The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...
Ozbek, N; Baysal, A
2015-02-01
The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kerfoot, Henry B.
Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…
The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5100 PC Atomic Absorption Spectrophotometer (PE 5100). These procedures are used for the determination of the target trace metal, as in soil, house dust, f...
Wang, Yu; Li, Jia-xi
2009-05-01
A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.
The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5100 PC Atomic Absorption Spectrophotometer (PE 5100). These procedures are used for the determination of the target trace metal, as in soil, house dust, f...
Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.
Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T
2005-08-01
A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.
Ultraviolet absorption experiment MA-059
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.
1976-01-01
The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.
Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael
2005-08-01
Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained.
Fast wavelength calibration method for spectrometers based on waveguide comb optical filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn
2015-04-15
A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less
González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M
2003-04-01
A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
Course on Instruments Updates Teachers.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1986
1986-01-01
Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)
NASA Astrophysics Data System (ADS)
Katskov, Dmitri A.; Sadagov, Yuri M.
2011-06-01
The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.
Messman, J.D.; Rains, T.C.
1981-01-01
A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.
The purpose of this SOP is to detail the operation and maintenance of an Instruments, SA Inc., Jobin-Yvon Model 70 (JY-70) inductively coupled plasma atomic emissions spectrometry (ICP-AES). This procedure was followed to ensure consistent data retrieval during the Arizona NHEXA...
The U.S. Environmental Protection Agency (EPA), through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. This report describes ...
Fishman, M.
1977-01-01
An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.
Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan
2014-10-01
We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.
A survey of local interstellar hydrogen from OAO-2 observations of Lyman alpha absorption
NASA Technical Reports Server (NTRS)
Savage, B. D.; Jenkins, E. B.
1972-01-01
The Wisconsin far ultraviolet spectrometer aboard OAO-2 observed the wavelength region near 1216 A for 69 stars of spectral type B2 or earlier. From the strength of the observed interstellar L sub alpha absorption, atomic hydrogen column densities were derived over distances averaging 300 pc away from the sun. The OAO data were compared to synthetic ultraviolet spectra, originally derived from earlier higher resolution rocket observations, which were computer processed to simulate the effects of absorption by different amounts of hydrogen followed by the instrumental blending.
Eisman, M; Gallego, M; Varcárcel, M
1994-02-01
A continuous-precipitation flame-atomization atomic absorption spectrometric method for the determination of papaverine and cocaine hydrochlorides is proposed. The method is based on the precipitation of reineckates by injection of Reinecke's salt into a carrier containing the alkaloids and their subsequent retention on a stainless steel filter. In this way, papaverine and cocaine hydrochlorides can be determine over the ranges 5-85 and 50-850 micrograms ml-1 with a relative standard deviation of 1.3 and 3.2%, respectively, and a sampling frequency of 150 h-1. The proposed method is more sensitive and selective for papaverine than it is for cocaine and can be applied to the determination of papaverine HCl in pharmaceutical preparations.
NASA Astrophysics Data System (ADS)
Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian
2016-12-01
Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.
[Observation of carbon-bear free radicals using far infrared laser magnetic resonance spectroscopy].
Huang, Guang-ming; Shi, Li-hua; Cai, Xin; Liu, Yu-yan
2003-06-01
The principle and technical characters of far infrared laser magnetic resonance (FIRLMR) spectrometer built up in China are introduced. A CO2 transversely pumped far infrared laser is adopted. In order to obtain high sensitivity, the sample absorption cell is placed in the FIR laser cavity and separated from laser gain cavity with thin polypropylene film. The spectrometer can be employed to study short lived free radicals. The spectra of many transient free radicals including CCH, CF and CH2 have been detected by the spectrometer. These transients are generated by mixing CH4 with the fluorine atoms produced with microwave discharge.
Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki
2017-01-01
We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.
Nowrouzi, Mohsen; Mansouri, Borhan; Nabizadeh, Sahar; Pourkhabbaz, Alireza
2014-02-01
This study determined the concentration of heavy metals (Al, Cr, Cu, and Zn) in water and sediments at nine sites in the Hara biosphere reserve of southern Iran during the summer and winter 2010. Determination of Al, Cr, Cu, and Zn in water was carried out by graphite furnace atomic absorption spectrometer (Shimadzu, AA 610s) and in sediment by flame atomic absorption spectrometer (Perkin Elmer, AA3030). Results showed that the heavy metal concentrations in the water samples decreased in the sequence of Zn > Al > Cu > Cr, while in sediment samples were Cr > Zn > Cu > Al. Data analysis indicated that with the exception of Al, there was a Pearson's correlation coefficient between pH and Cu, Zn, and Cr at α = 0.01, 0.05, and 0.001 in sediment (in winter), respectively. There were also significant differences between heavy metals of Cr, Cu, and Zn during the two seasons (p < 0.001) in the water and sediment.
Remote laser evaporative molecular absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis
2016-09-01
We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.
NASA Astrophysics Data System (ADS)
Drury, Owen Byron
We have built an X-ray spectrometer for synchrotron-based high-resolution soft X-ray spectroscopy. The spectrometer uses four 9-pixel arrays of superconducting tunnel junctions (STJs) as sensors. They infer the energy of an absorbed X-ray from a temporary increase in tunneling current. The STJs are operated in a two-stage adiabatic demagnetization refrigerator (ADR) that uses liquid nitrogen and helium for precooling to 77 K and 4.2 K, and gallium gadolinium garnet and iron ammonium sulfate to attain a base temperature below 0.1 K. The sensors are held at the end of a 40-cm-long cold finger within ˜1 cm of a sample located inside the vacuum chamber of a synchrotron beam line end station. The spectrometer has an energy resolution between 10 eV and 20 eV FWHM below 1 keV, can be operated at rates up to ˜106 counts/s. STJ spectrometers are suited for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional germanium detectors do not have enough energy resolution. We have used this STJ spectrometer at the Advanced Light Source synchrotron for spectroscopy on the lower energy X-ray absorption edges of the elements Mo, S, Fe and N. These elements play an important role in biological nitrogen fixation at the metalloprotein nitrogenase, and we have examined if STJ spectrometers can be used to provide new insights into some of the open questions regarding the reaction mechanism of this protein. We have taken X-ray absorption near-edge spectra (XANES) and extended fine structure spectra (EXAFS) of an Fe 6N(CO)15-compound containing a single N atom inside a cluster of six Fe atoms, as postulated to exist inside the Fe-S cluster of the FeMo-cofactor (FeMo-co) in nitrogenase. The STJ detector has enabled the first-ever extended range EXAFS scans on nitrogen through the oxygen K-edge, enabling a comparison with N EXAFS on FeMo-co. We have taken iron L23-edge spectra of the Fe-S cluster in FeMo-co, which can be used to measure its oxidation state despite the very small chemical shifts. We also have taken spectra on the molybdenum M-edges and on the sulfur L-edges of inorganic model compounds.
NASA Astrophysics Data System (ADS)
López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel
2018-05-01
Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.
Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin
2018-05-01
In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.
Suzuki, Y
1987-04-10
A high-performance anion-exchange liquid chromatograph coupled to visible-range (370 nm) and UV (280 nm) detectors and an atomic-absorption spectrometer allowed the rapid determination of CrVI and/or complexes of CrIII in rat plasma, erythrocyte lysate and liver supernatant treated with CrVI or CrIII in vitro. CrVI in the eluates was determined using both the visible-range detector and atomic-absorption spectrometer (AAS). The detection limits of CrVI in standard solutions using these methods were 2 and 5 ng (signal-to-noise ratio = 2), respectively. Separations of the biological components and of CrIII complexes were monitored by UV and AAS analyses, respectively. Time-related decreases of CrVI accompanied by increases in CrIII complexes were observed, indicating the reduction of CrVI by some of the biological components. The reduction rates were considerably higher in the liver supernatant and erythrocyte lysate than in the plasma. These results indicate that the anion-exchange high-performance liquid chromatographic system is useful for simultaneous determination of CrVI and CrIII complexes in biological materials.
Kazi, T G; Jalbani, N; Arain, M B; Jamali, M K; Afridi, H I; Sarfraz, R A; Shah, A Q
2009-04-15
It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.
High Sensitivity Absorption Spectroscopy on Ti II VUV Resonance Lines of Astrophysical Interest
NASA Astrophysics Data System (ADS)
Wiese, Lm; Fedchak, Ja; Lawler, Je
2000-06-01
The neutral hydrogen regions of the Interstellar Medium (ISM) of our Galaxy and distant galaxies produce simple absorption spectra because most metals are singly ionized and in their ground fine structure level. Elemental abundance measurements and other studies of the ISM rely on accurate atomic oscillator strengths (f-values) for a few key lines in the second spectra of Ti and other metals. The Ti II VUV resonance lines at 1910.6 and 1910.9 Åare important in absorption line systems in which quasars provide the continuum and the ISM of intervening galaxies is observed. Some of these absorption line systems are redshifted to the visible and observed with ground based telescopes. We report the first laboratory measurement of these Ti II VUV resonance lines. Using High Sensitivity Absorption Spectroscopy, we determined f-values for the 1910 Ålines relative to well-known Ti II resonance lines at 3067 and 3384 ÅContinuum radiation from an Aladdin Storage Ring bending magnet at the Synchrotron Radiation Center (SRC) is passed through a discharge plasma containing Ti^+. The transmitted light is analyzed by our 3m vacuum echelle spectrometer equipped with VUV sensitive CCD array. The resolving power of our spectrometer/detector array is 300,000. F-values are determined to within 10%.
Coping with effects of high dissolved salt samples on the inductively coupled plasma spectrometer
Jane E. Hislop; James W. Hornbeck; James W. Hornbeck
2002-01-01
Research on acidic forest soils typically uses unbuffered salt solutions as extractants for exchangeable cations. Our lab uses 1 M NH4C1 extractant for exchangeable cations (Ca, K, Mg, and Na) and 1 M KC1 for exchangeable aluminum. The resulting high dissolved salt solutions presented chronic analytical problems on flame atomic absorption spectrophotometer (AAS) and...
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
Mechanistic characterization of chloride interferences in electrothermal atomization systems
Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.
1988-01-01
A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.
Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization
NASA Astrophysics Data System (ADS)
Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.
The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.
Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen
NASA Technical Reports Server (NTRS)
Comes, F. J.; Speier, F.; Elzer, A.
1982-01-01
An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.
2008-05-01
We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.
NASA Astrophysics Data System (ADS)
Sugiura, Chikara
1991-08-01
The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.
Evaluation of hydrogen absorption cells for observations of the planetary coronas
NASA Astrophysics Data System (ADS)
Kuwabara, M.; Taguchi, M.; Yoshioka, K.; Ishida, T.; de Oliveira, N.; Ito, K.; Kameda, S.; Suzuki, F.; Yoshikawa, I.
2018-02-01
Newly designed Lyman-alpha absorption cells for imaging hydrogen planetary corona were characterized using an ultra high resolution Fourier transform spectrometer installed on the DESIRS (Dichroïsme Et Spectroscopie par Interaction avec le Rayonnement Synchrotron) beamline of Synchrotron SOLEIL in France. The early absorption cell installed in the Japanese Mars orbiter NOZOMI launched in 1998 had not been sufficiently optimized due to its short development time. The new absorption cells are equipped with the ability to change various parameters, such as filament shape, applied power, H2 gas pressure, and geometrical configuration. We found that the optical thickness of the new absorption cell was ˜4 times higher than the earlier one at the center wavelength of Lyman-alpha absorption, by optimizing the condition to promote thermal dissociation of H2 molecules into two H atoms on a hot tungsten filament. The Doppler temperature of planetary coronas could be determined with an accuracy better than 100 K with the performance of the newly developed absorption cell.
Çiftçi, Tülin Deniz; Henden, Emur
2016-08-01
Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.
Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J
2007-01-01
Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.
Variable thickness double-refracting plate
Hadeishi, Tetsuo
1976-01-01
This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration
2018-06-01
We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.
2016-08-10
We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less
Hydrodynamic stability and Ti-tracer distribution in low-adiabat OMEGA direct-drive implosions
NASA Astrophysics Data System (ADS)
Joshi, Tirtha R.
We discuss the hydrodynamic stability of low-adiabat OMEGA direct-drive implosions based on results obtained from simultaneous emission and absorption spectroscopy of a titanium tracer added to the target. The targets were deuterium filled, warm plastic shells of varying thicknesses and filling gas pressures with a submicron Ti-doped tracer layer initially located on the inner surface of the shell. The spectral features from the titanium tracer are observed during the deceleration and stagnation phases of the implosion, and recorded with a time integrated spectrometer (XRS1), streaked crystal spectrometer (SSCA) and three gated, multi-monochromatic X-ray imager (MMI) instruments fielded along quasi-orthogonal lines-of-sight. The time-integrated, streaked and gated data show simultaneous emission and absorption spectral features associated with titanium K-shell line transitions but only the MMI data provides spatially resolved information. The arrays of gated spectrally resolved images recorded with MMI were processed to obtain spatially resolved spectra characteristic of annular contour regions on the image. A multi-zone spectroscopic analysis of the annular spatially resolved spectra permits the extraction of plasma conditions in the core as well as the spatial distribution of tracer atoms. In turn, the titanium atom distribution provides direct evidence of tracer penetration into the core and thus of the hydrodynamic stability of the shell. The observations, timing and analysis indicate that during fuel burning the titanium atoms have migrated deep into the core and thus shell material mixing is likely to impact the rate of nuclear fusion reactions, i.e. burning rate, and the neutron yield of the implosion. We have found that the Ti atom number density decreases towards the center in early deceleration phase, but later in time the trend is just opposite, i.e., it increases towards the center of the implosion core. This is in part a consequence of the convergent effect of spherical geometry. The spatial profiles of Ti areal densities in the implosion core are extracted from space-resolved spectra and also evaluated using 1D spherical scaling. The trends are similar to the Ti number density spatial profiles. The areal densities extracted from data and 1D spherical scaling are very comparable in the outer spherical zones of the implosion core but significantly deviate in the innermost zone. We have observed that approximately 85% of the Ti atoms migrate into the hot core, while 15% of the atoms are still on the shell-fuel interface and contributing to the absorption. In addition, a method to extract the hot spot size based on the formation of the absorption feature in a sequence of annular spectra will be discussed. Results and trends are discussed as a function of target shell thickness and filling pressure, and laser pulse shape.
System Concept for Remote Measurement of Asteroid Molecular Composition
NASA Astrophysics Data System (ADS)
Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.
2016-12-01
We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.
NASA Technical Reports Server (NTRS)
Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.
1998-01-01
The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.
2013-01-01
Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327
Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca
2013-03-01
The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.
Crock, J.G.; Lichte, F.E.
1982-01-01
An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.
Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K
2017-05-01
This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration
2017-10-01
We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS
NASA Technical Reports Server (NTRS)
Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)
2001-01-01
We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.
The study of trace metal absoption using stable isotopes and mass spectrometry
NASA Astrophysics Data System (ADS)
Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.
1991-12-01
The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.
Infrared laser spectroscopy of the linear C13 carbon cluster
NASA Technical Reports Server (NTRS)
Giesen, T. F.; Van Orden, A.; Hwang, H. J.; Fellers, R. S.; Provencal, R. A.; Saykally, R. J.
1994-01-01
The infrared absorption spectrum of a linear, 13-atom carbon cluster (C13) has been observed by using a supersonic cluster beam-diode laser spectrometer. Seventy-six rovibrational transitions were measured near 1809 wave numbers and assigned to an antisymmetric stretching fundamental in the 1 sigma g+ ground state of C13. This definitive structural characterization of a carbon cluster in the intermediate size range between C10 and C20 is in apparent conflict with theoretical calculations, which predict that clusters of this size should exist as planar monocyclic rings.
NASA Technical Reports Server (NTRS)
Boyle, W. G.; Barton, G. W.
1979-01-01
The feasibility of computerized automation of the Analytical Laboratories Section at NASA's Lewis Research Center was considered. Since that laboratory's duties are not routine, the automation goals were set with that in mind. Four instruments were selected as the most likely automation candidates: an atomic absorption spectrophotometer, an emission spectrometer, an X-ray fluorescence spectrometer, and an X-ray diffraction unit. Two options for computer automation were described: a time-shared central computer and a system with microcomputers for each instrument connected to a central computer. A third option, presented for future planning, expands the microcomputer version. Costs and benefits for each option were considered. It was concluded that the microcomputer version best fits the goals and duties of the laboratory and that such an automted system is needed to meet the laboratory's future requirements.
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science
Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...
2017-05-01
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doriese, W. B.; Abbamonte, P.; Alpert, B. K.
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.
2017-05-01
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.
A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.
Doriese, W B; Abbamonte, P; Alpert, B K; Bennett, D A; Denison, E V; Fang, Y; Fischer, D A; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Jaye, C; McChesney, J L; Miaja-Avila, L; Morgan, K M; Joe, Y I; O'Neil, G C; Reintsema, C D; Rodolakis, F; Schmidt, D R; Tatsuno, H; Uhlig, J; Vale, L R; Ullom, J N; Swetz, D S
2017-05-01
We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.
In vitro percutaneous penetration and characterization of silver from silver-containing textiles
Bianco, Carlotta; Kezic, Sanja; Crosera, Matteo; Svetličić, Vesna; Šegota, Suzana; Maina, Giovanni; Romano, Canzio; Larese, Francesca; Adami, Gianpiero
2015-01-01
The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS) and by inductively coupled plasma mass spectrometer (ICP-MS). The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX). Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM). On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration) ranged from 0.7 to 4.7 μg/mL (0.6–4.0 μg/cm2), fitting the bactericidal range. Silver and silver chloride aggregates at sizes of up to 1 μm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects. PMID:25792824
NASA Astrophysics Data System (ADS)
Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi
2018-03-01
Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.
Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2 catalysts.
Izumi, Y; Nagamori, H; Kiyotaki, F; Minato, T
2001-03-01
XAFS (X-ray absorption fine structure) spectra were measured by using the fluorescence spectrometer for the emitted X-ray from sample. The chemical shifts between Cu0 and Cu1 and between CrIII and CrVI were evaluated. Tuning the fluorescence spectrometer to each energy, the Cu0 and CuI site-selective XANES for Cu/ZnO catalyst were measured. The first one was similar to the XANES of Cu metal and the second one was the 5 : 5 average of XANES for CuI sites + Cu metal. The population ratio of copper site of the Cu/ZnO catalyst was found to be Cu metal: Cu2O : CuI atomically dispersed on surface = 70(+/-23) : 22(+/-14) : 8(+/-5). Site-selective XANES for CrIII site of Cr/SiO2 catalyst was also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruschak, M.L.; Syty, A.
1982-08-01
A technique of nonflame molecular adsorption in the gas phase developed for the determination of sulfite trapped in tetrachloromercurate, is described herein for application to the determination of total sulfur in kerosene. The burner head is removed from the atomic absorption spectrometer and replaced with a flow-through absorption cell. A special reaction vessel is used to evolve SO/sub 2/ from the sulfite in a precise and convenient manner. The transient absorbance caused by the SO/sub 2/, as it is carried through the absorption cell, is measured. Both spiked and unspiked samples of kerosene were analyzed, and the reproducibility of themore » repeated runs is evidenced by a relative standard deviation from the mean of 5% for the unspiked kerosene and 4% for the spiked kerosene. If the detection level is defined as that concentration of S which gives a % S twice the standard deviation from the mean yields, the detection limit for the present method is 0.002% S by weight in kerosene.« less
Laboratory Methods for the Measurement of Pollutants in Water and Waste Effluents
NASA Technical Reports Server (NTRS)
Ballinger, Dwight G.
1971-01-01
The requirement for accurate, precise, and rapid analytical procedures for the examination of water and waste samples requires the use of a variety of instruments. The instrumentation in water laboratories includes atomic absorption, UV-visible. and infrared spectrophotometers, automatic colorimetric analyzers, gas chromatographs and mass spectrometers. Because of the emphasis on regulatory action, attention is being directed toward quality control of analytical results. Among the challenging problems are the differentiation of metallic species in water at nanogram concentrations, rapid measurement of free cyanide and free ammonia, more sensitive methods for arsenic and selenium and improved characterization of organic contaminants.
Multielectron spectroscopy: energy levels of K n+ and Rb n+ ions (n = 2, 3, 4)
NASA Astrophysics Data System (ADS)
Khalal, M. A.; Soronen, J.; Jänkälä, K.; Huttula, S.-M.; Huttula, M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Ito, K.; Andric, L.; Feng, J.; Lablanquie, P.; Palaudoux, J.; Penent, F.
2017-11-01
A magnetic bottle time-of-flight spectrometer has been used to perform spectroscopy of K n+ and Rb n+ states with ionization degrees n of 2, 3 and 4. Energy levels are directly measured by detecting in coincidence the n electrons that are emitted as a result of single photon absorption. Experimental results are compared with the energies from the NIST atomic database and ab initio multiconfiguration Dirac-Fock calculations. Previously unidentified 3p 4(3P)3d 1 4D energy levels of K2+ are assigned.
Gunduz, Sema; Akman, Suleyman
2015-04-01
Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dense periodical patterns in photonic devices: Technology for fabrication and device performance
NASA Astrophysics Data System (ADS)
Chandramohan, Sabarish
For the fabrication, focused ion beam parameters are investigated to successfully fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have recently been studied as alternative materials for plasmonic devices because of its plasmonic resonance in the visible and near-infrared ranges, material strength, CMOS compatibility and optical properties resembling gold. Coupling of light on the surface of these materials using sub-micrometer gratings gives additional capabilities for wider applications. Here we report the fabrication of gratings on the surface of zirconium nitride using gallium ion 30keV dual beam focused ion beam. Scanning electron microscope imaging and atomic force microscope profiling is used to characterize the fabricated gratings. Appropriate values for FIB parameters such as ion beam current, magnification, dwell time and milling rate are found for successful milling of dense patterns on zirconium nitride. For the device performance, a real-time image-processing algorithm is developed to enhance the sensitivity of an optical miniature spectrometer. The novel approach in this design is the use of real-time image-processing algorithm to average the image intensity along the arc shaped images registered by the monochromatic inputs on the CMOS image sensor. This approach helps to collect light from the entire arc and thus enhances the sensitivity of the device. The algorithm is developed using SiTiO2 planar waveguide. The accuracy of the mapping from x-pixel number scale of the CMOS image sensor to the wavelength spectra of the miniature spectrometer is demonstrated by measuring the spectrum of a known LED source using a conventional desktop spectrometer and comparing it with the spectrum measured by the miniature spectrometer. The sensitivity of miniature spectrometer is demonstrated using two methods. In the first method, the input laser power is attenuated to 0.1 nW and the spectra is measured using the miniature spectrometer. Even at low input power of 0.1nW, the spectrum of monochromatic inputs is observed well above the noise level. Second method is by quantitative analysis, which measures the absorption of CdSeS/ZnS quantum dots drop casted between the gratings of Ta2O5 planar single-mode waveguide. The expected guided mode attenuation introduced by monolayer of quantum dots is found to be approximately 11 times above the highest noise level from the absorption measurements. Thus, the miniature spectrometer is capable of detecting the signal from the noise level even with the absorption introduced by monolayer of quantum dots.
Kozak, Lidia; Skolasińska, Katarzyna; Niedzielski, Przemysław
2012-09-01
The paper presents the application of the hyphenated technique - high-performance liquid chromatography with atomic absorption spectrometry detection with hydride generation (HPLC-HG-AAS) - in the determinations of inorganic forms of arsenic: As(III) and As(V) in the exchangeable fraction of flood deposits. The separation of analytical signals of the determined arsenic forms was obtained using an ion-exchange column in a chromatographic system with the atomic absorption spectrometer as a detector, at the determination limits of 5 ngg(-1) for As(III) and 10 ngg(-1) for As(V). Flood deposits were collected after big flood event in valley of the Warta river which took place in summer 2010. Samples of overbank deposits were taken in Poznań agglomeration and vicinity (NW Poland). The results of determinations of arsenic forms in the exchangeable fraction of flood deposits allowed indication of a hypothetical path of deposits migration transported by a river during flood and environmental threats posed by their deposition by flood. Copyright © 2012 Elsevier Ltd. All rights reserved.
Leal, L O; Elsholz, O; Forteza, R; Cerdà, V
2006-07-28
A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.
Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.; Reardon, Kevin P.; Bida, T. A.
2013-01-01
We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K.
Differential optical absorption spectrometer for measurement of tropospheric pollutants
NASA Astrophysics Data System (ADS)
Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.
1995-05-01
Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.
Note: A flexible light emitting diode-based broadband transient-absorption spectrometer
NASA Astrophysics Data System (ADS)
Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.
2012-05-01
This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.
NASA Technical Reports Server (NTRS)
Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.
1982-01-01
The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.
Galileo Ultraviolet Spectrometer experiment
NASA Technical Reports Server (NTRS)
Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.
1992-01-01
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.
NASA Astrophysics Data System (ADS)
Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen
2010-05-01
A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.
JPL Fourier transform ultraviolet spectrometer
NASA Technical Reports Server (NTRS)
Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.
1994-01-01
The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.
Two-photon absorption dispersion spectrometer for 1.53 μm eye-safe Doppler LIDAR.
Vance, J D
2012-07-01
Based upon resonant two-photon absorption within a rubidium cell and 780 nm pump light, a birefringent medium for 1.530 μm is induced that changes rapidly with frequency. The birefringence is exploited to build a spectrometer that is capable of measuring the Doppler shift of scattered photons.
NASA Technical Reports Server (NTRS)
Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.
2001-01-01
A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.
NASA Astrophysics Data System (ADS)
Yunianto, M.; Eka, D.; Permata, A. N.; Ariningrum, D.; Wahyuningsih, S.; Marzuki, A.
2017-02-01
The objective of this study is to detect glucose content in human blood serum using optical fiber grating with LED wavelength corresponding to the absorption of glucose content in blood serum. The testing used a UV-Vis spectrometer and Rays spectrometers, in which in the ray spectrometer it was used optical fiber biosensor using optical fiber grating. The result obtained is the typical peak of glucose absorption in UV-Vis at 581 nm wavelength and rays spectrometer on green LED at 514.2 nm wavelength with linear regression result by 0.97 and 0.94, respectively.
NASA Astrophysics Data System (ADS)
Meng, Yang
Photonic circuits are becoming very promising in many different applications, such as optical amplification, optical switching and wavelength division multiplexing optical networks, lab-on-chip in bioengineering, atom-light interaction in quantum information processing, wavelength selecting and filtering in astronomy, etc. Thanks to major developments in the nanofabrication technology, smaller but more powerful photonic circuits can be made to realize more complex applications. Here we propose two on-chip photonic circuits: one is for atom-light interaction in quantum information, and the other is for an optical spectrometer in astronomy. Part I. The atom-light interaction can be used for a number of quantum based application, such as quantum information processing and atomic sensing. These significant applications make atom-light interaction a strong candidate for next-generation quantum computers and ultraprecise magnetic or navigation sensors. People have proposed various types of atom-photon interaction, and enhancing the interaction by using a small mode area has also been demonstrated in several platforms such as a hollow-core fiber, a hollow-core waveguide, a tapered fiber, and a nanowaveguide. In our work, we propose a nanowaveguide platform for collective atom-light interaction through the evanescent optical field coupling. We have demonstrated a centimeter-long silicon nitride nanowaveguide that has a sub-micrometer mode area and high fiber-to-waveguide coupling efficiencies for near-infrared wavelengths, working as evanescent field atom trapping/probing of an ensemble of 87Rb atoms. Inverse tapers are made at both ends of the waveguide that adiabatically transfer the weakly guided fiber-coupled mode to a strongly guided mode with an evanescent field for a better fiber-waveguide coupling efficiency. The coupling efficiency improves from around 2% to around 80% for both wavelengths. Trapping atoms by nanowaveguide modes is challenging because the small mode area generates high heat flux at the waveguide in an ultra-high vacuum. This platform has good thermal conductance and could transfer high enough optical powers to trap atoms in an ultra-high vacuum compared to a standalone photonic crystal waveguide with no substrate or an evanescent field coupled with a nanofiber. We have experimentally measured the optical absorption of thermal 87Rb atoms through the guided waveguide mode. We have also demonstrated an atom-chip mirror MOT with the same dimension of the platform that can be transferred to the proximity of the surface by magnetic field controls. Part II. In astronomical applications, wavelength analysis is very important especially for the wavelength selecting and filtering. Here we focus on the wavelength range from 1microm to 1.7microm. There are many valuable applications that make this near infrared wavelength range so important. For example, the Lyman-alpha line of hydrogen is one of the very important emission lines of hydrogen for understanding the origin and creation of the universe. Since the universe has expanded for more than 10 billion years after the big bang, the Lyman-alpha line of hydrogen has redshifted from 121.5nm to the 1microm-to-1.7microm wavelength range according to Hubble's Law. In addition, analysis of this wavelength range can also help us understand many other cosmic phenomena such as quasars, Gamma-ray bursts, etc. Therefore, a good spectrometer is needed to achieve this. Here we present an echelle grating which is based on an on-chip spectrometer that covers the near infrared wavelength range from 1.45um to 1.7um. To begin with, we use optical waveguides as the input and output channels. We have successfully achieved a reliable fabrication process to make the on-chip echelle-grating spectrometer. We have also achieved high fiber-waveguide coupling efficiency (94% per facet at 1550nm) and low propagation loss (-0.975dB/cm at 1550nm) for the input and output waveguides. In addition, we have characterized the bending loss of the waveguide. Finally, we have successfully measured the output spectrum of the echelle grating we designed and found it to be in good agreement with our simulation.
The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra
NASA Astrophysics Data System (ADS)
Ruffoni, M. P.
2013-07-01
The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare them to calculated data (such as from the Kurucz database [1]), predicted line parameters, and/or previously known experimental results. With additional information on the spectral response of the spectrometer, obtained from a calibrated standard light source, FT spectra may be intensity calibrated. In turn, this permits the user to calculate atomic branching fractions and oscillator strengths, and their respective uncertainties. Running time: Open ended. Defined by the user. References: [1] R.L. Kurucz (2007). URL http://kurucz.harvard.edu/atoms/.
21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...
21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...
21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...
21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...
NASA Technical Reports Server (NTRS)
Shumate, M. S.
1974-01-01
An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.
Chromium Exposure and Hygienic Behaviors in Printing Workers in Southern Thailand
Decharat, Somsiri
2015-01-01
Objectives. The main objective of this study was to assess the chromium exposure levels in printing workers. The study evaluated the airborne, serum, and urinary chromium levels and determines any correlation between level of chromium in specimen and airborne chromium levels. Material and Methods. A cross-sectional study was conducted with 75 exposed and 75 matched nonexposed subjects. Air breathing zone was measured by furnace atomic absorption spectrophotometer. Serum and urine samples were collected to determine chromium levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The printing workers' urinary chromium levels (6.86 ± 1.93 μg/g creatinine) and serum chromium levels (1.24 ± 1.13 μg/L) were significantly higher than the control group (p < 0.001 and p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene were significantly associated with urinary chromium level and serum chromium levels (p < 0.001 and p < 0.001). This study found a correlation between airborne chromium levels and urinary chromium levels (r = 0.247, p = 0.032). A multiple regression model was constructed. Significant predictors of urinary and serum chromium levels were shown in this study. Conclusion. Improvements in working conditions, occupational health training, and PPE use are recommended to reduce chromium exposure. PMID:26448746
Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet
2007-03-28
Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.
Toroidal Optical Microresonators as Single-Particle Absorption Spectrometers
NASA Astrophysics Data System (ADS)
Heylman, Kevin D.
Single-particle and single-molecule measurements are invaluable tools for characterizing structural and energetic properties of molecules and nanomaterials. Photothermal microscopy in particular is an ultrasensitive technique capable of single-molecule resolution. In this thesis I introduce a new form of photothermal spectroscopy involving toroidal optical microresonators as detectors and a pair of non-interacting lasers as pump and probe for performing single-target absorption spectroscopy. The first three chapters will discuss the motivation, design principles, underlying theory, and fabrication process for the microresonator absorption spectrometer. With an early version of the spectrometer, I demonstrate photothermal mapping and all-optical tuning with toroids of different geometries in Chapter 4. In Chapter 5, I discuss photothermal mapping and measurement of the absolute absorption cross-sections of individual carbon nanotubes. For the next generation of measurements I incorporate all of the advances described in Chapter 2, including a double-modulation technique to improve detection limits and a tunable pump laser for spectral measurements on single gold nanoparticles. In Chapter 6 I observe sharp Fano resonances in the spectra of gold nanoparticles and describe them with a theoretical model. I continued to study this photonic-plasmonic hybrid system in Chapter 7 and explore the thermal tuning of the Fano resonance phase while quantifying the Fisher information. The new method of photothermal single-particle absorption spectroscopy that I will discuss in this thesis has reached record detection limits for microresonator sensing and is within striking distance of becoming the first single-molecule room-temperature absorption spectrometer.
Remarks on a Johann spectrometer for exotic-atom research and more
NASA Astrophysics Data System (ADS)
Gotta, Detlev E.; Simons, Leopold M.
2016-06-01
General properties of a Johann-type spectrometer equipped with spherically bent crystals are described leading to simple rules of thumb for practical use. They are verified by comparing with results from Monte-Carlo studies and demonstrated by selected measurements in exotic-atom and X-ray fluorescence research.
Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry
Huffman, Claude; Mensik, J.D.; Riley, L.B.
1967-01-01
The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.
Development of near infrared spectrometer for gem materials study
NASA Astrophysics Data System (ADS)
Jindata, W.; Meesiri, W.; Wongkokua, W.
2015-07-01
Most of gem materials can be characterized by infrared absorption spectroscopy. Normally, mid infrared absorption technique has been applied for investigating fundamental vibrational modes. However, for some gem materials, such as tourmaline, NIR is a better choice due to differentiation. Most commercial NIR spectrometers employ complicated dispersive grating or Fourier transform techniques. In this work, we developed a filter type NIR spectrometer with the availability of high efficiency and low-cost narrow bandpass NIR interference filters to be taught in a physics laboratory. The instrument was designed for transmission-mode configuration. A 50W halogen lamp was used as NIR source. There were fourteen NIR filters mounted on a rotatory wheel for wavelength selection ranging from 1000-1650 nm with steps of 50 nm. A 1.0 mm diameter of InGaAs photodiode was used as the detector for the spectrometer. Hence, transparent gem materials can be used as samples for experiment. Student can learn vibrational absorption spectroscopy as well as Beer-Lambert law from the development of this instrument.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.
2014-01-01
Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.
Multiple-Path-Length Optical Absorbance Cell
NASA Technical Reports Server (NTRS)
2001-01-01
An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,
Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy
Klein, Alexander; Witzel, Oliver; Ebert, Volker
2014-01-01
We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508
[Determination of trace amounts of zinc in nickel electrolyte by flow injection on-line enrichment].
Zhou, Z; Wang, Y; Dong, Z; Tong, K; Guo, X; Guo, X
1999-10-01
A method for the determination of trace amount of zinc in nickel electrolyte utilizing the flow injection on-line enrichment technique is reported in this paper. Atomic absorption spectrometer was used as detector. Zinc was separated from large amounts of nickel andother components in the electrolyte by absorption its chlorocomplex on a mini-column packed with strongly basic anion exchangers. It was found that sodium chloride containing in the electrolyte offered a sufficient chloride concentration needed for the formation of the zinc chlorocomplex and thus no additional reagent was required for the determination. The throughput of the method is 30 determinations per hour. The detection limit of the method is 0.002 microg x mL(-1) and the precision is 1.9% (RSD). The proposed method is rapid and cost-effective. It has been used for almost three years in the quality control of the electrolyte in the factory with great success.
NASA Astrophysics Data System (ADS)
Tallant, D. R.; Jungst, R. G.
1981-04-01
A dual base diode laser spectrometer was constructed using off axis reflective optics. The spectrometer was amplitude modulated for direct absorption measurements or frequency modulated to obtain derivative spectra. The spectrometer had: high throughput; was easy to operate and align; provided good dual beam compensation; and had no evidence of the interference effects that were observed in diode laser spectrometers using refractive optics. Unpurged, using second derivative techniques, the instrument measured 108 parts per million CO (10/cm absorption cell, atmospheric pressure broadened) with good signal/noise. With the replacement of marginal instrumental components, the signal/noise was substantially increased. This instrument was developed to monitor the evolution of decomposition gases in sealed containers of small volume at atmospheric pressure.
Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere
NASA Technical Reports Server (NTRS)
Podolske, James; Loewenstein, Max
1993-01-01
This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.
Lens system for a photo ion spectrometer
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1990-01-01
A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.
NASA Technical Reports Server (NTRS)
Spiers, Gary D.; Menzies, Robert T.
2008-01-01
The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Absorption D 3697-07 Atomic Absorption; Furnace 3113 B Axially viewed inductively coupled plasma-atomic... C Hydride Atomic Absorption 3114 B D 2972-08 B Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. Barium Inductively Coupled Plasma 3120 B Atomic...
NASA Astrophysics Data System (ADS)
Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang
2011-10-01
We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.
Sulfur determination in coal using molecular absorption in graphite filter vaporizer.
Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo
2011-02-15
The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikukawa, Daisuke; Hori, Masaru; Honma, Koichiro
2006-11-15
Microwave excited plasma source operating at a low pressure of 1.5 Pa was newly developed. This plasma source was successfully applied to the formation of hydrogenated microcrystalline silicon films in a glass substrate with a mixture gas of silane (SiH{sub 4}), hydrogen (H{sub 2}), and xenon (Xe). It was found that the crystallinity of films was dramatically improved with decreasing pressure. The crystalline fraction was evaluated to be 82% at a substrate temperature of 400 deg. C, a mixture gas of SiH{sub 4}/H{sub 2}/Xe: 5/200/30 SCCM, and a total pressure of 1.5 Pa by Raman spectroscopy. The absolute density ofmore » hydrogen atoms and the behavior of higher radicals and molecules in the mixture gas were evaluated using vacuum ultraviolet absorption spectroscopy and quadrupole mass spectrometer, respectively. H atom densities were of the order of 10{sup 11} cm{sup -3}. The fraction of H atom density increased, while higher radicals and molecules decreased with decrease in the total pressure. The increase in H atom density and decrease in higher radicals and molecules improved the crystallinity of films in low pressures below 10 Pa.« less
NASA Astrophysics Data System (ADS)
Cizdziel, James V.; Tolbert, Candice; Brown, Garry
2010-02-01
A Direct Mercury Analyzer (DMA) based on sample combustion, concentration of mercury by amalgamation with gold, and cold vapor atomic absorption spectrometry (CVAAS) was coupled to a mercury-specific cold vapor atomic fluorescence spectrometer (CVAFS). The purpose was to evaluate combustion-AFS, a technique which is not commercially available, for low-level analysis of mercury in environmental and biological samples. The experimental setup allowed for comparison of dual measurements of mercury (AAS followed by AFS) for a single combustion event. The AFS instrument control program was modified to properly time capture of mercury from the DMA, avoiding deleterious combustion products from reaching its gold traps. Calibration was carried out using both aqueous solutions and solid reference materials. The absolute detection limits for mercury were 0.002 ng for AFS and 0.016 ng for AAS. Recoveries for reference materials ranged from 89% to 111%, and the precision was generally found to be <10% relative standard deviation (RSD). The two methods produced similar results for samples of hair, finger nails, coal, soil, leaves and food stuffs. However, for samples with mercury near the AAS detection limit (e.g., filter paper spotted with whole blood and segments of tree rings) the signal was still quantifiable with AFS, demonstrating the lower detection limit and greater sensitivity of AFS. This study shows that combustion-AFS is feasible for the direct analysis of low levels of mercury in solid samples that would otherwise require time-consuming and contamination-prone digestion.
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Lens system for a photo ion spectrometer
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1990-11-27
A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.
High-performance dispersive Raman and absorption spectroscopy as tools for drug identification
NASA Astrophysics Data System (ADS)
Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald
2009-02-01
Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.
Compact hydrogen/helium isotope mass spectrometer
Funsten, Herbert O.; McComas, David J.; Scime, Earl E.
1996-01-01
The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).
NASA Technical Reports Server (NTRS)
Webster, C. R.
1985-01-01
A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.
Capillary absorption spectrometer and process for isotopic analysis of small samples
Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.
2016-03-29
A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.
Capillary absorption spectrometer and process for isotopic analysis of small samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.
A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.
Airborne interferometer for atmospheric emission and solar absorption.
Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G
2001-10-20
The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.
ERIC Educational Resources Information Center
Correia, Paulo R. M.; Oliveira, Pedro V.
2004-01-01
The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…
Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer
NASA Astrophysics Data System (ADS)
Hay, K. G.; Duxbury, G.; Langford, N.
2010-06-01
Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.
Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo
2013-01-01
As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).
Scanning imaging absorption spectrometer for atmospheric chartography
NASA Technical Reports Server (NTRS)
Burrows, John P.; Chance, Kelly V.
1991-01-01
The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.
NASA Astrophysics Data System (ADS)
Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.
2015-10-01
We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.
Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities
NASA Astrophysics Data System (ADS)
Ping, Yuan
2005-10-01
We present the first absorption measurements at laser intensity between 10^17 to 10^20 W/cm^2 using an intergrating sphere and a suite of diagnostics that measures scale length, hot electrons and laser harmonics. A much-enhanced absorption in the regime of relativestic electron heating was observed. Furthermore, we present measurements on the partitioning of absorbed laser energy into thermal and non-thermal electrons when illuminating solid targets from 10^17 to 10^19 W/cm^2. This was measured using a sub-picosecond x-ray streak camera interfaced to a dual crystal von H'amos crystal spectrograph, a spherical crystal x-ray imaging spectrometer, an electron spectrometer and optical spectrometer. Our data suggests an intensity dependent energy-coupling transition with greater energy portion into non-thermal electrons that rapidly transition to thermal electrons. The details of these experimental results and modeling simulations will be presented.
Flameless atomic-absorption determination of gold in geological materials
Meier, A.L.
1980-01-01
Gold in geologic material is dissolved using a solution of hydrobromic acid and bromine, extracted with methyl isobutyl ketone, and determined using an atomic-absorption spectrophotometer equipped with a graphite furnace atomizer. A comparison of results obtained by this flameless atomic-absorption method on U.S. Geological Survey reference rocks and geochemical samples with reported values and with results obtained by flame atomic-absorption shows that reasonable accuracy is achieved with improved precision. The sensitivity, accuracy, and precision of the method allows acquisition of data on the distribution of gold at or below its crustal abundance. ?? 1980.
Measurement and reduction of low-level radon background in the KATRIN experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fränkle, F. M.
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c{sup 2}. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn)more » atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.« less
Measurement and reduction of low-level radon background in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Fränkle, F. M.
2013-08-01
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c2. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn) atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.
Flameless Atomic Absorption Spectroscopy: Effects of Nitrates and Sulfates.
1980-05-01
ATTACHED DDJ~P 1413 EDITION 01 INO, 6 5 IabSoLEr J UjN!LbAa~ A- i SELU 0 IONOF I tG 651 J Flameless Atomic Absorption Spectroscopy: Effects of Nitrates...analytical techniques, flameless atomic absorption is subject to matrix or interference effects. Upon heating, nitrate and sulfate salts decompose to...Eklund and J.E. Smith, Anal Chem, 51, 1205 (1979) R.H. Eklund and J.A. Holcombe, Anal Chim. Acta, 109, 97 (1979) FLAMELESS ATOMIC ABSORPTION
Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru
2016-01-01
UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.
NASA Astrophysics Data System (ADS)
Maamary, Rabih; Fertein, Eric; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Chen, Changshui; Chen, Weidong
2017-07-01
We report on the measurements of the effective line intensities of the ν1 fundamental band of trans-nitrous acid (trans-HONO) in the infrared near 3600 cm-1 (2.78 μm). A home-made widely tunable laser spectrometer based on difference-frequency generation (DFG) was used for this study. The strengths of 28 well-resolved absorption lines of the ν1 band were determined by scaling their absorption intensities to the well referenced absorption line intensity of the ν3 band of trans-HONO around 1250 cm-1 recorded simultaneously with the help of a DFB quantum cascade laser (QCL) spectrometer. The maximum measurement uncertainty of 12% in the line intensities is mainly determined by the uncertainty announced in the referenced line intensities, while the measurement precision in frequency positions of the absorption lines is better than 6×10-4 cm-1. The cross-measurement carried out in the present work allows one to perform intensity calibration using well referenced line parameters.
[Study on lead absorption in pumpkin by atomic absorption spectrophotometry].
Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng
2008-07-01
A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.
21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Atomic absorption spectrophotometer for clinical... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification...
Linear electric field time-of-flight ion mass spectrometer
Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM
2008-06-10
A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1992-01-01
Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M
2012-04-23
A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)). © 2012 Optical Society of America
Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.
Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel
2009-06-22
Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.
Absorption and emission spectra of Li atoms trapped in rare gas matrices
NASA Astrophysics Data System (ADS)
Wright, J. J.; Balling, L. C.
1980-10-01
Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.
The differential absorption hard x-ray spectrometer at the Z facility
Bell, Kate S.; Coverdale, Christine A.; Ampleford, David J.; ...
2017-08-03
The Differential Absorption Hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of 7 Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the Hard X-Ray Spectrometer (HXRS) that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources drivenmore » by the Z Machine.« less
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.
2013-01-01
The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.
Inter/intra molecular dynamics in gases and liquids studied by terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Xin, Xuying
This thesis presents a description of the low-frequency terahertz (THz) absorption spectrum of a variety of materials that are of interest to many biological and chemical processes. The work described here encompasses the development of time-domain THz spectrometers, based on amplified Ti: Sapphire lasers systems as well as mode-locked Erbium doped fiber lasers as the driving source. These systems were applied to characterize the absorption spectrum of liquid water and water vapor, heavy water vapor, methanol vapor and tryptophan in the 0.2-2.2THz frequency range. The absorption profiles observed are closely related to the intermolecular or intramolecular motions in the materials of interest. In liquid water, the absorption profile shows evidence for modes due to large-scale structure amongst individual water molecules. The effects on the overall absorption profile are further deduced by the addition of various solutes which can enhance or break the formation of molecule networks. Various solutions are examined such as KCl in liquid water. Ions can change the strength of hydrogen bond in liquid water in the similar way as temperature does. Both K+ and Cl- are considered to be strong "structure breakers" in terms of their functions as softening the strength of hydrogen bond in liquid water. Theoretically, this will cause a red shift of some mode frequencies, reducing the absorption intensity at those frequencies and, at the same time, increasing the absorption at non-mode frequencies toward the vicinity of the low frequencies. For liquid water, the vapor phase was also examined, where for varying concentrations (humidity) Beer's Law does not hold to explain the observed absorption profiles. Again the reduced absorption of certain modes is explained by interactions between water monomers and their nature due to hydrogen spins. There are two species of water molecules in terms of the nuclear spin effect of hydrogen atoms in water molecule, ortho-water and para-water. The two types of water molecules present significantly different properties, e.g. different surface adsorption on metals. The effects of para-water and ortho-water on the THz absorption profile are discussed. Finally, I discuss the absorption profile of methanol vapor and tryptophan. In methanol vapor we observe coherent echoes after absorption by a THz transient and attribute it to the relaxation of the molecule due to the regularly spaced rotational manifold. In tryptophan two distinct absorption modes are observed due to torsional modes. These "soft-modes" are calculated and attributed to intramolecular motions between various atoms. The results of this body of work are discussed in the context of applications ranging from medicine, pharmaceuticals and the cosmetics industries.
NASA Astrophysics Data System (ADS)
Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.
2014-03-01
The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.
Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.
ERIC Educational Resources Information Center
Horlick, Gary
1984-01-01
This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…
Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.
Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng
2018-08-17
Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.
Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.
ERIC Educational Resources Information Center
Smith, Gregory D.; And Others
1995-01-01
Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, John; Mishra, Ashok Kumar
2016-01-15
It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.
Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438
NASA Technical Reports Server (NTRS)
Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.
2000-01-01
The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.
A high flux source of swift oxygen atoms
NASA Technical Reports Server (NTRS)
Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.
1987-01-01
A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV.
Lead in human blood and milk from nursing women living near a smelter in Mexico City.
Namihira, D; Saldivar, L; Pustilnik, N; Carreón, G J; Salinas, M E
1993-03-01
Lead levels in breast milk and blood were determined in women living within a 200-m radius of 3 smelters in Mexico City. All samples were analyzed on a Perkin Elmer 460 atomic absorption spectrometer equipped with HGA 2200. The mean blood lead level was 45.88 micrograms/dl (SD 19.88 microgram/dl), and the geometric mean of milk lead level was 2.47 micrograms/100 ml. The correlation coefficient of these two variables was 0.88. Using the mean value of lead found in breast milk, an infant of 5.5 kg would ingest 8.1 micrograms/kg/d in his diet. The daily permissible intake (DPI) established by the World Health Organization (WHO) in 1972 for an adult is 5.0 micrograms/kg/d.
NASA Astrophysics Data System (ADS)
Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest
2018-06-01
The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.
Continuous time-of-flight ion mass spectrometer
Funsten, Herbert O.; Feldman, William C.
2004-10-19
A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.
NASA Astrophysics Data System (ADS)
Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.
2016-02-01
We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.
NASA Technical Reports Server (NTRS)
Chance, Kelly V.; Burrows, John P.; Schneider, Wolfgang
1991-01-01
The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well.
Determination of iridium in mafic rocks by atomic absorption
Grimaldi, F.S.; Schnepfe, M.M.
1970-01-01
Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.
High-energy e- /e+ spectrometer via coherent interaction in a bent crystal
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander
2018-01-01
We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.
Uric acid detection using uv-vis spectrometer
NASA Astrophysics Data System (ADS)
Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.
2017-10-01
The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.
NASA Technical Reports Server (NTRS)
Burnett, K.; Cooper, J.
1980-01-01
The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.
Ferrographic and spectrometer oil analysis from a failed gas turbine engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1982-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, S.D.
1996-06-11
A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.
Ultralow field NMR spectrometer with an atomic magnetometer near room temperature
NASA Astrophysics Data System (ADS)
Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin
2013-12-01
We present a Cs atomic magnetometer with a sensitivity of 150 fT/Hz1/2 operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125 μL tap water was detected at an ultralow magnetic field down to 47 nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.
ERIC Educational Resources Information Center
Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey
2004-01-01
An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…
Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry
Elsheimer, H.N.; Fries, T.L.
1990-01-01
A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.
Even-parity resonances with synchrotron radiation from Laser Excited Lithium at 1s^22p State
NASA Astrophysics Data System (ADS)
Huang, Ming-Tie; Wehlitz, Ralf
2010-03-01
Correlated many-body dynamics is still one of the unsolved fundamental problems in physics. Such correlation effects can be most clearly studied in processes involving single atoms for their simplicity.Lithium, being the simplest open shell atom, has been under a lot of study. Most of the studies focused on ground state lithium. However, only odd parity resonances can be populated through single photon (synchrotron radiation) absorption from ground state lithium (1s^22s). Lithium atoms, after being laser excited to the 1s^22p state, allow the study of even parity resonances. We have measured some of the even parity resonances of lithium for resonant energies below 64 eV. A single-mode diode laser is used to excite lithium from 1s^22s ground state to 1s^22p (^2P3/2) state. Photoions resulting from the interaction between the excited lithium and synchrotron radiation were analyzed and collected by an ion time-of-flight (TOF) spectrometer with a Z- stack channel plate detector. The Li^+ ion yield was recorded while scanning the undulator along with the monochromator. The energy scans have been analyzed regarding resonance energies and parameters of the Fano profiles. Our results for the observed resonances will be presented.
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-12-26
A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.
Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry
NASA Technical Reports Server (NTRS)
Lee, G. H.
1967-01-01
Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.
Performance of the Fourier transform spectrometer (FTS) for FIS onboard ASTRO-F
NASA Astrophysics Data System (ADS)
Murakami, Noriko; Kawada, Mitsunobu; Takahashi, Hidenori; Ozawa, Keita; Imamura, Tetsuo; Shibai, Hiroshi; Nakagawa, Takao
2004-10-01
We have developed the imaging Fourier Transform Spectrometer (FTS) for the FIS (Far-Infrared Surveyor) onboard the ASTRO-F satellite. A Martin-Puplett interferometer is adopted to achieve high optical efficiency in a wide wavelength range. The total optical efficiency of this spectrometer is achieved 40-80% of the ideal value which is 25% of the incident flux. The wavelength range of 50-200μm is covered with two kinds of detector; the monolithic Ge:Ga photoconductor array for short wavelength (50-110μm) and the stressed Ge:Ga photoconductor array for long wavelength (110-200μm). The spectral resolution expected from the maximum optical path difference is 0.18cm-1. In order to evaluate the spectral resolution of the FTS, we measured absorption lines of H2O in atmosphere using the optics of the FTS with a bolometer at the room temperature. The measured line widths are consistent with the expected instrumental resolution of 0.18 cm-1. Some spectral measurements at the cryogenic temperature were carried out by using cold blackbody sources whose temperatures are controlled in a range from 20 to 50 K. The derived spectra considering with the spectral response of the system are consistent with expected ones. Spectroscopic observations with the FTS will provide a lot of astronomical information; SED of galaxies detected in the all sky survey and the physical diagnostics of the interstellar matter by using the excited atomic or molecular lines.
Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A
2008-01-01
A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.
Issa, M. M.; Nejem, R. M.; El-Abadla, N. S.; Al-Kholy, M.; Saleh, Akila. A.
2008-01-01
A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 μg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 μg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 μg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%. PMID:20046743
NASA Technical Reports Server (NTRS)
Gaydukov, V. Y.; Istomin, V. G.; Romanovskiy, Y. A.
1979-01-01
A mass spectrometer on board Cosmos-274 measured concentrations of light atoms and ions. While traversing the geomagnetic equator during the evening hours it recorded on anomalous drop in ionized molecular oxygen and ionized atomic oxygen and nitrogen. A similar, less dramatic, decline was observed in the concentration of neutral atomic oxygen. A possible explanation for this and previously observed behavior is an ascent in altitude of the F layer in the hours after sunset, a possibility which is supported by calculations.
A photoacoustic spectrometer for trace gas detection
NASA Astrophysics Data System (ADS)
Telles, E. M.; Bezerra, E.; Scalabrin, A.
2005-06-01
A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
Effects of long-duration exposure on optical system components
NASA Technical Reports Server (NTRS)
Harvey, Gale A.
1991-01-01
The optical materials and UV detectors experiment (SOO50-1) was a set of 18 optical windows, filters, and ultraviolet detectors. The optical specimens were all retrieved in excellent condition. No delamination or blistering of the filters occurred. No discoloration of the optical window materials occurred, but the MgF2 window did experience roughing. The most notable degradation of the optics were the deposition of an organic film on the exposed surfaces. The film absorption was measured using a Fourier transform infrared spectrometer and a UV spectrometer. The 6 percent absorption at 3.4 microns corresponds to about 100 mgm/sq ft of organic film. The UV absorption was almost 100 percent at 200 nm and about 50 percent at 380 nm.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Slow light enhanced gas sensing in photonic crystals
NASA Astrophysics Data System (ADS)
Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.
2018-02-01
Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.
2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...
2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO
The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...
Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1980-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.
NASA Astrophysics Data System (ADS)
Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.
2014-04-01
A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.
NASA Astrophysics Data System (ADS)
Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong
2016-10-01
To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.
Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance
NASA Astrophysics Data System (ADS)
Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena
2017-11-01
A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.
Do Atoms Really "Emit" Absorption Lines?
ERIC Educational Resources Information Center
Brecher, Kenneth
1991-01-01
Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)
Ashy, M A; Headridge, J B; Sowerbutts, A
1974-06-01
Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.
Efficiency of the High Efficiency Total Absorption Spectrometer (HECTOR)
NASA Astrophysics Data System (ADS)
Sprowal, Zaire; Simon, Anna; Reingold, Craig; Spyrou, Artemis; Naqvi, Farheen; Dombos, Alexander; Palmisano, Alicia; Anderson, Tyler; Anderson, Samuel; Moylan, Shane; Seymour, Christopher; Skulski, Michael; Smith, Mallory K.; Strauss, Sabrina; Kolk, Byant Vande
2016-09-01
The p-process is a nucleosynthesis process that occurs in explosive environments such as type II and Ia supernovae and is responsible for production of heavy proton rich nuclei. Gamma rays emitted during these explosions induce several photo-disintegration reactions: (γ,n), (γ,p), and (γ , α). To study these interactions, the inverse of these reactions are measured experimentally. The High Efficiency TOtal absorption spectrometeR (HECTOR) at the University of Notre Dame was built for measuring these reactions. Standard gamma sources 60Co and 137Cs and known resonances in 27Al(p, γ)28Si reaction were used to experimentally determine HECTOR's summing efficiency. Here, the preliminary analysis will be presented and the results will be compared to the Geant4 simulation of the array. This work was supported by the National Science Foundation under the Grant Number PHYS-1614442.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System
NASA Technical Reports Server (NTRS)
Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew
2012-01-01
A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).
A star-pointing UV-visible spectrometer for remote-sensing of the stratosphere
NASA Technical Reports Server (NTRS)
Roscoe, Howard K.; Freshwater, Ray A.; Jones, Rod L.; Fish, Debbie J.; Harries, John E.; Wolfenden, Roger; Stone, Phillip
1994-01-01
We have constructed a novel instrument for ground-based remote sensing, by mounting a UV-visible spectrometer on a telescope and observing the absorption by atmospheric constituents of light from stars. Potentially, the instrument can observe stratospheric O3, NO3, NO2, and OClO.
NASA Astrophysics Data System (ADS)
Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.
2009-05-01
We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.
2013-01-01
The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.
Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2
NASA Technical Reports Server (NTRS)
Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason
2011-01-01
The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.
NASA Astrophysics Data System (ADS)
Ozbek, Nil; Baysal, Asli
2017-04-01
Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.
Photochemical aging of light-absorbing secondary organic aerosol material.
Sareen, Neha; Moussa, Samar G; McNeill, V Faye
2013-04-11
Dark reactions of methylglyoxal with NH4(+) in aqueous aerosols yield light-absorbing and surface-active products that can influence the physical properties of the particles. Little is known about how the product mixture and its optical properties will change due to photolysis as well as oxidative aging by O3 and OH in the atmosphere. Here, we report the results of kinetics and product studies of the photochemical aging of aerosols formed by atomizing aqueous solutions of methylglyoxal and ammonium sulfate. Experiments were performed using aerosol flow tube reactors coupled with an aerosol chemical ionization mass spectrometer (Aerosol-CIMS) for monitoring gas- and particle-phase compositions. Particles were also impacted onto quartz windows in order to assess changes in their UV-visible absorption upon oxidation. Photooxidation of the aerosols leads to the formation of small, volatile organic acids including formic acid, acetic acid, and glyoxylic acid. The atmospheric lifetime of these species during the daytime is predicted to be on the order of minutes, with photolysis being an important mechanism of degradation. The lifetime with respect to O3 oxidation was observed to be on the order of hours. O3 oxidation also leads to a net increase in light absorption by the particles due to the formation of additional carbonyl compounds. Our results are consistent with field observations of high brown carbon absorption in the early morning.
Impact of OH Heterogenous Oxidation on the Evolution of Brown Carbon Aerosol Optical Properties
NASA Astrophysics Data System (ADS)
Schnitzler, E.; Abbatt, J.
2017-12-01
The effects of varying relative humidity (RH) on the evolution of brown carbon (BrC) optical properties induced by heterogeneous OH oxidation were investigated in a series of photooxidation chamber experiments. A BrC surrogate was generated from aqueous 1,3-dihydroxybenzene (10 mM) and H2O2 (10 mM) exposed to >300 nm radiation, atomized, passed through a series of trace gas denuders, and injected into the chamber, which was conditioned to about 10 or 60% RH. Following aerosol injection, H2O2 was continuously bubbled into the chamber; an hour later, the chamber was irradiated with black-lights (UV-B) to produce OH. Before irradiation, aerosol absorption and scattering at 405 nm, measured using a photoacoustic spectrometer, decreased due only to deposition and dilution, and single scattering albedo (SSA) was relatively steady. In the presence of gas-phase OH, absorption first increased, despite continued particle losses, and SSA decreased. Subsequently, absorption decreased faster than scattering, and SSA increased uniformly. At 60% RH, colour enhancement, likely associated with functionalization, was greatest after only minutes of reaction. In contrast, at 10% RH, peak colour enhancement occurred after about two hours of reaction, indicating that the decrease in RH and the attendant increase in particle viscosity significantly impeded heterogeneous OH oxidation of the BrC surrogate.
Watanabe, T; Tokunaga, R; Iwahana, T; Tati, M; Ikeda, M
1978-01-01
The direct chelation-extraction method, originally developed by Hessel (1968) for blood lead analysis, has been successfully applied to urinalysis for manganese. The analyses of 35 urine samples containing up to 100 microgram/1 of manganese from manganese-exposed workers showed that the data obtained by this method agree well with those by wet digestion-flame atomic absorption spectrophotometry and also by flameless atomic absorption spectrophotometry. PMID:629893
[Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].
Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L
2016-05-20
To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.
Resonant inelastic X-ray scattering on synthetic nickel compounds and Ni-Fe hydrogenase protein
NASA Astrophysics Data System (ADS)
Sanganas, Oliver; Löscher, Simone; Pfirrmann, Stefan; Marinos, Nicolas; Glatzel, Pieter; Weng, Tsu-Chien; Limberg, Christian; Driess, Matthias; Dau, Holger; Haumann, Michael
2009-11-01
Ni-Fe hydrogenases are proteins catalyzing the oxidative cleavage of dihydrogen (H2) and proton reduction to H2 at high turnover rates. Their active site is a heterobimetallic center comprising one Ni and one Fe atom. To understand the function of the site, well resolved structural and electronic information is required. Such information is expected to become accessible by high resolution X-ray absorption and emission techniques, which are rapidly developing at third generation synchrotron radiation sources. We studied a number of synthetic Ni compounds, which mimic relevant features of the Ni site in hydrogenases, and the Ni site in the soluble, NAD-reducing hydrogenase (SH) from the bacterium Ralstonia eutropha by resonant inelastic X-ray scattering (RIXS) using a Rowland-type spectrometer at the ESRF. The SH is particularly interesting because its H2-cleavage reaction is highly resistant against inhibition by O2. Kα-fluorescence detected RIXS planes in the 1s→3d region of the X-ray absorption spectrum were recorded on the protein which allow to extract L3-edge type spectra Spectral features of the protein are compared to those of the model compounds.
[Measurements of IR absorption across section and spectrum simulation of lewisite].
Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao
2015-02-01
The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite.
Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph
2010-09-01
The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.
Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algora, A.; Valencia, E.; Tain, J. L.
2014-06-01
We present an overview of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br using a new segmented total absorption spectrometer are presented. Our measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile
NASA Technical Reports Server (NTRS)
Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin
1997-01-01
The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru
2010-09-15
Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BNmore » films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.« less
Ferrographic and spectrometer oil analysis from a failed gas turbine engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1983-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433
Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy
ERIC Educational Resources Information Center
Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.
2008-01-01
Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…
This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...
Multilaser Herriott Cell for Planetary Tunable Laser Spectrometers
NASA Technical Reports Server (NTRS)
Tarsitano, Christopher G.; Webster, Christopher R.
2007-01-01
Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.
[Determination of metal elements in Achyranthis bidentatae radix from various habitats].
Tu, Wan-Qian; Zhang, Liu-Ji
2011-12-01
To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.
Superconducting gamma and fast-neutron spectrometers with high energy resolution
Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.
2008-11-04
Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.
Multiple-Diode-Laser Gas-Detection Spectrometer
NASA Technical Reports Server (NTRS)
Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.
1988-01-01
Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.
Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.
2008-08-01
We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the minimum detectable absorption is 4×10-10 cm-1, and the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.
Measurement of transient gas flow parameters by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolshov, M A; Kuritsyn, Yu A; Liger, V V
2015-04-30
An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.
Chromium in Postmortem Material.
Dudek-Adamska, Danuta; Lech, Teresa; Konopka, Tomasz; Kościelniak, Paweł
2018-04-17
Recently, considerable attention has been paid to the negative effects caused by the presence and constant increase in concentration of heavy metals in the environment, as well as to the determination of their content in human biological samples. In this paper, the concentration of chromium in samples of blood and internal organs collected at autopsy from 21 female and 39 male non-occupationally exposed subjects is presented. Elemental analysis was carried out by an electrothermal atomic absorption spectrometer after microwave-assisted acid digestion. Reference ranges of chromium in the blood, brain, stomach, liver, kidneys, lungs, and heart (wet weight) in the population of Southern Poland were found to be 0.11-16.4 ng/mL, 4.7-136 ng/g, 6.1-76.4 ng/g, 11-506 ng/g, 2.9-298 ng/g, 13-798 ng/g, and 3.6-320 ng/g, respectively.
The Free-Free Absorption Coefficients of the Negative Helium Ion
NASA Astrophysics Data System (ADS)
John, T. L.
1994-08-01
Free-free absorption coefficients of the negative helium ion are calculated by a phaseshift approximation, using continuum data that accurately account for electron-atom correlation and polarization. The approximation is considered to yield results within a few per cent of numerical values for wavelengths greater than 1 m, over the temperature range 1400-10080 K. These coefficients are expected to give the best current estimates of He - continuous absorption. Key words: atomic data - atomic processes - stars: atmospheres - infrared: general.
Method and apparatus for enhancing laser absorption sensitivity
NASA Technical Reports Server (NTRS)
Webster, Christopher R. (Inventor)
1987-01-01
A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.
Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom
NASA Technical Reports Server (NTRS)
Stallcop, J. R.
1974-01-01
An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.
Production and reactions of silicon atoms in hot wire deposition of amorphous silicon
NASA Astrophysics Data System (ADS)
Zheng, Wengang; Gallagher, Alan
2003-10-01
Decomposing silane and hydrogen molecules on a hot tungsten filament is an alternative method of depositing hydrogenated microcrystal and amorphous Si for thin-film semmiconductor devices. This "hot-wire" method can have significant advantages, such as high film deposition rates. The deposition chemistry involves Si and H atoms released from the filament, followed by their reactions with the vapor and surfaces. To establish these deposition pathways, we measure radicals at the substrate with a home built, threshold ionization mass spectrometer. The design and operation of this mass spectrometer for radical detection, and the behavior of Si atom production and reactions, will be presented. This work is supported by the National Renewable Energy Laboratory, Golden, CO 80401
Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry
Blomfield, Jeanette; Macmahon, R. A.
1969-01-01
The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion × 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0·1 ml of sample, and the free copper of plasma with 0·5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined. PMID:5776543
Spectrometer Baseline Control Via Spatial Filtering
NASA Technical Reports Server (NTRS)
Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.
2016-01-01
An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.
ERIC Educational Resources Information Center
Williamson, Mark A.
1989-01-01
Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and the material is able to absorb more than that the photon source could provide, at this point. These resulting effects might be of immense materials engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.
2016-01-01
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...
2016-01-18
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
Diode Lasers and Practical Trace Analysis.
ERIC Educational Resources Information Center
Imasaka, Totaro; Nobuhiko, Ishibashi
1990-01-01
Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)
NASA Astrophysics Data System (ADS)
Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff
2006-10-01
From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.
A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases
ERIC Educational Resources Information Center
Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.
2016-01-01
In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…
High intensity 5 eV atomic oxygen source and Low Earth Orbit (LEO) simulation facility
NASA Technical Reports Server (NTRS)
Cross, J. B.; Spangler, L. H.; Hoffbauer, M. A.; Archuleta, F. A.; Leger, Lubert; Visentine, James
1987-01-01
An atomic oxygen exposure facility has been developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in LEO. The studies that are being undertaken using the facility will provide: absolute reaction cross sections for use in engineering design problems; formulations of reaction mechanisms; and calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in LEO to ground based investigations. The facility consists of: (1) a CW laser sustained discharge source of O atoms having a variable energy up to 5 eV and an intensity between 10(15) and 10(17) O atoms s(-1) cm(-2); (2) an atomic beam formation and diagnostics system consisting of various stages of differential pumping, a mass spectrometer detector, and a time of flight analyzer; (3) a spinning rotor viscometer for absolute O atom flux measurements; and (4) provision for using the system for calibration of actual flight instruments. Surface analysis equipment is available for the characterization of material surfaces before and after exposure to O atoms.
DETERMINING ION COMPOSITIONS USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER
For the past decade, we have used double focusing mass spectrometers to determine
compositions of ions observed in mass spectra produced from compounds introduced by GC
based on measured exact masses of the ions and their +1 and +2 isotopic profiles arising from atoms of ...
Highly sensitive solids mass spectrometer uses inert-gas ion source
NASA Technical Reports Server (NTRS)
1966-01-01
Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.
Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1
NASA Technical Reports Server (NTRS)
Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.
2011-01-01
We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.
The neutral mass spectrometer on Dynamics Explorer B
NASA Technical Reports Server (NTRS)
Carignan, G. R.; Block, B. P.; Maurer, J. C.; Hedin, A. E.; Reber, C. A.; Spencer, N. W.
1981-01-01
A neutral gas mass spectrometer has been developed to satisfy the measurement requirements of the Dynamics Explorer mission. The mass spectrometer, a quadrupole, will measure the abundances of neutral species in the region 300-500 km in the earth's atmosphere. These measurements will be used in concert with other simultaneous observations on Dynamics Explorer to study the physical processes involved in the interactions of the magnetosphere-ionosphere-atmosphere system. The instrument, which is similar to that flown on Atmosphere Explorer, employs an electron beam ion source operating in the closed mode and a discrete dynode multiplier as a detector. The mass range is 22 to 50 amu. The abundances of atomic oxygen, molecular nitrogen, helium, argon, and possibly atomic nitrogen will be measured to an accuracy of about + or - 15% over the specified altitude range, with a temporal resolution of one second.
NASA Astrophysics Data System (ADS)
Tata, Sheroy; Mondal, Angana; Sarkar, Soubhik; Lad, Amit D.; Krishnamurthy, M.
2017-08-01
Ions of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot. We present a gated Thomson parabola spectrometer that addresses these issues and provides an elegant method to improvise ion spectrometry. In addition, we demonstrate that this method provides the ability to detect and measure high energy neutral atoms that are invariably present in most intense laser plasma acceleration experiments.
Tata, Sheroy; Mondal, Angana; Sarkar, Soubhik; Lad, Amit D; Krishnamurthy, M
2017-08-01
Ions of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot. We present a gated Thomson parabola spectrometer that addresses these issues and provides an elegant method to improvise ion spectrometry. In addition, we demonstrate that this method provides the ability to detect and measure high energy neutral atoms that are invariably present in most intense laser plasma acceleration experiments.
Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B
2018-03-01
Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively. Si remained mostly in the ash, leading to a mass fraction of up to 103%, even when the Si loss is not considered. Silicon concentration in bio-oil was below 1.7mgkg -1 , which is suitable for its application as a fuel. The developed methods using HR-CS AAS are suitable for Si determination in biomass, bio-oil, pyrolysis water, and ash. The application of bio-oil as an alternative fuel would be possible evaluating its Si content due to its low levels. The mass balance for Si has proved to be an important tool in order to evaluate the correct disposal of pyrolysis process byproducts. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive Tunable Laser Spectrometer for Space Applications
NASA Technical Reports Server (NTRS)
Flesch, Gregory; Keymeulen, Didier
2010-01-01
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie
2009-06-01
Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.
Methods for analysis of selected metals in water by atomic absorption
Fishman, Marvin J.; Downs, Sanford C.
1966-01-01
This manual describes atomic-absorption-spectroscopy methods for determining calcium, copper, lithium, magnesium, manganese, potassium, sodium, strontium and zinc in atmospheric precipitation, fresh waters, and brines. The procedures are intended to be used by water quality laboratories of the Water Resources Division of the U.S. Geological Survey. Detailed procedures, calculations, and methods for the preparation of reagents are given for each element along with data on accuracy, precision, and sensitivity. Other topics discussed briefly are the principle of atomic absorption, instrumentation used, and special analytical techniques.
Determination of palladium and platinum by atomic absorption
Schnepfe, M.M.; Grimaldi, F.S.
1969-01-01
Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.
Anomalous small-angle scattering as a way to solve the Babinet principle problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiko, M. E., E-mail: m.e.boiko@mail.ioffe.ru; Sharkov, M. D.; Boiko, A. M.
2013-12-15
X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.
Anomalous small-angle scattering as a way to solve the Babinet principle problem
NASA Astrophysics Data System (ADS)
Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.
2013-12-01
X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.
Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio
2016-01-01
We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1988-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The key activity for this grant year has continued to be laboratory measurements of the microwave and millimeter-wave properties of the simulated atmospheres of the outer planets and their satellites. A Fabry-Perot spectrometer system capable of operation from 32 to 41 GHz was developed. Initially this spectrometer was used to complete laboratory measurements of the 7.5 to 9.3 mm absorption spectrum of ammonia. Laboratory measurements were begun at wavelengths near 3.2 mm, where a large number of observations of the emission from the outer planets were made. A description of this system is presented.
Enhanced Reverse Saturable Absorption and Optical Limiting in Heavy-Atom Substituted Phthalocyanines
NASA Technical Reports Server (NTRS)
Perry, J. W.; Mansour, K.; Marder, S. R.; Alvarez, D., Jr.; Perry, K. J.; Choong, I.
1994-01-01
The reverse saturable absorption and optical limiting response of metal phthalocyaninies can be enhanced by using the heavy-atom effect. Phthalocyanines containing heavy metal atoms, such as In, Sn, and Pb show nearly a factor of two enhancement in the ratio of effective excited-state to ground-state absorption cross sections compared to those containing lighter atoms, such as Al and Si. In an f/8 optical geometry, homogeneous solutions of heavy metal phthalocyanines, at 30% linear transmission, limit 8-ns, 532-nm laser pulses to less than or equal to 3 (micro)J (the energy for 50% probability of eye damage) for incident pulses up to 800 (micro)J.
Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B
1999-06-01
Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Leger, Lubert J.; Visentine, James T.; Hunton, Don E.; Cross, Jon B.; Hakes, Charles L.
1995-01-01
The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS-46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-3 and the results of the Lyndon B. Johnson Space Center (JSC) materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C(13) labeled Kapton revealed CO, CO2, H2O, NO, and NO2. Finally, by operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere at various times during EOIM-3 and detected the gaseous reaction products formed when ambient ions interacted with the C(13) Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, which provide known O-atom fluences and translational energies, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A 'line-of-centers' reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms at high atom kinetic energies while a Beckerle-Ceyer model provided an accurate description of O-atom reactivity over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to the near-surface region of the sample, i.e. within 50 to 100 A of the surface.
ERIC Educational Resources Information Center
Anderson, James L.; And Others
1980-01-01
Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)
Code of Federal Regulations, 2010 CFR
2010-07-01
... Absorption Spectroscopy.” Published by Interscience Company, New York, NY (1968). 5. Kirkbright, G. F., and Sargent, M., “Atomic Absorption and Fluorescence Spectroscopy.” Published by Academic Press, New York, NY... County, IL, by Atomic Absorption Spectroscopy.” Envir. Sci. and Tech., 3, 472-475 (1969). 7. “Proposed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelly, E.M.
A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less
High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui
2017-05-01
This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.
Modular soft x-ray spectrometer for applications in energy sciences and quantum materials
Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro; ...
2017-01-27
Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less
Modular soft x-ray spectrometer for applications in energy sciences and quantum materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro
Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less
Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities
NASA Astrophysics Data System (ADS)
Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.
2013-05-01
We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.
ERIC Educational Resources Information Center
Cizdziel, James V.
2011-01-01
In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…
Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces
2015-10-10
processes and devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared spectrometer 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...progress of many important energy conversion processes and devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared...devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared spectrometer to perform surface enhanced infrared absorption
Analysis of aircraft spectrometer data with logarithmic residuals
NASA Technical Reports Server (NTRS)
Green, A. A.; Craig, M. D.
1985-01-01
Spectra from airborne systems must be analyzed in terms of their mineral-related absorption features. Methods for removing backgrounds and extracting these features one at a time from reflectance spectra are discussed. Methods for converting radiance spectra into a form similar to reflectance spectra so that the feature extraction procedures can be implemented on aircraft spectrometer data are also discussed.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-12-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.
Beta-spectrometer with Si-detectors for the study of 144Ce-144Pr decays
NASA Astrophysics Data System (ADS)
Alexeev, I. E.; Bakhlanov, S. V.; Bazlov, N. V.; Chmel, E. A.; Derbin, A. V.; Drachnev, I. S.; Kotina, I. M.; Muratova, V. N.; Pilipenko, N. V.; Semyonov, D. A.; Unzhakov, E. V.; Yeremin, V. K.
2018-05-01
Here we present the specifications of a newly developed beta-spectrometer, based on full absorption Si(Li) detector and thin transmission detector, allowing one to perform efficient separation beta-radiation and accompanying X-rays and gamma radiation. Our method is based on registration of coincident events from both detectors. The spectrometer can be used for precision measurements of various beta-spectra, namely for the beta-spectrum shape study of 144Pr, which is considered to be an advantageous anti-neutrino source for sterile neutrino searches.
Amorim, Fábio A C; Ferreira, Sérgio L C
2005-02-28
In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250mL and the extraction process using 4.0mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3ngg(-1) for cadmium and 4.2ngg(-1) for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20ngg(-1), respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200ngg(-1), respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.
Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.
Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K
2014-11-01
Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.
Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; Van Stipdonk, Michael J
2013-08-30
Hydroxamates are essential growth factors for some microbes, acting primarily as siderophores that solubilize iron for transport into a cell. Here we determined the intrinsic structure of 1:1 complexes between Boc-protected hydroxylamine and group I ([M(L)](+)) and group II ([M(L-H)](+)) cations, where M and L are the cation and ligand, respectively, which are convenient models for the functional unit of hydroxamate siderphores. The relevant complex ions were generated by electrospray ionization (ESI) and isolated and stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Infrared spectra of the isolated complexes were collected by monitoring (infrared) photodissociation yield as a function of photon energy. Experimental spectra were then compared to those predicted by density functional theory (DFT) calculations. The infrared multiple photon dissociation (IRMPD) spectra collected are in good agreement with those predicted to be lowest-energy by DFT. The spectra for the group I complexes contain six resolved absorptions that can be attributed to amide I and II type and hydroxylamine N-OH vibrations. Similar absorptions are observed for the group II cation complexes, with shifts of the amide I and amide II vibrations due to the change in structure with deprotonation of the hydroxylamine group. IRMPD spectroscopy unequivocally shows that the intrinsic binding mode for the group I cations involves the O atoms of the amide carbonyl and hydroxylamine groups of Boc-hydroxylamine. A similar binding mode is preferred for the group II cations, except that in this case the metal ion is coordinated by the O atom of the deprotonated hydroxylamine group. Copyright © 2013 John Wiley & Sons, Ltd.
Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.
Chandran, Satheesh; Varma, Ravi
2016-01-15
1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.
Smile effect detection for dispersive hypersepctral imager based on the doped reflectance panel
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Liu, Xiaoli; Ji, Yiqun; Chen, Yuheng; Shen, Weimin
2012-11-01
Hyperspectral imager is now widely used in many regions, such as resource development, environmental monitoring and so on. The reliability of spectral data is based on the instrument calibration. The smile, wavelengths at the center pixels of imaging spectrometer detector array are different from the marginal pixels, is a main factor in the spectral calibration because it can deteriorate the spectral data accuracy. When the spectral resolution is high, little smile can result in obvious signal deviation near weak atmospheric absorption peak. The traditional method of detecting smile is monochromator wavelength scanning which is time consuming and complex and can not be used in the field or at the flying platform. We present a new smile detection method based on the holmium oxide panel which has the rich of absorbed spectral features. The higher spectral resolution spectrometer and the under-test imaging spectrometer acquired the optical signal from the Spectralon panel and the holmium oxide panel respectively. The wavelength absorption peak positions of column pixels are determined by curve fitting method which includes spectral response function sequence model and spectral resampling. The iteration strategy and Pearson coefficient together are used to confirm the correlation between the measured and modeled spectral curve. The present smile detection method is posed on our designed imaging spectrometer and the result shows that it can satisfy precise smile detection requirement of high spectral resolution imaging spectrometer.
Airborne astronomy with a 150 micrometer - 500 micrometer heterodyne spectrometer
NASA Technical Reports Server (NTRS)
Betz, A. L.
1991-01-01
This report summarizes work done under NASA Grant NAG2-254 awarded to the University of California. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory (KAO), and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved; the spectrometer is now in routine use aboard the KAO. Detections of particular note have been the 370 micrometers line of neutral atomic carbon, the 158 micrometers transition of ionized carbon, many of the high-J rotational lines of 12CO and 13CO between J=9-8 and J=22-21, the 119 micron ground-state rotational line of OH, and the 219 micron ground-state rotational line of H2D(+). All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.
NASA Technical Reports Server (NTRS)
Harward, C. N.; Hoell, J. M., Jr.
1980-01-01
A tunable diode laser heterodyne radiometer was developed for ground-based measurements of atmospheric solar absorption spectra in the 8 to 12 microns spectral range. The performance and operating characteristics of this Tunable Infrared Heterodyne Radiometer (TIHR) are discussed along with atmospheric solar absorption spectra of HNO3, O3, CO2, and H2O in the 9 to 11 microns spectral region.
Wavelength calibration of imaging spectrometer using atmospheric absorption features
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin
2012-11-01
Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.
Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.
2008-12-01
We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO2 at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.
Jawaid, M; Lind, B; Elinder, C G
1983-07-01
A method is presented for determining cadmium in urine by nameless atomic-absorption spectrophotometry after extraction. The sample is dried, ashed in the presence of nitric acid, and then the residue is dissolved in hydrochloric acid. Cadmium is extracted as its tetrahexylammonium iodide complex into methyl isobutyl ketone. The organic phase is analysed for cadmium by atomic-absorption spectrophotometry with electrothermal atomization. The median urinary excretion of cadmium for smokers aged 50-64 has been found to be 0.7 and 0.75 mug l . for males and females respectively, the values for non-smokers being 0.25 and 0.4mug l .
This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.
Procedure for rapid determination of nickel, cobalt, and chromium in airborne particulate samples
NASA Technical Reports Server (NTRS)
Davis, W. F.; Graab, J. W.
1972-01-01
A rapid, selective procedure for the determination of 1 to 20 micrograms of nickel, chromium, and cobalt in airborne particulates is described. The method utilizes the combined techniques of low temperature ashing and atomic absorption spectroscopy. The airborne particulates are collected on analytical filter paper. The filter papers are ashed, and the residues are dissolved in hydrochloric acid. Nickel, chromium, and cobalt are determined directly with good precision and accuracy by means of atomic absorption. The effects of flame type, burner height, slit width, and lamp current on the atomic absorption measurements are reported.
Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno
2015-01-01
The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.
Stratospheric ozone measurement with an infrared heterodyne spectrometer
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.
1978-01-01
Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.
NASA Astrophysics Data System (ADS)
Otto, Thomas; Stock, Volker; Schmidt, Wolf-Dieter; Liebold, Kristin; Fassler, Dieter; Wollina, Uwe; Fritzsch, Uwe; Gessner, Thomas
2001-11-01
In medical diagnostics, non invasive optical techniques will become common at a variety of applications because they contribute to objectivity and precision. The spectral properties of human tissue are an important field of interest. They offer opportunities of detection of skin diseases and of evaluation of chronic wounds. In the visible range, the hemoglobin absorption corresponds to blood microcirculation and the melanin absorption to the skin-type. Two types of diode-array equipment will be described: a combined VIS-NIR spectrometer system from J&M Aalen/Germany (400 nm to 1600 nm) and a stand-alone spectrometer from COLOUR CONTROL Farbmesstechnik Chemnitz/Germany (400 nm to 1000 nm). Non-contacting sensing is essential for investigating chronic wounds (no disturbances of blood microcirculation by contact pressure). The spectroscopic VIS-NIR readings of chronic wounds mainly depend on the absorption of hemoglobin and water. Multivariate analysis was applied for an objective spectral classification of eight different wound scores. Some results regarding spectral measurements of wounds and skin will be discussed. The spectrometer of COLOUR CONTROL was tested in dental surgery. To select dentures, its color has to be determined exactly to meet beauty culture demands. Color determination by dentist is not sufficient enough because of possible metameric effects of illumination. Results of spectral evaluation of denture material and human teeth will be given. Medical examination requires portable and ease equipment suitable for precise measurements. This is solved by a modular measurement system comprising microcomputer, display, light source, fiber probe, and diode-array spectrometer. It is efficient to process primary spectral data to appropriate medical interpretations.
Maccotta, A; Cosentino, Claudia; Coccioni, R; Frontalini, F; Scopelliti, G; Caruso, A
2016-12-01
The uptake of two heavy metals (chromium and lead) in sediments in experimental mesocosms under exposure to different metal concentrations was evaluated by monitoring their concentrations over time both in seawater and in sediment. Two separate experiments under laboratory-controlled conditions were carried out for the two metals. Sediments were collected from a protected natural area characterized by low anthropic influence and were placed in mesocosms that were housed in aquaria each with seawater at a different metal concentration. At pre-established time intervals, seawater and sediment samples were collected from each mesocosm for chemical analyses. Quantification of chromium and lead concentration in seawater and sediment samples was carried out by atomic absorption spectrometer with graphite furnace. Low doses of chromium and lead (<1 mg L -1 ) do not entail an uptake in sediments and waters. At doses ≥1 mg L -1 , evolution of concentrations over time shows significant differences between these two metals: (i) chromium absorption from seawater is twice faster than lead; (ii) lead accumulates in considerable amount in sediments. The different behaviour of the two investigated heavy metals could be ascribed to different interactions existing between metal ions and different components of sediment.
Investigations of some building materials for γ-rays shielding effectiveness
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Kaur, Baljit; Sidhu, Gurdeep Singh; Kumar, Ajay
2013-06-01
For construction of residential and non-residential buildings bricks are used as building blocks. Bricks are made from mixtures of sand, clay, cement, fly ash, gypsum, red mud and lime. Shielding effectiveness of five soil samples and two fly ash samples have been investigated using some energy absorption parameters (Mass attenuation coefficients, mass energy absorption coefficients, KERMA (kinetic energy released per unit mass), HVL, equivalent atomic number and electron densities) firstly at 14 different energies from 81-1332 keV then extended to wide energy range 0.015-15 MeV. The soil sample with maximum shielding effectiveness has been used for making eight fly ash bricks [(Lime)0.15 (Gypsum)0.05 (Fly Ash)x (Soil)0.8-x, where values of x are from 0.4-0.7]. High Purity Germanium (HPGe) detector has been used for gamma-ray spectroscopy. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence (EDXRF) spectrometer. The agreements of theoretical and experimental values of mass attenuation coefficient have been found to be quite satisfactory. It has been verified that common brick possess the maximum shielding effectiveness for wide energy range 0.015-15 MeV. The results have been shown graphically with some useful conclusions for making radiation safe buildings.
High precision spectroscopy and imaging in THz frequency range
NASA Astrophysics Data System (ADS)
Vaks, Vladimir L.
2014-03-01
Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.
Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, M. E., E-mail: weller4@llnl.gov; Beiersdorfer, P.; Soukhanovskii, V. A.
2016-11-15
Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will bemore » used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.« less
NASA Technical Reports Server (NTRS)
Visentine, James T.; Leger, Lubert J.
1987-01-01
To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.
Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns
NASA Technical Reports Server (NTRS)
May, R. D.; Molina, L. T.; Webster, C. R.
1988-01-01
A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2016-01-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
Trace Element Analysis of Biological Samples.
ERIC Educational Resources Information Center
Veillon, Claude
1986-01-01
Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…
NASA Astrophysics Data System (ADS)
Ono, Ryo; Takezawa, Kei; Oda, Tetsuji
2009-08-01
Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.
NASA Astrophysics Data System (ADS)
Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.; Lake, P. W.; Nash, T. J.; Noack, D. D.; Maron, Y.
2000-12-01
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)×1014 cm-3 for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)×1015 cm-3 for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.
Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.
2015-01-01
This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.
ERIC Educational Resources Information Center
Bosma, Wayne B.
1998-01-01
Describes a set of experiments using a UV-VIS spectrometer to identify food colorings and to measure the pH of soft drinks. The first laboratory component uses locations and shapes of visible absorption peaks as a means of identifying dyes while the second portion uses the spectrometer for determining pH. (PVD)
NASA Astrophysics Data System (ADS)
Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia
2018-03-01
Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4.05 Hz), using shorter tubing and no dryer, that was also collocated at the site. Values of the N2O fluxes were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 fluxes as measured by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.
Apollo 17 ultraviolet spectrometer experiment (S-169)
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1974-01-01
The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.
NASA Technical Reports Server (NTRS)
Niemann, H. B.; Spencer, N. W.; Schmitt, G. A.
1971-01-01
The atomic oxygen concentration in the altitude range 130 to 240 km was determined through the use of a quadrupole spectrometer with a strongly focussing ion source. The instrument is used in the Thermosphere Probe in a manner that greatly increases the proportion of measured oxygen ions that have not experienced a surface collision and permits quantitative evaluation of surface recombination and thermalization effects which inevitably enter all spectrometer determinations. The data obtained strengthen the concept that consideration of surface effects is significant in quantifying spectrometer measurements of reactive gases, and tend to be in agreement with von Zahn's recent results.
NASA Astrophysics Data System (ADS)
Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Rosmej, F. B.
2017-03-01
Hot electrons represent a key subject for high intensity laser produced plasmas and atomic physics. Simulations of the radiative properties indicate a high sensitivity to hot electrons, that in turn provides the possibility for their detailed characterization by high-resolution spectroscopic methods. Of particular interest is X-ray spectroscopy due to reduced photo-absorption in dense matter and their efficient generation by hot electrons (inner-shell ionization/excitation). Here, we report on an experimental campaign conducted at the ns, kJ laser facility PALS at Prague in Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral (λ/Δλ > 5000) and spatial resolutions (Δx = 30µm) have been set up simultaneously to achieve a high level of confidence for the complex Kα emission group. In particular, this group, which shows a strong overlap between lines, can be resolved in several substructures. Furthermore, an emission on the red wing of the Kα2 transition (λ = 1.5444A) could be identified with Hartree-Fock atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascucci, I.; Simon, M. N.; Edwards, S.
2015-11-20
We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within themore » circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.« less
A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...
DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY
A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...
The extreme wings of atomic emission and absorption lines. [in low pressure gases
NASA Technical Reports Server (NTRS)
Dalgarno, A.; Sando, K. M.
1973-01-01
Consideration of the extreme wings of atomic and molecular emission and absorption lines in low pressure gases. Classical and semiclassical results are compared with accurate quantal calculations of the self-broadening of Lyman-alpha in the hydrogen absorption spectrum that arises from quasimolecular transition. The results of classical, quantal, and semiclassical calculations of the absorption coefficient in the red wing are shown for temperatures of 500, 200, and 100 K. The semiclassical and quantal spectra agree well in shape at 500 K. Various other findings are discused.
2007-08-01
solely to the absorption by the calibration gas. By equating the path-integrated extinction to the total absorption, we have ε(1/m) = α(1/m), where 6 α...using a high-resolution (0.02 wave-number) Bomem MR Series FTIR spectrometer. A radiometrically stabilized IR Nernst glow-bar is used as the broadband
Rasco, B. C.; Rykaczewski, K. P.; Fijalkowska, A.; ...
2017-05-31
We measured the complete -decay intensities of 137I and 137Xe with the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory. We describe a novel technique for measuring the -delayed neutron energy spectrum, which also provides a measurement of the -neutron branching ratio, P n.
Precision atomic beam density characterization by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxley, Paul; Wihbey, Joseph
2016-09-15
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less
Precision atomic beam density characterization by diode laser absorption spectroscopy.
Oxley, Paul; Wihbey, Joseph
2016-09-01
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.
NASA Astrophysics Data System (ADS)
Papineau, N.; Camy-Peyret, C.; Ackerman, Marcel E.
1989-10-01
Measurements of atmospheric trace gases have been performed during the first Spacelab mission on board the Space Shuttle. The principle of the observations is infrared absorption spectroscopy using the solar occultation technique. Infrared absorption spectra of NO, CO, CO2, NO2, N20, CH4 and H2O have been recorded using the Grille spectrometer developped by ONERA and IASB. From the observed spectra, vertical profiles for these molecules have been derived. The present paper summarizes the main results and compares them with computed vertical profiles from a zonally averaged model of the middle atmosphere. The scientific objectives of the second mission, Atlas 1, planned for 1990 are also presented.
Crowley, J.K.
1984-01-01
Several hydroxyl-bearing minerals have diagnostic absorption bands in the 2.0-2.4 mu m wave length range, and can be identified with an orbital radiometer and with high-resolution airborne and field portable spectrometers. Among such minerals, zunyite, 143Al13Si5O20(OH,F)18Cl, has distinctive spectral absorption characteristics and is notably restricted to, and thus an indicator mineral of, advanced argillic alteration. Although seldom noted because it visually resembles quartz, zunyite is probably not as rare as generally believed. Laboratory measurements and general considerations underlie suggestions favouring the feasibility of detecting zunyite, alone and in mixtures with other Al-OH minerals, using field portable spectrometers.-G.J.N.
A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum
NASA Technical Reports Server (NTRS)
Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.
2010-01-01
We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha
2016-07-01
The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001-20 MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002 MeV and above 0.3 MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002-0.3 MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi
2009-11-01
In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.
Atomic-absorption determination of rhodium in chromite concentrates
Schnepfe, M.M.; Grimaldi, F.S.
1969-01-01
Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.
The Cassini mission: Infrared and microwave spectroscopic measurements
NASA Technical Reports Server (NTRS)
Kunde, V. G.
1989-01-01
The Cassini Orbiter and Titan Probe model payloads include a number of infrared and microwave instruments. This document describes: (1) the fundamental scientific objectives for Saturn and Titan which can be addressed by infrared and microwave instrumentation, (2) the instrument requirements and the accompanying instruments, and (3) the synergism resulting from the comprehensive coverage of the total infrared and microwave spectrum by the complement of individual instruments. The baseline consists of four instruments on the orbiter and two on the Titan probe. The orbiter infrared instruments are: (1) a microwave spectrometer and radiometer; (2) a far to mid-infrared spectrometer; (3) a pressure modulation gas correlation spectrometer, and (4) a near-infrared grating spectrometer. The two Titan probe infrared instruments are: (1) a near-infrared instrument, and (2) a tunable diode laser infrared absorption spectrometer and nephelometer.
Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells
NASA Astrophysics Data System (ADS)
Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.
1995-12-01
We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.
Atomic Absorption Spectroscopy. The Present and the Future.
ERIC Educational Resources Information Center
Slavin, Walter
1982-01-01
The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)
NASA Astrophysics Data System (ADS)
Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.
2007-11-01
We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.
Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M
2016-04-05
Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.
Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice
2017-04-01
A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spectroscopy, Understanding the Atom Series.
ERIC Educational Resources Information Center
Hellman, Hal
This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…
Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer
Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC
2011-10-18
An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.
NASA Technical Reports Server (NTRS)
Shumate, M. S.; Menzies, R. T.
1978-01-01
The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.
Mid-infrared absorption spectroscopy using quantum cascade lasers
NASA Astrophysics Data System (ADS)
Haibach, Fred; Erlich, Adam; Deutsch, Erik
2011-06-01
Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.
Combined "dual" absorption and fluorescence smartphone spectrometers.
Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas
2015-04-15
A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370 nm) and blue (λex=450 nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.
Transient Infrared Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Jones, Roger W.; McClelland, John F.
1989-12-01
Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a very high sample speed would be required to attain a diffusion time of 100 μs. Accordingly, pulsed-laser TIRES generally produces spectra suffering from less self-absorption than cw-laser TIRES does, but the cw-laser technique is technically much simpler since no synchronization is required.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-08-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
Two wide-angle imaging neutral-atom spectrometers (TWINS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D.J.; Blake, B.; Burch, J.
1998-11-01
Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will providemore » a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach.« less
Atomic and Molecular Gas Phase Spectrometry.
1983-09-30
between the thermometric levels, k is the Boltzmann constant (k = 0.695 cm-I K-1 ), Aik (s- 1) is the transition probability for spontaneous emission from...monitoring of the atomic absorption of M; information about the reaction processes were deduced from the shapes of the titration curves; (5) measure- ment of...Changes During Titration Based Upon The Releasing Effect Atomic Absorption Spectroscopy," D. Stojanovic and J.D. Winefordner, Anal Chim. Acta, 114, 295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro
2016-02-01
This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.
Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS
NASA Technical Reports Server (NTRS)
Cotton, D. M.; Chakrabarti, S.
1992-01-01
The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.
The Use of an Air-Natural Gas Flame in Atomic Absorption.
ERIC Educational Resources Information Center
Melucci, Robert C.
1983-01-01
Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)
A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...
Pavlovskaia, N A; Vagina, E N; Stepanova, E V
2000-01-01
The authors report on atomic absorption method determining mercury in urine. Being sensitive, with lower determination threshold of 10 nmole/l and correctness of 95.5%, the method was tested on children living in two districts of Moscow suburb.
Characterization of an Atomic Hydrogen Source for Charge Exchange Experiments
NASA Technical Reports Server (NTRS)
Leutenegger, M. A.; Beierdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.
2016-01-01
We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source byinjecting the mixed atomic and molecular output of the source into an electron beam ion trapcontaining highly charged ions and recording the x-ray spectrum generated by charge exchangeusing a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchangestate-selective capture cross sections are very different for atomic and molecular hydrogen incidenton the same ions, enabling a clear spectroscopic diagnostic of the neutral species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected duringmore » Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12--1.5)x10{sup 14}cm{sup -3} for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16--1.2)x10{sup 15}cm{sup -3} for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less
NASA Astrophysics Data System (ADS)
He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran
2018-01-01
A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.
Synthesis of FeCoNi nanoparticles by galvanostatic technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita
Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less
Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings
NASA Astrophysics Data System (ADS)
Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.
2018-05-01
The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.
Synthesis and characterization of single-crystalline zinc tin oxide nanowires
NASA Astrophysics Data System (ADS)
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-05-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Synthesis and characterization of single-crystalline zinc tin oxide nanowires.
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-01-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Sivapirakasam, S P; Mohan, Sreejith; Santhosh Kumar, M C; Thomas Paul, Ashley; Surianarayanan, M
2017-04-01
Background Cr(VI) is a suspected human carcinogen formed as a by-product of stainless steel welding. Nano-alumina and nano-titania coating of electrodes reduced the welding fume levels. Objective To investigate the effect of nano-coating of welding electrodes on Cr(VI) formation rate (Cr(VI) FR) from a shielded metal arc welding process. Methods The core welding wires were coated with nano-alumina and nano-titania using the sol-gel dip coating technique. Bead-on plate welds were deposited on SS 316 LN plates kept inside a fume test chamber. Cr(VI) analysis was done using an atomic absorption spectrometer (AAS). Results A reduction of 40% and 76%, respectively, in the Cr(VI) FR was observed from nano-alumina and nano-titania coated electrodes. Increase in the fume level decreased the Cr(VI) FR. Discussion Increase in fume levels blocked the UV radiation responsible for the formation of ozone thereby preventing the formation of Cr(VI).
Association between blood lead level and blood pressure in aborigines and others in central Taiwan.
Kuo, Hsien-Wen; Lai, Li-Hsing; Chou, Sze-Yuan; Wu, Fang-Yang
2006-01-01
To investigate the relationship between the blood lead level (BLL) and blood pressure among aborigines and non-aborigines in central Taiwan, a community-based survey that included demographic data, medical history, and blood chemistry analyses was conducted among 2,565 adults during an annual health examination. BLLs were analyzed using a graphite furnace atomic absorption spectrometer (AAS). There was a dose response among the non-aborigines (high BLL odds ratio = 2.97, compared with low BLL) but not among aborigines. Based on multiple linear regression models, BLLs were positively correlated with both systolic (an increase of 0.85 mm Hg/microg/dL) and diastolic (an increase of 0.48 mm Hg/microg/dL) blood pressures after adjusting for age, gender, ethnic group, alcohol consumption, and body mass index. BLLs were higher among aborigines than non-aborigines and were significantly correlated with blood pressure, particularly systolic pressure. The association should be considered causal.
Corrosion of Highly Specular Vapor Deposited Aluminum (VDA) on Earthshade Door Sandwich Structure
NASA Technical Reports Server (NTRS)
Plaskon, Daniel; Hsieh, Cheng
2003-01-01
High-resolution infrared (IR) imaging requires spacecraft instrument design that is tightly coupled with overall thermal control design. The JPL Tropospheric Emission Spectrometer (TES) instrument measures the 3-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The TES earthshade must protect the 180-K radiator and the 230-K radiator from the Earth IR and albedo. Requirements for specularity, emissivity, and solar absorptance of inner surfaces could only be met with vapor deposited aluminum (VDA). Circumstances leading to corrosion of the VDA are described. Innovative materials and processing to meet the optical and thermal cycle requirements were developed. Examples of scanning electronmicroscope (SEM), atomic force microscope (AFM), and other surface analysis techniques used in failure analysis, problem solving, and process development are given. Materials and process selection criteria and development test results are presented in a decision matrix. Examples of conditions promoting and preventing galvanic corrosion between VDA and graphite fiber-reinforced laminates are provided.
Labat, L; Dehon, B; Lhermitte, M
2003-05-01
An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.
Synthesis, purification, and structural characterization of the dimethyldiselenoarsinate anion.
Gailer, Jürgen; George, Graham N; Harris, Hugh H; Pickering, Ingrid J; Prince, Roger C; Somogyi, Arpad; Buttigieg, Gavin A; Glass, Richard S; Denton, M Bonner
2002-10-21
A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.
NASA Technical Reports Server (NTRS)
Cockrum, R. H.
1982-01-01
One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.
Assessment of erythrocyte acetylcholine esterase activities in painters.
Khan, Mohd Imran; Mahdi, Abbas Ali; Islam, Najmul; Rastogi, Subodh Kumar; Negi, M P S
2009-04-01
Thirty-five male painters in the age group of 20-50 years occupationally engaged in domestic and commercial painting for 5-12 years having blood lead levels (BLL) =40 mug/dl were subjected to the determination of acetyl choline esterase (AChE) levels both in plasma and red blood cell (RBC) lysate. BLL were determined using a graphite furnace atomic absorption spectrometer. The results showed that BLL were 7.7 times higher in the painters as compared with that of the control group. Significant decreases in RBC and plasma AChE were observed in the exposed group in comparison with controls. RBC and plasma AChE showed a decrease of 18.4% and 18%, respectively, in the exposed group. The findings also indicated a significant negative correlation of both RBC and plasma AChE activities with BLL. The marked reduction observed in both RBC and plasma AChE activity may account for disruption of cholinergic function and result in neurotoxicity among the painters.
Structure and optical properties of TiO2 thin films deposited by ALD method
NASA Astrophysics Data System (ADS)
Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz
2017-12-01
This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.
Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer
Grossman, Mark W.; Evans, Roger
1991-01-01
A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.
Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy
NASA Technical Reports Server (NTRS)
Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.
1991-01-01
Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.
Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong
2014-11-07
We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.
Far-infrared heterodyne spectrometer
NASA Technical Reports Server (NTRS)
Boreiko, Rita T.; Betz, Al L.
1995-01-01
A far-infrared heterodyne spectrometer was designed and built by our group for observations of atomic and molecular lines from interstellar clouds. Linewidths as narrow as 1 km/s can be expected from such regions, and so the spectrometer is designed with sub-km/s resolution so that observed line profiles will be resolved. Since its debut on the Kuiper Airborne Observatory (KAO) in 1985, the instrument has been used in regular annual flight programs from both Moffett Field, CA and Christchurch, NZ. The basic plan of the spectrometer remains unchanged from the original design presented at the previous airborne science symposium. Numerous improvements and updates to the technical capability have of course been included over the many years of operational service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigaud, L., E-mail: lsigaud@if.uff.br; Jesus, V. L. B. de; Ferreira, Natalia
In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.
Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C
2016-08-01
In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.
NASA Astrophysics Data System (ADS)
Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.
2013-07-01
Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.
NASA Astrophysics Data System (ADS)
Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.
2013-11-01
Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.
A comprehensive near- and far-ultraviolet spectroscopic study of the hot DA white dwarf G191-B2B
NASA Astrophysics Data System (ADS)
Preval, S. P.; Barstow, M. A.; Holberg, J. B.; Dickinson, N. J.
2013-11-01
We present a detailed spectroscopic analysis of the hot DA white dwarf G191-B2B, using the best signal-to-noise ratio, high-resolution near- and far-UV spectrum obtained to date. This is constructed from co-added Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) E140H, E230H and FUSE observations, covering the spectral ranges of 1150-3145 Å and 910-1185 Å, respectively. With the aid of recently published atomic data, we have been able to identify previously undetected absorption features down to equivalent widths of only a few mÅ. In total, 976 absorption features have been detected to 3σ confidence or greater, with 947 of these lines now possessing an identification, the majority of which are attributed to Fe and Ni transitions. In our survey, we have also potentially identified an additional source of circumstellar material originating from Si III. While we confirm the presence of Ge detected by Vennes et al., we do not detect any other species. Furthermore, we have calculated updated abundances for C, N, O, Si, P, S, Fe and Ni, while also calculating, for the first time, a non-local thermodynamic equilibrium abundance for Al, deriving Al III/H=1.60_{-0.08}^{+0.07}× {10}^{-7}. Our analysis constitutes what is the most complete spectroscopic survey of any white dwarf. All observed absorption features in the FUSE spectrum have now been identified, and relatively few remain elusive in the STIS spectrum.
Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.
1977-01-01
A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.
Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B
2015-04-10
We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.
Determination of the atomic density of rubidium-87
NASA Astrophysics Data System (ADS)
Zhao, Meng; Zhang, Kai; Chen, Li-Qing
2015-09-01
Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement. In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of 87Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of 87Rb atomic density is given. Project supported by the Natural Science Foundation of China (Grant Nos. 11274118 and 11474095), the Innovation Program of Shanghai Municipal Education Commission of China (Grant No. 13ZZ036), and the Fundamental Research Funds for the Central Universities of China.
Analysis of airborne MAIS imaging spectrometric data for mineral exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinnian; Zheng Lanfen; Tong Qingxi
1996-11-01
The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori
2014-05-01
New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.
NASA Astrophysics Data System (ADS)
Zhu, Ren; Wu, Lan; Wang, Shiming; Ye, Linhua; Ding, Zhihua
2008-03-01
As a fast, non-destructive analysis method, Fourier transform (FT) near-infrared (NIR) spectroscopy is very suitable and effective for online quality analysis of traditional Chinese medicine (TCM) manufacturing process. In this thesis, the theoretics of FT-NIRS was analyzed and an FT-NIR spectrometer with 4 cm -1 resolution in the 12500-5000 cm -1 frequency range was designed. The spectrometer was based on a Michelson interferometer with Bromine tungsten lamp as the NIR light source and InGaAs detector to collect the interference signal. Each element was designed and chosen to provide maximum sensitivity in the NIR spectral region. A fiber-optic flow cell system was used to realize online analysis of traditional Chinese medicine. The performance of the spectrometer was evaluated and the feasibility of using FT-NIR spectrometer to get absorption spectra of traditional Chinese medicine was demonstrated.
Surface reflectance retrieval from imaging spectrometer data using three atmospheric codes
NASA Astrophysics Data System (ADS)
Staenz, Karl; Williams, Daniel J.; Fedosejevs, Gunar; Teillet, Phil M.
1994-12-01
Surface reflectance retrieval from imaging spectrometer data has become important for quantitative information extraction in many application areas. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes play an important role for removal of the scattering and gaseous absorption effects of the atmosphere. The present study evaluates surface reflectances retrieved from airborne visible/infrared imaging spectrometer (AVIRIS) data using three radiative transfer codes: modified 5S (M5S), 6S, and MODTRAN2. Comparisons of the retrieved surface reflectance with ground-based reflectance were made for different target types such as asphalt, gravel, grass/soil mixture (soccer field), and water (Sooke Lake). The results indicate that the estimation of the atmospheric water vapor content is important for an accurate surface reflectance retrieval regardless of the radiative transfer code used. For the present atmospheric conditions, a difference of 0.1 in aerosol optical depth had little impact on the retrieved surface reflectance. The performance of MODTRAN2 is superior in the gas absorption regions compared to M5S and 6S.
Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors
ERIC Educational Resources Information Center
Weidenhammer, Jeffrey D.
2007-01-01
A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.
Bismuth as a general internal standard for lead in atomic absorption spectrometry.
Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T
2014-06-11
Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.
2014-07-01
We present results that show that atomic multiplet ligand field calculations are in very good agreement with experimental x-ray absorption spectra at the L2,3 edge of transition metal (TM) di-fluorides (MF2, M
Passive Ranging Using a Dispersive Spectrometer and Optical Filters
2012-12-20
transform spectrometers. These in- struments are very sensitive to vibration, however, making them difficult to use on an air or space-borne platform. This... techniques will scale to longer ranges. An instrument using filters is predicted to be more accurate at long ranges, but only if the grating...done by Leonpacher at AFIT. This research focused on the CO2 absorption feature at 4.3 µm. His technique compared the relative intensity between two
DOE Office of Scientific and Technical Information (OSTI.GOV)
FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectramore » collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less
Lu, Feng; Belkin, Mikhail A
2011-10-10
We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.
Low loss liquid crystal photonic bandgap fiber in the near-infrared region
NASA Astrophysics Data System (ADS)
Scolari, Lara; Wei, Lei; Gauza, Sebastian; Wu, Shin-Tson; Bjarklev, Anders
2011-01-01
We infiltrate a perdeuterated liquid crystal with a reduced infrared absorption in a photonic crystal fiber. The H atoms of this liquid crystal were substituted with D atoms in order to move the vibration bands which cause absorption loss to longer wavelengths and therefore reduce the absorption in the spectral range of 1-2 μm. We achieve in the middle of the near-infrared transmission bandgap the lowest loss (about 1 dB) ever reported for this kind of devices.
Global Particle Size Distributions: Measurements during the Atmospheric Tomography (ATom) Project
NASA Astrophysics Data System (ADS)
Brock, C. A.; Williamson, C.; Kupc, A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Schuh, H.; Erdesz, F.
2016-12-01
The Atmospheric Tomography (ATom) project is a three-year NASA-sponsored program to map the spatial and temporal distribution of greenhouse gases, reactive species, and aerosol particles from the Arctic to the Antarctic. In situ measurements are being made on the NASA DC-8 research aircraft, which will make four global circumnavigations of the Earth over the mid-Pacific and mid-Atlantic Oceans while continuously profiling between 0.2 and 13 km altitude. In situ microphysical measurements will provide an unique and unprecedented dataset of aerosol particle size distributions between 0.004 and 50 µm diameter. This unbiased, representative dataset allows investigation of new particle formation in the remote troposphere, placing strong observational constraints on the chemical and physical mechanisms that govern particle formation and growth to cloud-active sizes. Particles from 0.004 to 0.055 µm are measured with 10 condensation particle counters. Particles with diameters from 0.06 to 1.0 µm are measured with one-second resolution using two ultra-high sensitivity aerosol size spectrometers (UHSASes). A laser aerosol spectrometer (LAS) measures particle size distributions between 0.12 and 10 µm in diameter. Finally, a cloud, aerosol and precipitation spectrometer (CAPS) underwing optical spectrometer probe sizes ambient particles with diameters from 0.5 to 50 µm and images and sizes precipitation-sized particles. Additional particle instruments on the payload include a high-resolution time-of-flight aerosol mass spectrometer and a single particle laser-ablation aerosol mass spectrometer. The instruments are calibrated in the laboratory and on the aircraft. Calibrations are checked in flight by introducing four sizes of polystyrene latex (PSL) microspheres into the sampling inlet. The CAPS probe is calibrated using PSL and glass microspheres that are aspirated into the sample volume. Comparisons between the instruments and checks with the calibration aerosol indicate flight performance within uncertainties expected from laboratory calibrations. Analysis of data from the first ATom circuit in August 2016 shows high concentrations of newly formed particles in the tropical middle and upper troposphere and Arctic lower troposphere.
Kruse, F.A.
1988-01-01
Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.
Measurements of stratospheric composition using a star pointing spectrometer
NASA Technical Reports Server (NTRS)
Fish, Deb J.; Jones, Rod L.; Freshwater, Ray A.; Roscoe, Howard K.; Oldham, Derek J.
1994-01-01
Measurements of stratospheric composition have been made with a novel star-pointing spectrometer. The instrument consists of a telescope that focuses light from stars, planets, or the moon onto a spectrometer and two dimensional CCD array detector. Atmospheric absorptions can be measured, from which atmospheric columns of several gases can be determined. The instrument was deployed in Abisko, 69 deg N, during the European Arctic Stratospheric Ozone Experiment (EASOE). The instrument has the potential for measuring O3, OClO, NO2, and NO3. In this paper, a method for the retrieval of vertical columns is described, and some examples of ozone measurements given.
NASA Astrophysics Data System (ADS)
Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.
2017-03-01
Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
NASA Astrophysics Data System (ADS)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis
2017-12-01
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
Study of high resolution x-ray spectrometer concepts for NIF experiments
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.
2015-11-01
Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Detection of fatty product falsifications using a portable near infrared spectrometer
NASA Astrophysics Data System (ADS)
Kalinin, A. V.; Krasheninnikov, V. N.
2017-01-01
Spreading sales of counterfeited fatty-oil foods leads to a development of portable and operational analyzer of typical fatty acids (FA) which may be a near infrared (NIR) spectrometer. In this work the calibration models for prediction of named FA were built with the spectra of FT-NIR spectrometer for different absorption bands of the FA. The best parameters were obtained for the wavelength sub-band 1.0-1.8 μ, which includes the 2nd and 3rd overtones of C-H stretching vibrations (near 1.7 and 1.2 μ) and the combination band (1.42 μ). Applicability of the portable spectrometer based on linear NIR array photosensor for the quality analysis of spread, butter and fish oil by the typical FA has been tested.
Kamada, T
The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.
Cold atomic hydrogen in the inner galaxy
NASA Technical Reports Server (NTRS)
Dickey, J. M.; Garwood, R. W.
1986-01-01
The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Grace O.
1993-06-01
X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it,more » from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.« less
USSR Report, Physics and Mathematics.
1987-03-12
reveal that the threshold of explosive absorption depends on both the laser beam diameter and the laser pulse duration. Estimates indicate the possi...Phenomena in Parametric Generators and Amplifiers of Ultrashort Light Pulses (A. Piskarkas, A. Stabinis, et al.; USPEKHI FIZICHESKIKH NAUK, No 1, Sep...Resolution of Picosecond Absorption Spectrometer by Selection of Length of Laser Light Pulses (B. N. Korvatovskiy, V. V. Gorokhov, et al.; KVANTOVAYA
Schuder, Michael D.; Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David J.
2017-01-01
The sub-Doppler CH-symmetric stretch (ν3) infrared absorption spectrum of a hydroxymethyl (CH2OH) radical is observed and analyzed with the radical formed in a slit-jet supersonic discharge expansion (Trot = 18 K) via Cl atom mediated H atom abstraction from methanol. The high sensitivity of the spectrometer and reduced spectral congestion associated with the cooled expansion enable first infrared spectroscopic observation of hydroxymethyl transitions from both ± symmetry tunneling states resulting from large amplitude COH torsional motion. Nuclear spin statistics due to exchange of the two methyl H-atoms aid in unambiguous rovibrational assignment of two A-type Ka = 0 ← 0 and Ka = 1 ← 1 bands out of each ± tunneling state, with additional spectral information obtained from spin-rotation splittings in P, Q, and R branch Ka = 1 ← 1 transitions that become resolved at low N. A high level ab initio potential surface (CCSD(T)-f12b/cc-pvnzf12 (n = 2,3)/CBS) is calculated in the large amplitude COH torsional and CH2 wag coordinates, which in the adiabatic approximation and with zero point correction predicts ground state tunneling splittings in good qualitative agreement with experiment. Of particular astrochemical interest, a combined fit of the present infrared ground state combination differences with recently reported millimeter-wave frequencies permits the determination of improved accuracy rotational constants for the ground vibrational state, which will facilitate ongoing millimeter/microwave searches for a hydroxymethyl radical in the interstellar medium. PMID:28527463
Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y
2008-01-01
Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.
A novel multiplex absorption spectrometer for time-resolved studies
NASA Astrophysics Data System (ADS)
Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.
2018-02-01
A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.
Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.
1987-01-01
Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.
Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong
2012-12-21
In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.
NASA Astrophysics Data System (ADS)
Gibson, Gregory Laird
One advantage of conjugated polymers as organic materials is that their properties may be readily tuned through covalent modifications. This thesis presents studies on the structure-property relationships resulting from single- and double-atom substitutions on an alternating donor-acceptor conjugated polymer. Specifically, single selenium and tellurium atoms have been incorporated into the acceptor monomer in place of sulfur; silicon and germanium atoms have been substituted in place of carbon at the donor monomer bridge position. The carbon-donor/ tellurium-acceptor polymer was synthesized by a post-polymerization reaction sequence and demonstrated the utility of heavy group 16 atoms to red shift a polymer absorption spectrum. Density functional theory calculations point to a new explanation for this result invoking the lower heavy atom ionization energy and reduced aromaticity of acceptor monomers containing selenium and tellurium compared to sulfur. Absorption and emission experiments demonstrate that both silicon and germanium substitutions in the donor slightly blue shift the polymer absorption spectrum. Polymers containing sulfur in the acceptor are the strongest light absorbers of all polymers studied here. Molecular weight and phenyl end capping studies show that molecular weight appears to affect polymer absorption to the greatest degree in a medium molecular weight regime and that these effects have a significant aggregation component. Solar cell devices containing either the silicon- or germanium-donor/selenium-acceptor polymer display improved red light harvesting or hole mobility relative to their structural analogues. Overall, these results clarify the effects of single atom substitution on donor-acceptor polymers and aid in the future design of polymers containing heavy atoms.
The open-source neutral-mass spectrometer on Atmosphere Explorer-C, -D, and -E.
NASA Technical Reports Server (NTRS)
Nier, A. O.; Potter, W. E.; Hickman, D. R.; Mauersberger, K.
1973-01-01
The open-source mass spectrometer will be used to obtain the number densities of the neutral atmospheric gases in the mass range 1 to 48 amu at the satellite location. The ion source has been designed to allow gas particles to enter the ionizing region with the minimum practicable number of prior collisions with surfaces. This design minimizes the loss of atomic oxygen and other reactive species due to reactions with the walls of the ion source. The principal features of the open-source spectrometer and the laboratory calibration system are discussed.
Characterization of an atomic hydrogen source for charge exchange experiments
Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; ...
2016-07-02
Here, we characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.
ERIC Educational Resources Information Center
Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad
2011-01-01
A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…
ERIC Educational Resources Information Center
Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly
2015-01-01
Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…
Rathje, A O; Marcero, D H
1976-05-01
Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.
Interstellar photoelectric absorption cross sections, 0.03-10 keV
NASA Technical Reports Server (NTRS)
Morrison, R.; Mccammon, D.
1983-01-01
An effective absorption cross section per hydrogen atom has been calculated as a function of energy in the 0.03-10 keV range using the most recent atomic cross section and cosmic abundance data. Coefficients of a piecewise polynomial fit to the numerical results are given to allow convenient application in automated calculations.
Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)
NASA Astrophysics Data System (ADS)
Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.
2017-03-01
This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.
Brown, G.E.; McLain, B.J.
1994-01-01
The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.
Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer
Grossman, M.W.; Evans, R.
1991-11-26
A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.
Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li
2017-12-01
In this paper, N-doped TiO 2 (N-TiO 2 ) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO 2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO 2 . To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO 2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO 2 than un-doped TiO 2 . The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO 2 than to un-doped TiO 2 . Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO 2 than that on un-doped TiO 2 .
Alshahri, Fatimh
2017-01-01
Accumulation of heavy metals in environment may cause series potential risk in the living system. This study was carried out to investigate heavy metal contamination in sand samples and sediments along the beach near to disposal site of reject brine from Alkhobar desalination plant, which is one of the oldest and largest reverse osmosis desalination plants in eastern Saudi Arabia, Arabian Gulf. Fourteen heavy metals (U, Ca, Fe, Al, Ti, Sr, Rb, Ni, Pb, Cd, Cr, Cu, As, and Zr) were measured using gamma-ray spectrometry, atomic absorption spectrometer (AAS) and energy dispersive X-ray fluorescence spectrometer (EDX). The obtained data revealed that the concentrations of these metals were higher than the values in sediment and soil for other studies in Arabian Gulf. Furthermore, the mean values of Fe, Mn, Cr, Cu, As, Sr, and Zr concentrations in sand and sediments were higher than the geochemical background values in shale. The contamination factor (CF), modified degree of contamination (mC d ) and pollution load index (PLI) were assessed. According to contamination factors (CF > 1), the results showed elevated levels of Cu, Cr, Mn, Zr, and As in all samples. The highest value of contamination factor was found for As. Based on PLI (PLI > 1), the values of all sampling sites indicate a localized pollution in the study area. Current study could be useful as baseline data for heavy metals in sand and sediments nearby a desalination plant.
Infrared and Microwave Spectra of Ne-WATER Complex
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Thomas, Javix; Xu, Yunjie; Hou, Dan; Li, Hui
2016-06-01
The binary complex of rare gas atom and water is an ideal model to study the anisotropic potential energy surface of van der Waals interaction and the large amplitude motion. Although Xe-H_2O, Kr-H_2O, Ar-H_2O, Ar-D_2O and even Ne-D_2O complexes were studied by microwave or high resolution infrared spectroscopy, the lighter Ne-H_2O complex has remained unidentified. In this talk, we will present the theoretical and experimental investigation of the Ne-H_2O complex. A four-dimension PES for H_2O-Ne which only depended on the intramolecular (Q2) normal-mode coordinate of H2O monomer was calculated in this work to determine the rovibrational energy levels and mid-infrared transitions. Aided with the calculated transitions, we were able to assigned the high resolution mid-infrared spectra of both 20Ne-H_2O and 22Ne-H_2O complexes that are generated with a pulsed supersonic molecular beam in a multipass direct absorption spectrometer equiped with an external cavity quantum cascade laser at 6 μm. Several bands of both para and ortho Ne-H2O were assigned and fitted using the Hamiltonian with strong Coriolis and angular-radical coupling terms. The predicted groud state energy levels are then confirmed by the J=1-0 and J=2-1 transitions measurement using a cavity based Fourier transform microwave spectrometer.
NASA Technical Reports Server (NTRS)
Goldman, A.; Williams, W. J.; Murcray, D. G.
1974-01-01
The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.
PIR-fiber spectroscopy with FTIR and TDL spectrometers in the middle infared range of spectra
NASA Astrophysics Data System (ADS)
Artjushenko, Vjacheslav G.; Afanasyeva, Natalia I.; Bruch, Reinhard F.; Daniellian, G.; Stepanov, Eugene V.
2000-07-01
Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR- fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high resolution of TDL spectrometers with (Delta) v equals 10-4 cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors, and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.
Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming
2018-02-01
Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ishizaki, M
1978-03-01
A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.
NASA Astrophysics Data System (ADS)
Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.
2016-01-01
A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.
Theoretical study of Ag doping-induced vacancies defects in armchair graphene
NASA Astrophysics Data System (ADS)
Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.
2018-06-01
We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.
The purpose of this SOP is to detail the procedures for the start-up, operation, calibration, shut-down, and maintenance of the Thermo Jarrell Ash ICAP 61-975 Plasma AtomComp Emission Spectrometer. These procedures were used in determining the trace target metals Al, As, Ba, Cd,...
Composition measurements of the topside ionosphere.
Hoffman, J H
1967-01-20
Data from a magnetic mass spectrometer flown on the Explorer 31 satellite show that the ionosphere above 1000 kilometers usually consists of hydrogen ions as the predominant species. Between this altitude and perigee (500 kilometers) the dominant ion species shifts to atomic oxygen, with a significant amount of atomic nitrogen ions also present. Helium ions are present in small quantities at all altitudes. Other minor ions observed are those of 2, 7, 8, 15, 18, and 20 atomic mass units.
Observing random walks of atoms in buffer gas through resonant light absorption
NASA Astrophysics Data System (ADS)
Aoki, Kenichiro; Mitsui, Takahisa
2016-07-01
Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.
NASA Astrophysics Data System (ADS)
Wang, Jian-ming; Xu, Xue-xiang
2018-04-01
Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.
Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991
NASA Technical Reports Server (NTRS)
Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)
1991-01-01
The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.
1980-01-01
Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.
Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections
NASA Astrophysics Data System (ADS)
Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.
2015-06-01
High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.
Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur
2015-01-01
The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.
NASA Astrophysics Data System (ADS)
Zolot, A. M.; Giorgetta, F. R.; Baumann, E.; Swann, W. C.; Coddington, I.; Newbury, N. R.
2013-03-01
The Doppler-limited spectra of methane between 176 THz and 184 THz (5870-6130 cm-1) and acetylene between 193 THz and 199 THz (6430-6630 cm-1) are acquired via comb-tooth resolved dual comb spectroscopy with frequency accuracy traceable to atomic standards. A least squares analysis of the measured absorbance and phase line shapes provides line center frequencies with absolute accuracy of 0.2 MHz, or less than one thousandth of the room temperature Doppler width. This accuracy is verified through comparison with previous saturated absorption spectroscopy of 37 strong isolated lines of acetylene. For the methane spectrum, the center frequencies of 46 well-isolated strong lines are determined with similar high accuracy, along with the center frequencies for 1107 non-isolated lines at lower accuracy. The measured methane line-center frequencies have an uncertainty comparable to the few available laser heterodyne measurements in this region but span a much larger optical bandwidth, marking the first broad-band measurements of the methane 2ν3 region directly referenced to atomic frequency standards. This study demonstrates the promise of dual comb spectroscopy to obtain high resolution broadband spectra that are comparable to state-of-the-art Fourier-transform spectrometer measurements but with much improved frequency accuracy.Work of the US government, not subject to US copyright.
Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.
2017-02-01
The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.
Strong-field two-photon transition by phase shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook
2010-08-15
We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.
Wang, Wei-Guo; Xu, Yong; Yang, Xue-Feng; Wang, Wen-Chun; Zhu, Ai-Min
2005-01-01
Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from approximately 0.83% to approximately 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported. Copyright 2005 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Humphris, R. R.; Boring, J. W.; Nelson, C. V.
1981-01-01
Beams of 5-50 eV He(+), Ar(+), Ne(+), O(+), and N2(+) ions were directed into an aluminum sphere, and the equilibrium number density of the atom or molecules was measured inside the sphere using a quadrupole mass spectrometer and signal averaging techniques. The equilibrium number density is inversely proportional to the average speed of the atoms; thus, the results are expressed in terms of the speed ratio, R = V(i)/V(s), where V(i) is the average speed within the enclosure, and V(s) is the average speed of atoms fully accommodated to the temperature of the wall. The speed ratios vary between 1.0 and 1.8. For N2, several values of R were less than 1; this was largely due to desorbed N2. There was no detectable number density for O, which is explained by the reaction of O with the surface.
Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024
2013-08-15
Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less
Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2
NASA Astrophysics Data System (ADS)
Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.
2003-03-01
Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.
2015-01-01
Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.
A Ka-band chirped-pulse Fourier transform microwave spectrometer
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.
2012-10-01
The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.
Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Crisp, D.
1993-01-01
Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.
Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy
ERIC Educational Resources Information Center
Drew, John
2008-01-01
In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…
ERIC Educational Resources Information Center
Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno
2015-01-01
The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…
The DTIC Review: Volume 2, Number 4, Surviving Chemical and Biological Warfare
1996-12-01
CHROMATOGRAPHIC ANALYSIS, NUCLEAR MAGNETIC RESONANCE, INFRARED SPECTROSCOPY , ARMY RESEARCH, DEGRADATION, VERIFICATION, MASS SPECTROSCOPY , LIQUID... mycotoxins . Such materials are not attractive as weapons of mass destruction however, as large amounts are required to produce lethal effects. In...VERIFICATION, ATOMIC ABSORPTION SPECTROSCOPY , ATOMIC ABSORPTION. AL The DTIC Review Defense Technical Information Center AD-A285 242 AD-A283 754 EDGEWOOO
Facilities Management Guide for Asbestos and Lead
2004-11-01
equipment such as HEPA filtered power tools, portable welding exhaust systems, and paint removal equipment when work disturbs lead. Do not dry sweep ...sampling and analysis of [______] paint bulk and wipe samples by atomic absorption spectrophotometry (AA) or anodic stripping voltametry (ASV...analysis. e. All bulk (destructive) collected for lead shall be analyzed by atomic absorption spectrophotometry (AA) or anodic stripping voltametry
Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R
2017-08-01
A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...
2017-12-07
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1992-01-01
The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.
NASA Astrophysics Data System (ADS)
Zhong, M.; Jang, M.
2013-08-01
Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.
NASA Astrophysics Data System (ADS)
Zhong, M.; Jang, M.
2014-02-01
Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.
NASA Astrophysics Data System (ADS)
Bae, Jungmok; Druzhin, Vladislav V.; Anikanov, Alexey G.; Afanasyev, Sergey V.; Shchekin, Alexey; Medvedev, Anton S.; Morozov, Alexander V.; Kim, Dongho; Kim, Sang Kyu; Moon, Hyunseok; Jang, Hyeongseok; Shim, Jaewook; Park, Jongae
2017-02-01
A novel miniaturized near-infrared spectrometer readily mountable to wearable devices for continuous monitoring of individual's key bio-markers was proposed. Spectrum is measured by sequential illuminations with LED's, having independent spectrum profiles and a continuous detection of light radiations from the skin tissue with a single cell PD. Based on Tikhonov regularization with singular value decomposition, a spectrum resolution less than 10nm was reconstructed based on experimentally measured LED profiles. A prototype covering first overtone band (1500-1800nm) where bio-markers have pronounced absorption peaks was fabricated and verified of its performance. Reconstructed spectrum shows that the novel concept of miniaturized spectrometer is valid.
Hubert, A.E.; Chao, T.T.
1985-01-01
A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.
Thin-film spectroscopic sensor
Burgess, Jr., Lloyd W.; Goldman, Don S.
1992-01-01
There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.
Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.
2011-01-01
Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zi; Zhang, Shen; Kang, Wei
2016-05-15
X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less
Onboard data processing and compression for a four-sensor suite: the SERENA experiment.
NASA Astrophysics Data System (ADS)
Mura, A.; Orsini, S.; Di Lellis, A.; Lazzarotto, F.; Barabash, S.; Livi, S.; Torkar, K.; Milillo, A.; De Angelis, E.
2013-09-01
SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). SERENA instrument includes four units: ELENA (Emitted Low Energy Neutral Atoms), a neutral particle analyzer/imager to detect ion sputtering and backscattering from Mercury's surface; STROFIO (Start from a Rotating FIeld mass spectrometer), a mass spectrometer to identify atomic masses released from the surface; MIPA (Miniature Ion Precipitation Analyzer) and PICAM (Planetary Ion Camera), two ion spectrometers to monitor the precipitating solar wind and measure the plasma environment around Mercury. The System Control Unit architecture is such that all four sensors are connected to a high resolution FPGA, which dialogs with a dedicated high-performance data processing unit. The unpredictability of the data rate, due to the peculiarities of these investigations, leads to several possible scenarios for the data compression and handling. In this study we first discuss about the predicted data volume that comes from the optimized operation strategy, and then we report on the instrument data processing and compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.
To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less
Glucose determination with fiber optic spectrometers
NASA Astrophysics Data System (ADS)
Starke, Eva; Kemper, Ulf; Barschdorff, Dieter
1999-05-01
Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.
Detection of titanium in human tissues after craniofacial surgery.
Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N
1997-04-01
Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.
McLain, B.J.
1993-01-01
Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.
NASA Astrophysics Data System (ADS)
Freedhoff, Helen
2004-01-01
We study an aggregate of N identical two-level atoms (TLA’s) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,…,9 TLA’s.
Linear electronic field time-of-flight ion mass spectrometers
Funsten, Herbert O.
2010-08-24
Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.
Doughten, M.W.; Gillison, J.R.
1990-01-01
Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.
NASA Astrophysics Data System (ADS)
Wagenaars, E.; Gans, T.; O'Connell, D.; Niemi, K.
2012-08-01
The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0-0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.
NASA Astrophysics Data System (ADS)
Dong, Xiao; Wang, Yongyong; Song, Xiaohui; Yang, Feng
2018-03-01
In silicon co-hyperdoped with nitrogen and sulfur, dopant atoms tend to form dimers in the near-equilibrium process. The dimer that contains substitutional N and S atoms has the lowest formation energy and can form an impurity band that overlaps with the conduction band (CB). When separating the two atoms far apart from each other, the impurity band is clearly isolated from the CB and becomes an intermediate band (IB). The sub-band-gap absorption decreases with the decrease in the substitutional atom distance. The sub-band-gap absorption of the material is the combined effect of the configurations with different N-S distances.
Wang, Cuiping; Lin, Xinying; Guo, Dongmei; Ding, Lili; Guo, Haifeng; Xu, Guifa; Cui, Xi; Wang, Xia
2017-05-01
The objective of this study was to investigate the zinc fractional absorption of young Chinese men and women from the Shandong rural region under the routine dietary pattern by stable isotope technique. Ten men and 10 women, aged 20 to 35 years, and with a representative diet during the experiment were recruited from the Shandong rural region. Stable 67 Zn was used as a tracer to label ZnCl 2 , and Yb was used to monitor the excretion of 67 Zn in urine and feces. All volunteers were given rice containing 4.0 mg 67 Zn and 1.0 mg Yb on the fourth day. Then the food and fecal samples of all subjects were collected for 12 consecutive days. The total zinc and the stable zinc isotope ratio of all samples were determined by atomic absorption spectrophotometer and thermal ionization mass spectrometer, respectively. The determination of the other nutrients was performed based on the Chinese National Standard Methods. Among volunteers, the daily intake of zinc was 15.50 mg, 103.33 % of recommended nutrient intake (RNI, set by the Chinese Nutrition Society) in men and 15.43 mg, 134.17 % in women. The fractional absorption of Zn was 23.42 ± 2.23 % in men, and 22.49 ± 2.19 % in women. The protein candidates got from the typical diets was 93.96 % of RNI in women. Calcium and ascorbic acid intakes were 76.23 % of RNI and 27.91 % of RNI in men, respectively and 51.17 % of RNI and 34.23 % of RNI in women, respectively. Our results showed that a typical meal for someone in the Shandong rural region presented an adequate intake of zinc and a moderate Zn bioavailability. The shortage of protein and the inappropriate protein pattern may play important roles in reducing zinc bioavailability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji
To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less
NASA Astrophysics Data System (ADS)
Perdelwitz, V.; Huke, P.
2018-06-01
Absorption cells filled with diatomic iodine are frequently employed as wavelength reference for high-precision stellar radial velocity determination due their long-term stability and low cost. Despite their wide-spread usage in the community, there is little documentation on how to determine the ideal operating temperature of an individual cell. We have developed a new approach to measuring the effective molecular temperature inside a gas absorption cell and searching for effects detrimental to a high precision wavelength reference, utilizing the Boltzmann distribution of relative line depths within absorption bands of single vibrational transitions. With a high resolution Fourier transform spectrometer, we took a series of 632 spectra at temperatures between 23 °C and 66 °C. These spectra provide a sufficient basis to test the algorithm and demonstrate the stability and repeatability of the temperature determination via molecular lines on a single iodine absorption cell. The achievable radial velocity precision σRV is found to be independent of the cell temperature and a detailed analysis shows a wavelength dependency, which originates in the resolving power of the spectrometer in use and the signal-to-noise ratio. Two effects were found to cause apparent absolute shifts in radial velocity, a temperature-induced shift of the order of ˜1 ms-1K-1 and a more significant effect resulting in abrupt jumps of ≥50 ms-1 is determined to be caused by the temperature crossing the dew point of the molecular iodine.
Crowley, J.K.; Brickey, D.W.; Rowan, L.C.
1989-01-01
Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.
ERIC Educational Resources Information Center
Baird, Michael J.
2004-01-01
A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.
ERIC Educational Resources Information Center
Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.
2004-01-01
An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…
DOT National Transportation Integrated Search
2014-04-01
A correlation between Wavelength Dispersive X-ray Fluorescence(WDXRF) analysis of Hardened : Concrete for Chlorides and Atomic Absorption (AA) analysis (current method AASHTO T-260, procedure B) has been : found and a new method of analysis has been ...
ERIC Educational Resources Information Center
Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín
2016-01-01
Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…
ERIC Educational Resources Information Center
Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.
2012-01-01
This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…
2011-01-01
Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM) is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India) for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG). In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2). PMID:21466671
NASA Astrophysics Data System (ADS)
Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.
2016-04-01
Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.
Temperature dependence of the ClONO2 UV absorption spectrum
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.
1994-01-01
The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).
Infrared heterodyne spectroscopy of atmospheric ozone
NASA Technical Reports Server (NTRS)
Frerking, M. A.; Muehlner, D. J.
1977-01-01
The absorption spectrum of atmospheric ozone is measured within a 1/cm region at 1100/cm, using an IR heterodyne detector (spectrometer with CO2 local oscillator) developed for astronomical work. Absorption spectra obtained by passing radiation from the tunable diode laser through an absorption cell, heterodyne spectra of atmospheric ozone, and a predicted atmospheric spectrum are compared. Water vapor absorbing in the region of interest (1100/cm) is also considered. Preliminary results encourage the use of diode laser local oscillators in tunable heterodyne detector systems for spectroscopy of atmospheric ozone and remote high-resolution spectroscopy of atmospheric constituents and pollutants.
NASA Astrophysics Data System (ADS)
Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.
1998-03-01
Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.
Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.
Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T
2008-09-15
Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with the reported levels at the 95% confidence level.
Broadband, high-resolution investigation of advanced absorption line shapes at high temperature
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2017-08-01
Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.
Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges
2016-05-01
A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Jacob, Anju Anna; Balakrishnan, L.; Meher, S. R.; Shambavi, K.; Alex, Z. C.
Zinc oxide (ZnO) is a wide bandgap semiconductor with excellent photoresponse in ultra-violet (UV) regime. Tuning the bandgap of ZnO by alloying with cadmium can shift its absorption cutoff wavelength from UV to visible (Vis) region. Our work aims at synthesis of Zn1-xCdxO nanoparticles by co-precipitation method for the fabrication of photodetector. The properties of nanoparticles were analyzed using X-ray diffractometer, UV-Vis spectrometer, scanning electron microscope and energy dispersive spectrometer. The incorporation of cadmium without altering the wurtzite structure resulted in the red shift in the absorption edge of ZnO. Further, the photoresponse characteristics of Zn1-xCdxO nanopowders were investigated by fabricating photodetectors. It has been found that with Cd alloying the photosensitivity was increased in the UVA-violet as well in the blue region.
Qiao, W; Stephan, D; Hasselbeck, M; Liang, Q; Dekorsy, T
2012-08-27
A compact high-resolution THz time-domain waveguide spectrometer that is operated inside a cryostat is demonstrated. A THz photo-Dember emitter and a ZnTe electro-optic detection crystal are directly attached to a parallel copper-plate waveguide. This allows the THz beam to be excited and detected entirely inside the cryostat, obviating the need for THz-transparent windows or external THz mirrors. Since no external bias for the emitter is required, no electric feed-through into the cryostat is necessary. Using asynchronous optical sampling, high resolution THz spectra are obtained in the frequency range from 0.2 to 2.0 THz. The THz emission from the photo-Dember emitter and the absorption spectrum of 1,2-dicyanobenzene film are measured as a function of temperature. An absorption peak around 750 GHz of 1,2-dicyanobenzene displays a blue shift with increasing temperature.
NASA Technical Reports Server (NTRS)
Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.
1987-01-01
Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.
NASA Technical Reports Server (NTRS)
Starr, W. L.
1976-01-01
Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.
NASA Astrophysics Data System (ADS)
Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.
2018-03-01
In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.
Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain
2012-01-01
Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.
Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain
2012-01-01
Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research. PMID:22666019
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com
Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Hoefen, T. M.; Kokaly, R. F.; Swayze, G. A.; Livo, K. E.
2015-12-01
Collection of spectroscopic data has expanded with the development of field-portable spectrometers. The most commonly available spectrometers span one or several wavelength ranges: the visible (VIS) and near-infrared (NIR) region from approximately 400 to 1000 nm, and the shortwave infrared (SWIR) region from approximately 1000-2500 nm. Basic characteristics of spectrometer performance are the wavelength position and bandpass of each channel. Bandpass can vary across the wavelength coverage of an instrument, due to spectrometer design and detector materials. Spectrometer specifications can differ from one instrument to the next for a given model and between manufacturers. The USGS Spectroscopy Lab in Denver has developed a simple method to evaluate field spectrometer wavelength accuracy and bandpass values using transmission measurements of materials with intense, narrow absorption features, including Mylar* plastic, praseodymium-doped glass, and National Institute of Standards and Technology Standard Reference Material 2035. The evaluation procedure has been applied in laboratory and field settings for 19 years and used to detect deviations from cited manufacturer specifications. Tracking of USGS spectrometers with transmission standards has revealed several instances of wavelength shifts due to wear in spectrometer components. Since shifts in channel wavelengths and differences in bandpass between instruments can impact the use of field spectrometer data to calibrate and analyze imaging spectrometer data, field protocols to measure wavelength standards can limit data loss due to spectrometer degradation. In this paper, the evaluation procedure will be described and examples of observed wavelength shifts during a spectrometer field season will be presented. The impact of changing wavelength and bandpass characteristics on spectral measurements will be demonstrated and implications for spectral libraries will be discussed. *Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Light, Thomas D.; Schmidt, Jeanine M.
2011-01-01
Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.
Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao
2011-02-10
The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.
Mobile environment for an emission spectrometer
NASA Astrophysics Data System (ADS)
Radziak, Kamil; Litwin, Dariusz; Galas, Jacek; Tyburska-Staniewska, Anna; Ramsza, Andrzej
2017-08-01
The paper describes a mobile application to be used in a chemical analytical laboratory. The program running under the control of Android operating system allows for preview of measurements recorded by the emission spectrometer. Another part of the application monitors operational and configuration parameters of the device in real time. The first part of this paper includes an overview of the atomic spectrometry. The second part contains a description of the application and its further potential development direction.
NASA Astrophysics Data System (ADS)
Ellis, R.; Murphy, J. G.; van Haarlem, R.; Pattey, E.; O'Brien, J.
2009-05-01
A compact, fast response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC- TILDAS) for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 76 m path length, 0.5 L volume multiple pass absorption cell. Detection is achieved using a thermoelectrically cooled HgCdTe infrared detector. A novel sampling technique was used, consisting of a short, heated, quartz inlet with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles and additional ports for delivering ammonia free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.3 ppb with a time resolution of 1 s. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser (TDL) absorption spectrometer during a laboratory intercomparison. Various lengths and types of sample inlet tubing material, heated and unheated, under dry and ambient humidity conditions with ammonia concentrations ranging from 10-1000 ppb were investigated. Preliminary analysis suggests the time response improves with the use of short, PFA tubing sampling lines. No significant improvement was observed when using a heated sampling line and humidity was seen to play an important role on the bi-exponential decay of ammonia. A field intercomparison of the QC-TILDAS with a modified Thermo 42C chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation (r2>0.9) between the two instruments at the beginning of the study, when regular background subtraction was applied to the QC- TILDAS.
Detection and quantification of snow algae with an airborne imaging spectrometer.
Painter, T H; Duval, B; Thomas, W H; Mendez, M; Heintzelman, S; Dozier, J
2001-11-01
We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, beta-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 microm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 microm. The integral of the scaled chlorophyll a and b absorption feature (I(0.68)) varies with algal concentration (C(a)). Using the relationship C(a) = 81019.2 I(0.68) + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km(2) region imaged, the mean algal concentration was 1,306 cells ml(-1), the standard deviation was 1,740 cells ml(-1), and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km(2) snow-covered area, which gave an areal biomass concentration of 0.033 g/m(2).
Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer
Painter, Thomas H.; Duval, Brian; Thomas, William H.; Mendez, Maria; Heintzelman, Sara; Dozier, Jeff
2001-01-01
We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I0.68) varies with algal concentration (Ca). Using the relationship Ca = 81019.2 I0.68 + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2. PMID:11679355
LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Chris J.; Kim, Yong Seol; Kaiser, Ralf I.
2011-01-20
Mixtures of water (H{sub 2}O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm{sup -1} (5.92 and 8.17 {mu}m, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH{sup +}) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeledmore » water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.« less
Campbell, W.L.
1981-01-01
False readings, apparently caused by the presence of high concentrations of manganese dioxide, have been observed in our current flame atomic-absorption procedure for the determination of gold. After a hydrobromic acid (HBr)-bromine (Br2) leach, simply heating the sample to boiling to remove excess Br2 prior to extraction with methyl-isobutyl-ketone (MIBK) eliminates these false readings. ?? 1981.
Rapid determination of nanogram amounts of tellurium in silicate rocks
Greenland, L.P.; Campbell, E.Y.
1976-01-01
A hydride-generation flameless atomic-absorption technique is used to determine as little as 5 ng g-1 tellurium in 0.25 g of silicate rock. After acid decomposition of the sample, tellurium hydride is generated with sodium borohydride and the vapor passed directly to a resistance-heated quartz cell mounted in an atomic-absorption spectrophotometer. Analyses of 11 U.S. Geological Survey standard rocks are presented. ?? 1976.
NASA Astrophysics Data System (ADS)
Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.
2015-01-01
In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.
Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei
2015-10-01
To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.
NASA Astrophysics Data System (ADS)
Nakayama, Akira; Yamashita, Koichi
2001-01-01
Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].
Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech
2018-01-30
In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun
2009-04-30
By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.
Harnly, J.M.; Kane, J.S.
1984-01-01
The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.
Synthesis and Characterization of Tetrakis(2-amino-3-methylpyridine)copper(II) Sulfate Tetrahydrate
NASA Astrophysics Data System (ADS)
Rahardjo, S. B.; Saraswati, T. E.; Masykur, A.; Finantrena, N. N. F.; Syaima, H.
2018-04-01
The complex of Tetrakis(2-amino-3-methylpyridine)copper(II) sulfate tetrahydrate has been synthesized in a ratio of 1: 6 metal to ligand in methanol. The percentage of copper in the complex measured by Atomic Absorption Spectrometer (AAS) showed the complex formula was Cu(2-amino-3-metilpyridine)4SO4(H2O)n (n = 3, 4, or 5). The analysis of TG/DTA showed that 1 mole of complex contains 4 moles of H2O. The conductivity measurement indicated that the complex is in 1 to 1 electrolyte. The formula of the complex was estimated as [Cu(2-amino-3-metilpyridine)4]SO4·4H2O. The complex was paramagnetic with µeff of 1.85 BM. The UV-Vis spectra showed a band peak at 730 nm with an electronic transition Eg→T2g. IR spectral data indicated that the functional groups of N-pyridine 2-amino-3-metilpyridine coordinated to ion Cu(II). The geometry of the complex was probably square planar.
Mercury, cadmium and arsenic contents of calcium dietary supplements.
Kim, Meehye
2004-08-01
The cadmium (Cd) and arsenic (As) contents of calcium (Ca) supplements available on the Korean market were determined by a graphite furnace atomic absorption spectrometer using Zeeman background correction and peak area mode after microwave digestion. The mercury (Hg) content of the supplements was measured using an Hg analyser. Recoveries ranged from 92 to 98% for Hg, Cd and As analyses. Fifty-five brands of Ca supplements were classified into seven categories based on the major composite: bone, milk, oyster/clam shell, egg shell, algae, shark cartilage and chelated. The means of Hg, Cd and As in Ca supplements were 0.01, 0.02, and 0.48 mg kg(-1), respectively. Ca supplements made of shark cartilage had the highest means of Hg (0.06 mg kg(-1)) and Cd (0.13 mg kg(-1)). The mean daily intakes of Hg and Cd from the supplement were estimated as about 0.1-0.2 microg, with both contributing less than 0.4% of provisional tolerable daily intakes set by the Food and Agricultural Organization/World Health Organization Joint Food Additive and Contaminants Committee.
Strawberries from integrated and organic production: mineral contents and antioxidant activity.
Kristl, Janja; Krajnc, Andreja Urbanek; Kramberger, Branko; Mlakar, Silva Grobelnik
2013-01-01
As the nutritional quality of food is becoming increasingly more important for consumers, significant attention needs to be devoted to agricultural practices and their influences on the nutrient contents in food. The presented investigation studied the mineral contents and antioxidant activities in the fruits of four organically-grown strawberry cultivars 'St. Pierre', 'Elsanta', 'Sugar Lia' and 'Thuchampion' when compared to those of integrated-grown plants. The strawberries were digested and analyzed for K, Mg, Fe, Zn, Cu, and Mn using an atomic absorption spectrometer, whilst P was analyzed using a vanadate-molybdate method. In addition, antioxidant activity was estimated by using the ABTS assay. The results showed that the mineral contents and antioxidant activities in strawberries depends on the cultivar, and its production system. Organically-grown fruits showed higher antioxidant activities and Cu content than the integrated fruits, whilst the integrated fruits were superior in their contents of P, K, Mg, Fe and Mn. All the cultivars showed similar Zn content, probably reflecting the fact that the Zn content in strawberries does not depend on the cultivar.
Cao, Wei; Liu, Dan; Zhang, Yi-Kai; Wang, Xiao-Yu; Chang, Yan-Rong; Yang, Qian; Wang, Si-Wang
2010-10-01
To analyze the content of proteins,amino acids and inorganic elements of Holotrichia diomphalia in different growing areas as the references for quality evaluation and reasonable application of them. The contents of proteins were determined using semi-micro Kjeldahl method. The contents of seventeen amino acids and inorganic elements were determined with amino acid analyzer and atomic absorption spectrometer and elemental analyzer, respectively. The contents of protein were 33.4%-44.4%, and that in Jiangxi were the highest in five different areas. There were seventeen kinds of amino acids in Holotrichia diomphalia. Among them, seven amino acids were essential to human life. The content of glutamic acid was the highest in seventeen amino acids. In inorganic elements, the content of Mg, Ca was higher in macroelements and Fe, Zn was higher in microelements. There are many kinds of necessary amino acids and inorganic elements for man kind in Holotrichia diomphalia. The contents of proteins, amino acids and inorganic elements have some difference in Holotrichia diomphalia of different growing areas.
NASA Astrophysics Data System (ADS)
Garcia, R.; Peralta, O.; Alvarez, H.; Carrasco, M.
2016-12-01
The objective of this study was to evaluate the concentration of mercury (Hg) and inorganic ions in rainwater collected in Juriquilla and San Joaquin during the rainy seasons from 2009 to 2014. A total of 380 rainwater samples were collected and analyzed for pH, conductivity, the ions NO3-, SO42-, Cl-, Ca2+, Mg2+, Na+, K+, NH4+ and Hg. The ions were measured by Ion Chromatography (IC) and Hg was measured by Hydride Vapor Generator system coupled to an Atomic Absorption Spectrometer (HVG-AAS). Ammonium presented the higher volume-weighted-mean-concentration (VWMC), followed by SO42-, NO3-, Ca2+, Cl-, Na+, Mg2+ and K+. Sulfate showed a significant increasing trend emission in San Joaquin due to the burning cinnabar (HgS) for the extraction of mercury in artisanal ovens. The authors emphasized that the associations between Hg concentrations and local meteorological conditions, such as wind's speed and direction, play an important role in the study of the chemical of precipitation.
MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; ...
2016-08-08
Atomic clusters can serve as ideal model systems for exploring ultrafast (~100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally-resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities and ionization. Single shot x-ray Thomson scatterings signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. As a result, such measurements are important for understanding collective effects in laser-matter interactions on femtosecond timescales, opening new routes for the development of schemes for their ultrafast control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Gorkhover, T.
2016-11-15
Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.« less
Lead in human blood and milk from nursing women living near a smelter in Mexico City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namihira, D.; Saldivar, L.; Pustilnik, N.
The lead content in gasoline in Mexico City is the highest in the world (1g/L). The use of gasoline containing lead as an antiknock agent has been considered the major anthropogenic lead source in the area. Lead levels in breast milk and blood were determined in women living within a 200-m radius of 3 smelters in Mexico City. All samples were analyzed on a Perkin Elmer 460 atomic absorption spectrometer equipped with HGA 2200. The mean blood lead level was 45.88 [mu]g/dl (SD 19.88 [mu]g/dl), and the geometric mean of milk lead level was 2.47 [mu]g/100 ml. The correlation coefficientmore » of these two variables was 0.88. Using the mean value of lead found in breast milk, an infant of 5.5 kg would ingest 8.1 [mu]g/kg/d in his diet. The daily permissible intake (DPI) established by the World Health Organization (WHO) in 1972 for an adult is 5.0 [mu]g/kg/d. 32 refs., 3 figs., 1 tab.« less
Nitrous Oxide In The Antarctic Stratosphere
NASA Technical Reports Server (NTRS)
Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. R.
1991-01-01
Paper reports on measurements of nitrous oxide (N2O) in upper atmosphere of Southern Hemisphere, made by tunable-laser absorption spectrometer on airplane. Measurements fill gap in information about distribution of N2O over Antarctic while ozone hole forming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasco, B. C.; Rykaczewski, K. P.; Fijalkowska, A.
We measured the complete -decay intensities of 137I and 137Xe with the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory. We describe a novel technique for measuring the -delayed neutron energy spectrum, which also provides a measurement of the -neutron branching ratio, P n.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.
To shed more light on the nature of the observed Ly α absorption during transits of HD 209458b and to quantify the major mechanisms responsible for the production of fast hydrogen atoms (the so-called energetic neutral atoms, ENAs) around the planet, 2D hydrodynamic multifluid modeling of the expanding planetary upper atmosphere, which is driven by stellar XUV, and its interaction with the stellar wind has been performed. The model self-consistently describes the escaping planetary wind, taking into account the generation of ENAs due to particle acceleration by the radiation pressure and by the charge exchange between the stellar wind protonsmore » and planetary atoms. The calculations in a wide range of stellar wind parameters and XUV flux values showed that under typical Sun-like star conditions, the amount of generated ENAs is too small, and the observed absorption at the level of 6%–8% can be attributed only to the non-resonant natural line broadening. For lower XUV fluxes, e.g., during the activity minima, the number of planetary atoms that survive photoionization and give rise to ENAs increases, resulting in up to 10%–15% absorption at the blue wing of the Ly α line, caused by resonant thermal line broadening. A similar asymmetric absorption can be seen under the conditions realized during coronal mass ejections, when sufficiently high stellar wind pressure confines the escaping planetary material within a kind of bowshock around the planet. It was found that the radiation pressure in all considered cases has a negligible contribution to the production of ENAs and the corresponding absorption.« less
VUV spectroscopic study of the ? state of H2
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ubachs, W.
2014-04-01
Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.
Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.
1992-01-01
Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.
The nonlinear light output of NaI(Tl) detectors in the Modular Total Absorption Spectrometer
Rasco, B. C.; Fijałkowska, A.; Karny, M.; ...
2015-04-08
New detector array, the Modular Total Absorption Spectrometer (MTAS),was commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab(ORNL).Total absorption gamma spectra measured with MTAS are expected to improve beta-feeding patterns and beta strength functions in fission products.MTAS is constructed out of hexagonal NaI(Tl) detectors with a unique central module surrounded by 18 identical crystals assembled in three rings. The total NaI(Tl) mass of MTAS is over1000 kg.The response of the central and other 18 MTAS modules to -radiation was simulated using the GEANT4 tool kit modified to analyze the nonlinear light output of NaI(Tl).A detailedmore » description oftheGEANT4modifications madeisdiscussed.SimulatedenergyresolutionofMTAS modules is found to agree well with the measurements for single transitions of 662keV (137Cs) with 8.2% full width half maximum (FWHM),835keV (54Mn) with FWHM of 7.5% FWHM, and 1115keV (65Zn) with FWHM of 6.5%.Simulations of single and multiple -rays from 60Co are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Eric; Teng, Chu; van Kessel, Theodore
We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv∙Hz-1/2, corresponding to a noise-equivalent absorption (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1∙Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) formore » initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-of-arrival (AOA) results will be shown, and development towards source magnitude estimation will be described.« less