Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert
2013-01-01
Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.
A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.
2011-01-01
A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.
Laser controlled atom source for optical clocks.
Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal
2016-11-18
Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.
Laser controlled atom source for optical clocks
Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal
2016-01-01
Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy. PMID:27857214
An atomic clock with 10(-18) instability.
Hinkley, N; Sherman, J A; Phillips, N B; Schioppo, M; Lemke, N D; Beloy, K; Pizzocaro, M; Oates, C W; Ludlow, A D
2013-09-13
Atomic clocks have been instrumental in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Timekeeping precision at 1 part in 10(18) enables new timing applications in relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests of physics beyond the standard model. Here, we describe the development and operation of two optical lattice clocks, both using spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6 × 10(-18) after only 7 hours of averaging.
Compact atomic clocks and stabilised laser for space applications
NASA Astrophysics Data System (ADS)
Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud
2016-07-01
We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.
High-stability compact atomic clock based on isotropic laser cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas
2010-09-15
We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less
Mehlstäubler, Tanja E; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O; Denker, Heiner
2018-06-01
We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10 -17 , opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein's general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today's best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10 -18 , comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.
NASA Astrophysics Data System (ADS)
Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner
2018-06-01
We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.
Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping
NASA Technical Reports Server (NTRS)
Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.
2012-01-01
A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.
A new type of caesium clock: a laser-cooled atomic fountain.
NASA Astrophysics Data System (ADS)
Clairon, A.
1995-05-01
In recent years, progress has been made in the field of cooling neutral atoms using a laser. An initial application is the construction of a new type of atomic clock. Today it is easy to produce a gas of caesium atoms at a temperature of a few microkelvins, corresponding to a mean square velocity of the order of 1 cm/s; all that is needed is two laser diodes forming an optical soup in a low pressure caesium cell. In the longer term, these cooled atoms will make it possible to build clocks whose performance will be one or two orders of magnitude better than those that exist at present. A prototype caesium clock using cold atoms has been operating for over a year that the LPTF in the Paris observatory. This article describes its design principles and gives a brief presentation of the results obtained so far.
Development of an optically-pumped cesium standard at the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Chan, Yat C.
1992-01-01
We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.
Innovation and reliability of atomic standards for PTTI applications
NASA Technical Reports Server (NTRS)
Kern, R.
1981-01-01
Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.
Optically guided atom interferometer tuned to magic wavelength
NASA Astrophysics Data System (ADS)
Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi
2017-11-01
We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.
NASA Astrophysics Data System (ADS)
Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.
2018-03-01
Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.
Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms
Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.
2015-01-01
Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877
Single-ion, transportable optical atomic clocks
NASA Astrophysics Data System (ADS)
Delehaye, Marion; Lacroûte, Clément
2018-03-01
For the past 15 years, tremendous progress within the fields of laser stabilization, optical frequency combs and atom cooling and trapping have allowed the realization of optical atomic clocks with unrivaled performances. These instruments can perform frequency comparisons with fractional uncertainties well below ?, finding applications in fundamental physics tests, relativistic geodesy and time and frequency metrology. Even though most optical clocks are currently laboratory setups, several proposals for using these clocks for field measurements or within an optical clock network have been published, and most of time and frequency metrology institutes have started to develop transportable optical clocks. For the purpose of this special issue, we chose to focus on trapped-ion optical clocks. Even though their short-term fractional frequency stability is impaired by a lower signal-to-noise ratio, they offer a high potential for compactness: trapped ions demand low optical powers and simple loading schemes, and can be trapped in small vacuum chambers. We review recent advances on the clock key components, including ion trap and ultra-stable optical cavity, as well as existing projects and experiments which draw the picture of what future transportable, single-ion optical clocks may resemble.
Frequency Standards and Metrology
NASA Astrophysics Data System (ADS)
Maleki, Lute
2009-04-01
Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.
The Deep Space Atomic Clock: Ushering in a New Paradigm for Radio Navigation and Science
NASA Technical Reports Server (NTRS)
Ely, Todd; Seubert, Jill; Prestage, John; Tjoelker, Robert
2013-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the on-orbit performance of a high-accuracy, high-stability miniaturized mercury ion atomic clock during a year-long experiment in Low Earth Orbit. DSAC's timing error requirement provides the frequency stability necessary to perform deep space navigation based solely on one-way radiometric tracking data. Compared to a two-way tracking paradigm, DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC also enables fully-autonomous onboard navigation useful for time-sensitive situations. The technology behind the mercury ion atomic clock and a DSAC mission overview are presented. Example deep space applications of DSAC, including navigation of a Mars orbiter and Europa flyby gravity science, highlight the benefits of DSAC-enabled one-way Doppler tracking.
The chip-scale atomic clock : prototype evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mescher, Mark; Varghese, Mathew; Lutwak, Robert
2007-12-01
The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.
A hydrogen maser clock for space - Clocks in future possible and improbable applications
NASA Astrophysics Data System (ADS)
Vessot, Robert F. C.
The development of atomic-H maser clocks for space applications since 1967 is reviewed, with a focus on the 39-kg instrument built for a rocket-flight test of gravitational redshift in 1976. The stability of the oscillator and the instability of earth-space propagation in that test are described, and techniques for overcoming the latter effects are considered. More recent maser clocks employ an H sorption manifold rather than heavy ion pumps; their application to precise satellite position determination for space-based VLBI astronomy is discussed in detail. Extensive diagrams, drawings, and photographs are provided.
Optical clocks and relativity.
Chou, C W; Hume, D B; Rosenband, T; Wineland, D J
2010-09-24
Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.
Gas-cell atomic clocks for space: new results and alternative schemes
NASA Astrophysics Data System (ADS)
Affolderbach, C.; Breschi, E.; Schori, C.; Mileti, G.
2017-11-01
We present our development activities on compact Rubidium gas-cell atomic frequency standards, for use in space-borne and ground-based applications. We experimentally demonstrate a high-performance laser optically-pumped Rb clock for space applications such as telecommunications, science missions, and satellite navigation systems (e.g. GALILEO). Using a stabilised laser source and optimized gas cells, we reach clock stabilities as low as 1.5·10-12 τ-1/2 up to 103 s and 4·10-14 at 104 s. The results demonstrate the feasibility of a laser-pumped Rb clock reaching < 1·10-12 τ-1/2 in a compact device (<2 liters, 2 kg, 20 W), given optimization of the implemented techniques. A second activity concerns more radically miniaturized gas-cell clocks, aiming for low power consumption and a total volume around 1 cm3 , at the expense of relaxed frequency stability. Here miniaturized "chip-scale" vapour cells and use of coherent laser interrogation techniques are at the heart of the investigations.
Constructive polarization modulation for coherent population trapping clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David
2014-12-08
We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less
NASA Technical Reports Server (NTRS)
Wolf, S. A.; Gubser, D. U.; Cox, J. E.
1978-01-01
A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.
NASA Astrophysics Data System (ADS)
Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.
2014-08-01
The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
Mercury Ion Clock for a NASA Technology Demonstration Mission.
Tjoelker, Robert L; Prestage, John D; Burt, Eric A; Chen, Pin; Chong, Yong J; Chung, Sang K; Diener, William; Ely, Todd; Enzer, Daphna G; Mojaradi, Hadi; Okino, Clay; Pauken, Mike; Robison, David; Swenson, Bradford L; Tucker, Blake; Wang, Rabi
2016-07-01
There are many different atomic frequency standard technologies but only few meet the demanding performance, reliability, size, mass, and power constraints required for space operation. The Jet Propulsion Laboratory is developing a linear ion-trap-based mercury ion clock, referred to as DSAC (Deep-Space Atomic Clock) under NASA's Technology Demonstration Mission program. This clock is expected to provide a new capability with broad application to space-based navigation and science. A one-year flight demonstration is planned as a hosted payload following an early 2017 launch. This first-generation mercury ion clock for space demonstration has a volume, mass, and power of 17 L, 16 kg, and 47 W, respectively, with further reductions planned for follow-on applications. Clock performance with a signal-to-noise ratio (SNR)*Q limited stability of 1.5E-13/τ(1/2) has been observed and a fractional frequency stability of 2E-15 at one day measured (no drift removed). Such a space-based stability enables autonomous timekeeping of with a technology capable of even higher stability, if desired. To date, the demonstration clock has been successfully subjected to mechanical vibration testing at the 14 grms level, thermal-vacuum operation over a range of 42(°)C, and electromagnetic susceptibility tests.
Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei
2018-06-01
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
Applications of Clocks to Space Navigation & "Planetary GPS"
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.
2004-01-01
The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.
A polarization converting device for an interfering enhanced CPT atomic clock.
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
A polarization converting device for an interfering enhanced CPT atomic clock
NASA Astrophysics Data System (ADS)
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
FOREWORD: Fifty years of atomic time-keeping: 1955 to 2005
NASA Astrophysics Data System (ADS)
Quinn, Terry
2005-06-01
The year 2005 is the centenary of Einstein's four famous papers that were published in 1905. This anniversary is being widely celebrated all over the world and, indeed, 2005 has been dubbed World Year of Physics. The year 2005, however, also marks the fiftieth anniversary of the first operation of Essen and Parry's caesium beam atomic frequency standard at the NPL in May 1955. While Einstein's papers signalled a revolution in physics and in our understanding of the natural world, the first atomic clock signalled a revolution in time-keeping that has become, among other things, one of the most powerful tools in pushing back the frontiers of Einstein's theories of special and general relativity. The atomic clock has also had consequences for navigation comparable to those brought about by Harrison's mechanical clocks almost exactly two hundred years before. Harrison's H3 was completed in 1757 and H4 in 1759. The atomic clock, and the creation of an atomic time scale that quickly followed, led ten years later to the adoption of an atomic definition for the SI second in Resolution 1 of the 13th General Conference on Weights and Measures, 1967/68. This marked the end of time-keeping based on the movements of the heavenly bodies that had beaten the rhythm of the days and the seasons since the dawn of human civilization. Fifty years on is a good occasion to look back, to look forward and at the same time to examine where we are today, in terms of measuring time. While we still arrange for our atomic clocks to show noon when the sun is overhead on the Greenwich meridian, everything else has changed in the fifty years since 1955. In this special issue of Metrologia the reader will find articles on the development of the atomic clock, its theory and practice, how the first atomic time scale was devised and formally introduced and how we maintain atomic time today, as well as articles looking forward to even more accurate clocks and time scales. Included also are articles on the commercial development of atomic clocks of various types and on some of their applications. At the beginning there is a deliberate emphasis on the history of the introduction of atomic time, including the technical problems to be resolved and the personalities involved. You will see that it includes one article based on notes left by Louis Essen himself, for which we are most grateful to his son, Mr Ray Essen, for permission to use them and to Dale Henderson of the NPL, who arranged them for publication here. I hope that this issue will stand as a reference for years to come and I am most grateful to all those who have contributed. I also wish to thank most particularly Norman Ramsey, whose name is indelibly associated with atomic clocks, for having contributed the first article to this special issue.
Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Seubert, Jill; Bell, Julia
2014-01-01
NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.
Initial atomic coherences and Ramsey frequency pulling in fountain clocks
NASA Astrophysics Data System (ADS)
Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan
2014-09-01
In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.
Performance and Applications of an Ensemble of Atomic Fountains
2012-01-01
continuous operation. At some institutions, only one fountain clock contributes to the ensemble at a given time, although two clocks at PTB and three at...at USNO is funded by SPAWAR. REFERENCES [1] A. Bauch, S. Weyers, D. Piester, E. Staliuniene, and W. Yang, “Generation of UTC( PTB ) as a fountain
Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium
NASA Astrophysics Data System (ADS)
Martin, Kyle W.; Phelps, Gretchen; Lemke, Nathan D.; Bigelow, Matthew S.; Stuhl, Benjamin; Wojcik, Michael; Holt, Michael; Coddington, Ian; Bishop, Michael W.; Burke, John H.
2018-01-01
Extralaboratory atomic clocks are necessary for a wide array of applications (e.g., satellite-based navigation and communication). Building upon existing vapor-cell and laser technologies, we describe an optical atomic clock, designed around a simple and manufacturable architecture, that utilizes the 778-nm two-photon transition in rubidium and yields fractional-frequency instabilities of 4 ×10-13/√{τ (s ) } for τ from 1 to 10 000 s. We present a complete stability budget for this system and explore the required conditions under which a fractional-frequency instability of 1 ×10-15 can be maintained on long time scales. We provide a precise characterization of the leading sensitivities to external processes, including magnetic fields and fluctuations of the vapor-cell temperature and 778-nm laser power. The system is constructed primarily from commercially available components, an attractive feature from the standpoint of the commercialization and deployment of optical frequency standards.
The ACES mission: scientific objectives and present status
NASA Astrophysics Data System (ADS)
Cacciapuoti, L.; Dimarcq, N.; Salomon, C.
2017-11-01
"Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.
Optical Atomic Clock for Fundamental Physics and Precision Metrology in Space
NASA Astrophysics Data System (ADS)
Williams, Jason; Le, Thanh; Kulas, Sascha; Yu, Nan
2017-04-01
The maturity of optical atomic clocks (OC), which operate at optical frequencies for higher quality-factor as compared to their microwave counterparts, has rapidly progressed to the point where lab-based systems now outperform the record cesium clocks by orders of magnitude in both accuracy and stability. We will present our efforts to develop a strontium optical clock testbed at JPL, aimed towards extending the exceptional performance demonstrated by OCs from state-of-the-art laboratory designs to a transportable instrument that can fit within the space and power constraints of e.g. a single express rack onboard the International Space Station. The overall technology will find applications for future fundamental physics research, both on ground and in space, precision time keeping, and NASA/JPL time and frequency test capabilities. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment
NASA Technical Reports Server (NTRS)
Ashby, N.
2003-01-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.
Development of a strontium optical lattice clock for space applications
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and advanced subsystems" on "Let's embrace space, volume II" 45, 452-463 (2012). ISBN 978-92-79-22207-8. [3] www.soc2.eu
Time and frequency applications.
Hellwig, H
1993-01-01
An overview is given of the capabilities of atomic clocks and quartz crystal oscillators in terms of available precision of time and frequency signals. The generation, comparison, and dissemination of time and frequency is then discussed. The principal focus is to survey uses of time and frequency in navigation, communication, and science. The examples given include the Global Positioning System, a satellite-based global navigation system, and general and dedicated communication networks, as well as experiments in general relativity and radioastronomy. The number of atomic clocks and crystal oscillators that are in actual use worldwide is estimated.
An optical lattice clock with accuracy and stability at the 10(-18) level.
Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J
2014-02-06
Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.
EDITORIAL: Special issue on time scale algorithms
NASA Astrophysics Data System (ADS)
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than one single atomic clock. An international symposium dedicated to these topics was initiated in 1972 as the first International Symposium on Atomic Time Scale Algorithms and it was the beginning of a series: 1st Symposium: organized at the NIST (NBS at that epoch) in 1972, 2nd Symposium: again at the NIST in 1982, 3rd Symposium: in Italy at the INRIM (IEN at that epoch) in 1988, 4th Symposium: in Paris at the BIPM in 2002 (see Metrologia 40 (3), 2003) 5th Symposium: in San Fernando, Spain at the ROA in 2008. The early symposia were concerned with establishing the basics of how to estimate and characterize the behavior of an atomic frequency standard in an unambiguous and clearly identifiable way, and how to combine the reading of different clocks to form an optimal time scale within a laboratory. Later, as atomic frequency standards began to be used as components in larger systems, interest grew in understanding the impact of a clock in a more complex environment. For example, use of clocks in telecommunication networks in a Synchronous Digital Hierarchy created a need to measure the maximum time error spanned by a clock in a certain interval. Timekeeping metrologists became interested in estimating time deviations and time stability, so they had to find ways to convert their common frequency characteristics to time characteristics. Tests of fundamental physics provided a motivation for launching atomic frequency standards into space in long-lasting missions, whose high-precision measurements might be available for only a few hours a day, yielding a series of clock data with many gaps and outliers for which a suitable statistical analysis was necessary to extract as much information as possible from the data. In the 21st century, the field has been transformed by the advent of atomic-clock-based Global Navigation Satellite Systems (GNSS), the steady increase in precision brought about by rapidly improving clocks and measurement systems, and the growing number of relatively inexpensive small clock ensembles. Although technological transformations have raised the intensity and changed the details of the debates, the VITSAS conference showed that even the issues raised by the early symposia are still current. This selection of papers encompasses the full breadth of the VITSAS, including tutorials, laboratory-specific innovations and practices, GNSS applications, UTC generation, TWSTFT applications, GPS applications, small-ensemble applications, robust algorithms, and statistical measures that are either robust themselves or which reflect nonstationarity and robustness characteristics of the clocks. The Editors of this special issue of Metrologia would like to express their thanks to the referees of the papers published here for all their hard work, to Drs Juan Palacio and Javier Galindo and the people of the ROA, and to all the attendees for the excellent symposium they have created.
The Chip-Scale Atomic Clock - Recent Development Progress
2004-09-01
35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in
0.75 atoms improve the clock signal of 10,000 atoms
NASA Astrophysics Data System (ADS)
Kruse, I.; Lange, K.; Peise, J.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Lisdat, C.; Santos, L.; Smerzi, A.; Klempt, C.
2017-02-01
Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.
NASA Astrophysics Data System (ADS)
Abdel Hafiz, Moustafa; Coget, Grégoire; Petersen, Michael; Rocher, Cyrus; Guérandel, Stéphane; Zanon-Willette, Thomas; de Clercq, Emeric; Boudot, Rodolphe
2018-06-01
Vapor-cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency-shift effects. In order to tackle this limitation, we investigate the application of the recently proposed autobalanced Ramsey (ABR) interrogation protocol onto a pulsed hot-vapor Cs vapor-cell clock based on coherent population trapping (CPT). We demonstrate that the ABR protocol, developed initially to probe the one-photon resonance of quantum optical clocks, can be successfully applied to a two-photon CPT resonance. The applied method, based on the alternation of two successive Ramsey-CPT sequences with unequal free-evolution times and the subsequent management of two interconnected phase and frequency servo loops, is found to allow a relevant reduction of the clock-frequency sensitivity to laser-power variations. This original ABR-CPT approach, combined with the implementation of advanced electronics laser-power stabilization systems, yields the demonstration of a CPT-based Cs vapor-cell clock with a short-term fractional frequency stability at the level of 3.1×10 -13τ-1 /2 , averaging down to the level of 6 ×10-15 at 2000-s integration time. These encouraging performances demonstrate that the use of the ABR interrogation protocol is a promising option towards the development of high-stability CPT-based frequency standards. Such clocks could be attractive candidates in numerous applications including next-generation satellite-based navigation systems, secure communications, instrumentation, or defense systems.
Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards
NASA Technical Reports Server (NTRS)
Burt, Eric A.; Tjoelker, Robert L.; Taghavi, Shervin
2011-01-01
The use of the mercury ion isotope (201)Hg(+) was examined for an atomic clock. Taking advantage of the faster optical pumping time in (201)Hg(+) reduces both the state preparation and the state readout times, thereby decreasing the overall cycle time of the clock and reducing the impact of medium-term LO noise on the performance of the frequency standard. The spectral overlap between the plasma discharge lamp used for (201)Hg(+) state preparation and readout is much larger than that of the lamp used for the more conventional (199)Hg(+). There has been little study of (201)Hg(+) for clock applications (in fact, all trapped ion clock work in mercury has been with (199)Hg(+); however, recently the optical pumping time in (201)Hg(+) has been measured and found to be 0.45 second, or about three times faster than in (199)Hg(+) due largely to the better spectral overlap. This can be used to reduce the overall clock cycle time by over 2 seconds, or up to a factor of 2 improvement. The use of the (201)Hg(+) for an atomic clock is totally new. Most attempts to reduce the impact of LO noise have focused on reducing the interrogation time. In the trapped ion frequency standards built so far at JPL, the optical pumping time is already at its minimum so that no enhancement can be had by shortening it. However, by using (201)Hg(+), this is no longer the case. Furthermore, integrity monitoring, the mechanism that determines whether the clock is functioning normally, cannot happen faster than the clock cycle time. Therefore, a shorter cycle time will enable quicker detection of failure modes and recovery from them.
Geodesy and metrology with a transportable optical clock
NASA Astrophysics Data System (ADS)
Grotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, Davide
2018-05-01
Optical atomic clocks, due to their unprecedented stability1-3 and uncertainty3-6, are already being used to test physical theories7,8 and herald a revision of the International System of Units9,10. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy11, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations12-14. Here, we report the first field measurement campaign with a transportable 87Sr optical lattice clock12. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171Yb lattice clock15 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.
Enzer, Daphna G; Diener, William A; Murphy, David W; Rao, Shanti R; Tjoelker, Robert L
2017-03-01
Linear ion trap frequency standards are among the most stable continuously operating frequency references and clocks. Depending on the application, they have been operated with a variety of local oscillators (LOs), including quartz ultrastable oscillators, hydrogen-masers, and cryogenic sapphire oscillators. The short-, intermediate-, and long-term stability of the frequency output is a complicated function of the fundamental performances, the time dependence of environmental disturbances, the atomic interrogation algorithm, the implemented control loop, and the environmental sensitivity of the LO and the atomic system components. For applications that require moving these references out of controlled lab spaces and into less stable environments, such as fieldwork or spaceflight, a deeper understanding is needed of how disturbances at different timescales impact the various subsystems of the clock and ultimately the output stability. In this paper, we analyze which perturbations have an impact and to what degree. We also report on a computational model of a control loop, which keeps the microwave source locked to the ion resonance. This model is shown to agree with laboratory measurements of how well the feedback removes various disturbances and also with a useful analytic approach we developed for predicting these impacts.
The space optical clocks project
NASA Astrophysics Data System (ADS)
Schiller, S.; Tino, G. M.; Lemonde, P.; Sterr, U.; Lisdat, Ch.; Görlitz, A.; Poli, N.; Nevsky, A.; Salomon, C.
2017-11-01
The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of fundamental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007- 10), funded partially by ESA and DLR, included the implementation of several optical lattice clock systems using Strontium and Ytterbium as atomic species and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and have been validated. This included demonstration of laser-cooling and magneto-optical trapping of Sr atoms in a compact breadboard apparatus and demonstration of a transportable clock laser with 1 Hz linewidth. With two laboratory Sr lattice clock systems a number of fundamental results were obtained, such as observing atomic resonances with linewidths as low as 3 Hz, non-destructive detection of atom excitation, determination of decoherence effects and reaching a frequency instability of 1×10-16.
NASA Technical Reports Server (NTRS)
Vessot, Robert F. C.
1989-01-01
Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.
Improvement of an Atomic Clock using Squeezed Vacuum
NASA Astrophysics Data System (ADS)
Kruse, I.; Lange, K.; Peise, J.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Lisdat, C.; Santos, L.; Smerzi, A.; Klempt, C.
2016-09-01
Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05-0.37 +0 .34 dB . The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.
A self-sustaining atomic magnetometer with τ(-1) averaging property.
Xu, C; Wang, S G; Feng, Y Y; Zhao, L; Wang, L J
2016-06-30
Quantum measurement using coherent superposition of intrinsic atomic states has the advantage of being absolute measurement and can form metrological standards. One example is the absolute measurement of magnetic field by monitoring the Larmor precession of atomic spins whilst another being the Ramsey type atomic clock. Yet, in almost all coherent quantum measurement, the precision is limited by the coherence time beyond which, the uncertainty decreases only as τ(-1/2). Here we show that by non-destructively measuring the phase of the Larmor precession and regenerating the coherence via optical pumping, the self-sustaining Larmor precession signal can persist indefinitely. Consequently, the precision of the magnetometer increases with time following a much faster τ(-1) rule. A mean sensitivity of 240 from 1 Hz to 10 Hz is realized, being close to the shot noise level. This method of coherence regeneration may also find important applications in improving the performance of atomic clocks.
NASA Technical Reports Server (NTRS)
Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng
2003-01-01
Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.
Optical atomic phase reference and timing.
Hollberg, L; Cornell, E H; Abdelrahmann, A
2017-08-06
Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10 -20 As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total ≤ 10 -20 , that could make an important impact in gravity wave science.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Cold Atom Source Containing Multiple Magneto-Optical Traps
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute
2007-01-01
An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.
Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty
Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; Tew, W.L.; Ye, J.
2015-01-01
The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. Here we take an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Our 87Sr optical lattice clock now achieves fractional stability of 2.2 × 10−16 at 1 s. With this improved stability, we perform a new accuracy evaluation of our clock, reducing many systematic uncertainties that limited our previous measurements, such as those in the lattice ac Stark shift, the atoms' thermal environment and the atomic response to room-temperature blackbody radiation. Our combined measurements have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10−18 in fractional frequency units. PMID:25898253
Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.
2000-01-01
This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.
NASA Astrophysics Data System (ADS)
Ludlow, Andrew D.
2018-05-01
Bringing next-generation atomic clocks out of the lab is not an easy task, but doing so will unlock many new possibilities. As a crucial first step, a portable atomic clock has now been deployed for relativistic geodesy measurements in the Alps.
Adams, Bernhard W.; Kim, Kwang -Je
2016-08-09
Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.
Atomic Clocks and Variations of the FIne Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
1995-01-01
We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.
Trapped strontium ion optical clock
NASA Astrophysics Data System (ADS)
Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.
2017-11-01
Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.
Ultra-stable clock laser system development towards space applications.
Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe
2016-09-26
The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.
Technology development for laser-cooled clocks on the International Space Station
NASA Technical Reports Server (NTRS)
Klipstein, W. M.
2003-01-01
The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.
A Fermi-degenerate three-dimentional optical lattice clock
NASA Astrophysics Data System (ADS)
Goban, Akihisa; Campbell, Sara; Hutson, Ross; Marti, G. Edward; Sonderhouse, Lindsay; Robinson, John; Zhang, Wei; Ye, Jun
2017-04-01
The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, tighter limits on fundamental constant variation, and improved tests of relativity. Recent progress in optical lattice clock to the accuracy of 2E-18 has benefited from the understanding of atomic interactions. Also the precision of clock spectroscopy has been applied to explore many-body interactions including SU(N) symmetry. In our previous 1D optical lattice, atomic interactions cause suppression and broadening of the atomic resonance, limiting the clock stability. To overcome this limitation, we demonstrate a scalable solution that takes advantage of the high density of a degenerate Fermi gas in a three-dimensional optical lattice to protect against on-site interaction shifts. Using an ultrastable laser, we achieve an unprecedented level of atom-light coherence, reaching a spectroscopic quality factor 5.2E15. We investigate clock systematics unique to this design; on-site interactions are resolved so that their contribution to clock shifts is orders of magnitude suppressed compared to the 1D optical lattice experiments. Also, we measure the combined scalar and tensor magic wavelengths for state-independent trapping along all three lattice axes. We acknowledge support from NIST, DARPA and the NSF JILA Physics Frontier Center.
NASA Astrophysics Data System (ADS)
Roberts, B. M.; Blewitt, G.; Dailey, C.; Derevianko, A.
2018-04-01
We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the global positioning system (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50 000 km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.
Dynamic Data Driven Applications Systems (DDDAS)
2013-03-06
INS • Chip-scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF...atomi clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser co munications • Frequency-agile RF systems...Real-Time Doppler Wind Wind field Sensor observations Energy Estimation Atmospheric Models for On-line Planning Planning and Control
Noise in state of the art clocks and their impact for fundamental physics
NASA Technical Reports Server (NTRS)
Maleki, L.
2001-01-01
In this paper a review of the use of advanced atomic clocks in testing the fundamental physical laws will be presented. Noise sources of clocks will be discussed, together with an outline their characterization based on current models. The paper will conclude with a discussion of recent attempts to reduce the fundamental, as well as technical noise in atomic clocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Yun, Peter; Tian, Yuan
2014-03-07
A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less
Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.
2018-05-01
When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments
2016-12-06
upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration
Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development
NASA Astrophysics Data System (ADS)
Warren, Zachary Aron
Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).
High Performance Clocks and Gravity Field Determination
NASA Astrophysics Data System (ADS)
Müller, J.; Dirkx, D.; Kopeikin, S. M.; Lion, G.; Panet, I.; Petit, G.; Visser, P. N. A. M.
2018-02-01
Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10^{-18}. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock's localization. According to general relativity the relative accuracy of clocks in 10^{-18} is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with closely-related deficiencies of this method like an extra-ordinary knowledge of the spacecraft velocity, etc. For all these applications besides the near-future prospects, we also discuss the challenges that are related to using those novel clock data in geodesy.
High power VCSEL devices for atomic clock applications
NASA Astrophysics Data System (ADS)
Watkins, L. S.; Ghosh, C.; Seurin, J.-F.; Zhou, D.; Xu, G.; Xu, B.; Miglo, A.
2015-09-01
We are developing VCSEL technology producing >100mW in single frequency at wavelengths 780nm, 795nm and 850nm. Small aperture VCSELs with few mW output have found major applications in atomic clock experiments. Using an external cavity three-mirror configuration we have been able to operate larger aperture VCSELs and obtain >70mW power in single frequency operation. The VCSEL has been mounted in a fiber pigtailed package with the external mirror mounted on a shear piezo. The package incorporates a miniature Rb cell locker to lock the VCSEL wavelength. This VCSEL operates in single frequency and is tuned by a combination of piezo actuator, temperature and current. Mode-hop free tuning over >30GHz frequency span is obtained. The VCSEL has been locked to the Rb D2 line and feedback control used to obtain line-widths of <100kHz.
The Chip-Scale Atomic Clock - Low-Power Physics Package
2004-12-01
36th Annual Precise Time and Time Interval (PTTI) Meeting 339 THE CHIP-SCALE ATOMIC CLOCK – LOW-POWER PHYSICS PACKAGE R. Lutwak ...pdf/documents/ds-x72.pdf [2] R. Lutwak , D. Emmons, W. Riley, and R. M. Garvey, 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs...2002, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 539-550. [3] R. Lutwak , D. Emmons, T. English, and W. Riley, 2004
NASA Astrophysics Data System (ADS)
Ligeret, V.; Vermersch, F.-J.; Bansropun, S.; Lecomte, M.; Calligaro, M.; Parillaud, O.; Krakowski, M.
2017-11-01
Atomic clocks will be used in the future European positioning system Galileo. Among them, the optically pumped clocks provide a better alternative with comparable accuracy for a more compact system. For these systems, diode lasers emitting at 852nm are strategic components. The laser in a conventional bench for atomic clocks presents disadvantages for spatial applications. A better approach would be to realise a system based on a distributed-feedback laser (DFB). We have developed the technological foundations of such lasers operating at 852nm. These include an Al free active region, a single spatial mode ridge waveguide and a DFB structure. The device is a separate confinement heterostructure with a GaInP large optical cavity and a single compressive strained GaInAsP quantum well. The broad area laser diodes are characterised by low internal losses (<3cm -1 ), a high internal efficiency (94%) and a low transparency current density (100A/cm2). For an AR-HR coated ridge Fabry Perot laser, we obtain a power of 230mW with M2=1.3. An optical power of 150mW was obtained at 854nm wavelength, 20°C for AR-HR coated devices. We obtain a single spatial mode emission with M2=1.21 and a SMSR over 30dB, both at 150mW. DFB Lasers at 852.12nm, corresponding to the D2 caesium transition, were then realised with a power of 40mW, 37°C for uncoated devices. The SMSR is over 30dB and the M2=1.33 at 40mW. Furthermore, the preliminary results of the linewidth obtained with a Fabry Perot interferometer give a value of less than 2MHz.
NASA Astrophysics Data System (ADS)
Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail
2014-05-01
Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).
NASA Astrophysics Data System (ADS)
Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.
2013-12-01
In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.
Note: Pulsed optically pumped atomic clock based on a paraffin-coated cell
NASA Astrophysics Data System (ADS)
Lin, Haixiao; Deng, Jianliao; Lin, Jinda; Zhang, Song; Hu, Yao; Wang, Yuzhu
2018-06-01
We report on the implementation of a pulsed optically pumped atomic clock based on a paraffin-coated cell. The relaxation times are measured, with the longitudinal relaxation time, T1 = 9.7 ± 0.4 ms, and the transversal relaxation time, T2 = 0.40 ± 0.03 ms. We demonstrated that the measured frequency stability of the clock is 3.9 × 10-13 τ-1/2 (1 s ≤ τ ≤ 100 s) and reaches a value of 3.1 × 10-14 for τ = 1000 s, where τ is the averaging time. This is an unprecedented result for a paraffin-coated vapor cell clock, and it makes significant contributions toward improving the performance of the wall-coated vapor cell atomic clock.
A new stochastic model considering satellite clock interpolation errors in precise point positioning
NASA Astrophysics Data System (ADS)
Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong
2018-03-01
Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.
Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today
NASA Astrophysics Data System (ADS)
Calonico, Davide
2013-09-01
The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.
2001-01-24
An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191
Atomic ion clock with two ion traps, and method to transfer ions
NASA Technical Reports Server (NTRS)
Prestage, John D. (Inventor); Chung, Sang K. (Inventor)
2011-01-01
An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.
Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity
NASA Technical Reports Server (NTRS)
Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.
2000-01-01
We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.
Safronova, Marianna S; Porsev, Sergey G; Sanner, Christian; Ye, Jun
2018-04-27
We propose a new frequency standard based on a 4f^{14}6s6p ^{3}P_{0}-4f^{13}6s^{2}5d (J=2) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α. We find its dimensionless α-variation enhancement factor to be K=-15, in comparison to the most sensitive current clock (Yb^{+} E3, K=-6), and it is 18 times larger than in any neutral-atomic clocks (Hg, K=0.8). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established ^{1}S_{0}-^{3}P_{0} transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.
NASA Astrophysics Data System (ADS)
Safronova, Marianna S.; Porsev, Sergey G.; Sanner, Christian; Ye, Jun
2018-04-01
We propose a new frequency standard based on a 4 f146 s 6 p
Spin-orbit-coupled fermions in an optical lattice clock
NASA Astrophysics Data System (ADS)
Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.
2017-02-01
Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
Atomic Clock Based on Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2005-01-01
A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a laser beam would pass through an electro-optical modulator, the modulated beam would be fed into a fiber-optic delay line, and the delayed beam would be fed to a photodetector. The electrical output of the photodetector would be detected, amplified, filtered, and fed back to the microwave input port of the modulator. The laser would be chosen to have the same wavelength as that of the pertinent ground-state/higher-state transition of the atoms in the vapor. The modulator/ filter combination would be designed to operate at the microwave frequency of the hyperfine transition. Part of the laser beam would be tapped from the fiberoptic loop of the OEO and introduced into the vapor cell. After passing through the cell, this portion of the beam would be detected differentially with a tapped portion of the fiber-optically-delayed beam. The electrical output of the photodetector would be amplified and filtered in a loop that would control a DC bias applied to the modulator. In this manner, the long-term stability and accuracy of the atomic transition would be transferred to the OEO.
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew
2015-05-01
The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
The Rubidium Atomic Clock and Basic Research
2007-12-10
from orbiting GPS (global positioning system) satellites. Thankfully, you make it home without an exciting but har- rowing story to tell family...the vapor-cell atomic clock, -i\\till is elec- tronically tied to an atomic resonance, thereby transferring the stability of atomic structure to the...are applied to the resonance cell, there is a net transfer of atoms from F = 1 back into F = 2 and a decrease in transmitted light intensity. The
Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G
2014-09-01
The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.
Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm
NASA Astrophysics Data System (ADS)
Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong
2018-06-01
The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.
Atomic clocks and the continuous-time random-walk
NASA Astrophysics Data System (ADS)
Formichella, Valerio; Camparo, James; Tavella, Patrizia
2017-11-01
Atomic clocks play a fundamental role in many fields, most notably they generate Universal Coordinated Time and are at the heart of all global navigation satellite systems. Notwithstanding their excellent timekeeping performance, their output frequency does vary: it can display deterministic frequency drift; diverse continuous noise processes result in nonstationary clock noise (e.g., random-walk frequency noise, modelled as a Wiener process), and the clock frequency may display sudden changes (i.e., "jumps"). Typically, the clock's frequency instability is evaluated by the Allan or Hadamard variances, whose functional forms can identify the different operative noise processes. Here, we show that the Allan and Hadamard variances of a particular continuous-time random-walk, the compound Poisson process, have the same functional form as for a Wiener process with drift. The compound Poisson process, introduced as a model for observed frequency jumps, is an alternative to the Wiener process for modelling random walk frequency noise. This alternate model fits well the behavior of the rubidium clocks flying on GPS Block-IIR satellites. Further, starting from jump statistics, the model can be improved by considering a more general form of continuous-time random-walk, and this could bring new insights into the physics of atomic clocks.
NASA Astrophysics Data System (ADS)
Yu, Yan-mei; Sahoo, B. K.
2018-04-01
The Ni12 +, Cu13 +, Pd12 +, and Ag13 + highly charged ions (HCIs) are proposed for making very accurate optical clocks with the fractional uncertainties below 10-19 level. These HCIs have simple atomic energy levels, clock transitions with quality factors larger than 1015, and optical magnetic-dipole (M 1 ) transitions that can be used for laser cooling and detecting quantum jumps on the clock transitions by the shelving method. To demonstrate the projected fractional uncertainties, we estimate orders of magnitude of the Zeeman, Stark, blackbody radiation, and electric quadrupole shifts of the clock transitions by performing calculations of the relevant atomic properties in the above HCIs.
NASA Astrophysics Data System (ADS)
Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.
2017-11-01
Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.
Logical synchronization: how evidence and hypotheses steer atomic clocks
NASA Astrophysics Data System (ADS)
Myers, John M.; Madjid, F. Hadi
2014-05-01
A clock steps a computer through a cycle of phases. For the propagation of logical symbols from one computer to another, each computer must mesh its phases with arrivals of symbols from other computers. Even the best atomic clocks drift unforeseeably in frequency and phase; feedback steers them toward aiming points that depend on a chosen wave function and on hypotheses about signal propagation. A wave function, always under-determined by evidence, requires a guess. Guessed wave functions are coded into computers that steer atomic clocks in frequency and position—clocks that step computers through their phases of computations, as well as clocks, some on space vehicles, that supply evidence of the propagation of signals. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation elevates `logical synchronization.' from its practice in computer engineering to a dicipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge the unforeseeable. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication.
Precise time dissemination via portable atomic clocks
NASA Technical Reports Server (NTRS)
Putkovich, K.
1982-01-01
The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.
Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleine Buening, G.; Will, J.; Ertmer, W.
2011-06-17
Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stabilitymore » of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.« less
Using the Deep Space Atomic Clock for Navigation and Science.
Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L
2018-06-01
Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.
The Global Positioning System: a high-tech success story
NASA Astrophysics Data System (ADS)
Ashby, Neil
2002-03-01
The Global Positioning System (GPS) consists of 24 or more satellites in twelve-hour orbits, each carrying atomic clocks and transmitting synchronized time and position information. The satellite system is supported by time referencing and processing centers, and data collection stations around the world. The signals make possible accurate navigation anywhere in the vicinity of Earth. There is probably no other large engineering system that relies on a broader range of applications of fundamental modern physics, such as special and general relativity, and atomic physics. Atomic clocks only a few inches on a side have been developed to an almost incredible stage of reliability and stability. Modern circuit fabrication techniques produce GPS receivers on a chip at cost comparable to that of handheld cell phones. Widespread availability and low cost in the civilian sector has led to a host of interesting applications. The economic impact of GPS is in the billions of dollars annually and is increasing. A comparable system, currently with only a few satellites, is the Soviet GLONASS. Europeans are developing another competitor, GALILEO, and have plans to place Hydrogen masers in space. These systems are changing the way we determine where we are and are revolutionizing many fields of scientific research.
Rugged, Tunable Extended-Cavity Diode Laser
NASA Technical Reports Server (NTRS)
Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade
2007-01-01
A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.
GNSS Clock Error Impacts on Radio Occultation Retrievals
NASA Astrophysics Data System (ADS)
Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke
2017-04-01
We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.
PHARAO space atomic clock: new developments on the laser source
NASA Astrophysics Data System (ADS)
Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.
2017-11-01
The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.
Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.
2017-12-01
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.
Suppressing Loss of Ions in an Atomic Clock
NASA Technical Reports Server (NTRS)
Prestage, John; Chung, Sang
2010-01-01
An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.
Progress towards a cesium atomic fountain clock
NASA Astrophysics Data System (ADS)
Klipstein, William M.; Raithel, Georg A.; Rolston, Steven L.; Phillips, William D.; Ekstrom, Christopher R.
1997-04-01
We have been developing a fountain of laser--cooled cesium atoms for use as an atomic clock. Our design largely follows that of the fountain built at LPTF in Paris. In our fountain, chirp--slowed atoms are first collected in a Magneto--Optic Trap (MOT) and then cooled to a few μK in optical molasses. The cooled atoms are then launched vertically into a "moving molasses" by shifting the frequencies of the vertical cooling beams. The atoms then travel through a microwave cavity tuned to the 9.2 GHz cesium hyperfine frequency for a first Ramsey pulse. After roughly 0.5 seconds of free flight under the influence of gravity, the atoms fall back through the microwave cavity and into an optical state--detection region which detects the number of atoms making the F=3 arrow F=4 transition. The increased Ramsey interaction time improves the short--time precision as compared to traditional atomic beam experiments, while many systematic shifts which limit the accuracy of an atomic beam clock are reduced by the low atomic velocity and the retrace of the atomic trajectory through the microwave cavity. We will discuss the progress towards a working fountain being assembled in our laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui; School of Physics, University of Chinese Academy of Sciences, Beijing 100049; Yin, Mojuan
2015-10-12
In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be appliedmore » over a broad spectral band to build narrow linewidth lasers for various applications.« less
Tests of Lorentz invariance with atomic clocks
NASA Astrophysics Data System (ADS)
Mohan, Lakshmi
Lorentz invariance has been the cornerstone of special relativity. Recent theories have been proposed which suggest violations of Lorentz invariance. Experiments have been conducted using clocks that place the strictest limits on these theories. The thesis focuses on the Mansouri and Sexl formulation and I calculate using this framework the Doppler effect, Compton effect, Maxwell's equations, Hydrogen energy levels and other effects. I conclude the thesis by suggesting a possible method of testing my results using atomic clocks.
Stochastic models for atomic clocks
NASA Technical Reports Server (NTRS)
Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.
1983-01-01
For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
Hysteresis prediction inside magnetic shields and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morić, Igor; CNES, Edouard Belin 18, 31400 Toulouse; De Graeve, Charles-Marie
2014-07-15
We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.
A VLBI experiment using a remote atomic clock via a coherent fibre link
Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide
2017-01-01
We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks. PMID:28145451
A VLBI experiment using a remote atomic clock via a coherent fibre link.
Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide
2017-02-01
We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.
A VLBI experiment using a remote atomic clock via a coherent fibre link
NASA Astrophysics Data System (ADS)
Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide
2017-02-01
We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.
Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space
NASA Technical Reports Server (NTRS)
Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.
2001-01-01
The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.
NASA Technical Reports Server (NTRS)
1973-01-01
Ongoing research progress in the following areas is described: (1) tunable infrared light sources and applications; (2) precision frequency and wavelength measurements in the infrared with applications to atomic clocks; (3) zero-degree pulse propagation in resonant medium; (4) observation of Dicke superradiance in optically pumped HF gas; (5) unidirectional laser amplifier with built-in isolator; and (6) progress in infrared metal-to-metal point contact tunneling diodes.
Dispersive detection of radio-frequency-dressed states
NASA Astrophysics Data System (ADS)
Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas
2018-04-01
We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.
Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.
1998-01-01
The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.
An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs.
Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P; Xu, Baoda; Dempseter, Andrew G; Wang, Dun; Wu, Jiapeng
2015-07-23
An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.
The Deep Space Atomic Clock Mission
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill
2012-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.
New forms of spin-orbit coupling in a strontium optical lattice clock
NASA Astrophysics Data System (ADS)
Perlin, Michael; Safavi-Naini, Arghavan; Ozeri, Roee; Rey, Ana Maria
2017-04-01
Ultracold atomic systems allow for the simulation of a variety of condensed matter phenomena, including spin-orbit coupling (SOC), a key ingredient behind recently discovered topological insulators and a path for the realization of topological superfluids. While many experimental efforts have used alkali atoms to engineer SOC via Raman transitions, undesirable heating mechanisms have limited the observation of many-body phenomena manifest at long timescales. Alkaline earth atoms (AEA) have been recently shown to be a potentially better platform for the implementation of SOC due to their reduced sensitivity to spontaneous emission. While previous work has used electronic clock states as a pseudo-spin degree of freedom, we consider the effects of clock side-band transitions. We discuss the richer SOC dynamics which emerges as a result of this extension, and present methods to probe these dynamics in current AEA optical lattice clocks. AFOSR, NSF-PFC and DARPA.
NASA Astrophysics Data System (ADS)
Khabarova, K. Yu.; Kudeyarov, K. S.; Kolachevsky, N. N.
2017-06-01
Research and development in the field of optical clocks based on ultracold atoms and ions have enabled the relative uncertainty in frequency to be reduced down to a few parts in 1018. The use of novel, precise frequency comparison methods opens up new possibilities for basic research (sensitive tests of general relativity, a search for a drift of fundamental constants and a search for ‘dark matter’) as well as for state-of-the-art navigation and gravimetry. We discuss the key methods that are used in creating precision clocks (including transportable clocks) based on ultracold atoms and ions and the feasibility of using them in resolving current relativistic gravimetry issues.
ACES microwave link requirements.
Uhrich, P M; Guillernot, P; Aubry, P; Gonzalez, F; Salomon, C
2000-01-01
Atomic Clock Ensemble in Space (ACES) is a project of the European Space Agency on-board the future International Space Station (ISS). The payload consists mainly of two atomic frequency standards, one space hydrogen maser (SHM) prepared by the Observatoire de Neuchatel (Switzerland), and one cold atom caesium clock called PHARAO prepared by the CNES (France), with the participation of the BNM-LPTF, the ENS-LKB, and the CNRS-LHA. Because of the anticipated performances of these clocks on-board the ISS, the requirements of the links between the payload and the clocks on the Earth are at the limits of the known potential of the optical or microwave techniques. The microwave link (MWL) requirements are described in this paper. Taking into account the characteristics of the ISS orbit, and fixing an arbitrary limit to the additional noise brought to the clock readings by the MWL, the computation of the required stability leads to two kinds of requirements: the first one at the subpicosecond level over each single continuous pass of the ISS above any Earth station, and the second one at the level of one part in 10(16) and below over a one day or more averaging period. Moreover, the ISS orbit parameters should lead to a knowledge of the ACES clock position at the m level, and of the ACES clock speed at the mm/s level.
RF-Interrogated End-State Chip-Scale Atomic Clock
2007-11-01
coherent population trapping,” Electronics Letters 37, (24), 1449-1451. [2] R. Lutwak , P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M...367. [9] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serland, and G. M. Peake, 2003, “Chip-Scale Atomic Clock, Recent
Laser-cooled cesium fountain clock: design and expected performances
NASA Astrophysics Data System (ADS)
Clairon, Andre; Laurent, Phillipe; Nadir, A.; Santarelli, G.; Drewsen, M.; Grison, D.; Lounis, B.; Salomon, C.
1993-04-01
The use of diode lasers to cool and trap Cesium atoms in a low Cs pressure cell allows the construction of a relatively simple and reliable atomic fountain frequency standard. Here we discuss the design and the potentialities of the Cs clock frequency standards being built at L.P.T.F..
Coherent population trapping with polarization modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less
Subpicosecond X rotations of atomic clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2018-05-01
We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.
Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2017-04-01
Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].
NASA Technical Reports Server (NTRS)
1984-01-01
The effects of ionospheric and tropospheric propagation on time and frequency transfer, advances in the generation of precise time and frequency, time transfer techniques and filtering and modeling were among the topics emphasized. Rubidium and cesium frequency standard, crystal oscillators, masers, Kalman filters, and atomic clocks were discussed.
NASA Astrophysics Data System (ADS)
Heo, Youn Jeong; Cho, Jeongho; Heo, Moon Beom
2010-07-01
The broadcast ephemeris and IGS ultra-rapid predicted (IGU-P) products are primarily available for use in real-time GPS applications. The IGU orbit precision has been remarkably improved since late 2007, but its clock products have not shown acceptably high-quality prediction performance. One reason for this fact is that satellite atomic clocks in space can be easily influenced by various factors such as temperature and environment and this leads to complicated aspects like periodic variations, which are not sufficiently described by conventional models. A more reliable prediction model is thus proposed in this paper in order to be utilized particularly in describing the periodic variation behaviour satisfactorily. The proposed prediction model for satellite clocks adds cyclic terms to overcome the periodic effects and adopts delay coordinate embedding, which offers the possibility of accessing linear or nonlinear coupling characteristics like satellite behaviour. The simulation results have shown that the proposed prediction model outperforms the IGU-P solutions at least on a daily basis.
OPTIS: a satellite-based test of special and general relativity
NASA Astrophysics Data System (ADS)
Lämmerzahl, Claus; Dittus, Hansjörg; Peters, Achim; Schiller, Stephan
2001-07-01
A new satellite-based test of special and general relativity is proposed. For the Michelson-Morley test we expect an improvement of at least three orders of magnitude, and for the Kennedy-Thorndike test an improvement of more than one order of magnitude. Furthermore, an improvement by two orders of magnitude of the test of the universality of the gravitational redshift by comparison of an atomic clock with an optical clock is projected. The tests are based on ultrastable optical cavities, lasers, an atomic clock and a frequency comb generator.
On time scales and time synchronization using LORAN-C as a time reference signal
NASA Technical Reports Server (NTRS)
Chi, A. R.
1974-01-01
The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.
Test of Special Relativity Using a Fiber Network of Optical Clocks.
Delva, P; Lodewyck, J; Bilicki, S; Bookjans, E; Vallet, G; Le Targat, R; Pottie, P-E; Guerlin, C; Meynadier, F; Le Poncin-Lafitte, C; Lopez, O; Amy-Klein, A; Lee, W-K; Quintin, N; Lisdat, C; Al-Masoudi, A; Dörscher, S; Grebing, C; Grosche, G; Kuhl, A; Raupach, S; Sterr, U; Hill, I R; Hobson, R; Bowden, W; Kronjäger, J; Marra, G; Rolland, A; Baynes, F N; Margolis, H S; Gill, P
2017-06-02
Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments, and by 2 orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this Letter will improve by orders of magnitude in the near future.
Compact, Highly Stable Ion Atomic Clock
NASA Technical Reports Server (NTRS)
Prestage, John
2008-01-01
A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect the desired reduction of size to a volume of no more than a couple of liters. The redesign effort has included selection of materials for the vacuum tube, ion trap, and ultraviolet windows that withstand bakeout at a temperature of approx.450 C in preparation for sealing the tube to contain the vacuum. This part of the redesign effort follows the approach taken in the development of such other vacuum-tube electronic components as flight traveling- wave-tube amplifiers having operational and shelf lives as long as 15 years. The redesign effort has also included a thorough study of residual-gas-induced shifts of the ion-clock frequency and a study of alternative gases as candidates for use as a buffer gas within the sealed tube. It has been found that neon is more suitable than is helium, which has been traditionally used for this purpose, in that the pressure-induced frequency pulling by neon is between a third and a half of that of helium. In addition, because neon diffuses through solids much more slowly than does helium, the loss of neon by diffusion over the operational lifetime is expected to be negligible.
Science Goals for the PARCS mission on the International Space Station
NASA Astrophysics Data System (ADS)
Ashby, Neil; Hollberg, Leo; Jefferts, Steven; Klipstein, William; Seidel, David; Sullivan, Donald
2003-05-01
The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. This presentation concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5×10-14 at one second, and uncertainties below 10-16 are projected. The relativistic frequency shift should be measurable at least 40 times better than the previous best measurement made by Gravity Probe A. Significant improvements in testing fundamental assumptions of relativity theory, such as local position invariance (LPI), are expected. PARCS is scheduled for launch in 2007 and may very well fly with the Stanford superconducting microwave oscillator (SUMO) which will allow a Kennedy-Thorndike-type experiment with an improvement of better than three orders of magnitude compared to previous best results. PARCS will also provide a much-improved realization of the second, and a stable time reference in space. PARCS is a joint project by the National Institue of Standards and Technology (NIST), the University of Colorado (CU) and NASA's Jet Propulsion Laboratory (JPL).
Quantum synchronization and the no-photon laser
NASA Astrophysics Data System (ADS)
Holland, Murray
2014-03-01
This talk will present a new approach to lasers that is based on the quantum synchronization of many atoms. Such lasers are predicted to produce light of unprecedented spectral purity and coherence, some two orders of magnitude better than any system available today. The idea is based on superradiant emission, where an ensemble of atoms with an extremely narrow atomic transition can phase-lock and form a macroscopic dipole that radiates light collectively. This is quite unlike a typical laser where atoms essentially act independently. The resulting light source is expected to have a spectral linewidth of just a few millihertz and could lead to more accurate and stable atomic clocks. Atomic clocks based on optical transitions have improved tremendously in recent years, giving clocks that tick 1015 times per second, and can have a fractional stability exceeding one part in 1016. This new sharper light source aims to push the frontier even further, so that fundamental tests of physics, such as the time variation of constants and tests of gravity, might even be possible. We acknowledge support from NSF and the DARPA QuASAR program.
Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)
2011-01-01
Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.
A highly miniaturized vacuum package for a trapped ion atomic clock
Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...
2016-05-12
We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less
Mass defect effects in atomic clocks
NASA Astrophysics Data System (ADS)
Yudin, Valeriy; Taichenachev, Alexey
2018-03-01
We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.
NASA Astrophysics Data System (ADS)
Cheng, Yanting; Zhang, Ren; Zhang, Peng; Zhai, Hui
2017-12-01
The Kondo effect describes the spin-exchange interaction between localized impurities and itinerant fermions. The ultracold alkaline-earth atomic gas provides a natural platform for quantum simulation of the Kondo model, utilizing its long-lived clock state and the nuclear-spin exchange interaction between clock state and ground state. One of the key issue now is whether the Kondo temperature can be high enough to be reached in current experiments, for which we have proposed to use transverse confinement to confine atoms into a one-dimensional tube and to use the confinement-induced resonance to enhance Kondo coupling. In this work, we further consider the (1 +0 ) -dimensional scattering problem when the clock state is further confined by an axial harmonic confinement. We show that this axial confinement for the clock-state atoms not only plays a role for localizing them, but can also act as an additional control knob to reach the confinement-induced resonance. We show that, in the presence of both the transverse and the axial confinements, the confinement-induced resonance can be reached in the practical conditions and the Kondo effect can be attainable in this system.
A relativistic analysis of clock synchronization
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1974-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.
An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs
Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P.; Xu, Baoda; Dempseter, Andrew G.; Wang, Dun; Wu, Jiapeng
2015-01-01
An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided. PMID:26213929
NASA Technical Reports Server (NTRS)
Breakiron, Lee A. (Editor)
1999-01-01
This document is a compilation of technical papers presented at the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting held 1-3 December 1998 at the Hyatt Regency Hotel at Reston Town Center, Reston, Virginia. Papers are in the following categories: 1) Recent developments in rubidium, cesium, and hydrogen-based atomic frequency standards, and in trapped-ion and space clock technology; 2) National and international applications of PTTI technology with emphasis on GPS and GLONASS timing, atomic time scales, and telecommunications; 3) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; and 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, computer networks, WAAS, and LORAN.
Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)
NASA Astrophysics Data System (ADS)
Kirsch, Janet E.; Harris, Suzanne
2004-03-01
Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles
2015-11-15
This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100more » kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.« less
Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe
2015-11-01
This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24,000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad(2)/Hz at 1 kHz offset and -150 dB rad(2)/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10(-9) at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10(-11) τ(-1/2) up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.
NASA Astrophysics Data System (ADS)
Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe
2015-11-01
This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.
PARCS-Primary Atomic Reference Clock in Space
NASA Astrophysics Data System (ADS)
Ashby, Neil
2000-04-01
The purpose of the PARCS project is to place an advanced Cesium clock on the International Space Station (ISS). The project has been approved by NASA at the level of Science Concept Review. Groups at the National Institute of Standards and Technology, Jet Propulsion Laboratory, University of Colorado, and Harvard-Smithsonian Astrophysical Observatory, University of Torino are collaborating on clock design and construction. The microgravity space environment allows laser-cooled Cs atoms to spend longer times in the beam, resulting in improved clock performance. Clock stabilities of 3 × 10-14 at one second and accuracies of 1 × 10-16 are projected. With improved clock performance, significant improvements in several fundamental special and general relativity experiments are expected. For an ISS orbit at 400 km altitude and eccentricity 0.02, the gravitational frequency shift should be measureable about 35 times better than the previous best, Gravity Probe A. Improvements in testing Local Position Invariance and in a Kennedy-Thorndike experiment are expected. Areas of technology such as world-wide timing and time transfer and navigation will also directly benefit from such a high-performance clock in space. This paper will briefly describe the PARCS clock. The principal limitations on performance of relativity experiments, scientific objectives and benefits, and projected outcomes, will be discussed.
Spectral emission from the alkali inductively-coupled plasma: Theory and experiment
NASA Astrophysics Data System (ADS)
Bazurto, R.; Huang, M.; Camparo, J.
2018-04-01
The weakly-ionized, alkali inductively-coupled plasma (ICP) has a long history as the light source for optical pumping. Today, its most significant application is perhaps in the rubidium atomic frequency standard (RAFS), arguably the workhorse of atomic timekeeping in space, where it is crucial to the RAFS' functioning and performance (and routinely referred to as the RAFS' "rf-discharge lamp"). In particular, the photon flux from the lamp determines the signal-to-noise ratio of the device, and variations in ICP brightness define the long-term frequency stability of the atomic clock as a consequence of the ac-Stark shift (i.e., the light-shift). Given the importance of Rb atomic clocks to diverse satellite navigation systems (e.g., GPS, Galileo, BeiDou) - and thereby the importance of alkali ICPs to these systems - it is somewhat surprising to find that the physical processes occurring within the discharge are not well understood. As a consequence, researchers do not understand how to improve the spectral emission from the lamp except at a trial-and-error level, nor do they fully understand the nonlinear mechanisms that result in ICP light instability. Here, we take a first step in developing an intuitive, semi-quantitative model of the alkali rf-discharge lamp, and we perform a series of experiments to validate the theory's predictions.
Compact Laser System for Field Deployable Ultracold Atom Sensors
NASA Astrophysics Data System (ADS)
Pino, Juan; Luey, Ben; Anderson, Mike
2013-05-01
As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA
A look into the crystal ball: The next 25 years
NASA Technical Reports Server (NTRS)
Hellwig, Helmut
1994-01-01
The PTTI Planning Meeting was born at about the same time as the atomic definition of the unit of time, the second. This use of the cesium resonance was made possible by advances in quantum electronics during the preceding decade which resulted in commercial availability of cesium, rubidium, and hydrogen clocks and frequency standards. Twenty-five years later these types of clocks still are the backbone of time and frequency applications; together with a variety of crystal oscillators, transmitters, and receivers, as well as signal distribution, conditioning and switching systems, atomic clocks are an essential part of the infrastructure of modern navigation and communication technology. The next 25 years undoubtedly will see a pervasive expansion of PTTI into the infrastructure that supports and leverages industrial, social, environmental, defense, and even individual human activities. Speculation as to what capabilities, services, and personal conveniences may become available will be limited by two factors: the degree to which existing device concepts can be made more affordable and reliable, and the ability to miniaturize for purposes of compatibility with electronic integration. With regard to the latter, history teaches us that the required technological breakthrough is unlikely to originate in existing technology; thus, we may expect a paradigm shift in PTTI device concepts not unlike the shift in the 1960s from vacuum tubes to semiconductors.
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
Editorial: Focus on Atom Optics and its Applications
NASA Astrophysics Data System (ADS)
Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.
2010-06-01
Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A Couvert, B Georgeot and D Guéry-Odelin Analysis of the entanglement between two individual atoms using global Raman rotations A Gaëtan, C Evellin, J Wolters, P Grangier, T Wilk and A Browaeys Spin polarization transfer in ground and metastable helium atom collisions D Vrinceanu and H R Sadeghpour A fiber Fabry-Perot cavity with high finesse D Hunger, T Steinmetz, Y Colombe, C Deutsch, T W Hänsch and J Reichel Atomic wave packets in amplitude-modulated vertical optical lattices A Alberti, G Ferrari, V V Ivanov, M L Chiofalo and G M Tino Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions Julian Grond, Ulrich Hohenester, Igor Mazets and Jörg Schmiedmayer Storage of protonated water clusters in a biplanar multipole rf trap C Greve, M Kröner, S Trippel, P Woias, R Wester and M Weidemüller Single-atom detection on a chip: from realization to application A Stibor, H Bender, S Kühnhold, J Fortágh, C Zimmermann and A Günther Ultracold atoms as a target: absolute scattering cross-section measurements P Würtz, T Gericke, A Vogler and H Ott Entanglement-assisted atomic clock beyond the projection noise limit Anne Louchet-Chauvet, Jürgen Appel, Jelmer J Renema, Daniel Oblak, Niels Kjaergaard and Eugene S Polzik Towards the realization of atom trap trace analysis for 39Ar J Welte, F Ritterbusch, I Steinke, M Henrich, W Aeschbach-Hertig and M K Oberthaler Resonant superfluidity in an optical lattice I Titvinidze, M Snoek and W Hofstetter Interference of interacting matter waves Mattias Gustavsson, Elmar Haller, Manfred J Mark, Johann G Danzl, Russell Hart, Andrew J Daley and Hanns-Christoph Nägerl Magnetic trapping of NH molecules with 20 s lifetimes E Tsikata, W C Campbell, M T Hummon, H-I Lu and J M Doyle Imprinting patterns of neutral atoms in an optical lattice using magnetic resonance techniques Michal Karski, Leonid Förster, Jai-Min Choi, Andreas Steffen, Noomen Belmechri, Wolfgang Alt, Dieter Meschede and Artur Widera Frequency stability of optical lattice clocks Jérôme Lodewyck, Philip G Westergaard, Arnaud Lecallier, Luca Lorini and Pierre Lemonde Ultracold quantum gases in triangular optical lattices C Becker, P Soltan-Panahi, J Kronjäger, S Dörscher, K Bongs and K Sengstock Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit B Kasch, H Hattermann, D Cano, T E Judd, S Scheel, C Zimmermann, R Kleiner, D Koelle and J Fortágh Focusing a deterministic single-ion beam Wolfgang Schnitzler, Georg Jacob, Robert Fickler, Ferdinand Schmidt-Kaler and Kilian Singer Tuning the structural and dynamical properties of a dipolar Bose-Einstein condensate: ripples and instability islands M Asad-uz-Zaman and D Blume Double-resonance lineshapes in a cell with wall coating and buffer gas Svenja Knappe and Hugh G Robinson Transport and interaction blockade of cold bosonic atoms in a triple-well potential P Schlagheck, F Malet, J C Cremon and S M Reimann Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols M Hellwig, A Bautista-Salvador, K Singer, G Werth and F Schmidt-Kaler Laser cooling of a magnetically guided ultracold atom beam A Aghajani-Talesh, M Falkenau, V V Volchkov, L E Trafford, T Pfau and A Griesmaier Creation efficiency of nitrogen-vacancy centres in diamond S Pezzagna, B Naydenov, F Jelezko, J Wrachtrup and J Meijer Top-down pathways to devices with few and single atoms placed to high precision Jessica A Van Donkelaar, Andrew D Greentree, Andrew D C Alves, Lenneke M Jong, Lloyd C L Hollenberg and David N Jamieson Enhanced electric field sensitivity of rf-dressed Rydberg dark states M G Bason, M Tanasittikosol, A Sargsyan, A K Mohapatra, D Sarkisyan, R M Potvliege and C S Adams
Performance of Loran-C chains relative to UTC
NASA Technical Reports Server (NTRS)
Chi, A. R.
1974-01-01
The long term performance of the eight Loran-C chains in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO) and the use of the Loran-C navigation system to maintain the user's clock to a UTC scale, are examined. The atomic time (AT) scale and the UTC of several national laboratories and observatories relative to the international atomic time (TAI) are presented. In addition, typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented. Recent revision of the Coordinated Universal Time (UTC) by the International Radio Consultative Committee (CCIR) is given in an appendix.
Optical lattice clock with atoms confined in a shallow trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemonde, Pierre; Wolf, Peter; Bureau International des Poids et Mesures, Pavillon de Breteuil, 92312 Sevres Cedex
2005-09-15
We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large depths [(50-100)E{sub r} for Sr] to avoid any frequency shift or line broadening of the atomic transition at the 10{sup -17}-10{sup -18} level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g., higher-order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose themore » use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show that using the Earth's gravity, much shallower traps (down to 5E{sub r} for Sr) can be used for the same accuracy goal.« less
Progress Toward an Neutral Yb Frequency Standard
NASA Astrophysics Data System (ADS)
Cramer, Claire; Hong, Tao; Nagourney, Warren; Fortson, Norval
2004-05-01
We report recent progress toward a direct observation of the ^1S_0^ -- ^3P0 clock transition at 578 nm in atomic Yb and review the experimental path to an optical frequency standard based on neutral Yb confined in a Stark-free optical lattice. Lamb-Dicke confinement in an optical lattice at the ``magic wavelength'' (λ _M) at which ground and excited state light shifts cancel will free the spectrum from Doppler and recoil shifts, providing an optimal environment for a clock consisting of an ensemble of cold, trapped atoms. In^171Yb the ^3P0 level has a hfs induced lifetime of 21 s. With this isotope in a Stark-free lattice at λ M ng 750 nm, perturbations to the clock energy levels can be held below the mHz level, providing an accuracy of a few parts in 10^18[1]. To observe the clock transition we use a shelving scheme that creates a leak in a MOT on the ^1S_0^ -- ^1P1 transition. A laser resonant with the clock transition drives atoms into the ^3P0 state, in which they can escape the MOT, leading to an observable decrease in MOT fluorescence. [1] S. Porsev and A. Derevianko, to be published in PRA
A highly miniaturized vacuum package for a trapped ion atomic clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather
2016-05-15
We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less
Advancing the state-of-the-art of the optical atomic clock
NASA Astrophysics Data System (ADS)
Ye, Jun
2014-05-01
The continued advance in laser phase coherence has permitted an improvement of the stability of optical lattice clocks by a factor of 10. This measurement precision has facilitated characterization of systematic effects, allowing us to improve the lattice clock accuracy by a factor of 20. The accuracy and stability of the JILA Sr clock now reach the 10-18 level. Owing to these advances, the lattice clock has also emerged as an effective laboratory to study many-body spin correlations. NIST, NSF, DARPA-QuASAR.
METAS New Time Scale Generation System - A Progress Report
2007-01-01
and a TWSTFT station are used for remote T&F comparisons. The GPS TAI link is driven by one of the atomic clocks defined as the REF clock...UTC(CH.P) paper clock TA(CH.P) paper clock TWSTFT link GPS link CH00 WAB1 H-maser 1-PPS H-maser 1-PPS REF 1-PPS 5-MHz from all clocks UTC(CH.R) 1-PPS...lost, the only consequence would be a transient of UTC (CH.P), which can be corrected by a subsequent steering. The GPS and TWSTFT links can be
The Chip-Scale Atomic Clock - Prototype Evaluation
2007-11-01
39th Annual Precise Time and Time Interval (PTTI) Meeting THE CHIP-SCALE ATOMIC CLOCK – PROTOTYPE EVALUATION R. Lutwak *, A. Rashed...been supported by the Defense Advanced Research Projects Agency, Contract # NBCHC020050. REFERENCES [1] R. Lutwak , D. Emmons, W. Riley, and...D.C.), pp. 539-550. [2] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, 2004, “The Chip-Scale
Nevsky, A; Alighanbari, S; Chen, Q-F; Ernsting, I; Vasilyev, S; Schiller, S; Barwood, G; Gill, P; Poli, N; Tino, G M
2013-11-15
We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.
Laser Cooled Atomic Clocks in Space
NASA Technical Reports Server (NTRS)
Thompson, R. J.; Kohel, J.; Klipstein, W. M.; Seidel, D. J.; Maleki, L.
2000-01-01
The goals of the Glovebox Laser-cooled Atomic Clock Experiment (GLACE) are: (1) first utilization of tunable, frequency-stabilized lasers in space, (2) demonstrate laser cooling and trapping in microgravity, (3) demonstrate longest 'perturbation-free' interaction time for a precision measurement on neutral atoms, (4) Resolve Ramsey fringes 2-10 times narrower than achievable on Earth. The approach taken is: the use of COTS components, and the utilization of prototype hardware from LCAP flight definition experiments. The launch date is scheduled for Oct. 2002. The Microgravity Science Glovebox (MSG) specifications are reviewed, and a picture of the MSG is shown.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
Hänsch, Theodor W.
2018-05-23
For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.
Comparing Optical Oscillators across the Air to Milliradians in Phase and 10^{-17} in Frequency.
Sinclair, Laura C; Bergeron, Hugo; Swann, William C; Baumann, Esther; Deschênes, Jean-Daniel; Newbury, Nathan R
2018-02-02
We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, S.; Affolderbach, C.; Gruet, F.
2015-04-20
We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variationsmore » and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.« less
An Optical Lattice Clock with Spin 1/2 Atoms
2012-01-01
of the energy difference between the two lowest states of cesium atoms [3, 4] 1 . This definition is realized in the laboratory by steering a...saying that the clock 1 Specifically, the definition of the second is “the duration of 9 192 631 770 periods of the radiation corresponding to the...one piece, albeit an important one. There are several reasons to search for such variations, ranging from tests of new cosmological and unification
The Space Optical Clock project: status and perspectives
NASA Astrophysics Data System (ADS)
Schiller, Stephan; Tino, Guglielmo M.; Sterr, Uwe; Lemonde, Pierre; Görlitz, Axel; Salomon, Christophe
The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of funda-mental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007-10), funded partially by ESA and DLR, includes the implementa-tion of several optical lattice clock systems using Strontium and Ytterbium as atomic systems and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques that are suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and are being validated. The talk will give a brief overview over the achieved results and outline future developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
François, B.; Boudot, R.; Calosso, C. E.
2014-09-15
We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Comparedmore » to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.« less
Ground-based optical atomic clocks as a tool to monitor vertical surface motion
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai
2015-09-01
According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.
A breadboard of optically-pumped atomic-beam frequency standard for space applications
NASA Astrophysics Data System (ADS)
Berthoud, P.; Ruffieux, R.; Affolderbach, C.; Thomann, P.
2004-06-01
Observatoire de Neuchâtel (ON) has recently started breadboarding activities for an Optically-pumped Space Cesium-beam Atomic Resonator in the frame of an ESA-ARTES 5 project. The goal is to demonstrate a frequency stability approaching σy = 1×10-12 τ-1/2 with the simplest optical scheme (a single optical frequency for both the atomic pumping and detection processes). This development constitutes a fundamental step in the general effort to reduce the mass of the on-board clocks, while keeping or even improving its performances. It will take advantage of previous activities at ON in the late '80 and of the latest progresses in the field of tunable and narrow-band laser diodes.
Application of Control Theory in the Formation of a Timescale
2004-09-01
York). [3] P. Koppang and R. Leland , 1999, “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Transactions on Ultrasonics... Koppang , D. Johns, and J. Skinner U.S. Naval Observatory Abstract We have created a timescale that joins the short-term stability of...comparison. REFERENCES [1] D. Matsakis, M. Miranian, and P. Koppang , 1999, “Steering the U.S. Naval Observatory (USNO) Master Clock,” in
Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffer, J.; Encalada, N.; Huang, M.
We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.
Reformulation of the relativistic conversion between coordinate time and atomic time
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1975-01-01
The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring 'earth-bound' proper time or atomic time). After an interpretation in terms of relatively well-known concepts, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th, is used to explain the conventions required in the synchronization of a worldwide clock network and to analyze two synchronization techniques - portable clocks and radio interferometry. Finally, pertinent experimental tests of relativity are briefly discussed in terms of the reformulated time conversion.
Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV
2015-11-20
clock. During this funding period a novel UV laser system was developed to efficiently cool and trap atomic Hg to temperatures below 100 microKelvin...During this funding period a novel UV laser system was developed to efficiently cool and trap atomic Hg to temperatures below 100 microKelvin. This...able to slowly scan the UV laser system to locate the clock transition (using the standard technique
Ion-Atom Cold Collisions and Atomic Clocks
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.
1997-01-01
Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.
New Tests for Variations of the Fine Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.
Tests of Lorentz and CPT Invariance in Space
NASA Technical Reports Server (NTRS)
Mewes, Matthew
2003-01-01
I give a brief overview of recent work concerning possible signals of Lorentz violation in sensitive clock-based experiments in space. The systems under consideration include atomic clocks and electromagnetic resonators of the type planned for flight on the International Space Station.
Distinguishing between evidence and its explanations in the steering of atomic clocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, John M., E-mail: myers@seas.harvard.edu; Hadi Madjid, F., E-mail: gmadjid@aol.com
2014-11-15
Quantum theory reflects within itself a separation of evidence from explanations. This separation leads to a known proof that: (1) no wave function can be determined uniquely by evidence, and (2) any chosen wave function requires a guess reaching beyond logic to things unforeseeable. Chosen wave functions are encoded into computer-mediated feedback essential to atomic clocks, including clocks that step computers through their phases of computation and clocks in space vehicles that supply evidence of signal propagation explained by hypotheses of spacetimes with metric tensor fields. The propagation of logical symbols from one computer to another requires a shared rhythm—likemore » a bucket brigade. Here we show how hypothesized metric tensors, dependent on guesswork, take part in the logical synchronization by which clocks are steered in rate and position toward aiming points that satisfy phase constraints, thereby linking the physics of signal propagation with the sharing of logical symbols among computers. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation transports logical synchronization from the engineering of digital communications to a discipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge unforeseeable events. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication. - Highlights: • Atomic clocks are steered in frequency toward an aiming point. • The aiming point depends on a chosen wave function. • No evidence alone can determine the wave function. • The unknowability of the wave function has implications for spacetime curvature. • Variability in spacetime curvature limits the bit rate of communications.« less
Search for domain wall dark matter with atomic clocks on board global positioning system satellites.
Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei
2017-10-30
Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.
NASA Technical Reports Server (NTRS)
Davis, John A.; Lewandowski, W.; DeYoung, James A.; Kirchner, Dieter; Hetzel, Peter; deJong, Gerrit; Soering, A.; Baumont, F.; Klepczynski, William; McKinley, Angela Davis;
1996-01-01
For a decade and a half Global Positioning System (GPS) common-view time transfer has greatly served the needs of primary timing laboratories for regular intercomparisons of remote atomic clocks. However, GPS as a one-way technique has natural limits and may not meet all challenges of the comparison of the coming new generation of atomic clocks. Two-way satellite time and frequency transfer (TWSTFT) is a promising technique which may successfully complement GPS. For two years, regular TWSTFT's have been performed between eight laboratories situated in both Europe and North America, using INTELSAT satellites. This has enabled an extensive direct comparison to be made between these two high performance time transfer methods. The performance of the TWSTFT and GPS common view methods are compared over a number of time-transfer links. These links use a variety of time-transfer hardware and atomic clocks and have baselines of substantially different lengths. The relative merits of the two time-transfer systems are discussed.
Atomized scan strategy for high definition for VR application
NASA Astrophysics Data System (ADS)
Huang, Shuping; Ran, Feng; Ji, Yuan; Chen, Wendong
2017-10-01
Silicon-based OLED (Organic Light Emitting Display) microdisplay technology begins to attract people's attention in the emerging VR and AR devices. The high display frame refresh rate is an important solution to alleviate the dizziness in VR applications. Traditional display circuit drivers use the analog method or the digital PWM method that follow the serial scan order from the first pixel to the last pixel by using the shift registers. This paper proposes a novel atomized scan strategy based on the digital fractal scan strategy using the pseudo-random scan order. It can be used to realize the high frame refresh rate with the moderate pixel clock frequency in the high definition OLED microdisplay. The linearity of the gray level is also improved compared with the Z fractal scan strategy.
Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms.
Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi
2016-02-15
Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.
Atomic Clocks with Suppressed Blackbody Radiation Shift
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Okhapkin, M. V.; Bagayev, S. N.; Tamm, Chr.; Peik, E.; Huntemann, N.; Mehlstäubler, T. E.; Riehle, F.
2011-07-01
We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a “synthetic” frequency νsyn ∝ (ν1-ɛ12ν2) largely immune to the blackbody radiation shift. For example, in the case of Yb+171 it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10-18 in a broad interval near room temperature (300±15K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency νsyn is generated as one of the components of the comb spectrum.
Frequency Measurements of Superradiance from the Strontium Clock Transition
NASA Astrophysics Data System (ADS)
Norcia, Matthew A.; Cline, Julia R. K.; Muniz, Juan A.; Robinson, John M.; Hutson, Ross B.; Goban, Akihisa; Marti, G. Edward; Ye, Jun; Thompson, James K.
2018-04-01
We present the first characterization of the spectral properties of superradiant light emitted from the ultranarrow, 1-mHz-linewidth optical clock transition in an ensemble of cold
Atomic clock ensemble in space (ACES) data analysis
NASA Astrophysics Data System (ADS)
Meynadier, F.; Delva, P.; le Poncin-Lafitte, C.; Guerlin, C.; Wolf, P.
2018-02-01
The Atomic Clocks Ensemble in Space (ACES/PHARAO mission, ESA & CNES) will be installed on board the International Space Station (ISS) next year. A crucial part of this experiment is its two-way microwave link (MWL), which will compare the timescale generated on board with those provided by several ground stations disseminated on the Earth. A dedicated data analysis center is being implemented at SYRTE—Observatoire de Paris, where our team currently develops theoretical modelling, numerical simulations and the data analysis software itself. In this paper, we present some key aspects of the MWL measurement method and the associated algorithms for simulations and data analysis. We show the results of tests using simulated data with fully realistic effects such as fundamental measurement noise, Doppler, atmospheric delays, or cycle ambiguities. We demonstrate satisfactory performance of the software with respect to the specifications of the ACES mission. The main scientific product of our analysis is the clock desynchronisation between ground and space clocks, i.e. the difference of proper times between the space clocks and ground clocks at participating institutes. While in flight, this measurement will allow for tests of general relativity and Lorentz invariance at unprecedented levels, e.g. measurement of the gravitational redshift at the 3×10-6 level. As a specific example, we use real ISS orbit data with estimated errors at the 10 m level to study the effect of such errors on the clock desynchronisation obtained from MWL data. We demonstrate that the resulting effects are totally negligible.
RACE and Calculations of Three-dimensional Distributed Cavity Phase Shifts
NASA Technical Reports Server (NTRS)
Li, Ruoxin; Gibble, Kurt
2003-01-01
The design for RACE, a Rb-clock flight experiment for the ISS, is described. The cold collision shift and multiple launching (juggling) have important implications for the design and the resulting clock accuracy and stability. We present and discuss the double clock design for RACE. This design reduces the noise contributions of the local oscillator and simplifies and enhances an accuracy evaluation of the clock. As we try to push beyond the current accuracies of clocks, new systematic errors become important. The best fountain clocks are using cylindrical TE(sub 011) microwave cavities. We recently pointed out that many atoms pass through a node of the standing wave microwave field in these cavities. Previous studies have shown potentially large frequency shifts for atoms passing through nodes in a TE(sub 013) cavity. The shift occurs because there is a small traveling wave component due to the absorption of the copper cavity walls. The small traveling wave component leads to position dependent phase shifts. To study these effects, we perform Finite Element calculations. Three-dimensional Finite Element calculations require significant computer resources. Here we show that the cylindrical boundary condition can be Fourier decomposed to a short series of two-dimensional problems. This dramatically reduces the time and memory required and we obtain (3D) phase distributions for a variety of cavities. With these results, we will be able to analyze this frequency shift in fountain and future space clocks.
DARPA looks beyond GPS for positioning, navigating, and timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, David
Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.
Feedback control of persistent-current oscillation based on the atomic-clock technique
NASA Astrophysics Data System (ADS)
Yu, Deshui; Dumke, Rainer
2018-05-01
We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.
Stabilizing Rabi oscillation of a charge qubit via the atomic clock technique
NASA Astrophysics Data System (ADS)
Yu, Deshui; Landra, Alessandro; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2018-02-01
We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor-capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.
Autobalanced Ramsey Spectroscopy
NASA Astrophysics Data System (ADS)
Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard
2018-01-01
We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone
Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy
NASA Astrophysics Data System (ADS)
Kirsch, Janet E.; Tainter, Craig J.
We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.
Relativity in the Global Positioning System.
Ashby, Neil
2003-01-01
The Global Positioning System (GPS) uses accurate, stable atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without carefully accounting for numerous relativistic effects, the system would not work. This paper discusses the conceptual basis, founded on special and general relativity, for navigation using GPS. Relativistic principles and effects which must be considered include the constancy of the speed of light, the equivalence principle, the Sagnac effect, time dilation, gravitational frequency shifts, and relativity of synchronization. Experimental tests of relativity obtained with a GPS receiver aboard the TOPEX/POSEIDON satellite will be discussed. Recently frequency jumps arising from satellite orbit adjustments have been identified as relativistic effects. These will be explained and some interesting applications of GPS will be discussed.
Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer.
Hong, F-L; Musha, M; Takamoto, M; Inaba, H; Yanagimachi, S; Takamizawa, A; Watabe, K; Ikegami, T; Imae, M; Fujii, Y; Amemiya, M; Nakagawa, K; Ueda, K; Katori, H
2009-03-01
We demonstrate a precision frequency measurement using a phase-stabilized 120 km optical fiber link over a physical distance of 50 km. The transition frequency of the (87)Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time. The results demonstrate the excellent functions of the intercity optical fiber link and the great potential of optical lattice clocks for use in the redefinition of the second.
Light-Shifts of an Integrated Filter-Cell Rubidium Atomic Clock
2015-05-25
the light-shift coefficient for two different rf- discharge lamps (i.e., a pure 87Rb lamp and a lamp filled with the natural Rb isotope abundance...for the Galileo Rb clock under the assumption of a natural (or 85Rb isotopically enriched) rf- discharge lamp for the Galileo clock. I...satellites [14]. 6.8347… GHz 85Rb Filter Cell Cell Resonance Photodiode Microwave Cavity 87Rb Discharge Lamp 87Rb & N2 Rb & Xe, Kr Optical Pumping 87Rb
NASA Technical Reports Server (NTRS)
Ringermacher, Harry I.; Conradi, Mark S.; Cassenti, Brice
2005-01-01
Results of experiments to confirm a theory that links classical electromagnetism with the geometry of spacetime are described. The theory, based on the introduction of a Torsion tensor into Einstein s equations and following the approach of Schroedinger, predicts effects on clocks attached to charged particles, subject to intense electric fields, analogous to the effects on clocks in a gravitational field. We show that in order to interpret this theory, one must re-interpret all clock changes, both gravitational and electromagnetic, as arising from changes in potential energy and not merely potential. The clock is provided naturally by proton spins in hydrogen atoms subject to Nuclear Magnetic Resonance trials. No frequency change of clocks was observed to a resolution of 6310(exp -9). A new "Clock Principle" was postulated to explain the null result. There are two possible implications of the experiments: (a) The Clock Principle is invalid and, in fact, no metric theory incorporating electromagnetism is possible; (b) The Clock Principle is valid and it follows that a negative rest mass cannot exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-19
For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecondmore » science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.« less
NASA Astrophysics Data System (ADS)
Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Serkland, Darwin K.; Boye, Robert; Fang, Lu; Casias, Adrian; Manginell, Ronald P.; Moorman, Matthew; Prestage, John; Yu, Nan
2011-06-01
We are developing a highly miniaturized trapped ion clock to probe the 12.6 GHz hyperfine transition in the 171Yb+ ion. The clock development is being funded by the Integrated Micro Primary Atomic Clock Technology (IMPACT) program from DARPA where the stated goals are to develop a clock that consumes 50 mW of power, has a size of 5 cm3, and has a long-term frequency stability of 10-14 at one month. One of the significant challenges will be to develop miniature single-frequency lasers at 369 nm and 935 nm and the optical systems to deliver light to the ions and to collect ion fluorescence on a detector.
NASA Astrophysics Data System (ADS)
Kunz, Paul; Meyer, David; Quraishi, Qudsia
2015-05-01
Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.
NASA Astrophysics Data System (ADS)
2016-02-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment, T V Barmashova, K A Mart'yanov, V B Makhalov, A V Turlapov Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 174-183 • Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects, A V Taichenachev, V I Yudin, S N Bagayev Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 184-195 • Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information, I I Ryabtsev, I I Beterov, D B Tret'yakov, V M Èntin, E A Yakshina Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 196-208
Distinguishing between evidence and its explanations in the steering of atomic clocks
NASA Astrophysics Data System (ADS)
Myers, John M.; Hadi Madjid, F.
2014-11-01
Quantum theory reflects within itself a separation of evidence from explanations. This separation leads to a known proof that: (1) no wave function can be determined uniquely by evidence, and (2) any chosen wave function requires a guess reaching beyond logic to things unforeseeable. Chosen wave functions are encoded into computer-mediated feedback essential to atomic clocks, including clocks that step computers through their phases of computation and clocks in space vehicles that supply evidence of signal propagation explained by hypotheses of spacetimes with metric tensor fields. The propagation of logical symbols from one computer to another requires a shared rhythm-like a bucket brigade. Here we show how hypothesized metric tensors, dependent on guesswork, take part in the logical synchronization by which clocks are steered in rate and position toward aiming points that satisfy phase constraints, thereby linking the physics of signal propagation with the sharing of logical symbols among computers. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation transports logical synchronization from the engineering of digital communications to a discipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge unforeseeable events. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder
2015-05-14
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and amore » microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.« less
Atom Interferometry with the Sr Optical Clock Transition.
Hu, Liang; Poli, Nicola; Salvi, Leonardo; Tino, Guglielmo M
2017-12-29
We report on the realization of a matter-wave interferometer based on single-photon interaction on the ultranarrow optical clock transition of strontium atoms. We experimentally demonstrate its operation as a gravimeter and as a gravity gradiometer. No reduction of interferometric contrast was observed for a total interferometer time up to ∼10 ms, limited by geometric constraints of the apparatus. Single-photon interferometers represent a new class of high-precision sensors that could be used for the detection of gravitational waves in so far unexplored frequency ranges and to enlighten the boundary between quantum mechanics and general relativity.
Upper Limit of Weights in TAI Computation
NASA Technical Reports Server (NTRS)
Thomas, Claudine; Azoubib, Jacques
1996-01-01
The international reference time scale International Atomic Time (TAI) computed by the Bureau International des Poids et Mesures (BIPM) relies on a weighted average of data from a large number of atomic clocks. In it, the weight attributed to a given clock depends on its long-term stability. In this paper the TAI algorithm is used as the basis for a discussion of how to implement an upper limit of weight for clocks contributing to the ensemble time. This problem is approached through the comparison of two different techniques. In one case, a maximum relative weight is fixed: no individual clock can contribute more than a given fraction to the resulting time scale. The weight of each clock is then adjusted according to the qualities of the whole set of contributing elements. In the other case, a parameter characteristic of frequency stability is chosen: no individual clock can appear more stable than the stated limit. This is equivalent to choosing an absolute limit of weight and attributing this to to the most stable clocks independently of the other elements of the ensemble. The first technique is more robust than the second and automatically optimizes the stability of the resulting time scale, but leads to a more complicated computatio. The second technique has been used in the TAI algorithm since the very beginning. Careful analysis of tests on real clock data shows that improvement of the stability of the time scale requires revision from time to time of the fixed value chosen for the upper limit of absolute weight. In particular, we present results which confirm the decision of the CCDS Working Group on TAI to increase the absolute upper limit by a factor of 2.5. We also show that the use of an upper relative contribution further helps to improve the stability and may be a useful step towards better use of the massive ensemble of HP 507IA clocks now contributing to TAI.
Cold Atom Clock Test of Lorentz Invariance in the Matter Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Peter; Chapelet, Frederic; Bize, Sebastien
2006-02-17
We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled {sup 133}Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements bymore » 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.« less
TimeSet: A computer program that accesses five atomic time services on two continents
NASA Technical Reports Server (NTRS)
Petrakis, P. L.
1993-01-01
TimeSet is a shareware program for accessing digital time services by telephone. At its initial release, it was capable of capturing time signals only from the U.S. Naval Observatory to set a computer's clock. Later the ability to synchronize with the National Institute of Standards and Technology was added. Now, in Version 7.10, TimeSet is able to access three additional telephone time services in Europe - in Sweden, Austria, and Italy - making a total of five official services addressable by the program. A companion program, TimeGen, allows yet another source of telephone time data strings for callers equipped with TimeSet version 7.10. TimeGen synthesizes UTC time data strings in the Naval Observatory's format from an accurately set and maintained DOS computer clock, and transmits them to callers. This allows an unlimited number of 'freelance' time generating stations to be created. Timesetting from TimeGen is made feasible by the advent of Becker's RighTime, a shareware program that learns the drift characteristics of a computer's clock and continuously applies a correction to keep it accurate, and also brings .01 second resolution to the DOS clock. With clock regulation by RighTime and periodic update calls by the TimeGen station to an official time source via TimeSet, TimeGen offers the same degree of accuracy within the resolution of the computer clock as any official atomic time source.
A self-interfering clock as a “which path” witness
NASA Astrophysics Data System (ADS)
Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron
2015-09-01
In Einstein’s general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global—all clocks “tick” uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets “tick” at different rates, to simulate a gravitational time lag, the clock time along each path yields “which path” information, degrading the pattern’s visibility. In contrast, in standard interferometry, time cannot yield “which path” information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world.
A self-interfering clock as a "which path" witness.
Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron
2015-09-11
In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. Copyright © 2015, American Association for the Advancement of Science.
Gao, Qi; Zhou, Min; Han, Chengyin; Li, Shangyan; Zhang, Shuang; Yao, Yuan; Li, Bo; Qiao, Hao; Ai, Di; Lou, Ge; Zhang, Mengya; Jiang, Yanyi; Bi, Zhiyi; Ma, Longsheng; Xu, Xinye
2018-05-22
Optical clocks are the most precise measurement devices. Here we experimentally characterize one such clock based on the 1 S 0 - 3 P 0 transition of neutral 171 Yb atoms confined in an optical lattice. Given that the systematic evaluation using an interleaved stabilization scheme is unable to avoid noise from the clock laser, synchronous comparisons against a second 171 Yb lattice system were implemented to accelerate the evaluation. The fractional instability of one clock falls below 4 × 10 -17 after an averaging over a time of 5,000 seconds. The systematic frequency shifts were corrected with a total uncertainty of 1.7 × 10 -16 . The lattice polarizability shift currently contributes the largest source. This work paves the way to measuring the absolute clock transition frequency relative to the primary Cs standard or against the International System of Units (SI) second.
Test of an orbiting hydrogen maser clock system using laser time transfer
NASA Technical Reports Server (NTRS)
Vessot, Robert F. C.; Mattison, Edward M.; Nystrom, G. U.; Decher, Rudolph
1992-01-01
We describe a joint Smithsonian Astrophysical Laboratory/National Aeronautics and Space Administration (SAO/NASA) program for flight testing a atomic hydrogen maser clock system designed for long-term operation in space. The clock system will be carried by a shuttle-launched EURECA spacecraft. Comparisons with earth clocks to measure the clock's long-term frequency stability (tau = 10(exp 4) seconds) will be made using laser time transfer from existing NASA laser tracking stations. We describe the design of the maser clock and its control systems, and the laser timing technique. We describe the precision of station time synchronization and the limitations in the comparison between the earth and space time scales owing to gravitational and relativistic effects. We will explore the implications of determining the spacecraft's location by an on-board Global Position System (GPS) receiver, and of using microwave techniques for time and frequency transfer.
Electromagnetically induced transparency with noisy lasers
NASA Astrophysics Data System (ADS)
Xiao, Yanhong; Wang, Tun; Baryakhtar, Maria; van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Jiang, Liang; Phillips, David F.; Lukin, Mikhail D.; Yelin, Susanne F.; Walsworth, Ronald L.
2009-10-01
We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.
NASA Astrophysics Data System (ADS)
Corsini, Eric P.
The quest to expand the limited sensorial domain, in particular to bridge the inability to gauge magnetic fields near and far, has driven the fabrication of remedial tools. The interaction of ferromagnetic material with a magnetic field had been the only available technique to gauge that field for several millennium. The advent of electricity and associated classical phenomena captured in the four Maxwell equations, were a step forward. In the early 1900s, the model of quantum mechanics provided a two-way leap forward. One came from the newly understood interaction of light and matter, and more specifically the three-way coupling of photons, atoms' angular momenta, and magnetic field, which are the foundations of atomic magnetometry. The other came from magnetically sensitive quantum effects in a fabricated energy-ladder form of matter cooled to a temperature below that of the energy steps; these quantum effects gave rise to the superconducting quantum interference device (SQUID). Research using atomic magnetometers and SQUIDs has resulted in thousands of publications, text books, and conferences. The current status in each field is well described in Refs. [48,49,38,42] and all references therein. In this work we develop and investigate techniques and applications pertaining to atomic magnetometry. [Full text: eric.corsini gmail.com].
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Norman Ramsey and the Separated Oscillatory Fields Method
methods of investigation; in particular, he contributed many refinements of the molecular beam method for the study of atomic and molecular properties, he invented the separated oscillatory field method of atomic and molecular spectroscopy and it is the practical basis for the most precise atomic clocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio
2011-12-15
Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap amore » large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.« less
Laser-Free Cold-Atom Gymnastics
NASA Astrophysics Data System (ADS)
Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi
2017-01-01
We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.
Monte Carlo simulations of precise timekeeping in the Milstar communication satellite system
NASA Technical Reports Server (NTRS)
Camparo, James C.; Frueholz, R. P.
1995-01-01
The Milstar communications satellite system will provide secure antijam communication capabilities for DOD operations into the next century. In order to accomplish this task, the Milstar system will employ precise timekeeping on its satellites and at its ground control stations. The constellation will consist of four satellites in geosynchronous orbit, each carrying a set of four rubidium (Rb) atomic clocks. Several times a day, during normal operation, the Mission Control Element (MCE) will collect timing information from the constellation, and after several days use this information to update the time and frequency of the satellite clocks. The MCE will maintain precise time with a cesium (Cs) atomic clock, synchronized to UTC(USNO) via a GPS receiver. We have developed a Monte Carlo simulation of Milstar's space segment timekeeping. The simulation includes the effects of: uplink/downlink time transfer noise; satellite crosslink time transfer noise; satellite diurnal temperature variations; satellite and ground station atomic clock noise; and also quantization limits regarding satellite time and frequency corrections. The Monte Carlo simulation capability has proven to be an invaluable tool in assessing the performance characteristics of various timekeeping algorithms proposed for Milstar, and also in highlighting the timekeeping capabilities of the system. Here, we provide a brief overview of the basic Milstar timekeeping architecture as it is presently envisioned. We then describe the Monte Carlo simulation of space segment timekeeping, and provide examples of the simulation's efficacy in resolving timekeeping issues.
NASA Astrophysics Data System (ADS)
Yu, Yan-mei; Sahoo, B. K.
2016-12-01
We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.
A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.
2000-01-01
We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Silva, P. M.; Silva, I. M.
1974-01-01
Various methods presently used for the dissemination of time at several levels of precision are described along with future projects in the field. Different aspects of time coordination are reviewed and a list of future laboratories participating in a National Time Scale will be presented. A Brazilian Atomic Time Scale will be obtained from as many of these laboratories as possible. The problem of intercomparison between the Brazilian National Time Scale and the International one will be presented and probable solutions will be discussed. Needs related to the TV Line-10 method will be explained and comments will be made on the legal aspects of time dissemination throughout the country.
An analytic technique for statistically modeling random atomic clock errors in estimation
NASA Technical Reports Server (NTRS)
Fell, P. J.
1981-01-01
Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.
Analysis of the Precision of Pulsar Time Clock Modeltwo
NASA Astrophysics Data System (ADS)
Zhao, Cheng-shi; Tong, Ming-lei; Gao, Yu-ping; Yang, Ting-gao
2018-04-01
Millisecond pulsars have a very high rotation stability, which can be applied to many research fields, such as the establishment of the pulsar time standard, the detection of gravitational wave, the spacecraft navigation by using X-ray pulsars and so on. In this paper, we employ two millisecond pulsars PSR J0437-4715 and J1713+0743, which are observed by the International Pulsar Timing Array (IPTA), to analyze the precision of pulsar clock parameter and the prediction accuracy of pulse time of arrival (TOA). It is found that the uncertainty of spin frequency is 10-15 Hz, the uncertainty of the first derivative of spin frequency is 10-23 s-2, and the precision of measured rotational parameters increases by one order of magnitude with the accumulated observational data every 4∼5 years. In addition, the errors of TOAs within 4.8 yr which are predicted by the clock model established by the 10 yr data of J0437-4715 are less than 1 μs. Therefore, one can use the pulsar time standard to calibrate the atomic clock, and make the atomic time deviate from the TT (Terrestrial Time) less than 1 μs within 4.8 yr.
EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases
NASA Astrophysics Data System (ADS)
Vassen, W.; Hemmerich, A.; Arimondo, E.
2003-04-01
This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by the Dutch Foundation for Fundamental Research on Matter (FOM) and by the Dutch Gelderland province. We thank all these sponsors and the members of the International Programme Committee for making the Workshop such a success. At this point we take the opportunity to express our gratitude to both authors and reviewers, for their efforts in preparing and ensuring the high quality of the papers in this special issue. Wim Vassen Vrije Universiteit, Amsterdam Andreas Hemmerich Universität Hamburg Ennio Arimondo Università di Pisa Guest Editors International Programme Committee A Aspect Orsay, France E Cornell Boulder, USA W Ertmer Hannover, Germany T W Haensch Munich, Germany A Hemmerich Hamburg, Germany W Hogervorst Amsterdam, The Netherlands D Kleppner Cambridge, USA C Salomon Paris, France G V Shlyapnikov Amsterdam, Paris, Moscow S Stringari Trento, Italy W Vassen Amsterdam, The Netherlands J T M Walraven Amsterdam, The Netherlands
Quantum Synchronization of Two Ensembles of Atoms
NASA Astrophysics Data System (ADS)
Xu, Minghui; Tieri, David; Fine, Effie; Thompson, James; Holland, Murray
2014-05-01
We present a system that exhibits quantum synchronization as a modern analogue of the Huygens experiment which is implemented using state-of-the-art neutral atom lattice clocks of the highest precision. In particular, we study the correlated phase dynamics of two mesoscopic ensembles of atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two disparate oscillators to the phase-locking that is the signature of quantum synchronization. Besides being of fundamental importance in nonequilibrium quantum many-body physics, this work could have broad implications for many practical applications of ultrastable lasers and precision measurements. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
NASA Astrophysics Data System (ADS)
Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang
2016-03-01
We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).
Appendix A: The Impact of the HP 5071A on International Atomic Time
NASA Technical Reports Server (NTRS)
Allan, David W.; Lepek, Alex; Cutler, Len; Giffard, Robin; Kusters, Jack
1996-01-01
The international clock ensemble, which contributes to the generation of International Atomic Time (TAI and UTC) has improved dramatically over the last few years. The main change has been the introduction of a significant number of HP 5071A clocks. Of the 313 clocks contributing to TAI/UTC during 1994, 94 of these were HP 5071As. The environmental insensitivity of the HP 5071A clocks is more than an order of magnitude better than that of previously contributing clocks. This environmental insensitivity translates to outstanding long-term stability - with a typical flicker floor of a few x10(sup -15). in addition, there are now several hydrogen masers with cavity tuning contributing to TAI/UTC. These not only have outstanding short-term stability, but comparatively low frequency drifts and excellent intermediate-type frequency stability. By analyzing data available from the international ensemble, we have obtained two important results. First the frequency stability obtainable with an optimum algorithm is about 10(sup -15) for both the intermediate and long-term regions. It could be as good in the short-term (if time transfer measurement instabilities were reduced sufficiently. Second, with cooperation, this performance can be made available on an international basis in near real time. The recent enhancements in the contributing clocks are already providing a significant improvement in the accuracy with which UTC is made available to the world from several of the national timing centers, such as the National Institute for Standards and Technology (NIST) and the US Naval Observatory (USNO).
Gravitational Wave Detection with Single-Laser Atom Interferometers
NASA Technical Reports Server (NTRS)
Yu, Nan; Tinto, Massimo
2011-01-01
A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.
2015-12-15
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less
An open source digital servo for atomic, molecular, and optical physics experiments.
Leibrandt, D R; Heidecker, J
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
NASA Astrophysics Data System (ADS)
Leibrandt, D. R.; Heidecker, J.
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
PHARAO flight model: optical on ground performance tests
NASA Astrophysics Data System (ADS)
Lévèque, T.; Faure, B.; Esnault, F. X.; Grosjean, O.; Delaroche, C.; Massonnet, D.; Escande, C.; Gasc, Ph.; Ratsimandresy, A.; Béraud, S.; Buffe, F.; Torresi, P.; Larivière, Ph.; Bernard, V.; Bomer, T.; Thomin, S.; Salomon, C.; Abgrall, M.; Rovera, D.; Moric, I.; Laurent, Ph.
2017-11-01
PHARAO (Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite), which has been developed by CNES, is the first primary frequency standard specially designed for operation in space. PHARAO is the main instrument of the ESA mission ACES (Atomic Clock Ensemble in Space). ACES payload will be installed on-board the International Space Station (ISS) to perform fundamental physics experiments. All the sub-systems of the Flight Model (FM) have now passed the qualification process and the whole FM of the cold cesium clock, PHARAO, is being assembled and will undergo extensive tests. The expected performances in space are frequency accuracy less than 3.10-16 (with a final goal at 10-16) and frequency stability of 10-13 τ-1/2. In this paper, we focus on the laser source performances and the main results on the cold atom manipulation.
An open source digital servo for atomic, molecular, and optical physics experiments
Leibrandt, D. R.; Heidecker, J.
2016-01-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014
TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES
NASA Astrophysics Data System (ADS)
Dittus, Hansjörg; Lämmerzahl, Claus
Clocks are an almost universal tool for exploring the fundamental structure of theories related to relativity. For future clock experiments, it is important for them to be performed in space. One mission which has the capability to perform and improve all relativity tests based on clocks by several orders of magnitude is OPTIS. These tests consist of (i) tests of the isotropy of light propagation (from which information about the matter sector which the optical resonators are made of can also be drawn), (ii) tests of the constancy of the speed of light, (iii) tests of the universality of the gravitational redshift by comparing clocks based on light propagation, like light clocks and various atomic clocks, (iv) time dilation based on the Doppler effect, (v) measuring the absolute gravitational redshift, (vi) measuring the perihelion advance of the satellite's orbit by using very precise tracking techniques, (vii) measuring the Lense-Thirring effect, and (viii) testing Newton's gravitational potential law on the scale of Earth-bound satellites. The corresponding tests are not only important for fundamental physics but also indispensable for practical purposes like navigation, Earth sciences, metrology, etc.
C and RB Fountains:. Recent Results
NASA Astrophysics Data System (ADS)
Bize, S.; Sortais, Y.; Abgrall, M.; Zhang, S.; Calonico, D.; Mandache, C.; Lemonde, P.; Laurent, P.; Santarelli, G.; Salomon, C.; Clairon, A.; Luiten, A.; Tobar, M.
2002-04-01
We discuss the present performance and limits of our Cs and Rb fountains. The BNM/LPTF operates three cold atom clocks: two Cs fountains and a dual Cs-Rb fountain. By using an ultra-stable cryogenic sapphire oscillator to interrogate the atoms the frequency stability reaches 3.6 × 10-14τ-1/2. The accuracy of our fountains is now near 10-15. We discuss here the problems to be solved to reach a 10-16 accuracy. For instance this implies a continuous monitoring of the collisional frequency shift at the percent level in Cs. In contrast, 87Rb cold atom clocks exhibit a collisional shift ~ 100 times smaller than Cs which should lead to a better ultimate accuracy. Comparing the hyperfine energies of atoms with different atomic numbers Z, one can search for a possible violation of the Einstein Equivalence Principle. When interpreted as a test of the stability of the fine structure constant (α = e2/4πγ0ħc), measurements of the ratio νRb/νCs spread over a two year interval show no change of α at the 7 × 10-15/year level.
Rubidium atomic frequency standards for GPS Block IIR
NASA Technical Reports Server (NTRS)
Riley, William J.
1990-01-01
The Rubidium Atomic Frequency Standards (RAFS) were provided for the GPS Block IIR NAVSTAR satellites. These satellites will replenish and upgrade the space segment of the Global Positioning System in the mid 1990s. The GPS RAFS Rb clocks are the latest generation of the high-performance rubidium frequency standards. They offer an aging rate in the low pp 10(exp 14)/day range and a drift-corrected 1-day stability in the low pp 10(exp 14) range. The Block IIR version of these devices will have improved performance, higher reliability, smaller size, and greater radiation hardness. The GPS Block IIR atomic clocks have a natural frequency configuration whereby they output a frequency of about 13.4 MHz that is a submultiple of the atomic resonance of Rb (or Cs). The RAFS operates at a low, fixed C-field for increased stability. The GPS Block IIR RAFS design, including the changes and improvements made, and the test results obtained are described.
Active Faraday optical frequency standard.
Zhuang, Wei; Chen, Jingbiao
2014-11-01
We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.
Active laser ranging with frequency transfer using frequency comb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongyuan; Wei, Haoyun; Yang, Honglei
2016-05-02
A comb-based active laser ranging scheme is proposed for enhanced distance resolution and a common time standard for the entire system. Three frequency combs with different repetition rates are used as light sources at the two ends where the distance is measured. Pulse positions are determined through asynchronous optical sampling and type II second harmonic generation. Results show that the system achieves a maximum residual of 379.6 nm and a standard deviation of 92.9 nm with 2000 averages over 23.6 m. Moreover, as for the frequency transfer, an atom clock and an adjustable signal generator, synchronized to the atom clock, are used asmore » time standards for the two ends to appraise the frequency deviation introduced by the proposed system. The system achieves a residual fractional deviation of 1.3 × 10{sup −16} for 1 s, allowing precise frequency transfer between the two clocks at the two ends.« less
Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations
NASA Astrophysics Data System (ADS)
Beloy, K.
2018-03-01
We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.
Towards Laser Cooling Trapped Ions with Telecom Light
NASA Astrophysics Data System (ADS)
Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven
2015-05-01
Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.
Testing for a cosmological influence on local physics using atomic and gravitational clocks
NASA Technical Reports Server (NTRS)
Adams, P. J.; Hellings, R. W.; Canuto, V. M.; Goldman, I.
1983-01-01
The existence of a possible influence of the large-scale structure of the universe on local physics is discussed. A particular realization of such an influence is discussed in terms of the behavior in time of atomic and gravitational clocks. Two natural categories of metric theories embodying a cosmic infuence exist. The first category has geodesic equations of motion in atomic units, while the second category has geodesic equations of motion in gravitational units. Equations of motion for test bodies are derived for both categories of theories in the appropriate parametrized post-Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars are of sufficient precision to reveal (1) if such a cosmological influence exists at the level of Hubble's constant, and (2) which category of theories is appropriate for a descripton of the phenomenon.
A clock transition in a solid-state system
NASA Astrophysics Data System (ADS)
Edge, G. J. A.; Potnis, S.; Vutha, A. C.
2017-04-01
With the impending redefinition of the SI second based on optical frequency standards, new secondary frequency standards are needed in order to form clock ensembles. Ideally such secondary standards will offer enhanced robustness, portability and high signal-to-noise ratios (SNR), to enable rapid and precise comparisons to be made against primary standards. A clock based on a narrow optical transition, in atoms that are doped into a solid-state host, offers the experimental simplicity and large SNR to satisfy these requirements. The intra-configuration 7F0 ->5D0 transition, in Sm2+ ions doped into a host crystal, is an attractive candidate for such secondary standards due to its low susceptibility to perturbations from the crystal environment. We present results from the interrogation of this clock transition with a narrow linewidth laser.
Compact, Low-Power Atomic Time and Frequency Standards
2008-12-01
2007). This is consistent with other reports of survival of CSAC devices with thin polymide tethers to 500g ( Lutwak et al., 2007). • Humidity...InterPACK , July 8-12, 2007, Vancouver, British Columbia, CANADA Lutwak , R., et al., “The chip-scale atomic clock – prototype evaluation
Narrow Line Cooling of 88Sr Atoms in the Magneto-optical Trap for Precision Frequency Standard
NASA Astrophysics Data System (ADS)
Strelkin, S. A.; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Sutyrin, D. V.; Khabarova, K. Yu.; Kolachevsky, N. N.; Slyusarev, S. N.
We report on our progress toward the realization of a Strontium optical lattice clock, which is under development at VNIIFTRI as a part of GLONASS program. We've prepared the narrow line width laser system for secondary cooling of 88Sr atoms which allows us to reach atom cloud temperature below 3 μK after second cooling stage.
An algorithm for the Italian atomic time scale
NASA Technical Reports Server (NTRS)
Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.
1994-01-01
During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.
NASA Technical Reports Server (NTRS)
Liu, Anthony S.
1990-01-01
Aerospace has routinely processed the Osborne Time Transfer Receiver (TTR) data for the purpose of monitoring the performance of ground and GPS atomic clocks in near real-time with on-line residual displays and characterizing clock stability with Allan Variance calculations. Recently, Aerospace added the ability to estimate the TTR's location by differentially correcting the TTR's location in the WGS84 reference system. This new feature is exercised on a set of TTR clock phase data and Sub-meter accurate station location estimates of the TTR at the Aerospace Electronic Research Lab (ERL) are obtained.
NASA Astrophysics Data System (ADS)
Lakshmi Devaraj, Shanmuga
2018-04-01
The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.
Optical Lattice Clocks with Weakly Bound Molecules.
Borkowski, Mateusz
2018-02-23
Optical molecular clocks promise unparalleled sensitivity to the temporal variation of the electron-to-proton mass ratio and insight into possible new physics beyond the standard model. We propose to realize a molecular clock with bosonic ^{174}Yb_{2} molecules, where the forbidden ^{1}S_{0}→^{3}P_{0} clock transition would be induced magnetically. The use of a bosonic species avoids possible complications due to the hyperfine structure present in fermionic species. While direct clock line photoassociation would be challenging, weakly bound ground state molecules could be produced by stimulated Raman adiabatic passage and used instead. The recent scattering measurements [L. Franchi, et al. New J. Phys. 19, 103037 (2017)NJOPFM1367-263010.1088/1367-2630/aa8fb4] enable us to determine the positions of target ^{1}S_{0}+^{3}P_{0} vibrational levels and calculate the Franck-Condon factors for clock transitions between ground and excited molecular states. The resulting magnetically induced Rabi frequencies are similar to those for atoms hinting that an experimental realization is feasible. A successful observation could pave the way towards Hz-level molecular spectroscopy.
Optical Lattice Clocks with Weakly Bound Molecules
NASA Astrophysics Data System (ADS)
Borkowski, Mateusz
2018-02-01
Optical molecular clocks promise unparalleled sensitivity to the temporal variation of the electron-to-proton mass ratio and insight into possible new physics beyond the standard model. We propose to realize a molecular clock with bosonic 174Yb2 molecules, where the forbidden 1S0 →3P0 clock transition would be induced magnetically. The use of a bosonic species avoids possible complications due to the hyperfine structure present in fermionic species. While direct clock line photoassociation would be challenging, weakly bound ground state molecules could be produced by stimulated Raman adiabatic passage and used instead. The recent scattering measurements [L. Franchi, et al. New J. Phys. 19, 103037 (2017), 10.1088/1367-2630/aa8fb4] enable us to determine the positions of target 1S0 +3P0 vibrational levels and calculate the Franck-Condon factors for clock transitions between ground and excited molecular states. The resulting magnetically induced Rabi frequencies are similar to those for atoms hinting that an experimental realization is feasible. A successful observation could pave the way towards Hz-level molecular spectroscopy.
Distributed feedback InGaN/GaN laser diodes
NASA Astrophysics Data System (ADS)
Slight, Thomas J.; Watson, Scott; Yadav, Amit; Grzanka, Szymon; Stanczyk, Szymon; Docherty, Kevin E.; Rafailov, Edik; Perlin, Piotr; Najda, Steve; Leszczyński, Mike; Kelly, Anthony E.
2018-02-01
We have realised InGaN/GaN distributed feedback laser diodes emitting at a single wavelength in the 42X nm wavelength range. Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow line width blue laser source can be used to target the atomic cooling transition. Previously, GaN DFB lasers have been realised using buried or surface gratings. Buried gratings require complex overgrowth steps which can introduce epi-defects. Surface gratings designs, can compromise the quality of the p-type contact due to dry etch damage and are prone to increased optical losses in the grating regions. In our approach the grating is etched into the sidewall of the ridge. Advantages include a simpler fabrication route and design freedom over the grating coupling strength.Our intended application for these devices is cooling of the Sr+ ion and for this objective the laser characteristics of SMSR, linewidth, and power are critical. We investigate how these characteristics are affected by adjusting laser design parameters such as grating coupling coefficient and cavity length.
Space Flyable Hg(sup +) Frequency Standards
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute
1994-01-01
We discuss a design for a space based atomic frequency standard (AFS) based on Hg(sup +) ions confined in a linear ion trap. This newly developed AFS should be well suited for space borne applications because it can supply the ultra-high stability of a H-maser but its total mass is comparable to that of a NAVSTAR/GPS cesium clock, i.e., about 11kg. This paper will compare the proposed Hg(sup +) AFS to the present day GPS cesium standards to arrive at the 11 kg mass estimate. The proposed space borne Hg(sup +) standard is based upon the recently developed extended linear ion trap architecture which has reduced the size of existing trapped Hg(sup +) standards to a physics package which is comparable in size to a cesium beam tube. The demonstrated frequency stability to below 10(sup -15) of existing Hg(sup +) standards should be maintained or even improved upon in this new architecture. This clock would deliver far more frequency stability per kilogram than any current day space qualified standard.
Trapping of thulium atoms in a cavity-enhanced optical lattice near a magic wavelength of 814.5 nm
NASA Astrophysics Data System (ADS)
Kalganova, E. S.; Golovizin, A. A.; Shevnin, D. O.; Tregubov, D. O.; Khabarova, K. Yu; Sorokin, V. N.; Kolachevsky, N. N.
2018-05-01
A cavity-enhanced optical lattice at a wavelength of 814.5 nm for thulium atoms is designed and its characteristics are investigated. The parametric resonances at the vibrational frequencies of the trap are measured. The enhancement cavity will be applied to search for the magic wavelength of the clock transition at 1.14 μm in thulium atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, J. C.; Flambaum, V. V.; Kava, E. M.
2011-10-15
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper, we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark-mass variation, in a number of isotopes ofmore » experimental interest including {sup 201,199}Hg and {sup 87,85}Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.« less
Utilization of the Deep Space Atomic Clock for Europa Gravitational Tide Recovery
NASA Technical Reports Server (NTRS)
Seubert, Jill; Ely, Todd
2015-01-01
Estimation of Europa's gravitational tide can provide strong evidence of the existence of a subsurface liquid ocean. Due to limited close approach tracking data, a Europa flyby mission suffers strong coupling between the gravity solution quality and tracking data quantity and quality. This work explores utilizing Low Gain Antennas with the Deep Space Atomic Clock (DSAC) to provide abundant high accuracy uplink-only radiometric tracking data. DSAC's performance, expected to exhibit an Allan Deviation of less than 3e-15 at one day, provides long-term stability and accuracy on par with the Deep Space Network ground clocks, enabling one-way radiometric tracking data with accuracy equivalent to that of its two-way counterpart. The feasibility of uplink-only Doppler tracking via the coupling of LGAs and DSAC and the expected Doppler data quality are presented. Violations of the Kalman filter's linearization assumptions when state perturbations are included in the flyby analysis results in poor determination of the Europa gravitational tide parameters. B-plane targeting constraints are statistically determined, and a solution to the linearization issues via pre-flyby approach orbit determination is proposed and demonstrated.
Focusing a fountain of neutral cesium atoms with an electrostatic lens triplet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnins, Juris G.; Amini, Jason M.; Gould, Harvey
2005-10-15
An electrostatic lens with three focusing elements in an alternating-gradient configuration is used to focus a fountain of cesium atoms in their ground (strong-field-seeking) state. The lens electrodes are shaped to produce only sextupole plus dipole equipotentials which avoids adding the unnecessary nonlinear forces present in cylindrical lenses. Defocusing between lenses is greatly reduced by having all of the main electric fields point in the same direction and be of nearly equal magnitude. The addition of the third lens gave us better control of the focusing strength in the two transverse planes and allowed focusing of the beam to halfmore » the image size in both planes. The beam envelope was calculated for lens voltages selected to produced specific focusing properties. The calculations, starting from first principles, were compared with measured beam sizes and found to be in good agreement. Application to fountain experiments, atomic clocks, and focusing polar molecules in strong-field-seeking states is discussed.« less
Frequency comb transferred by surface plasmon resonance
Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul
2016-01-01
Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10−19 in absolute position, 2.92 × 10−19 in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits. PMID:26898307
Synthetic clock states generated in a Bose-Einstein condensate via continuous dynamical decoupling
NASA Astrophysics Data System (ADS)
Lundblad, Nathan; Trypogeorgos, Dimitrios; Valdes-Curiel, Ana; Marshall, Erin; Spielman, Ian
2017-04-01
Radiofrequency- or microwave-dressed states have been used in NV center and ion-trap experiments to extend coherence times, shielding qubits from magnetic field noise through a process known as continuous dynamical decoupling. Such field-insensitive dressed states, as applied in the context of ultracold neutral atoms, have applications related to the creation of novel phases of spin-orbit-coupled quantum matter. We present observations of such a protected dressed-state system in a Bose-Einstein condensate, including measurements of the dependence of the protection on rf coupling strength, and estimates of residual field sensitivities.
NASA Astrophysics Data System (ADS)
Baumgärtner, S.; Juhl, S.; Opalevs, D.; Sahm, A.; Hofmann, J.; Leisching, P.; Paschke, K.
2018-02-01
We present a novel compact laser device based on a semiconductor master-oscillator power-amplifier (MOPA) emitting at 772 nm, suitable for quantum optic and spectroscopy. The optical performance of the laser device is characterized. For miniaturized lasers the thermal management is challenging, we therefore perform thermal simulations and measurements. The first demonstrator is emitting more than 3 W optical power with a linewidth below 2lMHz. Using this MOPA design also compact devices for quantum optics (e.g. rubidium atomic clock) and seed lasers for frequency conversion can be realized [1].
Time maintenance system for the BMDO MSX spacecraft
NASA Technical Reports Server (NTRS)
Hermes, Martin J.
1994-01-01
The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.
I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar
dropdown arrow Site Map A-Z Index Menu Synopsis I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar Nobel Prize in Physics "for his resonance method for recording the magnetic properties of atomic the atomic clock, the laser and the diagnostic scanning of the human body by nuclear magnetic
Potential Energy Surface Database of Group II Dimer
National Institute of Standards and Technology Data Gateway
SRD 143 NIST Potential Energy Surface Database of Group II Dimer (Web, free access) This database provides critical atomic and molecular data needed in order to evaluate the feasibility of using laser cooled and trapped Group II atomic species (Mg, Ca, Sr, and Ba) for ultra-precise optical clocks or quantum information processing devices.
Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition.
Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja
2016-11-25
Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D 1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.
Spacecraft Tests of General Relativity
NASA Technical Reports Server (NTRS)
Anderson, John D.
1997-01-01
Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.
2018-05-01
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock.
Beloy, K; Zhang, X; McGrew, W F; Hinkley, N; Yoon, T H; Nicolodi, D; Fasano, R J; Schäffer, S A; Brown, R C; Ludlow, A D
2018-05-04
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Quantum technology and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boshier, Malcolm; Berkeland, Dana; Govindan, Tr
Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have anothermore » powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants considered the physics and engineering of quantum and conventional technologies, and how quantum techniques could (or could not) overcome limitations of conventional systems. They identified several auxiliary technologies that needed to be further developed in order to make quantum technology more accessible. Much of the discussion also focused on specific applications of quantum technology and how to push the technology into broader communities, which would in turn identify new uses of the technology. Since our main interest is practical improvement of devices and techniques, we take a liberal definition of 'quantum technology': a system that utilizes preparation and measurement of a well-defined coherent quantum state. This nomenclature encompasses features broader than entanglement, squeezing or quantum correlations, which are often more difficult to utilize outside of a laboratory environment. Still, some applications discussed in the workshop do take advantage of these 'quantum-enhanced' features. They build on the more established quantum technologies that are amenable to manipulation at the quantum level, such as atom magnetometers and atomic clocks. Understanding and developing those technologies through traditional engineering will clarify where quantum-enhanced features can be used most effectively, in addition to providing end users with improved devices in the near-term.« less
Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.
Defraigne, Pascale; Sleewaegen, Jean-Marie
2016-07-01
Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise.
Proceedings of the Workshop on the Scientific Applications of Clocks in Space
NASA Technical Reports Server (NTRS)
Maleki, Lute (Editor)
1997-01-01
The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.
Microfabricated Atomic Clocks at NIST
2004-12-01
J. A. Kusters and C. A. Adams, 1999, “Performance requirements of communication base station time standards,” RF Design, 22, pp. 28-38. R. Lutwak ...QUESTIONS AND ANSWERS ROBERT LUTWAK (Symmetricom
PTB’s Primary Clock CS1: First Results After Its Reconstruction
1996-12-01
intense atomic beam and the frequency instability up (7 = 1 s) is predicted to be 4.10- la , based on the 62.5 Hz linewidth and the signal-to-noise...will be put into final operation as a clock again. REFERENCES [I] K. Dorenwendt 1986, "Realization and dissemination of the second, " Metrologia ...T. HeindorfT, R. Schroder, and B. Fischer 1996, "The P T B primary clod CS3: type B evaluation of its standard uncertainty," Metrologia , 33, 249
The NIST 27 Al+ quantum-logic clock
NASA Astrophysics Data System (ADS)
Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David
2016-05-01
Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.
Hyper-Ramsey spectroscopy of optical clock transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, V. I.; Taichenachev, A. V.; Oates, C. W.
2010-07-15
We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional levelmore » of 10{sup -17}. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency comb spectroscopy.« less
Testing relativity with orbiting clocks
NASA Astrophysics Data System (ADS)
Nissen, J. A.; Lipa, J. A.; Wang, S.; Avaloff, D.; Stricker, D. A.
2011-02-01
We describe the background and status of a superconducting microwave clock suitable for relativity experiments in earth orbit. The project has the capability of performing improved tests of Lorentz invariance via a Michelson-Morley type experiment, and setting new limits on nine parameters in the Standard Model Extension. If flown with a high stability atomic clock, a Kennedy-Thorndike experiment along with additional tests in general relativity could be performed.In orbit, unwanted cavity frequency variations are expected to be caused mainly by acceleration effects due to residual drag and vibration, temperature variations, and fluctuations in the energy stored in the cavity. A cavity support system has been designed to reduce acceleration effects and a high resolution thermometer has been implemented to improve temperature control.
Imaging Optical Frequencies with 100 μHz Precision and 1.1 μm Resolution.
Marti, G Edward; Hutson, Ross B; Goban, Akihisa; Campbell, Sara L; Poli, Nicola; Ye, Jun
2018-03-09
We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.
Ground-based demonstration of the European Laser Timing (ELT) experiment.
Schreiber, Karl Ulrich; Prochazka, Ivan; Lauber, Pierre; Hugentobler, Urs; Schäfer, Wolfgang; Cacciapuoti, Luigi; Nasca, Rosario
2010-03-01
The development of techniques for the comparison of distant clocks and for the distribution of stable and accurate time scales has important applications in metrology and fundamental physics research. Additionally, the rapid progress of frequency standards in the optical domain is presently demanding additional efforts for improving the performances of existing time and frequency transfer links. Present clock comparison systems in the microwave domain are based on GPS and two-way satellite time and frequency transfer (TWSTFT). European Laser Timing (ELT) is an optical link presently under study in the frame of the ESA mission Atomic Clock Ensemble in Space (ACES). The on-board hardware for ELT consists of a corner cube retro-reflector (CCR), a single-photon avalanche diode (SPAD), and an event timer board connected to the ACES time scale. Light pulses fired toward ACES by a laser ranging station will be detected by the SPAD diode and time tagged in the ACES time scale. At the same time, the CCR will re-direct the laser pulse toward the ground station providing precise ranging information. We have carried out a ground-based feasibility study at the Geodetic Observatory Wettzell. By using ordinary satellites with laser reflectors and providing a second independent detection port and laser pulse timing unit with an independent time scale, it is possible to evaluate many aspects of the proposed time transfer link before the ACES launch.
From optical lattice clocks to the measurement of forces in the Casimir regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Peter; Bureau International des Poids et Mesures, 92312 Sevres Cedex; Lemonde, Pierre
2007-06-15
We describe an experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6-10 {mu}m). In this range the dominant potential is the QED interaction (Casimir-Polder and van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa-type potentials with sub-millimeter range, arising from new physics related to gravity. The proposed setup is very similar to neutral atom optical lattice clocks, but with the atoms trapped in lattice sites close to the reflecting mirror. A sequence of pulses ofmore » the probe laser at different frequencies is then used to create an interferometer with a coherent superposition between atomic states at different distances from the mirror (in different lattice sites). Assuming atom interferometry state-of-the-art measurement of the phase difference and a duration of the superposition of about 0.1 s, we expect to be able to measure the potential difference between separated states with an uncertainty of {approx_equal}10{sup -4} Hz. An analysis of systematic effects for different atoms and surfaces indicates no fundamentally limiting effect at the same level of uncertainty, but does influence the choice of atom and surface material. Based on those estimates, we expect that such an experiment would improve the best existing measurements of the atom-wall QED interaction by {>=} 2 orders of magnitude, while gaining up to four orders of magnitude on the best present limits on new interactions in the range between 100 nm and 100 {mu}m.« less
The elusive Heisenberg limit in quantum-enhanced metrology
Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin
2012-01-01
Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859
Single-ion microwave near-field quantum sensor
NASA Astrophysics Data System (ADS)
Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.
2017-01-01
We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.
Searching for dilaton dark matter with atomic clocks
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Huang, Junwu; Van Tilburg, Ken
2015-01-01
We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions. Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of C P violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime. Our proposed setups can probe scalars lighter than 1 0-15 eV with a discovery potential of dilatonic couplings as weak as 1 0-11 times the strength of gravity, improving current equivalence principle bounds by up to 8 orders of magnitude. We point out potential 1 04 sensitivity enhancements with future optical and nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary to and compatible with the parameter range accessible to our proposed laboratory experiments.
Geodetic positioning using a global positioning system of satellites
NASA Technical Reports Server (NTRS)
Fell, P. J.
1980-01-01
Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.
Atom Interferometry: A Matter Wave Clock and a Measurement of α
NASA Astrophysics Data System (ADS)
Estey, Brian; Lan, Shau-Yu; Kuan, Pei-Chen; Hohensee, Michael; Haslinger, Philipp; Kehayias, Pauli; English, Damon; Müller, Holger
2012-06-01
Developments in large-momentum transfer beamsplitters (eg. Bragg diffraction) and conjugate Ramsey-Bord'e interferometers have enabled atom interferometers with unparalleled size and sensitivity. The atomic wave packet separation is large enough that the Coriolis force due to the earth's rotation reduces interferometer contrast. We compensate for this effect using a tip-tilt mirror, improving our contrast by up to a factor of 3.5, allowing pulse separations of up to 250 ms with 10k beamsplitters. This interferometer can be used to make a precise measurement of the recoil frequency (h/m) and thus the fine structure constant. The interferometer also gives us indirect access to the Compton frequency (νC≡mc^2/h) oscillations of the matter wave, since h/m is simply c^2/νC. Using an optical frequency comb we reference the interferometer's laser frequency to a multiple of a cesium atom's recoil frequency. This self-referenced interferometer thus locks a local oscillator to a specified fraction of the cesium Compton frequency, with a fractional stability of 2 pbb over several hours. This has potential application in redefining the kilogram in terms of the second. We also present a preliminary measurement of the fine structure constant.
Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Schires, K.; Poole, P. J.; Wang, C.; Grillot, F.
2018-02-01
In this paper, we investigate the temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. In comparison with their quantum well counterparts, results show that quantum dot lasers have spectral linewidths rather insensitive to the temperature with minimum values below 200 kHz in the range of 283K to 303K. The experimental results are also well confirmed by numerical simulations. Overall, this work shows that quantum dot lasers are excellent candidates for various applications such as coherent communication systems, high-resolution spectroscopy, high purity photonic microwave generation and on-chip atomic clocks.
NASA Astrophysics Data System (ADS)
Kasim, Shahreen; Hafit, Hanayanti; Leong, Tan Hua; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad
2016-11-01
Nowadays, some people facing the problem to wake up in the morning. This was result to absence of the classes, meetings, and even exams. The aim of this project is to develop an android application that can force the user to wake up. The method used in this application are pedometer and Short Message Service (SMS) function. This application need the user to take their smartphone and walk about 10 steps to disable it, when the alarm clock is activated. After that, when the alarm clock was rang, this alarm application has automatically send a message to the users’ friends or parents phone to wake them up.
Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei
2014-08-01
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review
(T2L2) Time Transfer by Laser Link
NASA Technical Reports Server (NTRS)
Veillet, Christian; Fridelance, Patricia
1995-01-01
T2L2 (Time Transfer by Laser Link) is a new generation time transfer experiment based on the principles of LASSO (Laser Synchronization from Synchronous Orbit) and used with an operational procedure developed at OCA (Observatoire de la Cote d'Azur) during the active intercontinental phase of LASSO. The hardware improvements could lead to a precision better than 10 ps for time transfer (flying clock monitoring or ground based clock comparison). Such a package could fly on any spacecraft with a stable clock. It has been developed in France in the frame of the PHARAO project (cooled atom clock in orbit) involving CNES and different laboratories. But T2L2 could fly on any spacecraft carrying a stable oscillator. A GPS satellite would be a good candidate, as T2L2 could allow to link the flying clock directly to ground clocks using light, aiming to important accuracy checks, both for time and for geodesy. Radioastron (a flying VLBI antenna with a H-maser) is also envisioned, waiting for a PHARAO flight. The ultimate goal of T2L2 is to be part of more ambitious missions, as SORT (Solar Orbit Relativity Test), aiming to examine aspects of the gravitation in the vicinity of the Sun.
NASA Astrophysics Data System (ADS)
Rosky, David S.; Coy, Bruce H.; Friedmann, Marc D.
1992-03-01
A 2500 gate mixed signal gate array has been developed that integrates custom PLL-based clock recovery and clock synthesis functions with 2500 gates of configurable logic cells to provide a single chip solution for 200 - 1244 MHz fiber based digital interface applications. By customizing the digital logic cells, any of the popular telecom and datacom standards may be implemented.
Simulation of Laser Cooling and Trapping in Engineering Applications
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan
2005-01-01
An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint on the wide range of applications and technology developments that can be tackled using cold atoms and light fields. From more precise atomic clocks and gravity sensors to the development of quantum computers, there will be a need to completely understand the whole ensemble of physical mechanisms that play a role in the development of such technologies. The code also permits the study of the dynamic and steady-state operations of technologies that use cold atoms. The physical characteristics of lasers and fields can be time-controlled to give a realistic simulation of the processes involved such that the design process can determine the best control features to use. It is expected that with the features incorporated into the code it will become a tool for the useful application of ultracold atoms in engineering applications. Currently, the software is being used for the analysis and understanding of simple experiments using cold atoms, and for the design of a modular compact source of cold atoms to be used in future research and development projects. The results so far indicate that the code is a useful design instrument that shows good agreement with experimental measurements (see figure), and a Windows-based user-friendly interface is also under development.
Short-term stability improvements of an optical frequency standard based on free Ca atoms
NASA Astrophysics Data System (ADS)
Sherman, Jeff; Oates, Chris
2010-03-01
Compared to optical frequency standards featuring trapped ions or atoms in optical lattices, the strength of a standard using freely expanding neutral calcium atoms is not ultimate accuracy but rather short-term stability and experimental simplicity. Recently, a fractional frequency instability of 4 x10-15 at 1 second was demonstrated for the Ca standard at 657 nm [1]. The short cycle time (˜2 ms) combined with only a moderate interrogation duty cycle (˜15 %) is thought to introduce excess, and potentially critically limiting technical noise due to the Dick effect---high-frequency noise on the laser oscillator is not averaged away but is instead down-sampled by aliasing. We will present results of two strategies employed to minimize this effect: the reduction of clock laser noise by filtering the master clock oscillator through a high-finesse optical cavity [2], and an optimization of the interrogation cycle to match our laser's noise spectrum.[4pt] [1] Oates et al., Optics Letters, 25(21), 1603--5 (2000)[0pt] [2] Nazarova et al., J. Opt. Soc. Am. B, 5(10), 1632--8 (2008)
Impact of new clock technologies on the stability and accuracy of the International Atomic Time TAI.
NASA Astrophysics Data System (ADS)
Thomas, C.
1997-05-01
The BIPM Time Section is in charge of the generation of the reference time scales TAI and UTC. Both time scales are obtained in deferred-time by combining the data front a number of atomic clocks spread worldwide. The accuracy of TAI is estimated by the departure between the duration of the TAI scale interval and the SI second as produced on the rotating geoid by primary frequency standards. It is now possible to estimate TAI accuracy through the combination of results obtained from six different primary standards: LPTF-FO1, PTB CS1, PTB CS2, PTB CS3, NIST-7, and SU MCsR 102, all corrected for the black-body radiation shift. This led to a mean departure of the TAI scale interval of +2.0×10-14s over 1995, known with a relative uncertainty of 0.5×10-14(1σ).
NASA Astrophysics Data System (ADS)
Huang, M.; Bazurto, R.; Camparo, J.
2018-01-01
The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.
NASA Astrophysics Data System (ADS)
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Berengut, J C; Dzuba, V A; Flambaum, V V
2010-09-17
We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.
Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre
Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi
2014-01-01
Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478
Optical characterization of antirelaxation coatings
NASA Astrophysics Data System (ADS)
Tsvetkov, S.; Gateva, S.; Cartaleva, S.; Mariotti, E.; Nasyrov, K.
2018-03-01
Antirelaxation coatings (ARC) are used in optical cells containing alkali metal vapor to reduce the depolarization of alkali atoms after collisions with the cell walls. The long-lived ground state polarization is a basis for development of atomic clocks, magnetometers, quantum memory, slow light experiments, precision measurements of fundamental symmetries etc. In this work, a simple method for measuring the number of collisions of the alkali atoms with the cell walls without atomic spin randomization (Nasyrov et al., Proc. SPIE (2015)) was applied to characterize the AR properties of two PDMS coatings prepared from different solutions in ether (PDMS 2% and PDMS 5%). We observed influence of the light-induced atomic desorption (LIAD) on the AR properties of coatings.
Design concept for the microwave interrogation structure in PARCS
NASA Technical Reports Server (NTRS)
Dick, G. J.; Klipstein, W. M.; Heavner, T. P.; Jefferts, S. R.
2002-01-01
In this paper we will describe key aspects of the conceptual design of the microwave interrogation structure in the laser-cooled cesium frequency standard that is part of the Primary Atomic Reference Clock in Space (PARCS) experiment.
Mathematics, Information, and Life Sciences
2012-03-05
INS • Chip -scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF systems...FY12 BAA Bionavigation (Bio) Neuromorphic Computing (Human) Multi-scale Modeling (Math) Foundations of Information Systems (Info) BRI
OPTIS - A satellite test of Special and General Relativity
NASA Astrophysics Data System (ADS)
Dittus, H.; Lämmerzahl, C.; Peters, A.; Schiller, S.
OPTIS has been proposed as a small satellite platform in a high elliptical orbit (apogee 40,000 km, perigee 10,000 km) and is designed for high precision tests of foundations of Special and General Relativity. The experimental set-up consists of two ultrastable Nd:YAG lasers, two crossed optical resonators (monolithic cavities), an atomic clock, and an optical comb generator. OPTIS enables (1) a Michelson- Morley experiment to test the isotropy of light propagation (constancy of light speed, dc/c) with an accuracy of 1 part in 101 8 , (2) a Kennedey-Thorndike experiment to measure the independence of the light speed from the velocity of the laboratory in the order of 1 part in 101 6 , and (3) a test of the gravitational red shift by comparing the atomic clock and an optical clock on a precision level of 1 part in 104 . To avoid any influence from atmospheric drag, solar radiation, or earth albedo, the satellite needs drag free control, to depress the residual acceleration down to 10-14 m/s 2 in the frequency range between 100 to 1,000 Hz, and thermal control to stabilize the cavity temperature variation, dT/T, to 1 part in 107 during 100 s and to 1 part in 105 during 1 orbit.
NASA Astrophysics Data System (ADS)
Driver, S. M.; Toomes, R. L.; Woodruff, D. P.
2016-04-01
The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and [ 01 1 bar ] step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2-4 layers high are more typical. STM atomic-scale images show the (2 × 2)pg 'clock' reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2 × 2) structure, most readily reconciled with a 'rumpling' reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1 × 1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [ 01 1 bar ] step direction.
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
We consider the gravitational redshift effect measured by an observer in a local freely failing frame (LFFF) in the gravitational field of a massive body. For purely metric theories of gravity, the metric in a LFFF is expected to differ from that of flat spacetime by only "tidal" terms of order (GM/c(exp 2)R)(r'/R )(exp 2), where R is the distance of the observer from the massive body, and r' is the coordinate separation relative to the origin of the LFFF. A simple derivation shows that a violation of the equivalence principle for certain types of "clocks" could lead to a larger apparent redshift effect of order (1 - alpha)(G M/c(exp 2)R)(r'/R), where alpha parametrizes the violation (alpha = 1 for purely metric theories, such as general relativity). Therefore, redshift experiments in a LFFF with separated clocks can provide a new null test of the equivalence principle. With presently available technology, it is possible to reach an accuracy of 0.01% in the gravitational field of the Sun using an atomic clock orbiting the Earth. A 1% test in the gravitational field of the galaxy would be possible if an atomic frequency standard were flown on a space mission to the outer solar system.
GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling
Wang, Fuhong; Chen, Xinghan; Guo, Fei
2015-01-01
Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1–7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%–40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the correlation between coordinates and ISB estimates and finally enhance the PPP performance in the case of poor observation conditions. PMID:26134106
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
2000-01-01
In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.
High efficiency Raman memory by suppressing radiation trapping
NASA Astrophysics Data System (ADS)
Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.
2017-06-01
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
Time Transfer Methodologies for International Atomic Time (TAI)
2007-01-01
International Atomic Time (TAI) and Coordinated Universal Time (UTC) involve either GPS or Two Way Satellite Time and Frequency Transfer ( TWSTFT ). This paper...NRCan, provide real-time carrier-phase based time transfer as well [3,4] Beginning in 2000, time-transfer links using TWSTFT replaced some GPS...links as the primary operational link, and currently over half the clocks used for TAI-generation are linked to other sites via a direct TWSTFT link
Polarization and amplitude probes in Hanle effect EIT noise spectroscopy of a buffer gas cell
NASA Astrophysics Data System (ADS)
O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael
2015-05-01
Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. We study intensity noise, originating from the large phase noise of a semiconductor diode laser's light, in Rb vapor EIT in the Hanle configuration. We report here on our recent experimental work on and complementary theoretical modeling of the effects of light polarization preparation and post-selection on the correlation spectrum and on the independent noise channel traces. We also explain methodology and recent results for delineating the effects of residual laser amplitude fluctuations on the correlation noise resonance as compared to other contributing processes. Understanding these subtleties are essential for optimizing EIT-noise applications.
Probing atomic Higgs-like forces at the precision frontier
NASA Astrophysics Data System (ADS)
Delaunay, Cédric; Ozeri, Roee; Perez, Gilad; Soreq, Yotam
2017-11-01
We propose a novel approach to probe new fundamental interactions using isotope shift spectroscopy in atomic clock transitions. As a concrete toy example we focus on the Higgs boson couplings to the building blocks of matter: the electron and the up and down quarks. We show that the attractive Higgs force between nuclei and their bound electrons, which is poorly constrained, might induce effects that are larger than the current experimental sensitivities. More generically, we discuss how new interactions between the electron and the neutrons, mediated via light new degrees of freedom, may lead to measurable nonlinearities in a King plot comparison between isotope shifts of two different transitions. Given state-of-the-art accuracy in frequency comparison, isotope shifts have the potential to be measured with sub-Hz accuracy, thus potentially enabling the improvement of current limits on new fundamental interactions. A candidate atomic system for this measurement requires two different clock transitions and four zero nuclear spin isotopes. We identify several systems that satisfy this requirement and also briefly discuss existing measurements. We consider the size of the effect related to the Higgs force and the requirements for it to produce an observable signal.
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.
2016-01-01
In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.
Hunting for dark matter with ultra-stable fibre as frequency delay system.
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-07-10
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.
Hunting for dark matter with ultra-stable fibre as frequency delay system
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-01-01
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs’ arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on “frequency-delay system” to search dark-matter by “self-frequency comparison” of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level. PMID:26159113
Wu, C F; Yan, X S; Huang, J Q; Zhang, J W; Wang, L J
2018-01-01
We present a coherent bichromatic laser system with low phase noise. An optical injection process is used to generate coherent laser beams with a frequency difference of 9.192 631 77 GHz using an electro-optical modulator. An optical phase-locked loop is then applied to reduce the phase noise. The phase noise of the beat note is -41, -81, -98, -83, and -95 dBrad 2 /Hz at the offset frequencies of 1 Hz, 100 Hz, 1 kHz, 10 kHz, and 1 MHz, respectively. Compared to a system that uses optical injection alone, the phase noise is reduced by up to 20-30 dB in the low-frequency range, and the intermodulation effect on the continuous atomic clock is reduced by an order of magnitude. This configuration can adjust the intensities and polarizations of the laser beams independently and reduce the phase noise caused by environmental disturbances and optical injection, which may be useful for application to atomic coherence experiments.
NASA Astrophysics Data System (ADS)
Wu, C. F.; Yan, X. S.; Huang, J. Q.; Zhang, J. W.; Wang, L. J.
2018-01-01
We present a coherent bichromatic laser system with low phase noise. An optical injection process is used to generate coherent laser beams with a frequency difference of 9.192 631 77 GHz using an electro-optical modulator. An optical phase-locked loop is then applied to reduce the phase noise. The phase noise of the beat note is -41, -81, -98, -83, and -95 dBrad2/Hz at the offset frequencies of 1 Hz, 100 Hz, 1 kHz, 10 kHz, and 1 MHz, respectively. Compared to a system that uses optical injection alone, the phase noise is reduced by up to 20-30 dB in the low-frequency range, and the intermodulation effect on the continuous atomic clock is reduced by an order of magnitude. This configuration can adjust the intensities and polarizations of the laser beams independently and reduce the phase noise caused by environmental disturbances and optical injection, which may be useful for application to atomic coherence experiments.
Concepts and technology development towards a platform for macroscopic quantum experiments in space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.
Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar
2017-01-17
The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.
An Atomic Clock with 10 (exp -18) Instability
2013-09-13
experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and
An improved grey model for the prediction of real-time GPS satellite clock bias
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.
2008-07-01
In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.
CSAC Characterization and Its Impact on GNSS Clock Augmentation Performance
Fernández, Enric; Calero, David; Parés, M. Eulàlia
2017-01-01
Chip Scale Atomic Clocks (CSAC) are recently-developed electronic instruments that, when used together with a Global Navigation Satellite Systems (GNSS) receiver, help improve the performance of GNSS navigation solutions in certain conditions (i.e., low satellite visibility). Current GNSS receivers include a Temperature Compensated Cristal Oscillator (TCXO) clock characterized by a short-term stability (τ = 1 s) of 10−9 s that leads to an error of 0.3 m in pseudorange measurements. The CSAC can achieve a short-term stability of 2.5 × 10−12 s, which implies a range error of 0.075 m, making for an 87.5% improvement over TCXO. Replacing the internal TCXO clock of GNSS receivers with a higher frequency stability clock such as a CSAC oscillator improves the navigation solution in terms of low satellite visibility positioning accuracy, solution availability, signal recovery (holdover), multipath and jamming mitigation and spoofing attack detection. However, CSAC suffers from internal systematic instabilities and errors that should be minimized if optimal performance is desired. Hence, for operating CSAC at its best, the deterministic errors from the CSAC need to be properly modelled. Currently, this modelling is done by determining and predicting the clock frequency stability (i.e., clock bias and bias rate) within the positioning estimation process. The research presented in this paper aims to go a step further, analysing the correlation between temperature and clock stability noise and the impact of its proper modelling in the holdover recovery time and in the positioning performance. Moreover, it shows the potential of fine clock coasting modelling. With the proposed model, an improvement in vertical positioning precision of around 50% with only three satellites can be achieved. Moreover, an increase in the navigation solution availability is also observed, a reduction of holdover recovery time from dozens of seconds to only a few can be achieved. PMID:28216600
CSAC Characterization and Its Impact on GNSS Clock Augmentation Performance.
Fernández, Enric; Calero, David; Parés, M Eulàlia
2017-02-14
Chip Scale Atomic Clocks (CSAC) are recently-developed electronic instruments that, when used together with a Global Navigation Satellite Systems (GNSS) receiver, help improve the performance of GNSS navigation solutions in certain conditions (i.e., low satellite visibility). Current GNSS receivers include a Temperature Compensated Cristal Oscillator (TCXO) clock characterized by a short-term stability ( τ = 1 s) of 10 -9 s that leads to an error of 0.3 m in pseudorange measurements. The CSAC can achieve a short-term stability of 2.5 × 10 -12 s, which implies a range error of 0.075 m, making for an 87.5% improvement over TCXO. Replacing the internal TCXO clock of GNSS receivers with a higher frequency stability clock such as a CSAC oscillator improves the navigation solution in terms of low satellite visibility positioning accuracy, solution availability, signal recovery (holdover), multipath and jamming mitigation and spoofing attack detection. However, CSAC suffers from internal systematic instabilities and errors that should be minimized if optimal performance is desired. Hence, for operating CSAC at its best, the deterministic errors from the CSAC need to be properly modelled. Currently, this modelling is done by determining and predicting the clock frequency stability (i.e., clock bias and bias rate) within the positioning estimation process. The research presented in this paper aims to go a step further, analysing the correlation between temperature and clock stability noise and the impact of its proper modelling in the holdover recovery time and in the positioning performance. Moreover, it shows the potential of fine clock coasting modelling. With the proposed model, an improvement in vertical positioning precision of around 50% with only three satellites can be achieved. Moreover, an increase in the navigation solution availability is also observed, a reduction of holdover recovery time from dozens of seconds to only a few can be achieved.
NASA Astrophysics Data System (ADS)
Kirsch, Janet E.; Harris, Suzanne
2003-01-01
Solid-state Fenske-Hall band structure calculations have been used to study the different surface structures which result from adsorption of a half monolayer of C, N, or O atoms on the Ni(1 0 0) surface. C or N atoms sit nearly coplanar with the surface Ni atoms and induce the "clock" reconstruction of the surface. In contrast, adsorbed O atoms sit slightly above the Ni(1 0 0) surface plane and have little effect on the overall surface structure. The local environments of the C, N, and O atoms on these surfaces are similar to their environments in a series of late transition metal carbonyl clusters, suggesting that some of the same electronic factors may play a role in favoring the different structures. Results of the calculations indicate that when adsorbates occupy coplanar sites on Ni(1 0 0), much of the Ni-Ni bonding within the surface layer and between the surface- and second-layers is disrupted. On the C- and N-covered surfaces the disruption is more than compensated for by the formation of strong adsorbate-Ni bonds and by new Ni-Ni surface bonds resulting from the clock reconstruction. When O is forced into a coplanar site, however, both the higher electron count and increased electronegativity of the O atoms lead to severe disruption of the surface bonding and weak Ni-O bonds. When O atoms sit above the surface, they form more polar Ni-O bonds, contribute less electron density to the Ni surface bands, and cause less disruption to Ni-Ni surface bonds. These results suggest that, similar to the organometallic clusters, the site preferences of C, N, and O atoms are directly related to their electron count, and in turn to the relative occupation of both Ni-Ni and X-Ni (X=C, N, O) antibonding bands.
Component-Level Demonstration of a Microfabricated Atomic Frequency Reference
2005-08-01
Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Applied Physics Letters, vol. 85, pp. 1460-1462, 2004. [4] R. Lutwak , P...Symposium on Frequency Standards and Metrology, P. Gill, Ed. St. Andrews, Scotland: World Scientific, 2001, pp. 155-166. [31] R. Lutwak , D. Emmons...Frequency and Time Forum. Tampa, FL, 2003, pp. 31-32. [71] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and
On the Power Dependence of Extraneous Microwave Fields in Atomic Frequency Standards
2005-01-01
uncertainty”, Metrologia 35 (1998) pp. 829-845. [6] K. Dorenwendt and A. Bauch, “Spurious Microwave Fields in Caesium Atomic Beam Standards...Cesium Beam Clocks Induced by Microwave Leakages”, IEEE Trans. UFFC 45 (1998)728-738. [8] M. Abgrall, “Evaluation des Performances de la Fontaine...Proc of the EFTF 2005 – in press. [12] A. DeMarchi, “The Optically Pumped Caesium Fountain: 10-15 Frequency Accuracy?”, Metrologia 18 (1982) pp
Thorium-229 solid-state nuclear clock prospects in MgF2 and LiSAF
NASA Astrophysics Data System (ADS)
Meyer, Edmund; Barker, Beau; Collins, Lee
2016-05-01
The 229 Th isomer is thought to be a good candidate for a nuclear clock based on its relatively low-energy isomer excitation of ~ 7 . 8 eV. We report on the study of Th atoms embedded in two crystals, MgF2 and LiSAF (LiSrAlF6). For MgF2 we perform an oxidation study to find the preferred ionization state of the Th atom in the crystal; Thn+, where n = 2 - 4 . We find that the preferred state is n = 4 which requires two interstitial Fluorine atoms to charge compensate. Using the results of MgF2 we then search within LiSAF for suitable dopant sites (the Sr, Al, or Li can all serve). Employing a standard density functional package using a plane-wave basis and psuedopotentials, we optimize a doped cell of increasing particle number sizes and use this to estimate the dilute doped-limit band-gap of LiSAF. Placement of the dopant on the Sr and Al sites with accompanying double and single F interstitial atom placements is also studied to determine the ground state, and comparisons are made with previous calculations. In both crystal ground states, we find that the band gap is large enough for the observation of the 229 Th nuclear isomer transition; > 9 eV.
Development of a Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Astrophysics Data System (ADS)
Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.
2007-12-01
JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.
Fundamental Astronomy (Astronomie Fondamentale)
2009-01-01
defined by Earth rotation, then by the motion of the Earth around the Sun, now by atomic clocks, and maybe by pulsars in future, the time and its...intensively in cooperation with other unions, mainly the International Telecommunication Union (ITU). Pulsars with very stable millisecond periods seem to
Improved Tracking of an Atomic-Clock Resonance Transition
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.; Tu, Meirong
2010-01-01
An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.
NASA Astrophysics Data System (ADS)
Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.
2018-01-01
There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.
A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.
Yang, Wenlun; Fu, Minyue
2017-11-01
Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Molecular targets for small-molecule modulators of circadian clocks
He, Baokun; Chen, Zheng
2016-01-01
Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111
Improved Short-Term Clock Prediction Method for Real-Time Positioning.
Lv, Yifei; Dai, Zhiqiang; Zhao, Qile; Yang, Sheng; Zhou, Jinning; Liu, Jingnan
2017-06-06
The application of real-time precise point positioning (PPP) requires real-time precise orbit and clock products that should be predicted within a short time to compensate for the communication delay or data gap. Unlike orbit correction, clock correction is difficult to model and predict. The widely used linear model hardly fits long periodic trends with a small data set and exhibits significant accuracy degradation in real-time prediction when a large data set is used. This study proposes a new prediction model for maintaining short-term satellite clocks to meet the high-precision requirements of real-time clocks and provide clock extrapolation without interrupting the real-time data stream. Fast Fourier transform (FFT) is used to analyze the linear prediction residuals of real-time clocks. The periodic terms obtained through FFT are adopted in the sliding window prediction to achieve a significant improvement in short-term prediction accuracy. This study also analyzes and compares the accuracy of short-term forecasts (less than 3 h) by using different length observations. Experimental results obtained from International GNSS Service (IGS) final products and our own real-time clocks show that the 3-h prediction accuracy is better than 0.85 ns. The new model can replace IGS ultra-rapid products in the application of real-time PPP. It is also found that there is a positive correlation between the prediction accuracy and the short-term stability of on-board clocks. Compared with the accuracy of the traditional linear model, the accuracy of the static PPP using the new model of the 2-h prediction clock in N, E, and U directions is improved by about 50%. Furthermore, the static PPP accuracy of 2-h clock products is better than 0.1 m. When an interruption occurs in the real-time model, the accuracy of the kinematic PPP solution using 1-h clock prediction product is better than 0.2 m, without significant accuracy degradation. This model is of practical significance because it solves the problems of interruption and delay in data broadcast in real-time clock estimation and can meet the requirements of real-time PPP.
Experimental test of the variability of G using Viking lander ranging data
NASA Technical Reports Server (NTRS)
Hellings, R. W.; Adams, P. J.; Anderson, J. D.; Keesey, M. S.; Lau, E. L.; Standish, E. M.; Canuto, V. M.; Goldman, I.
1983-01-01
Results are presented from the analysis of solar-system astrometric data, notably the range data to the Viking landers on Mars. A least-squares fit of the parameters of the solar system model to these data limits a simple time variation in the effective Newtonian gravitational constant to (2 + or - 4) x 10 to the -12th/yr and a rate of drift of atomic clocks relative to the implicit clock of relativistic dynamics to (1 + or - 8) x 10 to the -12th/yr. The error limits quoted are the result of uncertainties in the masses of the asteroids.
Application of Millisecond Pulsar Timing to the Long-Term Stability of Clock Ensembles
NASA Technical Reports Server (NTRS)
Foster, Roger S.; Matsakis, Demetrios N.
1996-01-01
We review the application of millisecond pulsars to define a precise long-term standard and positional reference system in a nearly inertial reference frame. We quantify the current timing precision of the best millisecond pulsars and define the required precise time and time interval (PTTI) accuracy and stability to enable time transfer via pulsars. Pulsars may prove useful as independent standards to examine decade-long timing stability and provide an independent natural system within which to calibrate any new, perhaps vastly improved atomic time scale. Since pulsar stability appears to be related to the lifetime of the pulsar, the new millisecond pulsar J173+0747 is projected to have a 100-day accuracy equivalent to a single HP5071 cesium standard. Over the last five years, dozens of new millisecond pulsars have been discovered. A few of the new millisecond pulsars may have even better timing properties.
Laser theory with finite atom-field interacting time
NASA Astrophysics Data System (ADS)
Yu, Deshui; Chen, Jingbiao
2008-07-01
We investigate the influence of atomic transit time τ on the laser linewidth by the quantum Langevin approach. With comparing the bandwidths of cavity mode κ , atomic polarization γab , and atomic transit broadening τ-1 , we study the laser linewidth in different limits. We also discuss the spectrum of fluctuations of output field and the influence of pumping statistics on the output field.The influence of atomic transit time τ on laser field has not been carefully discussed before, to our knowledge. In particular, a laser operating in the region of γab≪τ-1≪κ/2 appears not to have been analyzed in previous laser theories. Our work could be a useful complementarity to laser theory. It is also an important theoretical foundation for the recently proposed active optical atomic clock based on bad-cavity laser mechanism.
Cold atom quantum sensors for space
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.
29 CFR 778.204 - “Clock pattern” premium pay.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false âClock patternâ premium pay. 778.204 Section 778.204 Labor... Excluded From the âRegular Rateâ Extra Compensation Paid for Overtime § 778.204 “Clock pattern” premium pay... pursuance of an applicable employment contract or collective bargaining agreement,” and the rates of pay and...
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second
NASA Astrophysics Data System (ADS)
Dubé, Pierre; E Bernard, John; Gertsvolf, Marina
2017-06-01
We report the results of a recent measurement of the absolute frequency of the 5s{{ }2}{{S}1/2} - 4d{{ }2}{{D}5/2} transition of the {{}88}\\text{Sr}{{}+} ion. The optical frequency was measured against the international atomic time realization of the SI second on the geoid as obtained by frequency transfer using a global positioning system link and the precise point positioning technique. The measurement campaign yielded more than 100 h of frequency data. It was performed with improvements to the stability and accuracy of the single-ion clock compared to the last measurement made in 2012. The single ion clock uncertainty is evaluated at 1.5× {{10}-17} when contributions from acousto-optic modulator frequency chirps and servo errors are taken into account. The stability of the ion clock is 3× {{10}-15} at 1 s averaging, a factor of three better than in the previous measurement. The results from the two measurement campaigns are in good agreement. The uncertainty of the measurement, primarily from the link to the SI second, is 0.75 Hz (1.7× {{10}-15} ). The frequency measured for the S-D clock transition of {{}88}\\text{S}{{\\text{r}}+} is {ν0}= 444 779 044 095 485.27(75) Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meade, Roger A.
At 5:45 am on the morning of July 16, 1945, the world’s first atomic bomb exploded over a remote section of the southern New Mexican desert known as the Jornada del Muerto, the Journey of Death. Three weeks later, the atomic bombs known as Little Boy and Fat Man brought World War II to an end. Working literally around the clock, these first atomic bombs were designed and built in just thirty months by scientists working at a secret scientific laboratory in the mountains of New Mexico known by its codename, Project Y, better known to the world as Losmore » Alamos.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laoui, S; Dietrich, S; Sehgal, V
2016-06-15
Purpose: Radiation dose delivery for endometrial cancer using HDR techniques is limited by dose to bladder and rectum. A dosimetric study was performed using Varian Capri vaginal brachytherapy applicator to determine the optimal channel configuration which minimizes dose to bladder and rectum, while providing good target coverage. Methods: A total of 17 patients, 63 plans clinically delivered, and 252 simulated plans using Varian BrachyVision planning system were generated to investigate optimal channel configuration which results in minimum dose to bladder and rectum while providing adequate target coverage. The Capri applicator consists of 13 lumens arranged in two concentric rings, onemore » central lumen and six lumens per ring. Manual dose shaping is invariably required to lower the dose to critical organs. Three-dimensional plans were simulated for 4 channel arrangements, all 13 channels, channel 12 o’clock (close to bladder) and 6 o’clock (close to rectum) deactivated, central channel deactivated, and central channel in addition to 12 o’clock and 6 o’clock deactivated. A relationship between V100, the volume that receives the prescribed dose, and the amount of curie-seconds required to deliver it, was established. Results: Using all 13 channels results in maximum dose to bladder and rectum. Deactivating central channel in addition to 12 o’clock and 6 o’clock resulted in minimizing bladder and rectum doses but compromised target coverage. The relationship between V100, the volume that receives the prescribed dose, and the curie seconds was found to be linear. Conclusion: Deactivating channels 12 o’clock and 6 o’clock was shown to be the optimal configuration leading to minimum dose to bladder and rectum without compromising target coverage. The linear relationship between V100 and the curie- seconds can be used as a verification parameter.« less
Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock
NASA Astrophysics Data System (ADS)
Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.
2018-04-01
Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.
Adiabatic Quantum Computing via the Rydberg Blockade
NASA Astrophysics Data System (ADS)
Keating, Tyler; Goyal, Krittika; Deutsch, Ivan
2012-06-01
We study an architecture for implementing adiabatic quantum computation with trapped neutral atoms. Ground state atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism, thereby providing the requisite entangling interactions. As a benchmark we study the performance of a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. We model a realistic architecture, including the effects of magnetic level structure, with qubits encoded into the clock states of ^133Cs, effective B-fields implemented through microwaves and light shifts, and atom-atom coupling achieved by excitation to a high-lying Rydberg level. Including the fundamental effects of photon scattering we find a high fidelity for the two-qubit implementation.
Coherence properties of nanofiber-trapped cesium atoms.
Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A
2013-06-14
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.
Cold-Atom Clocks on Earth and in Space
NASA Astrophysics Data System (ADS)
Lemonde, Pierre; Laurent, Philippe; Santarelli, Giorgio; Abgrall, Michel; Sortais, Yvan; Bize, Sebastien; Nicolas, Christophe; Zhang, Shougang; Clairon, Andre; Dimarcq, Noel; Petit, Pierre; Mann, Antony G.; Luiten, Andre N.; Chang, Sheng; Salomon, Christophe
We present recent progress on microwave clocks that make use of laser-cooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 x10^5 detected atoms, the relative frequency stability is 4 x10^-14 &1/2circ, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ=2 x10^4s, the measured stability reaches 6 x10^-16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 x10^-15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10-15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.
Optical Injection Locking of a VCSEL in an OEO
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute
2009-01-01
Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)
Dynamic Self-Locking of an OEO Containing a VCSEL
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Yu, Nan; Savchenkov, Anatoliy; Maleki, Lute
2009-01-01
A method of dynamic self-locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface-emitting laser (VCSEL) that is an active element in the frequency-control loop of an optoelectronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency (EIT) resonance. This scheme can be considered an alternative to the one described in Optical Injection Locking of a VCSEL in an OEO (NPO-43454), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 33. Both schemes are expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. To recapitulate from the cited prior article: In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. This concludes the background information. From the perspective that led to the conception of the optical injection-locking scheme described in the cited prior article, the variation of the VCSEL wavelength with the microwave power circulating in the frequency-control loop is regarded as a disadvantage and optical injection locking is a solution of the problem of stabilizing the wavelength in the presence of uncontrolled fluctuations in the microwave power. The present scheme for dynamic self-locking emerges from a different perspective, in which the dependence of VCSEL wavelength on microwave power is regarded as an advantageous phenomenon that can be exploited as a means of controlling the wavelength. The figure schematically depicts an atomic-clock OEO of the type in question, wherein (1) the light from the VCSEL is used to excite an EIT resonance in selected atoms in a gas cell (e.g., 87Rb atoms in a low-pressure mixture of Ar and Ne) and (2) the power supplied to the VCSEL is modulated by a microwave signal that includes components at beat frequencies among the VCSEL wavelength and modulation sidebands. As the VCSEL wavelength changes, it moves closer to or farther from a nearby absorption spectral line, and the optical power transmitted through the cell (and thus the loop gain) changes accordingly. A change in the loop gain causes a change in the microwave power and, thus, in the VCSEL wavelength. It is possible to choose a set of design and operational parameters (most importantly, the electronic part of the loop gain) such that the OEO stabilizes itself in the sense that an increase in circulating microwave power causes the VCSEL wavelength to change in a direction that results in an increase in optical absorption and thus a decrease in circulating microwave power. Typically, such an appropriate choice of operational parameters involves setting the nominal VCSEL wavelength to a point on the shorter-wavelength wing of an absorption spectral line.
Light effects in the atomic-motion-induced Ramsey narrowing of dark resonances in wall-coated cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breschi, E.; Schori, C.; Di Domenico, G.
2010-12-15
We report on light shift and broadening in the atomic-motion-induced Ramsey narrowing of dark resonances prepared in alkali-metal vapors contained in wall-coated cells without buffer gas. The atomic-motion-induced Ramsey narrowing is due to the free motion of the polarized atomic spins in and out of the optical interaction region before spin relaxation. As a consequence of this effect, we observe a narrowing of the dark resonance linewidth as well as a reduction of the ground states' light shift when the volume of the interaction region decreases at constant optical intensity. The results can be intuitively interpreted as a dilution ofmore » the intensity effect similar to a pulsed interrogation due to the atomic motion. Finally the influence of this effect on the performance of compact atomic clocks is discussed.« less
Understanding Zeeman EIT Noise Correlation Spectra in Buffered Rb Vapor
NASA Astrophysics Data System (ADS)
O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael
2014-05-01
Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. During laser light's propagation through a resonant medium, interaction with the medium converts laser phase noise into intensity noise. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. Using a single diode laser with large phase noise, we examine laser intensity noise and noise correlations from Zeeman EIT in a buffered Rb vapor. Of particular interest is a narrow noise correlation feature, resonant with EIT, that has been shown in earlier work to be power-broadening resistant at low powers. We report here on our recent experimental work and complementary theoretical modeling on EIT noise spectra, including a study of power broadening of the narrow noise correlation feature. Understanding the nature of the noise correlation spectrum is essential for optimizing EIT-noise applications.
Larson, K M; Levine, J
1999-01-01
We have conducted several time-transfer experiments using the phase of the GPS carrier rather than the code, as is done in current GPS-based time-transfer systems. Atomic clocks were connected to geodetic GPS receivers; we then used the GPS carrier-phase observations to estimate relative clock behavior at 6-minute intervals. GPS carrier-phase time transfer is more than an order of magnitude more precise than GPS common view time transfer and agrees, within the experimental uncertainty, with two-way satellite time-transfer measurements for a 2400 km baseline. GPS carrier-phase time transfer has a stability of 100 ps, which translates into a frequency uncertainty of about two parts in 10(-15) for an average time of 1 day.
NASA Astrophysics Data System (ADS)
Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna
2016-05-01
Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.
Accurate frequency and time dissemination in the optical domain
NASA Astrophysics Data System (ADS)
Khabarova, K. Yu; Kalganova, E. S.; Kolachevsky, N. N.
2018-02-01
The development of the optical frequency comb technique has enabled a wide use of atomic optical clocks by allowing frequency conversion from the optical to the radio frequency range. Today, the fractional instability of such clocks has reached the record eighteen-digit level, two orders of magnitude better than for cesium fountains representing the primary frequency standard. This is paralleled by the development of techniques for transferring accurate time and optical frequency signals, including fiber links. With this technology, the fractional instability of transferred frequency can be lowered to below 10‑18 with an averaging time of 1000 s for a 1000 km optical link. At a distance of 500 km, a time signal uncertainty of 250 ps has been achieved. Optical links allow comparing optical clocks and creating a synchronized time and frequency standard network at a new level of precision. Prospects for solving new problems arise, including the determination of the gravitational potential, the measurement of the continental Sagnac effect, and precise tests of fundamental theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chwalla, M.; Kim, K.; Monz, T.
2009-01-16
We report on the first absolute transition frequency measurement at the 10{sup -15} level with a single, laser-cooled {sup 40}Ca{sup +} ion in a linear Paul trap. For this measurement, a frequency comb is referenced to the transportable Cs atomic fountain clock of LNE-SYRTE and is used to measure the {sup 40}Ca{sup +} 4s {sup 2}S{sub 1/2}-3d {sup 2}D{sub 5/2} electric-quadrupole transition frequency. After the correction of systematic shifts, the clock transition frequency {nu}{sub Ca{sup +}}=411 042 129 776 393.2(1.0) Hz is obtained, which corresponds to a fractional uncertainty within a factor of 3 of the Cs standard. In addition,more » we determine the Landeg factor of the 3d{sup 2}D{sub 5/2} level to be g{sub 5/2}=1.200 334 0(3)« less
A precise clock distribution network for MRPC-based experiments
NASA Astrophysics Data System (ADS)
Wang, S.; Cao, P.; Shang, L.; An, Q.
2016-06-01
In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.
Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance
Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai
2016-01-01
Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by “clock coasting” when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy. PMID:27187399
Coupled Integration of CSAC, MIMU, and GNSS for Improved PNT Performance.
Ma, Lin; You, Zheng; Liu, Tianyi; Shi, Shuai
2016-05-12
Positioning, navigation, and timing (PNT) is a strategic key technology widely used in military and civilian applications. Global navigation satellite systems (GNSS) are the most important PNT techniques. However, the vulnerability of GNSS threatens PNT service quality, and integrations with other information are necessary. A chip scale atomic clock (CSAC) provides high-precision frequency and high-accuracy time information in a short time. A micro inertial measurement unit (MIMU) provides a strap-down inertial navigation system (SINS) with rich navigation information, better real-time feed, anti-jamming, and error accumulation. This study explores the coupled integration of CSAC, MIMU, and GNSS to enhance PNT performance. The architecture of coupled integration is designed and degraded when any subsystem fails. A mathematical model for a precise time aiding navigation filter is derived rigorously. The CSAC aids positioning by weighted linear optimization when the visible satellite number is four or larger. By contrast, CSAC converts the GNSS observations to range measurements by "clock coasting" when the visible satellite number is less than four, thereby constraining the error divergence of micro inertial navigation and improving the availability of GNSS signals and the positioning accuracy of the integration. Field vehicle experiments, both in open-sky area and in a harsh environment, show that the integration can improve the positioning probability and accuracy.
Processing of visually presented clock times.
Goolkasian, P; Park, D C
1980-11-01
The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.
A Group Neighborhood Average Clock Synchronization Protocol for Wireless Sensor Networks
Lin, Lin; Ma, Shiwei; Ma, Maode
2014-01-01
Clock synchronization is a very important issue for the applications of wireless sensor networks. The sensors need to keep a strict clock so that users can know exactly what happens in the monitoring area at the same time. This paper proposes a novel internal distributed clock synchronization solution using group neighborhood average. Each sensor node collects the offset and skew rate of the neighbors. Group averaging of offset and skew rate value are calculated instead of conventional point-to-point averaging method. The sensor node then returns compensated value back to the neighbors. The propagation delay is considered and compensated. The analytical analysis of offset and skew compensation is presented. Simulation results validate the effectiveness of the protocol and reveal that the protocol allows sensor networks to quickly establish a consensus clock and maintain a small deviation from the consensus clock. PMID:25120163
Rb vapor-cell clock demonstration with a frequency-doubled telecom laser.
Almat, Nil; Pellaton, Matthieu; Moreno, William; Gruet, Florian; Affolderbach, Christoph; Mileti, Gaetano
2018-06-01
We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10 -13 ·τ -1/2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.
From Sundials to Atomic Clocks: Understanding Time and Frequency.
ERIC Educational Resources Information Center
Jespersen, James; Fitz-Randolph, Jane
An introduction to time, timekeeping, and the uses of time information, especially in the scientific and technical areas, are offered in this book for laymen. Historical and philosophical aspects of time and timekeeping are included. The scientific thought on time has been simplified. Contents include: the nature of time, time and frequency, early…
Science 101: How Do Atomic Clocks Work?
ERIC Educational Resources Information Center
Science and Children, 2008
2008-01-01
You might be wondering why in the world we need such precise measures of time. Well, many systems we use everyday, such as Global Positioning Systems, require precise synchronization of time. This comes into play in telecommunications and wireless communications, also. For purely scientific reasons, we can use precise measurement of time to…
Tests of Local Position Invariance Using Continuously Running Atomic Clocks
2013-01-22
of the difference in anomalous redshift parameters, β = β1 − β2. (a) Dark data points are previous measurements: (i) neutral strontium optical...and the ratio of the light quark mass to the quantum chromodynamics length scale, mq/ QCD, where mq is the average of the up and down quark masses [17
Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite
NASA Astrophysics Data System (ADS)
Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi
The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.
Lorentz-Symmetry Test at Planck-Scale Suppression With a Spin-Polarized 133Cs Cold Atom Clock.
Pihan-Le Bars, H; Guerlin, C; Lasseri, R-D; Ebran, J-P; Bailey, Q G; Bize, S; Khan, E; Wolf, P
2018-06-01
We present the results of a local Lorentz invariance (LLI) test performed with the 133 Cs cold atom clock FO2, hosted at SYRTE. Such a test, relating the frequency shift between 133 Cs hyperfine Zeeman substates with the Lorentz violating coefficients of the standard model extension (SME), has already been realized by Wolf et al. and led to state-of-the-art constraints on several SME proton coefficients. In this second analysis, we used an improved model, based on a second-order Lorentz transformation and a self-consistent relativistic mean field nuclear model, which enables us to extend the scope of the analysis from purely proton to both proton and neutron coefficients. We have also become sensitive to the isotropic coefficient , another SME coefficient that was not constrained by Wolf et al. The resulting limits on SME coefficients improve by up to 13 orders of magnitude the present maximal sensitivities for laboratory tests and reach the generally expected suppression scales at which signatures of Lorentz violation could appear.
Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz
NASA Astrophysics Data System (ADS)
Santarelli, G.; Clairon, A.; Lea, S. N.; Tino, G. M.
1994-01-01
In order to stimulate atomic velocity-selective Raman transitions on the 852 nm caesium D 2 line in an atomic fountain clock, two extended-cavity diode lasers have been optically phase-locked at a frequency offset of 9.192 GHz. The measured linewidth (fwhm) of the free-running lasers is 50 kHz. The phase-locked loop bandwidth, evaluated by observing the frequency noise spectrum, is 3.7 MHz and the phase error variance is found to be no more than 4 × 10 -3 rad 2.
Application specific serial arithmetic arrays
NASA Technical Reports Server (NTRS)
Winters, K.; Mathews, D.; Thompson, T.
1990-01-01
High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.
NASA Technical Reports Server (NTRS)
Thomas, Claudine
1995-01-01
The generation and dissemination of International Atomic Time, TAI, and of Coordinated Universal Time, UTC, are explicitly mentioned in the list of the principal tasks of the BIPM, recalled in the Comptes Rendus of the 18th Conference Generale des Poids et Mesures, in 1987. These tasks are fulfilled by the BIPM Time Section, thanks to international cooperation with national timing centers, which maintain, under metrological conditions, the clocks used to generate TAI. Besides the current work of data collection and processing, research activities are carried out in order to adapt the computation of TAI to the most recent improvements occurring in the time and frequency domains. Studies concerning the application of general relativity and pulsar timing to time metrology are also actively pursued. This paper summarizes the work done in all these fields and outlines future projects.
Self-stabilizing byzantine-fault-tolerant clock synchronization system and method
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R. (Inventor)
2012-01-01
Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.
Fiber optic cable-based high-resolution, long-distance VGA extenders
NASA Astrophysics Data System (ADS)
Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon
2013-02-01
Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.
A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2006-01-01
Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported.
A high-performance Hg(+) trapped ion frequency standard
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.
1992-01-01
A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.
Narishige, Seira; Kuwahara, Mari; Shinozaki, Ayako; Okada, Satoshi; Ikeda, Yuko; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu
2014-01-01
Background and Purpose Caffeine is one of the most commonly used psychoactive substances. Circadian rhythms consist of the main suprachiasmatic nucleus (SCN) clocks and peripheral clocks. Although caffeine lengthens circadian rhythms and modifies phase changes in SCN-operated rhythms, the effects on caffeine on the phase, period and amplitude of peripheral organ clocks are not known. In addition, the role of cAMP/Ca2+ signalling in effects of caffeine on rhythm has not been fully elucidated. Experimental Approach We examined whether chronic or transient application of caffeine affects circadian period/amplitude and phase by evaluating bioluminescence rhythm in PER2::LUCIFERASE knock-in mice. Circadian rhythms were monitored in vitro using fibroblasts and ex vivo and in vivo for monitoring of peripheral clocks. Key Results Chronic application of caffeine (0.1–10 mM) increased period and amplitude in vitro. Transient application of caffeine (10 mM) near the bottom of the decreasing phase of bioluminescence rhythm caused phase advance in vitro. Caffeine (0.1%) intake caused a phase delay under light–dark or constant dark conditions, suggesting a period-lengthening effect in vivo. Caffeine (20 mg·kg−1) at daytime or at late night-time caused phase advance or delay in bioluminescence rhythm in the liver and kidney respectively. The complicated roles of cAMP/Ca2+ signalling may be involved in the caffeine-induced increase of period and amplitude in vitro. Conclusions and Implications Caffeine affects circadian rhythm in mice by lengthening the period and causing a phase shift of peripheral clocks. These results suggest that caffeine intake with food/drink may help with food-induced resetting of peripheral circadian clocks. PMID:25160990
Integrity Monitoring of Mercury Discharge Lamps
NASA Technical Reports Server (NTRS)
Tjoelker, Robert L.
2010-01-01
Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN or in space flight, this warning provides notice that a failure may be imminent, and for operators or control algorithm to take action.
A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.
Burt, Eric A; Diener, William A; Tjoelker, Robert L
2008-12-01
The multi-pole linear ion trap frequency standard (LITS) being developed at the Jet Propulsion Laboratory (JPL) has demonstrated excellent short- and long-term stability. The technology has now demonstrated long-term field operation providing a new capability for timekeeping standards. Recently implemented enhancements have resulted in a record line Q of 5 x 10(12) for a room temperature microwave atomic transition and a short-term fractional frequency stability of 5 x 10(-14)/tau(1/2). A scheme for compensating the second order Doppler shift has led to a reduction of the combined sensitivity to the primary LITS systematic effects below 5 x 10(-17) fractional frequency. Initial comparisons to JPL's cesium fountain clock show a systematic floor of less than 2 x 10(-16). The compensated multi-pole LITS at JPL was operated continuously and unattended for a 9-mo period from October 2006 to July 2007. During that time it was used as the frequency reference for the JPL geodetic receiver known as JPLT, enabling comparisons to any clock used as a reference for an International GNSS Service (IGS) site. Comparisons with the laser-cooled primary frequency standards that reported to the Bureau International des Poids et Mesures (BIPM) over this period show a frequency deviation less than 2.7 x 10(-17)/day. In the capacity of a stand-alone ultra-stable flywheel, such a standard could be invaluable for long-term timekeeping applications in metrology labs while its methodology and robustness make it ideal for space applications as well.
NASA Astrophysics Data System (ADS)
Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller
2014-05-01
The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering that the phase ambiguities are eliminated when applying differences between consecutive epochs. However, when using undifferenced code and phase, the ambiguities may be estimated together with receiver clock errors, satellite clock corrections and troposphere parameters. In both strategies it is also possible to correct the troposphere delay from a Numerical Weather Forecast Model instead of estimating it. The prediction of the satellite clock correction can be performed using a straight line or a second degree polynomial using the time series of the estimated satellites clocks. To estimate satellite clock correction and to accomplish real time PPP two pieces of software have been developed, respectively, "RT_PPP" and "RT_SAT_CLOCK". The system (RT_PPP) is able to process GNSS code and phase data using precise ephemeris and precise satellites clocks corrections together with several corrections required for PPP. In the software RT_SAT_CLOCK we apply a Kalman filter algorithm to estimate satellite clock correction in the network PPP mode. In this case, all PPP corrections must be applied for each station. The experiments were generated in real time and post-processed mode (simulating real time) considering data from the Brazilian continuous GPS network and also from the IGS network in a global satellite clock solution. We have used IGU ephemeris for satellite position and estimated the satellite clock corrections, performing the updates as soon as new ephemeris files were available. Experiments were accomplished in order to assess the accuracy of the estimated clocks when using the Brazilian Numerical Weather Forecast Model (BNWFM) from CPTEC/INPE and also using the ZTD from European Centre for Medium-Range Weather Forecasts (ECMWF) together with Vienna Mapping Function VMF or estimating troposphere with clocks and ambiguities in the Kalman Filter. The daily precision of the estimated satellite clock corrections reached the order of 0.15 nanoseconds. The clocks were applied in the Real Time PPP for Brazilian network stations and also for flight test of the Brazilian airplanes and the results show that it is possible to accomplish real time PPP in the static and kinematic modes with accuracy of the order of 10 to 20 cm, respectively.
NASA Technical Reports Server (NTRS)
Nelson, R. A.; Alley, C. O.; Rayner, J. D.; Shih, Y. H.; Steggerda, C. A.; Wang, B. C.; Agnew, B. W.
1993-01-01
An experiment was conducted to investigate the equivalence of two methods of time transfer in a noninertial reference frame: by means of an electromagnetic signal using laser light pulses and by means of the slow ground transport of a hydrogen maser atomic clock. The experiment may also be interpreted as an investigation of whether the one-way speeds of light in the east-west and west-east directions on the rotating earth are the same. The light pulses were sent from a laser coupled to a telescope at the NASA Goddard Optical Research Facility (GORF) in Greenbelt, Maryland to the U.S. Naval Observatory (USNO) in Washington, DC. The optical path was made possible by a 30-cm flat mirror on a water tower near GORF and a 25-cm flat mirror on top of the Washington National Cathedral near USNO. The path length was 26.0 km with an east-west component of 20.7 km. The pulses were reflected back over the same path by a portable array of corner cube reflectors. The transmission and return times were measured with a stationary Sigma Tau hydrogen maser and a University of Maryland event timer at GORF, while the times of reflection were measured with a similar maser and event timer combination carefully transported to USNO. Both timekeeping systems were housed in highly insulated enclosures and were maintained at constant temperatures to within +/- 0.1 C by microprocessor controllers. The portable system was also protected from shock and vibration by pneumatic supports. The difference delta(T) between the directly measured time of reflection according to the portable clock and the time of reflection calculated from the light pulse signal times measured by the stationary clock was determined. For a typical trip delta(T) is less than 100 ps and the corresponding limit on an anisotropy of the one-way speed of light is delta(c/c) is less than 1.5 x 10(exp -6). This the only experiment to date in which two atomic clocks were calibrated at one location, one was slowly transported to the other end of a path, and the times of transmission, reflection, and return of short light pulses sent in different directions along the path were registered.
Architectural design proposal for real time clock for wireless microcontroller unit
NASA Astrophysics Data System (ADS)
Alias, Muhammad Nor Azwan Mohd; Nizam Mohyar, Shaiful
2017-11-01
In this project, we are developing an Intellectual properties (IP) which is a dedicated real-time clock (RTC) system for a wireless microcontroller. This IP is developed using Verilog Hardware Description Language (Verilog HDL) and being simulated using Quartus II and Synopsys software. This RTC will be used in microcontroller system to provide precise time and date which can be used for various applications. It plays a very important role in the real-time systems like digital clock, attendance system, digital camera and more.
Reference clock parameters for digital communications systems applications
NASA Technical Reports Server (NTRS)
Kartaschoff, P.
1981-01-01
The basic parameters relevant to the design of network timing systems describe the random and systematic time departures of the system elements, i.e., master (or reference) clocks, transmission links, and other clocks controlled over the links. The quantitative relations between these parameters were established and illustrated by means of numerical examples based on available measured data. The examples were limited to a simple PLL control system but the analysis can eventually be applied to more sophisticated systems at the cost of increased computational effort.
RighTime: A real time clock correcting program for MS-DOS-based computer systems
NASA Technical Reports Server (NTRS)
Becker, G. Thomas
1993-01-01
A computer program is described which effectively eliminates the misgivings of the DOS system clock in PC/AT-class computers. RighTime is a small, sophisticated memory-resident program that automatically corrects both the DOS system clock and the hardware 'CMOS' real time clock (RTC) in real time. RighTime learns what corrections are required without operator interaction beyond the occasional accurate time set. Both warm (power on) and cool (power off) errors are corrected, usually yielding better than one part per million accuracy in the typical desktop computer with no additional hardware, and RighTime increases the system clock resolution from approximately 0.0549 second to 0.01 second. Program tools are also available which allow visualization of RighTime's actions, verification of its performance, display of its history log, and which provide data for graphing of the system clock behavior. The program has found application in a wide variety of industries, including astronomy, satellite tracking, communications, broadcasting, transportation, public utilities, manufacturing, medicine, and the military.
Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan
2016-01-01
In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2–0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions. PMID:27999384
Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan
2016-12-20
In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2-0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.
VanderJagt, D J; Ganga, S; Obadofin, M O; Stanley, P; Zimmerman, M; Skipper, B J; Glew, R H
2006-01-01
Since it is projected that by 2020 seventy percent of the elderly will reside in developing countries, a reliable screening method for dementia and cognitive impairment in general in populations with diverse languages, culture, education and literacy will be needed. We sought to determine if the Clock Test, a screening test for dementia, was suitable for use in a Nigerian population. Cross-sectional survey of 54 men and 12 women from Northern Nigeria. Researchers administered two dementia screening tools: a questionnaire-based test adapted for use in a Nigerian population and the Clock Test. Overall, 53.0% of the subjects had an abnormal Clock Test whereas 10.6% of the subjects had an abnormal questionnaire score. Only 9.1% of the subjects had abnormal scores on both tests. Subjects with more schooling had a greater probability of having a positive clock concept (understanding that a circle represented a clock). Of those with more than 6 years of schooling, 91.0% had a positive clock concept. Subjects with a negative clock concept were more likely to have an abnormal Clock Test (93.3%) than a questionnaire (26.6%). The main finding of our study was the discrepancy between the results of the Clock Test and the questionnaire. Performance on the Clock Test appeared to have been heavily influenced by education level, indicating the test is not universally applicable across cultures. The questionnaire-based test appears to reduce the effects of illiteracy on assessing dementia in a Nigerian population. Larger studies should be done to control for how education affects the assessment of dementia.
Stable Kalman filters for processing clock measurement data
NASA Technical Reports Server (NTRS)
Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.
1989-01-01
Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.
Optical Frequency Standards Based on Neutral Atoms and Molecules
NASA Astrophysics Data System (ADS)
Riehle, Fritz; Helmcke, Juergen
The current status and prospects of optical frequency standards based on neutral atomic and molecular absorbers are reviewed. Special attention is given to an optical frequency standard based on cold Ca atoms which are interrogated with a pulsed excitation scheme leading to resolved line structures with a quality factor Q > 10^12. The optical frequency was measured by comparison with PTB's primary clock to be νCa = 455 986 240 494.13 kHz with a total relative uncertainty of 2.5 x10^-13. After a recent recommendation of the International Committee of Weights and Measures (CIPM), this frequency standard now represents one of the most accurate realizations of the length unit.
Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V
2017-02-06
We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.
Robustifying twist-and-turn entanglement with interaction-based readout
NASA Astrophysics Data System (ADS)
Mirkhalaf, Safoura S.; Nolan, Samuel P.; Haine, Simon A.
2018-05-01
The use of multiparticle entangled states has the potential to drastically increase the sensitivity of atom interferometers and atomic clocks. The twist-and-turn (TNT) Hamiltonian can create multiparticle entanglement much more rapidly than the ubiquitous one-axis twisting Hamiltonian in the same spin system. In this paper, we consider the effects of detection noise—a key limitation in current experiments—on the metrological usefulness of nonclassical states generated under TNT dynamics. We also consider a variety of interaction-based readouts to maximize their performance. Interestingly, the optimum interaction-based readout is not the obvious case of perfect time reversal.
Relativistic GLONASS and geodesy
NASA Astrophysics Data System (ADS)
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Status of the test phase of K-3 VLBi system developed in RRL
NASA Astrophysics Data System (ADS)
Saburi, Y.; Yoshimura, K.; Kawajiri, N.; Kawano, N.; Takahashi, F.
An account is given of the last phase of a five-year plan to develop the K-3 system - a high precision VLBI system for applications in a wide variety of fields, such as geodesy, astrometry, and radio astronomy. At the end of 1983, the hardware and software of the K-3 system, were almost completed, and tests were undertaken to demonstrate compatibility with the Mark III system. Topics covered include: Characteristics of the 26-m antenna receiving system, the first U.S.-Japan test observations, and experiments to be conducted for the period up through 1989 at least. Precise time comparison experiments between atomic clocks at the Radio Research Laboratories and the U.S. Naval Observatory were to begin in 1985 and produce data at least once a month for several years.
Clock Synchronization for Multihop Wireless Sensor Networks
ERIC Educational Resources Information Center
Solis Robles, Roberto
2009-01-01
In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…
NASA Astrophysics Data System (ADS)
Bilalic, Rusmir
A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.
A Pseudo Fractional-N Clock Generator with 50% Duty Cycle Output
NASA Astrophysics Data System (ADS)
Yang, Wei-Bin; Lo, Yu-Lung; Chao, Ting-Sheng
A proposed pseudo fractional-N clock generator with 50% duty cycle output is presented by using the pseudo fractional-N controller for SoC chips and the dynamic frequency scaling applications. The different clock frequencies can be generated with the particular phase combinations of a four-stage voltage-controlled oscillator (VCO). It has been fabricated in a 0.13µm CMOS technology, and work with a supply voltage of 1.2V. According to measured results, the frequency range of the proposed pseudo fractional-N clock generator is from 71.4MHz to 1GHz and the peak-to-peak jitter is less than 5% of the output period. Duty cycle error rates of the output clock frequencies are from 0.8% to 2% and the measured power dissipation of the pseudo fractional-N controller is 146µW at 304MHz.
Compact Microwave Mercury Ion Clock for Space Applications
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tu, Meirong; Chung, Sang K.; MacNeal, Paul
2007-01-01
We review progress in developing a small Hg ion clock for space operation based on breadboard ion-clock physics package where Hg ions are shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability approx.1-2x10(exp -13) at 1 second, averaging to 10-15 at 1 day. This development shows that H-maser quality stabilities can be produced in a small clock package, comparable in size to an ultra-stable quartz oscillator required or holding 1-2x10(exp -13) at 1 second. We have completed an ion clock physics package designed to withstand vibration of launch and are currently building a approx. 1 kg engineering model for test. We also discuss frequency steering software algorithms that simultaneously measure ion signal size and lamp light output, useful for long term operation and self-optimization of microwave power and return engineering data.
Chip-based microtrap arrays for cold polar molecules
NASA Astrophysics Data System (ADS)
Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping
2017-12-01
Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.
Search for light scalar dark matter with atomic gravitational wave detectors
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken
2018-04-01
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
NASA Technical Reports Server (NTRS)
Clark, Tom
2000-01-01
Everything we do in VLBI is connected to time. In this contribution, we review 28 orders of magnitude of the spectrum of time ranging from a few hundred femtoseconds (i.e. one degree of phase at X-band - Pi x 10(exp -13) seconds) upwards to tens of millions of years (i.e. ten million years Pi x 10(exp 14) seconds). In this discussion, we will pay special attention to the relation between the underlying oscillator (the frequency standard that defines a clock's rate) and the time kept by the clock (which counts the oscillations of the frequency standard). We will consider two different types of time - time kept by counting an atomic frequency standard (Hydrogen Maser or Cesium), and time reckoned by the rotation of the Earth underneath the stars and sun.
Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei
2013-04-08
We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.
Arbitrary digital pulse sequence generator with delay-loop timing
NASA Astrophysics Data System (ADS)
Hošák, Radim; Ježek, Miroslav
2018-04-01
We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.
The OPTIS satellite-improved tests of Special and General Relativity
NASA Astrophysics Data System (ADS)
Scheithauer, Silvia; Laemmerzahl, Claus; Dittus, Hansjoerg; Schiller, Stephan; Peters, Achim
2005-06-01
The OPTIS satellite mission is an international collaboration initiated by three German University institutes aiming at improving tests regarding the foundations of Special and General Relativity. The mission idea - which has already passed the state of the initial feasibility study - is to contribute to the most challenging project of physics in this century - the search for a Theory of Quantum Gravity. This theory should resolve the incompatibilities between the quantum theory and Einstein's General Relativity. All approaches for a Quantum Gravity Theory predict small deviations from Special and General Relativity. If such deviations could be found (e.g. an anisotropy of the speed of light, violations of the universality of gravitational red shift or of the universality of free fall) the way to a new understanding of the time and space structure of the universe would be open. Therefore the goal of the OPTIS satellite mission is an accuracy improvement of tests regarding the foundations of Special and General Relativity by up to three orders of magnitude. For that purpose several experiments will be carried out on board the OPTIS satellite testing (i) the isotropy of the speed of light, (ii) the independence of the speed of light from the velocity of the laboratory system, (iii) the universality of the gravitational redshift, (iv) the absolute gravitational redshift and (v) the special relativistic time-dilation. Furthermore, orbit analyses will be done in order to measure (vi) the Lense-Thirring effect and (vii) perigee advance as well as to test (viii) the Newtonian View the MathML source gravitational potential. The benefit from bringing these experiments into space is the nearly disturbance free environment allowing precise measurements and large measurement times. The OPTIS mission will use already available key technologies like optical cavities, highly stabilised lasers, atomic clocks, frequency combs, capacitive gravitational reference sensors, drag-free control, laser tracking and laser linking systems. For most of the proposed tests the measurements are done by comparing the rates of different clocks. For the test of the isotropy of the velocity of light (Michelson-Morley experiment) the frequencies of resonators ("light clocks") pointing in different directions are compared. Concerning the constancy of the speed of light (Kennedy-Thorndike experiment) a resonator and atomic clocks under varying velocities are compared. For tests of the time dilation the rates of clocks in different states of motion and for testing the universality of the gravitational redshift clocks at different positions in the gravitational field are compared. This paper will give an overview about the OPTIS satellite mission, including the science goals, science requirements, key technologies, measurement principles and devices.
Enhancing coherence in molecular spin qubits via atomic clock transitions
NASA Astrophysics Data System (ADS)
Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen
2016-03-01
Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.
Recent results of the pulsed optically pumped rubidium clock
NASA Astrophysics Data System (ADS)
Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.
2017-11-01
A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.
A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization Protocol
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2009-01-01
This report presents a rapid Byzantine-fault-tolerant self-stabilizing clock synchronization protocol that is independent of application-specific requirements. It is focused on clock synchronization of a system in the presence of Byzantine faults after the cause of any transient faults has dissipated. A model of this protocol is mechanically verified using the Symbolic Model Verifier (SMV) [SMV] where the entire state space is examined and proven to self-stabilize in the presence of one arbitrary faulty node. Instances of the protocol are proven to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period. This protocol does not rely on assumptions about the initial state of the system other than the presence of sufficient number of good nodes. All timing measures of variables are based on the node s local clock, and no central clock or externally generated pulse is used. The Byzantine faulty behavior modeled here is a node with arbitrarily malicious behavior that is allowed to influence other nodes at every clock tick. The only constraint is that the interactions are restricted to defined interfaces.
Watching the dynamics of electrons and atoms at work in solar energy conversion.
Canton, S E; Zhang, X; Liu, Y; Zhang, J; Pápai, M; Corani, A; Smeigh, A L; Smolentsev, G; Attenkofer, K; Jennings, G; Kurtz, C A; Li, F; Harlang, T; Vithanage, D; Chabera, P; Bordage, A; Sun, L; Ott, S; Wärnmark, K; Sundström, V
2015-01-01
The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.
Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory
NASA Astrophysics Data System (ADS)
Stack, Daniel; Li, Xiao; Quraishi, Qudsia
2015-05-01
Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock
Yoshii, Taishi; Ahmad, Margaret; Helfrich-Förster, Charlotte
2009-01-01
Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 μT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cryb and cryOUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans. PMID:19355790
A new generation of high-performance operational quantum sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lautier-Gaud, Jean; Desruelle, Bruno; Ménoret, Vincent; Schaff, Jean-François; Stern, Guillaume; Vermeulen, Pierre
2016-04-01
After 30 years of academic research in cold atom sciences, intensive developments are being conducted to improve the compactness and the reliability of experimental set-ups in order to transfer such devices from laboratory-based research to an operational utilization outside of the laboratory. We will present the long-lasting developments that we have been carrying to provide the first industrial cold-atom absolute gravimeter and the first industrial cold-atom atomic clock. We will present in detail the principles of operation and the main features of our instruments. Their performances in terms of sensitivity, stability and accuracy and the latest results they achieved will be reviewed. We will then discuss their use to support other research activities. One of the key technology elements of such instruments that need to be addressed is the laser system used to cool down and manipulate the atoms. A specific focus on our latest developments in this area in terms of performances will be proposed.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ +/σ - orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipolemore » forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10 -3.« less
NASA Astrophysics Data System (ADS)
Guo, Jiang; Geng, Jianghui
2017-12-01
Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.
A closer look at the concept of regional clocks for Precise Point Positioning
NASA Astrophysics Data System (ADS)
Weber, Robert; Karabatic, Ana; Thaler, Gottfried; Abart, Christoph; Huber, Katrin
2010-05-01
Under the precondition of at least two successfully tracked signals at different carrier frequencies we may obtain their ionosphere free linear combination. By introducing approximate values for geometric effects like orbits and tropospheric delay as well as an initial bias parameter N per individual satellite we can solve for the satellite clock with respect to the receiver clock. Noting, that residual effects like orbit errors, remaining tropospheric delays and a residual bias parameter map into these parameters, this procedure leaves us with a kind of virtual clock differences. These clocks cover regional effects and are therefore clearly correlated with clocks at nearby station. Therefore we call these clock differences, which are clearly different from clock solutions provided for instance by IGS, the "regional clocks". When introducing the regional clocks obtained from real-time data of a GNSS reference station network we are able to process the coordinates of a nearby isolated station via a PPP .In terms of PPP-convergence time which will be reduced down to 30 minutes or less, this procedure is clearly favorable. The accuracy is quite comparable with state of the art PPP procedures. Nevertheless, this approach cannot compete in fixing times with double-difference approaches but the correlation holds over hundreds of kilometers distance to our master station and the clock differences can easily by obtained, even in real-time. This presentation provides preliminary results of the project RA-PPP. RA-PPP is a research project financed by the Federal Ministry for Transport, Innovation and Technology, managed by the Austrian Research Promotion Agency (FFG) in the course of the 6th call of the Austrian Space Application Program (ASAP). RA-PPP stands for Rapid Precise Point Positioning, which denotes the wish for faster and more accurate algorithms for PPP. The concept of regional clocks which will be demonstrated in detail in this presentation is one out of 4 concepts to be evaluated in this project.
Nanomagnet Logic: Architectures, design, and benchmarking
NASA Astrophysics Data System (ADS)
Kurtz, Steven J.
Nanomagnet Logic (NML) is an emerging technology being studied as a possible replacement or supplementary device for Complimentary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FET) by the year 2020. NML devices offer numerous potential advantages including: low energy operation, steady state non-volatility, radiation hardness and a clear path to fabrication and integration with CMOS. However, maintaining both low-energy operation and non-volatility while scaling from the device to the architectural level is non-trivial as (i) nearest neighbor interactions within NML circuits complicate the modeling of ensemble nanomagnet behavior and (ii) the energy intensive clock structures required for re-evaluation and NML's relatively high latency challenge its ability to offer system-level performance wins against other emerging nanotechnologies. Thus, further research efforts are required to model more complex circuits while also identifying circuit design techniques that balance low-energy operation with steady state non-volatility. In addition, further work is needed to design and model low-power on-chip clocks while simultaneously identifying application spaces where NML systems (including clock overhead) offer sufficient energy savings to merit their inclusion in future processors. This dissertation presents research advancing the understanding and modeling of NML at all levels including devices, circuits, and line clock structures while also benchmarking NML against both scaled CMOS and tunneling FETs (TFET) devices. This is accomplished through the development of design tools and methodologies for (i) quantifying both energy and stability in NML circuits and (ii) evaluating line-clocked NML system performance. The application of these newly developed tools improves the understanding of ideal design criteria (i.e., magnet size, clock wire geometry, etc.) for NML architectures. Finally, the system-level performance evaluation tool offers the ability to project what advancements are required for NML to realize performance improvements over scaled-CMOS hardware equivalents at the functional unit and/or application-level.
Comparison of LASSO and GPS time transfers
NASA Technical Reports Server (NTRS)
Lewandowski, W.; Petit, G.; Baumont, F.; Fridelance, P.; Gaignebet, J.; Grudler, P.; Veillet, C.; Wiant, J.; Klepczynski, W. J.
1994-01-01
The LASSO is a technique which should allow the comparison of remote atomic clocks with sub-nanosecond precision and accuracy. The first successful time transfer using LASSO has been carried out between the Observatoire de la Cote d'Azur in France and the McDonald Observatory in Texas, United States. This paper presents a preliminary comparison of LASSO time transfer with GPS common-view time transfer.
New Steering Strategies for the USNO Master Clocks
1999-12-01
1992. P. Koppang and R. Leland , “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr...vol. 46, pp. 517-522, May 1999. P. Koppang and R. Leland , “Steering of frequency standards by the use of linear quadratic gaussian control theory...3lst Annual Precise Time and Time Interval (PTTI) Meeting NEWSTEERINGSTRATEGIESFOR THEUSNOMASTERCLOCKS Paul A. Koppang Datum, Inc. Beverly, MA
Spacecraft Navigation Using X-ray Pulsars
2006-01-01
95FEATURED RESEARCH 2006 NRL REVIEW Spacecraft Navigation Using X-ray Pulsars P.S. Ray, K.S. Wood, and B.F. Phlips E.O. Hulburt Center for Space...satellites and computes the range (technically pseudorange) to each satellite Pulsars are the collapsed remnants of massive stars that have become...relatively simple structure, pulsars are exceptionally stable rotators whose timing stability rivals that of conventional atomic clocks. A navigation
Performance of the PARCS Testbed Cesium Fountain Frequency Standard
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Klipstein, William M.
2004-01-01
A cesium fountain frequency standard has been developed as a ground testbed for the PARCS (Primary Atomic Reference Clock in Space) experiment, an experiment intended to fly on the International Space Station. We report on the performance of the fountain and describe some of the implementations motivated in large part by flight considerations, but of relevance for ground fountains. In particular, we report on a new technique for delivering cooling and trapping laser beams to the atom collection region, in which a given beam is recirculated three times effectively providing much more optical power than traditional configurations. Allan deviations down to 10
NASA Astrophysics Data System (ADS)
Denker, Heiner; Timmen, Ludger; Voigt, Christian; Weyers, Stefan; Peik, Ekkehard; Margolis, Helen S.; Delva, Pacôme; Wolf, Peter; Petit, Gérard
2017-12-01
The frequency stability and uncertainty of the latest generation of optical atomic clocks is now approaching the one part in 10^{18} level. Comparisons between earthbound clocks at rest must account for the relativistic redshift of the clock frequencies, which is proportional to the corresponding gravity (gravitational plus centrifugal) potential difference. For contributions to international timescales, the relativistic redshift correction must be computed with respect to a conventional zero potential value in order to be consistent with the definition of Terrestrial Time. To benefit fully from the uncertainty of the optical clocks, the gravity potential must be determined with an accuracy of about 0.1 m2 s^{-2} , equivalent to about 0.01 m in height. This contribution focuses on the static part of the gravity field, assuming that temporal variations are accounted for separately by appropriate reductions. Two geodetic approaches are investigated for the derivation of gravity potential values: geometric levelling and the Global Navigation Satellite Systems (GNSS)/geoid approach. Geometric levelling gives potential differences with millimetre uncertainty over shorter distances (several kilometres), but is susceptible to systematic errors at the decimetre level over large distances. The GNSS/geoid approach gives absolute gravity potential values, but with an uncertainty corresponding to about 2 cm in height. For large distances, the GNSS/geoid approach should therefore be better than geometric levelling. This is demonstrated by the results from practical investigations related to three clock sites in Germany and one in France. The estimated uncertainty for the relativistic redshift correction at each site is about 2 × 10^{-18}.
A Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Technical Reports Server (NTRS)
Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.
2010-01-01
A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.
Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna
2016-11-11
Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.
Vertical-cavity surface-emitting lasers: the applications
NASA Astrophysics Data System (ADS)
Morgan, Robert A.; Lehman, John A.; Hibbs-Brenner, Mary K.; Liu, Yue; Bristow, Julian P. G.
1997-05-01
In this paper, we focus on how vertical-cavity surface- emitting lasers (VCSELs) and arrays have led to many feasible advanced technological applications. Their intrinsic characteristics, performance, and producibility offer substantial advantages over alternative sources. Demonstrated performance of `commercial-grade' VCSELs include low operating powers (< 2 V, mAs), high speeds (3 dB BWs > 15 GHz), and high temperature operating ranges (10 K to 400 K and -55 degree(s)C to 125 degree(s)C, and T > 200 degree(s)C). Moreover, their robustness is manifest by high reliability in excess of 107 hours mean time between failures at room temperature and tenfold improvement over existing rad-hard LEDs. Hence, even these `commercial-grade' VCSELs offer potential within cryogenic and avionics/military or space environments. We have also demonstrated submilliamp ITH, stable, single-mode VCSELs utilized within bias-free 1-Gbit/s data links. These low- power VCSELs may also serve in applications from printers to low-cost atomic clocks. The greatest near-term VCSEL applications are upgrades to low-cost LEDs and high-grade copper wire in data links and sensors. Exploiting their surface-emitting geometry, VCSELs are also compatible with established multichip module packaging. Hence VCSELs and VCSEL arrays are ideal components for interconnect-intensive processing applications between and within computing systems.
Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin
2011-09-01
Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth:more » (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.« less
Clock Scan Protocol for Image Analysis: ImageJ Plugins.
Dobretsov, Maxim; Petkau, Georg; Hayar, Abdallah; Petkau, Eugen
2017-06-19
The clock scan protocol for image analysis is an efficient tool to quantify the average pixel intensity within, at the border, and outside (background) a closed or segmented convex-shaped region of interest, leading to the generation of an averaged integral radial pixel-intensity profile. This protocol was originally developed in 2006, as a visual basic 6 script, but as such, it had limited distribution. To address this problem and to join similar recent efforts by others, we converted the original clock scan protocol code into two Java-based plugins compatible with NIH-sponsored and freely available image analysis programs like ImageJ or Fiji ImageJ. Furthermore, these plugins have several new functions, further expanding the range of capabilities of the original protocol, such as analysis of multiple regions of interest and image stacks. The latter feature of the program is especially useful in applications in which it is important to determine changes related to time and location. Thus, the clock scan analysis of stacks of biological images may potentially be applied to spreading of Na + or Ca ++ within a single cell, as well as to the analysis of spreading activity (e.g., Ca ++ waves) in populations of synaptically-connected or gap junction-coupled cells. Here, we describe these new clock scan plugins and show some examples of their applications in image analysis.
Clock distribution for BaF2 readout electronics at CSNS-WNS
NASA Astrophysics Data System (ADS)
He, Bing; Cao, Ping; Zhang, De-Liang; Wang, Qi; Zhang, Ya-Xi; Qi, Xin-Cheng; An, Qi
2017-01-01
A BaF2 (Barium Fluoride) detector array is designed to precisely measure the (n, γ) cross section at the CSNS-WNS (white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications. Supported by National Research and Development plan (2016 YFA0401602) NSAF (U1530111) and National Natural Science Foundation of China (11005107)
NASA Astrophysics Data System (ADS)
Chanteau, B.; Lopez, O.; Zhang, W.; Nicolodi, D.; Argence, B.; Auguste, F.; Abgrall, M.; Chardonnet, C.; Santarelli, G.; Darquié, B.; Le Coq, Y.; Amy-Klein, A.
2013-07-01
We present a method for accurate mid-infrared frequency measurements and stabilization to a near-infrared ultra-stable frequency reference, transmitted with a long-distance fibre link and continuously monitored against state-of-the-art atomic fountain clocks. As a first application, we measure the frequency of an OsO4 rovibrational molecular line around 10 μm with an uncertainty of 8 × 10-13. We also demonstrate the frequency stabilization of a mid-infrared laser with fractional stability better than 4 × 10-14 at 1 s averaging time and a linewidth below 17 Hz. This new stabilization scheme gives us the ability to transfer frequency stability in the range of 10-15 or even better, currently accessible in the near infrared or in the visible, to mid-infrared lasers in a wide frequency range.
A New Type of Frequency Chain and Its Application to Fundamental Frequency Metrology
NASA Astrophysics Data System (ADS)
Udem, Thomas; Reichert, Joerg; Holzwarth, Ronald; Diddams, Scott; Jones, David; Ye, Jun; Cundiff, Steven; Haensch, Theodor; Hall, John
A suitable femtosecond (fs) laser system can provide a broad band comb of stable optical frequencies and thus can serve as an rf/optical coherent link. In this way we have performed a direct comparison of the 1S-2S transition in atomic hydrogen at 121 nm with a cesium fountain clock, built at the LPTF/Paris, to reach an accuracy of 1.9times 10^{-14}. The same comb-line counting technique was exploited to determine and recalibrate several important optical frequency standards. In particular, the improved measurement of the Cesium D1 line is necessary for a more precise determination of the fine structure constant. In addition, several of the best-known optical frequency standards have been recalibrated via the fs method. By creating an octave-spanning frequency comb a single-laser frequency chain has been realized and tested.
Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications
NASA Technical Reports Server (NTRS)
Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)
2017-01-01
An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.
High precision laser ranging by time-of-flight measurement of femtosecond pulses
NASA Astrophysics Data System (ADS)
Lee, Joohyung; Lee, Keunwoo; Lee, Sanghyun; Kim, Seung-Woo; Kim, Young-Jin
2012-06-01
Time-of-flight (TOF) measurement of femtosecond light pulses was investigated for laser ranging of long distances with sub-micrometer precision in the air. The bandwidth limitation of the photo-detection electronics used in timing femtosecond pulses was overcome by adopting a type-II nonlinear second-harmonic crystal that permits the production of a balanced optical cross-correlation signal between two overlapping light pulses. This method offered a sub-femtosecond timing resolution in determining the temporal offset between two pulses through lock-in control of the pulse repetition rate with reference to the atomic clock. The exceptional ranging capability was verified by measuring various distances of 1.5, 60 and 700 m. This method is found well suited for future space missions based on formation-flying satellites as well as large-scale industrial applications for land surveying, aircraft manufacturing and shipbuilding.
NASA Astrophysics Data System (ADS)
Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.
2012-09-01
Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.
Broadband noise limit in the photodetection of ultralow jitter optical pulses.
Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C
2014-11-14
Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.
A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes
NASA Technical Reports Server (NTRS)
Carpenter, Russell; Lee, Taesul
2008-01-01
Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.
On estimating the effects of clock instability with flicker noise characteristics
NASA Technical Reports Server (NTRS)
Wu, S. C.
1981-01-01
A scheme for flicker noise generation is given. The second approach is that of successive segmentation: A clock fluctuation is represented by 2N piecewise linear segments and then converted into a summation of N+1 triangular pulse train functions. The statistics of the clock instability are then formulated in terms of two sample variances at N+1 specified averaging times. The summation converges very rapidly that a value of N 6 is seldom necessary. An application to radio interferometric geodesy shows excellent agreement between the two approaches. Limitations to and the relative merits of the two approaches are discussed.
NASA Technical Reports Server (NTRS)
Henriksen, R. N.; Nelson, L. A.
1985-01-01
Clock synchronization in an arbitrarily accelerated observer congruence is considered. A general solution is obtained that maintains the isotropy and coordinate independence of the one-way speed of light. Attention is also given to various particular cases including, rotating disk congruence or ring congruence. An explicit, congruence-based spacetime metric is constructed according to Einstein's clock synchronization procedure and the equation for the geodesics of the space-time was derived using Hamilton-Jacobi method. The application of interferometric techniques (absolute phase radio interferometry, VLBI) to the detection of the 'global Sagnac effect' is also discussed.
Microfabricated ion frequency standard
Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.
2010-12-28
A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.
Sun, Fuyu; Hou, Dong; Zhang, Danian; Tian, Jie; Hu, Jianguo; Huang, Xianhe; Chen, Shijun
2017-09-04
We demonstrate femtosecond-level timing fluctuation suppression in indoor atmospheric comb-based frequency transfer with a passive phase conjunction correction technique. Timing fluctuations and Allan deviations are both measured to characterize the excess frequency instability incurred during the frequency transfer process. By transferring a 2 GHz microwave over a 52-m long free-space link in 5000 s, the total root-mean-square (RMS) timing fluctuation was measured to be about 280 fs with a fractional frequency instability on the order of 3 × 10 -13 at 1 s and 6 × 10 -17 at 1000 s. This atmospheric comb-based frequency transfer with passive phase conjunction correction can be used to build an atomic clock-based free-space frequency transmission link because its instability is less than that of a commercial Cs or H-master clock.
Stability and accuracy of International Atomic Time TAI.
NASA Astrophysics Data System (ADS)
Thomas, C.
Since the end of 1992, the quality of the timing data received at the BIPM has rapidly evolved dues to the extensive replacement of older designs of commercial Cs clocks. Consequently, the stability of the reference time scales has improved significantly. This was tested by running modified algorithms over the real clock data collected at the BIPM. Results of different studies are shown here; in particular the implementation of an upper relative contribution, chosen equal to 1.37% for any contributing clock, leads to σy(τ=40 d) = 1.8×10-15. The accuracy of TAI is estimated by the difference between the duration of the TAI scale interval and the SI second as produced on the rotating geoid by primary frequency standards. In this paper, TAI accuracy is evaluated from six primary frequency standards LPTF-FO1, PTB CS1, PTB CS2, PTB CS3, NIST-7 and SU MCsR 102 all corrected in a consistent manner for the gravitational shift and the black-body radiation shift. This led to a mean departure of the TAI scale interval of 1.8×10-14 s over 1995, known with a relative uncertainty of 0.5×10-14 (1σ).
Deep Coupled Integration of CSAC and GNSS for Robust PNT.
Ma, Lin; You, Zheng; Li, Bin; Zhou, Bin; Han, Runqi
2015-09-11
Global navigation satellite systems (GNSS) are the most widely used positioning, navigation, and timing (PNT) technology. However, a GNSS cannot provide effective PNT services in physical blocks, such as in a natural canyon, canyon city, underground, underwater, and indoors. With the development of micro-electromechanical system (MEMS) technology, the chip scale atomic clock (CSAC) gradually matures, and performance is constantly improved. A deep coupled integration of CSAC and GNSS is explored in this thesis to enhance PNT robustness. "Clock coasting" of CSAC provides time synchronized with GNSS and optimizes navigation equations. However, errors of clock coasting increase over time and can be corrected by GNSS time, which is stable but noisy. In this paper, weighted linear optimal estimation algorithm is used for CSAC-aided GNSS, while Kalman filter is used for GNSS-corrected CSAC. Simulations of the model are conducted, and field tests are carried out. Dilution of precision can be improved by integration. Integration is more accurate than traditional GNSS. When only three satellites are visible, the integration still works, whereas the traditional method fails. The deep coupled integration of CSAC and GNSS can improve the accuracy, reliability, and availability of PNT.
Deep Coupled Integration of CSAC and GNSS for Robust PNT
Ma, Lin; You, Zheng; Li, Bin; Zhou, Bin; Han, Runqi
2015-01-01
Global navigation satellite systems (GNSS) are the most widely used positioning, navigation, and timing (PNT) technology. However, a GNSS cannot provide effective PNT services in physical blocks, such as in a natural canyon, canyon city, underground, underwater, and indoors. With the development of micro-electromechanical system (MEMS) technology, the chip scale atomic clock (CSAC) gradually matures, and performance is constantly improved. A deep coupled integration of CSAC and GNSS is explored in this thesis to enhance PNT robustness. “Clock coasting” of CSAC provides time synchronized with GNSS and optimizes navigation equations. However, errors of clock coasting increase over time and can be corrected by GNSS time, which is stable but noisy. In this paper, weighted linear optimal estimation algorithm is used for CSAC-aided GNSS, while Kalman filter is used for GNSS-corrected CSAC. Simulations of the model are conducted, and field tests are carried out. Dilution of precision can be improved by integration. Integration is more accurate than traditional GNSS. When only three satellites are visible, the integration still works, whereas the traditional method fails. The deep coupled integration of CSAC and GNSS can improve the accuracy, reliability, and availability of PNT. PMID:26378542
Arias, Elisa Felicitas
2005-09-15
Measuring time is a continuous activity, an international and restless enterprise hidden in time laboratories spread all over the planet. The Bureau International des Poids et Mesures is charged with coordinating activities for international timekeeping and it makes use of the world's capacity to produce a remarkably stable and accurate reference time-scale. Commercial atomic clocks beating the second in national laboratories can reach a stability of one part in 10(14) over a 5 day averaging time, compelling us to research the most highly performing methods of remote clock comparison. The unit of the international time-scale is the second of the International System of Units, realized with an uncertainty of the order 10(-15) by caesium fountains. Physicists in a few time laboratories are making efforts to gain one order of magnitude in the uncertainty of the realization of the second, and more refined techniques of time and frequency transfer are in development to accompany this progress. Femtosecond comb technology will most probably contribute in the near future to enhance the definition of the second with the incorporation of optical clocks. We will explain the evolution of the measuring of time, current state-of-the-art measures and future challenges.
Kulikov, A M; Lazebnyĭ, O E; Chekunova, A I; Mitrofanov, V G
2010-01-01
The steadiness of the molecular clock was estimated in 11 Drosophila species of the virilis group by sequences of five genes by applying Tajima's Simple Method. The main characteristic of this method is the independence of its phylogenetic constructions. The obtained results have completely confirmed the conclusions drawn relying on the application of the two-cluster test and the Takezaki branch-length test. In addition, the deviation of the molecular clock has found confirmation in D. virilis evolutionary lineages.
FOREWORD: IV International Time-Scale Algorithms Symposium, BIPM, Sèvres, 18-19 March 2002
NASA Astrophysics Data System (ADS)
Leschiutta, Sigfrido
2003-06-01
Time-scale formation, along with atomic time/frequency standards and time comparison techniques, is one of the three basic ingredients of Time Metrology. Before summarizing this Symposium and the relevant outcomes, let me make a couple of very general remarks. Clocks and comparison methods have today reached a very high level of accuracy: the nanosecond level. Some applications in the real word are now challenging the capacity of the National Metrological Laboratories. It is therefore essential that the algorithms dealing with clocks and comparison techniques should be such as to make the most of existing technologies. The comfortable margin of accuracy we were used to, between Laboratories and the Field, is gone forever. While clock makers and time-comparison experts meet regularly (FCS, PTTI, EFTF, CPEM, URSI, UIT, etc), the somewhat secluded community of experts in time-scale formation lacks a similar point of contact, with the exception of the CCTF meeting. This venue must consequently be welcomed. Let me recall some highlights from this Symposium: there were about 60 attendees from 15 nations, plus international institutions, such as the host BIPM, and a supranational one, ESA. About 30 papers, prepared in some 20 laboratories, were received: among these papers, four tutorials were offered; descriptions of local time scales including the local algorithms were presented; four papers considered the algorithms applied to the results of time-comparison methods; and six papers covered the special requirements of some specialized time-scale 'users'. The four basic ingredients of time-scale formation: models, noise, filtering and steering, received attention and were also discussed, not just during the sessions. The most demanding applications for time scales now come from Global Navigation Satellite systems; in six papers the progress of some programmes was described and the present and future needs were presented and documented. The lively discussion on future navigation systems led to the following four points: an overall accuracy in timing of one nanosecond is a must; the combined 'clock and orbit' effects on the knowledge of satellite position should be less than one metre; a combined solution for positioning and timing should be pursued; a 'new' time window (2 h to 4 h) emerged, in which the accuracy and stability parameters of the clocks forming a time scale for space application are to be optimized. That interval is linked to some criteria and methods for on-board clock corrections. A revival of interest in the time-proven Kalman filter was noted; in the course of a tutorial on past experience, a number of new approaches were discussed. Some further research is in order, but one should heed the comment: 'do not ask too much of a filter'. The Kalman approach is indeed powerful in combining sets of different data, provided that the possible problems of convergence are suitably addressed. Attention was also focused on the possibility of becoming victims of ever-present 'hidden' correlations. The TAI algorithm, ALGOS, is about 30 years old and the fundamental approach remains unchanged and unchallenged. A number of small refinements, all justified, were introduced in the 'constants' and parameters, but the general philosophy holds. In so far as the BIPM Time Section and the CCTF Working Group on Algorithms are concerned, on the basis of the outcome of this Symposium it is clear that they should follow the evolution of TAI and suggest any appropriate action to the CCTF. This Symposium, which gathered the world experts on T/F algorithms in Paris for two days, offered a wonderful opportunity for cross-fertilization between researchers operating in different and interdependent communities that are loosely connected. Thanks are due to Felicitas Arias, Demetrios Matsakis and Patrizia Tavella and their host organizations for having provided the community with this learning experience. One last comment: please do not wait another 14 years for the next Time Scale Algorithm Symposium.
Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V
2011-07-01
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
Daily rhythms in locomotor circuits in Drosophila involve PDF
Pírez, Nicolás; Christmann, Bethany L.
2013-01-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep. PMID:23678016
Daily rhythms in locomotor circuits in Drosophila involve PDF.
Pírez, Nicolás; Christmann, Bethany L; Griffith, Leslie C
2013-08-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
Nanosecond time transfer via shuttle laser ranging experiment
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Premo, D. A.; Fitzmaurice, M. W.; Wardrip, S. C.; Cervenka, P. O.
1978-01-01
A method is described to use a proposed shuttle laser ranging experiment to transfer time with nanosecond precision. All that need be added to the original experiment are low cost ground stations and an atomic clock on the shuttle. It is shown that global time transfer can be accomplished with 1 ns precision and transfer up to distances of 2000 km can be accomplished with better than 100 ps precision.
2007-01-01
125- 134. 1999 12. International GNNS Service: http://igscb.jpl.nasa.gov 13. P. Koppang , and R. Leland , Steering of Frequency Standards by use of...November-1 December, San Diego, California, NASA CP-3334, pp. 257-267, 1996 14. P. Koppang and R. Leland , Linear Quadratic Stochastic Control of Atomic...the Electrodynamics of Moving Bodies, Annalen der Physik, 17(1905), pp. 891-921,1905 9. J. Skinner and P. Koppang , Analysis of Clock Modeling
Orientation and Polarisation Effects in Reactive Collisions
1989-01-01
18 To clock the reaction, an ultrashort laser pulse initiates the experiment by photodis- sociating the HI, ejecting a translationally hot H atom in...the chamber and travels down; the pulsed , linearly polarized u.v. laser beam passes from right to left, going through a polarization rotator before... pulsed beam valve above the chamber; the pulsed linearly polarized laser beam passes through a polarization rotator before entering the chamber. Two
The Geologic Time Spiral - A Path to the Past
Graham, Joseph; Newman, William; Stacy, John
2008-01-01
The Earth is very old - 4.5 billion years or more according to scientific estimates. Most of the evidence for an ancient Earth is contained in the rocks that form the Earth's crust. The rock layers themselves - like pages in a long and complicated history - record the events of the past, and buried within them are the remains of life - the plants and animals that evolved from organic structures that existed 3 billion years ago. Also contained in rocks once molten are radioactive elements whose isotopes provide Earth with an atomic clock. Within these rocks, 'parent' isotopes decay at a predictable rate to form 'daughter' isotopes. By determining the relative amounts of parent and daughter isotopes, the age of these rocks can be calculated. Thus, the scientific evidence from rock layers, from fossils, and from the ages of rocks as measured by atomic clocks attests to a very old Earth. See USGS Fact Sheet 2007-3015 at http://pubs.usgs.gov/fs/2007/3015/ for ages of geologic time periods. Ages in the spiral have been rounded from the age estimates in the Fact Sheet. B.Y., billion years; M.Y., million years. For more information, see the booklet on Geologic Time at http://pubs.usgs.gov/gip/geotime/. The Geologic Time Spiral poster is available for purchase from the USGS Store.
A survey of provably correct fault-tolerant clock synchronization techniques
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1988-01-01
Six provably correct fault-tolerant clock synchronization algorithms are examined. These algorithms are all presented in the same notation to permit easier comprehension and comparison. The advantages and disadvantages of the different techniques are examined and issues related to the implementation of these algorithms are discussed. The paper argues for the use of such algorithms in life-critical applications.
Advances in time-scale algorithms
NASA Technical Reports Server (NTRS)
Stein, S. R.
1993-01-01
The term clock is usually used to refer to a device that counts a nearly periodic signal. A group of clocks, called an ensemble, is often used for time keeping in mission critical applications that cannot tolerate loss of time due to the failure of a single clock. The time generated by the ensemble of clocks is called a time scale. The question arises how to combine the times of the individual clocks to form the time scale. One might naively be tempted to suggest the expedient of averaging the times of the individual clocks, but a simple thought experiment demonstrates the inadequacy of this approach. Suppose a time scale is composed of two noiseless clocks having equal and opposite frequencies. The mean time scale has zero frequency. However if either clock fails, the time-scale frequency immediately changes to the frequency of the remaining clock. This performance is generally unacceptable and simple mean time scales are not used. First, previous time-scale developments are reviewed and then some new methods that result in enhanced performance are presented. The historical perspective is based upon several time scales: the AT1 and TA time scales of the National Institute of Standards and Technology (NIST), the A.1(MEAN) time scale of the US Naval observatory (USNO), the TAI time scale of the Bureau International des Poids et Measures (BIPM), and the KAS-1 time scale of the Naval Research laboratory (NRL). The new method was incorporated in the KAS-2 time scale recently developed by Timing Solutions Corporation. The goal is to present time-scale concepts in a nonmathematical form with as few equations as possible. Many other papers and texts discuss the details of the optimal estimation techniques that may be used to implement these concepts.
Manipulating the circadian and sleep cycles to protect against metabolic disease.
Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake
2015-01-01
Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.
Scalable Multiprocessor for High-Speed Computing in Space
NASA Technical Reports Server (NTRS)
Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard
2004-01-01
A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.
Preparation and coherent manipulation of pure quantum states of a single molecular ion
NASA Astrophysics Data System (ADS)
Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich
2017-05-01
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
Preparation and coherent manipulation of pure quantum states of a single molecular ion.
Chou, Chin-Wen; Kurz, Christoph; Hume, David B; Plessow, Philipp N; Leibrandt, David R; Leibfried, Dietrich
2017-05-10
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH + ) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
NASA Technical Reports Server (NTRS)
OFarrell, Zachary L.
2013-01-01
The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.
Jiménez-Naharro, Raúl; Gómez-Bravo, Fernando; Medina-García, Jonathan; Sánchez-Raya, Manuel; Gómez-Galán, Juan Antonio
2017-01-01
This paper presents a study about hardware attacking and clock signal vulnerability. It considers a particular type of attack on the clock signal in the I2C protocol, and proposes the design of a new sensor for detecting and defending against this type of perturbation. The analysis of the attack and the defense is validated by means of a configurable experimental platform that emulates a differential drive robot. A set of experimental results confirm the interest of the studied vulnerabilities and the efficiency of the proposed sensor in defending against this type of situation. PMID:28346337
NASA Astrophysics Data System (ADS)
Baynham, Charles F. A.; Godun, Rachel M.; Jones, Jonathan M.; King, Steven A.; Nisbet-Jones, Peter B. R.; Baynes, Fred; Rolland, Antoine; Baird, Patrick E. G.; Bongs, Kai; Gill, Patrick; Margolis, Helen S.
2018-03-01
The highly forbidden ? electric octupole transition in ? is a potential candidate for a redefinition of the SI second. We present a measurement of the absolute frequency of this optical transition, performed using a frequency link to International Atomic Time to provide traceability to the SI second. The ? optical frequency standard was operated for 76% of a 25-day period, with the absolute frequency measured to be 642 121 496 772 645.14(26) Hz. The fractional uncertainty of ? is comparable to that of the best previously reported measurement, which was made by a direct comparison to local caesium primary frequency standards.
Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosal, Bikash; Banik, Alak; Vats, Vaibhav
2011-10-20
Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rbmore » lamp under various operating conditions are reported in the paper.« less
Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas
NASA Astrophysics Data System (ADS)
Lou, Janet W.; Cranch, Geoffrey A.
2018-02-01
The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.
Eight-Channel Continuous Timer
NASA Technical Reports Server (NTRS)
Cole, Steven
2004-01-01
A custom laboratory electronic timer circuit measures the durations of successive cycles of nominally highly stable input clock signals in as many as eight channels, for the purpose of statistically quantifying the small instabilities of these signals. The measurement data generated by this timer are sent to a personal computer running software that integrates the measurements to form a phase residual for each channel and uses the phase residuals to compute Allan variances for each channel. (The Allan variance is a standard statistical measure of instability of a clock signal.) Like other laboratory clock-cycle-measuring circuits, this timer utilizes an externally generated reference clock signal having a known frequency (100 MHz) much higher than the frequencies of the input clock signals (between 100 and 120 Hz). It counts the number of reference-clock cycles that occur between successive rising edges of each input clock signal of interest, thereby affording a measurement of the input clock-signal period to within the duration (10 ns) of one reference clock cycle. Unlike typical prior laboratory clock-cycle-measuring circuits, this timer does not skip some cycles of the input clock signals. The non-cycle-skipping feature is an important advantage because in applications that involve integration of measurements over long times for characterizing nominally highly stable clock signals, skipping cycles can degrade accuracy. The timer includes a field-programmable gate array that functions as a 20-bit counter running at the reference clock rate of 100 MHz. The timer also includes eight 20-bit latching circuits - one for each channel - at the output terminals of the counter. Each transition of an input signal from low to high causes the corresponding latching circuit to latch the count at that instant. Each such transition also sets a status flip-flop circuit to indicate the presence of the latched count. A microcontroller reads the values of all eight status flipflops and then reads the latched count for each channel for which the flip-flop indicates the presence of a count. Reading the count for each channel automatically causes the flipflop of that channel to be reset. The microcontroller places the counts in time order, identifies the channel number for each count, and transmits these data to the personal computer.
New frontiers in quantum simulation enabled by precision laser spectroscopy
NASA Astrophysics Data System (ADS)
Rey, Ana M.
2014-05-01
Ultracold atomic systems have been proposed as ideal quantum simulators of real materials. Major breakthroughs have been achieved using neutral alkali atoms (one-outer-electron atoms) but their inherent ``simplicity'' introduces important limitations on the physics that can be investigated with them. Systems with more complex interactions and with richer internal structure offer an excellent platform for the exploration of a wider range of many-body phenomena. I will discuss our recent progress on the use of polar molecules, alkaline earth atoms -currently the basis of the most precise atomic clock in the world-, and trapped ions, as quantum simulators of iconic condensed matter Hamiltonians as well as Hamiltonians without solid state analogs. A promising direction under current exploration is the many-body physics that emerges at warmer temperatures (above quantum degeneracy) when there is a decoupling between motional and internal degrees of freedom. Even though in this regime the interaction energy scales can be small (~ Hz), they can be resolved thanks to the unprecedented level of control offered by modern precision laser spectroscopy. AFOSR, NSF, ARO and ARO-DARPA-OLE.
2010-09-01
for Applied Mathematics. Kennedy, R. C. (2009a). Clocking Windows netbook performance. Retrieved on 08/14/2010, from http...podcasts.infoworld.com/d/hardware/clocking-windows- netbook -performance-883?_kip_ipx=1177119066-1281460794 Kennedy, R. C. (2009b). OfficeBench 7: A cool new way to
NASA Astrophysics Data System (ADS)
Chen, Shijun; Sun, Fuyu; Bai, Qingsong; Chen, Dawei; Chen, Qiang; Hou, Dong
2017-10-01
We demonstrated a timing fluctuation suppression in outdoor laser-based atmospheric radio-frequency transfer over a 110 m one-way free-space link using an electronic phase compensation technique. Timing fluctuations and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process. With transferring a 1 GHz microwave signal over a timing fluctuation suppressed transmission link, the total root-mean-square (rms) timing fluctuation was measured to be 920 femtoseconds in 5000 s, with fractional frequency instability on the order of 1 × 10-12 at 1 s, and order of 2 × 10-16 at 1000 s. This atmospheric frequency transfer scheme with the timing fluctuation suppression technique can be used to fast build an atomic clock-based frequency free-space transmission link since its stability is superior to a commercial Cs and Rb clock.
PHARAO laser source flight model: Design and performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.
2015-03-15
In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the lasermore » source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.« less
High Precision Time Transfer in Space with a Hydrogen Maser on MIR
NASA Technical Reports Server (NTRS)
Mattison, Edward M.; Vessot, Robert F. C.
1996-01-01
An atomic hydrogen maser clock system designed for long term operation in space will be installed on the Russian space station Mir, in late 1997. The H-maser's frequency stability will be measured using pulsed laser time transfer techniques. Daily time comparisons made with a precision of better than 100 picoseconds will allow an assessment of the long term stability of the space maser at a level on the order of 1 part in 10(sup 15) or better. Laser pulse arrival times at the spacecraft will be recorded with a resolution of 10 picoseconds relative to the space clock's time scale. Cube corner reflectors will reflect the pulses back to the Earth laser station to determine the propagation delay and enable comparison with the Earth-based time scale. Data for relativistic and gravitational frequency corrections will be obtained from a Global Positioning System (GPS) receiver.
A Timer for Synchronous Digital Systems
NASA Technical Reports Server (NTRS)
McKenney, Elizabeth; Irwin, Philip
2003-01-01
The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.
Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang
2016-01-01
Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276
Computer Program Recognizes Patterns in Time-Series Data
NASA Technical Reports Server (NTRS)
Hand, Charles
2003-01-01
A computer program recognizes selected patterns in time-series data like digitized samples of seismic or electrophysiological signals. The program implements an artificial neural network (ANN) and a set of N clocks for the purpose of determining whether N or more instances of a certain waveform, W, occur within a given time interval, T. The ANN must be trained to recognize W in the incoming stream of data. The first time the ANN recognizes W, it sets clock 1 to count down from T to zero; the second time it recognizes W, it sets clock 2 to count down from T to zero, and so forth through the Nth instance. On the N + 1st instance, the cycle is repeated, starting with clock 1. If any clock has not reached zero when it is reset, then N instances of W have been detected within time T, and the program so indicates. The program can readily be encoded in a field-programmable gate array or an application-specific integrated circuit that could be used, for example, to detect electroencephalographic or electrocardiographic waveforms indicative of epileptic seizures or heart attacks, respectively.
Evidence for a chemical clock in oscillatory formation of UiO-66
NASA Astrophysics Data System (ADS)
Goesten, M. G.; de Lange, M. F.; Olivos-Suarez, A. I.; Bavykina, A. V.; Serra-Crespo, P.; Krywka, C.; Bickelhaupt, F. M.; Kapteijn, F.; Gascon, Jorge
2016-06-01
Chemical clocks are often used as exciting classroom experiments, where an induction time is followed by rapidly changing colours that expose oscillating concentration patterns. This type of reaction belongs to a class of nonlinear chemical kinetics also linked to chaos, wave propagation and Turing patterns. Despite its vastness in occurrence and applicability, the clock reaction is only well understood for liquid-state processes. Here we report a chemical clock reaction, in which a solidifying entity, metal-organic framework UiO-66, displays oscillations in crystal dimension and number, as shown by X-ray scattering. In rationalizing this result, we introduce a computational approach, the metal-organic molecular orbital methodology, to pinpoint interaction between the tectonic building blocks that construct the metal-organic framework material. In this way, we show that hydrochloric acid plays the role of autocatalyst, bridging separate processes of condensation and crystallization.
2015-06-03
example, all atomic clocks for the European satellite -based global positioning system GALLILEO were manufactured in Neuchatel. With the integration...realization of numerous other exciting devices in various areas like advancement of sensors and nano- technological devices. Summary of Project...losses of the resonator . Achieving passive femtosecond pulse formation at these record-high power levels will require eliminating any destabilizing
BiCMOS circuit technology for a 704 MHz ATM switch LSI
NASA Astrophysics Data System (ADS)
Ohtomo, Yusuke; Yasuda, Sadayuki; Togashi, Minoru; Ino, Masayuki; Tanabe, Yasuyuki; Inoue, Jun-Ichi; Nogawa, Masafumi; Hino, Shigeki
1994-05-01
This paper describes BiCMOS level-converter circuits and clock circuits that increase VLSI interface speed to 1 GHz, and their application to a 704 MHz ATM switch LSI. An LSI with high speed interface requires a BiCMOS multiplexer/demultiplexer (MUX/DEMUX) on the chip to reduce internal operation speed. A MUX/DEMUX with minimum power dissipation and a minimum pattern area can be designed using the proposed converter circuits. The converter circuits, using weakly cross-coupled CMOS inverters and a voltage regulator circuit, can convert signal levels between LCML and positive CMOS at a speed of 500 MHz. Data synchronization in the high speed region is ensured by a new BiCMOS clock circuit consisting of a pure ECL path and retiming circuits. The clock circuit reduces the chip latency fluctuation of the clock signal and absorbs the delay difference between the ECL clock and data through the CMOS circuits. A rerouting-Banyan (RRB) ATM switch, employing both the proposed converter circuits and the clock circuits, has been fabricated with 0.5 micron BiCMOS technology. The LSI, composed of CMOS 15 K gate LOGIC, 8 Kb RAM, 1 Kb FIFO and ECL 1.6 K gate LOGIC, achieved an operation speed of 704-MHz with power dissipation of 7.2 W.
Watching the dynamics of electrons and atoms at work in solar energy conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canton, S. E.; Zhang, X.; Liu, Y.
2015-07-06
The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium–cobalt dyads, which belong to the large family of donor–bridge–acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfermore » processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.« less
Impact of orbit, clock and EOP errors in GNSS Precise Point Positioning
NASA Astrophysics Data System (ADS)
Hackman, C.
2012-12-01
Precise point positioning (PPP; [1]) has gained ever-increasing usage in GNSS carrier-phase positioning, navigation and timing (PNT) since its inception in the late 1990s. In this technique, high-precision satellite clocks, satellite ephemerides and earth-orientation parameters (EOPs) are applied as fixed input by the user in order to estimate receiver/location-specific quantities such as antenna coordinates, troposphere delay and receiver-clock corrections. This is in contrast to "network" solutions, in which (typically) less-precise satellite clocks, satellite ephemerides and EOPs are used as input, and in which these parameters are estimated simultaneously with the receiver/location-specific parameters. The primary reason for increased PPP application is that it offers most of the benefits of a network solution with a smaller computing cost. In addition, the software required to do PPP positioning can be simpler than that required for network solutions. Finally, PPP permits high-precision positioning of single or sparsely spaced receivers that may have few or no GNSS satellites in common view. A drawback of PPP is that the accuracy of the results depend directly on the accuracy of the supplied orbits, clocks and EOPs, since these parameters are not adjusted during the processing. In this study, we will examine the impact of orbit, EOP and satellite clock estimates on PPP solutions. Our primary focus will be the impact of these errors on station coordinates; however the study may be extended to error propagation into receiver-clock corrections and/or troposphere estimates if time permits. Study motivation: the United States Naval Observatory (USNO) began testing PPP processing using its own predicted orbits, clocks and EOPs in Summer 2012 [2]. The results of such processing could be useful for real- or near-real-time applications should they meet accuracy/precision requirements. Understanding how errors in satellite clocks, satellite orbits and EOPs propagate into PPP positioning and timing results allows researchers to focus their improvement efforts in areas most in need of attention. The initial study will be conducted using the simulation capabilities of Bernese GPS Software and extended to using real data if time permits. [1] J.F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins and F.H. Webb, Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), 5005-5017, doi:10.1029/96JB03860, 1997. [2] C. Hackman, S.M. Byram, V.J. Slabinski and J.C. Tracey, Near-real-time and other high-precision GNSS-based orbit/clock/earth-orientation/troposphere parameters available from USNO, Proc. 2012 ION Joint Navigation Conference, 15 pp., in press, 2012.
Nanoscale light–matter interactions in atomic cladding waveguides
Stern, Liron; Desiatov, Boris; Goykhman, Ilya; Levy, Uriel
2013-01-01
Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light–matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light–vapour interactions on a chip. Specifically, we demonstrate light–matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime. PMID:23462991
Precision measurement of transition matrix elements via light shift cancellation.
Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S
2012-12-14
We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.
Geng, Zihan; Xie, Yiwei; Zhuang, Leimeng; Burla, Maurizio; Hoekman, Marcel; Roeloffzen, Chris G H; Lowery, Arthur J
2017-10-30
We report a photonic integrated circuit implementation of an optical clock multiplier, or equivalently an optical frequency comb filter. The circuit comprises a novel topology of a ring-resonator-assisted asymmetrical Mach-Zehnder interferometer in a Sagnac loop, providing a reconfigurable comb filter with sub-GHz selectivity and low complexity. A proof-of-concept device is fabricated in a high-index-contrast stoichiometric silicon nitride (Si 3 N 4 /SiO 2 ) waveguide, featuring low loss, small size, and large bandwidth. In the experiment, we show a very narrow passband for filters of this kind, i.e. a -3-dB bandwidth of 0.6 GHz and a -20-dB passband of 1.2 GHz at a frequency interval of 12.5 GHz. As an application example, this particular filter shape enables successful demonstrations of five-fold repetition rate multiplication of optical clock signals, i.e. from 2.5 Gpulses/s to 12.5 Gpulses/s and from 10 Gpulses/s to 50 Gpulses/s. This work addresses comb spectrum processing on an integrated platform, pointing towards a device-compact solution for optical clock multipliers (frequency comb filters) which have diverse applications ranging from photonic-based RF spectrum scanners and photonic radars to GHz-granularity WDM switches and LIDARs.
NASA Technical Reports Server (NTRS)
Callahan, P. S.; Eubanks, T. M.; Roth, M. G.; Steppe, J. A.; Esposito, P. B.
1983-01-01
The JPL near-real-time VLBI system called Block I is discussed. The hardware and software of the system are described, and the Time and Earth Motion Precision Observations (TEMPO) which utilize Block I are discussed. These observations are designed to provide interstation clock synchronization to 10 nsec and to determine earth orientation (UT1 and polar motion - UTPM) to 30 cm or better in each component. TEMPO results for clock synchronization and UTPM are presented with data from the July 1980-August 1981 analyzed using the most recent JPL solution software and source catalog. Future plans for TEMPO and Block I are discussed.
Constraining the Evolution of ZZ Ceti
NASA Technical Reports Server (NTRS)
Mukadam, Anjum S.; Kepler, S. O.; Winget, D. E.; Nather, R. E.; Kilic, M.; Mullally, F.; vonHippel, T.; Kleinman, S. J.; Nitta, A.; Guzik, J. A.
2003-01-01
We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt 5 (5.5 plus or minus 1.9) x 10(exp -15) ss(sup -1), after correcting for proper motion. Our results are consistent with previous P values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is |P||P(raised dot)|greater than or equal to 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions.
Primitive robotic procedures: automotions for medical liquids in 12th century Asia minor.
Penbegul, Necmettin; Atar, Murat; Kendirci, Muammer; Bozkurt, Yasar; Hatipoglu, Namık Kemal; Verit, Ayhan; Kadıoglu, Ates
2014-12-30
In recent years, day by day, robotic surgery applications have increase their role in our medical life. In this article, we reported the discovery of the first primitive robotic applications as automatic machines for the sensitive calculation of liquids such as blood in the literature. Al-Jazari who wrote the book "Elcâmi 'Beyne'l - 'ilm ve'l - 'amel en-nâfi 'fi es-sınaâ 'ti'l - hiyel", lived in Anatolian territory between 1136 and 1206. In this book that was written in the twelfth century, Al-Jazari described nearly fifty graphics of robotic machines and six of them that were designed for medical purposes. We found that some of the robots mentioned in this book are related to medical applications. This book reviews approximately 50 devices, including water clocks, candle clocks, ewers, various automata used for amusement in drink assemblies, automata used for ablution, blood collection tanks, fountains, music devices, devices for water lifting, locks, a protractor, a boat-shaped water clock, and the gate of Diyarbakir City in south-east of Turkey, actually in northern Mesopotamia. We found that automata used for ablution and blood collection tanks were related with medical applications; therefore, we will describe these robots.
Long-Term Stability of NIST Chip-Scale Atomic Clock Physics Packages
2007-01-01
vacuum packaging), as has been demonstrated by Lutwak et al. [3]. Nevertheless, we tried to investigate the causes for the frequency shifts of...stability,” Optics Express, 13, 1249-1253. [3] R. Lutwak , J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib...the 1st Annual Multiconference on Electronics and Photonics, 7-11 November 2006, Guanajuato, Mexico, in press. [6] R. Lutwak , P. Vlitas, M
Physics of Spin-Polarized Media
2007-11-21
midsection of the cell serving as the cathode, and liquid molten salt outside the cell serving as the anode [5]. This new method is very promising for of...filling atomic clock and magnetometer cells by electrolysis through the glass walls; (6) new investigations of optical pumping and magnetic resonances...cesium vapor can be used to polarize 3 Cs nuclei in CsH salt that coats the walls of a vapor cell. This result, an important first step, has been
Analysis of Delay Fluctuations on Two-Way Time Transfer Earth Stations
2007-11-01
Two Way Satellite Time and Frequency Transfer ( TWSTFT ) has become one of the major techniques to compare atomic time scales and primary clocks over...the result of TWSTFT . On the TL’s earth station, the most of the equipment is located outside, including the up- and down-converters, solid-state...light/shade, wind speed, humidity, and thermal circulation, may affect the TWSTFT earth station. These conditions may cause both the change of path
Clock Agreement Among Parallel Supercomputer Nodes
Jones, Terry R.; Koenig, Gregory A.
2014-04-30
This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.
Shinozaki, Ayako; Misawa, Kenichiro; Ikeda, Yuko; Haraguchi, Atsushi; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu
2017-01-01
Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer's have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.
Modeling of atomic systems for atomic clocks and quantum information
NASA Astrophysics Data System (ADS)
Arora, Bindiya
This dissertation reports the modeling of atomic systems for atomic clocks and quantum information. This work is motivated by the prospects of optical frequency standards with trapped ions and the quantum computation proposals with neutral atoms in optical lattices. Extensive calculations of the electric-dipole matrix elements in monovalent atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np1/2, np 3/2 states and a large number of excited states of alkali-metal atoms are evaluated using the all-order method. For Ca+ ion, additional allowed transitions between nd5/2, np 3/2, nf5/2, nf 7/2 states and a large number of excited states are evaluated. We combine D1 lines measurements by Miller et al. [18] with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4pj - 3d j' transitions in K and for the 5pj - 4dj' transitions in Rb to high precision. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of ground state of alkali atoms. Our values of static polarizabilities are found to be in excellent agreement with available experiments. Calculations were done for the wavelength in the range 300--1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency. We present results of all-order calculations of static and frequency-dependent polarizabilities of excited np1/2 and np3/2 state in Na, K, Rb, and Cs atoms and evaluate the uncertainties of these values. Both scalar and tensor part of the p state polarizability were calculated. This made the calculations complicated owing to the contributions from p--d transitions. The static polarizability values are found to be in excellent agreement with previous experimental and theoretical results. We used our calculations to identify the "magic" wavelengths at which the ac polarizabilities of the alkali-metal atoms in the ground state are equal to the ac polarizabilities in the excited npj states facilitating state-insensitive cooling and trapping. We list the results for the np 1/2 and np3/2 states separately. Depending on the mj sub levels, the total polarizability of the np3/2 state was calculated either as the sum or as the difference of scalar and tensor contributions. We pointed out the complications involved in the magic wavelength calculations for the mj = +/-3/2 sub levels. We also study the magic wavelengths for transitions between particular np3/2 F'M' and nsFM hyperfine sub levels. We have proposed a scheme for state-insensitive trapping of neutral atoms by using two-color light at convenient wavelengths. In this scheme, we predict the values of trap and control wavelengths for which the 5s and 5p3/2 levels in Rb atom have same ac Stark shifts in the presence of two laser fields. We also list the trap and control wavelength combinations where one of the laser wavelengths is double the other. The results were listed at same and different trap and control laser intensities. This scheme allows to select convenient and easily available laser wavelength for experiments where it is essential to precisely localize and control neutral atoms with minimum decoherence. Motivated by the prospect of an optical frequency standard based on 43Ca+, we calculate the blackbody radiation (BBR) shift of the 4s1/2-3d5/2 clock transition of an optical frequency standard based on 43Ca+. We describe the study of the Rydberg-Rydberg interactions for quantum gates with neutral atoms and decoherence mechanisms in the Rydberg gate scheme. We have also studied the properties and decoherence processes of the Rydberg states as they are needed for the understanding of possible achievable gate fidelity. (Abstract shortened by UMI.)
Role of the BIPM in UTC Dissemination to the Real Time User
NASA Technical Reports Server (NTRS)
Quinn, T. J.; Thomas, C.
1996-01-01
The generation and dissemination of International Atomic Time (TAI), and Coordinated Universal Time (UTC) are explicitly mentioned in the list of principal tasks of the Bureau International des Poids et Mesures (BIPM), that appears in the Compes Rendus of the the 18e Conference Generales des Poids et Measures, in 1987. These time scales are used as the ultimate reference in the most demanding scientific applications and must, therefore, be of the best metrological quality in terms of reliability, long term stability, and conformity of the scale interval with the second, the unit of time of the International System of Units. To meet these requirements, it is necessary that the readings of the atomic clocks, spread all over the world, that are used as basic timing data for TAI and UTC generation, must be combined in the most efficient way possible. In particular, to take full advantage of the quality of each contributing clock calls for observation of its performance over a sufficiently long time. At present, the computation period treats data in blocks covering two months. TAI and UTC are thus deferred-time scales that cannot be immediately available to real-time users. The BIPM can, nevertheless be of help to real-time users. The predictability of UTC is a fundamental attribute of the scale for institutions responsible for the dissemination of real-time time scales. It allows them to improve their local representations of UTC and, thus, implement a more thorough steering of the time scales diffused in real-time. With a view to improving the predicatbility of UTC, the BIPM examines in detail timing techniques and basic theories in order to propose alternative solutions for timing algorithms. This, coupled with a recent improvement of timing data, makes UTC more stable and thus, more predictable. At a more practical level, effort is being devoted to putting in place automatic procedures for reducing the time needed for data collection and treatment: monthly results are already available ten days earlier than before.
Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning.
Shi, Junbo; Wang, Gaojing; Han, Xianquan; Guo, Jiming
2017-06-12
Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS) predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm-dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.
Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging
NASA Astrophysics Data System (ADS)
Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.
2016-05-01
Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.
A multi-channel tunable source for atomic sensors
NASA Astrophysics Data System (ADS)
Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil
2015-09-01
We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.
Breaking Quantum and Thermal Limits on Precision Measurements
NASA Astrophysics Data System (ADS)
Thompson, James K.
2016-05-01
I will give an overview of our efforts to use correlations and entanglement between many atoms to overcome quantum and thermal limits on precision measurements. In the first portion of my talk, I will present a path toward a 10000 times reduced sensitivity to the thermal mirror motion that limits the linewidth of today's best lasers. By utilizing narrow atomic transitions, the laser's phase information is primarily stored in the atomic gain medium rather than in the vibration-sensitive cavity field. To this end, I will present the first observation of lasing based on the mHz linewidth optical-clock transition in a laser-cooled ensemble of strontium atoms. In the second portion of my talk, I will describe how we use collective measurements to surpass the standard quantum limit on phase estimation 1 /√{ N} for N unentangled atoms. We achieve a directly observed reduction in phase variance relative to the standard quantum limit of as much as 17.7(6) dB. Supported by DARPA QuASAR, NIST, ARO, and NSF PFC. This material is based upon work supported by the National Science Foundation under Grant Number 1125844 Physics Frontier Center.
Quantum defect theory for the orbital Feshbach resonance
NASA Astrophysics Data System (ADS)
Cheng, Yanting; Zhang, Ren; Zhang, Peng
2017-01-01
In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.
2010-06-01
GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non
Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials
NASA Astrophysics Data System (ADS)
Martin, Paul J.
In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.
Clock and trigger synchronization between several chassis of digital data acquisition modules
NASA Astrophysics Data System (ADS)
Hennig, W.; Tan, H.; Walby, M.; Grudberg, P.; Fallu-Labruyere, A.; Warburton, W. K.; Vaman, C.; Starosta, K.; Miller, D.
2007-08-01
In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size. The readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis. The data acquisition system is intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less than 1 ns, and can be extended to a larger number of chassis if desired.
Correction of clock errors in seismic data using noise cross-correlations
NASA Astrophysics Data System (ADS)
Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline
2017-04-01
Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock drifts (1 ms/day) as well as large clock jumps (6 min) are identified. The same method is applied to records of five OBS stations deployed within a radius of 150 km around La Réunion. The assumption of a linear clock drift is verified by correlating OBS for which GPS-based skew corrections were available with land stations. For two OBS stations without skew estimates, we find clock drifts of 0.9 ms/day and 0.4 ms/day. This study salvages expensive seismic records from remote regions that would be otherwise lost for seismicity or tomography studies.
Influence of the ac-Stark shift on GPS atomic clock timekeeping
NASA Astrophysics Data System (ADS)
Formichella, V.; Camparo, J.; Tavella, P.
2017-01-01
The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).
Operational use of the GPS to build the "Temps Atomique Français" TA(F).
NASA Astrophysics Data System (ADS)
Fréon, G.; Tourde, R.
The clock comparisons by the observations of the satellites of the GPS in common view between several laboratories have been used by the BNM-LPTF since 1983. They have contributed to improve the stability of the national reference time scale: the "Temps Atomique Français". This time comparison method is also used by the Bureau International des Poids et Mesures and all the time and frequency laboratories which participate to the calculation of the International Atomic Time (TAI).
Progress of the LASSO experiment
NASA Technical Reports Server (NTRS)
Serene, B. E. H.
1981-01-01
The LASSO (Later Synchronisation from Stationary Orbit) experiment, designed to demonstrate the feasibility of achieving time synchronization between remote atomic clocks with an accuracy of one nanosecond or better by using laser techniques for the first time is described. The experiment uses groundbased laser stations and the SIRIO-2 geostationary satellite to be launched towards the end of 1981. The qualification of the LASSO on-board equipment is discussed with a brief description of the electrical and optical test equipment used. The progress of the operational organization is included.
Time Transfer by Laser Link - T2L2: An Opportunity to Calibrate RF Links
2008-12-01
GNSS and TWSTFT , with an improvement of at least one order of magnitude as compared to the best calibrations performed so far (about 1 ns exactitude...frequency transfer systems like GPS or TWSTFT , and comparisons of cold atomic clocks at a level never reached before. Continuous comparison of T2L2 and...Station reattachment to local UTC Ground to Space Transfer : 30 Ground to Ground Transfer : 43 Common view TWSTFT GPS Laser ranging
Boyd, Joseph S; Cheng, Ryan R; Paddock, Mark L; Sancar, Cigdem; Morcos, Faruck; Golden, Susan S
2016-09-15
Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Status and prospect of the Swiss continuous Cs fountain FoCS-2
NASA Astrophysics Data System (ADS)
Jallageas, A.; Devenoges, L.; Petersen, M.; Morel, J.; Bernier, L.-G.; Thomann, P.; Südmeyer, T.
2016-06-01
The continuous cesium fountain clock FoCS-2 at METAS presents many unique characteristics and challenges in comparison with standard pulsed fountain clocks. For several years FoCS-2 was limited by an unexplained frequency sensitivity on the velocity of the atoms, in the range of 140 • 10-15. Recent experiments allowed us to identify the origin of this problem as undesirable microwave surface currents circulating on the shield of the coaxial cables that feed the microwave cavity. A strong reduction of this effect was obtained by adding microwave absorbing coatings on the coaxial cables and absorbers inside of the vacuum chamber. This breakthrough opens the door to a true metrological validation of the fountain. A series of simulation tools have already been developed and proved their efficiency in the evaluation of some of the uncertainties of the continuous fountain. With these recent improvements, we are confident in the future demonstration of an uncertainty budget at the 10-15 level and below.
Dynamics of Superradiant Lasers
NASA Astrophysics Data System (ADS)
Thompson, James
2014-05-01
A superradiant laser has been shown to operate with less than one photon on average inside of the optical cavity. In this regime, almost all of the phase information of the laser is stored in the atoms rather than the cavity field. As a result, the laser's phase is highly insensitive to both technical and fundamental thermal cavity mirror vibrations. This vibration noise presently limits the coherence of the best lasers as well as the precision of the optical lattice clocks that these lasers interrogate. We have explored the physics of superradiant lasers utilizing Raman transitions between hyperfine states in rubidium to mimic narrow optical transitions. In this talk, we will discuss the amplitude stability of our superradiant Raman laser, and the dynamics of phase synchronization in our system. We will also consider the prospects for future superradiant lasers that would lase on the same highly-forbidden transitions used in optical lattice clocks. We acknowledge support from DARPA QUASAR, ARO, NIST, and the NSF PFC.
Femtosecond Timekeeping: Slip-Free Clockwork for Optical Timescales
NASA Astrophysics Data System (ADS)
Herman, D.; Droste, S.; Baumann, E.; Roslund, J.; Churin, D.; Cingoz, A.; Deschênes, J.-D.; Khader, I. H.; Swann, W. C.; Nelson, C.; Newbury, N. R.; Coddington, I.
2018-04-01
The generation of true optical time standards will require the conversion of the highly stable optical-frequency output of an optical atomic clock to a high-fidelity time output. We demonstrate a comb-based clockwork that phase-coherently integrates ˜7 ×1020 optical cycles of an input optical frequency to create a coherent time output. We verify the underlying stability of the optical timing system by comparing two comb-based clockworks with a common input optical frequency and show <20 fs total time drift over the 37-day measurement period. Both clockworks also generate traditional timing signals including an optical pulse per second and a 10-MHz rf reference. The optical pulse-per-second time outputs remain synchronized to 240 attoseconds (240 as) at 1000 s. The phase-coherent 10-MHz rf outputs are stable to near a part in 1019 . Fault-free timekeeping from an optical clock to femtosecond level over months is an important step in replacing the current microwave time standard by an optical standard.
Krehlik, Przemyslaw; Schnatz, Harald; Sliwczynski, Lukasz
2017-12-01
We describe a fiber-optic solution for simultaneous distribution of all signals generated at today's most advanced time and frequency laboratories, i.e., an ultrastable optical reference frequency derived from an optical atomic clock, a radio frequency precisely linked to a realization of the SI-Second, and a realization of an atomic timescale, being the local representation of the virtual, global UTC timescale. In our solution both the phase of the optical carrier and the delay of electrical signals (10-MHz frequency reference and one-pulse-per-second time tags) are stabilized against environmental perturbations influencing the fiber link instability and accuracy. We experimentally demonstrate optical transfer stabilities of and for 100 s averaging period, for optical carrier and 10-MHz signals, respectively.
Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro
2015-07-15
We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources formore » laser cooling experiments including transportable optical lattice clocks.« less