Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir
2018-03-01
A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...
FROM ATOM TRANSFER RADICAL ADDITION TO ATOM TRANSFER RADICAL POLYMERIZATION. (R829580)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, T.
1979-05-17
There has been a report (M. Iwasaki and Toriyama) on an electron spin resonance study of reversible intramolecular radical conversion due to photo- and thermal-induced H-atom transfer. Schlenk, Brown, White, Chatini, and Nakatani reported H-atom abstraction of a photostimulated allylic radical from its neighbor molecules and thermal recovery of the allylic radical from photoirradiation in a thiourea clathrate. Radiolysis of a thiourea clathrate containing a mixture of 10 mol% 2,3-dimethylbutadiene and 90 mol% 2,3-dimethylbutane gave a resolved room-temperature spectrum. The result seemed to suggest that the monomer radical was stabilized in the canal even at room temperature in the presencemore » of the inert DBA molecules which might block chain propagation. Results suggested that the photostimulated R/sub 1/, radicals abstract H atoms from DBA molecules to form tetramethylethylene molecules and R/sub 2/ radicals and that the R/sub 2/ radicals produced by photoirradiation abstract H atoms from TME molecules to regenerate R/sub 1/ radicals and DBA molecules. 2 figures. (DP)« less
Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...
Wood, Mark E; Bissiriou, Sabine; Lowe, Christopher; Windeatt, Kim M
2013-04-28
Using C-3 di-deuterated morpholin-2-ones bearing N-2-iodobenzyl and N-3-bromobut-3-enyl radical generating groups, only products derived from the more stabilised C-3, rather than the less stabilised C-5 translocated radicals, were formed after intramolecular 1,5-hydrogen atom transfer, suggesting that any kinetic isotope effect present was not sufficient to offset captodative stabilisation.
Wang, Michael C P; Gates, Byron D
2012-09-04
Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.
Petković, Milena; Nakarada, Đura; Etinski, Mihajlo
2018-05-25
Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Unprecedented H-atom transfer from water to ketyl radicals mediated by Cp(2)TiCl.
Paradas, Miguel; Campaña, Araceli G; Marcos, Maria Luisa; Justicia, Jose; Haidour, Ali; Robles, Rafael; Cárdenas, Diego J; Oltra, J Enrique; Cuerva, Juan M
2010-10-07
The H-atom transfer (HAT) from water to ketyl radicals, mediated by titanocene(iii) aqua-complexes, can explain the Ti(III)-promoted reduction of ketones in aqueous medium better than the conventional House mechanism. Moreover, we also report novel evidences supporting the existence of these titanocene(iii) aqua-complexes.
Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.
2016-01-01
A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728
Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N
,NReactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.
Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu
2018-02-14
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
Hydropersulfides: H-Atom Transfer Agents Par Excellence.
Chauvin, Jean-Philippe R; Griesser, Markus; Pratt, Derek A
2017-05-10
Hydropersulfides (RSSH) are formed endogenously via the reaction of the gaseous biotransmitter hydrogen sulfide (H 2 S) and disulfides (RSSR) and/or sulfenic acids (RSOH). RSSH have been investigated for their ability to store H 2 S in vivo and as a line of defense against oxidative stress, from which it is clear that RSSH are much more reactive to two-electron oxidants than thiols. Herein we describe the results of our investigations into the H-atom transfer chemistry of RSSH, contrasting it with the well-known H-atom transfer chemistry of thiols. In fact, RSSH are excellent H-atom donors to alkyl (k ∼ 5 × 10 8 M -1 s -1 ), alkoxyl (k ∼ 1 × 10 9 M -1 s -1 ), peroxyl (k ∼ 2 × 10 6 M -1 s -1 ), and thiyl (k > 1 × 10 10 M -1 s -1 ) radicals, besting thiols by as little as 1 order and as much as 4 orders of magnitude. The inherently high reactivity of RSSH to H-atom transfer is based largely on thermodynamic factors; the weak RSS-H bond dissociation enthalpy (∼70 kcal/mol) and the associated high stability of the perthiyl radical make the foregoing reactions exothermic by 15-34 kcal/mol. Of particular relevance in the context of oxidative stress is the reactivity of RSSH to peroxyl radicals, where favorable thermodynamics are bolstered by a secondary orbital interaction in the transition state of the formal H-atom transfer that drives the inherent reactivity of RSSH to match that of α-tocopherol (α-TOH), nature's premier radical-trapping antioxidant. Significantly, the reactivity of RSSH eclipses that of α-TOH in H-bond-accepting media because of their low H-bond acidity (α 2 H ∼ 0.1). This affords RSSH a unique versatility compared to other highly reactive radical-trapping antioxidants (e.g., phenols, diarylamines, hydroxylamines, sulfenic acids), which tend to have high H-bond acidities. Moreover, the perthiyl radicals that result are highly persistent under autoxidation conditions and undergo very rapid dimerization (k = 5 × 10 9 M -1 s -1 ) in lieu of reacting with O 2 or autoxidizable substrates.
NASA Astrophysics Data System (ADS)
Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.
2018-05-01
The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.
Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L
2015-11-15
The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long-lived intermediates formed by electron capture/transfer in which a labile hydrogen atom is present and plays a key role with low energy processes leading to c and z ion formation. Ab initio and density functional calculations are performed to support our conclusion, which depends most importantly on the proton affinity, electron affinity and hydrogen atom affinity of the TEMPO moiety.
Borguet, Yannick; Sauvage, Xavier; Zaragoza, Guillermo; Demonceau, Albert
2010-01-01
Summary The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymene)Ru(μ-Cl)3RuCl(3-phenyl-1-indenylidene)(PCy3)] (1) to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II)–Ru(III) mixed-valence compound [(p-cymene)Ru(μ-Cl)3RuCl2(PCy3)], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions. PMID:21160564
Marković, Zoran; Đorović, Jelena; Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica
2015-11-01
The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.
Cai, Yang; Koshino, Nobuyoshi; Saha, Basudeb; Espenson, James H
2005-01-07
Kinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.) which was found to follow second-order kinetics. In the self-decomposition of 4-methyl-N-hydroxyphthalimide (4-Me-NHPI), H-atom abstraction competes with self-decomposition in the presence of excess 4-Me-NHPI. The second set of reactions studied is hydrogen atom transfer from NHPI to PINO(.), e.g., PINO(.) + 4-Me-NHPI <=> NHPI + 4-Me-PINO(.). The substantial KIE, k(H)/k(D) = 11 for both forward and reverse reactions, supports the assignment of H-atom transfer rather than stepwise electron-proton transfer. These data were correlated with the Marcus cross relation for hydrogen-atom transfer, and good agreement between the experimental and the calculated rate constants was obtained. The third reaction studied is hydrogen abstraction by PINO(.) from p-xylene and toluene. The reaction becomes regularly slower as the ring substituent on PINO(.) is more electron donating. Analysis by the Hammett equation gave rho = 1.1 and 1.8 for the reactions of PINO(.) with p-xylene and toluene, respectively.
Food Antioxidants: Chemical Insights at the Molecular Level.
Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino
2016-01-01
In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.
Green, Amy M.; Barber, Victoria P.; Fang, Yi; ...
2017-11-06
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Amy M.; Barber, Victoria P.; Fang, Yi
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less
Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I
2017-11-21
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.
Green, Amy M.; Barber, Victoria P.; Fang, Yi; Klippenstein, Stephen J.; Lester, Marsha I.
2017-01-01
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn-CD3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50. PMID:29109292
Lin, Ching Yeh; Coote, Michelle L; Gennaro, Armando; Matyjaszewski, Krzysztof
2008-09-24
High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH 2COOC 2H 5, CH(CH 3)COOCH 3, C(CH 3) 2COOCH 3, C(CH 3) 2COOC 2H 5, CH 2Ph, CH(CH 3)Ph, CH(CH 3)Cl, CH(CH 3)OCOCH 3, CH(Ph)COOCH 3, SO 2Ph, Ph; X = Cl, Br, I) both in the gas phase and in two common organic solvents, acetonitrile and dimethylformamide. The SRPs of the corresponding alkyl radicals, R (*), are also examined. The computational results are in a very good agreement with the experimental data. For all alkyl halides examined, it is found that, in the solution phase, one-electron reduction results in the fragmentation of the R-X bond to the corresponding alkyl radical and halide anion; hence it may be concluded that a hypothetical outer-sphere electron transfer (OSET) in ATRP should occur via concerted dissociative electron transfer rather than a two-step process with radical anion intermediates. Both the homolytic and heterolytic reactions are favored by electron-withdrawing substituents and/or those that stabilize the product alkyl radical, which explains why monomers such as acrylonitrile and styrene require less active ATRP catalysts than vinyl chloride and vinyl acetate. The rate constant of the hypothetical OSET reaction between bromoacetonitrile and Cu (I)/TPMA complex was estimated using Marcus theory for the electron-transfer processes. The estimated rate constant k OSET = approximately 10 (-11) M (-1) s (-1) is significantly smaller than the experimentally measured activation rate constant ( k ISET = approximately 82 M (-1) s (-1) at 25 degrees C in acetonitrile) for the concerted atom transfer mechanism (inner-sphere electron transfer, ISET), implying that the ISET mechanism is preferred. For monomers bearing electron-withdrawing groups, the one-electron reduction of the propagating alkyl radical to the carbanion is thermodynamically and kinetically favored over the one-electron reduction of the corresponding alkyl halide unless the monomer bears strong radical-stabilizing groups. Thus, for monomers such as acrylates, catalysts favoring ISET over OSET are required in order to avoid chain-breaking side reactions.
Photoinduced reactions of dibenzoyl peroxide as studied by EPR and spin-trapping
NASA Astrophysics Data System (ADS)
Rosenthal, Ionel; Mossoba, Magdi M.; Riesz, Peter
The photochemical reactions of dibenzoyl peroxide with some organic compounds were found by EPR and spin-trapping to generate free radicals in dimethyl sulfoxide solutions at room temperature. Two reaction mechanisms occur which determine the structures of the radicals generated. The first involves a one-electron oxidation and the second a hydrogen atom transfer. The prevailing mechanism is primarily dependent on the structure of the substrate. With carboxylic acids the one-electron oxidation occurs exclusively, leading to the loss of the carboxyl group and to formation of the alkyl radical. For alcohols both alkoxy radicals and hydrogen-abstraction α-carbon radicals were spin trapped. The alkoxy radicals were generated by the electron transfer mechanism. Finally pyrimidine bases such as thymine and cytosine yielded C(5)-centered radicals which could also be explained by an electron transfer mechanism. These observations are of interest because of the recently observed skin tumor-promoting activity of dibenzoyl peroxide.
NASA Technical Reports Server (NTRS)
Cohen, W.
1973-01-01
After a review of the work of the late-Fifties on free radicals for propulsion, it is concluded that atomic hydrogen would provide a potentially large increase in specific impulse. Work conducted to find an approach for isolating atomic hydrogen is considered. Other possibilities for obtaining propellants of greatly increased capability might be connected with the technology for the generation of activated states of gases, metallic hydrogen, fuels obtained from other planets, and laser transfer of energy.
NASA Astrophysics Data System (ADS)
Matasović, Brunislav; Bonifačić, Marija
2011-06-01
Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.
Computational study of the structure-free radical scavenging relationship of procyanidins.
Mendoza-Wilson, Ana María; Castro-Arredondo, Sergio Ivan; Balandrán-Quintana, René Renato
2014-10-15
Procyanidins (PCs) are effective free radical scavengers, however, their antioxidant ability is variable because they have different degrees of polymerisation, are composed by distinct types of subunits and are very susceptible to changes in conformation. In this work the structure-free radical scavenging relationship of monomers, dimers and trimers of PCs was studied through the hydrogen atom transfer (HAT), sequential proton-loss electron-transfer (SPLET) and single electron transfer followed by proton transfer (SET-PT) mechanisms in aqueous phase, employing the Density Functional Theory (DFT) computational method. The structure-free radical scavenging relationship of PCs showed a very similar behaviour in HAT and SET-PT mechanisms, but very different in the SPLET mechanism. The structural factor that showed more effects on the ability of PCs to scavenge free radicals in aqueous phase was the conformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei
2018-04-01
In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.
Bentz, Erika N; Lobayan, Rosana M; Martínez, Henar; Redondo, Pilar; Largo, Antonio
2018-06-21
A computational kinetics study of the antioxidant activity of tryptamine toward HO • and HOO • radicals in water at 298 K has been carried out. Density functional methods have been employed for the quantum chemical calculations, and the conventional transition state theory was used for rate constant evaluation. Different mechanisms have been considered: radical adduct formation (RAF), single electron transfer (SET), and hydrogen atom transfer (HAT). For the reaction of tryptamine with the hydroxyl radical, nearly all channels are diffusion-controlled, and the overall rate constant is very high, 6.29 × 10 10 M -1 s -1 . The RAF mechanism has a branching ratio of 55%, followed by the HAT mechanism (31%), whereas the SET mechanism accounts just for 13% of the products. The less hindered carbon atom neighboring to the nitrogen of the indole ring seems to be the preferred site for the RAF mechanism, with a branching ratio of 16%. The overall rate constant for the reaction of tryptamine with the HOO • radical is 3.71 × 10 4 M -1 s -1 , suggesting that it could be a competitive process with other reactions of hydroperoxyl radicals in biological environments. For this reaction only the HAT mechanism seems viable. Furthermore, only two centers may contribute to the HAT mechanism, the nitrogen atom of the indole ring and a carbon atom of the aminoethyl chain, the former accounting for more than 91% of the total products. Our results suggest that tryptamine could have a noticeable scavenging activity toward radicals, and that this activity is mainly related to the nitrogen atom of the indole ring, thus showing the relevance of their behavior in the study of aminoindoles.
Advanced Materials by Atom Transfer Radical Polymerization.
Matyjaszewski, Krzysztof
2018-06-01
Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organocatalyzed atom transfer radical polymerization driven by visible light.
Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M
2016-05-27
Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. Copyright © 2016, American Association for the Advancement of Science.
di Lena, Fabio; Matyjaszewski, Krzysztof
2009-11-07
An electrospray ionization mass spectrometer equipped with a quadrupole ion trap as the mass analyzer provided a powerful tool for the investigation of metal ligand affinities of catalysts for atom transfer radical polymerization. It allowed, in particular, (i) the identification, in a library of ligands, of the most stable, and thus active, copper catalysts; (ii) the assessment of the effects of the reaction medium on the relative stabilities of the catalyst complexes; and (iii) the evaluation of the influence of the nature of the ligand on both the complex halogenophilicity and the metal-ligand stabilities in the gas-phase.
Li, Bin; Yu, Bo; Zhou, Feng
2013-02-12
Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anglada, Josep M; Gonzalez, Javier
2009-12-07
The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praveena, R.; Sadasivam, K.
Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computedmore » values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.« less
D'Alfonso, Claudio; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela
2013-02-01
The kinetics of reactions of the phthalimide N-oxyl radical (PINO) with a series of activated phenols (2,2,5,7,8-pentamethylchroman-6-ol (PMC), 2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols) were investigated by laser flash photolysis in CH(3)CN and PhCl in order to establish if the reactions with PINO can provide a useful tool for evaluating the radical scavenging ability of phenolic antioxidants. On the basis of the small values of deuterium kinetic isotope effects, the relatively high and negative ρ values in the Hammett correlations and the results of theoretical calculations, we suggest that these reactions proceed by a hydrogen atom transfer (HAT) mechanism having a significant degree of charge transfer resulting from a π-stacked conformation between PINO and the aromatic ring of the phenols. Kinetic solvent effects were analyzed in detail for the hydrogen transfer from 2,4,6-trimethylphenol to PINO and the data obtained are in accordance with the Snelgrove-Ingold equation for HAT. Experimental rate constants for the reactions of PINO with activated phenols are in accordance with those predicted by applying the Marcus cross relation.
Competition H(D) Kinetic Isotope Effects in the Autoxidation of Hydrocarbons
Muchalski, Hubert; Levonyak, Alexander J.; Xu, Libin; Ingold, Keith U.; Porter, Ned A.
2016-01-01
Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (~7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling. PMID:25533605
Competition H(D) kinetic isotope effects in the autoxidation of hydrocarbons.
Muchalski, Hubert; Levonyak, Alexander J; Xu, Libin; Ingold, Keith U; Porter, Ned A
2015-01-14
Hydrogen atom transfer is central to many important radical chain sequences. We report here a method for determination of both the primary and secondary isotope effects for symmetrical substrates by the use of NMR. Intramolecular competition reactions were carried out on substrates having an increasing number of deuterium atoms at symmetry-related sites. Products that arise from peroxyl radical abstraction at each position of the various substrates reflect the competition rates for H(D) abstraction. The primary KIE for autoxidation of tetralin was determined to be 15.9 ± 1.4, a value that exceeds the maximum predicted by differences in H(D) zero-point energies (∼7) and strongly suggests that H atom abstraction by the peroxyl radical occurs with substantial quantum mechanical tunneling.
Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer.
Bovino, Michael T; Chemler, Sherry R
2012-04-16
Problem solved: the title reaction was used for the synthesis of chiral 2-bromo, chloro, and iodomethyl indolines and 2-iodomethyl pyrrolidines. Stereocenter formation is believed to occur by enantioselective cis aminocupration and C-X bond formation is believed to occur by atom transfer. The ultility of the products as versatile synthetic intermediates was demonstrated, as was a radical cascade cyclization sequence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Presidential Green Chemistry Challenge: 2009 Academic Award
Presidential Green Chemistry Challenge 2009 award winner, Professor Krzysztof Matyjaszewski, developed Atom Transfer Radical Polymerization to make polymers with copper catalysts and environmentally friendly reducing agents.
Atomic hydrogen propellants: Historical perspectives and future possibilities
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
1993-01-01
Atomic hydrogen, a very high density free-radical propellant, is anticipated to generate a specific impulse of 600-1500 lb-f sec/lb-mass performance; this may facilitate the development of unique launch vehicles. A development status evaluation is presently given for atomic hydrogen investigations. It is noted that breakthroughs are required in the production, storage, and transfer of atomic hydrogen, before this fuel can become a viable rocket propellant.
Schwarz, Helmut; Shaik, Sason; Li, Jilai
2017-12-06
This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O • ). Whenever the radical is delocalized, e.g., in [MgO] n •+ the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga 2 O 3 ) to [MgO] 2 •+ localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [Al 2 O 2 ] •+ the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH 3 moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO] 2 •+ by Al 2 O 3 enables HAT and PCET to compete. Similarly, [ZnO] •+ activates methane by PCET generating many products. Adding a CH 3 CN ligand to form [(CH 3 CN)ZnO] •+ leads to a single HAT product. The CH 3 CN dipole acts as an OEF that switches off PCET. [MC] + cations (M = Au, Cu) act by different mechanisms, dictated by the M + -C bond covalence. For example, Cu + , which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu + .
Pan, Yang; Fu, Yao; Liu, Shaoxiong; Yu, Haizhu; Gao, Yuhe; Guo, Qingxiang; Yu, Shuqin
2006-06-15
The quenching of the triplets of 1,2-naphthoquinone (NQ) and 1,2-naphthoquinone-4-sulfonic acid sodium salt (NQS) by various electron and H-atom donors was investigated by laser flash photolysis measurement in acetonitrile and benzene. The results showed that the reactivities and configurations of 3NQ* (3NQS*) are governed by solvent polarity. All the quenching rate constants (kq) measured in benzene are larger than those in acetonitrile. The SO3Na substituent at the C-4 position of NQS makes 3NQS* more reactive than 3NQ* in electron/H-atom transfer reactions. Large differences of kq values were discovered in H-atom transfer reactions for alcohols and phenols, which can be explained by different H-abstraction mechanisms. Detection of radical cations of amines/anilines in time-resolved transient absorption spectra confirms an electron transfer mechanism. Triplets are identified as precursors of formed radical anions of NQ and NQS in photoinduced reactions. The dependence of electron transfer rate constants on the free energy changes (DeltaG) was treated by using the Rehm-Weller equation. For the four anilines with different substituents on the para or meta position of amidocyanogen, good correlation between log kq values with Hammett sigma constants testifies the correctness of empirical Hammett equation. Charge density distributions, adiabatic ionization/affinity potentials and redox potentials of NQ (NQS) and some quenchers were studied by quantum chemistry calculation.
H2S adsorption and dissociation on NH-decorated graphene: A first principles study
NASA Astrophysics Data System (ADS)
Faye, Omar; Eduok, Ubong; Szpunar, Jerzy; Samoura, Almoustapha; Beye, Aboubaker
2018-02-01
The removal of H2S gas poses an emerging environmental concern because of the lack of knowledge of an efficient adsorbent. A detailed theoretical study of H2S adsorption and dissociation on NH-doped graphene (GNH) has been carried out by means of density theory calculations. Our results reveal that the adsorption of H2S molecule on GNH composite is enhanced by the presence of active site such as the NH radicals. These NH radical sites formed NHsbnd H bonds and increase the charge transfer from H2S to GNH. The dissociation of the adsorbed H2S molecule leads the chemisorption of SH radical via H-transfer to GNH, while the formation of GNH2 at a weight percent of 3.76 wt% of NH radical is an endothermic process with an energy of 0.299 eV and 0.358 eV for ortho and para-position respectively. However, at 7.25 wt% NH radical, we observed a complete dissociation of H2S molecule with an energy released of 0.711 eV for the chemisorbed S atom on GN2H4. Moreover, the H-transfer of the second H atom of H2S molecule at 3.76 wt% was energetic unfavorable. The trend of predicted results within this study reveals that NH-doped graphene (GNH) successfully adsorbed and eliminated of H2S molecule; this work unveils definitive theoretical procedures which can be tested and validated experimentally.
Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides
NASA Astrophysics Data System (ADS)
Moss, Christopher L.; Chung, Thomas W.; Wyer, Jean A.; Nielsen, Steen Brøndsted; Hvelplund, Preben; Tureček, František
2011-04-01
Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H2PO4 radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.
Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.
Lego, Béatrice; Skene, W G; Giasson, Suzanne
2008-01-15
Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.
Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schwarz, Helmut
2018-06-25
Mechanistic insight into the thermal O-H bond activation of water by the cubane-like, prototypical heteronuclear oxide cluster [Al 2 Mg 2 O 5 ] •+ has been derived from a combined experimental/computational study. Experiments in the highly diluted gas phase using Fourier transform ion-cyclotron resonance mass spectrometry show that hydrogen-atom abstraction from water by the cluster cation [Al 2 Mg 2 O 5 ] •+ occurs at ambient conditions accompanied by the liberation of an OH • radical. Due to a complete randomization of all oxygen atoms prior to fragmentation about 83% of the oxygen atoms of the hydroxyl radical released originate from the oxide cluster itself. The experimental findings are supported by detailed high-level quantum chemical calculations. The theoretical analysis reveals that the transfer of a formal hydrogen atom from water to the metal-oxide cation can proceed mechanistically via proton- or hydrogen-atom transfer exploiting different active sites of the cluster oxide. In addition to the unprecedented oxygen-atom scrambling, one of the more general and quite unexpected findings concerns the role of spin density at the hydrogen-acceptor oxide atom. While this feature is so crucial for [M-O] + /CH 4 couples, it is much less important in the O-H bond activation of water.
Petruk, Ariel A.; Bartesaghi, Silvina; Trujillo, Madia; Estrin, Darío A.; Murgida, Daniel; Kalyanaraman, Balaraman; Marti, Marcelo A.; Radi, Rafael
2012-01-01
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O●) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O● to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues. PMID:22640642
Shaffer, Christopher J; Pepin, Robert; Tureček, František
2015-12-01
We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, J.A.; Linehan, J.C.; Birnbaum, J.C.
1999-10-27
A new family of basis rate expressions for hydrogen atom abstraction by primary, secondary, and tertiary alkyl radicals in dodecane and benzyl radical in benzene from the molybdenum hydride Cp*Mo-(CO){sub 3}H and for reactions of a primary alkyl radical with CpMo(CO){sub 3}H in dodecane are reported (Cp* = {eta}{sup 5}-pentamethylcyclopentadienyl, Cp = {eta}{sup 5}-cyclopentadienyl). Rate expressions for reaction of primary, secondary, and tertiary radical clocks with Cp*Mo(CO){sub 3}H were as follows: for hex-5-enyl, log(k/M{sup {minus}1} s{sup {minus}1}) = (9.27 {+-} 0.13) {minus} (1.36 {+-} 0.22)/{theta}, {theta} = 2.303RT kcal/mol; for hept-6-en-2-yl, log(k/M{sup {minus}1} s{sup {minus}1}) = (9.12 {+-} 0.42) {minus}more » (1.91 {+-} 0.74)/{theta}; and for 2-methylhept-6-en-2-yl, log(k/M{sup {minus}1} s{sup {minus}1}) = (9.36 {+-} 0.18) {minus} (3.19 {+-} 0.30)/{theta} (errors are 2{sigma}). Hydrogen atom abstraction from CpMo(CO){sub 3}H by hex-5-enyl is described by log(k/M{sup {minus}1} s{sup {minus}1}) = (9.53 {+-} 0.34) {minus} (1.24 {+-} 0.62)/{theta}. Relative rate constants for 1{degree}:2{degree}:3{degree} alkyl radicals were found to be 26:7:1 at 298 K. Benzyl radical was found to react 1.4 times faster than tertiary alkyl radical. The much higher selectivities for CP*Mo(CO){sub 3}H than those observed for main group hydrides (Bu{sub 3}SnH, PhSeH, PhSH) with alkyl radicals, together with the very fast benzyl hydrogen-transfer rate, suggest the relative unimportance of simple enthalpic effects and the dominance of steric effects for the early transition-state hydrogen transfers. Hydrogen abstraction from Cp*Mo(CO){sub 3}H by benzyl radicals is described by log(k/M{sup {minus}1} s{sup {minus}1}) = (8.89 {+-} 0.22) {minus} (2.31 {+-} 0.33)/{theta}.« less
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
Encapsidated Atom-Transfer Radical Polymerization in Qβ Virus-like Nanoparticles
2015-01-01
Virus-like particles (VLPs) are unique macromolecular structures that hold great promise in biomedical and biomaterial applications. The interior of the 30 nm-diameter Qβ VLP was functionalized by a three-step process: (1) hydrolytic removal of endogenously packaged RNA, (2) covalent attachment of initiator molecules to unnatural amino acid residues located on the interior capsid surface, and (3) atom-transfer radical polymerization of tertiary amine-bearing methacrylate monomers. The resulting polymer-containing particles were moderately expanded in size; however, biotin-derivatized polymer strands were only very weakly accessible to avidin, suggesting that most of the polymer was confined within the protein shell. The polymer-containing particles were also found to exhibit physical and chemical properties characteristic of positively charged nanostructures, including the ability to easily enter mammalian cells and deliver functional small interfering RNA. PMID:25073013
Lee, Richmond; Gryn'ova, Ganna; Ingold, K U; Coote, Michelle L
2016-08-24
High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decomposition of both tertiary and non-tertiary tetroxides follows the same asymmetric two-step bond cleavage pathway to form a caged intermediate of overall singlet multiplicity comprising triplet oxygen and two alkoxyl radicals. The alpha hydrogen atoms of non-tertiary species facilitate this process by forming unexpected CHO hydrogen bonds to the evolving O2. For non-tertiary peroxyls, subsequent alpha hydrogen atom transfer then yields the experimentally observed non-radical products, ketone, alcohol and O2, whereas for tertiary species, this reaction is precluded and cage escape of the (unpaired) alkoxyl radicals is a likely outcome with important consequences for autoxidation.
Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL).
Li, Lei
2012-11-01
Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Siegwart, Daniel John
In this thesis, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization were utilized in the design of synthetic polymers to create tissue engineering scaffolds and drug delivery systems with improved control over structure and functionality. Thermo-sensitive injectable hydrogels based on poly(NIPAAm) with degradable ester units within the polymer backbone and at the cross-linking sites were prepared using ATRP and RAFT. Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by ATRP were described. A micellar structure, composed of a hydrophobic PMMA core and a PEO shell was constructed for delivery of hydrophobic drugs. ATRP was carried out in inverse miniemulsion to prepare well defined functional nanogels that were capable of entrapping and releasing various molecules (Doxorubicin, carbohydrate-based drugs, fluorophores, and gold nanoparticles). The results demonstrated that nanogels prepared by ATRP in inverse miniemulsion could be internalized into cells via clathrin-mediated endocytosis. Nanogels functionalized with integrin-binding peptides increased cellular uptake. A process called Atom Transfer Radical Coupling (ATRC) was also described, which illustrated the power of functionality in ATRP. Finally, linear polymers and cross-linked nanogels were synthesized by ATRP and functionalized with biotin, pyrene, and peptide sequences, tying together the overall themes of structural control and functionality.
Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo
2010-09-17
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.
McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.
2010-01-01
Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.
2016-11-01
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R
2016-11-10
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
Auxiliary iron-sulfur cofactors in radical SAM enzymes.
Lanz, Nicholas D; Booker, Squire J
2015-06-01
A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations
2016-01-01
Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. PMID:27861556
NASA Astrophysics Data System (ADS)
Nguyen, Huong T. H.; Tureček, František
2017-07-01
Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second ( B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasbinder, Michael John
2006-01-01
Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reactionmore » mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO 2+ and Rh(NH 3) 4(H 2O)OO 2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH 3) 4(H 2O)OO 2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the Hammett correlation. It was found that the values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.« less
Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.
Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S
2017-09-28
High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .
TRANSITION METAL CATALYZED ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
REVERSE ATOM TRANSFER RADICAL POLYMERIZATION IN MINIEMULSION. (R829580)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
GRADIENT COPOLYMERS BY ATOM TRANSFER RADICAL COPOLYMERIZATION. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ATOM TRANSFER RADICAL POLYMERIZATION IN SUPERCRITICAL CARBON DIOXIDE. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
COPPER(I)-CATALYZED ATOM TRANSFER RADICAL POLYMERIZATIONS. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František
2018-01-16
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František
2018-01-01
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.
Bencherif, Sidi A.; Siegwart, Daniel J.; Srinivasan, Abiraman; Horkay, Ferenc; Hollinger, Jeffrey O.; Washburn, Newell R.; Matyjaszewski, Krzysztof
2012-01-01
A new method to prepare nanostructured hybrid hydrogels by incorporating well-defined poly(oligo (ethylene oxide) monomethyl ether methacrylate) (POEO300MA) nanogels of sizes 110–120 nm into a larger three-dimensional (3D) matrix was developed for drug delivery scaffolds for tissue engineering applications. Rhodamine B isothiocyanate-labeled dextran (RITC-Dx) or fluorescein isothiocyanate-labeled dextran (FITC-Dx)-loaded POEO300MA nanogels with pendant hydroxyl groups were prepared by activators generated electron transfer atom transfer radical polymerization (AGET ATRP) in cyclohexane inverse miniemulsion. Hydroxyl-containing nanogels were functionalized with methacrylated groups to generate photoreactive nanospheres. 1H NMR spectroscopy confirmed that polymerizable nanogels were successfully incorporated covalently into 3D hyaluronic acid-glycidyl methacrylate (HAGM) hydrogels after free radical photo-polymerization (FRP). The introduction of disulfide moieties into the polymerizable groups resulted in a controlled release of nanogels from cross-linked HAGM hydrogels under a reducing environment. The effect of gel hybridization on the macroscopic properties (swelling and mechanics) was studied. It is shown that swelling and nanogel content are independent of scaffold mechanics. In-vitro assays showed the nanostructured hybrid hydrogels were cytocompatible and the GRGDS (Gly–Arg–Gly–Asp–Ser) contained in the nanogel structure promoted cell–substrate interactions within 4 days of incubation. These nanostructured hydrogels have potential as an artificial extracellular matrix (ECM) impermeable to low molecular weight biomolecules and with controlled pharmaceutical release capability. Moreover, the nanogels can control drug or biomolecule delivery, while hyaluronic acid based-hydrogels can act as a macroscopic scaffold for tissue regeneration and regulator for nanogel release. PMID:19592087
Romero, Nathan A.; Nicewicz, David A.
2014-11-12
Here, we describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr +) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS) 2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HATmore » step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr + is observed to engage in off-cycle adduct formation, presumably as buildup of PhS – becomes significant. The kinetic differences between PhSH and (PhS) 2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence.« less
Fundamentals of Atom Transfer Radical Polymerization
ERIC Educational Resources Information Center
Coessens, Veerle M. C.; Matyjaszewski, Krzysztof
2010-01-01
Today's market increasingly demands sophisticated materials for advanced technologies and high-value applications, such as nanocomposites, optoelectronic, or biomedical materials. Therefore, the demand for well-defined polymers with very specific molecular architecture and properties increases. Until recently, these kinds of polymers could only be…
IMMOBILIZATION OF THE COPPER CATALYST IN ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ATOM TRANSFER RADICAL POLYMERIZATION OF STYRENE IN TOLUENE-WATER MIXTURES. (R829580)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Foster, Rami N; Johansson, Patrik K; Tom, Nicole R; Koelsch, Patrick; Castner, David G
2015-09-01
A 2 4 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr 2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm -2 for this system) CuBr 2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.
2015-01-01
To obtain mechanistic insights into the inherent reactivity patterns for copper(I)–O2 adducts, a new cupric–superoxo complex [(DMM-tmpa)CuII(O2•–)]+ (2) [DMM-tmpa = tris((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amine] has been synthesized and studied in phenol oxidation–oxygenation reactions. Compound 2 is characterized by UV–vis, resonance Raman, and EPR spectroscopies. Its reactions with a series of para-substituted 2,6-di-tert-butylphenols (p-X-DTBPs) afford 2,6-di-tert-butyl-1,4-benzoquinone (DTBQ) in up to 50% yields. Significant deuterium kinetic isotope effects and a positive correlation of second-order rate constants (k2) compared to rate constants for p-X-DTBPs plus cumylperoxyl radical reactions indicate a mechanism that involves rate-limiting hydrogen atom transfer (HAT). A weak correlation of (kBT/e) ln k2 versus Eox of p-X-DTBP indicates that the HAT reactions proceed via a partial transfer of charge rather than a complete transfer of charge in the electron transfer/proton transfer pathway. Product analyses, 18O-labeling experiments, and separate reactivity employing the 2,4,6-tri-tert-butylphenoxyl radical provide further mechanistic insights. After initial HAT, a second molar equiv of 2 couples to the phenoxyl radical initially formed, giving a CuII–OO–(ArO′) intermediate, which proceeds in the case of p-OR-DTBP substrates via a two-electron oxidation reaction involving hydrolysis steps which liberate H2O2 and the corresponding alcohol. By contrast, four-electron oxygenation (O–O cleavage) mainly occurs for p-R-DTBP which gives 18O-labeled DTBQ and elimination of the R group. PMID:24953129
Amić, Ana; Lučić, Bono; Stepanić, Višnja; Marković, Zoran; Marković, Svetlana; Dimitrić Marković, Jasmina M; Amić, Dragan
2017-03-01
Reaction energetics of the double (2H + /2e - ), i.e., the first 1H + /1e - (catechol→ phenoxyl radical) and the second 1H + /1e - (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H + /2e - processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet. Copyright © 2016 Elsevier Ltd. All rights reserved.
REMOVAL OF CATALYST IN ATOM TRANSFER RADICAL POLYMERIZATION USING ION EXCHANGE RESINS. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Huang, Chih-Feng; Aimi, Junko; Lai, Kuan-Yu
2017-02-01
Star copolymers are known to phase separate on the nanoscale, providing useful self-assembled morphologies. In this study, the authors investigate synthesis and assembly behavior of miktoarm star (μ-star) copolymers. The authors employ a new strategy for the synthesis of unprecedented μ-star copolymers presenting poly(N-octyl benzamide) (PBA) and poly(ε-caprolactone) (PCL) arms: a combination of chain-growth condensation polymerization, styrenics-assisted atom transfer radical coupling, and ring-opening polymerization. Gel permeation chromatography, mass-analyzed laser desorption/ionization mass spectrometry, and 1 H NMR spectroscopy reveal the successful synthesis of a well-defined (PBA 11 ) 2 -(PCL 15 ) 4 μ-star copolymer (M n ,NMR ≈ 12 620; Đ = 1.22). Preliminary examination of the PBA 2 PCL 4 μ-star copolymer reveals assembled nanofibers having a uniform diameter of ≈20 nm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neti, Venkata S.; Das, Sadananda; Brown, Suree; ...
2017-08-29
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
Li, Shuzhao; Xiao, Miaomiao; Zheng, Anna; Xiao, Huining
2011-09-12
Immobilizing poly(butyl acrylate) (PBA) on cellulose microfibrils (CMFs) by atom transfer radical polymerization (ATRP) of butyl acrylate (BA) on the surface of 2-bromoisobutyryl-functionalized CMF generated highly hydrophobic microfibrils (CMF-PBA) with a hard core and a soft-shell structure. TGA and static water contact angle results suggested that the surfaces of the modified CMF samples were not completely covered by PBA chains until the molecular weight of grafts became sufficiently long. The GPC results indicated that the grafts with low molecular weight showed controlled/"living" characteristics of the surface-initiated ATRP; however, there existed more side reactions with the increase in molecular weights. Biocomposites consisting of polypropylene (PP) and CMF-PBA samples exhibited significantly improved compatibility, interface adhesion, and mechanical properties with the increase in PBA graft length. The findings confirmed that the longer grafts facilitated the better entanglement of PBA grafts with PP macromolecules and thus further improved the mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Venkata S.; Das, Sadananda; Brown, Suree
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neti, Venkata S.; Das, Sadananda; Brown, Suree
Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screeningmore » tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less
Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2009-03-01
To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Wei, Jun
2016-09-01
Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.
Chen, Sa; Xu, Hong-Liang; Sun, Shi-Ling; Zhao, Liang; Su, Zhong-Min
2015-08-01
Due to unpaired electrons, both radicals and superalkali are investigated widely. In this work, two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. Why are they interesting? Firstly, for Li3O-PLY and Li3-PLY, although the charge transfer between superalkali atoms and PLY is similar, the sandwich-like charge distribution for Li3O-PLY causes a smaller dipole moment than that of Li3-PLY. Secondly, their UV-vis absorption show that the maximum wavelengths for Li3O-PLY and Li3-PLY display a bathochromic shift compared to PLY. Moreover, Li3-PLY has two new peaks at 482 and 633 nm. Significantly, the β 0 values of Li3-PLY (4943-5691 a.u.) are much larger than that of Li3O-PLY (225-347 a.u.). Further, the β HRS values of Li3O-PLY decrease slightly while β HRS of Li3-PLY increase dramatically with increasing frequency. It is our expectation that these results might provide beneficial information for theoretical and experimental studies on complexes with superalkali and PLY radicals. Graphical Abstract Two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. We explore their structures, Wiberg bond indices, interaction energies and the static first hyperpolarizabilities (β 0). The β 0 values of Li3-PLY (4943-5691 a.u.) were much larger than those of Li3O-PLY (225-347 a.u.).
Pulsed Corona Discharge Induced Hydroxyl Radical Transfer Through the Gas-Liquid Interface.
Ajo, Petri; Kornev, Iakov; Preis, Sergei
2017-11-23
The highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase. It is also demonstrated that the gas-liquid interfacial boundary poses a barrier for the OH radicals, one they need to cross for reactive affinity with dissolved components, and that this process requires a gaseous atomic H scavenger. For gaseous oxidation, a scavenger, oxygen in common cases, is an advantage but not a requirement. OH radical efficiency in liquid phase reactions is strongly temperature dependent as radical termination reaction rates increase with temperature.
Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan
2016-12-01
Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
THE EFFECT OF LIGANDS ON ATOM TRANSFER RADICAL POLYMERIZATION IN WATER-BORNE SYSTEMS. (R826735)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
RATIONAL DESIGN OF THE CATALYST FOR ATOM TRANSFER RADICAL POLYMERIZATION IN AQUEOUS MEDIA. (R829580)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.
Sirjean, Baptiste; Dames, Enoch; Wang, Hai; Tsang, Wing
2012-01-12
The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.
2011-01-01
Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526
Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile
NASA Astrophysics Data System (ADS)
Grishin, D. F.; Grishin, I. D.
2015-07-01
Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.
Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L
2016-05-12
An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Porkhun, V. I.; Rakhimov, A. I.
2012-11-01
Elementary acts of the photoreaction of diamine with 2,6-diphenyl- p-benzoquinone are determined from the effects of chemical nuclear polarization effects. Hydrogen atom transfer is shown to occur in two stages with the participation of a radical ion pair.
Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E
2011-01-01
Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.
Copper-containing monooxygenases: enzymatic and biomimetic studies of the O-atom transfer catalysis.
Blain, Ingrid; Slama, Patrick; Giorgi, Michel; Tron, Thierry; Réglier, Marius
2002-04-01
This review reports our recent studies or the mechanism of O-atom transfer to a benzylic C-H bond promoted by Dopamine beta-Hydroxylase (DBH) and its biomimetic models. We demonstrate that it is possible to carry out parallel and comparative studies on this enzyme (DBH) and its biomimetic models with the same substrate: 2-aminoindane (3). It was chosen because its two stereogenic centers, both in benzylic positions, make it very powerful for studying the stereochemistry of an O-atom transfer reaction. DBH-catalyzed hydroxylation of 3 produced exclusively 14% of trans-(1S,2S)-2-amino-1-indanol (4) (93% ee). Studies with stereospecifically deuterium-labeled 2-aminoindanes (1R,2S)-3b and (1S,2S)-3a showed that the formation of 4 was the rcsult of an overall process with retention of configuration where an O-atom is stereospecifically inserted in the trans pro-S position of the substrate. With copper(I) and (II) complexes of IndPY2 ligands we studied the reaction with dioxygen and observed an O-atom transfer to a benzylic C-H bond which was performed in the same manner as that of DBH. With the deuterium-labeled cis-2-d-IndPY2 ligand, we demonstrated that the reaction occurs by a stereospecific process with retention of configuration. In both cases (enzymatic vs. biomimetic) the O-atom transfers occur in a two-step process involving radical intermediates.
Laboratory Kinetic Studies of OH and CO2 Relevant to Upper Atmospheric Radiation Balance
NASA Technical Reports Server (NTRS)
Nelson, David D.; Villalta, Peter; Zahniser, Mark S.; Kolb, Charles E.
1997-01-01
The purpose of this project was to quantify the rates of two processes which are crucial to our understanding of radiative energy balance in the upper atmosphere. The first process is radiative emission from vibrationally hot OH radicals following the H + O3 reaction in the upper mesosphere. The importance of this process depends strongly on the OH radiative emission coefficients. Our goal was to measure the OH permanent dipole moment in excited vibrational states and to use these measurements to construct an improved OH dipole moment function and improved radiative emission coefficients. Significant progress was made on these experiments including the construction of a supersonic jet source for vibrationally excited OH radicals. Unfortunately, our efforts to transport the OH radicals into a second lower pressure vacuum chamber were not successful, and we were unable to make improved dipole moment measurements for OH. The second key kinetic process which we attempted to quantify during this project is the rate of relaxation of bend-excited CO2 by oxygen atoms. Since excitation of the bending vibrational mode of CO2 is the major cooling mechanism in the upper mesosphere/lower thermosphere, the cooling rate of this region depends crucially on the rate of energy transfer out of this state. It is believed that the most efficient transfer mechanism is via atomic oxygen but the rate for this process has not been directly measured in the laboratory at appropriate temperatures and even the room temperature rate remains controversial. We attempted to directly measure the relaxation rate Of CO2 (010) by oxygen atoms using the discharge flow technique. This experiment was set up at Aerodyne Research. Again, significant progress was achieved in this experiment. A hot CO2 source was set up, bend excited CO2 was detected and the rate of relaxation of bend excited CO2 by He atoms was measured. Unfortunately, the project ran out of time before the oxygen atom kinetic studies could be implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo
2009-09-01
Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less
Choo, Wee-Sim; Birch, Edward John
2009-02-01
Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.
NASA Astrophysics Data System (ADS)
Cook, Shannon L.; Jackson, Glen P.
2011-02-01
The fragmentation behavior of nitrated and S-nitrosylated peptides were studied using collision induced dissociation (CID) and metastable atom-activated dissociation mass spectrometry (MAD-MS). Various charge states, such as 1+, 2+, 3+, 2-, of modified and unmodified peptides were exposed to a beam of high kinetic energy helium (He) metastable atoms resulting in extensive backbone fragmentation with significant retention of the post-translation modifications (PTMs). Whereas the high electron affinity of the nitrotyrosine moiety quenches radical chemistry and fragmentation in electron capture dissociation (ECD) and electron transfer dissociation (ETD), MAD does produce numerous backbone cleavages in the vicinity of the modification. Fragment ions of nitrosylated cysteine modifications typically exhibit more abundant neutral losses than nitrated tyrosine modifications because of the extremely labile nature of the nitrosylated cysteine residues. However, compared with CID, MAD produced between 66% and 86% more fragment ions, which preserved the labile -NO modification. MAD was also able to differentiate I/L residues in the modified peptides. MAD is able to induce radical ion chemistry even in the presence of strong radical traps and therefore offers unique advantages to ECD, ETD, and CID for determination of PTMs such as nitrated and S-nitrosylated peptides.
Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing
2017-04-19
Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.
Electron, proton and hydrogen-atom transfers in photosynthetic water oxidation.
Tommos, Cecilia
2002-01-01
When photosynthetic organisms developed so that they could use water as an electron source to reduce carbon dioxide, the stage was set for efficient proliferation. Algae and plants spread globally and provided the foundation for our atmosphere and for O(2)-based chemistry in biological systems. Light-driven water oxidation is catalysed by photosystem II, the active site of which contains a redox-active tyrosine denoted Y(Z), a tetramanganese cluster, calcium and chloride. In 1995, Gerald Babcock and co-workers presented the hypothesis that photosynthetic water oxidation occurs as a metallo-radical catalysed process. In this model, the oxidized tyrosine radical is generated by coupled proton/electron transfer and re-reduced by abstracting hydrogen atoms from substrate water or hydroxide-ligated to the manganese cluster. The proposed function of Y(Z) requires proton transfer from the tyrosine site upon oxidation. The oxidation mechanism of Y(Z) in an inhibited and O(2)-evolving photosystem II is discussed. Domino-deprotonation from Y(Z) to the bulk solution is shown to be consistent with a variety of data obtained on metal-depleted samples. Experimental data that suggest that the oxidation of Y(Z) in O(2)-evolving samples is coupled to proton transfer in a hydrogen-bonding network are described. Finally, a dielectric-dependent model for the proton release that is associated with the catalytic cycle of photosystem II is discussed. PMID:12437877
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.
2018-05-01
In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.
Foster, Rami N; Keefe, Andrew J; Jiang, Shaoyi; Castner, David G
2013-11-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone.
Foster, Rami N.; Keefe, Andrew J.; Jiang, Shaoyi; Castner, David G.
2013-01-01
This study investigates the grafting of poly-sodium styrene sulfonate (pNaSS) from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate functionalized Si and Ti substrates by atom transfer radical polymerization (ATRP). The composition, molecular structure, thickness, and topography of the grafted pNaSS films were characterized with x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), variable angle spectroscopic ellipsometry (VASE), and atomic force microscopy (AFM), respectively. XPS and ToF-SIMS results were consistent with the successful grafting of a thick and uniform pNaSS film on both substrates. VASE and AFM scratch tests showed the films were between 25 and 49 nm thick on Si, and between 13 and 35 nm thick on Ti. AFM determined root-mean-square roughness values were ∼2 nm on both Si and Ti substrates. Therefore, ATRP grafting is capable of producing relatively smooth, thick, and chemically homogeneous pNaSS films on Si and Ti substrates. These films will be used in subsequent studies to test the hypothesis that pNaSS-grafted Ti implants preferentially adsorb certain plasma proteins in an orientation and conformation that modulates the foreign body response and promotes formation of new bone. PMID:24482558
NASA Astrophysics Data System (ADS)
Tittal, Ram Kumar
2018-03-01
CuCl/TMEDA-promoted halogen atom transfer radical cyclization (HATRC) of dichloroacetic acid 1-(3-methyl-but-2-enyl)-naphthalen-2-yl ester in refluxing DCE gave chlorine containing 7-member lactone 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one via 7-exo trig radical cyclization reaction. The structure of the Lactone was confirmed by X-ray diffraction data.
Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2015-03-01
A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate
NASA Astrophysics Data System (ADS)
Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu
2017-03-01
A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.
Antioxidative mechanisms in chlorogenic acid.
Tošović, Jelena; Marković, Svetlana; Dimitrić Marković, Jasmina M; Mojović, Miloš; Milenković, Dejan
2017-12-15
Although chlorogenic acid (5CQA) is an important ingredient of various foods and beverages, mechanisms of its antioxidative action have not been fully clarified. Besides electron spin resonance experiment, this study includes thermodynamic and mechanistic investigations of the hydrogen atom transfer (HAT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and single electron transfer - proton transfer (SET-PT) mechanisms of 5CQA in benzene, ethanol, and water solutions. The calculations were performed using the M06-2X/6-311++G(d,p) level of theory and CPCM solvation model. It was found that SET-PT is not a plausible antioxidative mechanism of 5CQA. RAF pathways are faster, but HAT yields thermodynamically more stable radical products, indicating that in acidic and neutral media 5CQA can take either HAT or RAF pathways. In basic environment (e.g. at physiological pH) SPLET is the likely antioxidative mechanism of 5CQA with extremely high rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tsarevsky, Nicolay V.; Woodruf, Shannon R.; Wisian-Neilson, Patty J.
2016-01-01
A two-session experiment is designed to introduce undergraduate students to concepts in catalysis, transition metal complexes, polymer synthesis, and postpolymerization modifications. In the first session, students synthesize poly(glycidyl methacrylate) via low-catalyst-concentration atom transfer radical polymerization (ATRP). The…
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Lucon, Janice; Qazi, Shefah; Uchida, Masaki; Bedwell, Gregory J.; Lafrance, Ben; Prevelige, Peter E.; Douglas, Trevor
2012-10-01
Virus-like particles (VLPs) have emerged as important and versatile architectures for chemical manipulation in the development of functional hybrid nanostructures. Here we demonstrate a successful site-selective initiation of atom-transfer radical polymerization reactions to form an addressable polymer constrained within the interior cavity of a VLP. Potentially, this protein-polymer hybrid of P22 and cross-linked poly(2-aminoethyl methacrylate) could be useful as a new high-density delivery vehicle for the encapsulation and delivery of small-molecule cargos. In particular, the encapsulated polymer can act as a scaffold for the attachment of small functional molecules, such as fluorescein dye or the magnetic resonance imaging (MRI) contrast agent Gd-diethylenetriaminepentacetate, through reactions with its pendant primary amine groups. Using this approach, a significant increase in the labelling density of the VLP, compared to that of previous modifications of VLPs, can be achieved. These results highlight the use of multimeric protein-polymer conjugates for their potential utility in the development of VLP-based MRI contrast agents with the possibility of loading other cargos.
Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2010-05-04
To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.
Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...
2015-10-30
In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less
Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao
2017-12-01
A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Zhicheng; Gu, Yu; Liu, Xiaodong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2017-05-01
It is well known that the recently developed photoinduced metal-free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal-free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α-bromophenyl-acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled "on-off" light switching cycle regulation, and chain extension experiment confirm the "living"/controlled features of this promising photoinduced metal-free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang
2016-05-05
Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). Copyright © 2016 Elsevier Ltd. All rights reserved.
Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-08-01
We reported a simple and efficient method to prepare the hydrophilic luminescent HAp polymer nanocomposites through the combination of ligand exchange and metal free light initiated surface-initiated atom transfer radical polymerization (SI-ATRP) using 10-phenylphenothiazine (PTH) as organic catalyst and 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as monomers. The biological imaging and drug delivery performance of HAp-poly(MPC-IA) nanorods were examined to evaluate their potential for biomedical applications. Results suggested that hydrophilic HAp-poly(MPC-IA) nanorods can be successfully prepared. More importantly, the HAp-poly(MPC-IA) exhibited excellent water dispersibility, desirable biocompatibility and good performance for biological imaging and controlled drug delivery applications. As compared with other controlled living polymerization reactions, the metal free light initiated SI-ATRP displayed many advantages such as easy for handle, mild reaction conditions, toxicity and fluorescence quenching from metal catalysts. Therefore, we believe that this strategy should be a useful and effective strategy for preparation of HAp nanomaterials for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiongyi; Groves, John T.
Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less
Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
Asatryan, Rubik; Bozzelli, Joseph W
2008-04-07
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.
Lin, Xiaojie; Ishihara, Kazuhiko
2014-01-01
Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Cumene oxidation by cis-[RuIV(bpy)2(py)(O)]2+, revisited.
Bryant, Jasmine R; Matsuo, Takashi; Mayer, James M
2004-02-23
cis-[RuIV(bpy)2(py)(O)]2+ oxidizes cumene (2-phenylpropane) in acetonitrile solution primarily to cumyl alcohol (2-phenyl-2-propanol), alpha-methylstyrene, and acetophenone. Contrary to a prior report, the rate of the reaction is not accelerated by added nucleophiles. There is thus no evidence for the hydride transfer mechanism originally proposed. Instead, the results are consistent with a mechanism of initial hydrogen atom transfer from cumene to the ruthenium oxo group. This is indicated by the correlation of rate with C-H bond strength and by the various products observed. The formation of acetophenone, with one carbon less than cumene, is suggested to occur via a multistep pathway involving decarbonylation of the acyl radical from 2-phenylpropanal. An alternative mechanism involving beta-scission of cumyloxyl radical is deemed unlikely because of the difficulty of generating alkoxyl radicals under anaerobic conditions and the lack of rearranged products in the oxidation of triphenylmethane by cis-[RuIV(bpy)2(py)(O)]2+.
Distinct hydroxy-radical-induced damage of 3'-uridine monophosphate in RNA: a theoretical study.
Zhang, Ru bo; Eriksson, Leif A
2009-01-01
RNA strand scission and base release in 3'-uridine monophosphate (UMP), induced by OH radical addition to uracil, is studied at the DFT B3LYP/6-31+G(d,p) level in the gas phase and in solution. In particular, the mechanism of hydrogen-atom transfer subsequent to radical formation, from C2' on the sugar to the C6 site on the base, is explored. The barriers of (C2'-)H2'(a) abstraction by the C6 radical site range from 11.2 to 20.0 kcal mol(-1) in the gas phase and 14.1 to 21.0 kcal mol(-1) in aqueous solution, indicating that the local surrounding governs the hydrogen-abstraction reaction in a stereoselective way. The calculated N1-C1' (N1-glycosidic bond) and beta-phosphate bond strengths show that homolytic and heterolytic bond-breaking processes are largely favored in each case, respectively. The barrier for beta-phosphate bond rupture is approximately 3.2-4.0 kcal mol(-1) and is preferred by 8-12 kcal mol(-1) over N1-glycosidic bond cleavage in both the gas phase and solution. The beta-phosphate bond-rupture reactions are exothermal in the gas phase and solution, whereas N1-C1' bond-rupture reactions require both solvation and thermal corrections at 298 K to be energetically favored. The presence of the ribose 2'-OH group and its formation of low-barrier hydrogen bonds with oxygen atoms of the 3'-phosphate linkage are highly important for hydrogen transfer and the subsequent bond-breakage reactions.
Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A
2015-07-01
The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.
Photochemically Induced Intramolecular Radical Cyclization Reactions with Imines.
Lefebvre, Corentin; Michelin, Clément; Martzel, Thomas; Djou'ou Mvondo, Vaneck; Bulach, Véronique; Abe, Manabu; Hoffmann, Norbert
2018-02-16
The photochemically induced intramolecular hydrogen abstraction or hydrogen atom transfer in cyclic imines 8a,b followed by a cyclization is investigated. Two types of products are observed, one resulting from the formation of a C-C bond, the other from the formation of a C-N bond. A computational study reveals that hydrogen is exclusively transferred to the imine nitrogen leading to a triplet diradical intermediate. After intersystem crossing, the resulting zwitterionic intermediate undergoes cyclization leading to the final product.
Jing, Linhong; Nash, John J.
2009-01-01
The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor. PMID:19061320
Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes
2017-08-30
Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.
Synthesis and Characterization of Polymer-Metal Nanostructured Membranes
ions creating unique polymer -metal nanostructured membranes. A comprehensive materials characterization study was performed to understand their...fluoropolymers were also investigated. First the polymer -metal nanostructure of Nafion with several counter-ions was studied upon supercritical fluid CO2...processing. Then, novel fluorinated block copolymers were synthesized using atom transfer radical polymerization (ATRP) and their resulting nanostructure was
Oil-soluble hairy nanoparticles as lubricant additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Bin
Oil-soluble polymer brush-grafted nanoparticles (hairy NPs) were synthesized by surface-initiated atom transfer radical polymerization of lauryl methacrylate from initiator-functionalized silica nanoparticles and used as an additive for polyalphaolefin (PAO) for friction and wear reduction. Addition of 1 wt% hairy nanoparticles into PAO led to significant friction and wear reduction compared with PAO base oil.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Reaction rates and kinetic isotope effects of H{sub 2} + OH → H{sub 2}O + H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Jan; Kästner, Johannes, E-mail: kaestner@theochem.uni-stuttgart.de
2016-05-07
We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ⋅ 10{sup −20} to 4 ⋅ 10{sup −17} cm{sup 3} s{sup −1}, demonstrating thatmore » even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.« less
Mardyukov, Artur; Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Sander, Wolfram
2010-08-02
The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH...pi interaction. This complex is photolabile, and visible-light irradiation (lambda>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with lambda>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.
Radical-Mediated Enzymatic Polymerizations
Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.
2016-01-01
Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652
Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru
2016-08-07
An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.
López-Martínez, Luis M.; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R.; González-Aguilar, Gustavo A.
2015-01-01
The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic. PMID:26559189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn; Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn
An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polarmore » 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.« less
López-Martínez, Luis M; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R; González-Aguilar, Gustavo A
2015-01-01
The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.
The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.
Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme
2015-09-02
Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation.
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation
Huang, Xiongyi; Groves, John T.
2016-12-01
Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less
Radiation-induced changes affecting polyester based polyurethane binder
NASA Astrophysics Data System (ADS)
Pierpoint, Sujita Basi
The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion of the primary alkyl radical to the allyl species, prompt trans-vinylene production in tetramethylene units, and hydrogen atom abstraction by alkyl radicals on neighboring chains. The production of unsaturation is substantiated by the EPR studies. Finally, a free radical mechanism is proposed for the production of cross-linking in polyester polyurethane.
Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija
2013-11-07
A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan
2008-12-01
A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).
Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson
2009-01-01
Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...
Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2009-06-01
To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Copyright 2009 Wiley Periodicals, Inc.
Yang, Yang; Chen, Fu; Chen, Qi; He, Jie; Bu, Tao; He, Xuemei
2017-11-15
To broaden the application fields for guar gum, this natural polymer is often grafted to/from the surface to modify its properties. Polystyrene-guar gum (PS-guar gum) is successfully synthesized using atom transfer radical addition based n-BuBr(C 4 H 9 Br), Cu(I)Cl and N,N,N',N″,N‴-penthamethyldiethylenetriamine (C 9 H 23 N 3 ,PMDETA) as initiator, electronating agent and ligand respectively in an inert atmosphere. The graft copolymer is characterized by FT-IR, 1 H NMR, XRD and scanning electron microscope (SEM). The results show that styrene is successfully introduced onto guar gum and particles of PS-guar gum adopt a disordered morphology with diameters of 100nm, and PS-guar gum are largely amorphous with poor crystallinity. Besides, add on shows an increasing trend on increasing the concentration of PS. Swelling behavior, hydrophobicity and thermal stability of PS-guar gum indicate that PS-guar gum has great thickening capacity and thermal stability. Nevertheless, modification of guar gum via ATRA truly is convenient to industrial production since facilitating the manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Ming; He, Juan; Shen, Yanzheng; He, Weiye; Li, Yuanyuan; Zhao, Dongxin; Zhang, Shusheng
2018-02-01
A polymer-based adsorption medium with molecular recognition ability for homologs of pyrethroids was prepared by atom transfer radical polymer iration using a fragment imprinting technique. Phenyl ether-biphenyl eutectic was utilized as a pseudo-template molecule, and the adsorption medium prepared was evaluated by solid-phase extraction and gas chromatography. Selectivity of the medium for pyrethroids was evaluated using it as solid phase extraction packing by Gas Chromatography. The results demonstrated that the absorption amount of bifenthrin, fenpropathrin, permethrin, cypermethrin, fenvalerate, Dursban and pentachloronitrobenzene for molecularly imprinted polymers were 2.32, 2.12, 2.18, 2.20, 2.30, 1.30 and 1.40mgg -1 , respectively, while the non-imprinted polymers were 1.20, 1.13, 1.25, 1.05, 1.20, 1.23 and 1.32mgg -1 , respectively. The rebinding test based on the molecularly imprinted solid phase extraction column technique showed the recoveries of honey sample spiked with seven insecticides within 88.5-106.2%, with relative standard deviations of 2.38-5.63%. Finally, the method was successfully applied to the analysis of pyrethroids in a honey sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Laboratory Studies Offer New Insights for Mesospheric Nightglow
NASA Astrophysics Data System (ADS)
Kalogerakis, K. S.; Matsiev, D.
2017-12-01
The hydroxyl radical has a key role in the chemistry and energetics of the Earth's middle atmosphere. A detailed knowledge of the rate constants and relevant pathways for OH(high v) vibrational relaxation by atomic and molecular oxygen and their temperature dependence is absolutely critical for understanding mesospheric OH and extracting reliable chemical heating rates from atmospheric observations. We have developed laser-based experimental approaches to study the complex collisional energy transfer processes involving the OH radical and other relevant atmospheric species. Work in our laboratory indicated that the total removal rate constant for OH(v = 9) + O at room temperature is more than one order of magnitude larger than that for removal by O2. Thus, O atoms are expected to significantly influence the intensity and vibrational distribution extracted from the Meinel OH(v) emissions. Our recent laboratory measurements corroborated the aforementioned result for OH(v = 9) + O and provided important new insights on the multi-quantum energy transfer pathways involved. We will discuss relevant atmospheric implications, including warranted revisions of mesospheric nightglow models. Research supported by SRI International Internal R&D and NSF Aeronomy Grant AGS-1441896. Previously funded by NASA Geospace Science Grant NNX12AD09G.
Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J
2017-08-14
Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.
Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui
2016-03-01
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Chris J.; Kim, Yong Seol; Kaiser, Ralf I.
2011-01-20
Mixtures of water (H{sub 2}O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm{sup -1} (5.92 and 8.17 {mu}m, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH{sup +}) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeledmore » water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.« less
Boudier, Ariane; Tournebize, Juliana; Bartosz, Grzegorz; El Hani, Safae; Bengueddour, Rachid; Sapin-Minet, Anne; Leroy, Pierre
2012-01-20
1,1-Diphenyl-2-picrylhydrazyl (DPPH·) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH· absorbance at 515nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH· quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH· resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH· and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH· and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile-10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH· onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH· was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH· using standards (0.02 and 14 μM, respectively). The method was applied to three commonly used AOs, i.e. Trolox(®), ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of higher selectivity than colorimetry, and (ii) its help to investigate the mechanisms occurring with the free radical. Copyright © 2011 Elsevier B.V. All rights reserved.
Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.
Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui
2015-02-21
Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ < 332 nm. The obtained results clearly show that H-atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for the candidate structures at the B3LYP/aug-cc-pVTZ level.
Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.
Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J
2017-07-06
The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.
Theoretical Investigation of Kinetic Processes in Small Radicals of Importance in Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Millard; Dagdigian, Paul J.
Our group studies inelastic and reactive collisions of small molecules, focusing on radicals important in combustion environments. The goal is the better understanding of kinetic processes that may be difficult to access experimentally. An essential component is the accurate determination and fitting of potential energy surfaces (PESs). After fitting the ab initio points to obtain global PESs, we treat the dynamics using time-independent (close-coupling) methods. Cross sections and rate constants for collisions of are determined with our Hibridon program suite . We have studied energy transfer (rotationally, vibrationally, and/or electronically inelastic) in small hydrocarbon radicals (CH 2 and CH 3)more » and the CN radical. We have made a comparison with experimental measurements of relevant rate constants for collisions of these radicals. Also, we have calculated accurate transport properties using state-of-the-art PESs and to investigate the sensitivity to these parameters in 1-dimensional flame simulations. Of particular interest are collision pairs involving the light H atom.« less
CHARGE-TRANSFER ASSOCIATION AND PARAMAGNETISM OF SOME ORGANIC SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, J W
When p-xylene was combined with chloranil in n-heptane, charge-transfer optical absorption was observed. The magnitude of this absorption was used to calculate an equilibrium constant for the formation of a donor-acceptor complex containing one p-xylene was combined with carbon tetrabromide and with carbon tetrachloride in n-heptane, no charge-transfer absorption was observed. Reactions of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) with chloranil (pQCl/ sub 4/) were observed in ethylene dichloride and acetonitrile. In both solvents adduct formation occurred initially, as observed by its charge-transfer absorption. In acetonitrile time-dependent electron spin resonance (ESR) absorption was observed, and it was identified with the positive and negative radicalmore » ions of TMPD and pQCl/sub 4/, respectively. In this case a completely ionized electron transfer had occurred. Chloranil and other quinones were found to react with N,N-dimethylaniline forming a crystal violet salt. The diamagnetic donor-acceptor complexes and also semiquinone radicals are intermediates which were observed. Some physical measurements of the kinetics of this reaction are described and correlated. When fluoranil was allowed to react with dimethylaniline, the hyperfine splitting by the fluorine atoms of the fluoranil radical was not resolved. Characteristics of the ESR absorption by this radical in dimethylaniline are discussed in terms of an electron transfer between the semiquinone and quinone, and between the semiquinone and hydroquinone ion. Paramagnetism was discovered in hydrocarbon-quinone solids. ESR absorption was assigned to imperfections in the solid which was normally diamagnetic. The preparation of these solids and some of their physical characteristics are described. (auth)« less
Hydrocarbon-Fueled Scramjet Research at Hypersonic Mach Numbers
2005-03-31
oxide O atomic oxygen 02 molecular oxygen OH hydroxyl radical ppm parts per million PD photodiode PLLF planar laser-induced fluorescence PMT...photomultiplier tube RAM random access memory RANS Reynolds-averaged Navier-Stokes RET rotational energy transfer TDLAS tunable diode laser absorption...here extend this knowledge base to flight at Mach 11.5. Griffiths (2004) used a tunable diode laser absorption spectroscopy ( TDLAS ) system to measure
Singh, Nakul; O'Malley, Patrick J; Popelier, Paul L A
2005-02-21
Density functional calculations using the B3LYP functional are used to provide insight into the hydrogen abstraction mechanism of phenolic antioxidants. The energy profiles for 13 ortho, meta, para and di-methyl substituted phenols with hydroperoxyl radical have been determined. An excellent correlation between the enthalpy (DeltaH) and activation energy (DeltaEa) was found, obeying the Evans-Polanyi rule. The effects of hydrogen bonding on DeltaEa are also discussed. Electron donating groups at the ortho and para positions are able to lower the activation energy for hydrogen abstraction. The highly electron withdrawing fluoro substituent increases the activation energies relative to phenol at the meta position but not at the para position. The electron density is studied using the atoms in molecules (AIM) approach. Atomic and bond properties are extracted to describe the hydrogen atom abstraction mechanism. It is found that on going from reactants to transition state, the hydrogen atom experiences a loss in volume, electronic population and dipole moment. These features suggest that the phenol hydroperoxyl reactions proceed according to a proton coupled electron transfer (PCET) as opposed to a hydrogen atom transfer (HAT) mechanism.
Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.
Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu
2009-03-26
The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.
Wu, Adam; Mader, Elizabeth A.; Datta, Ayan; Hrovat, David A.; Borden, Weston Thatcher; Mayer, James M.
2009-01-01
Bimolecular rate constants have been measured for reactions that involve hydrogen atom transfer (HAT) from hydroxylamines to nitroxyl radicals, using the stable radicals TEMPO• (2,2,6,6-tetramethylpiperidine-1-oxyl radical), 4-oxo-TEMPO• (2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl radical), di-tert-butylnitroxyl (tBu2NO•), and the hydroxylamines TEMPO-H, 4-oxo-TEMPO-H, 4-MeO-TEMPO-H (2,2,6,6-tetramethyl-N-hydroxy-4-methoxy-piperidine), and tBu2NOH. The reactions have been monitored by UV-vis stopped-flow methods, using the different optical spectra of nitroxyl radicals. The HAT reactions all have |ΔGo| ≤ 1.4 kcal mol−1 and therefore are close to self-exchange reactions. The reaction of 4-oxo-TEMPO• + TEMPO-H → 4-oxo-TEMPO-H + TEMPO• occurs with k2H,MeCN = 10 ± 1 M−1 s−1 in MeCN at 298 K (K2H,MeCN = 4.5 ± 1.8). Surprisingly, the rate constant for the analogous deuterium atom transfer reaction is much slower: k2D,MeCN = 0.44 ± 0.05 M−1 s−1 with k2H,MeCN/k2D,MeCN = 23 ± 3 at 298 K. The same large kinetic isotope effect (KIE) is found in CH2Cl2, 23 ± 4, suggesting that the large KIE is not caused by solvent dynamics or hydrogen bonding to solvent. The related reaction of 4-oxo-TEMPO• with 4-MeO-TEMPO-H(D) also has a large KIE, k3H/k3D = 21 ± 3 in MeCN. For these three reactions, the EaD – EaH values, between 0.3 ± 0.6 and 1.3 ± 0.6 kcal mol−1, and the log(AH/AD) values, between 0.5 ± 0.7 and 1.1 ± 0.6, indicate that hydrogen tunneling plays an important role. The related reaction of tBu2NO• + TEMPO-H(D) in MeCN has a large KIE, 16 ± 3 in MeCN, and very unusual isotopic activation parameters, EaD – EaH = −2.6 ± 0.4 and log(AH/AD) = 3.1 ± 0.6. Computational studies, using POLYRATE, also indicate substantial tunneling in the (CH3)2NO• + (CH3)2NOH model reaction for the experimental self-exchange processes. Additional calculations on TEMPO(•/H), tBu2NO(•/H), and Ph2NO(•/H) self-exchange reactions reveal why the phenyl groups make the last of these reactions several orders of magnitude faster than the first two. By inference, the calculations also suggest why tunneling appears to be more important in the self-exchange reactions of dialkylhydroxylamines than of arylhydroxylamines. PMID:19618933
Ćwieląg-Piasecka, Irmina; Witwicki, Maciej; Jerzykiewicz, Maria; Jezierska, Julia
2017-12-19
Radical oxidation of carbamate insecticides, namely carbaryl and carbofuran, was investigated with spectroscopic (electron paramagnetic resonance [EPR] and UV-vis) and theoretical (density functional theory [DFT] and ab initio orbital-optimized spin-component scaled MP2 [OO-SCS-MP2]) methods. The two carbamates were subjected to reaction with • OH, persistent DPPH • and galvinoxyl radical, as well as indigenous radicals of humic acids. The influence of fulvic acids on carbamate oxidation was also tested. The results obtained with EPR and UV-vis spectroscopy indicate that carbamates can undergo direct reactions with various radical species, oxidizing themselves into radicals in the process. Hence, they are prone to participate in the prolongation step of the radical chain reactions occurring in the soil environment. Theoretical calculations revealed that from the thermodynamic point of view hydrogen atom transfer is the preferred mechanism in the reactions of the two carbamates with the radicals. The activity of carbofuran was determined experimentally (using pseudo-first-order kinetics) and theoretically to be noticeably higher in comparison with carbaryl and comparable with gallic acid. The findings of this study suggest that the radicals present in soil can play an important role in natural remediation mechanisms of carbamates.
Benjdia, Alhosna; Decamps, Laure; Guillot, Alain; Kubiak, Xavier; Ruffié, Pauline; Sandström, Corine; Berteau, Olivier
2017-06-30
Radical S -adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to C α atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus , and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Petrucci, Rita; Zollo, Giuseppe; Curulli, Antonella; Marrosu, Giancarlo
2018-05-12
Antioxidant properties have been recently suggested for caffeine that seems showing protective effects against damages caused by oxidative stress. In particular, a HO scavenging activity has been ascribed to caffeine. Even if the oxidation of caffeine has been widely studied, the antioxidant mechanism is still far to be understood. The electrochemical behavior of caffeine, theobromine and theophylline was studied in aprotic medium by cyclic voltammetry and electrolysis in UV-vis cell; a computational analysis of the molecular structures based on the Density Functional Theory was performed; the reactivity of all substrates towards lead dioxide, superoxide and galvinoxyl radical was followed by UV-vis spectrophotometry. Results supported the mono-electronic oxidation of the C 4 C 5 bond for all substrates at high oxidation potentials, the electron-transfer process leading to a radical cation or a neutral radical according to the starting methylxanthine N 7 -substituted (caffeine and theobromine) or N 7 -unsubstituted (theophylline), respectively. A different following chemical fate might be predicted for the radical cation or the neutral radical. No interaction was evidenced towards the tested reactive oxygen species. No reactivity via H-atom transfer was evidenced for all studied compounds, suggesting that an antiradical activity should be excluded. Some reactivity only with strong oxidants could be predicted via electron-transfer. The acclaimed HO scavenging activity should be interpreted in these terms. The study suggested that CAF might be hardly considered an antioxidant. Beyond the experimental methods used, the discussion of the present results might provide food for thought to the wide audience working on antioxidants. Copyright © 2018. Published by Elsevier B.V.
Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M
2006-01-01
The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.
Kitayama, Yukiya; Takeuchi, Toshifumi
2014-10-28
CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chengcheng; Bao, Chunhui; Binder, Andrew
We employed poly(4-styrenesulfonic acid) brush-grafted silica particles, synthesized by surface-initiated atom transfer radical polymerization, as a reusable acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water. Furthermore, the particles exhibited a high activity with the HMF yield of up to 31%, in contrast to 26% from the corresponding free homopolymer catalyst.
Fang, Yi; Barber, Victoria P.; Klippenstein, Stephen J.; ...
2017-04-04
Unimolecular decay of the dimethyl substituted Criegee intermediate (CH 3) 2COO is observed at energies significantly below the transition state barrier associated with hydrogen atom transfer with time-resolved detection of the resultant OH radical products. (CH 3) 2COO is prepared at specific energies in the 3900-4600 cm -1 region through IR excitation of combination bands involving CH stretch and another lower frequency mode, and the OH products are detected by UV laser-induced fluorescence. OH appearance times on the order of microseconds are observed in this deep tunneling regime, which are about 100 times slower than that in the vicinity ofmore » the barrier. The experimental rates are in good accord with Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical dissociation rates for (CH 3) 2COO that include tunneling. Master equation modeling based on these microcanonical rates is used to predict the thermal decay rate of (CH 3) 2COO to OH products under atmospheric conditions of 276 s -1 at 298 K (high pressure limit). Furthermore, thermal unimolecular decay of (CH 3) 2COO to OH products is shown to have significant contributions from tunneling at energies much below the barrier to H-atom transfer.« less
NASA Astrophysics Data System (ADS)
Chen, Youning; Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi
2018-02-01
This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity.
Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-08-01
Monodispersed SiO 2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO 2 samples. The adsorption performance of the functionalized SiO 2 (donated as SiO 2 -PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO 2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO 2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO 2 -PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun
2018-07-01
Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi
2018-01-01
This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity. PMID:29515875
Chen, Ningning; He, Juan; Wu, Chaojun; Li, Yuanyuan; Suo, An; Wei, Hongliang; He, Lijun; Zhang, Shusheng
2017-03-01
Novel molecularly imprinted polymers of phthalate esters were prepared by atom transfer radical polymerization using methyl methacrylate as functional monomer, cyclohexanone as solvent, cuprous chloride as catalyst, 1-chlorine-1-ethyl benzene as initiator and 2,2-bipyridyl as cross-linker in the mixture of methanol and water (1:1, v/v). The effect of reaction conditions such as monomer ratio and template on the adsorption properties was investigated. The optimum condition was obtained by an orthogonal experiment. The obtained polymers were characterized using scanning electron microscopy. The binding property was studied with both static and dynamic methods. Results showed that the polymers exhibited excellent recognition capacity and outstanding selectivity for ten phthalate esters. Factors affecting the extraction efficiency of the molecularly imprinted solid-phase extraction were systematically investigated. An analytical method based on the molecularly imprinted coupled with gas chromatography and flame ionization detection was successfully developed for the simultaneous determination of ten phthalate esters from edible oil. The method detection limits were 0.10-0.25 μg/mL, and the recoveries of spiked samples were 82.5-101.4% with relative standard deviations of 1.24-5.37% (n = 6). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yi; Barber, Victoria P.; Klippenstein, Stephen J.
Unimolecular decay of the dimethyl substituted Criegee intermediate (CH 3) 2COO is observed at energies significantly below the transition state barrier associated with hydrogen atom transfer with time-resolved detection of the resultant OH radical products. (CH 3) 2COO is prepared at specific energies in the 3900-4600 cm -1 region through IR excitation of combination bands involving CH stretch and another lower frequency mode, and the OH products are detected by UV laser-induced fluorescence. OH appearance times on the order of microseconds are observed in this deep tunneling regime, which are about 100 times slower than that in the vicinity ofmore » the barrier. The experimental rates are in good accord with Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical dissociation rates for (CH 3) 2COO that include tunneling. Master equation modeling based on these microcanonical rates is used to predict the thermal decay rate of (CH 3) 2COO to OH products under atmospheric conditions of 276 s -1 at 298 K (high pressure limit). Furthermore, thermal unimolecular decay of (CH 3) 2COO to OH products is shown to have significant contributions from tunneling at energies much below the barrier to H-atom transfer.« less
A versatile platform for precise synthesis of asymmetric molecular brush in one shot.
Xu, Binbin; Feng, Chun; Huang, Xiaoyu
2017-08-24
Asymmetric molecular brushes emerge as a unique class of nanostructured polymers, while their versatile synthesis keeps a challenge for chemists. Here we show the synthesis of well-defined asymmetric molecular double-brushes comprising two different side chains linked to the same repeat unit along the backbone by one-pot concurrent atom transfer radical polymerization (ATRP) and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The double-brushes are based on a poly(Br-acrylate-alkyne) homopolymer possessing an alkynyl for CuAAC reaction and a 2-bromopropionate initiating group for ATRP in each repeat unit. The versatility of this one-shot approach is demonstrated by CuAAC reaction of alkynyl/poly(ethylene oxide)-N 3 and ATRP of various monomers. We also show the quantitative conversion of pentafluorophenyl ester groups to amide groups in side chains, allowing for the further fabrication of diverse building blocks. This work provides a versatile platform for facile synthesis of Janus-type double-brushes with structural and functional control, in a minimum number of reactions.Producing well-defined polymer compositions and structures facilitates their use in many different applications. Here the authors show the synthesis of well-defined asymmetric double-brushes by a one-pot concurrent atom transfer radical polymerization and Cu-catalyzed Click reaction.
Chen, Daqun; Hu, Weihua
2017-04-18
Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.
Chiavarino, Barbara; Cipollini, Romano; Crestoni, Maria Elisa; Fornarini, Simonetta; Lanucara, Francesco; Lapi, Andrea
2008-03-12
The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base, the ferryl group of (TPFPP)Fe(IV)=O, approaches thermoneutrality. The ET reaction displayed by 1 with gaseous N,N-dimethylaniline finds a counterpart in the ET reactivity of FeO+, reportedly a potent oxidant in the gas phase, and with the barrierless ET process for a model (P)*+ Fe(IV)=O species (where P is the porphine dianion) as found by theoretical calculations. Finally, the remarkable OAT reactivity of 1 with C6F5N(CH3)2 may hint to a mechanism along a route of diverse spin multiplicity.
The fate of H atom adducts to 3'-uridine monophosphate.
Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A
2010-07-29
The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.
Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
Staveness, Daryl; Bosque, Irene; Stephenson, Corey R J
2016-10-18
Harnessing visible light as the driving force for chemical transformations generally offers a more environmentally friendly alternative compared with classical synthetic methodology. The transition metal-based photocatalysts commonly employed in photoredox catalysis absorb efficiently in the visible spectrum, unlike most organic substrates, allowing for orthogonal excitation. The subsequent excited states are both more reducing and more oxidizing than the ground state catalyst and are competitive with some of the more powerful single-electron oxidants or reductants available to organic chemists yet are simply accessed via irradiation. The benefits of this strategy have proven particularly useful in radical chemistry, a field that traditionally employs rather toxic and hazardous reagents to generate the desired intermediates. In this Account, we discuss our efforts to leverage visible light photoredox catalysis in radical-based bond-forming and bond-cleaving events for which few, if any, environmentally benign alternatives exist. Mechanistic investigations have driven our contributions in this field, for both facilitating desired transformations and offering new, unexpected opportunities. In fact, our total synthesis of (+)-gliocladin C was only possible upon elucidating the propensity for various trialkylamine additives to elicit a dual behavior as both a reductive quencher and a H-atom donor. Importantly, while natural product synthesis was central to our initial motivations to explore these photochemical processes, we have since demonstrated applicability within other subfields of chemistry, and our evaluation of flow technologies demonstrates the potential to translate these results from the bench to pilot scale. Our forays into photoredox catalysis began with fundamental methodology, providing a tin-free reductive dehalogenation that exchanged the gamut of hazardous reagents previously employed for such a transformation for visible light-mediated, ambient temperature conditions. Evolving from this work, a new avenue toward atom transfer radical addition (ATRA) chemistry was developed, enabling dual functionalization of both double and triple bonds. Importantly, we have also expanded our portfolio to target clinically relevant scaffolds. Photoredox catalysis proved effective in generating high value fluorinated alkyl radicals through the use of abundantly available starting materials, providing access to libraries of trifluoromethylated (hetero)arenes as well as intriguing gem-difluoro benzyl motifs via a novel photochemical radical Smiles rearrangement. Finally, we discuss a photochemical strategy toward sustainable lignin processing through selective C-O bond cleavage methodology. The collection of these efforts is meant to highlight the potential for visible light-mediated radical chemistry to impact a variety of industrial sectors.
Yu, W H; Kang, E T; Neoh, K G
2005-01-04
Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Ponnusamy, S.; Sandhiya, L.; Senthilkumar, K.
2018-02-01
The reaction of terbacil with OH radical is studied by using electronic structure calculations. The reaction of terbacil with OH radical is found to proceed by H-atom abstraction, Cl-atom abstraction and OH addition reactions. The initially formed alkyl radical will undergo atmospheric transformation in the presence of molecular oxygen leading to the formation of peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals is studied. The rate constant is calculated for the H-atom abstraction reactions over the temperature range of 200-1000 K. The results obtained from electronic structure calculations and kinetic study show that the H-atom abstraction reaction is more favorable. The calculated lifetime of terbacil is 24 h in normal atmospheric OH concentration. The rate constant calculated for H-atom abstraction reactions is 6 × 10-12, 4.4 × 10-12 and 3.2 × 10-12 cm3molecule-1s-1, respectively which is in agreement with the previous literature value of 1.9 × 10-12 cm3molecule-1s-1.
Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng
2016-05-23
Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Arnold, James O. (Technical Monitor)
1994-01-01
A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Electrons initiate efficient formation of hydroperoxides from cysteine.
Gebicki, Janusz M
2016-09-01
Amino acid and protein hydroperoxides can constitute a significant hazard if formed in vivo. It has been suggested that cysteine can form hydroperoxides after intramolecular hydrogen transfer to the commonly produced cysteine sulfur-centered radical. The resultant cysteine-derived carbon-centered radicals can react with oxygen at almost diffusion-controlled rate, forming peroxyl radicals which can oxidize other molecules and be reduced to hydroperoxides in the process. No cysteine hydroperoxides have been found so far. In this study, dilute air-saturated cysteine solutions were exposed to radicals generated by ionizing radiation and the hydroperoxides measured by an iodide assay. Of the three primary radicals present, the hydroxyl, hydrogen atoms and hydrated electrons, the first two were ineffective. However, electrons did initiate the generation of hydroperoxides by removing the -SH group and forming cysteine-derived carbon radicals. Under optimal conditions, 100% of the electrons reacting with cysteine produced the hydroperoxides with a 1:1 stoichiometry. Maximum hydroperoxide yields were at pH 5.5, with fairly rapid decline under more acid or alkaline conditions. The hydroperoxides were stable between pH 3 and 7.5, and decomposed in alkaline solutions. The results suggest that formation of cysteine hydroperoxides initiated by electrons is an unlikely event under physiological conditions.
Attygalle, Athula B; Bialecki, Jason B; Nishshanka, Upul; Weisbecker, Carl S; Ruzicka, Josef
2008-09-01
Collision-induced dissociation of anions derived from ortho-alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO(2) undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-1 position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-1 position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at m/z 77 for the phenyl anion and m/z 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at m/z 137 for an alkene loss. The spectra of meta and para compounds show a peak at m/z 92 for the distonic anion produced by the homolysis of the O-C bond. Moreover, a small peak at m/z 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers.
Rajan, Vijisha K; Hasna, C K; Muraleedharan, K
2018-10-01
A theoretical evaluation of the antioxidant property of a natural food colorant Peonidin has been performed. The most suitable mechanism for explaining the radical scavenging capacity of Peonidin is the Hydrogen Atom Transfer and the most active site for radical formation is position 3 and is confirmed through Mulliken charge analysis, pKa value evaluation, Bond Dissociation Energy values, and Natural Bond Orbital analysis. Position 3 and 5 in Peonidin exists in blood as deprotonated as their pKa values are lower than the pH of blood. Peonidin is highly reactive than Quercetin and less stable than flavan-3-ols due to the small band gap. Global descriptor analysis shows that PN prefers to accept electrons than to donate. The effect of number of OH groups and the nature of substituents are well explained through this work. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; ...
2016-03-11
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-bindingmore » ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redline, Erica Marie; Bolintineanu, Dan S.; Lane, J. Matthew
The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. Themore » methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.« less
Sun, Yang; Xu, Fei; Gong, Bolin
2011-09-01
A novel stationary phase was synthesized for chiral ligand-exchange chromatography via atom transfer radical polymerization (ATRP). Glycidyl methacrylate (GMA) was grafted onto the surface of the silica by ATRP using bromoisobutyryl bromide as an initiator, and the organic metal compound formed in the CuCl/2,2'-bipyridine(Bpy) system as a catalyst at room temperature. The chiral stationary phase was then synthesized by grafting L-phenylalanine on the surface of the silica. The stationary phase was characterized by means of elementary analysis and evaluated in detail to determine its separability. The amount of L-phenylalanine on the surface of silica was calculated to be 4.32 mg/m2. The results showed that the good enantioseparations of some DL-amino acids were obtained using ligand-exchange chromatography on the synthesized chiral stationary phase (50 degrees C) with 0.05 mol/L KH2PO4 and 0.1 mmol/L Cu(Ac)2 solution (pH 4.5) as the mobile phase at a flow rate of 1.0 mL/min and a wavelength of 223 nm. The influences of the mobile phase pH, concentration of Cu (II), and temperature of column on the resolution of DL-amino acids by ligand-exchange chromatography were investigated. The results showed that these conditions could affect the resolution of racemates. Compared with the column prepared by radical method using L-phenylalanine directly bonded onto the surface of the silica, the synthesized stationary phase showed a better separation ability, and the DL-aspartic acids and DL-asparagines could be separated at baseline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Hu; D Samanta; S Parelkar
Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylenemore » oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.« less
Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea
2011-10-19
The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.
Decarboxylative Hydroalkylation of Alkynes.
Till, Nicholas A; Smith, Russell T; MacMillan, David W C
2018-05-02
The merger of open- and closed-shell elementary organometallic steps has enabled the selective intermolecular addition of nucleophilic radicals to unactivated alkynes. A range of carboxylic acids can be subjected to a CO 2 extrusion, nickel capture, migratory insertion sequence with terminal and internal alkynes to generate stereodefined functionalized olefins. This platform has been further extended, via hydrogen atom transfer, to the direct vinylation of unactivated C-H bonds. Preliminary studies indicate that a Ni-alkyl migratory insertion is operative.
Dai, Xiaojun; He, Yuan; Wei, Yinmao; Gong, Bolin
2011-11-01
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Chatterjee, Sabornie; Li, Meijun
Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers wasmore » prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.« less
Brown, Suree; Chatterjee, Sabornie; Li, Meijun; ...
2015-12-10
Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers wasmore » prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.« less
NASA Astrophysics Data System (ADS)
Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas
2018-04-01
A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.
You, Xiaoxiao; Gao, Lei; Qin, Dongli; Chen, Ligang
2017-01-01
A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2-97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra- and inter-day precisions were in the range of 1.7-2.9% and 3.4-5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kitano, Hiromi; Kondo, Takuya; Suzuki, Hisatomo; Ohno, Kohji
2010-05-15
A polymer brush of 2-(2-methoxyethoxy)ethyl methacrylate (MDM) was prepared by atom transfer radical polymerization (ATRP) using a 11-(2-bromoisobutyroyloxy)undecyl moiety-carrying initiator covalently fixed to a glass substrate. An aqueous solution of the MDM polymer (E-PMDM), which had been prepared for comparison, turned to be opaque above certain temperature (26.2 °C for E-PMDM (M(n,GPC)=1.84×10(4))), which was corresponding to the lower critical solution temperature (LCST) of the polymer. The PMDM polymer brush accumulated on the glass surface also indicated temperature-responsive changes in contact angle of air bubble in the air-in-water system. Furthermore, non-specific adsorption of various proteins (bovine serum albumin (BSA), human immunoglobulin G (IgG) and bovine plasma fibrinogen (BPF)) to the surface of polymer brush on the glass plate was examined by the bicinchoninic acid method. The PMDM brush did not adsorb IgG and BPF significantly below the LCST of the polymer chain, whereas adsorbed a larger amount of the proteins above the LCST. A similar but less significant temperature-responsive adsorption was observed in the case of BSA. These results suggest usability of the temperature-responsive polymer-brushes with pendent ω-methoxy oligo(ethylene glycol) groups to coat various materials for bio-medical applications. Copyright © 2010. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samskog, P.; Kispert, L.D.; Lund, A.
Three different radicals were identified by EPR in x-ray irradiated single crystals of trehalose at 3 K. The species are the trapped electron, a hydroxy alkyl radical, and an alkoxy radical. The electron is trapped in an intermolecular site formed by two hydroxyl groups, one on the carbohydrate and the other on a water molecule as evidenced by the anisotropic proton hyperfine couplings. A geometric model for the trapping site is presented. The trapped electron decays by cleavage of an OH bond and the liberated hydrogen atom abstracts another hydrogen atom from an adjacent carbon atom forming a hydroxy alkylmore » radical. The site of the alkoxy radical has been identified. The primary reaction mechanism is discussed.« less
Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer
2016-01-01
Conspectus Harnessing visible light as the driving force for chemical transformations generally offers a more environmentally friendly alternative compared with classical synthetic methodology. The transition metal-based photocatalysts commonly employed in photoredox catalysis absorb efficiently in the visible spectrum, unlike most organic substrates, allowing for orthogonal excitation. The subsequent excited states are both more reducing and more oxidizing than the ground state catalyst and are competitive with some of the more powerful single-electron oxidants or reductants available to organic chemists yet are simply accessed via irradiation. The benefits of this strategy have proven particularly useful in radical chemistry, a field that traditionally employs rather toxic and hazardous reagents to generate the desired intermediates. In this Account, we discuss our efforts to leverage visible light photoredox catalysis in radical-based bond-forming and bond-cleaving events for which few, if any, environmentally benign alternatives exist. Mechanistic investigations have driven our contributions in this field, for both facilitating desired transformations and offering new, unexpected opportunities. In fact, our total synthesis of (+)-gliocladin C was only possible upon elucidating the propensity for various trialkylamine additives to elicit a dual behavior as both a reductive quencher and a H-atom donor. Importantly, while natural product synthesis was central to our initial motivations to explore these photochemical processes, we have since demonstrated applicability within other subfields of chemistry, and our evaluation of flow technologies demonstrates the potential to translate these results from the bench to pilot scale. Our forays into photoredox catalysis began with fundamental methodology, providing a tin-free reductive dehalogenation that exchanged the gamut of hazardous reagents previously employed for such a transformation for visible light-mediated, ambient temperature conditions. Evolving from this work, a new avenue toward atom transfer radical addition (ATRA) chemistry was developed, enabling dual functionalization of both double and triple bonds. Importantly, we have also expanded our portfolio to target clinically relevant scaffolds. Photoredox catalysis proved effective in generating high value fluorinated alkyl radicals through the use of abundantly available starting materials, providing access to libraries of trifluoromethylated (hetero)arenes as well as intriguing gem-difluoro benzyl motifs via a novel photochemical radical Smiles rearrangement. Finally, we discuss a photochemical strategy toward sustainable lignin processing through selective C–O bond cleavage methodology. The collection of these efforts is meant to highlight the potential for visible light-mediated radical chemistry to impact a variety of industrial sectors. PMID:27529484
2013-01-01
Background Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. Results SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. Conclusions In conclusion, the structures of good anti radical and antioxidant phenols and anilines are defined. The obtained good correlations imply that measuring anti DPPH activity can be used as a simple predictive test for the anti hydroxyl and peroxyl radical, and antioxidant activities. Kinetic measurements showed that strong antioxidants with high activity have also high reaction rates indicating that factors stabilizing the phenoxyl radicals lower also the activation energy of the hydrogen transfer process. PMID:23497653
Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.
Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M
2008-03-06
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).
Lai, Cheuk-Kuen; Mu, Xiaoyan; Hao, Qiang; Hopkinson, Alan C; Chu, Ivan K
2014-11-28
The fragmentation products of the ε-carbon-centered radical cations [Y(ε)˙LG](+) and [Y(ε)˙GL](+), made by 266 nm laser photolysis of protonated 3-iodotyrosine-containing peptides, are substantially different from those of their π-centered isomers [Y(π)˙LG](+) and [Y(π)˙GL](+), made by dissociative electron transfer from ternary metal-ligand-peptide complexes. For leucine-containing peptides the major pathway for the ε-carbon-centered radical cations is loss of the side chain of the leucine residue forming [YG(α)˙G](+) and [YGG(α)˙](+), whereas for the π-radicals it is the side chain of the tyrosine residue that is lost, giving [G(α)˙LG](+) and [G(α)˙GL](+). The fragmentations of the product ions [YG(α)˙G](+) and [YGG(α)˙](+) are compared with those of the isomeric [Y(ε)˙GG](+) and [Y(π)˙GG](+) ions. The collision-induced spectra of ions [Y(ε)˙GG](+) and [YGG(α)˙](+) are identical, showing that interconversion occurs prior to dissociation. For ions [Y(ε)˙GG](+), [Y(π)˙GG](+) and [YG(α)˙G](+) the dissociation products are all distinctly different, indicating that dissociation occurs more readily than isomerization. Density functional theory calculations at B3LYP/6-31++G(d,p) gave the relative enthalpies (in kcal mol(-1) at 0 K) of the five isomers to be [Y(ε)˙GG](+) 0, [Y(π)˙GG](+) -23.7, [YGG(α)˙](+) -28.7, [YG(α)˙G](+) -31.0 and [Y(α)˙GG](+) -38.5. Migration of an α-C-H atom from the terminal glycine residue to the ε-carbon-centered radical in the tyrosine residue, a 1-11 hydrogen atom shift, has a low barrier, 15.5 kcal mol(-1) above [Y(ε)˙GG](+). By comparison, isomerization of [Y(ε)˙GG](+) to [YG(α)˙G](+) by a 1-8 hydrogen atom migration from the α-C-H atom of the central glycine residue has a much higher barrier (50.6 kcal mol(-1)); similarly conversion of [Y(ε)˙GG](+) into [Y(π)˙GG](+) has a higher energy (24.4 kcal mol(-1)).
Reaction kinetics of hydrogen atom abstraction from isopentanol by the H atom and HO2˙ radical.
Parab, Prajakta Rajaram; Heufer, K Alexander; Fernandes, Ravi Xavier
2018-04-25
Isopentanol is a potential next-generation biofuel for future applications to Homogeneous Charge Compression Ignition (HCCI) engine concepts. To provide insights into the combustion behavior of isopentanol, especially to its auto-ignition behavior which is linked both to efficiency and pollutant formation in real combustion systems, detailed quantum chemical studies for crucial reactions are desired. H-Abstraction reaction rates from fuel molecules are key initiation steps for chain branching required for auto-ignition. In this study, rate constants are determined for the hydrogen atom abstraction reactions from isopentanol by the H atom and HO2˙ radical by implementing the CBS-QB3 composite method. For the treatment of the internal rotors, a Pitzer-Gwinn-like approximation is applied. On comparing the computed reaction energies, the highest exothermicity (ΔE = -46 kJ mol-1) is depicted for Hα abstraction by the H atom whereas the lowest endothermicity (ΔE = 29 kJ mol-1) is shown for the abstraction of Hα by the HO2˙ radical. The formation of hydrogen bonding is found to affect the kinetics of the H atom abstraction reactions by the HO2˙ radical. Further above 750 K, the calculated high pressure limit rate constants indicate that the total contribution from delta carbon sites (Cδ) is predominant for hydrogen atom abstraction by the H atom and HO2˙ radical.
QTAIM electron density study of natural chalcones
NASA Astrophysics Data System (ADS)
González Moa, María J.; Mandado, Marcos; Cordeiro, M. Natália D. S.; Mosquera, Ricardo A.
2007-09-01
QTAIM atomic and bond properties, ionization potential, and O-H bond dissociation energies calculated at the B3LYP/6-311++G(2d,2p) level indicate the natural chalcones bear a significant radical scavenging activity. However, their ionization potentials indicate they decrease the electron-transfer rate between antioxidant and oxygen that yields the pro-oxidative cations less than other natural antioxidants. Rings A and B display slight and similar positive charges, whereas ring B is involved in exocycle delocalization at a larger extension.
Zhou, Chong-Wen; Simmie, John M.; Pitz, William J.; ...
2016-08-25
Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. We present calculated thermodynamic and kinetic data for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. Furthermore, these radicals can be formed via H atom abstraction reactions by H and Ö atoms and OH, HO 2, and CH 3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when OH is involved, but the reverse holds truemore » for HO 2 radicals. We also determined the subsequent β-scission of the radicals formed, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.« less
Szabó, László; Mile, Viktória; Tóth, Tünde; Balogh, György T; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László
2017-02-01
A full account of the • OH-induced free radical chemistry of an arylalkylamine is given taking all the possible reaction pathways quantitatively into consideration. Such knowledge is indispensable when the alkylamine side chain plays a crucial role in biological activity. The fundamental reactions are investigated on the model compound N-methyl-3-phenypropylamine (MPPA), and extended to its biologically active analog, to the antidepressant fluoxetine (FLX). Pulse radiolysis techniques were applied including redox titration and transient spectral analysis supplemented with DFT calculations. The contribution of the amine moiety to the free radical-induced oxidation mechanism appeared to be appreciable. • O - was used to observe hydrogen atom abstraction events at pH 14 giving rise to the strongly reducing α-aminoalkyl radicals (∼38% of the radical yield) and to benzyl (∼4%), β-aminoalkyl (∼24%), and aminyl radicals (∼31%) of MPPA. One-electron transfer was also observed yielding aminium radicals with low efficiency (∼3%). In the • OH-induced oxidation protonated α-aminoalkyl (∼49%), β-aminoalkyl (∼27%), benzyl radicals (∼4%), and aminium radicals (∼5%) are initially generated on the side chain of MPPA at pH 6, whereas hydroxycyclohexadienyl radicals (∼15%) were also produced. These initial events are followed by complex protonation-deprotonation reactions establishing acid-base equilibria; however, these processes are limited by the transient nature of the radicals and the kinetics of the ongoing reactions. The contribution of the radicals from the side chain alkylamine substituent of FLX totals up to ∼54% of the initially available oxidant yield.
Choi, Sungkyu; Kim, Ye Ji; Kim, Sun Min; Yang, Jung Woon; Kim, Sung Wng; Cho, Eun Jin
2014-09-12
The trifluoromethyl (CF3) group is a staple synthon that can alter the physical and chemical properties of organic molecules. Despite recent advances in trifluoromethylation methods, the development of a general synthetic methodology for efficient and selective trifluoromethylation remains an ongoing challenge motivated by a steadily increasing demand from the pharmaceutical, agrochemical and materials science industries. In this article, we describe a simple, efficient and environmentally benign strategy for the hydrotrifluoromethylation of unactivated alkenes and alkynes through a radical-mediated reaction using an inorganic electride, [Ca2N](+) · e(-), as the electron source. In the transformation, anionic electrons are transferred from [Ca2N](+) · e(-) electrides to the trifluoromethylating reagent CF3I to initiate radical-mediated trifluoromethylation. The role of ethanol is pivotal in the transformation, acting as the solvent, an electron-releasing promoter and a hydrogen atom source. In addition, iodotrifluoromethylation of alkynes proceeds selectively upon the control of electride amount.
Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam
2015-01-01
Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663
Mechanistical Studies on the Irradiation of Methanol in Extraterrestrial Ices
NASA Astrophysics Data System (ADS)
Bennett, Chris J.; Chen, Shih-Hua; Sun, Bing-Jian; Chang, Agnes H. H.; Kaiser, Ralf I.
2007-05-01
Pure ices of amorphous methanol, CH3OH(X1A'), were irradiated at 11 K by 5 keV electrons at 100 nA for 1 hr. These energetic electrons simulate electronic energy transfer processes that occur as interstellar ices, comets, and icy solar system bodies are subjected to irradiation from MeV ions and secondary electrons produced in this process. The results were analyzed quantitatively via absorption-reflection-absorption Fourier transform infrared (FTIR) spectroscopy, with the identification of new species aided by high-level electronic structure calculations. The unimolecular decomposition of methanol was found to proceed via the formation of (1) the hydroxymethyl radical, CH2OH(X2A''), and atomic hydrogen, H(2S1/2), (2) the methoxy radical, CH3O(X2A'), plus atomic hydrogen, (3) formaldehyde, H2CO(X1A1) plus molecular hydrogen, H2(X1Σ+g), and (4) the formation of methane, CH4(X1A1), together with atomic oxygen, O(1D). The accessibility of the last channel indicates that the reverse process, oxygen addition into methane to form methanol, should also be feasible. A kinetic model is presented for the decomposition of methanol into these species, as well as the formyl radical, HCO(X2A'), and carbon monoxide, CO(X1Σ+). During the subsequent warming up of the sample, radicals previously generated within the matrix were mobilized and found to recombine to form methyl formate, CH3OCHO(X1A'), glycolaldehyde, CH2OHCHO(X1A'), and ethylene glycol, HOCH 2CH2OH(X1A). Upper limits for the production of these species by the recombination of neighboring radicals produced during irradiation as well as during the warm-up procedure are presented. The generation of these molecules by irradiation of ices in the solid state and their subsequent sublimation into the gas phase can help explain their high abundances as observed toward hot molecular cores and underlines their importance in astrobiology.
Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules
Ciesielski, Peter N.; Robichaud, David J.; Kim, Seonah; ...
2017-07-05
Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less
Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciesielski, Peter N.; Robichaud, David J.; Kim, Seonah
Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less
Conformational and NBO studies of serotonin as a radical scavenger. Changes induced by the OH group.
Lobayan, Rosana M; Schmit, María Celia Pérez
2018-03-01
Serotonin (5-hydroxytryptamine, SER) is a neurotransmitter that affects many different processes within the human body. We studied the conformational space of SER, and explored in depth the significant stereoelectronic features for the structure stabilization and antioxidant activity. Forty-eight equilibrium structures were described at the B3LYP/6-311++G(d,p) level, characterizing four non-previously reported conformers. Electron distributions were analyzed by topological QTAIM (Quantum Theory of atoms in molecules) and natural bond orbital (NBO) studies. The study was supplemented by an exploration of molecular electrostatic potential (MEP). Intramolecular hydrogen interactions were also investigated; N10⋯HC4 or N10⋯HC2 hydrogen bondings were depicted in 5 conformers. The conformer stabilization and the corresponding energy arrangement were explained by hyperconjugation interactions obtained by NBO analysis. The present study is based on the effect of the 5-OH group on geometric and electronic behavior that we have previously reported on the similar structure tryptamine (TRA). Our interest also lies in SER's free radical scavenging capacity as a member of the indole family. The H-atom abstraction and single-electron transfer mechanisms were taken into account. Our results showed that donor-acceptor interactions play a major role in explaining the changes induced by the OH group, and free-radical scavenging capability of the indole compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Nourry, Sendres; Krim, Lahouari
2016-07-21
Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.
Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G
2018-05-21
The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .
Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.
Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain
2016-05-01
Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.
Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE
NASA Astrophysics Data System (ADS)
Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain
2016-05-01
Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir; Roghani-Mamaqani, Hossein
Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presencemore » of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric analysis shows that thermal stability of the nanocomposites increases by adding nanoparticles content. Decrease of glass transition temperature is also demonstrated by the addition of 3 wt% of silica nanoparticles according to the differential scanning calorimetry results.« less
Cushen, Julia D; Otsuka, Issei; Bates, Christopher M; Halila, Sami; Fort, Sébastien; Rochas, Cyrille; Easley, Jeffrey A; Rausch, Erica L; Thio, Anthony; Borsali, Redouane; Willson, C Grant; Ellison, Christopher J
2012-04-24
Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3-100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory-Huggins interaction parameters (χ), which enable formation of <10 nm features, etch selectivity between blocks for facile pattern transfer, and thin film self-assembly control. The present paper describes the synthesis and self-assembly of block copolymers composed of naturally derived oligosaccharides coupled to a silicon-containing polystyrene derivative synthesized by activators regenerated by electron transfer atom transfer radical polymerization. The block copolymers have a large χ and a low degree of polymerization (N) enabling formation of 5 nm feature diameters, incorporate silicon in one block for oxygen reactive ion etch contrast, and exhibit bulk and thin film self-assembly of hexagonally packed cylinders facilitated by a combination of spin coating and solvent annealing techniques. As observed by small angle X-ray scattering and atomic force microscopy, these materials exhibit some of the smallest block copolymer features in the bulk and in thin films reported to date.
Kim, Ye Ji; Kim, Sun Min; Yu, Chunghyeon; Yoo, YoungMin; Cho, Eun Jin; Yang, Jung Woon; Kim, Sung Wng
2017-01-31
Halogenated organic compounds are important anthropogenic chemicals widely used in chemical industry, biology, and pharmacology; however, the persistence and inertness of organic halides cause human health problems and considerable environmental pollution. Thus, the elimination or replacement of halogen atoms with organic halides has been considered a central task in synthetic chemistry. In dehalogenation reactions, the consecutive single-electron transfer from reducing agents generates the radical and corresponding carbanion and thus removes the halogen atom as the leaving group. Herein, we report a new strategy for an efficient chemoselective hydrodehalogenation through the formation of stable carbanion intermediates, which are simply achieved by using highly mobile two-dimensional electrons of inorganic electride [Ca 2 N] + ·e - with effective electron transfer ability. The consecutive single-electron transfer from inorganic electride [Ca 2 N] + ·e - stabilized free carbanions, which is a key step in achieving the selective reaction. Furthermore, a determinant more important than leaving group ability is the stability control of free carbanions according to the s character determined by the backbone structure. We anticipate that this approach may provide new insight into selective chemical formation, including hydrodehalogenation.
Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen
2009-02-11
The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.
Alcohols as alkylating agents in heteroarene C-H functionalization
NASA Astrophysics Data System (ADS)
Jin, Jian; MacMillan, David W. C.
2015-09-01
Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.
Alcohols as alkylating agents in heteroarene C-H functionalization.
Jin, Jian; MacMillan, David W C
2015-09-03
Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.
Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; ...
2015-07-16
The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less
Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R
2015-08-28
The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.
The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less
Lligadas, Gerard; Grama, Silvia; Percec, Virgil
2017-04-10
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X 2 . Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose
NASA Astrophysics Data System (ADS)
Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru
2014-10-01
We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.
Pentan isomers compound flame front structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.
1995-08-13
The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to themore » side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.« less
Iodine(III) Reagents in Radical Chemistry
2017-01-01
Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313
NASA Astrophysics Data System (ADS)
Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero
2012-07-01
Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH• radical and H3O+ surface defects. The coupling of incoming CO molecules with the surface OH• radicals on the ice clusters yields the formation of the COOH• radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol-1 and -22 kcal mol-1, respectively. The COOH• radicals couple with incoming NH=CH2 molecules (experimentally detected in the ISM) to form the NHCH2COOH• radical glycine through energy barriers of 12 kcal mol-1, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H3O+ is present, one proton may be barrierless transferred to NH=CH2 to give NH2=CH2 +. This latter may react with the COOH• radical to give the NH2CH2COOH+• glycine radical cation which can then be transformed into the NH2CHC(OH)2 +• species (the most stable form of glycine in its radical cation state) or into the NH2CHCOOH• neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh-physical conditions of the ISM may trigger reactions of cosmochemical interest. The relevance of surface H3O+ ions to facilitate chemical processes by proton transfer (i.e., acting as acidic catalysts) is highlighted, and plausible ways of their formation at the water-ice surface in the ISM are also discussed.
Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.
Sandala, Gregory M; Smith, David M; Radom, Leo
2010-05-18
Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained catalysis depends on a delicate energy balance. Radical-based enzyme reactions are often difficult to probe experimentally, so theoretical investigations have a particularly valuable role to play in their study. Our research demonstrates that a small-model approach can provide important and revealing insights into the mechanism of action of AdoCbl-dependent enzymes.
Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert
2014-01-01
The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН•) scavenging and chelating capacity, superoxide radical (•O2−) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). PMID:26784665
Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert
2014-02-24
The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН(•)) scavenging and chelating capacity, superoxide radical ((•)O₂(-)) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).
Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol
NASA Astrophysics Data System (ADS)
Athokpam, Bijyalaxmi; Ramesh, Sai G.
2018-04-01
We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.
Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard
2015-11-17
The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Hongkun; Zhong, Mingjiang; Adzima, Brian
2013-03-20
Poly(ionic liquid)s (PILs) are an important class of technologically relevant materials. However, characterization of well-defined polyionic materials remains a challenge. Herein, we have developed a simple and versatile gel permeation chromatography (GPC) methodology for molecular weight (MW) characterization of PILs with a variety of anions. PILs with narrow MW distributions were synthesized via atom transfer radical polymerization, and the MWs obtained from GPC were further confirmed via nuclear magnetic resonance end group analysis.
Survey Study of Trunk Materials for Direct ATRP Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Tomonori; Chatterjee, Sabornie; Johnson, Joseph C.
2015-02-01
In previous study, we demonstrated a new method to prepare polymeric fiber adsorbents via a chemical-grafting method, namely atom-transfer radical polymerization (ATRP), and identified parameters affecting their uranium adsorption capacity. However, ATRP chemical grafting in the previous study still utilized conventional radiation-induced graft polymerization (RIGP) to introduce initiation sites on fibers. Therefore, the objective of the present study is to perform survey study of trunk fiber materials for direct ATRP chemical grafting method without RIGP for the preparation of fiber adsorbents for uranium recovery from seawater.
Limpoco, F Ted; Bailey, Ryan C
2011-09-28
We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.
Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P
2015-05-27
The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.
Smith, Caleb A; Gillespie, Blanton R; Heard, George L; Setser, D W; Holmes, Bert E
2017-11-22
The recombination of CF 3 and CHF 2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF 3 CHF 2 * molecules with 101 kcal mol -1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF 3 , CF 3 (F)C: and C 2 F 4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF 3 (F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 10 4 , 4.7 × 10 4 , and 1.1 × 10 4 s -1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E 0 ) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol -1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF 3 (F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol -1 . Hydrogen-bonded complexes between HF and the H atom migration transition state of CH 3 (F)C: and the F atom migration transition state of CF 3 (F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.
Development of materials from copolyacrylates via atom transfer radical polymerization
NASA Astrophysics Data System (ADS)
Jones, Melody Mersadez
Homopolymerization of 2-(trimethylsilyl)ethyl acrylate, 3,3-dimethylbutyl acrylate, methyl acrylate, and methyl methacrylate using atom transfer radical polymerization (ATRP) is reported. In addition, polymethyl acrylate and polymethyl methacrylate were used as macroinitiators for diblock copolymerizations (via ATRP) with various monomers to yield pMA-b-TMSEA, pMMA-b-TMSEA, and pMMA-b-GMA copolymers; these results are also reported. Controlled polymerizations were performed using the CuBr/hexamethyltriethylenetetramine catalyst system in combination with methyl bromopropionate as the initiator. The protected acid block copolymers pMA-b-TMSEA and pMMA-b-TMSEA were deprotected to afford acrylic and meth acrylic acid block copolymers pMA-b-AA and pMMA-b-AA. Methylene chloride was used to micellize the amphiphilic copolymers in order to obtain the critical micelle concentration of the polymers (CMCpMA-b-AA = 10 mg/mL, CMCpMMA-b-AA = 0.4 mg/mL). The majority of polymerization were done in bulk; however, since poly(trimethylsilyl)ethyl acrylate displayed polydispersity (Mn = 11459, PDI = 1.437) on the high end of the acceptable range, various solvents were utilized to decrease the polymerization rate and afford low polydispersity materials. This differs from the ATRP of polymethyl acrylate or polymethyl methacrylate using this catalytic system, which do not require the addition of a solvent to obtain well-defined polymers. Also, for this polymerization system three different temperatures (60°C, 90°C, and 120°C) were used, in order to reduce the concentration of radicals and the contribution of termination. The homopolymers and protected acid block copolymers were characterized by gel permeation chromatography to determine the relative molecular weights. Differential scanning calorimetry was used to obtain the glass transition temperature of all polymers. Characterization using NMR (1H and 13C) and FTIR confirmed homopolymerization of 3,3-dimethylbutyl acrylate, 2-(trimethylsilyl)ethyl acrylate and complete cleavage of the (trimethylsilyl)ethyl group from the protected acid copolymers.
Importance of chlorine atom oxidation to tropospheric chemistry in an urban, coastal environment
NASA Astrophysics Data System (ADS)
Young, C. J.; Washenfelder, R. A.; Edwards, P.; Gilman, J. B.; Kuster, W. C.; Brown, S. S.
2012-12-01
Chlorine atom contribution to tropospheric chemistry is considered to be small on a global scale. It has been demonstrated to be significant in a few areas, such as the Arctic, using ratios of volatile organic compounds (VOCs) as tracers. During the CalNex campaign in Los Angeles, CA, Cl was shown to be a significant contributor to the primary radical budget. However, ratios of VOCs during this time period show no evidence of Cl atom oxidation. Using the Master Chemical Mechanism model, we investigate this discrepancy. We observe that the VOC ratios are highly dependent on the presence of secondary radicals through radical propagation, which are dependent on NOx levels. Thus, we suggest that in a high-NOx urban environment, VOC ratios are an unsuitable tracer of the importance of Cl chemistry. During the CalNex campaign, Cl atom reactivity is approximately an order of magnitude larger than OH radical reactivity. Further, Cl atoms react preferentially with unsaturated compounds for which OH reaction rates are small. Using the model, we determine the amount of additional ozone that can be expected in Los Angeles as a result of the presence of Cl atom reactivity.
Silica nanoparticles carrying boron-containing polymer brushes
NASA Astrophysics Data System (ADS)
Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya
2014-05-01
A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.
Atomic scale behavior of oxygen-based radicals in water
NASA Astrophysics Data System (ADS)
Verlackt, C. C. W.; Neyts, E. C.; Bogaerts, A.
2017-03-01
Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition, the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature.
Free Radical-Surface Interactions Using Multiphoton Ionization of Free Radicals
1989-01-01
Atoms, Rgf4PI 9 t Free Radl!cals)aj" i Atoms, Cross Section -’r RE)* I of Free Radicals arid Atonn. 43S’RACT (Conti n reverse if necessary Ind identi...these surfaces. The basic philosophy of our CF 3I -+- nhv-CF, - t - I . program consists of generating a particular neutral species at A low pressures...constant for the escape of radicals out of the " reactor is shown in Eq. (6): .= k =, 4 .4,., I /V, (6) L !J 7 where t ,,, is the thermal molecular
Charge transfer to ground-state ions produces free electrons
You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K
2017-01-01
Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238
Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities
Miller, David C.; Tarantino, Kyle T.; Knowles, Robert R.
2016-01-01
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter we aim to highlight the origins, development and evolution of PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups. PMID:27573270
Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.
Irikura, Karl K
2013-03-14
The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.
Warren, Jeffrey J.; Mayer, James M.
2010-01-01
Ascorbate (Vitamin C) is a ubiquitous biological cofactor. While its aqueous solution chemistry has long been studied, many in vivo reactions of ascorbate occur in enzyme active sites or at membrane interfaces, which have varying local environments. This report shows that the rate and driving force of oxidations of two ascorbate derivatives by the TEMPO radical (2,2′-6,6′-tetramethylpiperidine-1-oxyl) in acetonitrile are very sensitive to the presence of various additives. These reactions proceed by the transfer of a proton and an electron (a hydrogen atom), as is typical of biological ascorbate reactions. The measured rate and equilibrium constants vary substantially with added water or other polar solutes in acetonitrile solutions, indicating large shifts in the reducing power of ascorbate. The correlation of rate and equilibrium constants indicates that this effect has a thermochemical origin rather than being a purely kinetic effect. This contrasts with previous examples of solvent effects on hydrogen atom transfer reactions. Potential biological implications of this apparently unique effect are discussed. PMID:20476757
Anouar, E; Kosinová, P; Kozlowski, D; Mokrini, R; Duroux, J L; Trouillas, P
2009-09-21
Ferulic acid is widely distributed in the leaves and seeds of cereals as well as in coffee, apples, artichokes, peanuts, oranges and pineapples. Like numerous other natural polyphenols it exhibits antioxidant properties. It is known to act as a free radical scavenger by H atom transfer from the phenolic OH group. In the present joint experimental and theoretical studies we studied a new mechanism to explain such activities. Ferulic acid can indeed act by radical addition on the alpha,beta-double bond. On the basis of the identification of metabolites formed in an oxidative radiolytic solution and after DFT calculations, we studied the thermodynamic and kinetic aspects of this reaction. Addition and HAT reactions were treated as competitive reactions. The possibility of dimer formation was also investigated from a theoretical point of view; the high barriers we obtained contribute to explaining why we did not observe those compounds as major radiolytic compounds. The DPPH free radical scavenging capacity of ferulic acid and the oxidative products was measured and is discussed on the basis of DFT calculations (BDEs and spin densities).
Rajan, Vijisha K; Muraleedharan, K
2017-04-01
A computational DFT-B3LYP structural analysis of a poly phenol, Gallic acid (GA) has been performed by using 6-311++ G (df, p) basis set. The GA is a relatively stable molecule with considerable radical scavenging capacity. It is a well known antioxidant. The NBO analysis shows that the aromatic system is delocalized. The results reveal that the most stable radical is formed at O 3 -atom upon scavenging the free radicals. Global descriptive parameters show that GA acts as an acceptor center in charge transfer complex formation which is supported by ESP and contour diagrams and also by Q max value. The GA is a good antioxidant and it can be better understood by HAT and TMC mechanisms as it has low BDE, ΔH acidity and ΔG acidity values. The ΔBDE and ΔAIP values also confirm that the antioxidant capacity of GA can be explained through HAT rather than the SET-PT mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic Reaction Mechanism of Sinapic Acid Scavenging NO2 and OH Radicals: A Theoretical Study
Lu, Yang; Wang, AiHua; Shi, Peng; Zhang, Hui; Li, ZeSheng
2016-01-01
The mechanism and kinetics underlying reactions between the naturally-occurring antioxidant sinapic acid (SA) and the very damaging ·NO2 and ·OH were investigated through the density functional theory (DFT). Two most possible reaction mechanisms were studied: hydrogen atom transfer (HAT) and radical adduct formation (RAF). Different reaction channels of neutral and anionic sinapic acid (SA-) scavenging radicals in both atmosphere and water medium were traced independently, and the thermodynamic and kinetic parameters were calculated. We find the most active site of SA/SA- scavenging ·NO2 and ·OH is the –OH group in benzene ring by HAT mechanism, while the RAF mechanism for SA/SA- scavenging ·NO2 seems thermodynamically unfavorable. In water phase, at 298 K, the total rate constants of SA eliminating ·NO2 and ·OH are 1.30×108 and 9.20×109 M-1 S-1 respectively, indicating that sinapic acid is an efficient scavenger for both ·NO2 and ·OH. PMID:27622460
Transient alkylaminium radicals in n-hexane. Condensed-phase ion-molecule reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werst, D.W.; Trifunac, A.D.
Time-resolved fluorescence detected magnetic resonance (FDMR) is used to observe alkylaminium radicals formed in n-hexane solutions by electron pulse radiolysis. The ease of observation of aminium radical FDMR signals increases with increasing alkyl substitution of the amine solutes. The results are discussed in terms of the ion-molecule reactions, such as proton transfer, which compete with the electron-transfer processes, i.e, the electron transfer from solute molecules to n-hexane radical cations and geminate recombination.
Reaction of atomic hydrogen with formic acid.
Cao, Qian; Berski, Slawomir; Latajka, Zdzislaw; Räsänen, Markku; Khriachtchev, Leonid
2014-04-07
We study the reaction of atomic hydrogen with formic acid and characterize the radical products using IR spectroscopy in a Kr matrix and quantum chemical calculations. The reaction first leads to the formation of an intermediate radical trans-H2COOH, which converts to the more stable radical trans-cis-HC(OH)2via hydrogen atom tunneling on a timescale of hours at 4.3 K. These open-shell species are observed for the first time as well as a reaction between atomic hydrogen and formic acid. The structural assignment is aided by extensive deuteration experiments and ab initio calculations at the UMP2 and UCCSD(T) levels of theory. The simplest geminal diol radical trans-cis-HC(OH)2 identified in the present work as the final product of the reaction should be very reactive, and further reaction channels are of particular interest. These reactions and species may constitute new channels for the initiation and propagation of more complex organic species in the interstellar clouds.
NASA Technical Reports Server (NTRS)
Rosen, G.
1973-01-01
A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.
Koppenol, Willem H.
2013-01-01
The mercapto group of cysteine (Cys) is a predominant target for oxidative modification, where one-electron oxidation leads to the formation of Cys thiyl radicals, CysS•. These Cys thiyl radicals enter 1,2- and 1,3-hydrogen transfer reactions, for which rate constants are reported in this paper. The products of these 1,2- and 1,3-hydrogen transfer reactions are carbon-centered radicals at position C3 (α-mercaptoalkyl radicals) and C2 (•Cα radicals) of Cys, respectively. Both processes can be monitored separately in Cys analogues such as cysteamine (CyaSH) and penicillamine (PenSH). At acidic pH, thiyl radicals from CyaSH permit only the 1,2-hydrogen transfer according to equilibrium 12, +H3NCH2CH2S• ⇌ +H3NCH2 •CH–SH, where rate constants for forward and reverse reaction are k12 ≈ 105 s−1 and k−12 ≈ 1.5 × 105s−1, respectively. In contrast, only the 1,3-hydrogen transfer is possible for thiyl radicals from PenSH according to equilibrium 14, (+H3N/CO2H)Cα–C(CH3)2–S• ⇌ (+H3N/CO2H)•Cα–C(CH3)2–SH, where rate constants for the forward and the reverse reaction are k14 = 8 × 104 s−1 and k−14 = 1.4 × 106 s−1. The •Cα radicals from PenSH and Cys have the additional opportunity for β-elimination of HS•/S•−, which proceeds with k39 ≈ (3 ± 1) × 104 s−1 from •Cα radicals from PenSH and k−34 ≈ 5 × 103 s−1 from •Cα radicals from Cys. The rate constants quantified for the 1,2- and 1,3-hydrogen transfer reactions can be used as a basis to calculate similar processes for Cys thiyl radicals in proteins, where hydrogen transfer reactions, followed by the addition of oxygen, may lead to the irreversible modification of target proteins. PMID:22483034
Alcohols as alkylating agents in heteroarene C–H functionalization
Jin, Jian; MacMillan, David W. C.
2015-01-01
Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895
Mechanistic and kinetic investigation on OH-initiated oxidation of tetrabromobisphenol A.
He, Maoxia; Li, Xin; Zhang, Shiqing; Sun, Jianfei; Cao, Haijie; Wang, Wenxing
2016-06-01
Detailed mechanism of the OH-initiated transformation of tetrabromobisphenol A (TBBPA) has been investigated by quantum chemical methods in this paper. Abstraction reactions of hydrogen atoms from the OH groups and CH3 groups of TBBPA are the dominant pathways of the initial reactions. The produced phenolic-type radical and alkyl-type radical may transfer to 4,4'-(ethene-1,1-diyl)bis(2,6-dibromophenol), 4-acetyl-2,6-dibromophenol and 2,6-dibromobenzoquinone at high temperature. In water, major products are 2,6-dibromo-p-hydroquinone, 4-isopropylene-2,6-dibromophenol and 4-(2-hydroxyisopropyl)-2,6-dibromophenol resulting from the addition reactions. Total rate constants of the initial reaction are 1.02 × 10(-12) cm(3) molecule(-1) s(-1) in gas phase and 1.93 × 10(-12) cm(3) molecule(-1) s(-1) in water at 298 K. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction
NASA Astrophysics Data System (ADS)
Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi
2017-02-01
The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.
1,2-Fluorine Radical Rearrangements: Isomerization Events in Perfluorinated Radicals.
Van Hoomissen, Daniel J; Vyas, Shubham
2017-11-16
Devising effective degradation technologies for perfluoroalkyl substances (PFASs) is an active area of research, where the molecular mechanisms involving both oxidative and reductive pathways are still elusive. One commonly neglected pathway in PFAS degradation is fluorine atom migration in perfluoroalkyl radicals, which was largely assumed to be implausible because of the high C-F bond strength. Using density functional theory calculations, it was demonstrated that 1,2-F atom migrations are thermodynamically favored when the fluorine atom migrated from a less branched carbon center to a more branched carbon center. Activation barriers for these rearrangements were within 19-29 kcal/mol, which are possible to easily overcome at elevated temperatures or in photochemically activated species in the gas or aqueous phase. It was also found that the activation barriers for the 1,2-F atom migration are lowered as much as by 10 kcal/mol when common oxidative degradation products such as HF assisted the rearrangements or if the resulting radical center was stabilized by vicinal π-bonds. Natural bond orbital analyses showed that fluorine moves as a radical in a noncharge-separated state. These findings add an important reaction to the existing knowledge of mechanisms for PFAS degradation and highlights the fact that 1,2-F atom shifts may be a small channel for isomerization of these compounds, but upon availability of mineralization products, this isomerization process could become more prominent.
Cheng, Jason Y; Riesz, Peter
2007-07-01
Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular membranes by peroxyl and/or alkoxyl radicals [V. Misik, P. Riesz, Ann. N.Y. Acad. Sci., 899 (2000) 335].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chong-Wen; Simmie, John M.; Pitz, William J.
Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. We present calculated thermodynamic and kinetic data for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. Furthermore, these radicals can be formed via H atom abstraction reactions by H and Ö atoms and OH, HO 2, and CH 3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when OH is involved, but the reverse holds truemore » for HO 2 radicals. We also determined the subsequent β-scission of the radicals formed, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.« less
Gonzalez, Javier; Anglada, Josep M
2010-09-02
The gas phase reaction between nitric acid and hydroxyl radical, without and with a single water molecule, has been investigated theoretically using the DFT-B3LYP, MP2, QCISD, and CCSD(T) theoretical approaches with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction without water begins with the formation of a prereactive hydrogen-bonded complex and has several elementary reactions processes. They include proton coupled electron transfer, hydrogen atom transfer, and proton transfer mechanisms, and our kinetic study shows a quite good agreement of the behavior of the rate constant with respect to the temperature and to the pressure with the experimental results from the literature. The addition of a single water molecule results in a much more complex potential energy surface although the different elementary reactions found have the same electronic features that the naked reaction. Two transition states are stabilized by the effect of a hydrogen bond interaction originated by the water molecule, and in the prereactive hydrogen bond region there is a geometrical rearrangement necessary to prepare the HO and HNO(3) moieties to react to each other. This step contributes the reaction to be slower than the reaction without water and explains the experimental finding, pointing out that there is no dependence for the HNO(3) + HO reaction on water vapor.
Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Mauck, Catherine M; Krzyaniak, Matthew D; Wasielewski, Michael R
2017-06-15
Photoexcitation of electron donor-acceptor molecules frequently produces radical ion pairs with well-defined initial spin-polarized states that have attracted significant interest for spintronics. Transfer of this initial spin polarization to a stable radical is predicted to depend on the rates of the radical ion pair recombination reactions, but this prediction has not been tested experimentally. In this study, a stable radical/electron donor/chromophore/electron acceptor molecule, BDPA • -mPD-ANI-NDI, where BDPA • is α,γ-bisdiphenylene-β-phenylallyl, mPD is m-phenylenediamine, ANI is 4-aminonaphthalene-1,8-dicarboximide, and NDI is naphthalene-1,4:5,8-bis(dicarboximide), was synthesized. Photoexcitation of ANI produces the triradical BDPA • -mPD +• -ANI-NDI -• in which the mPD +• -ANI-NDI -• radical ion pair is spin coupled to the BDPA • stable radical. BDPA • -mPD +• -ANI-NDI -• and its counterpart lacking the stable radical are found to exhibit spin-selective charge recombination in which the triplet radical ion pair 3 (mPD +• -ANI-NDI -• ) is in equilibrium with the 3 *NDI charge recombination product. Time-resolved EPR measurements show that this process is associated with an inversion of the sign of the polarization transferred to BDPA • over time. The polarization transfer rates are found to be strongly solvent dependent, as shifts in this equilibrium affect the spin dynamics. These results demonstrate that even small changes in electron transfer dynamics can have a large effect on the spin dynamics of photogenerated multispin systems.
Amicangelo, Jay C; Lee, Yuan-Pern
2017-11-22
The reaction of chlorine atoms (Cl) with isoprene (2-methyl-1,3-butadiene, C 5 H 8 ) in solid para-hydrogen (p-H 2 ) matrices at 3.2 K was studied using infrared (IR) spectroscopy. Mixtures of C 5 H 8 and Cl 2 were codeposited in p-H 2 at 3.2 K, followed by irradiation with ultraviolet light at 365 nm to induce the photodissociation of Cl 2 and the subsequent reaction of the Cl atoms with C 5 H 8 . Upon 365 nm photolysis, a multitude of new lines appeared in the IR spectrum, and, based on the secondary photolysis behavior, it was determined that the majority of the new lines belong to two distinct chemical species, designated as set A (intense lines at 1237.9, 807.8, and 605.6/608.2 cm -1 , and several other weaker lines) and set B (intense lines at 942.4, 1257.7, 796.7/798.5, 667.9, and 569.7 cm -1 , and several other weaker lines). Quantum-chemical calculations were performed at the B3PW91/6-311++G(2d,2p) level for ·C 5 H 7 and the four possible isomers of the ·C 5 H 8 Cl radicals, produced from the addition of the Cl atom to the four distinct sites of carbon atoms in C 5 H 8 , to determine the relative energetics and predict IR spectra for each radical. The newly observed lines of sets A and B are assigned to the 1-chloromethyl-2-methylallyl radical (addition to carbon 4) and the 1-chloromethyl-1-methylallyl radical (addition to carbon 1) according to comparison with predicted IR spectra of possible products. The 1-chloromethyl-2-methylallyl radical and 1-chloromethyl-1-methylallyl radicals were predicted to be the most stable, with the latter ∼8 kJ mol -1 lower in energy than the former. The ratio of the 1-chloromethyl-1-methylallyl to the 1-chloromethyl-2-methylallyl radicals is estimated to be (1.2 ± 0.5):1.0, indicating that the two radicals are produced in approximately equal amounts. The exclusive production of the radicals involving the addition of the Cl atom to the two terminal carbons of isoprene is analogous to what was previously observed for the reaction of Cl atoms with trans-1,3-butadiene in solid p-H 2 .
Fast Disinfecting Antimicrobial Surfaces
Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.
2013-01-01
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651
Culka, Martin; Huwiler, Simona G; Boll, Matthias; Ullmann, G Matthias
2017-10-18
Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH - ] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.
Explanation to the difference in the ketyl radical formation yields of benzophenone and benzil
NASA Astrophysics Data System (ADS)
Okutsu, Tetsuo; Muramatsu, Hidenori; Horiuchi, Hiroaki; Hiratsuka, Hiroshi
2005-03-01
p Ka values of benzophenone ketyl and benzil ketyl radicals were determined as 9.4 and 12.4, respectively. We can successfully explain the difference in quantum yield of the proton transfer between benzophenone ketyl and benzil ketyl radicals by these values. Reaction enthalpies of the proton transfer are the same (-80 kJ mol -1) for these radicals, and the difference in p Ka value can be explained by that reaction entropies. Reaction entropies between two radicals are discussed by the possible structure of the radicals.
Spin polarization transfer by the radical pair mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less
Lewis Structure Representation of Free Radicals Similar to ClO
ERIC Educational Resources Information Center
Hirsch, Warren; Kobrak, Mark
2007-01-01
The study describes the Lewis structure representation of various free radicals, which are quite similar to the ClO radical and its isoelectronic analogues. The analysis of the periodic trends of these radicals shows that oxygen is the most electronegative atom among them.
Laboratory Studies of Vibrational Relaxation: Important Insights for Mesospheric OH
NASA Astrophysics Data System (ADS)
Kalogerakis, K. S.; Matsiev, D.
2016-12-01
The hydroxyl radical has a key role in the chemistry and energetics of the Earth's middle atmosphere. A detailed knowledge of the rate constants and relevant pathways for OH(high v) vibrational relaxation by atomic and molecular oxygen and their temperature dependence is absolutely critical for understanding mesospheric OH and extracting reliable chemical heating rates from atmospheric observations. We have developed laser-based experimental approaches to study the complex collisional energy transfer processes involving the OH radical and other relevant atmospheric species. Previous work in our laboratory indicated that the total removal rate constant for OH(v = 9) + O at room temperature is more than one order of magnitude larger than that for removal by O2. Thus, O atoms are expected to significantly influence the intensity and vibrational distribution extracted from the Meinel OH(v) emissions. We will report our most recent laboratory experiments that corroborate the aforementioned result for fast OH(v = 9) + O and provide important new insights on the mechanistic pathways involved. We will also highlight relevant atmospheric implications, including warranted revisions of current mesospheric OH models. Research supported by SRI International Internal R&D and NSF Aeronomy grant AGS-1441896. Previously supported by NASA Geospace Science grant NNX12AD09G.
Primary radical yields in pulse irradiated alkaline aqueous solution
NASA Technical Reports Server (NTRS)
Fielden, E. M.; Hart, E. J.
1969-01-01
Primary radical yields of hydrated electrons, H atoms, and OH radicals are determined by measuring hydrated electron formation following a 4 microsecond pulse of X rays. The pH dependence of free radical yields beyond pH 12 is determined by observation of the hydrated electrons.
Textbook Forum: Who is Anti-Markovnikov?
ERIC Educational Resources Information Center
Tedder, J. M.
1984-01-01
Discusses factors which control rate and orientation of free radical addition to alkenes. Although based primarily on results involving behavior of alkyl radicals, arguments developed apply to addition of atoms and hetero-radicals to olefins. (JN)
Oppenländer, Thomas; Walddörfer, Carsten; Burgbacher, Jens; Kiermeier, Martin; Lachner, Klaus; Weinschrott, Helga
2005-07-01
Xenon excimer (Xe2*) lamps can be used for the oxidation and mineralization of organic compounds in aqueous solution. This vacuum-ultraviolet (VUV) photochemical method is mainly based on the photochemically initiated homolysis of water that produces hydrogen atoms and hydroxyl radicals. The efficiency of substrate oxidation and mineralization is limited markedly due to the high absorbance of water at the emission maximum of the Xe2* lamp (lambda(max)=172 nm). This photochemical condition generates an extreme heterogeneity between the irradiated volume V(irr) and the non-irradiated ("dark") bulk solution. During VUV-initiated photomineralization of organic substrates, the fast scavenging of hydrogen atoms and of carbon-centered radicals by dissolved molecular oxygen produces a permanent oxygen deficit within V(irr) and adjacent compartments. Hence, at a constant photon flux the concentration of dissolved molecular oxygen within the zones of photo and thermal radical reactions limits the rate of mineralization, i.e. the rate of TOC diminution. Thus, a simple and convenient technique is presented that overcomes this limitation by injection of molecular oxygen (or air) into the irradiated volume by use of a ceramic oxygenator (aerator). The tube oxygenator was centered axially within the xenon excimer flow-through lamp. Consequently, the oxygen or air bubbles enhanced the transfer of dissolved molecular oxygen into the VUV-irradiated volume leading to an increased rate of mineralization of organic model compounds, e.g. 1-heptanol, benzoic acid and potassium hydrogen phthalate.
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
NASA Astrophysics Data System (ADS)
Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-03-01
The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.
Fate of the CHBrsub2O radical in air
NASA Technical Reports Server (NTRS)
Bayes, K. D.; Friedl, R. F.
2003-01-01
Trace amounts of bromoform in air have been photolyzed at 266 and 303 nm to form Br atoms and CHBr2 radicals. The Br concentration as a funtion of time is followed by resonance fluorescence. The CHBr2 radicals react with O2 in the air to form peroxy radicals.
NASA Technical Reports Server (NTRS)
Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.
1993-01-01
Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.
Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2.
Hudzik, Jason M; Bozzelli, Joseph W
2017-10-05
Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol -1 , due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol -1 below the 2MF5j + O 2 reactants; this is 4-5 kcal mol -1 deeper than that of phenyl and vinyl radical plus O 2 , with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH ° f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.
NASA Astrophysics Data System (ADS)
Kalogerakis, Konstantinos S.; Matsiev, Daniel; Sharma, Ramesh D.; Wintersteiner, Peter P.
2016-09-01
We report laboratory results that support a recently proposed mechanism for relaxation of highly vibrationally excited hydroxyl radical by ground-state oxygen atoms (Sharma et al., GRL 42, 4639-4647 (2015)). According to this mechanism, which eventually leads to an enhancement of nocturnal 4.3 µm CO2 emissions in the mesosphere, the deactivation of OH(high υ) by O(3P) involves a fast, spin-allowed, multiquantum vibration-to-electronic (V-E) energy transfer process generating O(1D). We present laser-based experiments that demonstrate these energy transfer processes in action and discuss some implications of the new mechanism for mesospheric OH. These developments represent a breakthrough addressing the long-standing problem of unacceptably large discrepancies between models and observations of the nocturnal mesospheric 4.3 µm emission.
Photodissociation dynamics of the 2-propyl radical, C{sub 3}H{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noller, Bastian; Fischer, Ingo
2007-04-14
The photodissociation of 2-propyl leading to propene+H was investigated with nanosecond time resolution. A supersonic beam of isolated 2-propyl radicals was produced by pyrolysis of 2-bromopopane. The kinetic energy release of the H-atom photofragment was monitored as a function of excitation wavelength by photofragment Doppler spectroscopy via the Lyman-{alpha} transition. The loss of hydrogen atoms after excitation proceeds in {alpha} position to the radical center with a rate constant of 5.8x10{sup 7} s{sup -1} at 254 nm. Approximately 20% of the excess energy is deposited as translation in the H-atom photofragment. In contrast 1-propyl does not lose H atoms tomore » a significant extent. The experimental results are compared to simple Rice-Ramsperger-Kassel-Marcus calculations. The possible reaction pathways are examined in hybrid density functional theory calculations.« less
An electronegativity-induced spin repulsion effect.
Stirling, Andras; Pasquarello, Alfredo
2005-09-22
We present a spin delocalization effect in radical Si-containing systems, featuring a heteroatom of high electronegativity (such as N, O, or Cl) bonded to the unsaturated Si atom. We find that the higher the electronegativity of the heteroatom, the more the localized spin shifts away from the unsaturated Si atom and the heteroatom toward saturated Si neighbors. We demonstrate that this spin repulsion toward saturated Si atoms is induced by the electronegativity difference between the Si atom and the heteroatoms. We present a simple molecular-orbital-based mechanism which fully explains the structural and electronic effects. We contrast the present spin delocalization mechanism with the classical hyperconjugation in organic chemistry. The most important consequences of this spin redistribution are the electron-spin-resonance activity of the saturated Si neighbors and the enhanced stability of the radical centers. We predict a similar effect for Ge radicals and discuss why organic systems based on carbon do not feature such spin repulsion.
Elucidating the Charge Transfer Mechanism in Radical Polymer Thin Films
NASA Astrophysics Data System (ADS)
Mukherjee, Sanjoy; Boudouris, Bryan
The active role of polymers in organic electronics has attracted significant attention in recent decades. Beyond conventional conjugated polymers, recently radical polymers have received a great deal of consideration by the community. Radical polymers are redox-active macromolecules with non-conjugated backbones functionalized with persistent radical sites. Because of their nascent nature, many open questions regarding the physics of their solid-state charge transfer mechanism still exist. In order to address these questions, well-defined radical polymers were synthesized and blended in a manner such that there was tight control over the radical density within the conducting thin films. We demonstrate that the systematic manipulation of the radical-to-radical spacing in open-shell macromolecules leads to exponential changes in the macroscopic electrical conductivity, and temperature-independent charge transport behaviour. Thus, a clear picture emerges that charge transfer in radical polymers is dictated by a tunnelling mechanism between proximal sites. This behavior is consistent with a distinct mechanism similar to redox reactions in biological media, but is unique relative to transport in common conjugated polymers. These results constitute the first experimental insight into the mechanism of solid-state electrical conduction in radical polymers.
Relative stability of radicals derived from artemisinin: A semiempirical and DFT study
NASA Astrophysics Data System (ADS)
Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.
The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.
Chen, Yiling; Zhang, Huichun
2013-10-01
Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.
NASA Astrophysics Data System (ADS)
Zhang, Dong; Ortiz, Christine
2003-03-01
With the advent of nanotechnology, miniaturized devices will soon need nanoscale springs with well-controlled nanomechanical properties such as shock absorbers, or to control the adhesive interactions between two components. In order to understand, manipulate, and control single macromolecule nanomechanical properties, mono(thiol)-terminated poly(hydroxyethyl methacrylate-g-ethylene glycol) has been synthesized via atom transfer radical polymerization. End-functionalization, chemical structure, molecular weight, side-chain graft density, radius of gyration, and polydispersity were characterized by 1H nuclear magnetic resonance, static light scattering, and gel permeation chromatography. The polymer chains were attached to Au-coated Si wafers via chemisorption to prepare well-separated "mushrooms", as verified by atomic force microscopy. Single molecule force spectroscopy was then used to measure the extensional elastic properties, i.e. force (nN) versus end-to-end separation distance (nm), of the individual chains by tethering to a Si3N4 probe tip via nonspecific, physisorption interactions.
Wang, Zhanhua; Zuilhof, Han
2016-07-05
Fluoropolymer brushes are widely used to prevent nonspecific adsorption of commercial polymeric or biological materials due to their strongly hydrophobic character. Herein, a series of fluoropolymer brushes with different compositions, thicknesses and molecular architectures was prepared via surface-initiated atom transfer radical polymerization (ATRP). Subsequently, the antifouling properties of these fluoropolymer brushes against organic polymers were studied in detail using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements and polystyrene as a representative fouling polymer. Among all of the molecular architectures studied, homopolymerized methacrylate-based fluoropolymer brushes (PMAF17) show the best antifouling properties. Annealing the fluoropolymer brushes improves the antifouling property dramatically due to the reregulated surface composition. These fluoropolymer brushes can be combined with, e.g., micro- and nanostructuring and other advanced materials properties to yield even better long-term antifouling behavior under harsh environments.
NASA Astrophysics Data System (ADS)
Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.
2013-12-01
Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.
Batiha, Marwan; Altarawneh, Mohammednoor; Al-Harahsheh, Mohammad; Altarawneh, Ibrahem; Rawadieh, Saleh
2011-01-01
Reaction and activation energy barriers are calculated for the H abstraction reactions (C6H5SH + X• → C6H5S + XH, X = H, OH and HO2) at the BB1K/GTLarge level of theory. The corresponding reactions with H2S and CH3SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K–2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. ΔfH298o of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures. PMID:22485200
Ohno, Kohji; Akashi, Tatsuki; Tsujii, Yoshinobu; Yamamoto, Masaya; Tabata, Yasuhiko
2012-03-12
The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ∼20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.
Charge Transfer Directed Radical Substitution Enables para-Selective C–H Functionalization
Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias
2016-01-01
Efficient C–H functionalization requires selectivity for specific C–H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho- and meta- selectivity, but a general strategy for para-selective C–H functionalization has remained elusive. Herein, we introduce a previously unappreciated concept which enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit areneto-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate that the selectivity is predictable by a simple theoretical tool and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of charge transfer directed radical substitution could serve as the basis for the development of new, highly selective C–H functionalization reactions. PMID:27442288
Charge-transfer-directed radical substitution enables para-selective C-H functionalization
NASA Astrophysics Data System (ADS)
Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias
2016-08-01
Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.
Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei
2015-11-28
Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.
Saha, Sampa
2011-01-01
Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO2 substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO2 stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO2 under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from non-cross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ~100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 hour. At temperatures >100 °C, the polymer brush layers delaminate as large area films. PMID:21728374
Letzel, Matthias; Kirchhoff, Dirk; Grützmacher, Hans-Friedrich; Stein, Daniel; Grützmacher, Hansjörg
2006-04-28
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.
On the radiation stability of crown ethers in ionic liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, I.; Marin, T.; Dietz, M.
2011-04-14
Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an ILmore » matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.« less
Membrane surface engineering for protein separations: experiments and simulations.
Liu, Zizhao; Du, Hongbo; Wickramasinghe, S Ranil; Qian, Xianghong
2014-09-09
A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.
Rice husk grafted PMAA by ATRP in aqueous phase and its adsorption for Ce3+
NASA Astrophysics Data System (ADS)
Lin, Chao; Luo, Wenjun; Chen, Jindong; Zhou, Qi
2017-12-01
A monolithic biomass adsorbent, rice husk grafted poly (methyl acrylic acid) (RH-g-PMAA), was successfully synthesized via surface-initiated atom transfer radical polymerization (ATRP) through heterogeneous reactions in aqueous phase. Its adsorption capacity for Ce3+ reaches 122.51 mg g-1, which is about 12 times higher than that of raw rice husk. The experimental result on desorption and reusability shows that the adsorption capacity is still higher than 100 mg g-1 after six cycles and the desorption rate is almost 100% in every cycle. RH-g-PMAA can be separated from water easily because of its integrity.
Polymer-modified opal nanopores.
Schepelina, Olga; Zharov, Ilya
2006-12-05
The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.
Martínez-González, Eduardo; Armendáriz-Vidales, Georgina; Ascenso, José R; Marcos, Paula M; Frontana, Carlos
2015-05-01
Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations.
H atoms in CH4 and Xe matrices at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Willard, J. E.
1982-07-01
Cryogenic techniques coupled with electron spin resonance detection methods have made it possible to produce long-lived trapped hydrogen atoms in inert matrices at 4 K and to study their reactions with neutral molecules and molecular fragments when the temperature is raised to the point where they diffuse. Under the matrix conditions H atoms abstract H rapidly from all carbon-hydrogen bonds (except those of CH 4) by quantum mechanical tunnelling, even though such reactions would be precluded if the classical activation energy prevailed. Thermal H atoms in CH 4 at 15 K add to CO to form the HCO radical, and to O 2 to form the HO 2 radical. When exposed to the appropriate wavelength of light these and other radicals, including CH 3, C 2H 5 and C 2H 3 lose H by photoelimination. The H atoms are produced in the matrices by X radiolysis, γ-ray radiolysis, or photolysis of a hydrogen halide. This paper reviews some of the most significant current findings in the field from different laboratories.
Ma, Jun; Marignier, Jean-Louis; Pernot, Pascal; Houée-Levin, Chantal; Kumar, Anil; Sevilla, Michael D; Adhikary, Amitava; Mostafavi, Mehran
2018-05-30
In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.
Polymeric Coatings for Combating Biocorrosion
NASA Astrophysics Data System (ADS)
Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.
2018-03-01
Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.
Zhu, Xiao-Qing; Zhang, Jian-Yu; Cheng, Jin-Pei
2006-09-01
The reaction rates of 1-(p-substituted benzyl)-1,4-dihydronicotinamide (G-BNAH) with N-benzylphenothiazine radical cation (PTZ(*+)) in acetonitrile were determined. The results show that the reaction rates (k(obs)) decreased from 2.80 x 10(7) to 2.16 x 10(7) M(-1) s(-1) for G = H as the reaction temperature increased from 298 to 318 K. The activation enthalpies of the reactions were estimated according to Eyring equation to give negative values (-3.4 to -2.9 kcal/mol). Investigation of the reaction intermediate shows that the charge-transfer complex (CT-complex) between G-BNAH and PTZ(*+) was formed in front of the hydride transfer from G-BNAH to PTZ(*+). The formation enthalpy of the CT-complex was estimated by using the Benesi-Hildebrand equation to give the values from -6.4 to -6.0 kcal/mol when the substituent G in G-BNAH changes from CH(3)O to Br. Detailed thermodynamic analyses on each elementary step in the possible reaction pathways suggest that the hydride transfer from G-BNAH to PTZ(*+) occurs by a concerted hydride transfer via a CT-complex. The effective charge distribution on the pyridine ring in G-BNAH at the various stages-the reactant G-BNAH, the charge-transfer complex, the transition-state, and the product G-BNA(+)-was estimated by using the method of Hammett-type linear free energy analysis, and the results show that the pyridine ring carries relative effective positive charges of 0.35 in the CT-complex and 0.45 in the transition state, respectively, which indicates that the concerted hydride transfer from G-BNAH to PTZ(*+) was practically performed by the initial charge (-0.35) transfer from G-BNAH to PTZ(*+) and then followed by the transfer of hydrogen atom with partial negative charge (-0.65). It is evident that the present work would be helpful in understanding the nature of the negative temperature effect, especially on the reaction of NADH coenzyme with the drug phenothiazine in vivo.
Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José
2015-04-01
As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed mechanism for ring-retaining product channels is proposed to justify the observed reaction products. The global tropospheric lifetimes estimated from the reported OH- and Cl-rate coefficients show that the main removal path for the investigated methylcyclohexanes is the reaction with OH radicals. But in marine environments, after sunrise, Cl reactions become more important in the tropospheric degradation. Thus, the estimated lifetimes range from 16 to 24 h for the reactions of the OH radical (calculated with [OH] = 10(6) atoms cm(-3)) and around 7-8 h in the reactions with Cl atoms in marine environments (calculated with [Cl] = 1.3 × 10(5) atoms cm(-3)). The reaction of Cl atoms and OH radicals and methylcylohexanes can proceed by H abstraction from the different positions.
NASA Astrophysics Data System (ADS)
Raud, J.; Jõgi, I.; Matisen, L.; Navrátil, Z.; Talviste, R.; Trunec, D.; Aarik, J.
2017-12-01
This work characterizes the production and destruction of nitrogen and hydrogen atoms in RF capacitively coupled middle-pressure discharge in argon/nitrogen/hydrogen mixtures. Input power, electron concentration, electric field strength and mean electron energy were determined on the basis of electrical measurements. Gas temperature and concentration of Ar atoms in 1s states were determined from spectral measurements. On the basis of experimentally determined plasma characteristics, main production and loss mechanisms of H and N atoms were discussed. The plasma produced radicals were applied for the nitridation and oxide reduction of gallium arsenide in the afterglow region of discharge. After plasma treatment the GaAs samples were analyzed using x-ray photoelectron spectroscopy (XPS) technique. Successful nitridation of GaAs sample was obtained in the case of Ar/5% N2 discharge. In this gas mixture the N atoms were generated via dissociative recombination of N2+ created by charge transfer from Ar+. The treatment in Ar/5% N2/1% H2 mixture resulted in the reduction of oxide signals in the XPS spectra. Negligible formation of GaN in the latter mixture was connected with reduced concentration of N atoms, which was, in turn, due to less efficient mechanism of N atom production (electron impact dissociation of N2 molecules) and additional loss channel in reaction with H2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Justin; Rzayev, Javid
Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. Themore » resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.« less
Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin
2015-06-02
Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2016-01-01
Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.
Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi
2014-02-01
The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira
2016-08-16
Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inbar, S.; Linschitz, H.; Cohen, S.G.
Nanosecond flash photolysis, steady irradiation, and deuterium substitution studies have been carried out on solutions of benzophenone with added reductants. Quantum yields (phi/sub ketyl/) for reduction in benzene of benzophenone triplet to ketyl radical, based on phi = 2 for benzhydrol (I), were approx. 1 for cyclohexane (II), tert-butylamine (III), 2-aminobutane (IV), cyclohexylamine (V), di-n-propylamine (VI), and triethylamine (VII), approx. 0.7 for 1,4-diazabicyclo(2.2.2)octane (VIII), and approx. 0 for tert-butyl alcohol (IX). Thus, quenching, without radical formation by H abstraction from N and/or ..cap alpha..-C, does not occur with common aliphatic amines but does with Dabco (VIII). The latter quenching ismore » markedly increased by small additions of acetonitrile; the flash spectrum from this compound indicates formation of a triplet amine CT complex or radical ion pair. Triplet-reductant interaction rate constants, k/sur ir/, are high for the amines (approx. 10/sup 8/-10/sup 9/ M/sup -1/ s/sup -1/) but also show significant deuterium kinetic isotope effects: 1.9 with III-N-d/sub 2/; 1.4 with IV-N-d/sub 2/; 1.2-1.3 with IV-..cap alpha..-C-d. It is proposed that k/sub ir/ measures H atom abstraction, favored in the transition state by an initial charge-transfer interaction. Overall steady irradiation quantum yields of reduction by amines, phi/sub Red/, are much lower than phi/sub ketyl/. This is attributed to disproportionationreactions of ketyl and alkylaminyl radicals for primary and secondary amines, and, possibly, aminoalkyl radicals for tertiary amines. In the case of tert-butylamine, the rate constant for disproportionation is obtained from the decay kinetics of ketyl radical and leads to phi/sub Red/ in agreement with that directly measured.« less
Nanoscale functionalization and characterization of surfaces with hydrogel patterns and biomolecules
NASA Astrophysics Data System (ADS)
Dinakar, Hariharasudhan Chirra
The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted. Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the hydrogel was achieved using microcontact printing, while thickness control was achieved using atom transfer radical polymerization (ATRP). Atomic force microscopy analysis showed that to the ATRP reaction time governed the pattern growth. The temperature dependent swelling ratio was tailored by tuning the mesh size of the hydrogel. While nanopatterns exhibited a broad lower critical solution temperature (LCST) transition, surface roughness showed a sharp LCST transition. Quartz crystal microbalance with dissipation showed rapid response behavior of the thin films, which makes them applicable as functional components in biomedical devices. The easy synthesis, relative biocompatibility, inertness, and easy functionalization of gold nanoparticles (GNPs) have made them useful for various biomedical applications. Although ATRP can be successfully carried out over GNPs, the yield of stable solution based GNPs for biomedical applications prove to be low. As an alternative approach, a novel method of ISOlating, FUnctionalizing, and REleasing nanoparticles (ISOFURE) was proposed. Biodegradable poly(beta-amino ester) hydrogels were used to synthesize ISOFURE-GNP composites. ATRP was performed inside the composite, and the final hydrogel coated GNPs were released via matrix degradation. Response analysis confirmed that the ISOFURE method led to the increased stability and yield of the hydrogel coated ISOFURE-GNPs. The ISOFURE protocol was also utilized in functionalizing GNPs with enzyme catalase in the absence of a stabilizing reagent. Biotin-streptavidin affinity was used as the bioconjugation method. Activity analysis of the conjugated enzyme showed that the ISOFURE-GNPs showed enhanced biomolecular loading relative to solution based stabilizing reagent passivated GNPs. KEYWORDS: Hydrogel, Gold nanoparticle, ISOFURE, Atom transfer radical polymerization, Microcontact printing
Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut
2013-04-07
Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.
Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.
Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping
2018-04-26
In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.
NASA Astrophysics Data System (ADS)
Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken
2007-01-01
A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.
Qi, Xiaotian; Zhu, Lei; Bai, Ruopeng; Lan, Yu
2017-01-01
Transition metal-catalyzed radical–radical cross-coupling reactions provide innovative methods for C–C and C–heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C–N radical–radical cross-coupling reaction. The concerted coupling pathway, in which a C–N bond is formed through the direct nucleophilic addition of a carbon radical to the nitrogen atom of the Cu(II)–N species, is demonstrated to be kinetically unfavorable. The stepwise coupling pathway, which involves the combination of a carbon radical with a Cu(II)–N species before C–N bond formation, is shown to be probable. Both the Mulliken atomic spin density distribution and frontier molecular orbital analysis on the Cu(II)–N intermediate show that the Cu site is more reactive than that of N; thus, the carbon radical preferentially react with the metal center. The chemoselectivity of the cross-coupling is also explained by the differences in electron compatibility of the carbon radical, the nitrogen radical and the Cu(II)–N intermediate. The higher activation free energy for N–N radical–radical homo-coupling is attributed to the mismatch of Cu(II)–N species with the nitrogen radical because the electrophilicity for both is strong. PMID:28272407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandit, Shubhrangshu; Preston, Thomas J.; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk
Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br{sup ∗}), and C{sub 3}H{sub 5} hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br{sup ∗} atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced frommore » the Br and Br{sup ∗} images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C{sub 3}H{sub 5} fragments have lower angular anisotropies than measured for Br and Br{sup ∗}, indicating molecular restructuring during dissociation. The high kinetic energy C{sub 3}H{sub 5} signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C–Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C{sub 3}H{sub 5} radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C{sub 3}H{sub 5}{sup +} from the photodissociation of the C{sub 3}H{sub 5}Br{sup +} molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.« less
Evidence for concerted ring opening and C-Br bond breaking in UV-excited bromocyclopropane.
Pandit, Shubhrangshu; Preston, Thomas J; King, Simon J; Vallance, Claire; Orr-Ewing, Andrew J
2016-06-28
Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br(∗)), and C3H5 hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br(∗) atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced from the Br and Br(∗) images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C3H5 fragments have lower angular anisotropies than measured for Br and Br(∗), indicating molecular restructuring during dissociation. The high kinetic energy C3H5 signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C-Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C3H5 radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C3H5 (+) from the photodissociation of the C3H5Br(+) molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.
Chemical structural analysis of diamondlike carbon films: I. Surface growth model
NASA Astrophysics Data System (ADS)
Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji
2018-02-01
The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.
Kurahashi, Takuya; Fujii, Hiroshi
2011-06-01
Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society
Kumar, Anil; Sevilla, Michael D.
2009-01-01
Previous experimental and theoretical work has established that electronic excitation of a guanine cation radical in nucleosides or in DNA itself leads to sugar radical formation by deprotonation from the dexoxyribose sugar. In this work we investigate a ground electronic state pathway for such sugar radical formation in a hydrated one electron oxidized 2′-deoxyguanosine (dG•+ + 7H2O), using density functional theory (DFT) with the B3LYP functional and the 6-31G* basis set. We follow the stretching of the C5′-H bond in dG•+ to gain an understanding of the energy requirements to transfer the hole from the base to sugar ring and then to deprotonate to proton acceptor sites in solution and on the guanine ring. The geometries of reactant (dG•+ + 7H2O), transition state (TS) for deprotonation of C5′ site and product (dG(•C5′, N7-H+) + 7 H2O) were fully optimized. The zero point energy (ZPE) corrected activation energy (TS) for the proton transfer (PT) from C5′ is calculated to be 9.0 kcal/mol and is achieved by stretching the C5′-H bond by 0.13 Å from its equilibrium bond distance (1.099 Å). Remarkably, this small bond stretch is sufficient to transfer the “hole” (positive charge and spin) from guanine to the C5′ site on the deoxyribose group. Beyond the TS, the proton (H+) spontaneously adds to water to form a hydronium ion (H3O+) as an intermediate. The proton subsequently transfers to the N7 site of the guanine (product). The 9 kcal/mol barrier suggests slow thermal conversion of the cation radical to the sugar radical but also suggests that localized vibrational excitations would be sufficient to induce rapid sugar radical formation in DNA base cation radicals. PMID:19754084
Method of cross-linking polyvinyl alcohol and other water soluble resins
NASA Technical Reports Server (NTRS)
Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1980-01-01
A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.
Production of B atoms and BH radicals from B2H6/He/H2 mixtures activated on heated W wires.
Umemoto, Hironobu; Kanemitsu, Taijiro; Tanaka, Akihito
2014-07-17
B atoms and BH radicals could be identified by laser-induced fluorescence when B2H6/He/H2 mixtures were activated on heated tungsten wires. The densities of these radical species increased not only with the wire temperature but also with the partial pressure of H2. The densities in the presence of 0.026 Pa of B2H6 and 2.6 Pa of H2 were on the order of 10(11) cm(-3) both for B and BH when the wire temperature was 2000 K. Densities in the absence of a H2 flow were much smaller, suggesting that the direct production of these species on wire surfaces is minor. B and BH must be produced in the H atom shifting reactions, BH(x) + H → BH(x-1) + H2 (x = 1-3), in the gas phase, while H atoms are produced from H2 on wire surfaces. The B atom density increased monotonously with the H atom density, while the BH density showed saturation. These tendencies could be reproduced by simple modeling based on ab initio potential energy calculations and the transition-state theoretical calculations of the rate constants. The absolute densities could also be reproduced within a factor of 2.5.
NASA Astrophysics Data System (ADS)
Zhou, Pan-Pan; Liu, Shubin; Ayers, Paul W.; Zhang, Rui-Qin
2017-10-01
Condensed-to-atom Fukui functions which reflect the atomic reactivity like the tendency susceptible to either nucleophilic or electrophilic attack demonstrate the bonding trend of an atom in a molecule. Accordingly, Fukui functions based concepts, that is, bonding reactivity descriptors which reveal the bonding properties of molecules in the reaction were put forward and then applied to pericyclic and cluster reactions to confirm their effectiveness and reliability. In terms of the results from the bonding descriptors, a covalent bond can readily be predicted between two atoms with large Fukui functions (i.e., one governs nucleophilic attack while the other one governs electrophilic attack, or both of them govern radical attacks) for pericyclic reactions. For SinOm clusters' reactions, the clusters with a low O atom ratio readily form a bond between two Si atoms with big values of their Fukui functions in which they respectively govern nucleophilic and electrophilic attacks or both govern radical attacks. Also, our results from bonding descriptors show that Si—Si bonds can be formed via the radical mechanism between two Si atoms, and formations of Si—O and O—O bonds are possible when the O content is high. These results conform with experimental findings and can help experimentalists design appropriate clusters to synthesize Si nanowires with high yields. The approach established in this work could be generalized and applied to study reactivity properties for other systems.
OH radical kinetics in hydrogen-air mixtures at the conditions of strong vibrational nonequilibrium
NASA Astrophysics Data System (ADS)
Winters, Caroline; Hung, Yi-Chen; Jans, Elijah; Eckert, Zak; Frederickson, Kraig; Adamovich, Igor V.; Popov, Nikolay
2017-12-01
This work presents results of time-resolved, absolute measurements of OH number density, nitrogen vibrational temperature, and translational-rotational temperature in air and lean hydrogen-air mixtures excited by a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study kinetics of OH radicals at the conditions of strong vibrational excitation of nitrogen, below autoignition temperature. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband coherent anti-Stokes Raman scattering. Hydroxyl radical number density is measured by laser induced fluorescence, calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to ~1 ms, with a peak vibrational temperature of T v ≈ 1900 K at T ≈ 500 K. Nitrogen vibrational temperature peaks at 100-200 µs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of several hundred µs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t ~ 100-300 µs and decaying on a longer time scale, until t ~ 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. Comparison of the experimental data with kinetic modeling predictions shows that OH kinetics is controlled primarily by reactions of H2 and O2 with O and H atoms generated during the discharge. At the present conditions, OH number density is not affected by N2 vibrational excitation directly, i.e. via vibrational energy transfer to HO2. The effect of a reaction between vibrationally excited H2 and O atoms on OH kinetics is also shown to be insignificant. As the discharge pulse coupled energy is increased, the model predicts transient OH number density overshoot due to the temperature rise caused by N2 vibrational relaxation by O atoms, which may well be a dominant effect in discharges with specific energy loading.
Ultraviolet photodissociation dynamics of the benzyl radical.
Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong
2011-05-14
Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy,
NASA Astrophysics Data System (ADS)
Amicangelo, Jay C.; Lee, Yuan-Pern
2017-06-01
The reaction of chlorine atoms (Cl) with isoprene (C_5H_8) in solid para-hydrogen (p-H_2) matrices at 3.2 K has been studied using infrared spectroscopy. Mixtures of C_5H_8 and Cl_2 were co-deposited in p-H_2 at 3.2 K, followed by irradiation at 365 nm to cause the photodissociation of Cl_2 and the subsequent reaction of Cl atoms with C_5H_8. Upon 365 nm photolysis, a series of new lines appeared in the infrared spectrum, with the strongest appearing at 807.8 and 796.7 \\wn. To determine the grouping of lines to distinct chemical species, secondary photolysis was performed using a low-pressure Hg lamp in combination with various filters. Based on the secondary photolysis behavior, it was determined that the majority of the new lines belong to two distinct chemical species, designated as set A (3047.2, 1482.2, 1459.5, 1396.6, 1349.6, 1268.2, 1237.9, 1170.3, 1108.8, 807.8, 754.1, 605.6, 526.9, 472.7 \\wn) and set B (3112.7, 1487.6, 1382.6, 1257.7, 1229.1, 1034.8, 975.8, 942.4, 796.7, 667.9, 569.7 \\wn). The most likely reactions to occur between Cl and C_5H_8 under the low temperature conditions in solid p-H_2 are the addition of the Cl atom to the four distinct alkene carbon atoms to produce the corresponding chlorine atom addition radicals (ClC_5H_8). Quantum-chemical calculations were performed at the B3PW91/6-311++G(2d,2p) level of theory for the four possible ClC_5H_8 radicals in order to determine the relative energetics and the predicted harmonic vibrational spectra for each radical. The calculations predict that the addition of Cl to each of the four carbons is exothermic, with relative energies of 0.0, 74.5, 67.4, and 7.9 kJ/mol for the addition to carbons 1 - 4, respectively. When the lines of set A and B are compared to the scaled harmonic vibrational spectra for all four of the possible Cl addition radicals, it is found that the best agreement for set A is with the radical produced by the addition to carbon 4 (1-chloromethyl-2-methylallyl radical) and the best agreement for set B is with the radical produced by addition to carbon 1 (1-chloromethyl-1-methylallyl radical). Therefore, the lines of set A and B are assigned to these radicals, respectively.
The photodissociation dynamics of alkyl radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giegerich, Jens; Fischer, Ingo, E-mail: ingo.fischer@uni-wuerzburg.de
2015-01-28
The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distributionmore » shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.« less
NASA Astrophysics Data System (ADS)
Zhang, Ji-Dong; Zhang, Li-Li
2017-12-01
The decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7) attracts great interests, while the studies on bimolecular reactions during the decomposition of FOX-7 are scarce. This study for the first time investigated the bimolecular reactions of OH and NO2 radicals, which are pyrolysis products of ammonium perchlorate (an efficient oxidant usually used in solid propellant), with FOX-7 by computational chemistry methods. The molecular geometries and energies were calculated using the (U)B3LYP/6-31++G(d,p) method. The rate constants of the reactions were calculated by canonical variational transition state theory. We found three mechanisms (H-abstraction, OH addition to C and N atom) for the reaction of OH + FOX-7 and two mechanisms (O abstraction and H abstraction) for the reaction of NO2 + FOX-7. OH radical can abstract H atom or add to C atom of FOX-7 with barriers near to zero, which means OH radical can effectively degrade FOX-7. The O abstraction channel of the reaction of NO2 + FOX-7 results in the formation of NO3 radical, which has never been detected experimentally during the decomposition of FOX-7.
NASA Astrophysics Data System (ADS)
Barzegar, Abolfazl; Rezaei-Sadabady, Rogaie
2017-10-01
Five galvinoxyl radicals (Grad) reduction by one polyphenolic myricetin (Myc, 3,3‧,4‧,5,5‧,7-Hexahydroxyflavone) molecule-using EPR method-demonstrated that each Myc should donate at least five H atoms resulted in multiradicals Myc5rad (5 Grad + 1Myc → 5 GH + 1 Myc5rad). The process that five H atoms donation occurs from different OH sites of Myc lead to appearing of five unpaired valence electrons of Myc5rad via two possible different mechanisms. First; concerted five H atoms donation from five different OH groups that directly results in Myc5rad radicals (Myc → Myc5rad). Second; the step-wise radical formation in five different OH groups of Myc (Myc → Mycrad → Myc2rad → Myc3rad → Myc4rad → Myc5rad). Computational DFT method was used to analyze all the six different OH groups of Myc which involved in free radical reactions for the purposes of clarification the stable multiradicals Myc5rad formation mechanism. The fast semi-empirical combined quantum method, AM1/DFT, as well as full DFT geometry optimization approaches of B3LYP functional DFT/DFT with different basis sets of 6-31G (d), 6-311 + G (d,p) and 6-311 + G (2d,2p) confirmed the stepwise H atom abstraction trend on the main three hydroxyl sites as 4‧-Orad → 4‧-Orad3-Orad → 4‧-Orad3-Orad-7Orad both in the gas and water phase. Spin delocalization over the entire Myc, adding the co-planarity, contributed to the stabilization of respective radical species. The excellent stability of Myc radicals should give an effective chain-breaking antioxidant activity for Myc in biological environment which is expected to have far fewer side effects. These findings may be useful to elucidate the radical scavenging mechanism of other flavonoids regarding to design novel antioxidants.
Xu, F J; Wuang, S C; Zong, B Y; Kang, E T; Neoh, K G
2006-05-01
A method for immobilizing and mediating the spatial distribution of functional oxide (such as SiO2 and Fe3O4) nanoparticles (NPs) on (100)-oriented single crystal silicon surface, via Si-C bonded poly(3-(trimethoxysilyl)propyl methacrylate) (P(TMSPM)) brushes from surface-initiated atom transfer radical polymerization (ATRP) of (3-(trimethoxysilyl)propyl methacrylate) (TMSPM), was described. The ATRP initiator was covalently immobilized via UV-induced hydrosilylation of 4-vinylbenzyl chloride (VBC) with the hydrogen-terminated Si(100) surface (Si-H surface). The surface-immobilized Fe3O4 NPs retained their superparamagnetic characteristics and their magnetization intensity could be mediated by adjusting the thickness of the P(TMSPM) brushes.
NASA Astrophysics Data System (ADS)
Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.
2018-02-01
The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.
Combinatorial and high-throughput approaches in polymer science
NASA Astrophysics Data System (ADS)
Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.
2005-01-01
Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.
The antioxidant effect of derivatives pyroglutamic lactam
NASA Astrophysics Data System (ADS)
Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah
2013-11-01
Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47-52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.
Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide
NASA Astrophysics Data System (ADS)
Ma, Yuhao; Cai, Mengtan; He, Liu; Luo, Xianglin
2016-01-01
To enhance the biocompatibility or extend the biomedical application of poly(caprolactone) (PCL), protein retention on PCL surface is often required. In this study, poly(acrylamide) (PAAm) brushes were grown from PCL surface via surface-initiated atom transfer radical polymerization (SI-ATRP) and served as a protein-capturing platform. Grafted PAAm was densely packed on surface and exhibited superior protein retention ability. Captured protein was found to be resistant to washing under detergent environment. Furthermore, protein structure after being captured was investigated by circular dichroism (CD) spectroscopy, and the CD spectra verified that secondary structure of captured proteins was maintained, indicating no denaturation of protein happened for retention process.
Lei, Zhongli; Bi, Shuxian
2007-01-30
Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.
NASA Astrophysics Data System (ADS)
Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank
2016-12-01
Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.
Hydrogen transfer reactions of interstellar Complex Organic Molecules
NASA Astrophysics Data System (ADS)
Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.
2018-06-01
Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.
Preparation of optically active bicyclodihydrosiloles by a radical cascade reaction
Miyazaki, Koichiro; Yamane, Yu; Yo, Ryuichiro; Uno, Hidemitsu
2013-01-01
Summary Bicyclodihydrosiloles were readily prepared from optically active enyne compounds by a radical cascade reaction triggered by tris(trimethylsilyl)silane ((Me3Si)3SiH). The reaction was initiated by the addition of a silyl radical to an α,β-unsaturated ester, forming an α-carbonyl radical that underwent radical cyclization to a terminal alkyne unit. The resulting vinyl radical attacked the silicon atom in an SHi manner to give dihydrosilole. The reaction preferentially formed trans isomers of bicyclosiloles with an approximately 7:3 to 9:1 selectivity. PMID:23946827
Electronic properties and free radical production by nitrofuran compounds.
Paulino-Blumenfeld, M; Hansz, M; Hikichi, N; Stoppani, A O
1992-01-01
Substitution of nifurtimox tetrahydrothiazine moiety by triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl or related aromatic nitrogen heterocycles determines changes in the quantum chemistry descriptors of the molecule, namely, (a) greater negative LUMO energy; (b) lesser electron density on specific atoms, especially on the nitro group atoms, and (c) modification of individual net atomic charges at relevant atoms. These variations correlate with the greater capability of nifurtimox analogues for redox-cycling and oxygen radical production, after one-electron reduction by ascorbate or reduced flavoenzymes. Variation of the nitrofurans electronic structure can also explain the greater activity of nifurtimox analogues as inhibitors of glutathione reductase and Trypanosoma cruzi growth, although other factors, such as molecular hydrophobicity and connectivity may contribute to the latter inhibition.
Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.
Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi
2011-04-14
The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.
Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions.
Usami, N; Furusawa, Y; Kobayashi, K; Lacombe, S; Reynaud-Angelin, A; Sage, E; Wu, Ting-Di; Croisy, A; Guerquin-Kern, J-L; Le Sech, C
2008-07-01
This work investigates whether a synergy in cell death induction exists in combining atomic ions irradiation and addition of platinum salts. Such a synergy could be of interest in view of new cancer therapy protocol based on atomic ions--hadrontherapy--with the addition of radiosensitizing agents containing high-Z atoms. The experiment consists in irradiating by fast ions cultured cells previously exposed to dichloroterpyridine Platinum (PtTC) and analyzing cell survival by a colony-forming assay. Chinese Hamster Ovary (CHO) cells were incubated for six hours in medium containing 350 microM PtTC, and then irradiated by fast ions C(6+) and He(2+), with Linear Energy Transfer (LET) within range 2-70 keV/microm. In some experiments, dimethyl sulfoxide (DMSO) was added to investigate the role of free radicals. The intracellular localization of platinum was determined by Nano Secondary Ion Mass Spectroscopy (Nano-SIMS). For all LET examined, cell death rate is largely enhanced when irradiating in presence of PtTC. At fixed irradiation dose, cell death rate increases with increasing LET, while the platinum relative effect is larger at low LET. This finding suggests that hadrontherapy or protontherapy therapeutic index could be improved by combining irradiation procedure with concomitant chemotherapy protocols using platinum salts.
Scheuermann, Sebastian; Sarkar, Biprajit; Bolte, Michael; Bats, Jan W; Lerner, Hans-Wolfram; Wagner, Matthias
2009-10-05
A 1,4-naphthoquinone-substituted bis(pyrazol-1-yl)methane ligand (N--N) has been synthesized and transformed into its corresponding Pd(II) chelate complex [(N--N)PdCl(2)]. Both N--N and [(N--N)PdCl(2)] have been fully characterized by NMR spectroscopy, spectro-electrochemistry, and X-ray crystallography. After treatment of [(N--N)PdCl(2)] with NEt(3), the signature of a 1,4-naphthosemiquinonate radical is visible in the UV-vis- and electron paramagnetic resonance (EPR) spectrum of the reaction mixture; the free ligand N--N does not react with NEt(3) under the conditions applied. It is therefore concluded that NEt(3) first reduces the Pd(II)-ion of [(N--N)PdCl(2)] to the zero-valent state and that this reaction is followed by a single-electron transfer from the metal atom to the 1,4-naphthoquinone moiety. The complex has been specifically designed to disfavor any direct Pd-to-naphthoquinone coordination. Electron transfer thus proceeds through space or, less likely, via sigma-bonds of the ligand framework.
Wang, Shanshan; Dong, Cheng; Yu, Lian; Guo, Cheng; Jiang, Kezhi
2016-01-15
In the tandem mass spectrometry of protonated N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamides, the precursor ions have been observed to undergo gas-phase dissociation via two competing channels: (a) the predominant channel involves migration of the sulfonyl cation to the phenyl C atom and the subsequent loss of benzenesulfinic acid along with cyclization reaction, and (b) the minor one involves dissociation of the precursor ion to give an ion/neutral complex of [sulfonyl cation/imine], followed by decomposition to afford sulfonyl cation or the INC-mediated electron transfer to give an imine radical cation. The proposed reaction channels have been supported by theoretical calculations and D-labeling experiments. The gas-phase cyclization reaction originating from the N- to C-sulfonyl cation transfer has been first reported to the best of our knowledge. For the substituted sulfonamides, the presence of electron-donating groups (R(2) -) at the C-ring effectively facilitates the reaction channel of cyclization reaction, whereas that of electron-withdrawing groups inhibits this pathway. Copyright © 2015 John Wiley & Sons, Ltd.
Shenghur, Abraham; Weber, Kevin H; Nguyen, Nhan D; Sontising, Watit; Tao, Fu-Ming
2014-11-20
The mild yet promiscuous reactions of nitrogen dioxide (NO2) and phenolic derivatives to produce nitrous acid (HONO) have been explored with density functional theory calculations. The reaction is found to occur via four distinct pathways with both proton coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms available. While the parent reaction with phenol may not be significant in the gas phase, electron donating groups in the ortho and para positions facilitate the reduction of nitrogen dioxide by electronically stabilizing the product phenoxy radical. Hydrogen bonding groups in the ortho position may additionally stabilize the nascent resonantly stabilized radical product, thus enhancing the reaction. Catechol (ortho-hydroxy phenol) has a predicted overall free energy change ΔG(0) = -0.8 kcal mol(-1) and electronic activation energy Ea = 7.0 kcal mol(-1). Free amines at the ortho and para positions have ΔG(0) = -3.8 and -1.5 kcal mol(-1); Ea = 2.3 and 2.1 kcal mol(-1), respectively. The results indicate that the hydrogen abstraction reactions of these substituted phenols by NO2 are fast and spontaneous. Hammett constants produce a linear correlation with bond dissociation energy (BDE) demonstrating that the BDE is the main parameter controlling the dark abstraction reaction. The implications for atmospheric chemistry and ground-level nitrous acid production are discussed.
Jang, Su-Chan; Choi, Jong-Ho
2014-11-21
The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3→ H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.
Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.
Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J
2013-08-15
Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.
The reactions of HO2 with CO and NO and the reaction of O(1D) with H2O
NASA Technical Reports Server (NTRS)
Simonaitis, R.; Heicklen, J.
1973-01-01
HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1D) atoms produced from the photolysis of N2O to give HO radicals or H2 to give HO + H. With H2O two HO radicals are produced for each O(1D) removed low pressures (i.e. approximately 20 torr H2O), but the HO yield drops as the pressure is raised. This drop is attributed to the insertion reaction: O(1D) + H2O + M yields H2O2 +M. The HO radicals generated can react with either CO or H2 to produce H atoms which then add to O2 to produce HO2. Two reactions are given for the reactions of the HO radicals, in the absence of NO.
Kirk, Benjamin B; Harman, David G; Kenttämaa, Hilkka I; Trevitt, Adam J; Blanksby, Stephen J
2012-12-28
The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium)phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me(3)N(+))C(6)H(4)˙ + O(2)] = 2.8 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 4.9%; k(2)[((-)O(2)C)C(6)H(4)˙ + O(2)] = 5.4 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.
Stimuli Responsive Morphological Changes of Pnipa Polymer Brushes Synthesized on Silicon Substrate
NASA Astrophysics Data System (ADS)
Huda, Muhammad Nurul; Kabir, A. N. M. Hamidul
2013-08-01
High-density polymer brushes were grown from the silicon surface by atom transfer radical polymerization of Poly(N-isopropylacrylamide) (PNIPA) at different polymerization conditions. PNIPA brushes were prepared using Copper (I) Chloride/tris(2-(dimetylamino)ethyl)amine (Me6TREN) as a catalytic system in DMSO at 20°C. Free polymer formed during the brush formation was characterized by gel permeation chromatography. The grafting densities up to 0.52 chains/nm2 were obtained. The layer thickness of polymer brush increases with the increase of conversion of the monomer conversion as well as polymerization time. Atomic force microscopy and air bubble contact angle under pH solution were employed to study the surface morphology, reversible conformational changes of and stimulus-response behavior. PNIPA brushes exhibited a different nanomorphology after treatment with different pH solution. It also revealed a unique reversible wetting behavior with pH. The reversible properties of the PNIPA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
NASA Astrophysics Data System (ADS)
Reva, Igor; Lapinski, Leszek; Lopes Jesus, A. J.; Nowak, Maciej J.
2017-11-01
Photochemical transformations were studied for monomers of indole and 3-formylindole isolated in low-temperature noble-gas matrices. Upon UV (λ > 270 nm) irradiation of indole trapped in argon and neon matrices, the initial 1H-form of the compound converted into the 3H-tautomer. Alongside this photoinduced hydrogen-atom transfer, an indolyl radical was also generated by photodetachment of the hydrogen atom from the N1-H bond. Excitation of 3-formylindole isolated in an argon matrix with UV (λ > 335 nm) light led to interconversion between the two conformers of the 1H-tautomer, differing from each other in the orientation of the formyl group (cis or trans). Parallel to this conformational phototransformation, the 3H-form of the compound was generated in the 1H → 3H phototautomeric conversion. The photoproducts emerging upon UV irradiation of indole and 3-formylindole were identified by comparison of their infrared spectra with the spectra calculated for candidate structures.
Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...
NASA Astrophysics Data System (ADS)
Thompson, Chelsea R.; Shepson, Paul B.; Liao, Jin; Huey, L. Greg; Cantrell, Chris; Flocke, Frank; Orlando, John
2017-03-01
Ozone depletion events (ODEs) in the Arctic are primarily controlled by a bromine radical-catalyzed destruction mechanism that depends on the efficient production and recycling of Br atoms. Numerous laboratory and modeling studies have suggested the importance of heterogeneous recycling of Br through HOBr reaction with bromide on saline surfaces. On the other hand, the gas-phase regeneration of bromine atoms through BrO-BrO radical reactions has been assumed to be an efficient, if not dominant, pathway for Br reformation and thus ozone destruction. Indeed, it has been estimated that the rate of ozone depletion is approximately equal to twice the rate of the BrO self-reaction. Here, we use a zero-dimensional, photochemical model, largely constrained to observations of stable atmospheric species from the 2009 Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) campaign in Barrow, Alaska, to investigate gas-phase bromine radical propagation and recycling mechanisms of bromine atoms for a 7-day period during late March. This work is a continuation of that presented in Thompson et al. (2015) and utilizes the same model construct. Here, we use the gas-phase radical chain length as a metric for objectively quantifying the efficiency of gas-phase recycling of bromine atoms. The gas-phase bromine chain length is determined to be quite small, at < 1.5, and highly dependent on ambient O3 concentrations. Furthermore, we find that Br atom production from photolysis of Br2 and BrCl, which is predominately emitted from snow and/or aerosol surfaces, can account for between 30 and 90 % of total Br atom production. This analysis suggests that condensed-phase production of bromine is at least as important as, and at times greater than, gas-phase recycling for the occurrence of Arctic ODEs. Therefore, the rate of the BrO self-reaction is not a sufficient estimate for the rate of O3 depletion.
Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M
2013-03-28
This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.
Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki
2016-12-21
Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).
Process for functionalizing alkanes
Bergman, Robert G.; Janowicz, Andrew H.; Periana, Roy A.
1988-01-01
Process for functionalizing saturated hydrocarbons comprising: (a) reacting said saturated hydrocarbons of the formula: R.sub.1 H wherein H represents a hydrogen atom; and R.sub.1 represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R.sub.2).sub.3 ]H.sub.2 wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical; Rh represents a rhodium atom; P represents a phosphorus atom; R.sub.2 represents a hydrocarbon radical; H represents a hydrogen atom, in the presence of ultraviolet radiation to form a hydridoalkyl complex of the formula: CpRh[P(R.sub.2).sub.3 ](R.sub.1)H (b) reacting said hydridoalkyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X''X'''X'''' or CHX'X''X''' wherein X', X'', X'", X"" represent halogens selected from bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e., ambient) to form a functional haloalkyl compound.
NASA Astrophysics Data System (ADS)
Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru
2011-01-01
For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.
What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan
2017-12-01
Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, M. M.; Michelin, S. E.; Mazon, K. T.
2007-07-15
We report a theoretical study of elastic electron collisions on three isoelectronic free radicals, namely, SiNN, SiCO, and CSiO. More specifically, differential, integral, and momentum-transfer cross sections are calculated and reported in the (1-100) eV energy range. Calculations are performed at the static-exchange-polarization-absorption level of approximation. A combination of the iterative Schwinger variational method and the distorted-wave approximation is used to solve the scattering equations. Our study reveals that the calculated cross sections for the e{sup -}-SiNN and e{sup -}-SiCO collisions are very similar even at incident energies as low as 3 eV. Strong isomeric effects are also observed inmore » the calculated cross sections for e{sup -}-CSiO and e{sup -}-SiCO collisions, particularly at incident energies below 20 eV. It is believed that the position of the silicon atom being at the center or extremity of the molecules may exert important influence on the calculated cross sections.« less
Gurry, Michael; Aldabbagh, Fawaz
2016-04-28
Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates.
Ultraviolet photodissociation dynamics of the n-propyl and i-propyl radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu; Zheng, Xianfeng; Zhou, Weidong
2015-06-14
Ultraviolet (UV) photodissociation dynamics of jet-cooled n-propyl (n-C{sub 3}H{sub 7}) radical via the 3s Rydberg state and i-propyl (i-C{sub 3}H{sub 7}) radical via the 3p Rydberg states are studied in the photolysis wavelength region of 230–260 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The H-atom photofragment yield spectra of the n-propyl and i-propyl radicals are broad and in good agreement with the UV absorption spectra. The H + propene product translational energy distributions, P(E{sub T})’s, of both n-propyl and i-propyl are bimodal, with a slow component peaking around 5-6 kcal/mol and a fast one peakingmore » at ∼50 kcal/mol (n-propyl) and ∼45 kcal/mol (i-propyl). The fraction of the average translational energy in the total excess energy, 〈f{sub T}〉, is 0.3 for n-propyl and 0.2 for i-propyl, respectively. The H-atom product angular distributions of the slow components of n-propyl and i-propyl are isotropic, while that of the fast component of n-propyl is anisotropic (with an anisotropy parameter ∼0.8) and that of i-propyl is nearly isotropic. Site-selective loss of the β hydrogen atom is confirmed using the partially deuterated CH{sub 3}CH{sub 2}CD{sub 2} and CH{sub 3}CDCH{sub 3} radicals. The bimodal translational energy and angular distributions indicate two dissociation pathways to the H + propene products in the n-propyl and i-propyl radicals: (i) a unimolecular dissociation pathway from the hot ground-state propyl after internal conversion from the 3s and 3p Rydberg states and (ii) a direct, prompt dissociation pathway coupling the Rydberg excited states to a repulsive part of the ground-state surface, presumably via a conical intersection.« less
Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study.
Wormit, Michael; Dreuw, Andreas
2006-11-30
In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.
Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.
Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar
2003-12-07
The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.
Sun, Hongyan; Zhang, Peng; Law, Chung K
2012-05-31
The gas-phase kinetics of H-abstraction reactions of monomethylhydrazine (MMH) by OH radical was investigated by second-order multireference perturbation theory and two-transition-state kinetic model. It was found that the abstractions of the central and terminal amine H atoms by the OH radical proceed through the formation of two hydrogen bonded preactivated complexes with energies of 6.16 and 5.90 kcal mol(-1) lower than that of the reactants, whereas the abstraction of methyl H atom is direct. Due to the multireference characters of the transition states, the geometries and ro-vibrational frequencies of the reactant, transition states, reactant complexes, and product complexes were optimized by the multireference CASPT2/aug-cc-pVTZ method, and the energies of the stationary points of the potential energy surface were refined at the QCISD(T)/CBS level via extrapolation of the QCISD(T)/cc-pVTZ and QCISD(T)/cc-pVQZ energies. It was found that the abstraction reactions of the central and two terminal amine H atoms of MMH have the submerged energy barriers with energies of 2.95, 2.12, and 1.24 kcal mol(-1) lower than that that of the reactants respectively, and the abstraction of methyl H atom has a real energy barrier of 3.09 kcal mol(-1). Furthermore, four MMH radical-H(2)O complexes were found to connect with product channels and the corresponding transition states. Consequently, the rate coefficients of MMH + OH for the H-abstraction of the amine H atoms were determined on the basis of a two-transition-state model, with the total energy E and angular momentum J conserved between the two transition-state regions. In units of cm(3) molecule(-1) s(-1), the rate coefficient was found to be k(1) = 3.37 × 10(-16)T(1.295) exp(1126.17/T) for the abstraction of the central amine H to form the CH(3)N(•)NH(2) radical, k(2) = 2.34 × 10(-17)T(1.907) exp(1052.26/T) for the abstraction of the terminal amine H to form the trans-CH(3)NHN(•)H radical, k(3) = 7.41 × 10(-20)T(2.428) exp(1343.20/T) for the abstraction of the terminal amine H to form the cis-CH(3)NHN(•)H radical, and k(4) = 9.13 × 10(-21)T(2.964) exp(-114.09/T) for the abstraction of the methyl H atom to form the C(•)H(2)NHNH(2) radical, respectively. Assuming that the rate coefficients are additive, the total rate coefficient of these theoretical predictions quantitatively agrees with the measured rate constant at temperatures of 200-650 K, with no adjustable parameters.
Yan, Kun; Gao, Xiang; Luo, Yingwu
2015-07-01
A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan
2012-08-01
EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene
NASA Astrophysics Data System (ADS)
Dolinskii, I. Yu.; Katin, K. P.; Grishakov, K. S.; Prudkovskii, V. S.; Kargin, N. I.; Maslov, M. M.
2018-04-01
This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.
Oxidation kinetics and soot formation
NASA Technical Reports Server (NTRS)
Glassman, I.; Brezinsky, K.
1983-01-01
The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.
Efficient synthetic access to thermo-responsive core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-01
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
A redox-mediated Kemp eliminase
NASA Astrophysics Data System (ADS)
Li, Aitao; Wang, Binju; Ilie, Adriana; Dubey, Kshatresh D.; Bange, Gert; Korendovych, Ivan V.; Shaik, Sason; Reetz, Manfred T.
2017-03-01
The acid/base-catalysed Kemp elimination of 5-nitro-benzisoxazole forming 2-cyano-4-nitrophenol has long served as a design platform of enzymes with non-natural reactions, providing new mechanistic insights in protein science. Here we describe an alternative concept based on redox catalysis by P450-BM3, leading to the same Kemp product via a fundamentally different mechanism. QM/MM computations show that it involves coordination of the substrate's N-atom to haem-Fe(II) with electron transfer and concomitant N-O heterolysis liberating an intermediate having a nitrogen radical moiety Fe(III)-N. and a phenoxyl anion. Product formation occurs by bond rotation and H-transfer. Two rationally chosen point mutations cause a notable increase in activity. The results shed light on the prevailing mechanistic uncertainties in human P450-catalysed metabolism of the immunomodulatory drug leflunomide, which likewise undergoes redox-mediated Kemp elimination by P450-BM3. Other isoxazole-based pharmaceuticals are probably also metabolized by a redox mechanism. Our work provides a basis for designing future artificial enzymes.
Efficient synthetic access to thermo-responsive core/shell nanoparticles.
Dine, Enaam Jamal Al; Ferjaoui, Zied; Roques-Carmes, Thibault; Schjen, Aleksandra; Meftah, Abdelaziz; Hamieh, Tayssir; Toufaily, Joumana; Schneider, Raphaël; Gaffet, Eric; Alem, Halima
2017-03-24
Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe 3 O 4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe 3 O 4 /polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.
Ultra-Fast RAFT-HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers.
Inglis, Andrew J; Stenzel, Martina H; Barner-Kowollik, Christopher
2009-11-02
The use of the reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HDA) click reaction for the modular construction of block copolymers is extended to the generation of high molecular weight materials. Cyclopentadienyl end-functionalized polystyrene (PS-Cp) prepared via both atom transfer radical polymerization (ATRP) and the RAFT process are conjugated to poly(isobornyl acrylate) (PiBoA) (also prepared via RAFT polymerization) to achieve well-defined block copolymers with molecular weights ranging from 34 000 to over 100 000 g · mol(-1) and with small polydispersities (PDI < 1.2). The conjugation reactions proceeded in a very rapid fashion (less than 10 min in the majority of cases) under ambient conditions of temperature and atmosphere. The present study demonstrates-for the first time-that RAFT-HDA click chemistry can provide access to high molecular weight block copolymers in a simple and straight-forward fashion. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khezri, Khezrollah; Fazli, Yousef
2017-10-01
Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.
Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP
NASA Astrophysics Data System (ADS)
Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming
2018-03-01
Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.
Metternich, Jan B; Sagebiel, Sven; Lückener, Anne; Lamping, Sebastian; Ravoo, Bart Jan; Gilmour, Ryan
2018-03-20
The covalent immobilization of the biomimetic, photo-organocatalyst (-)-riboflavin on silica micro- and nanoparticles via atom transfer radical polymerization (ATRP) is disclosed. Given the effectiveness of (-)-riboflavin as a versatile, environmentally benign photocatalyst, an immobilization strategy based on acrylate-linker modification of the catalyst core and controlled polymerization on initiator pre-functionalized silica particles has been developed. Validation of this approach is demonstrated in the E→Z isomerization of a benchmark cinnamonitrile (Z/E up to 88:12) with 0.97 mol % catalyst loading. Characterization of the immobilized photocatalyst supports covalent embedding of the catalyst in the polymeric brushes on the silica particle surface. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces
Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.
2012-01-01
We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region between copolymer blocks in triblock copolymers providing control over the interfacial interactions in our nanoscale phase-separated materials independent of molecular weight and block constituents. Additionally, we show the ability to retain a desirous and complex multiply-continuous network structure (alternating gyroid) in our dual-tapered triblock material. PMID:23066522
The antioxidant effect of derivatives pyroglutamic lactam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah
Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47–52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures ofmore » the synthesized compounds were elucidated using spectroscopic data and elemental analysis.« less
NASA Astrophysics Data System (ADS)
Shaheen, R.; Smirnova, V.; Jackson, T. L.; Mang, L.; Thiemens, M. H.
2016-12-01
The planet Mars is unique in our solar system with a positive O-isotope anomaly observed in its bulk silicate and carbonates minerals ranging from 0.3 to 0.6 ‰. The carbonate isotopic signature can be used to reveal its origin, past history and atmosphere-hydrosphere-geosphere-interactions. Ozone is a powerful natural tracer of photochemical processes in Earth's atmosphere. It possess the highest enrichment in heavy isotopes δ17O ≈ δ18O (70-150‰) and oxygen isotopic anomaly (Δ17O = 30-40‰). The oxygen isotopic anomaly from ozone is transferred to other oxygen carrying molecules in the atmosphere through different mechanisms. Laboratory experiments were conducted with the JSC-Mars Simulant and iron oxide to investigate how this anomaly can be transferred to water and minerals under conditions similar to present day Mars. Three sets of laboratory experiments (O3-H2O-UV-minerals; O2-H2O-UV-minerals; O3-H2O-minerals) were performed. The oxygen triple isotopic analysis of product mineral carbonates formed from adsorbed CO2 reaction showed an oxygen isotopic anomaly (Δ17O = 0.4-3‰). The oxygen triple isotopic composition of water at photochemical equilibrium shifted towards ozone with Δ17O = 9‰ indicating reaction of ozone with water vapor via electronically excited oxygen atoms and transfer of the anomaly via hydroxyl radicals. HOx (HO, HO2) are extremely reactive and have very short life time (< μs), however, our data indicate that its signature is preserved through surficial interactions with adsorbed CO2 on mineral surfaces. Hydroxyl radicals may have played a significant role in heterogeneous photochemical transformations on mineral dust in the atmosphere of Mars and transfer of ozone anomaly to water and other oxygen bearing minerals through surficial reactions. Series of experiments were performed to constrain the amount of H2O required to preserve the oxygen isotope anomaly observed in carbonate minerals in the Martian meteorites. These observation will help refine Mars photochemistry models and also to constrain the past hydrological cycle and its coupling with the regolith. The observed inverse correlation between ozone and water vapor also suggests a dynamic role of hydroxyl radical chemistry in the atmosphere of Mars.
Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi
2014-10-06
Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.
Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi
2017-10-26
Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.
Kaiser, E W; Wallington, T J
2017-11-16
The oxidation of 2-butyl radicals (and to a lesser extent 1-butyl radicals) has been studied over the temperature range of 298-735 K. The reaction of Cl atoms (formed by 360 nm irradiation of Cl 2 ) with n-butane generated the 2-butyl radicals in mixtures of n-C 4 H 10 , O 2 , and Cl 2 at temperatures below 600 K. Above 600 K, 2-butyl radicals were produced by thermal combustion reactions in the absence of chlorine. The yields of the products were measured by gas chromatography using a flame ionization detector. Major products quantified include acetone, acetic acid, acetaldehyde, butanone, 2-butanol, butanal, 1- and 2- chlorobutane, 1-butene, trans-2-butene, and cis-2-butene. At 298 K, the major oxygenated products are those expected from bimolecular reactions of 2-butylperoxy radicals (butanone, 2-butanol, and acetaldehyde). As the temperature rises to 390 K, the butanone decreases while acetaldehyde increases because of the increased rate of 2-butoxy radical decomposition. Acetone and acetic acid first appear in significant yield near 400 K, and these species rise slowly at first and then sharply, peaking near 525 K at yields of ∼25 and ∼20 mol %, respectively. In the same temperature range (400-525 K), butanone, acetaldehyde, and 2-butanol decrease rapidly. This suggests that acetone and acetic acid may be formed by previously unknown reaction channels of the 2-butylperoxy radical, which are in competition with those that lead to butanone, acetaldehyde, and 2-butanol. Above 570 K, the yields of acetone and acetic acid fall rapidly as the yields of the butenes rise. Experiments varying the Cl atom density, which in turn controls the entire radical pool density, were performed in the temperature range of 410-440 K. Decreasing the Cl atom density increased the yields of acetone and acetic acid while the yields of butanone, acetaldehyde, and 2-butanol decreased. This is consistent with the formation of acetone and acetic acid by unimolecular decomposition channels of the 2-butylperoxy radical, which are in competition with the bimolecular channels that form butanone, acetaldehyde, and 2-butanol. Such unimolecular decomposition channels would be unlikely to proceed through conventional transition states because those states would be very constrained. Therefore, the possibility that these decomposition channels proceed via roaming should be considered. In addition, we investigated and were unable to fit our data trends by a simplified ketohydroperoxide mechanism.
Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.
Greenberg, Marc M
2016-11-01
Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.
Pyrimidine nucleobase radical reactivity in DNA and RNA
NASA Astrophysics Data System (ADS)
Greenberg, Marc M.
2016-11-01
Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.
Paramagnetic Attraction of Impurity-Helium Solids
NASA Technical Reports Server (NTRS)
Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.
2003-01-01
Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.
Detection of environmentally persistent free radicals at a superfund wood treating site.
dela Cruz, Albert Leo N; Gehling, William; Lomnicki, Slawomir; Cook, Robert; Dellinger, Barry
2011-08-01
Environmentally persistent free radicals (EPFRs) have previously been observed in association with combustion-generated particles and airborne PM(2.5) (particulate matter, d < 2.5um). The purpose of this study was to determine if similar radicals were present in soils and sediments at Superfund sites. The site was a former wood treating facility containing pentachlorophenol (PCP) as a major contaminant. Both contaminated and noncontaminated (just outside the contaminated area) soil samples were collected. The samples were subjected to the conventional humic substances (HS) extraction procedure. Electron paramagnetic resonance (EPR) spectroscopy was used to measure the EPFR concentrations and determine their structure for each sample fraction. Analyses revealed a ∼30× higher EPFR concentration in the PCP contaminated soils (20.2 × 10(17) spins/g) than in the noncontaminated soil (0.7 × 10(17) spins/g). Almost 90% of the EPFR signal originated from the minerals/clays/humins fraction. GC-MS analyses revealed ∼6500 ppm of PCP in the contaminated soil samples and none detected in the background samples. Inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) analyses revealed ∼7× higher concentrations of redox-active transition metals, in the contaminated soils than the noncontaminated soil. Vapor phase and liquid phase dosing of the clays/minerals/humins fraction of the soil with PCP resulted in an EPR signal identical to that observed in the contaminated soil, strongly suggesting the observed EPFR is pentachlorophenoxyl radical. Chemisorption and electron transfer from PCP to transition metals and other electron sinks in the soil are proposed to be responsible for EPFR formation.
NASA Astrophysics Data System (ADS)
Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.
2014-07-01
The chemical processing of ethylene ices (C2H4) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH4), the C2 species acetylene (C2H2), ethane (C2H6), the ethyl radical (C2H5), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.
Studies in hot atom chemistry and radiation chemistry
NASA Astrophysics Data System (ADS)
Willard, J. E.
1980-08-01
Information on reactions of H atoms, D atoms, and Methyl radicals in CH4 and CD4 at cro cyrogenic temperature is presented. An X-ray dosimeter was developed. Radiolytic production of trapped hydrogen atoms from organic compounds in Xe, Kr, and Ar at 15 K is discussed. Relative probabilities for the reaction of H with different compounds cryogenic temperatures were derived.
Intramolecular Electron Transfer in Bis(tetraalkyl Hydrazine) and Bis(hydrazyl) Radical Cations.
NASA Astrophysics Data System (ADS)
Chang, Hao
A series of multicyclic bis(hydrazine) and bis(diazenium) compounds connected by relatively rigid hydrocarbon frameworks were prepared for the study of intramolecular electron transfer. The thermodynamics of electron removal of these compounds was investigated by cyclic voltammetry. The difference between the first and second oxidation potentials for the 4 sigma-bonded species was found to be larger for the bis(hydrazyl) radical systems than for the bis(hydrazines) by ca. 0.2 V (4.6 kcal/mol). This indicates a greater degree of interaction between the two nitrogen moieties for the hydrazyl systems, which is consistent with a greater degree of electronic coupling (H _{rm AB}) in these systems. The ESR spectra of the 4 sigma -bonded bis(hydrazine) radical cations indicate localized radical cations, which corresponds to slow intramolecular electron transfer on the ESR timescale. Conversely, the ESR spectra of the corresponding bis(hydrazyl) radical cation systems show nitrogen hyperfine splittings of a(4N) of ca. 4.5 G. This indicates that intramolecular electron transfer between the two nitrogen moieties is fast on the ESR timescale; the rate of exchange, k_ {rm ex} was estimated to be well above 1.9 times 10^8 s^{-1}. The contrast in exchange rates is consistent with the large geometry change upon oxidation which is characteristic of hydrazines. The hydrazyls undergo a smaller geometry change upon oxidation, and thus are expected to exhibit smaller inner-sphere reorganization energies. The optical spectra of these radical species was investigated in hopes of observing absorption bands corresponding to intramolecular electron transfer, as predicted by Hush theory. A broad absorption band was observed in the near IR region for the saturated bis(hydrazyl) radical cation system at 1060 nm (9420 cm^{-1} ) in acetonitrile at room temperature, and was accompanied by a narrower band at 1430 nm (6993 cm^ {-1}). The width of this band was estimated to be 545 nm (6496 cm^{-1}). A much higher energy band was observed in the UV/Vis region, at 520 nm (19,230 cm^{-1}) in acetonitrile for the corresponding bis(hydrazine) radical cation. The width of this band was estimated to be 240 nm (7211 cm^{-1}). The difference in the energies of these absorbance bands, E _{rm op}, reflects the different inner-sphere reorganization energies of the hydrazyl and hydrazine systems. Using Hush analysis, the electron coupling, H_{rm AB} , was calculated to be ca. 3.5 kcal/mol for the bis(hydrazyl) radical cation systems; a smaller value of H_{rm AB} of 1 kcal/mol was obtained for the bis(hydrazine) radical cations. This difference in electronic coupling is consistent with the faster rate of electron transfer, as well as the smaller inner-sphere reorganization energy in the bis(hydrazyl) systems.
Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank
2016-07-27
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
NASA Astrophysics Data System (ADS)
Biswas, Sohag; Dasgupta, Teesta; Mallik, Bhabani S.
2016-09-01
We present the reactivity of an organic intermediate by studying the proton transfer process from water to ketyl radical anion using gas phase electronic structure calculations and the metadynamics method based first principles molecular dynamics (FPMD) simulations. Our results indicate that during the micro solvation of anion by water molecules systematically, the presence of minimum three water molecules in the gas phase cluster is sufficient to observe the proton transfer event. The analysis of trajectories obtained from initial FPMD simulation of an aqueous solution of the anion does not show any evident of complete transfer of the proton from water. The cooperativity of water molecules and the relatively weak anion-water interaction in liquid state prohibit the full release of the proton. Using biasing potential through first principles metadynamics simulations, we report the observation of proton transfer reaction from water to ketyl radical anion with a barrier height of 16.0 kJ/mol.
Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman
2013-01-01
Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion in aqueous media. Biological implications of the minor free radical pathway are discussed in the context of ONOO− detection, using the boronate probes. PMID:21434648
Tropospheric photooxidation of CF3CH2CHO and CF3(CH2)2CHO initiated by Cl atoms and OH radicals
NASA Astrophysics Data System (ADS)
Antiñolo, M.; Jiménez, E.; Notario, A.; Martínez, E.; Albaladejo, J.
2009-11-01
The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263-371 K) and pressure (50-215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work as a detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10-11 cm3 molecule-1 s-1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kOH(CF3CH2CHO) = (0.259±0.050); kOH(CF3(CH2)2CHO) = (1.28±0.24). A slightly negative temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence in the studied ranged. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) =(4.4±1.0) × 10-11 exp{-(316±68)/T} cm3 molecule-1 s-1, kCl(CF3(CH2)2CHO) = (2.9±0.7) × 10-10 exp{-625±80)/T} cm3 molecule-1 s-1, kOH(CF3CH2CHO) = (7.8±2.2) × 10-12 exp{-(314±90)/T} cm3 molecule-1 s-1. The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)xCHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.
Tropospheric photooxidation of CF3CH2CHO and CF3(CH2)2CHO initiated by Cl atoms and OH radicals
NASA Astrophysics Data System (ADS)
Antiñolo, M.; Jiménez, E.; Notario, A.; Martínez, E.; Albaladejo, J.
2010-02-01
The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263-371 K) and pressure (50-215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work for the detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10-11 cm3 molecule-1 s-1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kCl(CF3CH2CHO) = (0.259±0.050); kCl(CF3(CH2)2CHO) = (1.28±0.24). A slightly positive temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence over the range investigated. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) = (4.4±1.0)×10-11 exp{-(316±68)/T} cm3 molecule-1 s-1 kCl(CF3(CH2)2CHO) = (2.9±0.7)×10-10 exp{-(625±80)/T} cm3 molecule-1 s-1 kOH(CF3CH2CHO) = (7.8±2.2)×10-12 exp{-(314±90)/T} cm3 molecule-1 s-1 The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)x CHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.
A novel approach for UV-patterning with binary polymer brushes.
Li, Lifu; Nakaji-Hirabayashi, Tadashi; Kitano, Hiromi; Ohno, Kohji; Saruwatari, Yoshiyuki; Matsuoka, Kazuyoshi
2018-01-01
A mixed self-assembled monolayer (SAM) of an initiator (3-(2-bromo-2-isobutyryloxy)propyl triethoxysilane) for atom transfer radical polymerization (ATRP) and an agent (6-(triethoxysilyl)hexyl 2-(((methylthio)carbonothioyl)thio)-2-phenylacetate) for reversible addition-fragmentation chain transfer (RAFT) polymerization was constructed on the surface of a silicon wafer or glass plate by a silane coupling reaction. When a UV light at 254nm was irradiated at the mixed SAM through a photomask, the surface density of the bromine atom at the end of BPE in the irradiated region was drastically reduced by UV-driven scission of the BrC bond, as observed by X-ray photoelectron spectroscopy. Consequently, the surface-initiated (SI)-ATRP of 2-ethylhexyl methacrylate (EHMA) was used to easily construct the poly(EHMA) (PEHMA) brush domain. Subsequently, SI-RAFT polymerization of a zwitterionic vinyl monomer, carboxymethyl betaine (CMB), was performed. Using the sequential polymerization, the PCMB and PEHMA brush domains on the solid substrate could be very easily patterned. Patterning proteins and cells with the binary polymer brush is expected because the PCMB brush indicated strong suppression of protein adsorption and cell adhesion, and the PEHMA brush had non-polar properties. This technique is very simple and useful for regulating the shape and size of bio-fouling and anti-biofouling domains on solid surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F
2012-05-17
The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.
Stemp, E D; Barton, J K
2000-08-21
Electron transfer from a protein to oxidatively damaged DNA, specifically from ferrocytochrome c to the guanine radical, was examined using the flash-quench technique. Ru(phen)2dppz2+ (dppz = dipyridophenazine) was employed as the photosensitive intercalator, and ferricytochrome c (Fe3+ cyt c), as the oxidative quencher. Using transient absorption and time-resolved luminescence spectroscopies, we examined the electron-transfer reactions following photoexcitation of the ruthenium complex in the presence of poly(dA-dT) or poly(dG-dC). The luminescence-quenching titrations of excited Ru(phen)2dppz2+ by Fe3+ cyt c are nearly identical for the two DNA polymers. However, the spectral characteristics of the long-lived transient produced by the quenching depend strongly upon the DNA. For poly(dA-dT), the transient has a spectrum consistent with formation of a [Ru(phen)2dppz3+, Fe2+ cyt c] intermediate, indicating that the system regenerates itself via electron transfer from the protein to the Ru(III) metallointercalator for this polymer. For poly(dG-dC), however, the transient has the characteristics expected for an intermediate of Fe2+ cyt c and the neutral guanine radical. The characteristics of the transient formed with the GC polymer are consistent with rapid oxidation of guanine by the Ru(III) complex, followed by slow electron transfer from Fe2+ cyt c to the guanine radical. These experiments show that electron holes on DNA can be repaired by protein and demonstrate how the flash-quench technique can be used generally in studying electron transfer from proteins to guanine radicals in duplex DNA.
Squarylium-triazine dyad as a highly sensitive photoradical generator for red light.
Kawamura, Koichi; Schmitt, Julien; Barnet, Maxime; Salmi, Hanene; Ley, Christian; Allonas, Xavier
2013-09-16
New dyads, based on squarylium dye and substituted-triazine, were synthesized that exhibit an intramolecular photodissociative electron-transfer reaction. The compounds were used as a red-light photoradical generator. The photochemical activity of the dyad was compared to the corresponding unlinked systems (S+T) by determining the rate constant of electron transfer. The efficiency of the radical generation from the dyad compared to the unlinked system was demonstrated by measuring the maximum rate of free radical polymerization of acrylates in film. An excellent relationship between the rate of electron transfer and the rate of polymerization was found, evidencing the interest of this new approach to efficiently produce radicals under red light. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unusual Internal Electron Transfer in Conjugated Radical Polymers.
Li, Fei; Gore, Danielle N; Wang, Shaoyang; Lutkenhaus, Jodie L
2017-08-07
Nitroxide-containing organic radical polymers (ORPs) have captured attention for their high power and fast redox kinetics. Yet a major challenge is the polymer's aliphatic backbone, resulting in a low electronic conductivity. Recent attempts that replace the aliphatic backbone with a conjugated one have not met with success. The reason for this is not understood until now. We examine a family of polythiophenes bearing nitroxide radical groups, showing that while both species are electrochemically active, there exists an internal electron transfer mechanism that interferes with stabilization of the polymer's fully oxidized form. This finding directs the future design of conjugated radical polymers in energy storage and electronics, where careful attention to the redox potential of the backbone relative to the organic radical species is needed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thiyl radicals and induction of protein degradation
Schöneich, Christian
2016-01-01
Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation. PMID:26212409
NASA Astrophysics Data System (ADS)
Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František
2016-09-01
We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2 ':6 ',2 ″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.
Nguyen, Thi Phuong; Zhang, Jie; Li, Hong; Wu, Xinchun; Cheng, Yahua
2017-01-01
This study investigates the effects of teaching semantic radicals in inferring the meanings of unfamiliar characters among nonnative Chinese speakers. A total of 54 undergraduates majoring in Chinese Language from a university in Hanoi, Vietnam, who had 1 year of learning experience in Chinese were assigned to two experimental groups that received instructional intervention, called “old-for-new” semantic radical teaching, through two counterbalanced sets of semantic radicals, with one control group. All of the students completed pre- and post-tests of a sentence cloze task where they were required to choose an appropriate character that fit the sentence context among four options. The four options shared the same phonetic radicals but had different semantic radicals. The results showed that the pre-test and post-test score increases were significant for the experimental groups, but not for the control group. Most importantly, the experimental groups successfully transferred the semantic radical strategy to figure out the meanings of unfamiliar characters containing semantic radicals that had not been taught. The results demonstrate the effectiveness of teaching semantic radicals for lexical inference in sentence reading for nonnative speakers, and highlight the ability of transfer learning to acquire semantic categories of sub-lexical units (semantic radicals) in Chinese characters among foreign language learners. PMID:29109694
π vs σ-Radical States of One-Electron Oxidized DNA/RNA Bases: A Density Functional Theory Study
Kumar, Anil; Sevilla, Michael D.
2013-01-01
As a result of their inherent planarity, DNA base radicals generated by one electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals there are a number of nucleobase analogs such as one-electron oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogs. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one electron oxidized bases of thymine, T(N3-H)•, and uracil, U(N3-H)• are very close in energy, i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one electron oxidized radicals of cytosine, C•+, C(N4-H)•, adenine, A•+, A(N6-H)•, and guanine, G•+, G(N2-H)•, G(N1-H)• the π-radicals are ca. 16 to 41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)• with three discrete water molecules in the gas phase, is found to form a three-electron σ bond between N3 atom of uracil and O atom of a water molecule but on inclusion of full solvation and discrete hydration the π-radical remains most stable.. PMID:24000793
π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study.
Kumar, Anil; Sevilla, Michael D
2013-10-03
As a result of their inherent planarity, DNA base radicals generated by one-electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals, there are a number of nucleobase analogues such as one-electron-oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogues. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one-electron-oxidized bases of thymine, T(N3-H)(•), and uracil, U(N3-H)(•), are very close in energy; i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one-electron-oxidized radicals of cytosine, C(•+), C(N4-H)(•), adenine, A(•+), A(N6-H)(•), and guanine, G(•+), G(N2-H)(•), G(N1-H)(•), the π-radicals are ca. 16-41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)(•) with three discrete water molecules in the gas phase is found to form a three-electron σ bond between the N3 atom of uracil and the O atom of a water molecule, but on inclusion of full solvation and discrete hydration, the π-radical remains most stable.
Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap.
Tscherbul, T V; Yu, H-G; Dalgarno, A
2011-02-18
We present a rigorous theoretical study of low-temperature collisions of polyatomic molecular radicals with (1)S(0) atoms in the presence of an external magnetic field. Accurate quantum scattering calculations based on ab initio and scaled interaction potentials show that collision-induced spin relaxation of the prototypical organic molecule CH(2)(X(3)B(1)) (methylene) and nine other triatomic radicals in cold (3)He gas occurs at a slow rate, demonstrating that cryogenic buffer-gas cooling and magnetic trapping of these molecules is feasible with current technology. Our calculations further suggest that it may be possible to create ultracold gases of polyatomic molecules by sympathetic cooling with alkaline-earth atoms in a magnetic trap.
Production and reactions of silicon atoms in hot wire deposition of amorphous silicon
NASA Astrophysics Data System (ADS)
Zheng, Wengang; Gallagher, Alan
2003-10-01
Decomposing silane and hydrogen molecules on a hot tungsten filament is an alternative method of depositing hydrogenated microcrystal and amorphous Si for thin-film semmiconductor devices. This "hot-wire" method can have significant advantages, such as high film deposition rates. The deposition chemistry involves Si and H atoms released from the filament, followed by their reactions with the vapor and surfaces. To establish these deposition pathways, we measure radicals at the substrate with a home built, threshold ionization mass spectrometer. The design and operation of this mass spectrometer for radical detection, and the behavior of Si atom production and reactions, will be presented. This work is supported by the National Renewable Energy Laboratory, Golden, CO 80401
Catalytic and Thermal 1,2-Rearrangement of (α-Mercaptobenzyl)trimethylsilane
NASA Astrophysics Data System (ADS)
Zhang, Jie; Cui, Mengzhong; Feng, Shengyu; Sun, Xiaomin; Feng, Dacheng
2009-09-01
The mechanisms of catalytic and thermal 1,2-rearrangement of (α-mercaptobenzyl)trimethylsilane were studied by using density functional theory (DFT) at the MP2/6-31+G(d,p)//B3LYP/6-31G(d) levels. The results show that (α-mercaptobenzyl)trimethylsilane rearranges to (benzylthio)trimethylsilane through a trimethylsilyl group migration from C to S atom via a transition state of pentacoordinate Si atom with or without radical initiators. The low reaction activation energy (15.1 kcal/mol) is responsible for the fast rearrangement in the presence of radical initiators. Both radical and nonradical thermal rearrangement mechanisms were suggested, and the radical mechanism dominates through its self-catalyzing. These results are consistent with the experiment results. The activation energy (ΔHact = 15.1 kcal/mol) for the rate-determining step within the self-catalytic cycle is low enough to make (trimethylsilylbenzyl)thiyl radical be a reasonable catalyst for the thermal rearrangement. The catalytic and thermal 1,2-rearrangement mechanisms of (α-mercaptobenzyl)trimethylsilane, especially the self-catalytic radical mechanism, were revealed for the first time. The comparison of the rearrangement mechanisms between (α-mercaptobenzyl)trimethylsilane and silylmethanethiol discloses the factors in determining the reaction mechanism of such kinds of mercaptoalkyl-functionalized organosilanes. The phenyl group is found to be favorable for the radical rearrangement, thus making (α-mercaptobenzyl)trimethylsilane instable.
Process for synthesizing a new series of fluorocarbon polymers
NASA Technical Reports Server (NTRS)
Toy, M. S.
1970-01-01
Two-step process for preparing fluorocarbon materials includes - /1/ adding gaseous fluorine to a polyperfluoropolyene to create fluorocarbon radicals, with reactive sites at unsaturated carbon atoms, and /2/ introducing a monomer, after evacuation of fluorine gas, and allowing copolymerization with the free radicals.
Thiaflavan scavenges radicals and inhibits DNA oxidation: a story from the ferrocene modification.
Lai, Hai-Wang; Liu, Zai-Qun
2014-06-23
4-Thiaflavan is a sulfur-substituted flavonoid with a benzoxathiin scaffold. The aim of this work is to compare abilities of sulfur and oxygen atom, hydroxyl groups, and ferrocene moiety at different positions of 4-thiaflavan to trap radicals and to inhibit DNA oxidation. It is found that abilities of thiaflavans to trap radicals and to inhibit DNA oxidation are increased in the presence of ferrocene moiety and are further improved by the electron-donating group attaching to thiaflavan skeleton. It can be concluded that the ferrocene moiety plays the major role for thiaflavans to be antioxidants even in the absence of phenolic hydroxyl groups. On the other hand, the antioxidant effectiveness of phenolic hydroxyl groups in thiaflavans can be improved by the electron-donating group. The influences of sulfur and oxygen atoms in thiaflavans on the antioxidant property of para-hydroxyl group exhibit different manners when the thiaflavans are used to trap radicals and to inhibit DNA oxidation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Aoyama, Yutaka; Furukawa, Takashi; Itoh, Takao; Tobita, Seiji
2006-03-01
The mechanism of the H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-naphthacenequinone (5,12-NQ) has been examined by means of laser flash photolysis at 295 K. Based on the Hammett plots and the Rehm-Weller equation for the quenching rate constants, the phenolic H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-NQ is shown to proceed via the electron transfer followed by proton transfer. The previously proposed mechanism for H-atom transfer of π,π ∗ triplets, that proton transfer is followed by electron transfer, was not verified in the present systems.
Welz, Oliver; Savee, John D.; Osborn, David L.; ...
2014-07-04
The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH 3) 2CCHCH 2OH) and isoprenol (3-methyl-3-buten-1-ol, CH 2C(CH 3)CH 2CH 2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant productsmore » arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O 2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O 2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O 2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO 2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less
New free radicals to measure antiradical capacity: a theoretical study.
León-Carmona, Jorge Rafael; Martínez, Ana; Galano, Annia
2014-08-28
A new family of free radicals, that are soluble in water and stable at all pH values, were recently synthesized and used to assess the antiradical capacity of several polyphenols. In the present work, density functional calculations were used to investigate the single electron transfer reactions between these new free radicals and polyphenols in aqueous solution. The quantification of the antiradical capacity is a challenge, particularly for polyphenols, since they become unstable under experimental conditions. It was found that the electron transfer from polyphenols to the newly developed free radicals can be used to assess the efficiency of this kind of compound for preventing oxidative stress. Since one of the free radicals can be deprotonated under experimental conditions, this newly synthesized radical can help distinguish more clearly between different antiradical compounds with similar antioxidant capacity by modifying the pH in the experiments. The results reported here are in good agreement with the available experimental data and allowed making recommendations about possible experimental conditions in the design of antioxidant assays using the investigated radicals.
Radical production from photosensitization of imidazoles
NASA Astrophysics Data System (ADS)
Corral Arroyo, P.; Gonzalez, L.; Steimer, S.; Aellig, R.; Volkamer, R. M.; George, C.; Bartels-Rausch, T.; Ammann, M.
2015-12-01
Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols containing light absorbing organic compounds (George et al., 2015). This work explores the radical reactions initiated by near-UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. Citric acid may act as H atom or electron donor in condensed phase radical cycles. IC may act as a photosensitizer. The loss of NO was measured by a chemiluminescence detector. The dependence of the NO loss on the NO concentration, the IC/CA ratio in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We also added halide salts to investigate the effect of a competing electron donor in the system and the output of halogens to the gas phase. We found a correlation between the loss of NO above the film and the molar ratio of IC/CA and the light intensity. The variation of the NO loss with oxygen corroborates a mechanism, in which the triplet excited state of IC is reduced by citric acid, to a reduced ketyl radical that transfers an electron to molecular oxygen, which in turn leads to production of HO2 radicals. Therefore, the NO loss in the gas phase is related to the production of HO2 radicals. Relative humidity had a strong impact on the HO2 output, which shows a maximum production rate at around 30%. The addition of halide ions (X- = Cl-, Br-, I-) increases the HO2 output at low concentration and decrease it at higher concentration when X2- radical ions likely scavenge HO2. We could preliminarily quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging and potentially a significant source of halogen compounds to the gas phase.
The Development of Novel, High-Flux, Heat Transfer Cells for Thermal Control in Microgravity
NASA Technical Reports Server (NTRS)
Smith, Marc K.; Glezer, Ari
1996-01-01
In order to meet the future needs of thermal management and control in space applications such as the Space Lab, new heat-transfer technology capable of much larger heat fluxes must be developed. To this end, we describe complementary numerical and experimental investigations into the fundamental fluid mechanics and heat-transfer processes involved in a radically new, self contained, heat transfer cell for microgravity applications. In contrast to conventional heat pipes, the heat transfer in this cell is based on a forced droplet evaporation process using a fine spray. The spray is produced by a novel fluidic technology recently developed at Georgia Tech. This technology is based on a vibration induced droplet atomization process. In this technique, a liquid droplet is placed on a flexible membrane and is vibrated normal to itself. When the proper drop size is attained, the droplet resonates with the surface motion of the membrane and almost immediately bursts into a shower of very fine secondary droplets. The small droplets travel to the opposite end of the cell where they impact a heated surface and are evaporated. The vapor returns to the cold end of the cell and condenses to form the large droplets that are fragmented to form the spray. Preliminary estimates show that a heat transfer cell based on this technology would have a heat-flux capacity that is an order of magnitude higher than those of current heat pipes designs used in microgravity applications.
Christians, Jeffrey A; Kamat, Prashant V
2013-09-24
In solid-state semiconductor-sensitized solar cells, commonly known as extremely thin absorber (ETA) or solid-state quantum-dot-sensitized solar cells (QDSCs), transfer of photogenerated holes from the absorber species to the p-type hole conductor plays a critical role in the charge separation process. Using Sb2S3 (absorber) and CuSCN (hole conductor), we have constructed ETA solar cells exhibiting a power conversion efficiency of 3.3%. The hole transfer from excited Sb2S3 into CuSCN, which limits the overall power conversion efficiency of these solar cells, is now independently studied using transient absorption spectroscopy. In the Sb2S3 absorber layer, photogenerated holes are rapidly localized on the sulfur atoms of the crystal lattice, forming a sulfide radical (S(-•)) species. This trapped hole is transferred from the Sb2S3 absorber to the CuSCN hole conductor with an exponential time constant of 1680 ps. This process was monitored through the spectroscopic signal seen for the S(-•) species in Sb2S3, providing direct evidence for the hole transfer dynamics in ETA solar cells. Elucidation of the hole transfer mechanism from Sb2S3 to CuSCN represents a significant step toward understanding charge separation in Sb2S3 solar cells and provides insight into the design of new architectures for higher efficiency devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikukawa, Daisuke; Hori, Masaru; Honma, Koichiro
2006-11-15
Microwave excited plasma source operating at a low pressure of 1.5 Pa was newly developed. This plasma source was successfully applied to the formation of hydrogenated microcrystalline silicon films in a glass substrate with a mixture gas of silane (SiH{sub 4}), hydrogen (H{sub 2}), and xenon (Xe). It was found that the crystallinity of films was dramatically improved with decreasing pressure. The crystalline fraction was evaluated to be 82% at a substrate temperature of 400 deg. C, a mixture gas of SiH{sub 4}/H{sub 2}/Xe: 5/200/30 SCCM, and a total pressure of 1.5 Pa by Raman spectroscopy. The absolute density ofmore » hydrogen atoms and the behavior of higher radicals and molecules in the mixture gas were evaluated using vacuum ultraviolet absorption spectroscopy and quadrupole mass spectrometer, respectively. H atom densities were of the order of 10{sup 11} cm{sup -3}. The fraction of H atom density increased, while higher radicals and molecules decreased with decrease in the total pressure. The increase in H atom density and decrease in higher radicals and molecules improved the crystallinity of films in low pressures below 10 Pa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.
2016-07-14
The photodissociation dynamics of the methyl perthiyl radical (CH{sub 3}SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH{sub 3}SS{sup −} anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH{sub 3}S and S fragments, indicating that the dissociationmore » occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S{sub 2} loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S{sub 2} and S atom products in several excited electronic states.« less
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)
1994-01-01
A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.
Fostering radical conceptual change through dual-situated learning model
NASA Astrophysics Data System (ADS)
She, Hsiao-Ching
2004-02-01
This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.
Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM.
Kitano, Kazuhiko; Inoue, Yuuki; Matsuno, Ryosuke; Takai, Madoka; Ishihara, Kazuhiko
2009-11-01
For preparing a "highly lubricated biointerface", which has both excellent lubricity and biocompatibility, we investigated the factors responsible for resistance to friction during polymer grafting. We prepared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(methyl methacrylate) (PMMA) brush layers with high graft density and well-controlled thickness using atom transfer radical polymerization (ATRP). We measured the water absorptivity in the polymer brush layers and the viscoelasticity of the polymer-hydrated layers using a quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The PMPC brush layer had the highest water absorptivity, while the PMPC-hydrated layer had the highest fluidity. The friction properties of the polymer brush layers were determined in air, water, and toluene by atomic force microscopy (AFM). The friction on each polymer brush decreased only when a good solvent was chosen for each polymer. In conclusion, the brush layer possessing high water absorptivity and fluidity in water contributes to reduce friction. PMPC grafting is an effective and promising method for obtaining highly lubricated biointerfaces.
Kavitha, Thangavelu; Abdi, Syed Izhar Haider; Park, Soo-Young
2013-04-14
Graphene oxide (GO) was functionalized covalently with pH-sensitive poly(2-(diethylamino) ethyl methacrylate) (PDEA) by surface-initiated in situ atom transfer radical polymerization. The structure of the PDEA-grafted GO (GO-PDEA) were examined by Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and atomic force microscopy. The grafted PDEA endowed the GO sheets with good solubility and stability in physiological solutions. Simple physisorption by π-π stacking and hydrophobic interactions on GO-PDEA can be used to load camptothecin (CPT), a widely used water-insoluble cancer drug. The loaded CPT was released only at the lower (acidic) pH normally found in a tumor environment but not in basic and neutral pH. GO-PDEA did not show practical toxicity to N2a cancer cells but the GO-PDEA-CPT complex exhibited high potency in killing N2a cancer cells in vitro. These results suggest that the GO-PDEA nanocargo carrier might be a promising material for site-specific anticancer drug delivery and controlled release.
New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.
Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon
2011-10-18
Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Francisco-Márquez, Misaela; Alvarez-Idaboy, J. Raul; Galano, Annia; Vivier-Bunge, Annik
2008-03-01
The reactions of isoprene and butadiene with SH rad radicals have been investigated by density functional theory and ab initio molecular orbital theories. We report the thermodynamics and kinetics of four different pathways, involving addition of SH rad radicals to all double-bonded carbon atoms. Calculations have been performed on all stationary points using BHandHLYP functional, Moller-Plesset perturbation theory to second-order (MP2) and the composite CBS-QB3 method at the MP2 optimized geometries and frequencies. Pre-reactive complexes have been identified. The apparent activation energies are negative for SH rad addition at the terminal carbon atoms and are slightly smaller than those for OH rad addition at the same positions. The calculated overall rate coefficient for butadiene + SH rad reaction at 298 K is in excellent agreement with the only available experimentally measured value. Activation energies and overall rate coefficients at different temperatures are predicted for the first time for butadiene + SH rad and isoprene + SH rad reactions. The reactions of butadiene and isoprene with SH rad radicals were found to be about four times faster than with OH rad radicals.
Hurley, M D; Wallington, T J; Laursen, L; Javadi, M S; Nielsen, O J; Yamanaka, T; Kawasaki, M
2009-06-25
Smog chamber/FTIR techniques were used to determine rate constants of k(Cl+n-butanol) = (2.21 +/- 0.38) x 10(-10) and k(OH+n-butanol) = (8.86 +/- 0.85) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 +/- 2K. The sole primary product identified from the Cl atom initiated oxidation of n-butanol in the absence of NO was butyraldehyde (38 +/- 2%, molar yield). The primary products of the Cl atom initiated oxidation of n-butanol in the presence of NO were (molar yield) butyraldehyde (38 +/- 2%), propionaldehyde (23 +/- 3%), acetaldehyde (12 +/- 4%), and formaldehyde (33 +/- 3%). The substantially lower yields of propionaldehyde, acetaldehyde, and formaldehyde as primary products in experiments conducted in the absence of NO suggests that chemical activation is important in the atmospheric chemistry of CH(3)CH(2)CH(O)CH(2)OH and CH(3)CH(O)CH(2)CH(2)OH alkoxy radicals. The primary products of the OH radical initiated oxidation of n-butanol in the presence of NO were (molar yields) butyraldehyde (44 +/- 4%), propionaldehyde (19 +/- 2%), and acetaldehyde (12 +/- 3%). In all cases, the product yields were independent of oxygen concentration over the partial pressure range of 10-600 Torr. The yields of propionaldehyde, acetaldehyde, and formaldehyde quoted above were not corrected for secondary formation via oxidation of higher aldehydes and should be treated as upper limits. The reactions of Cl atoms and OH radicals with n-butanol proceed 38 +/- 2 and 44 +/- 4%, respectively, via attack on the alpha-position to give an alpha-hydroxy alkyl radical which reacts with O(2) to give butyraldehyde. The results are discussed with respect to the atmospheric chemistry of n-butanol.
DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP.
Aied, Ahmed; Zheng, Yu; Pandit, Abhay; Wang, Wenxin
2012-02-01
Cationic polymers with various structures have been widely investigated in the areas of medical diagnostics and molecular biology because of their unique binding properties and capability to interact with biological molecules in complex biological environments. In this work, we report the grafting of a linear cationic polymer from an atom transfer radical polymerization (ATRP) initiator bound to cellulose paper surface. We show successful binding of ATRP initiator onto cellulose paper and grafting of polymer chains from the immobilized initiator with ATRP. The cellulose paper grafted polymer was used in combination with PicoGreen (PG) to demonstrate detection of nucleic acids in the nanogram range in homogeneous solution and in a biological sample (serum). The results showed specific identification of hybridized DNA after addition of PG in both solutions.
Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism
NASA Astrophysics Data System (ADS)
Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.
2011-03-01
ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.
NASA Astrophysics Data System (ADS)
Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.
2017-02-01
In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.
Influence of extraction solvent on antioxidant capacity value of oleaster measured by ORAC method.
Yalcin, Gorkem; Sogut, Ozlem
2014-01-01
Oxygen radical absorbance capacity (ORAC) is a widely used hydrogen atom transfer-based method which measures the antioxidant capacity of natural products. ORAC values of oleaster (Elaeagnus angustifolia L.), which was extracted with ethanol/acetone (7:3, v/v), ethanol/water (1:1, v/v) and methanol/water (1:1, v/v) in order to evaluate the effects of solvent type on antioxidant capacity, were examined. In general, results revealed that ethanol/water extracts exhibited better antioxidant capacity values. Furthermore, results obtained by using ORAC-eosin y (ORAC-EY), one of the widely used derivative of fluorescein (FL), as a fluorescent probe were compared with those obtained by using ORAC-FL. According to the results, ORAC-EY values were found to be compatible with ORAC-FL values.
Ferryl Protonation in Oxoiron(IV) Porphyrins and Its Role in Oxygen Transfer
Boaz, Nicholas C.; Bell, Seth R.; Groves, John T.
2015-02-04
Ferryl porphyrins, P–Fe IVmore » $=$O, are central reactive intermediates in the catalytic cycles of numerous heme proteins and a variety of model systems. There has been considerable interest in elucidating factors, such as terminal oxo basicity, that may control ferryl reactivity. Here in this study, the sulfonated, water-soluble ferryl porphyrin complexes tetramesitylporphyrin, oxoFe IVTMPS (FeTMPS-II), its 2,6-dichlorophenyl analogue, oxoFe IVTDClPS (FeTDClPS-II), and two other analogues are shown to be protonated under turnover conditions to produce the corresponding bis-aqua-iron(III) porphyrin cation radicals. The results reveal a novel internal electromeric equilibrium, P–Fe IV$=$O $$\\leftrightarrows$$ P +–Fe III(OH 2) 2. Reversible pKa values in the range of 4–6.3 have been measured for this process by pH-jump, UV–vis spectroscopy. Ferryl protonation has important ramifications for C–H bond cleavage reactions mediated by oxoiron(IV) porphyrin cation radicals in protic media. Both solvent O–H and substrate C–H deuterium kinetic isotope effects are observed for these reactions, indicating that hydrocarbon oxidation by these oxoiron(IV) porphyrin cation radicals occurs via a solvent proton-coupled hydrogen atom transfer from the substrate that has not been previously described. The effective FeO–H bond dissociation energies for FeTMPS-II and FeTDClPS-II were estimated from similar kinetic reactivities of the corresponding oxoFe IVTMPS + and oxoFe IVTDClPS + species to be ~92–94 kcal/mol. Similar values were calculated from the two-proton P +–Fe III(OH 2) 2 pK a obs and the porphyrin oxidation potentials, despite a 230 mV range for the iron porphyrins examined. Thus, the iron porphyrin with the lower ring oxidation potential has a compensating higher basicity of the ferryl oxygen. The solvent-derived proton adds significantly to the driving force for C–H bond scission.« less
Seo, Seung-Jun; Jeon, Jae-Kun; Han, Sung-Mi; Kim, Jong-Ki
2017-11-01
The Coulomb nanoradiator (CNR) effect produces the dose enhancement effects from high-Z nanoparticles under irradiation with a high-energy ion beam. To gain insight into the radiation dose and biological significance of the CNR effect, the enhancement of reactive oxygen species (ROS) production from iron oxide or gold NPs (IONs or AuNPs, respectively) in water was investigated using traversing proton beams. The dependence of nanoradiator-enhanced ROS production on the atomic Z value and proton energy was investigated. Two biologically important ROS species were measured using fluorescent probes specific to •OH or [Formula: see text] in a series of water phantoms containing either AuNPs or IONs under irradiation with a 45- or 100-MeV proton beam. The enhanced generation of hydroxyl radicals (•OH) and superoxide anions ([Formula: see text]) was determined to be caused by the dependence on the NP concentration and proton energy. The proton-induced Au or iron oxide nanoradiators exhibited different ROS enhancement rates depending on the proton energy, suggesting that the CNR radiation varied. The curve of the superoxide anion production from the Au-nanoradiator showed strong non-linearity, unlike the linear behavior observed for hydroxyl radical production and the X-ray photoelectric nanoradiator. In addition, the 45-MeV proton-induced Au nanoradiator exhibited an ROS enhancement ratio of 8.54/1.50 ([Formula: see text] / •OH), similar to that of the 100-KeV X-ray photoelectric Au nanoradiator (7.68/1.46). The ROS-based detection of the CNR effect revealed its dependence on the proton beam energy, dose and atomic Z value and provided insight into the low-linear energy transfer (LET) CNR radiation, suggesting that these factors may influence the therapeutic efficacy via chemical reactivities, transport behaviors, and intracellular oxidative stress.
Characterization and Neutralization of Arsenical-Based WWII Era Chemical Munition Fills
2006-08-01
Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen Peroxide 1.31 Perhydroxyl Radical 1.25 Permanganate 1.24 Hypobromous Acid 1.17 Chlorine...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permanganate ion is strongly attracted to the
Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry
ERIC Educational Resources Information Center
Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E.
2014-01-01
A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…
NASA Astrophysics Data System (ADS)
Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas
2016-03-01
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
Kinetic study of the reaction of chlorine atoms with hydroxyacetone in gas-phase
NASA Astrophysics Data System (ADS)
Stoeffler, Clara; Joly, Lilian; Durry, Georges; Cousin, Julien; Dumelié, Nicolas; Bruyant, Aurélien; Roth, Estelle; Chakir, Abdelkhaleq
2013-12-01
In this letter the kinetics of the reaction of hydroxyacetone CH3C(O)CH2OH with Cl atoms is investigated using the relative rate technique. Experiments are carried out in a 65 L multipass photoreactor in the temperature range of 281-350 K. A mid-infrared spectrometer based on a quantum cascade laser in external cavity emitting at 9.5 μm is used to analyze the reactants. The determined rate coefficient for the investigated reaction is (1.7 ± 0.3) × 10-11exp(381.5 ± 57.3/T). The results are presented and discussed in terms of precision and compared with those obtained previously. The impact of Cl atoms on the atmospheric life time of hydroxyacetone is also discussed. Developing analytical techniques to quantify this compound in the atmosphere. Several methods of measurement have been used including the technique of proton transfer mass spectrometry (PTR-MS) [2] and derivatization with a chemical agent such as dinitrophenylhydrazine (DNPH) [3,4] followed by GC/MS or HPLC analyses. The HA amount in the troposphere was found to be in the order of a few hundred parts per trillion by volume [4], Performing laboratory experiments in order to study the HA reactivity with atmospheric oxidants. The first study on the kinetic of the reaction between OH radicals and HA was made by Dagault et al. [5] whose work was performed at room temperature by flash photolysis-resonance fluorescence. The determined rate constant implies a lifetime of a few days for HA relative to oxidation by OH radicals. Orlando et al. performed mechanistic and kinetics studies of the reaction of HA with OH radicals and Cl atoms at room temperature using a relative method [6]. Products detection was performed using FTIR spectroscopy. Moreover, these authors studied the photolysis of HA to determine its quantum yield and UV absorption spectrum. These studies showed that HA is principally removed from the atmosphere by reaction with OH radicals. Kinetic studies of the reaction of OH radicals with HA as a function of temperature (233-298 K) were performed by Dillon et al. [7]. An experimental (laser photolysis/FIL) and theoretical approach (quantum calculation) were realized. This study showed that the oxidation of HA by OH-radicals has a negative temperature coefficient which is explained by an intermediate complex formation. Another study as a function of temperature was conducted by Butkovskaya et al. using the technique of a turbulent flow reactor coupled with a mass spectrometer chemical ionization [8]. This work was purely mechanistic and it shows that the mechanism of this reaction changes with temperature: a temperature increase favors the production yields of methanoic and ethanoic acids and reduces the formation yield of methylglyoxal [8]. Our work is motivated by the fact that the kinetic studies of the reaction of HA with chlorine radicals are rare in comparison with the kinetic studies of the reaction of HA with OH radicals. So far, only one such kinetic study is reported in the literature. It has been carried out by Orlando et al. at 294 K [6]. To the best of our knowledge, this reaction has not yet been studied as a function of temperature. Therefore, to enrich kinetic data concerning this compound, the study of HA with Cl atoms reaction as a function of temperature has been undertaken. Experiments are carried out using the relative technique in a simulation chamber coupled with an infrared Fourier transform (FTIR) spectrometer and a quantum cascade laser in external cavity (ECQCL) at 1 bar with the temperature ranging 277-350 K. Using both FTIR and ECQCL techniques allows comparing the measurements sensitivity and improving the kinetic precision determination. The FTIR spectroscopy is widely used to perform kinetic measurements whereas the ECQCL spectrometer is quite original in kinetic studies. Laser spectrometry indeed presents advantages such as high sensitivity, high resolution, and fast acquisition time compared to the FTIR spectrometer. The ECQCL principle is based on a quantum cascade laser coupled with an external cavity that includes a diffraction grating as a wavelength-selective element. The diffraction grating is rotated via a motor at a step of 0.001 cm-1 (30 MHz). As the grating position is adjusted, the wavelength-dependent feedback into the gain media is tuned. This concept of frequency selective feedback allows the laser to achieve narrow linewidth and high tunability (˜100 cm-1) [9]. Spectroscopy by ECQCL offers the possibility to record a part of the molecular rovibrational spectrum and new opportunities for kinetic studies. Results with the ECQCL spectrometry and the FTIR techniques will be presented and compared together as well as with the literature data.
Staluszka, Justyna; Steblecka, Malgorzata; Szajdzinska-Pietek, Ewa; Kohl, Ingrid; Salzmann, Christoph G; Hallbrucker, Andreas; Mayer, Erwin
2008-09-18
Hyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am. Chem. Soc. 1996, 118, 9387). In the present work, these effects are examined by X-band electron spin resonance spectroscopy (ESR) in gamma-irradiated HGW matrix containing 2'-deoxyguanosine-5'-monophosphate. Analysis of the complex ESR spectra indicates that, in addition to OH(*) and HO2(*) radicals generated by water radiolysis, three species are trapped at 77 K:(i) G(C8)H(*) radical, the H-adduct to the double bond at C8; (ii) G(- *) radical anion, the product of electron scavenging by the aromatic ring of the base; and (iii) dR(-H)(*) radicals formed by H abstraction from the sugar moiety, predominantly at the C'5 position. We discuss the yields of the radicals, their thermal stability and transformations, as well as the effect of photobleaching. This study confirms our earlier suggestion that in HGW the H atom addition/abstraction products are created at 77 K in competition with HO2(*) radicals, in a concerted process following ionization of water molecule at L-type defect sites of the H-bonded matrix. The lack of OH(*) reactivity toward the solute suggests that the H-bonded structure in HGW is much more effective in recombining OH(*) radicals than that of aqueous glasses obtained from highly concentrated electrolyte solutions. Furthermore, complementary experiments for the neat matrix have provided evidence that HO2(*) radicals are not the product of H atom reaction with molecular oxygen, possibly generated by ultrasounds used in the process of sample preparation.
Theoretical studies on Grignard reagent formation: radical mechanism versus non-radical mechanism.
Chen, Zhe-Ning; Fu, Gang; Xu, Xin
2012-12-21
Here we present a systematic theoretical investigation on the mechanisms of Grignard reagent formation (GRF) for CH(3)Cl reacting with Mg atom, Mg(2) and a series of Mg clusters (Mg(4)-Mg(20)). Our calculations reveal that the ground state Mg atom is inactive under matrix condition, whereas it is active under metal vapor synthesis (MVS) conditions. On the other hand, the excited state Mg ((3)P) atom, as produced by laser-ablation, can react with CH(3)Cl barrierlessly, and hence is active under matrix condition. We predict that the bimagnesium Grignard reagent, though often proposed, can barely be observed experimentally, due to its high reactivity towards additional CH(3)Cl to produce more stable Grignard reagent dimer, and that the cluster Grignard reagent RMg(4)X possesses a flat Mg(4) unit rather than a tetrahedral geometry. Our calculations further reveal that the radical pathway (T4) is prevalent on Mg, Mg(2) and Mg(n) clusters of small size, while the no-radical pathway (T2), which starts at Mg(4), becomes competitive with T4 as the cluster size increases. A structure-reactivity relationship between barrier heights and ionization potentials of Mg(n) is established. These findings not only resolve controversy in experiment and theory, but also provide insights which can be used in the design of effective synthesis approaches for the preparation of chiral Grignard reagents.
An environmental transfer hub for multimodal atom probe tomography.
Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E
2017-01-01
Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.
Aluminum stress increases carbon-centered radicals in soybean roots.
Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro
2010-10-15
The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Atoms in molecules, an axiomatic approach. I. Maximum transferability
NASA Astrophysics Data System (ADS)
Ayers, Paul W.
2000-12-01
Central to chemistry is the concept of transferability: the idea that atoms and functional groups retain certain characteristic properties in a wide variety of environments. Providing a completely satisfactory mathematical basis for the concept of atoms in molecules, however, has proved difficult. The present article pursues an axiomatic basis for the concept of an atom within a molecule, with particular emphasis devoted to the definition of transferability and the atomic description of Hirshfeld.
Chakraborty, Brotati; Roy, Atanu Singha; Dasgupta, Swagata; Basu, Samita
2010-12-30
Conventional spectroscopic tools such as absorption, fluorescence, and circular dichroism spectroscopy used in the study of photoinduced drug-protein interactions can yield useful information about ground-state and excited-state phenomena. However, photoinduced electron transfer (PET) may be a possible phenomenon in the drug-protein interaction, which may go unnoticed if only conventional spectroscopic observations are taken into account. Laser flash photolysis coupled with an external magnetic field can be utilized to confirm the occurrence of PET and authenticate the spin states of the radicals/radical ions formed. In the study of interaction of the model protein human serum albumin (HSA) with acridine derivatives, acridine yellow (AY) and proflavin (PF(+)), conventional spectroscopic tools along with docking study have been used to decipher the binding mechanism, and laser flash photolysis technique with an associated magnetic field (MF) has been used to explore PET. The results of fluorescence study indicate that fluorescence resonance energy transfer takes place from the protein to the acridine-based drugs. Docking study unveils the crucial role of Ser 232 residue of HSA in explaining the differential behavior of the two drugs towards the model protein. Laser flash photolysis experiments help to identify the radicals/radical ions formed in the due course of PET (PF(•), AY(•-), TrpH(•+), Trp(•)), and the application of an external MF has been used to characterize their initial spin-state. Owing to its distance dependence, MF effect gives an idea about the proximity of the radicals/radical ions during interaction in the system and also helps to elucidate the reaction mechanisms. A prominent MF effect is observed in homogeneous buffer medium owing to the pseudoconfinement of the radicals/radical ions provided by the complex structure of the protein.
NASA Astrophysics Data System (ADS)
Bahou, Mohammed; Wu, Jen-Yu; Tanaka, Keiichi; Lee, Yuan-Pern
2012-06-01
The reaction of chlorine atoms with trans-1,3-butadiene in solid para-hydrogen (p-H_2) matrix has been studied using Fourier transform infrared spectroscopy. When a mixture of Cl_2, trans-1,3-butadiene and p-H_2 was deposited onto a cold target at 3 K and irradiated by UV light at 365 nm, new intense lines at 809.0, 962.1, 1240.6 cm-1 and several weaker ones appeared. The carrier of this spectrum was assigned to the 1-chloromethylallyl radical, - (CH_2CHCH)CH_2Cl, based on the anharmonic vibrational frequencies calculated with the DFT method, indicating that the addition of the Cl atom to trans-1,3-butadiene occurs primarily at the terminal carbon atom. This is in sharp contrast to the reaction of chlorine atoms with propene in a solid p-H_2 matrix in which the addition of Cl to the central carbon atom to produce selectively the 2-chloropropyl is favored due to the steric effects. The energy diagram calculated with B3PW91 method supports this selective reaction process because 1) the channel from trans-1,3-butadiene to 1-chloro-methylallyl is almost barrierless (0.4 kcal/mol), and 2) isomereization from 1-chloromethylally to the 2-chloro-3-buten-1-yl radical, CH_2CHCHClCH_2 - by migration of Cl atom from the terminal to the central C atom, hardly occur in the p-H_2 matrix because of the isomerization barrier height (18.8 kcal/mol). We also observed a second set of lines with intense ones at 781.6, 957.93, 1433.6 cm-1 and several weaker ones when the UV-irradiated Cl_2/trans-1,3-butadiene/p-H_2 matrix was further irradiated with infrared light from a globar source. These lines are assigned to the 1-methylallyl radical, - (CH_2CHCH)CH_3, produced from reaction of 1,3-butadiene with an H atom that was produced from the reaction of Cl atoms with IR-irradiated p-H_2, Cl + H_2^* → H + HCl. The energy diagram calculated at the G3//B3LYP level similarly supports the reaction process to form selectively 1-methylallyl in the p-H_2 matrix. J. C. Amicangelo and Y. P. Lee, J. Phys. Chem. Lett. 1, 1956 (2010). J. L. Millerngelo, J. Phys. Chem. A 108, 2268 (2004).
Escape of anions from geminate recombination in THF due to charge delocalization
Chen, Hung -Cheng; Cook, Andrew R.; Asaoka, Sadayuki; ...
2017-11-24
Geminate recombination of 24 radical anions (M˙ –) with solvated protons (RH 2 +) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ – and RH 2 + together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH 2 + to M˙ –. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion ofmore » TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J –1) comprising ~29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Furthermore, three anions of oligo(9,9-dihexyl)fluorenes, F n˙ – (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 10 6 s –1. These experiments find no evidence for an inverted region for proton transfer.« less
West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus
2017-11-22
The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.
Nocturnal chlorine radical reservoir species at noon during CalNex-LA 2010
NASA Astrophysics Data System (ADS)
Mielke, L. H.; Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Stevens, P. S.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Veres, P. R.; Roberts, J. M.; Gilman, J. B.; Kuster, W. C.; Young, C. J.; Washenfelder, R. A.; Cochran, A. K.; Osthoff, H. D.
2011-12-01
While the role of the hydroxyl radical (OH) in the oxidation of volatile organic compounds (VOCs) is relatively well understood and recognized, less attention has been paid to Cl as an oxidant even though Cl is more reactive towards VOCs than OH. In the troposphere, mixing ratios of chlorine atoms are quite low (103 - 105 atoms cm-3), making them difficult to quantify directly in the atmosphere. The presence of chlorine atoms has been inferred only indirectly using hydrocarbon ratios, but this approach works well only in very remote environments. In polluted coastal urban areas such as Los Angeles, modeling studies have indicated that Cl radical initiated chemistry can have a significant impact on ozone formation. Here, chlorine atoms are produced by reaction of OH with hydrochloric acid and by photolysis of photolabile chlorine containing species, such as the nocturnally formed nitryl chloride (ClNO2) and molecular chlorine (Cl2). In this presentation, measurements of ClNO2 and Cl2 mixing ratios using chemical ionization mass spectrometry (CIMS) at the Calnex-LA campaign ground site between May 15, and June 15, 2010 are presented with a focus on their daytime abundances and photolysis to produce Cl atoms. Photolysis of ClNO2 in the morning (7 am to 10 am) produced Cl atoms at a median rate of 6.1×105 atoms cm-3 s-1. Daytime ClNO2 was observed with a median mixing ratio of 14 parts-per-trillion by volume (pptv). Assuming a steady state between ClNO2 photolysis and its formation via the reaction of Cl atom with NO2, we calculate a median Cl atom concentration of up to 1×105 atoms cm-3, approximately 3% of that of OH, which was quantified by laser induced fluorescence. Implications of Cl on the oxidation of VOCs in the Los Angeles area will be discussed. For example, methane is oxidized by Cl at a relative rate of up to half that of OH under the conditions outlined above.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.
2016-01-01
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401
Double C-H activation of ethane by metal-free SO2*+ radical cations.
de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella
2010-06-01
The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.
Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J
2016-01-01
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Li; Maity, Surajit; Abplanalp, Matt
2014-07-20
The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) andmore » n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.« less
Ryazantsev, Sergey V; Feldman, Vladimir I
2015-03-19
The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.
Bahou, Mohammed; Wu, Jen-Yu; Tanaka, Keiichi; Lee, Yuan-Pern
2012-08-28
The reactions of chlorine and hydrogen atoms with trans-1,3-butadiene in solid para-hydrogen (p-H(2)) were investigated with infrared (IR) absorption spectra. When a p-H(2) matrix containing Cl(2) and trans-1,3-butadiene was irradiated with ultraviolet light at 365 nm, intense lines at 650.3, 809.0, 962.2, 1240.6 cm(-1), and several weaker ones due to the trans-1-chloromethylallyl radical, ●(CH(2)CHCH)CH(2)Cl, appeared. Observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++g(2d, 2p) method. That the Cl atom adds primarily to the terminal carbon atom of trans-1,3-butadiene is in agreement with the path of minimum energy predicted theoretically, but in contrast to the reaction of Cl + propene in solid p-H(2) [J. Amicangelo and Y.-P. Lee, J. Phys. Chem. Lett. 1, 2956 (2010)] in which the addition of Cl to the central C atom is favored, likely through steric effects in a p-H(2) matrix. A second set of lines, intense at 781.6, 957.9, 1433.6, 2968.8, 3023.5, 3107.3 cm(-1), were observed when the UV-irradiated Cl(2)/trans-1,3-butadiene/p-H(2) matrix was further irradiated with IR light from a SiC source. These lines are assigned to the trans-1-methylallyl radical, ●(CH(2)CHCH)CH(3), produced from reaction of 1,3-butadiene with a H atom resulted from the reaction of Cl atoms with solid p-H(2) exposed to IR radiation.
Photo-induced free radicals on a simulated Martian surface
NASA Technical Reports Server (NTRS)
Tseng, S.-S.; Chang, S.
1974-01-01
Results of an electron spin resonance study of free radicals in the ultraviolet irradiation of a simulated Martian surface suggest that the ultraviolet photolysis of CO or CO2, or a mixture of both, adsorbed on silica gel at minus 170 C involves the formation of OH radicals and possibly of H atoms as the primary process, followed by the formation of CO2H radicals. It is concluded that the photochemical synthesis of organic compounds could occur on Mars if the siliceous surface dust contains enough silanol groups and/or adsorbed H2O in the form of bound water.
Matrix-isolation and computational study of H{sub 2}CCCl and H{sub 2}CCBr radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Cheng; Duarte, Luís; Khriachtchev, Leonid, E-mail: leonid.khriachtchev@helsinki.fi
2016-08-21
We report on two new radicals, H{sub 2}CCCl and H{sub 2}CCBr, prepared in low-temperature noble-gas matrices and characterized using infrared spectroscopy. These radicals are made by UV photolysis of HCCCl and HCCBr and subsequent thermal annealing to mobilize hydrogen atoms in the matrices and promote their reaction with the residual precursor molecules. Three characteristic infrared bands are observed for each radical. The assignments are supported by quantum chemical calculations at the B3LYP and CCSD(T) levels of theory with the def2-TZVPPD basis set.
Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao
2014-12-10
In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be suitable/ideal as efficient supports for high-density and reusable enzyme immobilization.
Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions☆
Shisler, Krista A.; Broderick, Joan B.
2014-01-01
The glycyl radical enzyme activating enzymes (GRE–AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe–4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE–AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE–AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE–AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. PMID:24486374
EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.
Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef
2018-05-18
We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .
Carreras, Anna; Mateos-Martín, María Luisa; Velázquez-Palenzuela, Amado; Brillas, Enric; Sánchez-Tena, Susana; Cascante, Marta; Juliá, Luis; Torres, Josep Lluís
2012-02-22
Plant polyphenols may be free radical scavengers or generators, depending on their nature and concentration. This dual effect, mediated by electron transfer reactions, may contribute to their influence on cell viability. This study used two stable radicals (tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl (TNPTM) and tris(2,4,6-trichloro-3,5-dinitrophenyl)methyl (HNTTM)) sensitive only to electron transfer reduction reactions to monitor the redox properties of polyphenols (punicalagin and catechins) that contain phenolic hydroxyls with different reducing capacities. The use of the two radicals reveals that punicalagin's substructures consisting of gallate esters linked together by carbon-carbon (C-C) bonds are more reactive than simple gallates and less reactive than the pyrogallol moiety of green tea catechins. The most reactive hydroxyls, detected by TNPTM, are present in the compounds that affect HT-29 cell viability the most. TNPTM reacts with C-C-linked gallates and pyrogallol and provides a convenient way to detect potentially beneficial polyphenols from natural sources.
Ab initio molecular dynamics of the reaction of quercetin with superoxide radical
NASA Astrophysics Data System (ADS)
Lespade, Laure
2016-08-01
Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.
Synchrotron-based valence shell photoionization of CH radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.
2016-05-28
We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less
Pauly, Anja C; Schöller, Katrin; Baumann, Lukas; Rossi, René M; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F; Scherer, Lukas J
2015-01-01
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET–ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing. PMID:27877791
NASA Astrophysics Data System (ADS)
Pauly, Anja C.; Schöller, Katrin; Baumann, Lukas; Rossi, René M.; Dustmann, Kathrin; Ziener, Ulrich; de Courten, Damien; Wolf, Martin; Boesel, Luciano F.; Scherer, Lukas J.
2015-06-01
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-responsive switching. Conventional track etched polyester membranes were first treated with plasma polymer coating introducing anchoring groups, which allowed the attachment of ATRP-initiator molecules on the membrane surface. Surface initiated ARGET-ATRP of hydroxyethylmethacrylate (where ARGET stands for activator regenerated by electron transfer) leads to a membrane covered with a polymer layer, whereas the controlled polymerization procedure allows good control over the thickness of the polymer layer in respect to the polymerization conditions. Therefore, the final permeability of the membranes could be tailored by choice of pore diameter of the initial membranes, applied monomer concentration or polymerization time. Moreover a remarkable switch in permeability (more than 1000%) upon irradiation with UV-light could be achieved. These properties enable possible applications in the field of transdermal drug delivery, filtration, or sensing.
Qu, Jian-Bo; Chen, Yan-Li; Huan, Guan-Sheng; Zhou, Wei-Qing; Liu, Jian-Guo; Zhu, Hu; Zhang, Xiao-Yun
2015-01-01
A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS-P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS-P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h(-1). In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in 'green' high-speed preparative protein chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.
Water network-mediated, electron-induced proton transfer in [C5H5N ṡ (H2O)n]- clusters
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Wolke, Conrad T.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Kelly, John T.; Tschumper, Gregory S.; Hammer, Nathan I.; Johnson, Mark A.
2015-10-01
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ṡ (H2O)n=3-5]- clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH(0), occupying one of the primary solvation sites of the OH-. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the "solvent coordinate" at the heart of a prototypical proton-coupled electron transfer reaction.
Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.
Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi
2016-09-19
Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sahu, Bibhuti Bhusan; Toyoda, Hirotaka; Han, Jeon Geon
2018-02-01
By mixing and alternating power conditions of radio frequency and microwave plasma sources, a detailed study of a-SiNx:H films in the SiH4/N2 plasma enhanced chemical vapour deposition processes is undertaken. Data reveal a remarkable coherence between the deposition conditions, material's quality, bond densities, optical property, and stoichiometry of the films. The film composition can simply vary from Si-rich to N-rich by incorporating suitable plasma and atomic radical parameters. Highly transparent and wide bandgap films with N to Si and N to H atomic ratios up to ˜2.3 and 3.1, respectively, are prepared by controlling the plasma parameters and radicals. The presented results pave the way for dual frequency PECVD utilization in a-SiNx:H films for their use in controlled-bandgap nanodevices and light emitting applications.
Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).
Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W
2015-01-21
The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.
Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)
NASA Technical Reports Server (NTRS)
Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.
1990-01-01
The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.
Tropospheric OH and Cl levels deduced from non-methane hydrocarbon measurements in a marine site
NASA Astrophysics Data System (ADS)
Arsene, C.; Bougiatioti, A.; Kanakidou, M.; Bonsang, B.; Mihalopoulos, N.
2007-05-01
In situ continuous hourly measurements of C2-C8 non-methane hydrocarbons (NMHCS) have been performed from March to October 2006 at two coastal locations on the island of Crete, in the Eastern Mediterranean. Well defined diurnal variations were observed for several short lived NMHCS (including ethene, propene, n-butane, n-pentane, n-hexane, 2-methyl-pentane). The daytime concentration of hydroxyl (OH) radicals estimated from these experimental data varied from 1.3×106 to ~4.0×106 radical cm-3, in good agreement with box-model simulations. In addition the relative variability of various hydrocarbon pairs (at least 7) was used to derive the tropospheric levels of Cl atoms. The Cl atom concentration has been estimated to range between 0.6×104 and 4.7×104 atom cm-3, in good agreement with gaseous hydrochloric acid (HCl) observations in the area. Such levels of Cl atoms can be of considerable importance for the oxidation capacity of the troposphere on a regional scale.
Indole Alkaloids from Chaetomium globosum.
Xu, Guo-Bo; He, Gu; Bai, Huan-Huan; Yang, Tao; Zhang, Guo-Lin; Wu, Lin-Wei; Li, Guo-You
2015-07-24
Two new indole alkaloids chaetocochin J (1) and chaetoglobinol A (8), along with chetomin (2), chetoseminudin A (3), cochliodinol (9), and semicochliodinol (10), were isolated from the rice culture of the fungus Chaetomium globosum. Their structures were elucidated by spectral analysis. Three new epipolythiodioxopiperazines, chaetocochins G-I (5-7), were identified by the combination of UPLC and mass spectrometric analysis. Chaetocochin I contained two sulfur bridges, one formed by three sulfur atoms between C-3 and C-11a, and the other formed by four sulfur atoms between C-3' and C-6'. Chaetocochin I was readily transformed into chetomin (2), chetoseminudin A (3), chaetocochin D (4), chaetocochin G (5), and chaetocochin H (6) by losing sulfur atoms. Compounds 1-3, and 8 exhibited antibacterial activities against Bacillus subtilis with MICs of 25, 0.78, 0.78, and 50 μg/mL, respectively, but not against Gram-negative bacterium (Escherichia coli). Compounds 2 and 8 were inactive against Candida albicans, Fusarium graminearum, Fusarium vasinfectum, Saccharomyces cerevisiae, and Aspergillus niger even at the high concentrations of 200 and 100 μg/mL, respectively. Compound 8 showed free radical scavenging capacity against the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), with IC50 values of 143.6 and 45.2 μM, respectively. The free radical scavenging capacity rates of compounds 1-3 on the DPPH and ABTS(+•) were less than 20% at the test concentrations (89.9-108.3 μM). The superoxide anion radical scavenging assay indicated that compounds 1-3, and 8 showed 14.8% (90.9 μM), 18.1% (90.9 μM), 51.5% (88.3 μM), and 30.4% (61.3 μM) superoxide anion radical scavenging capacity, respectively.
da Silva, Gabriel
2014-06-05
The reaction of benzene with ground-state atomic carbon, C((3)P), has been investigated using the G3X-K composite quantum chemical method. A suite of novel energetically favorable pathways that lead to previously unconsidered products are identified. Reaction is initiated by barrierless C atom cycloaddition to benzene on the triplet surface, producing a vibrationally excited [C7H6]* adduct that can dissociate to the cycloheptatrienyl radical (+ H) via a relatively loose transition state 4.4 kcal mol(-1) below the reactant energies. This study also identifies that this reaction adduct can isomerize to generate five-membered ring intermediates that can further dissociate to the global C7H5 minima, the fulvenallenyl radical (+ H), or to c-C5H4 and acetylene, with limiting barriers around 20 and 10 kcal mol(-1) below the reactants, respectively. If intersystem crossing to the singlet surface occurs, isomerization pathways that are lower-yet in energy are available leading to the C7H6 minima fulvenallene, with all barriers over 40 kcal mol(-1) below the reactants. From here further barrierless fragmentation to fulvenallenyl + H can proceed at ca. 25 kcal mol(-1) below the reactants. In the reducing atmospheres of planets like Jupiter and satellites like Titan, where benzene and C((3)P) are both expected, it is proposed that fulvenallene and the fulvenallenyl radical would be the dominant products of the C6H6 + C((3)P) reaction. Fulvenallenyl may also be a significant reaction product under collision-free conditions representative of the interstellar medium, although further work is required here to confirm the identity of the C7H5 radical product.
Polívka, Tomas; Niedzwiedzki, Dariusz; Fuciman, Marcel; Sundström, Villy; Frank, Harry A
2007-06-28
The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.
Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine
Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen
2015-01-01
Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302
Electron beam controlled covalent attachment of small organic molecules to graphene
NASA Astrophysics Data System (ADS)
Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena
2016-01-01
The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. Electronic supplementary information (ESI) available: A table showing the calculated binding energies and magnetic moments for all studied molecular radicals; details of samples preparation and characterization; time series of TEM images showing transformations of a C24Cl12 molecule on graphene under electron irradiation. See DOI: 10.1039/c5nr07539d
Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.
Pramod, G; Prasanthkumar, K P; Mohan, Hari; Manoj, V M; Manoj, P; Suresh, C H; Aravindakumar, C T
2006-10-12
Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsan, N.P.; Usov, O.M.; Shokhirev, N.V.
1986-07-01
The optical and ESR spectra have been examined for complexes of Cu(I) with various radicals, which contain various numbers of Cl/sup -/ ions in the central-atom coordination sphere. The spin-Hamiltonian parameters have been determined for all these radical complexes, and the observed ESR spectra have been compared with those calculated with allowance for second-order effects. The observed values for the isotropic and anisotropic components of the HFI constant from the central ion have been used to estimate the contributions from the 4s and 3d/sup 2//sub z/ orbitals of the copper ion to the unpaired-electron MO. Quantum-chemical calculations have been performedmore » by the INDO method on the electronic structures and geometries of complexes formed by CH/sub 2/OH with Cu(I) for various Cl/sup -/ contents in the coordination sphere. The radical is coordinated by the ..pi.. orbital on the carbon atom, and the stabilities of the radical complexes decrease as the number of Cl/sup -/ ions in the coordination sphere increases. A geometry close to planar for the CuCl/sub 4//sup 3 -/ fragment in a complex containing four Cl/sup -/ ions.« less
Reduction of protein radicals by GSH and ascorbate: potential biological significance.
Gebicki, Janusz M; Nauser, Thomas; Domazou, Anastasia; Steinmann, Daniel; Bounds, Patricia L; Koppenol, Willem H
2010-11-01
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×10(5) M(-1) s(-1), while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.
Block Copolymers: Synthesis and Applications in Nanotechnology
NASA Astrophysics Data System (ADS)
Lou, Qin
This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.
NASA Astrophysics Data System (ADS)
Krim, Lahouari; Nourry, Sendres
2015-06-01
In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.
Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern
2013-02-07
With infrared absorption spectra we investigated the reaction between Cl atom and pyridine (C(5)H(5)N) in a para-hydrogen (p-H(2)) matrix. Pyridine and Cl(2) were co-deposited with p-H(2) at 3.2 K; a planar C(5)H(5)N-Cl(2) complex was identified from the observed infrared spectrum of the Cl(2)/C(5)H(5)N/p-H(2) matrix. Upon irradiation at 365 nm to generate Cl atom in situ and annealing at 5.1 K for 3 min to induce secondary reaction, the 1-chloropyridinyl radical (C(5)H(5)N-Cl) was identified as the major product of the reaction Cl + C(5)H(5)N in solid p-H(2); absorption lines at 3075.9, 1449.7, 1200.6, 1148.8, 1069.3, 1017.4, 742.9, and 688.7 cm(-1) were observed. The assignments are based on comparison of observed vibrational wavenumbers and relative IR intensities with those predicted using the B3PW91/6-311++G(2d, 2p) method. The observation of the preferential addition of Cl to the N-site of pyridine to form C(5)H(5)N-Cl radical but not 2-, 3-, or 4-chloropyridine (ClC(5)H(5)N) radicals is consistent with the reported theoretical prediction that formation of the former proceeds via a barrierless path.
Synthesis and Characterization of Bioactive Tamoxifen-conjugated Polymers
Rickert, Emily L.; Trebley, Joseph P.; Peterson, Anton C.; Morrell, Melinda M.; Weatherman, Ross V.
2008-01-01
Macromolecular conjugates of tamoxifen could perhaps be used to circumvent some of the limitations of the extensively used breast cancer drug. To test the feasibility of these conjugates, a 4-hydroxytamoxifen analog was conjugated to a diaminoalkyl linker and then conjugated to activated esters of a poly(methacrylic acid) polymer synthesized by atom transfer radical polymerization. A polymer conjugated to the 4-hydroxytamoxifen analog with a six carbon linker showed high affinity for both estrogen receptor alpha and estrogen receptor beta and potent antagonism of the estrogen receptor in cell-based transcriptional reporter assays. These results suggest that the conjugation of 4-hydroxytamoxifen to a polymer results in a macromolecular conjugate that can display ligand in a manner that can be recognized by estrogen receptor and still act as a potent antiestrogen in cells. PMID:17929966
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Sipilä, Mikko; Kulmala, Markku; Herrmann, Hartmut
2015-10-15
The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.
Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.
Shisler, Krista A; Broderick, Joan B
2014-03-15
The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. Copyright © 2014. Published by Elsevier Inc.