaken to clarify the VPD risk and vaccination needs. This was followed by a measles Supplementary Immunization Activity (SIA). We describe the methods and results used for this prioritisation activity around vaccination in Kobanê in 2015. Methods: We implemented a pre-SIA survey in 135 randomly-selected households in Kobanê using a vaccination history questionnaire for all children <5 years. We conducted a VPD Risk Analysis using MSF ‘Preventive Vaccination in Humanitarian Emergencies’ guidance to prioritize antigens with the highest public health threat for mass vaccination activities. A Measles SIA was then implemented and followed by vaccine coverage survey in 282 randomly-selected households targeting children <5 years. Results: The pre-SIA survey showed that 168/212 children (79.3%; 95%CI=72.7-84.6%) had received one vaccine or more in their lifetime. Forty-three children (20.3%; 95%CI: 15.1-26.6%) had received all vaccines due by their age; only one was <12 months old and this child had received all vaccinations outside of Syria. The VPD Risk Analysis prioritised measles, Haemophilus Influenza type B (Hib) and Pneumococcus vaccinations. In the measles SIA, 3410 children aged 6-59 months were vaccinated. The use of multiple small vaccination sites to reduce risks associated with crowds in this active conflict setting was noted as a lesson learnt. The post-SIA survey estimated 82% (95%CI: 76.9-85.9%; n=229/280) measles vaccination coverage in children 6-59 months. Discussion: As a result of the conflict in Syria, the progressive collapse of the health care system in Kobanê has resulted in low vaccine coverage rates, particularly in younger age groups. The repeated displacements of the population, attacks on health institutions and exodus of healthcare workers, challenge the resumption of routine immunization in this conflict setting and limit the use of SIAs to ensure sustainable immunity to VPDs. We have shown that the risk for several VPDs in Kobanê remains high. Conclusion: We call on all health actors and the international community to work towards re-establishment of routine immunisation activities as a priority to ensure that children who have had no access to vaccination in the last five years are adequately protected for VPDs as soon as possible. PMID:29511602

  6. Theoretical study of Ag doping-induced vacancies defects in armchair graphene

    NASA Astrophysics Data System (ADS)

    Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.

    2018-06-01

    We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.

  7. Formation mechanism of atomic cluster structures in Al-Mg alloy during rapid solidification processes

    NASA Astrophysics Data System (ADS)

    Liu, Feng-xiang; Liu, Rang-su; Hou, Zhao-yang; Liu, Hai-Rong; Tian, Ze-an; Zhou, Li-li

    2009-02-01

    The rapid solidification processes of Al 50Mg 50 liquid alloy consisting of 50,000 atoms have been simulated by using molecular dynamics method based on the effective pair potential derived from the pseudopotential theory. The formation mechanisms of atomic clusters during the rapid solidification processes have been investigated adopting a new cluster description method—cluster-type index method (CTIM). The simulated partial structure factors are in good agreement with the experimental results. And Al-Mg amorphous structure characterized with Al-centered icosahedral topological short-range order (SRO) is found to form during the rapid solidification processes. The icosahedral cluster plays a key role in the microstructure transition. Besides, it is also found that the size distribution of various clusters in the system presents a magic number sequence of 13, 19, 23, 25, 29, 31, 33, 37, …. The magic clusters are more stable and mainly correspond to the incompact arrangements of linked icosahedra in the form of rings, chains or dendrites. And each magic number point stands correspondingly for one certain combining form of icosahedra. This magic number sequence is different from that generated in the solidification structure of liquid Al and those obtained by methods of gaseous deposition and ionic spray, etc.

  8. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    PubMed

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  9. Analysis of the electron density features of small boron clusters and the effects of doping with C, P, Al, Si, and Zn: Magic B7P and B8Si clusters

    NASA Astrophysics Data System (ADS)

    Saha, P.; Rahane, A. B.; Kumar, V.; Sukumar, N.

    2016-05-01

    Boron atomic clusters show several interesting and unusual size-dependent features due to the small covalent radius, electron deficiency, and higher coordination number of boron as compared to carbon. These include aromaticity and a diverse array of structures such as quasi-planar, ring or tubular shaped, and fullerene-like. In the present work, we have analyzed features of the computed electron density distributions of small boron clusters having up to 11 boron atoms, and investigated the effect of doping with C, P, Al, Si, and Zn atoms on their structural and physical properties, in order to understand the bonding characteristics and discern trends in bonding and stability. We find that in general there are covalent bonds as well as delocalized charge distribution in these clusters. We associate the strong stability of some of these planar/quasiplanar disc-type clusters with the electronic shell closing with effectively twelve delocalized valence electrons using a disc-shaped jellium model. {{{{B}}}9}-, B10, B7P, and B8Si, in particular, are found to be exceptional with very large gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and these are suggested to be magic clusters.

  10. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales

    NASA Astrophysics Data System (ADS)

    Huang, Shiping

    2017-11-01

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  11. Role of radial nonuniformities in the interaction of an intense laser with atomic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R.; Gupta, N. K.

    A model for the interaction of an intense laser with atomic clusters is presented. The model takes into account the spatial nonuniformities of the cluster as it evolves in time. The cluster is treated as a stratified sphere having an arbitrary number of layers. Electric and magnetic fields are obtained by solving the vector Helmholtz equation coupled with one-dimensional Lagrangian hydrodynamics. Results are compared with the uniform density nanoplasma model. Enhancement in the amount of energy absorbed is seen over the uniform density model. In some cases the absorbed energy increases by as much as a factor of 40.

  12. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  13. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra.

    PubMed

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  14. A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.

    2016-08-01

    An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  15. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrova, Anastassia N.; Nayhouse, Michael J.; Huynh, Mioy T.

    CAl₄²-/- (D₄h, ¹A₁g) is is a cluster ion that has been established to be planar, aromatic, and contain a tetracoordinate planar C atom. Valence isoelectronic substitution of C with Si and Ge in this cluster leads to a radical change of structure toward distorted pentagonal species. We find that this structural change goes together with the cluster acquiring partial covalency of bonding between Si/Ge and Al₄, facilitated by hybridization of the atomic orbitals (AOs). Counter intuitively, for the AAl₄²-/- (A = C, Si, Ge) clusters, hybridization in the dopant atom is strengthened from C, to Si, and to Ge, evenmore » though typically AOs are more likely to hybridize if they are closer in energy (i.e. in earlier elements in the Periodic Table). The trend is explained by the better overlap of the hybrids of the heavier dopants with the orbitals of Al₄. From the thus understood trend, it is inferred that covalency in such clusters can be switched off, by varying the relative sizes of the AOs of the main element and the dopant. Using this mechanism, we then successfully killed covalency in Si, and predicted a new aromatic cluster ion containing a tetracoordinate square planar Si, SiIn₄²-/-.« less

  17. Structural, electronic and magnetic properties of Ti n Mo ( n = 1 - 7) clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Zhai, Zhongyuan; Sheng, Yong

    2017-04-01

    The ground state structures of TinMo and Tin+1 (n = 1 - 7) clusters and their structural, electronic and magnetic properties are investigated with the density functional method at B3LYP/LanL2DZ level. One Mo atom substituted Tin+1 structure is the dominant growth pattern, and the TinMo clusters exhibit enhanced structural stabilities according to the averaged binding energies. The electronic properties are also discussed by investigating chemical hardness and HOMO-LUMO energy gap. The results reveal that Ti3Mo and Ti5Mo keep higher chemical stabilities when compared with the other clusters. For all the studied clusters, the Mo atoms always get electrons from Ti atoms and present negative charges. Moreover, the doping of Mo in the bare titanium clusters can alter the magnetic moments of them. Ti3Mo and Ti5Mo show relatively large total magnetic moments, which may be related to the presence of exchange splitting behavior in their densities of states. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70589-8

  18. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  19. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    PubMed Central

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-01-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835

  20. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE PAGES

    Hong, H. L.; Wang, Q.; Dong, C.; ...

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu 12]Zn 1~6 and [Zn-Cu 12](Zn,Cu) 6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent themore » 1 st-neighbor cluster, and each cluster is matched with one to six 2 nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1 st- and 2 nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. As a result, the revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  1. Structural, electronic, vibrational and optical properties of Bin clusters

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Shen, Wanting; Zhang, Chunfang; Lu, Pengfei; Wang, Shumin

    2017-10-01

    The neutral, anionic and cationic bismuth clusters with the size n up to 14 are investigated by using B3LYP functional within the regime of density functional theory and the LAN2DZ basis set. By analysis of the geometries of the Bin (n = 2-14) clusters, where cationic and anionic bismuth clusters are largely similar to those of neutral ones, a periodic effect by adding units with one to four atoms into smaller cluster to form larger cluster is drawn for the stable structures of bismuth clusters. An even-odd alteration is shown for the properties of the clusters, such as the calculated binding energies and dissociation energies, as well as frontier orbital energies, electron affinities, ionization energies. All the properties indicate that the Bi4 cluster is the most possible existence in bismuth-containing materials, which supports the most recent experiment. The orbital compositions, infrared and Raman activities and the ultraviolet absorption of the most possible tetramer bismuth cluster are given in detail to reveal the periodic tendency of adding bismuth atoms and the stability of tetramer bismuth cluster.

  2. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  3. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  4. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Jun; Ma, Evan; Asta, Mark

    Using molecular dynamics simulations, we have studied the atomic correlations characterizing the second peak in the radial distribution function (RDF) of metallic glasses and liquids. The analysis was conducted from the perspective of different connection schemes of atomic packing motifs, based on the number of shared atoms between two linked coordination polyhedra. The results demonstrate that the cluster connections by face-sharing, specifically with three common atoms, are most favored when transitioning from the liquid to glassy state, and exhibit the stiffest elastic response during shear deformation. These properties of the connections and the resultant atomic correlations are generally the samemore » for different types of packing motifs in different alloys. Splitting of the second RDF peak was observed for the inherent structure of the equilibrium liquid, originating solely from cluster connections; this trait can then be inherited in the metallic glass formed via subsequent quenching of the parent liquid through the glass transition, in the absence of any additional type of local structural order. In conclusion, increasing ordering and cluster connection during cooling, however, may tune the position and intensity of the split peaks.« less

  6. Lowest-energy structures and electronic properties of Na-Si binary clusters from ab initio global search.

    PubMed

    Sai, Linwei; Tang, Lingli; Zhao, Jijun; Wang, Jun; Kumar, Vijay

    2011-11-14

    The ground state structures of neutral and anionic clusters of Na(n)Si(m) (1 ≤ n ≤ 3, 1 ≤ m ≤ 11) have been determined using genetic algorithm incorporated in first principles total energy code. The size dependence of the structural and electronic properties is discussed in detail. It is found that the lowest-energy structures of Na(n)Si(m) clusters resemble those of the pure Si clusters. Interestingly, Na atoms in neutral Na(n)Si(m) clusters are usually well separated by the Si(m) skeleton, whereas Na atoms can form Na-Na bonds in some anionic clusters. The ionization potentials, adiabatic electron affinities, and photoelectron spectra are also calculated and the results compare well with the experimental data. © 2011 American Institute of Physics

  7. Predicting stability limits for pure and doped dicationic noble gas clusters undergoing coulomb explosion: A parallel tempering based study.

    PubMed

    Ghorai, Sankar; Chaudhury, Pinaki

    2018-05-30

    We have used a replica exchange Monte-Carlo procedure, popularly known as Parallel Tempering, to study the problem of Coulomb explosion in homogeneous Ar and Xe dicationic clusters as well as mixed Ar-Xe dicationic clusters of varying sizes with different degrees of relative composition. All the clusters studied have two units of positive charges. The simulations reveal that in all the cases there is a cutoff size below which the clusters fragment. It is seen that for the case of pure Ar, the value is around 95 while that for Xe it is 55. For the mixed clusters with increasing Xe content, the cutoff limit for suppression of Coulomb explosion gradually decreases from 95 for a pure Ar to 55 for a pure Xe cluster. The hallmark of this study is this smooth progression. All the clusters are simulated using the reliable potential energy surface developed by Gay and Berne (Gay and Berne, Phys. Rev. Lett. 1982, 49, 194). For the hetero clusters, we have also discussed two different ways of charge distribution, that is one in which both positive charges are on two Xe atoms and the other where the two charges are at a Xe atom and at an Ar atom. The fragmentation patterns observed by us are such that single ionic ejections are the favored dissociating pattern. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. The potential impact of immunization campaign budget re-allocation on global eradication of paediatric infectious diseases

    PubMed Central

    2011-01-01

    Background The potential benefits of coordinating infectious disease eradication programs that use campaigns such as supplementary immunization activities (SIAs) should not be over-looked. One example of a coordinated approach is an adaptive "sequential strategy": first, all annual SIA budget is dedicated to the eradication of a single infectious disease; once that disease is eradicated, the annual SIA budget is re-focussed on eradicating a second disease, etc. Herd immunity suggests that a sequential strategy may eradicate several infectious diseases faster than a non-adaptive "simultaneous strategy" of dividing annual budget equally among eradication programs for those diseases. However, mathematical modeling is required to understand the potential extent of this effect. Methods Our objective was to illustrate how budget allocation strategies can interact with the nonlinear nature of disease transmission to determine time to eradication of several infectious diseases under different budget allocation strategies. Using a mathematical transmission model, we analyzed three hypothetical vaccine-preventable infectious diseases in three different countries. A central decision-maker can distribute funding among SIA programs for these three diseases according to either a sequential strategy or a simultaneous strategy. We explored the time to eradication under these two strategies under a range of scenarios. Results For a certain range of annual budgets, all three diseases can be eradicated relatively quickly under the sequential strategy, whereas eradication never occurs under the simultaneous strategy. However, moderate changes to total SIA budget, SIA frequency, order of eradication, or funding disruptions can create disproportionately large differences in the time and budget required for eradication under the sequential strategy. We find that the predicted time to eradication can be very sensitive to small differences in the rate of case importation between the countries. We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first. Conclusions Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission. More sophisticated versions of such models may be useful to large international donors or other organizations as a planning or portfolio optimization tool, where choices must be made regarding how much funding to dedicate to different infectious disease eradication efforts. PMID:21955853

  9. The potential impact of immunization campaign budget re-allocation on global eradication of paediatric infectious diseases.

    PubMed

    Fitzpatrick, Tiffany; Bauch, Chris T

    2011-09-28

    The potential benefits of coordinating infectious disease eradication programs that use campaigns such as supplementary immunization activities (SIAs) should not be over-looked. One example of a coordinated approach is an adaptive "sequential strategy": first, all annual SIA budget is dedicated to the eradication of a single infectious disease; once that disease is eradicated, the annual SIA budget is re-focussed on eradicating a second disease, etc. Herd immunity suggests that a sequential strategy may eradicate several infectious diseases faster than a non-adaptive "simultaneous strategy" of dividing annual budget equally among eradication programs for those diseases. However, mathematical modeling is required to understand the potential extent of this effect. Our objective was to illustrate how budget allocation strategies can interact with the nonlinear nature of disease transmission to determine time to eradication of several infectious diseases under different budget allocation strategies. Using a mathematical transmission model, we analyzed three hypothetical vaccine-preventable infectious diseases in three different countries. A central decision-maker can distribute funding among SIA programs for these three diseases according to either a sequential strategy or a simultaneous strategy. We explored the time to eradication under these two strategies under a range of scenarios. For a certain range of annual budgets, all three diseases can be eradicated relatively quickly under the sequential strategy, whereas eradication never occurs under the simultaneous strategy. However, moderate changes to total SIA budget, SIA frequency, order of eradication, or funding disruptions can create disproportionately large differences in the time and budget required for eradication under the sequential strategy. We find that the predicted time to eradication can be very sensitive to small differences in the rate of case importation between the countries. We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first. Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission. More sophisticated versions of such models may be useful to large international donors or other organizations as a planning or portfolio optimization tool, where choices must be made regarding how much funding to dedicate to different infectious disease eradication efforts.

  10. Nature's polyoxometalate chemistry: X-ray structure of the Mo storage protein loaded with discrete polynuclear Mo-O clusters.

    PubMed

    Kowalewski, Björn; Poppe, Juliane; Demmer, Ulrike; Warkentin, Eberhard; Dierks, Thomas; Ermler, Ulrich; Schneider, Klaus

    2012-06-13

    Some N(2)-fixing bacteria prolong the functionality of nitrogenase in molybdenum starvation by a special Mo storage protein (MoSto) that can store more than 100 Mo atoms. The presented 1.6 Å X-ray structure of MoSto from Azotobacter vinelandii reveals various discrete polyoxomolybdate clusters, three covalently and three noncovalently bound Mo(8), three Mo(5-7), and one Mo(3) clusters, and several low occupied, so far undefinable clusters, which are embedded in specific pockets inside a locked cage-shaped (αβ)(3) protein complex. The structurally identical Mo(8) clusters (three layers of two, four, and two MoO(n) octahedra) are distinguishable from the [Mo(8)O(26)](4-) cluster formed in acidic solutions by two displaced MoO(n) octahedra implicating three kinetically labile terminal ligands. Stabilization in the covalent Mo(8) cluster is achieved by Mo bonding to Hisα156-N(ε2) and Gluα129-O(ε1). The absence of covalent protein interactions in the noncovalent Mo(8) cluster is compensated by a more extended hydrogen-bond network involving three pronounced histidines. One displaced MoO(n) octahedron might serve as nucleation site for an inhomogeneous Mo(5-7) cluster largely surrounded by bulk solvent. In the Mo(3) cluster located on the 3-fold axis, the three accurately positioned His140-N(ε2) atoms of the α subunits coordinate to the Mo atoms. The formed polyoxomolybdate clusters of MoSto, not detectable in bulk solvent, are the result of an interplay between self- and protein-driven assembly processes that unite inorganic supramolecular and protein chemistry in a host-guest system. Template, nucleation/protection, and catalyst functions of the polypeptide as well as perspectives for designing new clusters are discussed.

  11. Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co 1–xPt x Clusters under H 2 and CO + H 2 Atmospheres

    DOE PAGES

    Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette; ...

    2016-08-25

    In this study, Co 1–xPt x clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al 2O 3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged cluster samples were characterized by grazing-incidence X-ray absorption spectroscopymore » (GIXAS) and then pretreated with diluted hydrogen and further exposed to the mixture of diluted CO and H 2 up to 225°C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the clusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the clusters. For example, a low Pt/Co ratio (x ≤ 0.5) facilitates the formation of Co(OH) 2, whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co 3O 4 composition instead through the formation of a Co–Pt core–shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co 1–xPt x alloy clusters. Finally, the obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.« less

  12. Atomic and electronic structure of the silicon and silicon-metal Si{sub 20}, Si{sub 20}{sup -}, NaSi{sub 20}, KSi{sub 20} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borshch, N. A., E-mail: ssd18@phys.vsu.ru; Pereslavtseva, N. S.; Kurganskii, S. I.

    The results of atomic-structure optimization and calculation of the electronic structure of the Si{sub 20}, Si{sub 20}{sup -}, NaSi{sub 20}, and KSi{sub 20} clusters are reported. The PM3 and AM1 semiempirical methods were used in the calculations. It is shown that the Na and K atoms stabilize the fullerene-like silicon structure. The effect of configuration of the clusters on their electronic structure is analyzed.

  13. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiko, M. E., E-mail: m.e.boiko@mail.ioffe.ru; Sharkov, M. D.; Boiko, A. M.

    2013-12-15

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  14. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    NASA Astrophysics Data System (ADS)

    Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.

    2013-12-01

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  15. A Computational Study of Rare Gas Clusters: Stepping Stones to the Solid State

    ERIC Educational Resources Information Center

    Glendening, Eric D.; Halpern, Arthur M.

    2012-01-01

    An upper-level undergraduate or beginning graduate project is described in which students obtain the Lennard-Jones 6-12 potential parameters for Ne[subscript 2] and Ar[subscript 2] from ab initio calculations and use the results to express pairwise interactions between the atoms in clusters containing up to N = 60 atoms. The students use simulated…

  16. Experimental methods of molecular matter-wave optics.

    PubMed

    Juffmann, Thomas; Ulbricht, Hendrik; Arndt, Markus

    2013-08-01

    We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process.

  17. Surgical outcomes after application of a liquid adhesive ocular bandage to clear corneal incisions during cataract surgery.

    PubMed

    Uy, Harvey S; Kenyon, Kenneth R

    2013-11-01

    To compare the anatomic and refractive outcomes in eyes having phacoemulsification with 1 of 3 clear corneal incision (CCI) closure methods. Ambulatory surgical center, Makati, Philippines. Prospective randomized clinical trial. Patients having phacoemulsification cataract surgery had wound closure using no additional treatment (control), a single 10-0 nylon suture, or a liquid adhesive ocular bandage (Ocuseal). The main outcome measures were wound-edge closure rates, surgically induced astigmatism (SIA), foreign-body sensation, and intraocular pressure (IOP) 1, 3, 5, 7, and 14 days postoperatively. The study evaluated 90 eyes. There was a significant improvement in wound-edge closure rates in the suture group and the ocular bandage group compared with the control group (P<.001). A significant increase in SIA occurred in the sutured group but not in the control or ocular bandage groups (P<.001). The ocular bandage group had significantly less foreign-body sensation than the control and suture groups (P<.001). There were no significant differences in IOP between the groups (P=.515). The liquid adhesive ocular bandage resulted in improved wound-edge closure, reduced SIA, and diminished foreign-body sensation. Suturing was associated with improved wound-edge closure but increased SIA and foreign-body sensation. Unsutured incisions led to delayed wound-edge closure and increased foreign-body sensation. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Addictive use of social networking sites can be explained by the interaction of Internet use expectancies, Internet literacy, and psychopathological symptoms.

    PubMed

    Wegmann, Elisa; Stodt, Benjamin; Brand, Matthias

    2015-09-01

    Most people use the Internet in a functional way to achieve certain goals and needs. However, there is an increasing number of people who experience negative consequences like loss of control and distress based on an excessive use of the Internet and its specific online applications. Some approaches postulate similarities with behavioral addictions as well as substance dependencies. They differentiate between a generalized and a specific Internet addiction, such as the pathological use of social networking sites (SIA-SNS). Prior studies particularly identified the use of applications, personal characteristics, and psychopathological symptoms as significant predictors for the development and maintenance of this phenomenon. So far, it remains unclear how psychopathological symptoms like depression and social anxiety interact with individual expectancies of Internet use and capabilities of handling the Internet, summarized as Internet literacy. The current study (N = 334) investigated the interaction of these components in a structural equation model. The results indicate that the effects of depression and social anxiety on SIA-SNS were mediated by Internet use expectancies and self-regulation. Thus, Internet use expectancies seem to be crucial for SIA-SNS, which is in line with prior models. SNS use may be reinforced by experienced gratification and relief from negative feelings. Individual competences in handling the Internet may be preventive for the development of SIA-SNS.

  19. Factor solutions of the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) in a Swedish population.

    PubMed

    Mörtberg, Ewa; Reuterskiöld, Lena; Tillfors, Maria; Furmark, Tomas; Öst, Lars-Göran

    2017-06-01

    Culturally validated rating scales for social anxiety disorder (SAD) are of significant importance when screening for the disorder, as well as for evaluating treatment efficacy. This study examined construct validity and additional psychometric properties of two commonly used scales, the Social Phobia Scale and the Social Interaction Anxiety Scale, in a clinical SAD population (n = 180) and in a normal population (n = 614) in Sweden. Confirmatory factor analyses of previously reported factor solutions were tested but did not reveal acceptable fit. Exploratory factor analyses (EFA) of the joint structure of the scales in the total population yielded a two-factor model (performance anxiety and social interaction anxiety), whereas EFA in the clinical sample revealed a three-factor solution, a social interaction anxiety factor and two performance anxiety factors. The SPS and SIAS showed good to excellent internal consistency, and discriminated well between patients with SAD and a normal population sample. Both scales showed good convergent validity with an established measure of SAD, whereas the discriminant validity of symptoms of social anxiety and depression could not be confirmed. The optimal cut-off score for SPS and SIAS were 18 and 22 points, respectively. It is concluded that the factor structure and the additional psychometric properties of SPS and SIAS support the use of the scales for assessment in a Swedish population.

  20. Polio eradication initiative in Afghanistan, 1997-2013.

    PubMed

    Simpson, Diane M; Sadr-Azodi, Nahad; Mashal, Taufiq; Sabawoon, Wrishmeen; Pardis, Ajmal; Quddus, Arshad; Garrigos, Carmen; Guirguis, Sherine; Zahoor Zaidi, Syed Sohail; Shaukat, Shahzad; Sharif, Salmaan; Asghar, Humayan; Hadler, Stephen C

    2014-11-01

    This article reviews the epidemiology of polio, acute flaccid paralysis (AFP) surveillance, and the implementation of supplemental immunization activities (SIAs) in Afghanistan from 1997 thru 2013. Published reports and unpublished national data on polio cases, AFP surveillance, and SIAs were analyzed. Recommendations from independent advisory groups and Afghan government informed the conclusions. From 1997 thru 2013, the annual number of confirmed polio cases fluctuated from a low of 4 in 2004 to a high of 80 in 2011. Wild poliovirus types 2 and 3 were last reported in 1997 and 2010, respectively. Circulating vaccine-derived poliovirus type 2 emerged in 2009. AFP surveillance quality in children aged <15 years improved over time, achieving rates>8 per 100,000 population. Since 2001, at least 6 SIAs have been conducted annually. Afghanistan has made progress moving closer to eliminating polio. The program struggles to reach all children because of management and accountability problems in the field, inaccessible populations, and inadequate social mobilization. Consequently, too many children are missed during SIAs. Afghanistan adopted a national emergency action plan in 2012 to address these issues, but national elimination will require consistent and complete implementation of proven strategies. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Evaluating of small intracranial aneurysms by 64-detector CT Angiography: a comparison with 3-dimensional rotation DSA or surgical findings.

    PubMed

    Zhang, He; Hou, Chang; Zhou, Zhi; Zhang, Hao; Zhou, Gen; Zhang, Gui

    2014-01-01

    The diagnostic performance of 64-detector computed tomographic angiography (CTA) for detection of small intracranial aneurysms (SIAs) was evaluated. In this prospective study, 112 consecutive patients underwent 64-detector CTA before volume-rendering rotation digital subtraction angiography (VR-RDSA) or surgery. VR-RDSA or intraoperative findings or both were used as the gold standards. The accuracy, sensitivity, specificity, and positive predictive values (PPV) and negative predictive values (NPV), as measures to detect or rule out SIAs, were determined by patient-based and aneurysm size-based evaluations. The reference standard methods revealed 84 small aneurysms in 71 patients. The results of patient-based 64-detector CTA evaluation for SIAs were: accuracy, 98.2%; sensitivity, 98.6%; specificity, 97.6%; PPV, 98.6%; and NPV, 97.6%. The aneurysm-based evaluation results were: accuracy, 96.8%; sensitivity, 97.6%; specificity, 95.1%; PPV, 97.6%; and NPV, 95.1%. Two false-positive and two false-negative findings for aneurysms <3 mm in size occurred in the 64-detector CTA analysis. The diagnostic performance of 64-detector CTA did not improve much compared with 16-detector CTA for detecting SIAs, especially for very small aneurysms. VR-RDSA is still necessary for patients with a history of subarachnoid hemorrhage if the CTA findings are negative. Copyright © 2012 by the American Society of Neuroimaging.

  2. Comparing the health and social protection effects of measles vaccination strategies in Ethiopia: An extended cost-effectiveness analysis.

    PubMed

    Driessen, Julia; Olson, Zachary D; Jamison, Dean T; Verguet, Stéphane

    2015-08-01

    Vaccination coverage rates often mask wide variation in access, uptake, and cost of providing vaccination. Financial incentives have been effective at creating demand for social services in a variety of settings. Using methods of extended cost-effectiveness analysis, we compare the health and economic implications of three different vaccine delivery strategies for measles vaccination in Ethiopia: i) routine immunization, ii) routine immunization with financial incentives, and iii) mass campaigns, known as supplemental immunization activities (SIAs). We examine annual birth cohorts of almost 3,000,000 births over a ten year period, exploring variation in these outcomes based on economic status to understand how various options may improve equity. SIAs naturally achieve higher levels of vaccine coverage, but at higher costs. Routine immunization combined with financial incentives bolsters demand among more economically vulnerable households. The relative appeal of routine immunization with financial incentives and SIAs will depend on the policy environment, including short-term financial limitations, time horizons, and the types of outcomes that are desired. While the impact of financial incentives has been more thoroughly studied in other policy arenas, such as education, consideration of this approach alongside standard vaccination models such as SIAs is timely given the dialog around measles eradication. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Systematization of actinides using cluster analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  4. Photoelectron spectroscopy and density functional theory study of TiAlO(y) (-) (y=1-3) and TiAl(2)O(y) (-) (y=2-3) clusters.

    PubMed

    Zhang, Zeng-Guang; Xu, Hong-Guang; Zhao, Yuchao; Zheng, Weijun

    2010-10-21

    Small titanium-aluminum oxide clusters, TiAlO(y) (-) (y=1-3) and TiAl(2)O(y) (-) (y=2-3), were studied by using anion photoelectron spectroscopy. The adiabatic detachment energies of TiAlO(y) (-) (y=1-3) were estimated to be 1.11±0.05, 1.70±0.08, and 2.47±0.08eV based on their photoelectron spectra; those of TiAl(2)O(2) (-) and TiAl(2)O(3) (-) were estimated to be 1.17±0.08 and 2.2±0.1eV, respectively. The structures of these clusters were determined by comparison of density functional calculations with the experimental results. The structure of TiAlO(-) is nearly linear with the O atom in the middle. That of TiAlO(2) (-) is a kite-shaped structure. TiAlO(3) (-) has a kite-shaped TiAlO(2) unit with the third O atom attaching to the Ti atom. TiAl(2)O(2) (-) has two nearly degenerate Al-O-Ti-O-Al chain structures that can be considered as cis and trans forms. TiAl(2)O(3) (-) has two low-lying isomers, kite structure and book structure. The structures of these clusters indicate that the Ti atom tends to bind to more O atoms.

  5. Experimental and theoretical study on Raman spectra of magnesium fluoride clusters and solids.

    PubMed

    Neelamraju, S; Bach, A; Schön, J C; Fischer, D; Jansen, M

    2012-11-21

    In this study, the Raman and IR spectra of a large number of isomers of MgF(2) clusters and of possible bulk polymorphs of MgF(2) are calculated and compared with experimental data observed using a low-temperature atom beam deposition. The bulk polymorphs were taken from earlier work, while the cluster modifications for the neutral (MgF(2))(n) (n = 1-10) clusters and charged clusters (up to the trimer anion and cation, (Mg(3)F(7))(-) and (Mg(3)F(5))(+), respectively) are determined in the present work by global energy landscape explorations using simulated annealing. These theoretical calculations are complemented by an experimental study on both the vapor phase and the deposited films of MgF(2), which are generated in a low-temperature atom beam deposition setup for the synthesis of MgF(2) bulk phases. The MgF(2) vapor and film are characterized via Raman spectroscopy of the MgF(2) gas phase species embedded in an Ar-matrix and of the MgF(2)-films deposited onto a cooled substrate, respectively. We find that, in the vapor phase, there are monomers and dimers and charged species to be present in our experimental setup. Furthermore, the results suggest that in the amorphous bulk MgF(2), rutile-like domains are present and MgF(2) clusters similar to those in the matrix. Finally, peaks at about 800 cm(-1), which are in the same range as the A(g) modes of clusters with dangling fluorine atoms connected to three-coordinated Mg atoms, indicate that such dangling bonds are also present in amorphous MgF(2).

  6. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  7. Shellwise Mackay transformation in iron nanoclusters.

    PubMed

    Rollmann, Georg; Gruner, Markus E; Hucht, Alfred; Meyer, Ralf; Entel, Peter; Tiago, Murilo L; Chelikowsky, James R

    2007-08-24

    Structure and magnetism of iron clusters with up to 641 atoms have been investigated by means of density functional theory calculations including full geometric optimizations. Body-centered cubic (bcc) isomers are found to be lowest in energy when the clusters contain more than about 100 atoms. In addition, another stable conformation has been identified for magic-number clusters, which lies well within the range of thermal energies as compared to the bcc isomers. Its structure is characterized by a close-packed particle core and an icosahedral surface, while intermediate shells are partially transformed along the Mackay path between icosahedral and cuboctahedral geometry. The gradual transformation results in a favorable bcc environment for the subsurface atoms. For Fe55, the shellwise Mackay-transformed morphology is a promising candidate for the ground state.

  8. Water Oxidation Catalysis via Size-Selected Iridium Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Liu, Cong; LIU, ZHUN

    The detailed mechanism and efficacy of four electron electrochemical water oxidation depend critically upon the detailed atomic structure of each catalytic site, which are numerous and diverse in most metal oxides anodes. In order to limit the diversity of sites, arrays of discrete iridium clusters with identical metal atom number (Ir-2, Ir-4, or Ir-8) were deposited in submonolayer coverage on conductive oxide supports, and the electrochemical properties and activity of each was evaluated. Exceptional electroactivity for the oxygen evolving reaction (OER) was observed for all cluster samples in acidic electrolyte. Reproducible cluster-size-dependent trends in redox behavior were also resolved. First-principlesmore » computational models of the individual discrete-size clusters allow correlation of catalytic-site structure and multiplicity with redox behavior.« less

  9. The differential impact of oral poliovirus vaccine formulation choices on serotype-specific population immunity to poliovirus transmission.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2015-09-17

    Prior analyses demonstrated the need for some countries and the Global Polio Eradication Initiative (GPEI) to conduct additional supplemental immunization activities (SIAs) with trivalent oral poliovirus vaccine (tOPV) prior to globally-coordinated cessation of all serotype 2-containing OPV (OPV2 cessation) to prevent the creation of serotype 2 circulating vaccine-derived poliovirus (cVDPV2) outbreaks after OPV2 cessation. The GPEI continues to focus on achieving and ensuring interruption of wild poliovirus serotype 1 (WPV1) and making vaccine choices that prioritize bivalent OPV (bOPV) for SIAs, nominally to increase population immunity to serotype 1, despite an aggressive timeline for OPV2 cessation. We use an existing dynamic poliovirus transmission model of northwest Nigeria and an integrated global model for long-term poliovirus risk management to explore the impact of tOPV vs. bOPV vaccine choices on population immunity and cVDPV2 risks. Using tOPV instead of bOPV for SIAs leads to a minimal decrease in population immunity to transmission of serotypes 1 and 3 polioviruses, but a significantly higher population immunity to transmission of serotype 2 polioviruses. Failure to use tOPV in enough SIAs results in cVDPV2 emergence after OPV2 cessation in both the northwest Nigeria model and the global model. Despite perceptions to the contrary, prioritizing the use of bOPV over tOPV prior to OPV2 cessation does not significantly improve serotype 1 population immunity to transmission. Immunization leaders need to focus on all three poliovirus serotypes to appropriately manage the risks of OPV cessation in the polio endgame. Focusing on population immunity to transmission to interrupt WPV1 transmission and manage pre-OPV cessation risks of cVDPVs, all countries performing poliovirus SIAs should use tOPV up until the time of OPV2 cessation, after which time they should continue to use the OPV vaccine formulation with all remaining serotypes until coordinated global cessation of those serotypes.

  10. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G.

    PubMed

    Ogata, Shohei; Shimizu, Chisato; Franco, Alessandra; Touma, Ranim; Kanegaye, John T; Choudhury, Biswa P; Naidu, Natasha N; Kanda, Yutaka; Hoang, Long T; Hibberd, Martin L; Tremoulet, Adriana H; Varki, Ajit; Burns, Jane C

    2013-01-01

    Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient's own endogenous IgG. We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.

  11. Treatment Response in Kawasaki Disease Is Associated with Sialylation Levels of Endogenous but Not Therapeutic Intravenous Immunoglobulin G

    PubMed Central

    Ogata, Shohei; Shimizu, Chisato; Franco, Alessandra; Touma, Ranim; Kanegaye, John T.; Choudhury, Biswa P.; Naidu, Natasha N.; Kanda, Yutaka; Hoang, Long T.; Hibberd, Martin L.; Tremoulet, Adriana H.; Varki, Ajit; Burns, Jane C.

    2013-01-01

    Objectives Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient’s own endogenous IgG. Methods We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. Results There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Conclusions Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals. PMID:24324693

  12. Predictors of femtosecond laser intrastromal astigmatic keratotomy efficacy for astigmatism management in cataract surgery.

    PubMed

    Day, Alexander C; Stevens, Julian D

    2016-02-01

    To evaluate the factors associated with the efficacy of femtosecond laser intrastromal astigmatic keratotomy (AK). Moorfields Eye Hospital, London, United Kingdom. Prospective case series. Eyes having intrastromal AK for corneal cylinder correction were analyzed. Preoperative biometric parameters included axial length, anterior chamber depth, central corneal thickness, and Ocular Response Analyzer corneal hysteresis (CH) and corneal resistance factor (CRF). Preoperative and 1-month postoperative corneal keratometry was measured using the Topcon KR8100PA topographer-autorefractor. Astigmatic analyses were performed using the Alpins method. The study analyzed 319 eyes of 213 patients with a mean target induced astigmatism of 1.24 diopters (D) ± 0.44 (SD), mean surgically induced astigmatism (SIA) of 0.71 ± 0.43 D, and mean difference vector of 0.79 ± 0.41 D. Two multiple regression models were constructed for SIA prediction. Model 1, based on previous manual limbal relaxing incision parameters, confirmed age and astigmatism meridian (with/against the rule and oblique) to be associated with SIA in addition to AK arc length, AK start depth, and preoperative corneal cylinder magnitude. Model 2, additionally considering other parameters, found only lower CH (-0.06 DC per unit CH), a higher CRF (0.04 D per unit CRF), and the astigmatism meridian to be independent predictors of greater SIA (after adjusting for intrastromal AK arc length, start depth, and preoperative corneal cylinder). With-the-rule astigmatism was associated with a 0.13 D higher SIA than against-the-rule astigmatism, holding all other variables constant. Corneal biomechanical parameters and astigmatism meridian were independent predictors of femtosecond laser intrastromal AK efficacy even after adjusting for AK arc length, AK start depth, and preoperative corneal cylinder. Dr. Stevens is a previous consultant to Optimedica, Inc. which is now part of Abbott Medical Optics, Inc. Drs. Stevens and Day have no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Social Impact Management Plans: Innovation in corporate and public policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franks, Daniel M., E-mail: d.franks@uq.edu.au; Vanclay, Frank, E-mail: frank.vanclay@rug.nl

    Social Impact Assessment (SIA) has traditionally been practiced as a predictive study for the regulatory approval of major projects, however, in recent years the drivers and domain of focus for SIA have shifted. This paper details the emergence of Social Impact Management Plans (SIMPs) and undertakes an analysis of innovations in corporate and public policy that have put in place ongoing processes – assessment, management and monitoring – to better identify the nature and scope of the social impacts that might occur during implementation and to proactively respond to change across the lifecycle of developments. Four leading practice examples aremore » analyzed. The International Finance Corporation (IFC) Performance Standards require the preparation of Environmental and Social Management Plans for all projects financed by the IFC identified as having significant environmental and social risks. Anglo American, a major resources company, has introduced a Socio-Economic Assessment Toolbox, which requires mine sites to undertake regular assessments and link these assessments with their internal management systems, monitoring activities and a Social Management Plan. In South Africa, Social and Labour Plans are submitted with an application for a mining or production right. In Queensland, Australia, Social Impact Management Plans were developed as part of an Environmental Impact Statement, which included assessment of social impacts. Collectively these initiatives, and others, are a practical realization of theoretical conceptions of SIA that include management and monitoring as core components of SIA. The paper concludes with an analysis of the implications for the practice of impact assessment including a summary of key criteria for the design and implementation of effective SIMPs. -- Highlights: • Social impact management plans are effective strategies to manage social issues. • They are developed in partnership with regulatory agencies, investors and community. • SIMPs link assessment to ongoing management and address social and community issues. • SIMPs clarify responsibilities in the management of impacts, opportunities and risks. • SIMPs demonstrate a shift to include management as a core component of SIA practice.« less

  14. Progress Toward Measles Elimination - African Region, 2013-2016.

    PubMed

    Masresha, Balcha G; Dixon, Meredith G; Kriss, Jennifer L; Katsande, Reggis; Shibeshi, Messeret E; Luce, Richard; Fall, Amadou; Dosseh, Annick R G A; Byabamazima, Charles R; Dabbagh, Alya J; Goodson, James L; Mihigo, Richard

    2017-05-05

    In 2011, the 46 World Health Organization (WHO) African Region (AFR) member states established a goal of measles elimination* by 2020, by achieving 1) ≥95% coverage of their target populations with the first dose of measles-containing vaccine (MCV1) at national and district levels; 2) ≥95% coverage with measles-containing vaccine (MCV) per district during supplemental immunization activities (SIAs); and 3) confirmed measles incidence of <1 case per 1 million population in all countries (1). Two key surveillance performance indicator targets include 1) investigating ≥2 cases of nonmeasles febrile rash illness per 100,000 population annually, and 2) obtaining a blood specimen from ≥1 suspected measles case in ≥80% of districts annually (2). This report updates the previous report (3) and describes progress toward measles elimination in AFR during 2013-2016. Estimated regional MCV1 coverage † increased from 71% in 2013 to 74% in 2015. § Seven (15%) countries achieved ≥95% MCV1 coverage in 2015. ¶ The number of countries providing a routine second MCV dose (MCV2) increased from 11 (24%) in 2013 to 23 (49%) in 2015. Forty-one (79%) of 52 SIAs** during 2013-2016 reported ≥95% coverage. Both surveillance targets were met in 19 (40%) countries in 2016. Confirmed measles incidence in AFR decreased from 76.3 per 1 million population to 27.9 during 2013-2016. To eliminate measles by 2020, AFR countries and partners need to 1) achieve ≥95% 2-dose MCV coverage through improved immunization services, including second dose (MCV2) introduction; 2) improve SIA quality by preparing 12-15 months in advance, and using readiness, intra-SIA, and post-SIA assessment tools; 3) fully implement elimination-standard surveillance †† ; 4) conduct annual district-level risk assessments; and 5) establish national committees and a regional commission for the verification of measles elimination.

  15. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. Inmore » this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.« less

  16. Electronic structure and properties of magnetic defects in Co(1+x)Al(1-x) and Fe(1+x)Al(1-x) alloys. Ph.D. Thesis - Paris Univ.

    NASA Technical Reports Server (NTRS)

    Abbe, D.

    1984-01-01

    CoAl and FeAl compounds are developed along two directions. Magnetic susceptibility and specific heat at low temperature on (NiCo)Al and (CoFe)Al ternary alloys are in good agreement with band calculations. Results on magnetization and specific heat under field at low temperature on nonstoichiometric compounds show clearly the importance of the nearest neighbor effects. In the case of CoAl, the isolated cobalt atoms substituting aluminum are characterized by a Kondo behavior, and, for FeAl, the isolated extra iron atoms are magnetic and polarize the matrix. Moreover, for the two compounds, clusters of higher order play a considerable part in the magnetic properties for CoAl, these clusters also seem to be characterized by a Kondo behavior, for FeAl, these clusters whose moment is higher than in the case of isolated atoms, could be constituted of excess parts of iron atoms.

  17. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics.

    PubMed

    Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin

    2016-06-22

    Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.

  18. Nonempirical calculations of the structure and stability of ALi/sub 2k/ lithium clusters of group-two elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimenko, N.M.; Musaev, D.G.; Gorbik, A.A.

    Nonempirical Hartree-Fock calculations of the geometric and relative energetic characteristics of linear ALi/sub 2/ molecules and square ALi/sub 4/ molecules, where A = Be, Mg, Ca, and Zn, have been performed. The results for BeLi/sup +/, BeLi/sup 2/, BeLi/sub 4/, and MgLi/sub 2/ have been refined with consideration of the electron correlation in the framework of the theory of self-consistent electron pairs (SCEP). It has been shown that the stability of ALi/sub 2k/ increases with increasing size of the cluster and that the energy of the singlet-triplet transitions does not exceed 0.5-1.5 eV in all cases. The interactions between themore » atoms in the clusters have a cooperative character: the overlapping Q(Li-Li) between the Li atoms is no less significant than the overlapping Q(A-Li) between the Li atoms and the central atom A.« less

  19. Properties of Vacancy Complexes with Hydrogen and Helium Atoms in Tungsten from First Principles

    DOE PAGES

    Samolyuk, German D.; Osetsky, Yury N.; Stoller, Roger E.

    2016-12-03

    Tungsten and its alloys are the primary candidate materials for plasma-facing components in fusion reactors. The material is exposed to high-energy neutrons and the high flux of helium and hydrogen atoms. In this paper, we have studied the properties of vacancy clusters and their interaction with H and He in W using density functional theory. Convergence of calculations with respect to modeling cell size was investigated. It is demonstrated that vacancy cluster formation energy converges with small cells with a size of 6 × 6 × 6 (432 lattice sites) enough to consider a microvoid of up to six vacanciesmore » with high accuracy. Most of the vacancy clusters containing fewer than six vacancies are unstable. Introducing He or H atoms increases their binding energy potentially making gas-filled bubbles stable. Finally, according to the results of the calculations, the H 2 molecule is unstable in clusters containing six or fewer vacancies.« less

  20. The adsorption of helium atoms on small cationic gold clusters.

    PubMed

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

Top