Science.gov

Sample records for atomic clock application

  1. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  2. Higher Pole Linear Traps for Atomic Clock Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    We investigate experimentally and theoretically higher pole linear ion traps for frequency standard use. We have built a 12-pole trap and have successfully loaded ions into it from a linear quadrupole trap. By solving the Boltzmann equation describing large ion clouds where space charge interactions are important, we show that clock frequency changes due to ion number fluctuations are much smaller in ion clocks based multipole traps than comparable clocks based on quadrupole linear traps.

  3. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  4. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  5. VLBI clock synchronization. [for atomic clock rate

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.; Rogers, A. E. E.; Hinteregger, H. F.; Knight, C. A.; Whitney, A. R.; Clark, T. A.

    1977-01-01

    The potential accuracy of VLBI (very long baseline interferometry) for clock epoch and rate comparisons was demonstrated by results from long- and short-baseline experiments. It was found that atomic clocks at widely separated sites (several thousand kilometers apart) can be synchronized to within several nanoseconds from a few minutes of VLBI observations and to within one nanosecond from several hours of observations.

  6. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.

    PubMed

    Taichenachev, A V; Yudin, V I; Oates, C W; Hoyt, C W; Barber, Z W; Hollberg, L

    2006-03-03

    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method--a single clock laser combined with a dc magnetic field--relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline-earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10(-17) for the metrologically preferred even isotopes.

  7. Laser controlled atom source for optical clocks

    NASA Astrophysics Data System (ADS)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  8. Laser controlled atom source for optical clocks.

    PubMed

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-18

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  9. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  10. Primary Atomic Clock Reference System

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0100120.

  11. Rubidium Atomic Clock for Galileo

    DTIC Science & Technology

    1999-12-01

    gist Annual Precise Time and Time Interval (PTTI) Meeting RUBIDIUM ATOMIC CLOCK FOR GALILEO A. Jeanmaire, P. Rochat, Temex Neuchgtel Time (CH) F...have a frequency stability of 1~10“~ for an averaging time of 1 day. The frequency stability of on-board clocks has a direct impact on the...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing

  12. Stochastic models for atomic clocks

    NASA Technical Reports Server (NTRS)

    Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.

    1983-01-01

    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.

  13. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  14. Laser controlled atom source for optical clocks

    PubMed Central

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-01-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy. PMID:27857214

  15. Shielding of longitudinal magnetic fields with thin, closely, spaced concentric cylindrical shells with applications to atomic clocks

    NASA Technical Reports Server (NTRS)

    Wolf, S. A.; Gubser, D. U.; Cox, J. E.

    1978-01-01

    A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.

  16. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  17. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-14

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  18. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    PubMed Central

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  19. Mitigating aliasing in atomic clocks

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Akhalwaya, Ismail; Sastrawan, Jarrah; Biercuk, Michael

    2015-05-01

    Passive atomic clocks periodically calibrate a classical local oscillator against an atomic quantum reference through feedback. The periodic nature of this correction leads to undesirable aliasing noise. The Dick Effect, is a special case of aliasing noise consisting of the down-conversion of clock noise at harmonics of the correction frequency to a frequency of zero. To combat the Dick effect and aliasing noise in general, we suggest an extension to the usual feedback protocol, in which we incorporate information from multiple past measurements into the correction after the most recent measurement, approximating a crude low pass anti-aliasing filter of the noise. An analytical frequency domain analysis of the approach is presented and supported by numerical time domain simulations.

  20. Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock

    SciTech Connect

    Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletic, Vladan

    2010-06-25

    We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

  1. Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Tan, Bo-Zhong; Yang, Jing; Zhang, Yi; Gu, Si-Hong

    2015-06-01

    A method that obtains the Ramsey-coherent population trapping (CPT) spectrum with the Faraday effect is investigated. An experiment is implemented to detect the light polarization components generated from the Faraday effect. The experimental results agree with the theoretical calculations based on the Liouville equation. By comparing with the method without using the Faraday effect, the potential of this method for a CPT-based atomic clock is assessed. The results indicate that this method should improve the short-term frequency stability by several times. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304362 and 11204351).

  2. Atomic clocks for astrophysical measurements

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.; Mattison, E. M.

    1982-01-01

    It is noted that recently developed atomic hydrogen masers have achieved stability well into the 10 to the -16th domain for averaging time intervals beyond 1000 sec and that further improvements are in prospect. These devices are highly adaptable for space use in very high precision measurements of angle through Very Long Baseline Interferometry (VLBI) and of range and range-rate through Doppler techniques. Space missions that will use these clocks for measuring the sun's gravity field distribution and for testing gravitation and relativity (a project that will include a search for pulsed low-frequency gravitational waves) are discussed. Estimates are made of system performance capability, and the accuracy capability of relativistic measurements is evaluated in terms of the results from the 1976 NASA/SAO spaceborne clock test of the Einstein Equivalence Principle.

  3. Collisionally induced atomic clock shifts and correlations

    SciTech Connect

    Band, Y. B.; Osherov, I.

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  4. Relativistic general-order coupled-cluster method for high-precision calculations: Application to the Al+ atomic clock

    NASA Astrophysics Data System (ADS)

    Kállay, Mihály; Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Visscher, Lucas

    2011-03-01

    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of the Al+ clock has been estimated precisely. The computed shift relative to the frequency of the 3s21S0e→3s3p3P0o clock transition given by (-3.66±0.60)×10-18 calls for an improvement over the recent measurement with a reported result of (-9±3)×10-18 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.070802 104, 070802 (2010)].

  5. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-15

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  6. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect

  7. Systematic Effects in Atomic Fountain Clocks

    NASA Astrophysics Data System (ADS)

    Gibble, Kurt

    2016-06-01

    We describe recent advances in the accuracies of atomic fountain clocks. New rigorous treatments of the previously large systematic uncertainties, distributed cavity phase, microwave lensing, and background gas collisions, enabled these advances. We also discuss background gas collisions of optical lattice and ion clocks and derive the smooth transition of the microwave lensing frequency shift to photon recoil shifts for large atomic wave packets.

  8. Cold-atom double-Λ coherent population trapping clock

    NASA Astrophysics Data System (ADS)

    Esnault, F.-X.; Blanshan, E.; Ivanov, E. N.; Scholten, R. E.; Kitching, J.; Donley, E. A.

    2013-10-01

    Miniature atomic clocks based on coherent population trapping (CPT) states in thermal atoms are an important component in many field applications, particularly where satellite frequency standards are not accessible. Cold-atom CPT clocks promise improved accuracy and stability over existing commercial technologies. Here we demonstrate a cold-atom CPT clock based on 87Rb using a high-contrast double-Λ configuration. Doppler frequency shifts are explained using a simple model and canceled by interrogating the atoms with counterpropagating light beams. We realize a compact cold-atom CPT clock with a fractional frequency stability of 4×10-11τ-1/2, thus demonstrating the potential of these devices. We also show that the long-term stability is currently limited by the second-order Zeeman shift to 2×10-12 at 1000 s.

  9. An atomic clock with 10(-18) instability.

    PubMed

    Hinkley, N; Sherman, J A; Phillips, N B; Schioppo, M; Lemke, N D; Beloy, K; Pizzocaro, M; Oates, C W; Ludlow, A D

    2013-09-13

    Atomic clocks have been instrumental in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Timekeeping precision at 1 part in 10(18) enables new timing applications in relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests of physics beyond the standard model. Here, we describe the development and operation of two optical lattice clocks, both using spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6 × 10(-18) after only 7 hours of averaging.

  10. Deep Space Atomic Clock Ticks Toward Success

    NASA Video Gallery

    Dr. Todd Ely, principal investigator for NASA's Deep Space Atomic Clock at the Jet Propulsion Laboratory in Pasadena, Calif., spotlights the paradigm-busting innovations now in development to revol...

  11. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  12. Cesium Atomic Fountain Clocks at NMIJ

    DTIC Science & Technology

    2010-11-01

    Wynands and S. Weyers, 2005, “Atomic fountain clocks,” Metrologia , 42, S64-S79. [2] M. Takamoto, F. L. Hong, R. Higashi, et al., 2005, “An optical...beam of laser-cooled cesium atoms,” Physical Review, A 60, R4241-R4244. [13] V. Gerginov, N. Nemitz, S. Weyers, et al., 2010, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia , 47, 65-79.

  13. Atomic-based stabilization for laser-pumped atomic clocks.

    PubMed

    Gerginov, V; Shah, V; Knappe, S; Hollberg, L; Kitching, J

    2006-06-15

    We describe a novel technique for stabilizing frequency shifts in laser-interrogated vapor-cell atomic clocks. The method suppresses frequency shifts due to changes in the laser frequency, intensity, and modulation index as well as atomic vapor density. The clock operating parameters are monitored by using the atoms themselves, rather than by using conventional schemes for laser frequency and cell temperature control. The experiment is realized using a chip-scale atomic clock. The novel atomic-based stabilization approach results in a simpler setup and improved long-term performance.

  14. Stability of atomic clocks based on entangled atoms.

    PubMed

    André, A; Sørensen, A S; Lukin, M D

    2004-06-11

    We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that is actively locked to a spin-squeezed (entangled) ensemble of N atoms. We show that the use of entangled states can lead to an improvement of the long-term stability of the clock when the measurement is limited by decoherence associated with instability of the local oscillator combined with fluctuations in the atomic ensemble's Bloch vector. Atomic states with a moderate degree of entanglement yield the maximal clock stability, resulting in an improvement that scales as N(1/6) compared to the atomic shot noise level.

  15. Hunting for dark matter with GPS and atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2015-05-01

    Atomic clocks are arguably the most accurate scientific instruments ever build. Modern clocks are astonishing timepieces guaranteed to keep time within a second over the age of the Universe. The cosmological applications of atomic clocks so far have been limited to searches of the uniform-in-time drift of fundamental constants. We point out that a transient in time change of fundamental constants (translating into clocks being sped up or slowed down) can be induced by dark matter objects that have large spatial extent, and are built from light non-Standard Model fields. The stability of this type of dark matter can be dictated by the topological reasons. We argue that correlated networks of atomic clocks, such as atomic clocks onboard satellites of the GPS constellation, can be used as a powerful tool to search for the topological defect dark matter. In other words, one could envision using GPS as a 50,000 km-aperture dark-matter detector. Similar arguments apply to terrestrial networks of atomic clocks. Details:

  16. Atomic Clock Based On Linear Ion Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Dick, G. John

    1992-01-01

    Highly stable atomic clock based on excitation and measurement of hyperfine transition in 199Hg+ ions confined in linear quadrupole trap by radio-frequency and static electric fields. Configuration increases stability of clock by enabling use of enough ions to obtain adequate signal while reducing non-thermal component of motion of ions in trapping field, reducing second-order Doppler shift of hyperfine transition. Features described in NPO-17758 "Linear Ion Trap for Atomic Clock." Frequency standard based on hyperfine transition described in NPO-17456, "Trapped-Mercury-Ion Frequency Standard."

  17. Collective State Raman Atomic Clock Using Trapped Atoms

    NASA Astrophysics Data System (ADS)

    Kim, May; Sarkar, Resham; Fang, Renpeng; Tu, Yanfei; Shahriar, Selim

    2014-05-01

    Atomic clock has set the standard as the most accurate clock in the world. So far, the approach to making the atomic clock has been limited to utilizing individual atomic states. We have developed the framework for a collective atomic clock-in an ensemble of cold atoms using the method of separated Raman-Ramsey fields-by conceiving a method to detect the collective states, analyzing the signal to noise ratio, and finding the bounds for efficiency of our detector. The width of the Raman-Ramsey fringe in such a clock is narrower than that of a conventional Raman-Ramsey fringe by a factor of root-N, where N is the number of atoms in the ensemble. When the collection efficiency of the detection process is taken into account, such a clock can have a frequency stability that is expected to be better than that of a conventional Raman-Ramsey clock. The ultra-narrow fringe may also offer many other potential advantages, such as suppression of errors due to fluctuations in the bias field used for lifting Zeeman sublevel degeneracy, and the long-term bias drift. We will present the theoretical model, and describe the status of our experimental efforts towards demonstrating such a clock.

  18. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  19. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology.

  20. Mapping out atom-wall interaction with atomic clocks.

    PubMed

    Derevianko, A; Obreshkov, B; Dzuba, V A

    2009-09-25

    We explore the feasibility of probing atom-wall interaction with atomic clocks based on atoms trapped in engineered optical lattices. Optical lattice is normal to the wall. By monitoring the wall-induced clock shift at individual wells of the lattice, one would measure the dependence of the atom-wall interaction on the atom-wall separation. We find that the induced clock shifts are large and observable at already experimentally demonstrated levels of accuracy. We show that this scheme may uniquely probe the long-range atom-wall interaction in all three qualitatively distinct regimes of the interaction: van der Waals (image-charge interaction), Casimir-Polder (QED vacuum fluctuations), and Lifshitz (thermal-bath fluctuations) regimes.

  1. Mapping Out Atom-Wall Interaction with Atomic Clocks

    SciTech Connect

    Derevianko, A.; Obreshkov, B.; Dzuba, V. A.

    2009-09-25

    We explore the feasibility of probing atom-wall interaction with atomic clocks based on atoms trapped in engineered optical lattices. Optical lattice is normal to the wall. By monitoring the wall-induced clock shift at individual wells of the lattice, one would measure the dependence of the atom-wall interaction on the atom-wall separation. We find that the induced clock shifts are large and observable at already experimentally demonstrated levels of accuracy. We show that this scheme may uniquely probe the long-range atom-wall interaction in all three qualitatively distinct regimes of the interaction: van der Waals (image-charge interaction), Casimir-Polder (QED vacuum fluctuations), and Lifshitz (thermal-bath fluctuations) regimes.

  2. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  3. Efficient atomic clocks operated with several atomic ensembles.

    PubMed

    Borregaard, J; Sørensen, A S

    2013-08-30

    Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble. In this Letter, we propose a scheme where the LO is locked to several atomic ensembles instead of one. This results in an exponential improvement compared to the conventional method and provides a stability of the clock scaling as (αN)(-m/2) with N being the number of atoms in each of the m ensembles and α a constant depending on the protocol being used to lock the LO.

  4. Blackbody radiation shifts in optical atomic clocks.

    PubMed

    Safronova, Marianna; Kozlov, Mikhail; Clark, Charles

    2012-03-01

    A review of recent theoretical calculations of blackbody radiation (BBR) shifts in optical atomic clocks is presented. We summarize previous results for monovalent ions that were obtained by a relativistic all-order single-double method, where all single and double excitations of the Dirac- Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms is then presented. This approach combines the relativistic all-order method and the configuration interaction method, which provides for accurate treatment of correlation corrections in atoms with two valence electrons. Calculations of the BBR shifts in B+, Al+, and In+ have enabled us to reduce the present fractional uncertainties in the frequencies of their clock transitions as measured at room temperature: to 4 × 10-19 for Al+ and 10-18 for B+ and In+. These uncertainties approach recent estimates of the limits of precision of currently proposed optical atomic clocks. We discuss directions of future theoretical developments for reducing clock uncertainties resulting from blackbody radiation shifts.

  5. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  6. Zero-dead-time operation of interleaved atomic clocks.

    PubMed

    Biedermann, G W; Takase, K; Wu, X; Deslauriers, L; Roy, S; Kasevich, M A

    2013-10-25

    We demonstrate a zero-dead-time operation of atomic clocks. This clock reduces sensitivity to local oscillator noise, integrating as nearly 1/τ whereas a clock with dead time integrates as 1/τ(1/2) under identical conditions. We contend that a similar scheme may be applied to improve the stability of optical clocks.

  7. Atomic physics with vapor-cell clocks

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart Hunter

    The most widely used atomic frequency standards (or clocks) are based on the microwave resonant frequencies of optically pumped vapors of alkali-metal atoms in glass cells filled with buffer gas. These vapor-cell clocks are secondary, not primary frequency standards mainly because of the light and pressure shifts, which alter the resonant frequencies of the alkali-metal atoms. This dissertation presents studies of atomic physics important to vapor-cell clocks and, in particular, their accuracy. First, we report a simple method to suppress the light shift in optical pumping systems. This method uses only frequency modulation of a radio frequency or microwave source, which excites an atomic resonance, to simultaneously lock the source frequency to the atomic resonance and lock the pumping light frequency to suppress the light shift. This technique can be applied to many optical pumping systems that experience light shifts. It is especially useful for atomic clocks because it improves the long-term performance, reduces the influence of a pumping laser, and requires less equipment than previous methods. Next, we present three studies of the pressure shift, starting with an estimation of the hyperfine-shift potential that is responsible for most of the pressure shift. We then show that the microwave resonant frequencies of ground-state Rb and Cs atoms in Xe buffer gas have a relatively large nonlinear dependence on the Xe pressure, presumably because of short-lived RbXe and CsXe van der Waals molecules. The Xe data show striking discrepancies with the previous theory for nonlinear shifts, most of which is eliminated by accounting for the spin-rotation interaction in addition to the hyperfine-shift interaction in the molecules. To the limit of our experimental accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. We then consider the prospects for suppressing the pressure shift with buffer-gas mixtures and feedback. Finally, we report an

  8. Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Kohel, J.; Klipstein, W. M.; Seidel, D. J.; Maleki, L.

    2000-01-01

    The goals of the Glovebox Laser-cooled Atomic Clock Experiment (GLACE) are: (1) first utilization of tunable, frequency-stabilized lasers in space, (2) demonstrate laser cooling and trapping in microgravity, (3) demonstrate longest 'perturbation-free' interaction time for a precision measurement on neutral atoms, (4) Resolve Ramsey fringes 2-10 times narrower than achievable on Earth. The approach taken is: the use of COTS components, and the utilization of prototype hardware from LCAP flight definition experiments. The launch date is scheduled for Oct. 2002. The Microgravity Science Glovebox (MSG) specifications are reviewed, and a picture of the MSG is shown.

  9. Relativistic general-order coupled-cluster method for high-precision calculations: Application to the Al{sup +} atomic clock

    SciTech Connect

    Kallay, Mihaly; Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Visscher, Lucas

    2011-03-15

    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of the Al{sup +} clock has been estimated precisely. The computed shift relative to the frequency of the 3s{sup 2} {sup 1}S{sub 0}{sup e}{yields}3s3p {sup 3}P{sub 0}{sup o} clock transition given by (-3.66{+-}0.60)x10{sup -18} calls for an improvement over the recent measurement with a reported result of (-9{+-}3)x10{sup -18}[Phys. Rev. Lett. 104, 070802 (2010)].

  10. The Saga of Light-Matter Interaction and Magneto-optical Effects Applications to Atomic Magnetometry, Laser-cooled Atoms, Atomic Clocks, Geomagnetism, and Plant Bio-magnetism

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.

    The quest to expand the limited sensorial domain, in particular to bridge the inability to gauge magnetic fields near and far, has driven the fabrication of remedial tools. The interaction of ferromagnetic material with a magnetic field had been the only available technique to gauge that field for several millennium. The advent of electricity and associated classical phenomena captured in the four Maxwell equations, were a step forward. In the early 1900s, the model of quantum mechanics provided a two-way leap forward. One came from the newly understood interaction of light and matter, and more specifically the three-way coupling of photons, atoms' angular momenta, and magnetic field, which are the foundations of atomic magnetometry. The other came from magnetically sensitive quantum effects in a fabricated energy-ladder form of matter cooled to a temperature below that of the energy steps; these quantum effects gave rise to the superconducting quantum interference device (SQUID). Research using atomic magnetometers and SQUIDs has resulted in thousands of publications, text books, and conferences. The current status in each field is well described in Refs. [48,49,38,42] and all references therein. In this work we develop and investigate techniques and applications pertaining to atomic magnetometry. [Full text: eric.corsini gmail.com].

  11. VCSEL polarization control for chip-scale atomic clocks.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Wendt, Joel Robert; Serkland, Darwin Keith; Keeler, Gordon Arthur

    2007-01-01

    Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

  12. Pressure sensitivity of the vapor-cell atomic clock.

    PubMed

    Iyanu, Gebriel; Wang, He; Camparo, James

    2009-06-01

    Although atomic clocks have very low levels of frequency instability, they are nonetheless sensitive (albeit slightly) to various environmental parameters, including temperature, power supply voltage, and dc magnetic fields. In the terrestrial environment, however, atmospheric pressure (i.e., the air's molecular density) is not generally included in this list, because the air's density variations near the surface of the earth will typically have a negligible effect on the clock's performance. The situation is different, however, for clocks onboard satellites like Galileo, where manufacturing and testing are done at atmospheric pressure, while operation is in vacuum. The pressure sensitivity of atomic clocks, in particular vapor-cell atomic clocks, can therefore be of significance. Here, we discuss some of the ways in which changes in atmospheric pressure affect vapor-cell atomic clocks, and we demonstrate that, for one device, the pressure-sensitivity traces back to a pressure-induced change in the temperature of the clock's filter and resonance cells.

  13. Development of a compact cold-atom atomic clock based on coherent population trapping

    NASA Astrophysics Data System (ADS)

    Blanshan, Eric M.

    Field-grade atomic clocks capable of primary standard performance in compact physics packages would be of significant value in a variety of applications ranging from network synchronization and secure communications to GPS hold-over and inertial navigation. A cold-atom coherent population trapping (CACPT) clock featuring laser-cooled atoms and pulsed Ramsey interrogation is a strong candidate for this technology if the principal frequency shifts can be controlled and the performance degradation associated with miniaturization can be overcome. In this thesis, research focused on the development of this type of compact atomic clock is presented. To address the low atom numbers obtained in small cold-atom sources, experiments were performed in which an atomic beam was decelerated with bichromatic stimulated laser forces and loaded into a mm-scale magneto-optical trap, increasing the atom number by a factor of 12.5. A CACPT clock using the high-contrast lin||lin optical interrogation technique was developed and achieved a stability of 7 x 10-13 after one hour of integration. Doppler shifts in the clock are explained using a simple kinematic model and canceled by interrogating the atoms with a counter-propagating CPT configuration. Finally, a thorough characterization of the AC-stark effect in lin||lin CPT was performed. Observed shifts are explained in terms of contributions from coherent CPT-generating couplings and population transfer effects caused by optical pumping from incoherent light. Measurements are compared with existing and new theoretical treatments, and a laser configuration is identified that reduces clock drift from light shifts to less than 10-14 for the current system.

  14. Atomic clocks with suppressed blackbody radiation shift.

    PubMed

    Yudin, V I; Taichenachev, A V; Okhapkin, M V; Bagayev, S N; Tamm, Chr; Peik, E; Huntemann, N; Mehlstäubler, T E; Riehle, F

    2011-07-15

    We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a "synthetic" frequency ν(syn) ∝ (ν1 - ε12ν2) largely immune to the blackbody radiation shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10(-18) in a broad interval near room temperature (300±15  K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency ν(syn) is generated as one of the components of the comb spectrum.

  15. Recent atomic clock comparisons at NIST

    NASA Astrophysics Data System (ADS)

    Lorini, L.; Ashby, N.; Brusch, A.; Diddams, S.; Drullinger, R.; Eason, E.; Fortier, T.; Hastings, P.; Heavner, T.; Hume, D.; Itano, W.; Jefferts, S.; Newbury, N.; Parker, T.; Rosenband, T.; Stalnaker, J.; Swann, W.; Wineland, D.; Bergquist, J.

    2008-10-01

    The record of atomic clock frequency comparisons at NIST over the past half-decade provides one of the tightest constraints of any present-day temporal variations of the fundamental constants. Notably, the 6-year record of increasingly precise measurements of the absolute frequency of the Hg+ single-ion optical clock (using the cesium primary frequency standard NIST-F1) constrains the temporal variation of the fine structure constant α to less than 2 · 10-6yr-1 and offers a Local Position Invariance test in the framework of General Relativity. The most recent measurement of the frequency ratio of the Al+ and Hg+ optical clocks is reported with a fractional frequency uncertainty of ±5.2 · 10-17. The record of such measurements over the last year sensitively tests for a temporal variation of α and constrains dot{α}/α = (-1.6 ± 2.3) . 10^{-17} yr^{-1}, consistent with zero.

  16. Intense, narrow atomic-clock resonances.

    PubMed

    Jau, Y-Y; Post, A B; Kuzma, N N; Braun, A M; Romalis, M V; Happer, W

    2004-03-19

    We present experimental and theoretical results showing that magnetic resonance transitions from the "end" sublevels of maximum or minimum spin in alkali-metal vapors are a promising alternative to the conventional 0-0 transition for small-size gas-cell atomic clocks. For these "end resonances," collisional spin-exchange broadening, which often dominates the linewidth of the 0-0 resonance, decreases with increasing spin polarization and vanishes for 100% polarization. The end resonances also have much stronger signals than the 0-0 resonance, and are readily detectable in cells with high buffer-gas pressure.

  17. Testing General Relativity with Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Reynaud, S.; Salomon, C.; Wolf, P.

    2009-12-01

    We discuss perspectives for new tests of general relativity which are based on recent technological developments as well as new ideas. We focus our attention on tests performed with atomic clocks and do not repeat arguments present in the other contributions to the present issue (Space Sci. Rev. 2009, This Issue). In particular, we present the scientific motivations of the space projects ACES (Salomon et al. in CR Acad. Sci. IV-2:1313, 2001) and SAGAS (Wolf et al. in Exp. Astron. 23:651, 2009).

  18. The chip-scale atomic clock : prototype evaluation.

    SciTech Connect

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert; Serkland, Darwin Keith; Tepolt, Gary; Geib, Kent Martin; Leblanc, John; Peake, Gregory Merwin; Rashid, Ahmed

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  19. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  20. The dynamic Allan Variance IV: characterization of atomic clock anomalies.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2015-05-01

    The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies.

  1. The Sr optical lattice clock at JILA: A new record in atomic clock performance

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Bloom, Benjamin; Williams, Jason; Campbell, Sara; Bishof, Michael; Zhang, Xibo; Zhang, Wei; Bromley, Sarah; Hutson, Ross; McNally, Rees; Ye, Jun

    2014-05-01

    The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by highly accurate atomic clocks. Optical clocks have been the most accurate frequency standards for the better part of a decade, surpassing even the cesium microwave fountains upon which the SI second is based. Two classes of optical clocks have outperformed cesium: single-ion clocks and optical lattice clocks. Historically ion clocks have always been more accurate, and the precision of ion clocks and lattice clocks has been comparable. For years it has been unclear if lattice clocks can overcome key systematics and become more accurate than ion clocks. In this presentation I report the first lattice clock that has surpassed ion clocks in both precision and accuracy. These measurements represent a tenfold improvement in precision and a factor of 20 improvement in accuracy over the previous best lattice clock results. This work paves the way for a better realization of SI units, the development of more sophisticated quantum sensors, and precision tests of the fundamental laws of nature.

  2. Using Clocks and Atomic Interferometry for Gravity Field Observations

    NASA Astrophysics Data System (ADS)

    Müller, Jürgen

    2016-07-01

    New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.

  3. Suppressing Loss of Ions in an Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2010-01-01

    An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and

  4. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    DTIC Science & Technology

    2011-06-24

    Resolved Atomic Interaction Sidebands in an Optical Clock Transition M. Bishof,1 Y. Lin,1 M.D. Swallows,1 A.V. Gorshkov,2 J. Ye,1 and A.M. Rey1 1JILA...Institute of Technology, Pasadena, California 91125, USA (Received 4 February 2011; published 22 June 2011) We report the observation of resolved atomic ...interaction sidebands (ISB) in the 87Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice

  5. Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection.

    PubMed

    Tan, Bozhong; Tian, Yuan; Lin, Huifang; Chen, Jiehua; Gu, Sihong

    2015-08-15

    We propose and investigate a scheme for differential detection of the magneto-optic rotation (MOR) effect, where a linearly polarized bichromatic laser field is coherent population-trapping (CPT)-resonant with alkali atoms, and discuss the application of this effect to CPT-based atomic clocks. The results of our study indicate that laser noise in a vertical cavity surface-emitting laser-based CPT atomic clock can be effectively suppressed by the proposed scheme. The proposed scheme promises to realize a packaged MOR-CPT atomic clock that has significantly better frequency stability coupled with similar power consumption, volume, and cost when compared with currently available packaged CPT atomic clocks.

  6. Limitations on long-term stability and accuracy in atomic clocks

    NASA Technical Reports Server (NTRS)

    Wineland, D. J.

    1979-01-01

    The limits to accuracy and long term stability in present atomic clocks are examined. Recent proposals for new frequency standards are discussed along with the advantages and disadvantages of frequency standards based on such ideas as laser transitions, single atoms, and atom cooling. The applicability of some of these new techniques to existing standards is examined.

  7. Preliminary results of the trapped atom clock on a chip.

    PubMed

    Lacroute, Clement; Reinhard, Friedemann; Ramirez-Martinez, Fernando; Deutsch, Christian; Schneider, Tobias; Reichel, Jakob; Rosenbusch, Peter

    2010-01-01

    We present an atomic clock based on the interrogation of magnetically trapped (87)Rb atoms. Two photons, in the microwave and radiofrequency domain, excite the clock transition. At a magnetic field of 3.23 G the clock transition from |F = 1, m(F) = -1> to |F = 2, m(F) = 1> is 1st-order insensitive to magnetic field variations. Ramsey interrogation times longer than 2 s can be achieved, leading to a projected clock stability in the low 10(-13) at 1 s for a cloud of 10(5) atoms. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package as small as (5 cm)(3). We describe the experimental setup and show preliminary Ramsey fringes of line width 1.25 Hz.

  8. Improvement of an Atomic Clock using Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Kruse, I.; Lange, K.; Peise, J.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Lisdat, C.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-09-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05-0.37 +0 .34 dB . The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

  9. Detection of atomic clock frequency jumps with the Kalman filter.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2012-03-01

    Frequency jumps are common anomalies in atomic clocks aboard navigation system satellites. These anomalous behaviors must be detected quickly and accurately to minimize the impact on user positioning. We develop a detector for frequency jumps based on the Kalman filter. Numerical simulations show that the detector is fast, with high probability of detection and low probability of false alarms. It also has a low computational cost because it takes advantage of the recursive nature of the Kalman filter. Therefore, it can be used in applications in which little computational power is available, such as aboard navigation system satellites.

  10. Ultrastable optical clock with two cold-atom ensembles

    NASA Astrophysics Data System (ADS)

    Schioppo, M.; Brown, R. C.; McGrew, W. F.; Hinkley, N.; Fasano, R. J.; Beloy, K.; Yoon, T. H.; Milani, G.; Nicolodi, D.; Sherman, J. A.; Phillips, N. B.; Oates, C. W.; Ludlow, A. D.

    2017-01-01

    Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with the 'dead' time required for quantum state preparation and readout. This non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise from the laser interrogating the atomic transition. Despite recent advances in optical clock stability that have been achieved by improving laser coherence, the Dick effect has continually limited the performance of optical clocks. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock that is based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability assessed to be for an averaging time τ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor of Q > 4 × 1015.

  11. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains.

    PubMed

    Hafele, J C; Keating, R E

    1972-07-14

    During October 1971, four cesium beam atomic clocks were flown on regularly scheduled commercial jet flights around the world twice, once eastward and once westward, to test Einstein's theory of relativity with macroscopic clocks. From the actual flight paths of each trip, the theory predicts that the flying clocks, compared with reference clocks at the U.S. Naval Observatory, should have lost 40 +/- 23 nanoseconds during the eastward trip, and should have gained 275 +/- 21 nanoseconds during the westward trip. The observed time differences are presented in the report that follows this one.

  12. Experimental constraint on dark matter detection with optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Morzyński, P.; Bober, M.; Cygan, A.; Lisak, D.; Ciuryło, R.; Zawada, M.

    2016-12-01

    The total mass density of the Universe appears to be dominated by dark matter. However, beyond its gravitational interactions at the galactic scale, little is known about its nature1. Several proposals have been advanced in recent years for the detection of dark matter2-4. In particular, a network of atomic clocks could be used to search for transient indicators of hypothetical dark matter5 in the form of stable topological defects; for example, monopoles, strings or domain walls6. The clocks become desynchronized when a dark-matter object sweeps through the network. This pioneering approach5 requires a comparison between at least two distant optical atomic clocks7-9. Here, by exploiting differences in the susceptibilities of the atoms and the cavity to the fine-structure constant10,11, we show that a single optical atomic clock12 is already sensitive to dark-matter events. This implies that existing optical atomic clocks13,14 can serve as a global topological-defect dark-matter observatory, without any further developments in experimental apparatus or the need for long phase-noise-compensated optical-fibre links15. Using optical atomic clocks, we explored a new dimension of astrophysical observations by constraining the strength of atomic coupling to hypothetical dark-matter cosmic objects. Under the conditions of our experiments, the degree of constraint was found to exceed the previously reported limits16 by more than three orders of magnitude.

  13. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  14. High-stability compact atomic clock based on isotropic laser cooling

    SciTech Connect

    Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas; Guerandel, Stephane; Dimarcq, Noel

    2010-09-15

    We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such a high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.

  15. Spin Squeezing on AN Atomic-Clock Transition

    NASA Astrophysics Data System (ADS)

    Schleier-Smith, Monika H.; Leroux, Ian D.; Vuletić, Vladan

    2009-03-01

    We generate input states with reduced quantum uncertainty (spin-squeezed states) for a hyperfine atomic clock by collectively coupling an ensemble of laser-cooled and trapped 87Rb atoms to an optical resonator. A quantum non-demolition measurement of the population difference between the two clock states with far-detuned light produces an entangled state whose projection noise is reduced by as much as 9.4(8) dB below the standard quantum limit (SQL) for uncorrelated atoms. When the observed decoherence is taken into account, we attain 4.2(8) dB of spin squeezing, confirming entanglement, and 3.2(8) dB of improvement in clock precision over the SQL. The method holds promise for improving the performance of optical-frequency clocks.

  16. An Analysis of the Stationary Operation of Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Fraas, Martin

    2016-12-01

    We develop an abstract model of atomic clocks that fully describes the dynamics of repeated synchronization between a classical oscillator and a quantum reference. We prove existence of a stationary state of the model and study its dependence on the control scheme, the interrogation time and the stability of the oscillator. For unbiased atomic clocks, we derive a fundamental bound on atomic clocks long time stability for a given local oscillator noise. In particular, we show that for a local oscillator noise with integrated frequency variance scaling as {T^α} for short times T, the optimal clock time variance scales as {F^{-(α +1)/(α +2)}} with respect to the quantum Fisher information, F, associated to the quantum reference. In an attempt to prove the bounds without the unbiasedness assumption, we derive a new Cramer-Rao type inequality.

  17. New frequency ratios with a PHz-scale atomic clock

    NASA Astrophysics Data System (ADS)

    McFerran, J. J.

    2016-11-01

    Atomic clocks are a tour de force when it comes to rigorous tests of measurement. The ultimate validation of one’s careful assessments is to find agreement on a given parameter with a completely independent laboratory. Frequency ratios between clock transitions of different atomic species make for quintessential tests of measurement precision. Tyumenev et al (2016 New J. Phys. 18 113002) report on frequency ratio measurements between a 199Hg optical lattice clock and three other atomic frequency standards: 133Cs, 87Rb and 87Sr, two of which are unprecedented in accuracy. Most notable is the level of agreement for the 199Hg/87Sr frequency ratio found between two independent laboratories at 1.7× {10}-16; further indication that optical lattice clocks are fulfilling their early expectations.

  18. The Rubidium Atomic Clock and Basic Research

    DTIC Science & Technology

    2007-12-10

    is electronically tied to vhls . The first step is to multiply the output of a voltage- controlled crystal oscillator (VCXO) by a factor M to create a...provides a convenient means of making slight adjustments to vhls and thereby the clock’s frequency. (Though vhfs may be stable, it can be slightly...lock vxtt| to vhls . The most striking feature of the CPT clock is that the microwave cavity is eliminated, which allows a great reduction in size

  19. Micromagic Clock: Microwave Clock Based on Atoms in an Engineered Optical Lattice

    SciTech Connect

    Beloy, K.; Derevianko, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-03-27

    We propose a new class of atomic microwave clocks based on the hyperfine transitions in the ground state of aluminum or gallium atoms trapped in optical lattices. For such elements magic wavelengths exist at which both levels of the hyperfine doublet are shifted at the same rate by the lattice laser field, canceling its effect on the clock transition. A similar mechanism for the magic wavelengths may work in microwave hyperfine transitions in other atoms which have the fine-structure multiplets in the ground state.

  20. Light shifts in a pulsed cold-atom coherent-population-trapping clock

    NASA Astrophysics Data System (ADS)

    Blanshan, E.; Rochester, S. M.; Donley, E. A.; Kitching, J.

    2015-04-01

    Field-grade atomic clocks capable of primary standard performance in compact physics packages would be of significant value in applications ranging from network synchronization to inertial navigation. A coherent-population-trapping clock featuring laser-cooled 87Rb atoms and pulsed Ramsey interrogation is a strong candidate for this technology if the frequency biases can be minimized and controlled. Here we characterize the light shift in a cold-atom coherent-population-trapping clock, explaining observed shifts in terms of phase shifts that arise during the formation of dark-state coherences combined with optical-pumping effects caused by unwanted incoherent light in the interrogation spectrum. Measurements are compared with existing and new theoretical treatments, and a laser configuration is identified that would reduce clock frequency uncertainty from light shifts to a fractional frequency level of Δ ν /ν =4 ×10-14 per 100 kHz of laser frequency uncertainty.

  1. Atomic clock based on transient coherent population trapping

    SciTech Connect

    Guo Tao; Deng Ke; Chen Xuzong; Wang Zhong

    2009-04-13

    We proposed a scheme to implement coherent population trapping (CPT) atomic clock based on the transient CPT phenomenon. We proved that the transient transmitted laser power in a typical {lambda} system near CPT resonance features as a damping oscillation. Also, the oscillating frequency is exactly equal to the frequency detuning from the atomic hyperfine splitting. Therefore, we can directly measure the frequency detuning and then compensated to the output frequency of microwave oscillator to get the standard frequency. By this method, we can further simplify the structure of CPT atomic clock, and make it easier to be digitized and miniaturized.

  2. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  3. Analysis of Atom-Interferometer Clocks

    DTIC Science & Technology

    2014-01-21

    time difference between the two paths, although it has an ambiguous origin in the nonrelativistic limit and it requires a full quantum -field-theory...to his pilot-wave theory of quantum mechanics [2]. Despite the success of the theory of matter waves, the idea of an internal clock for a massive...experiments [5]. In a recent book, Penrose claims that a stable, massive particle behaves as a very precise quantum clock, “oscillating” at ω0/(2π ) [6]. Yet

  4. An Optical Lattice Clock with Spin 1/2 Atoms

    DTIC Science & Technology

    2012-01-01

    89 4.4 Vector Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90...ytterbium atoms The first proposal for an optical lattice clock called for spectroscopy of a narrow optical tran- sition in ultracold strontium atoms [40...Since then, experimental groups have begun researching not only strontium (Sr) [70, 71, 72, 73, 74], but also ytterbium (Yb) [75, 76, 77, 78, 79] and

  5. Modeling of atomic systems for atomic clocks and quantum information

    NASA Astrophysics Data System (ADS)

    Arora, Bindiya

    This dissertation reports the modeling of atomic systems for atomic clocks and quantum information. This work is motivated by the prospects of optical frequency standards with trapped ions and the quantum computation proposals with neutral atoms in optical lattices. Extensive calculations of the electric-dipole matrix elements in monovalent atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np1/2, np 3/2 states and a large number of excited states of alkali-metal atoms are evaluated using the all-order method. For Ca+ ion, additional allowed transitions between nd5/2, np 3/2, nf5/2, nf 7/2 states and a large number of excited states are evaluated. We combine D1 lines measurements by Miller et al. [18] with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4pj - 3d j' transitions in K and for the 5pj - 4dj' transitions in Rb to high precision. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of ground state of alkali atoms. Our values of static polarizabilities are found to be in excellent agreement with available experiments. Calculations were done for the wavelength in the range 300--1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency. We present results of all-order calculations of static and frequency-dependent polarizabilities of excited np1/2 and np3

  6. Three-photon-absorption resonance for all-optical atomic clocks

    SciTech Connect

    Zibrov, Sergei; Novikova, Irina; Phillips, David F.; Taichenachev, Aleksei V.; Yudin, Valeriy I.; Walsworth, Ronald L.; Zibrov, Alexander S.

    2005-07-15

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D{sub 1} line of {sup 87}Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications.

  7. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms.

    PubMed

    Kómár, P; Topcu, T; Kessler, E M; Derevianko, A; Vuletić, V; Ye, J; Lukin, M D

    2016-08-05

    We propose a protocol for creating a fully entangled Greenberger-Horne-Zeilinger-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.

  8. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Kómár, P.; Topcu, T.; Kessler, E. M.; Derevianko, A.; Vuletić, V.; Ye, J.; Lukin, M. D.

    2016-08-01

    We propose a protocol for creating a fully entangled Greenberger-Horne-Zeilinger-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.

  9. Remote atomic clock synchronization via satellites and optical fibers

    NASA Astrophysics Data System (ADS)

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-07-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at the Physikalisch-Technische Bundesanstalt (PTB) without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 40 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of Coordinated Universal Time UTC. Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems.

  10. Improvement of an Atomic Clock using Squeezed Vacuum.

    PubMed

    Kruse, I; Lange, K; Peise, J; Lücke, B; Pezzè, L; Arlt, J; Ertmer, W; Lisdat, C; Santos, L; Smerzi, A; Klempt, C

    2016-09-30

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05_{-0.37}^{+0.34}  dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

  11. Heisenberg-limited atom clocks based on entangled qubits.

    PubMed

    Kessler, E M; Kómár, P; Bishof, M; Jiang, L; Sørensen, A S; Ye, J; Lukin, M D

    2014-05-16

    We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.

  12. Accurate Optical Lattice Clock with {sup 87}Sr Atoms

    SciTech Connect

    Le Targat, Rodolphe; Baillard, Xavier; Fouche, Mathilde; Brusch, Anders; Tcherbakoff, Olivier; Rovera, Giovanni D.; Lemonde, Pierre

    2006-09-29

    We report a frequency measurement of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition of {sup 87}Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2x10{sup -13}, i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

  13. Compact optical system for cesium atomic fountain clock

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Ruan, Jun; Shi, Junru; Yu, Fengxiang; Zhang, Hui; Wang, Xinliang; Zhang, Shougang

    2016-09-01

    The optical system plays a significant role to cesium atomic fountain clocks, which manipulates and detects population of cesium atoms. This paper presents a compact optical system for cesium atomic fountain clocks. The optical system provides two beams with 32mW separately for cooling atoms and six beams of 12mW respectively for trapping atoms with the frequency tuning from 80MHz to 220MHz. The relative intensity noise of the detect laser beam reduces from 1.33×10-6 Hz to 1.52×10-10 Hz at 1Hz by the laser power stabilization system. The optical system operates continuously for 30 days with the fluctuation of optical power less than 3% approximately. And the frequency stability is 3×10-15 at 1000s. The results show the optical system satisfies with the needs of our cesium atomic fountain clock developed and establishes the foundation for cesium atomic fountain continuous operation.

  14. The First Atomic Clock Program: NBS, 1947-1954

    DTIC Science & Technology

    1985-12-03

    affiliated with Columbia and NBS, spoke on the *Ultimate Accuracy of an Atomic Clock Using Absorption Lines,8 while George Gamow , then still at George ...167, General Records of T. Howard Dellinger -- hereinafter NA DG -- Box 97); ,’Annual report,’ 1946.6.30. W.D. George , H. Lyons, J.J. Freeman, J.M

  15. The Deep Space Atomic Clock: Ushering in a New Paradigm for Radio Navigation and Science

    NASA Technical Reports Server (NTRS)

    Ely, Todd; Seubert, Jill; Prestage, John; Tjoelker, Robert

    2013-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the on-orbit performance of a high-accuracy, high-stability miniaturized mercury ion atomic clock during a year-long experiment in Low Earth Orbit. DSAC's timing error requirement provides the frequency stability necessary to perform deep space navigation based solely on one-way radiometric tracking data. Compared to a two-way tracking paradigm, DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC also enables fully-autonomous onboard navigation useful for time-sensitive situations. The technology behind the mercury ion atomic clock and a DSAC mission overview are presented. Example deep space applications of DSAC, including navigation of a Mars orbiter and Europa flyby gravity science, highlight the benefits of DSAC-enabled one-way Doppler tracking.

  16. The potential of continuous, local atomic clock measurements for earthquake prediction and volcanology

    NASA Astrophysics Data System (ADS)

    Bondarescu, Mihai; Bondarescu, Ruxandra; Jetzer, Philippe; Lundgren, Andrew

    2015-05-01

    Modern optical atomic clocks along with the optical fiber technology currently being developed can measure the geoid, which is the equipotential surface that extends the mean sea level on continents, to a precision that competes with existing technology. In this proceeding, we point out that atomic clocks have the potential to not only map the sea level surface on continents, but also look at variations of the geoid as a function of time with unprecedented timing resolution. The local time series of the geoid has a plethora of applications. These include potential improvement in the predictions of earthquakes and volcanoes, and closer monitoring of ground uplift in areas where hydraulic fracturing is performed.

  17. Atomic Clock Based on Opto-Electronic Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2005-01-01

    A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a

  18. Double-resonance spectroscopy in Rubidium vapour-cells for high performance and miniature atomic clocks

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Mileti, G.

    2017-01-01

    We report our studies on using microwave-optical double-resonance (DR) spectroscopy for a high-performance Rb vapour-cell atomic clock in view of future industrial applications. The clock physics package is very compact with a total volume of only 0.8 dm3. It contains a recently in-house developed magnetron-type cavity and a Rb vapour cell. A homed-made frequency-stabilized laser system with an integrated acousto-optical-modulator (AOM) – for switching and controlling the light output power– is used as an optical source in a laser head (LH). The LH has the overall volume of 2.5 dm3 including the laser diode, optical elements, AOM and electronics. In our Rb atomic clock two schemes of continuous-wave DR and Ramsey-DR schemes are used, where the latter one strongly reduces the light-shift effect by separation of the interaction of light and microwave. Applications of the DR clock approach to more radically miniaturized atomic clocks are discussed.

  19. Applications of Clocks to Space Navigation & "Planetary GPS"

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    2004-01-01

    The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.

  20. Portable compact cold atoms clock topology

    NASA Astrophysics Data System (ADS)

    Pechoneri, R. D.; Müller, S. T.; Bueno, C.; Bagnato, V. S.; Magalhães, D. V.

    2016-07-01

    The compact frequency standard under development at USP Sao Carlos is a cold atoms system that works with a distributed hardware system principle and temporal configuration of the interrogation method of the atomic sample, in which the different operation steps happen in one place: inside the microwave cavity. This type of operation allows us to design a standard much more compact than a conventional one, where different interactions occur in the same region of the apparatus. In this sense, it is necessary to redefine all the instrumentation associated with the experiment. This work gives an overview of the topology we are adopting for the new system.

  1. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    SciTech Connect

    Bishof, M.; Lin, Y.; Swallows, M. D.; Ye, J.; Rey, A. M.; Gorshkov, A. V.

    2011-06-24

    We report the observation of resolved atomic interaction sidebands (ISB) in the {sup 87}Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.

  2. PTTI 2030 - System Applications of Advanced Clocks

    DTIC Science & Technology

    2010-11-01

    earth quakes, volcanoes , and tsunamis. REPLACEMENT OF CELL -PHONE BACK-HAUL TIMING Though recent advances in miniature atomic clocks have...contact with other soldiers, ships, tanks, and bases. The super - ruggedized construction of each DeSoLoS can withstand the catastrophic events of war

  3. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  4. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    SciTech Connect

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  5. Synchronization of active atomic clocks via quantum and classical channels

    NASA Astrophysics Data System (ADS)

    Roth, Alexander; Hammerer, Klemens

    2016-10-01

    Superradiant lasers based on atomic ensembles exhibiting ultranarrow optical transitions can emit light of unprecedented spectral purity and may serve as active atomic clocks. We consider two frequency-detuned active atomic clocks, which are coupled in a cascaded setup, i.e., as master and slave lasers, and study the synchronization of the slave to the master clock. In a setup where both atomic ensembles are coupled to a common cavity mode, such synchronization phenomena have been predicted by Xu et al. [M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014)., 10.1103/PhysRevLett.113.154101] and experimentally observed by Weiner et al. (J. M. Weiner et al., arXiv:1503.06464). Here we demonstrate that synchronization still occurs in cascaded setups but exhibits distinctly different phase diagrams. We study the characteristics of synchronization in comparison to the case of coupling through a common cavity. We also consider synchronization through a classical channel where light of the master laser is measured phase sensitively and the slave laser is injection locked by feedback and compare to the results achievable by coupling through quantum channels.

  6. Predictions for collisional frequency shifts of ultracold rubidium atomic clocks

    NASA Astrophysics Data System (ADS)

    Kokkelmans, S. J. J. M. F.; Verhaar, B. J.; Heinzen, D. J.; Gibble, K.

    1997-04-01

    A few years ago atomic fountains using cold ^133Cs atoms led to a breakthrough in the field of atomic frequency standards(A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, Europhys. Lett. 16), 165 (1991); K. Gibble and S. Chu, Phys. Rev. Lett. 70, 1771 (1993).. It was soon found that the frequency shifts induced by collisions between atoms during their fountain orbit stand in the way to drawing the full benefits from this development. A possible way out is to switch to another atomic species(K. Gibble and B.J. Verhaar, Phys. Rev. A 52), 3370 (1995).. Recent experiments have made it possible to determine cold collision parameters for pairs of rubidium atoms with unprecedented accuracy(J.M. Vogels, C.C. Tsai, R.S. Freeland, S.J.J.M.F. Kokkelmans, B.J. Verhaar, and D.J. Heinzen (submitted).). Making use of these parameters we predict the collisional frequency shifts for a ^87Rb and a ^85Rb laser-cooled clock. Our results show the prospects for new atomic clocks based on ultracold rubidium to be promising.

  7. Development of a strontium optical lattice clock for space applications

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and

  8. Quantum magnetometers as a base for atomic clock

    NASA Astrophysics Data System (ADS)

    Sagitov, E. A.; Ermak, S. V.; Petrenko, M. V.; Semenov, V. V.

    2016-11-01

    The possibility of the atomic clock based on two quantum magnetometer system development is demonstrated. One of the magnetometers is self-oscillation type, another is Mz- type magnetometer based on end-state UHF resonance. The laser pumping of 87Rb atoms placed into antirelaxation coated sell is provided. The magnetometers frequency difference fluctuations experimental results are represented and Allan deviation is determined. The role of the radio-optical resonance frequency light shift different components is denoted for the determination of the quantum magnetometers optimal operation mode. The effect of the light shift compensation is demonstrated.

  9. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  10. Time scale algorithms for an inhomogeneous group of atomic clocks

    NASA Technical Reports Server (NTRS)

    Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.

    1993-01-01

    Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.

  11. Atomic clock transitions in silicon-based spin qubits.

    PubMed

    Wolfowicz, Gary; Tyryshkin, Alexei M; George, Richard E; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Lyon, Stephen A; Morton, John J L

    2013-08-01

    A major challenge in using spins in the solid state for quantum technologies is protecting them from sources of decoherence. This is particularly important in nanodevices where the proximity of material interfaces, and their associated defects, can play a limiting role. Spin decoherence can be addressed to varying degrees by improving material purity or isotopic composition, for example, or active error correction methods such as dynamic decoupling (or even combinations of the two). However, a powerful method applied to trapped ions in the context of atomic clocks is the use of particular spin transitions that are inherently robust to external perturbations. Here, we show that such 'clock transitions' can be observed for electron spins in the solid state, in particular using bismuth donors in silicon. This leads to dramatic enhancements in the electron spin coherence time, exceeding seconds. We find that electron spin qubits based on clock transitions become less sensitive to the local magnetic environment, including the presence of (29)Si nuclear spins as found in natural silicon. We expect the use of such clock transitions will be of additional significance for donor spins in nanodevices, mitigating the effects of magnetic or electric field noise arising from nearby interfaces and gates.

  12. A new trapped ion atomic clock based on 201Hg+.

    PubMed

    Burt, Eric A; Taghavi-Larigani, Shervin; Tjoelker, Robert L

    2010-03-01

    High-resolution spectroscopy has been performed on the ground-state hyperfine transitions in trapped (201)Hg+ ions as part of a program to investigate the viability of (201)Hg+ for clock applications. Part of the spectroscopy work was directed at magnetic-field-sensitive hyperfine lines with delta m(F) = 0, which allow accurate Doppler-free measurement of the magnetic field experienced by the trapped ions. Although it is possible to measure Doppler-free magnetic-field-sensitive transitions in the commonly used clock isotope, (199)Hg+, it is more difficult. In this paper, we discuss how this (199)Hg+ feature may be exploited to produce a more stable clock or one requiring less magnetic shielding in environments with magnetic field fluctuations far in excess of what is normally found in the laboratory. We have also determined that in discharge-lamp-based trapped mercury ion clocks, the optical pumping time for (201)Hg+ is about 3 times shorter than that of (199)Hg+ This can be used to reduce dead time in the interrogation cycle for these types of clocks, thereby reducing the impact of local oscillator noise aliasing effects.

  13. Stability of a trapped-atom clock on a chip

    NASA Astrophysics Data System (ADS)

    Szmuk, R.; Dugrain, V.; Maineult, W.; Reichel, J.; Rosenbusch, P.

    2015-07-01

    We present a compact atomic clock interrogating ultracold 87Rb magnetically trapped on an atom chip. Very long coherence times sustained by spin self-rephasing allow us to interrogate the atomic transition with 85% contrast at 5-s Ramsey time. The clock exhibits a fractional frequency stability of 5.8 ×10-13 at 1 s and is likely to integrate into the 10-15 range in less than a day. A detailed analysis of seven noise sources explains the measured frequency stability. Fluctuations in the atom temperature (0.4 nK shot-to-shot) and in the offset magnetic field (5 ×10-6 relative fluctuations shot-to-shot) are the main noise sources together with the local oscillator, which is degraded by the 30% duty cycle. The analysis suggests technical improvements to be implemented in a future second generation setup . The results demonstrate the remarkable degree of technical control that can be reached in an atom chip experiment.

  14. Ultracold Molecules in Optical Lattices: Efficient Production and Application to Molecular Clocks

    DTIC Science & Technology

    2015-05-03

    SECURITY CLASSIFICATION OF: We have established the strontium molecular clock as the leading ultracold-molecule precision measurement platform. We...Production And Application to Molecular Clocks Report Title We have established the strontium molecular clock as the leading ultracold-molecule precision...experiment are creation and precise spectroscopy of ultracold alkaline-earth- metal atom dimers composed of two bosonic isotopes of strontium , 88Sr2. The

  15. A high-performance Raman-Ramsey Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Yun, Peter; Guérandel, Stéphane; de Clercq, Emeric; Boudot, Rodolphe

    2017-03-01

    We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impact of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature, and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by 1 / ( 2 T R ) , with TR the free-evolution time, for short values of TR. The clock demonstrates a short-term fractional frequency stability at the level of 2.3 × 10 - 13 τ - 1 / 2 up to 100 s averaging time, mainly limited by the laser amplitude modulation noise. Comparable performances are obtained in the conventional continuous wave regime, with the use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of TR. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.

  16. Gravitational wave detection with optical lattice atomic clocks

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Pikovski, I.; Langellier, N.; Lukin, M. D.; Walsworth, R. L.; Ye, J.

    2016-12-01

    We propose a space-based gravitational wave (GW) detector consisting of two spatially separated, drag-free satellites sharing ultrastable optical laser light over a single baseline. Each satellite contains an optical lattice atomic clock, which serves as a sensitive, narrowband detector of the local frequency of the shared laser light. A synchronized two-clock comparison between the satellites will be sensitive to the effective Doppler shifts induced by incident GWs at a level competitive with other proposed space-based GW detectors, while providing complementary features. The detected signal is a differential frequency shift of the shared laser light due to the relative velocity of the satellites, and the detection window can be tuned through the control sequence applied to the atoms' internal states. This scheme enables the detection of GWs from continuous, spectrally narrow sources, such as compact binary inspirals, with frequencies ranging from ˜3 mHz - 10 Hz without loss of sensitivity, thereby bridging the detection gap between space-based and terrestrial optical interferometric GW detectors. Our proposed GW detector employs just two satellites, is compatible with integration with an optical interferometric detector, and requires only realistic improvements to existing ground-based clock and laser technologies.

  17. 3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks

    NASA Astrophysics Data System (ADS)

    Artieda, Alvaro; Muralt, Paul

    2011-06-01

    Triple layer SiO2/AlN/SiO2 composite thin film bulk acoustic wave resonators (TFBARs) were studied for applications in atomic clocks. The TFBAR's were tuned to 3.4 GHz, corresponding to half the hyperfine splitting of the ground state of rubidium 87Rb atoms. The quality factor (Q) was equal to 2300 and the temperature coefficient of the resonance frequency fr amounted to 1.5 ppm/K. A figure of merit Qfr of ˜ 0.8 × 1013 Hz and a thickness mode coupling factor of 1% were reached. Such figures are ideal for frequency sources in an oscillator circuit that tracks the optical signal in atomic clocks.

  18. 3.4 GHz composite thin film bulk acoustic wave resonator for miniaturized atomic clocks

    SciTech Connect

    Artieda, Alvaro; Muralt, Paul

    2011-06-27

    Triple layer SiO{sub 2}/AlN/SiO{sub 2} composite thin film bulk acoustic wave resonators (TFBARs) were studied for applications in atomic clocks. The TFBAR's were tuned to 3.4 GHz, corresponding to half the hyperfine splitting of the ground state of rubidium {sup 87}Rb atoms. The quality factor (Q) was equal to 2300 and the temperature coefficient of the resonance frequency f{sub r} amounted to 1.5 ppm/K. A figure of merit Qf{sub r} of {approx} 0.8 x 10{sup 13} Hz and a thickness mode coupling factor of 1% were reached. Such figures are ideal for frequency sources in an oscillator circuit that tracks the optical signal in atomic clocks.

  19. Prospect for development of a pulsed CPT Raman Ramsey clock using atomic vapor

    NASA Astrophysics Data System (ADS)

    Pati, Gour S.; Fatemi, Fredrik K.; Bashkansky, Mark; Shahriar, Selim

    2010-02-01

    The phenomenon of all-optical Ramsey interference using pulsed coherent population trapping (CPT) beams provides a new avenue for developing frequency standards using atomic vapor. In this study, we show that frequency narrowed Ramsey fringes can be produced in rubidium vapor without the effect of power broadening. We observed fringes of width as narrow as 1 kHz using a buffer-gas filled rubidium cell. A compact injection-locked laser (ILL) system was used to generate CPT beams. Studies also show that ac Stark effect on Ramsey fringes can be reduced, and higher frequency stability can be achieved in a clock application. The results are encouraging to propose an architecture for development of a pulsed CPT Ramsey clock. In this paper, we also provide related discussions on clock frequency stability, and our plans for future experiments.

  20. Individual Optical Addressing of Atomic Clock Qubits With Stark Shifts

    NASA Astrophysics Data System (ADS)

    Lee, Aaron; Smith, Jacob; Richerme, Phillip; Neyenhuis, Brian; Hess, Paul; Zhang, Jiehang; Monroe, Chris

    2016-05-01

    In recent years, trapped ions have proven to be a versatile quantum information platform, enabled by their long lifetimes and high gate fidelities. Some of the most promising trapped ion systems take advantage of groundstate hyperfine ``clock'' qubits, which are insensitive to background fields to first order. This same insensitivity also makes σz manipulations of the qubit impractical, eliminating whole classes of operations. We prove there exists a fourth-order light shift, or four-photon Stark shift, of the clock states derived from two coherent laser beams whose beatnote is close to the qubit splitting. Using a mode-locked source generates a large light shift with only modest laser powers, making it a practical σz operation on a clock qubit. We experimentally verify and measure the four-photon Stark shift and demonstrate its use to coherently individually address qubits in a chain of 10 Yb 171 ions with low crosstalk. We use this individual addressing to prepare arbitrary product states with high fidelity and also to apply independent σz terms transverse to an Ising Hamiltonian. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  1. Magnetic blackbody shift of hyperfine transitions for atomic clocks

    SciTech Connect

    Berengut, J. C.; Flambaum, V. V.; King-Lacroix, J.

    2009-12-15

    We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium primary reference transition which defines the second. The shift is found to be a complicated function of temperature, and has a T{sup 2} dependence only in the high-temperature limit. We also calculate the shift of ground-state p{sub 1/2} hyperfine transitions which have been proposed as new atomic clock transitions. In this case interaction with the p{sub 3/2} fine-structure multiplet may be the dominant effect.

  2. New Techniques to Test Spin-Gravity Coupling with Atomic Clock

    NASA Technical Reports Server (NTRS)

    Maleki, L.

    2000-01-01

    Recent advances in laser technology have produced the opportunity to realize more stable and accurate atomic clocks, by laser excitation, manipulation and cooling of atoms. In this paper we will describe a new scheme based on the use of lasers with atomic clocks to increase the sensitivity of experimental search for a spin-gravity coupling.

  3. Highly charged ions for atomic clocks, quantum information, and search for α variation.

    PubMed

    Safronova, M S; Dzuba, V A; Flambaum, V V; Safronova, U I; Porsev, S G; Kozlov, M G

    2014-07-18

    We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications.

  4. Collisional shifts in optical-lattice atom clocks

    SciTech Connect

    Band, Y. B.; Vardi, A.

    2006-09-15

    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of {pi} between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.

  5. Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Seubert, Jill; Bell, Julia

    2014-01-01

    NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.

  6. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.

    PubMed

    Knappe, S; Gerginov, V; Schwindt, P D D; Shah, V; Robinson, H G; Hollberg, L; Kitching, J

    2005-09-15

    A novel technique for microfabricating alkali atom vapor cells is described in which alkali atoms are evaporated into a micromachined cell cavity through a glass nozzle. A cell of interior volume 1 mm3, containing 87Rb and a buffer gas, was made in this way and integrated into an atomic clock based on coherent population trapping. A fractional frequency instability of 6 x 10(-12) at 1000 s of integration was measured. The long-term drift of the F=1, mF=0-->F=2, mF=0 hyperfine frequency of atoms in these cells is below 5 x 10(-11)/day.

  7. In situ dissolution or deposition of Ytterbium (Yb) metal in microhotplate wells for a miniaturized atomic clock.

    PubMed

    Manginell, Ronald P; Moorman, Matthew W; Anderson, John M; Burns, George R; Achyuthan, Komandoor E; Wheeler, David R; Schwindt, Peter D D

    2012-10-22

    Current atomic clocks are burdened by size, weight, power and portability limitations to satisfy a broad range of potential applications. One critical need in the fabrication of a miniaturized atomic clock is small, low-power metallic sources. Exploiting the relatively high vapor pressure of ytterbium (Yb) and its dissolution in anhydrous ammonia, we report two independent techniques for depositing Yb inside a well micromachined into a microhotplate. Subsequent in situ evaporation of Yb from the microhotplate well serves as a low-power metallic source suitable for atomic clocks. The deposition and evaporation of Yb were confirmed using a variety of physicochemical techniques including quartz crystal microbalance, scanning electron microscopy, energy dispersive X-ray spectroscopy, and laser fluorescence. We also describe the fabrication of the microhotplate device, an integral component of our Yb-based miniature atomic clock. The Yb deposition/evaporation on a microhotplate well is thus useful as a low power Yb source during the fabrication of a miniaturized atomic clock, and this technique could be used for other applications requiring a vapor of a metal that has a moderate vapor pressure.

  8. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    SciTech Connect

    Zibrov, Sergei A.; Velichansky, Vladimir L.; Novikova, Irina; Phillips, David F.; Walsworth, Ronald L.; Zibrov, Alexander S.; Taichenachev, Alexey V.; Yudin, Valery I.

    2010-01-15

    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D{sub 1} line of {sup 87}Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to approx =25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser-field components. Our theoretical predictions are in good agreement with the experimental results.

  9. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  10. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.

    PubMed

    Taichenachev, A V; Yudin, V I; Ovsiannikov, V D; Pal'chikov, V G

    2006-10-27

    The light-induced frequency shift due to hyperpolarizability (i.e., terms of second-order in intensity) is studied for a forbidden optical transition, J = 0 --> J = 0. A simple universal dependence on the field ellipticity is obtained. This result allows minimization of the second-order light shift with respect to the field polarization for optical lattices operating at a magic wavelength (at which the first-order shift vanishes). We show the possibility for the existence of a magic elliptical polarization, for which the second-order frequency shift vanishes. The optimal polarization of the lattice field can be either linear, circular, or magic elliptical. The obtained results could improve the accuracy of lattice-based atomic clocks.

  11. Improved Tracking of an Atomic-Clock Resonance Transition

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  12. Tests of Local Position Invariance Using Continuously Running Atomic Clocks

    DTIC Science & Technology

    2013-01-22

    7]; (iii) hydrogen hyperfine transition against cesium standard, carried out over 7 years [8]; and (iv) rubidium -87 hyperfine transition against...clocks used for precise time [12], including commercial cesium-beam clocks, hydrogen masers, and recently added rubidium -fountain clocks, which have...The collection of each type of clock can be used to generate one or more stationary outputs representing that ensemble. The rubidium frequency record

  13. High-Accuracy Measure of Atomic Polarizability in an Optical Lattice Clock

    DTIC Science & Technology

    2011-12-11

    AND SUBTITLE Sa. CONTRACT NUMBER High-Accuracy Measurement of Atomic Polarizability in an VV911~-11 - 1 -0202 Optical Lattice Clock Sb. GRANT NUMBER...modem optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we...1,U~ (1,’T, TI~ \\ 1\\ ( ,., ) Tl-.~ ~1 ~~1,1~ +.-~~+: ~~~ 1 ··~~~··+~:~+. • ...1 • • ~ +~ ··~~-~ 1S. SUBJECT TERMS atomic frequency standards

  14. Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment

    NASA Technical Reports Server (NTRS)

    Ashby, N.

    2003-01-01

    The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.

  15. Ultra-stable clock laser system development towards space applications

    NASA Astrophysics Data System (ADS)

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10‑16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3 and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10‑10/g, 5.8 × 10‑10/g and 3.1 × 10‑10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration.

  16. Ultra-stable clock laser system development towards space applications.

    PubMed

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-26

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10(-16) at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm(3); and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm(3). The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10(-10)/g, 5.8 × 10(-10)/g and 3.1 × 10(-10)/g, where g ≈ 9.8 m/s(2) is the standard gravitational acceleration.

  17. Ultra-stable clock laser system development towards space applications

    PubMed Central

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-01-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10−16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10−10/g, 5.8 × 10−10/g and 3.1 × 10−10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration. PMID:27667640

  18. A review of atomic clock technology, the performance capability of present spaceborne and terrestrial atomic clocks, and a look toward the future

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.

    1989-01-01

    Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.

  19. Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2015-05-01

    State of the art optical lattice atomic clocks have reached a relative inaccuracy level of 10-18, already making them the most stable time references in existence. One restriction on the precision of these clocks is the projection noise caused by the measurement of the atomic state. This limit, known as the standard quantum limit (SQL), can be overcome by entangling the atoms. By performing spin squeezing, it is possible to robustly generate such entanglement and therefore surpass the SQL of precision in optical atomic clocks. I will report on recent experimental progress toward realizing spin squeezing in an 171Yb optical lattice clock. A high-finesse micromirror-based optical cavity mediates the atom-atom interaction necessary for generating the entanglement. By exceeding the SQL in this state of the art system, we are aiming to advance precision time metrology, as well as expanding the boundaries of quantum control and measurement.

  20. Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2014-05-01

    State of the art optical lattice atomic clocks have reached a relative inaccuracy level of 10-18, already making them the most stable time references in existence. One restriction on the precision of these clocks is the projection noise caused by the measurement of the atomic state. This limit, known as the standard quantum limit (SQL), can be overcome by entangling the atoms. By performing spin squeezing, we can robustly generate such entanglement and surpass the SQL of precision in optical atomic clocks. I will report on recent experimental progress toward realizing spin squeezing in an 171Yb optical lattice clock. A high-finesse micromirror-based optical cavity mediates the atom-atom interaction necessary for generating the entanglement. By exceeding the SQL in this state of the art system, we are aiming to advance precision time metrology, as well as expanding the boundaries of quantum control and measurement. Supported by DARPA QUASAR and NSERC.

  1. Cold-Atom Clocks on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Lemonde, Pierre; Laurent, Philippe; Santarelli, Giorgio; Abgrall, Michel; Sortais, Yvan; Bize, Sebastien; Nicolas, Christophe; Zhang, Shougang; Clairon, Andre; Dimarcq, Noel; Petit, Pierre; Mann, Antony G.; Luiten, Andre N.; Chang, Sheng; Salomon, Christophe

    We present recent progress on microwave clocks that make use of laser-cooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 x10^5 detected atoms, the relative frequency stability is 4 x10^-14 &1/2circ, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ=2 x10^4s, the measured stability reaches 6 x10^-16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 x10^-15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10-15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.

  2. Three-dimensional optical lattice clock with bosonic {sup 88}Sr atoms

    SciTech Connect

    Akatsuka, Tomoya; Takamoto, Masao; Katori, Hidetoshi

    2010-02-15

    We present detailed analyses of our recent experiment on the three-dimensional (3D) optical lattice clock with bosonic {sup 88}Sr atoms in which the collisional frequency shift was suppressed by applying a single-occupancy lattice. Frequency shifts in magnetically induced spectroscopy on the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition ({lambda}=698 nm) of {sup 88}Sr were experimentally investigated by referencing a one-dimensional (1D) lattice clock based on spin-polarized {sup 87}Sr atoms. We discuss that the clock stability is limited by the current laser stability as well as the experimental sequence of the clock operation, which may be improved to {sigma}{sub y}({tau})=2x10{sup -16}/{radical}({tau}) by optimizing the cycle time of the clock operation.

  3. Light-Shifts of an Integrated Filter-Cell Rubidium Atomic Clock

    DTIC Science & Technology

    2015-05-25

    AEROSPACE REPORT NO. TOR-2015-02236 Light-Shifts of an Integrated Filter-Cell Rubidium Atomic Clock May 25, 2015 James C. Camparo...COVERED - 4. TITLE AND SUBTITLE Light-Shifts of an Integrated Filter-Cell Rubidium Atomic Clock 5a. CONTRACT NUMBER FA8802-14-C-0001 5b...display technologies; lasers and electro-optics, solid-state laser design, micro-optics, optical communications, and fiber-optic sensors; atomic

  4. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  5. Invited Review Article: The statistical modeling of atomic clocks and the design of time scales

    SciTech Connect

    Levine, Judah

    2012-02-15

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  6. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.

    PubMed

    Kroemer, E; Abdel Hafiz, M; Maurice, V; Fouilland, B; Gorecki, C; Boudot, R

    2015-07-13

    We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks.

  7. Robust Detection of Fast and Slow Frequency Jumps of Atomic Clocks.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2017-02-01

    This paper presents a frequency jump detector for atomic clocks. The detector considers both fast frequency jumps, which are abrupt variations of the clock frequency trend, and slow frequency jumps, which correspond to variations of the frequency trend over a finite time interval. These anomalies are particularly critical to space clocks in global navigation satellite systems (GNSSs). The developed detector is robust in the sense that it can deal with time-varying frequency trends, sinusoidal terms, outliers, and missing data. The detection performances are analyzed both analytically and numerically, and the effectiveness of the detector is shown by applying it to GNSS experimental data, as well as to simulated clock data.

  8. Measurement of the magnetic field profile in the atomic fountain clock FoCS-2 using Zeeman spectroscopy

    NASA Astrophysics Data System (ADS)

    Devenoges, Laurent; Di Domenico, Gianni; Stefanov, André; Jallageas, Antoine; Morel, Jacques; Südmeyer, Thomas; Thomann, Pierre

    2017-04-01

    We report the evaluation of the second-order Zeeman shift in the continuous atomic fountain clock FoCS-2. Because of its continuous operation and geometrical constraints, the methods used in pulsed fountains are not applicable. We use here time-resolved Zeeman spectroscopy to probe the magnetic field profile in the clock. Pulses of ac magnetic excitation allow us to spatially resolve the Zeeman frequency and to evaluate the Zeeman shift with a relative uncertainty smaller than 5× {{10}-16} .

  9. Trapping of neutral mercury atoms and prospects for optical lattice clocks.

    PubMed

    Hachisu, H; Miyagishi, K; Porsev, S G; Derevianko, A; Ovsiannikov, V D; Pal'chikov, V G; Takamoto, M; Katori, H

    2008-02-08

    We report vapor-cell magneto-optical trapping of Hg isotopes on the (1)S(0)-(3)P(1) intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for "new physics" beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10;{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.

  10. Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks

    SciTech Connect

    Hachisu, H.; Takamoto, M.; Katori, H.; Miyagishi, K.; Porsev, S. G.; Derevianko, A.; Ovsiannikov, V. D.; Pal'chikov, V. G.

    2008-02-08

    We report vapor-cell magneto-optical trapping of Hg isotopes on the {sup 1}S{sub 0}-{sup 3}P{sub 1} intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for ''new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10{sup -18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.

  11. Drifts and Environmental Disturbances in Atomic Clock Subsystems: Quantifying Local Oscillator, Control Loop, & Ion Resonance Interactions.

    PubMed

    Enzer, Daphna G; Diener, William A; Murphy, David W; Rao, Shanti R; Tjoelker, Robert L

    2016-12-19

    Linear ion trap frequency standards are among the most stable continuously-operating frequency references and clocks. Depending on the application, they have been operated with a variety of Local Oscillators (LO) including quartz Ultra-Stable Oscillators (USO), Hydrogen-masers, and Cryogenic Sapphire Oscillators. The short, intermediate, and long term stability of the frequency output is a complicated function of the fundamental performances, the time dependence of environmental disturbances, the atomic interrogation algorithm, the implemented control loop, and the environmental sensitivity of the LO and atomic system components. For applications that require moving these references out of controlled lab-spaces and into less stable environments such as field-work or space-flight, a deeper understanding is needed of how disturbances at different time-scales impact the various subsystems of the clock and ultimately the output stability. In this paper, we analyze which perturbations have an impact and to what degree. We also report on a computational model of a control loop which keeps the microwave source locked to the ion resonance. This model is shown to agree with laboratory measurements of how well the feedback removes various disturbances and also with a useful analytic approach we developed for predicting these impacts.

  12. Improvement in medium long-term frequency stability of the integrating sphere cold atom clock

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Cheng, Huadong; Meng, Yanling; Wan, Jinyin; Xiao, Ling; Wang, Xiumei; Wang, Yaning; Liu, Liang

    2016-07-01

    The medium-long term frequency stability of the integrating sphere cold atom clock was improved.During the clock operation, Rb atoms were cooled and manipulated using cooling light diffusely reflected by the inner surface of a microwave cavity in the clock. This light heated the cavity and caused a frequency drift from the resonant frequency of the cavity. Power fluctuations of the cooling light led to atomic density variations in the cavity's central area, which increased the clock frequency instability through a cavity pulling effect. We overcame these limitations with appropriate solutions. A frequency stability of 3.5E-15 was achieved when the integrating time ? increased to 2E4 s.

  13. NAVEX: A space shuttle experiment with atomic clocks

    NASA Technical Reports Server (NTRS)

    Starker, S.; Nau, H.; Hamesfahr, J.; Tschiesche, H.

    1983-01-01

    A navigation and time transfer experiment (NAVEX) to be flown within the payload of the first German Spacelab mission D-1 is discussed. The objectives of the experiment are to synchronize distant ground stations with an accuracy of better than 10 nsec and to demonstrate one way ranging with an accuracy of better than 30 m. Spread spectrum signals are used and the related technique is tested. On board a Cs and a Rb clock is used. The relativistic effect of these clocks is about -25 microsec per day. On the ground at least two receiving stations and one transmitting-receiving station will be installed. The synchronization of the ground clocks by shuttle signals is compared to those achieved with clock transportations and with GPS measurements. A system description of this experiment is given containing details on the technical concept, the hardware and the planned data evaluation. The present state of the preparatory work is briefly reviewed.

  14. Detection of the clock transition (1.14 μm) in ultra-cold thulium atoms

    SciTech Connect

    Golovizin, A A; Kalganova, E S; Sukachev, D D; Vishnyakova, G A; Soshenko, V V; Tregubov, D O; Akimov, A V; Kolachevsky, N N; Khabarova, K Yu; Sorokin, V N; Semerikov, I A

    2015-05-31

    The magnetic dipole transition between fine structure sublevels of the ground state of thulium atom 4f{sup 13}({sup 2}F{sup o})6s{sup 2} has been directly excited in a cloud of ultra-cold atoms by a frequency-stabilised laser. This transition at the wavelength λ = 1.14 μm is planned to be used as the clock one in an optical frequency reference on laser-cooled thulium atoms. (extreme light fields and their applications)

  15. A VLBI experiment using a remote atomic clock via a coherent fibre link.

    PubMed

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-02-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.

  16. A VLBI experiment using a remote atomic clock via a coherent fibre link

    NASA Astrophysics Data System (ADS)

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-02-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.

  17. A VLBI experiment using a remote atomic clock via a coherent fibre link

    PubMed Central

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-01-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks. PMID:28145451

  18. The present development of time service in Brazil, with the application of the TV line-10 method for coordination and synchronization of atomic clocks

    NASA Technical Reports Server (NTRS)

    Silva, P. M.; Silva, I. M.

    1974-01-01

    Various methods presently used for the dissemination of time at several levels of precision are described along with future projects in the field. Different aspects of time coordination are reviewed and a list of future laboratories participating in a National Time Scale will be presented. A Brazilian Atomic Time Scale will be obtained from as many of these laboratories as possible. The problem of intercomparison between the Brazilian National Time Scale and the International one will be presented and probable solutions will be discussed. Needs related to the TV Line-10 method will be explained and comments will be made on the legal aspects of time dissemination throughout the country.

  19. Atomic Clock with 1 ×10-18 Room-Temperature Blackbody Stark Uncertainty

    NASA Astrophysics Data System (ADS)

    Beloy, K.; Hinkley, N.; Phillips, N. B.; Sherman, J. A.; Schioppo, M.; Lehman, J.; Feldman, A.; Hanssen, L. M.; Oates, C. W.; Ludlow, A. D.

    2014-12-01

    The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of 5.5 ×10-19 . Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now 1 ×10-18. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.

  20. Single-mode vertical-cavity surface emitting lasers for {sup 87}Rb-based chip-scale atomic clock

    SciTech Connect

    Derebezov, I. A. Haisler, V. A.; Bakarov, A. K.; Kalagin, A. K.; Toropov, A. I.; Kachanova, M. M.; Gavrilova, T. A.; Semenova, O. I.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Ryabtsev, I. I.

    2010-11-15

    The results of numerical simulation and study of lasing characteristics of semiconductor verticalcavity surface-emitting lasers based on Al{sub x}Ga{sub 1-x}As alloys are presented. Lasers exhibit stable single-mode lasing at a wavelength of 795 nm at low operating currents {approx}1.5 mA and an output power of 350 {mu}W, which offers prospects of their applications in next-generation chip-scale atomic clocks

  1. Loading a fountain clock with an enhanced low-velocity intense source of atoms

    NASA Astrophysics Data System (ADS)

    Dobrev, G.; Gerginov, V.; Weyers, S.

    2016-04-01

    We present experimental work for improved atom loading in the optical molasses of a cesium fountain clock, employing a low-velocity intense source of atoms [Lu et al., Phys. Rev. Lett 77, 3331 (1996), 10.1103/PhysRevLett.77.3331], which we modify by adding a dark-state pump laser. With this modification the atom source has a mean flux of 4 ×108 atoms/s at a mean atom velocity of 8.6 m/s. Compared to fountain operation using background gas loading, we achieve a significant increase of the loaded and detected atom number by a factor of 40. Operating the fountain clock with a total number of detected atoms Nat=2.9 ×106 in the quantum projection noise-limited regime, a frequency instability σy(1 s ) =2.7 ×10-14 is demonstrated.

  2. Is the time right for a redefinition of the second by optical atomic clocks?

    NASA Astrophysics Data System (ADS)

    Gill, Patrick

    2016-06-01

    Given the dramatic rate of progress in optical atomic clocks over the last decade, this paper presents the current state of play, and considers the possibilities, implications and timescales for a potential redefinition of the SI second in terms of an optical reference transition. In particular, the question of choice of a future standard is addressed, together with the requirements to accurately compare realisations of such standards, both for clocks local to, and remote from each other. Current performances of various optical clock systems are examined and possibilities for moving beyond potential limitations by alternative strategies are outlined.

  3. Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty.

    PubMed

    Nicholson, T L; Campbell, S L; Hutson, R B; Marti, G E; Bloom, B J; McNally, R L; Zhang, W; Barrett, M D; Safronova, M S; Strouse, G F; Tew, W L; Ye, J

    2015-04-21

    The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. Here we take an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Our (87)Sr optical lattice clock now achieves fractional stability of 2.2 × 10(-16) at 1 s. With this improved stability, we perform a new accuracy evaluation of our clock, reducing many systematic uncertainties that limited our previous measurements, such as those in the lattice ac Stark shift, the atoms' thermal environment and the atomic response to room-temperature blackbody radiation. Our combined measurements have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10(-18) in fractional frequency units.

  4. Near-Heisenberg-limited atomic clocks in the presence of decoherence.

    PubMed

    Borregaard, J; Sørensen, A S

    2013-08-30

    The ultimate stability of atomic clocks is limited by the quantum noise of the atoms. To reduce this noise it has been suggested to use entangled atomic ensembles with reduced atomic noise. Potentially this can push the stability all the way to the limit allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit. In practice, however, entangled states are often more prone to decoherence, which may prevent reaching this performance. Here we present an adaptive measurement protocol that in the presence of a realistic source of decoherence enables us to get near-Heisenberg-limited stability of atomic clocks using entangled atoms. The protocol may thus realize the full potential of entanglement for quantum metrology despite the detrimental influence of decoherence.

  5. Atomic ion clock with two ion traps, and method to transfer ions

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  6. Higher-order effects on uncertainties of clocks of Mg atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, V. D.; Marmo, S. I.; Mokhnenko, S. N.; Palchikov, V. G.

    2017-01-01

    Multipole, nonlinear and anharmonic effects on the optical-lattice-based clocks of Mg atoms are evaluated theoretically. Dipole polarizabilities, hyperpolarizabilities and multipolar polarizabilities for Mg atoms are calculated in the single-electron approximation with the use of analytical presentations for the wave and Green’s functions in the modified model-potential approach. For comparison, the data are also given for atoms of the group IIb elements (Zn, Cd, Hg).

  7. Magic wavelength to make optical lattice clocks insensitive to atomic motion.

    PubMed

    Katori, Hidetoshi; Hashiguchi, Koji; Il'inova, E Yu; Ovsiannikov, V D

    2009-10-09

    In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.

  8. Magic Wavelength to Make Optical Lattice Clocks Insensitive to Atomic Motion

    SciTech Connect

    Katori, Hidetoshi; Hashiguchi, Koji; Il'inova, E. Yu.; Ovsiannikov, V. D.

    2009-10-09

    In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.

  9. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  10. Alpha-Dot or Not:. Comparison of Two Single Atom Optical Clocks

    NASA Astrophysics Data System (ADS)

    Rosenband, T.; Hume, D. B.; Chou, C.-W.; Koelemeij, J. C. J.; Brusch, A.; Bickman, S.; Oskay, W. H.; Fortier, T. M.; Stalnaker, J. E.; Diddams, S. A.; Newbury, N. R.; Swann, W. C.; Itano, W. M.; Wineland, D. J.; Bergquist, J. C.

    2009-04-01

    Repeated measurements of the frequency ratio of 199Hg+ and 27Al+ single-atom optical clocks over the course of a year yield a constraint on the possible present-era temporal variation of the fine-structure constant α. The time variation of the measured ratio corresponds to a time variation in the fine structure constant of ˙ α /α = (-1.6± 2.3) × 10-17/year, consistent with no change. The frequency ratio of these clocks was measured with a fractional uncertainty of 5.2 × 10-17. Stability simulations for optical clocks whose probe period is limited by 1/f-noise in the laser local oscillator provide an estimate of the optimal probe period, as well as a modified expression for the theoretical clock stability.

  11. Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser

    SciTech Connect

    Yang, Jing; Yun, Peter; Tian, Yuan; Tan, Bozhong; Gu, Sihong

    2014-03-07

    A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as a microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.

  12. Low-threshold short-cavity diode laser for a miniature atomic clock

    SciTech Connect

    Kargapol'tsev, Sergei V; Velichansky, Vladimir L; Vasil'ev, V V; Kobyakova, M Sh; Morozyuk, A V; Shiryaeva, N V; Konyaev, V P

    2009-06-30

    Short-cavity diode lasers (SCDLs) emitting at the 894-nm D{sub 1} line of caesium are developed. Low threshold currents and power consumption will make it possible to use these lasers in chip-size atomic clocks (CSACs) and magnetometers. The SCDL parameters are comparable with the parameters of surface-emitting lasers. (lasers)

  13. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  14. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-01

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (-5.2 ± 0.6) × 10-11/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10-22 m2 s-1 Pa-1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  15. Ground-based optical atomic clocks as a tool to monitor vertical surface motion

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-09-01

    According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.

  16. Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks.

    PubMed

    Guéna, Jocelyne; Li, Ruoxin; Gibble, Kurt; Bize, Sébastien; Clairon, André

    2011-04-01

    We demonstrate agreement between measurements and ab initio calculations of the frequency shifts caused by distributed cavity phase variations in the microwave cavity of a primary atomic fountain clock. Experimental verification of the finite element models of the cavities gives the first quantitative evaluation of this leading uncertainty and allows it to be reduced to δν/ν=±8.4×10(-17). Applying these experimental techniques to clocks with improved microwave cavities will yield negligible distributed cavity phase uncertainties, less than ±1×10(-17).

  17. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, T.; Derevianko, A.

    2016-07-01

    We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.

  18. Microfabricated chip-scale rubidium plasma light source for miniature atomic clocks.

    PubMed

    Venkatraman, Vinu; Pétremand, Yves; Affolderbach, Christoph; Mileti, Gaetano; de Rooij, Nico F; Shea, Herbert

    2012-03-01

    We present the microfabrication and characterization of a low-power, chip-scale Rb plasma light source, designed for optical pumping in miniature atomic clocks. A dielectric barrier discharge (DBD) configuration is used to ignite a Rb plasma in a micro-fabricated Rb vapor cell on which external indium electrodes were deposited. The device is electrically driven at frequencies between 1 and 36 MHz, and emits 140 μW of stable optical power while coupling less than 6 mW of electrical power to the discharge cell. Optical powers of up to 15 and 9 μW are emitted on the Rb D2 and D1 lines, respectively. Continuous operation of the light source for several weeks has been demonstrated, showing its capacity to maintain stable optical excitation of Rb atoms in chip-scale double-resonance atomic clocks.

  19. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; McDonald, G.; Döring, D.; Debs, J. E.; Barter, T. H.; Robins, N. P.; Close, J. D.; Haine, S. A.; Hanna, T. M.; Anderson, R. P.

    2011-11-01

    In our original paper (Altin et al 2011 New J. Phys. 13 065020), we presented the results from a Ramsey atom interferometer operating with an optically trapped sample of up to 106 Bose-condensed 87Rb atoms in the mF = 0 clock states. We were unable to observe projection noise fluctuations on the interferometer output, which we attribute to the stability of our microwave oscillator and background magnetic field. Numerical simulations of the Gross-Pitaevskii equations for our system show that dephasing due to spatial dynamics driven by interparticle interactions accounts for much of the observed decay in fringe visibility at long interrogation times. The simulations show good agreement with the experimental data when additional technical decoherence is accounted for, and suggest that the clock states are indeed immiscible. With smaller samples of 5 × 104 atoms, we observe a coherence time of τ = 1.0+0.5-0.3 s.

  20. The Physics of Miniature Atomic Clocks: 0-0 Versus "End" Transitions

    NASA Astrophysics Data System (ADS)

    Post, Amber; Jau, Yuan-Yu; Kuzma, Nicholas; Happer, William

    2003-05-01

    The majority of traditional atomic-clock designs are based on the 0-0 hyperfine transition of a Cs 133 atom. We are currently investigating the advantages of operating a miniature optical atomic clock using the "end" transitions, e.g. connecting states |f=1, mf =+/-1> and |f=2, mf=+/-2> in 87Rb. In our paper we present extensive new measurements of relevant relaxation rates, such as those due to spin-exchange collisions, buffer-gas pressure shifts, Carver Rates and others, which ultimately determine the choices of an operating regime for the miniature optical atomic clock. The relationship between these rates is non-trivial: for example, using higher laser power will increase polarization and reduce the spin-exchange rate [1], but it can simultaneously increase the linewidth due to the optical pumping rate. The dependence of these and other relaxation rates on the cell size, temperature, pressure, a choice of buffer gas, and other parameters will be reported. Based on these measured rates, our modeling can be used to predict the transition linewidths, signal-to-noise ratios and thus the stability of the clock in different operating regimes. The trade-off between the stability of the clock and the desired small cell size and low power consumption needs to be carefully considered in order to optimize our design. In our experiments we used optical, microwave, and radio-frequency excitation to study hyperfine and Zeeman resonance lines in heated glass cells containing pure-isotope alkali-metal vapor and buffer gasses (N2, Ar, He, etc.) at low (0 - 10 G) magnetic fields. Simultaneous use of light, microwave and radio-frequency fields allowed us to calibrate surrounding magnetic fields by observing the corresponding shifts of the resonance, thus leading us to a quantitative understanding of our system. [1] S. Appelt, A. B. Baranga, A. R. Young, W. Happer, Phys. Rev. A 59, 2078 (1999).

  1. Clock Shifts of Optical Transitions in Ultracold Atomic Gases

    SciTech Connect

    Yu Zhenhua; Pethick, C. J.

    2010-01-08

    We calculate the shift, due to interatomic interactions, of an optical transition in an atomic Fermi gas trapped in an optical lattice, as in recent experiments of Campbell et al.[Science 324, 360 (2009)]. Using a pseudospin formalism to describe the density matrix of atoms, we derive a Bloch equation which incorporates both spatial inhomogeneity of the probe laser field and interatomic interactions. Expressions are given for the frequency shift as a function of pulse duration, detuning of the probe laser, and the spatial dependence of the electric field of the probe beam. In the low temperature semiclassical regime, we find that the magnitude of the shift is proportional to the temperature.

  2. Search for variations of fundamental constants using atomic fountain clocks.

    PubMed

    Marion, H; Pereira Dos Santos, F; Abgrall, M; Zhang, S; Sortais, Y; Bize, S; Maksimovic, I; Calonico, D; Grünert, J; Mandache, C; Lemonde, P; Santarelli, G; Laurent, Ph; Clairon, A; Salomon, C

    2003-04-18

    Over five years, we have compared the hyperfine frequencies of 133Cs and 87Rb atoms in their electronic ground state using several laser-cooled 133Cs and 87Rb atomic fountains with an accuracy of approximately 10(-15). These measurements set a stringent upper bound to a possible fractional time variation of the ratio between the two frequencies: d/dt ln([(nu(Rb))/(nu(Cs))]=(0.2+/-7.0)x 10(-16) yr(-1) (1sigma uncertainty). The same limit applies to a possible variation of the quantity (mu(Rb)/mu(Cs))alpha(-0.44), which involves the ratio of nuclear magnetic moments and the fine structure constant.

  3. Inner-shell magnetic dipole transition in Tm atoms: A candidate for optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Sukachev, D.; Fedorov, S.; Tolstikhina, I.; Tregubov, D.; Kalganova, E.; Vishnyakova, G.; Golovizin, A.; Kolachevsky, N.; Khabarova, K.; Sorokin, V.

    2016-08-01

    We consider a narrow magneto-dipole transition in the 169Tm atom at the wavelength of 1.14 μ m as a candidate for a two-dimensional-optical lattice clock. Calculating dynamic polarizabilities of the two clock levels [Xe] 4 f136 s2(J =7 /2 ) and [Xe] 4 f136 s2(J =5 /2 ) in the spectral range from 250 to 1200 nm, we find a "magic" wavelength for the optical lattice at 807 nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction, and other effects which can perturb the transition frequency are calculated. The transition at 1.14 μ m demonstrates low sensitivity to the BBR shift corresponding to 8 ×10-17 in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than 5 ×10-18 in fractional units. By direct excitation of the 1.14 μ m transition in Tm atoms loaded into an optical dipole trap, we set the lower limit for the lifetime of the upper clock level [Xe] 4 f136 s2(J =5 /2 ) of 112 ms which corresponds to a natural spectral linewidth narrower than 1.4 Hz. The polarizability of the Tm ground state was measured by the excitation of parametric resonances in the optical dipole trap at 532 nm.

  4. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  5. Testing general relativity and alternative theories of gravity with space-based atomic clocks and atom interferometers

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew

    2015-05-01

    The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.

  6. Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2017-01-01

    The Sun's gravitational potential at Earth varies during a year due to varying Earth-Sun distance. Comparing the results of very accurate measurements of atomic clock transitions performed at different times in the year allows us to study the dependence of the atomic frequencies on the gravitational potential. We examine the measurement data for the ratio of the frequencies in Hg+ and Al+ clock transitions and absolute frequency measurements (with respect to the caesium frequency standard) for Dy, Sr, H, hyperfine transitions in Rb and H and obtain significantly improved limits on the values of the gravity-related parameter of the Einstein equivalence principle violating term in the electron sector of the Standard Model extension Hamiltonian c00=(-3.0 ±5.7 )×10-7 and the parameter for the gravity-related variation of the fine structure constant κα=(-5.3 ±10 )×10-8.

  7. Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock

    NASA Astrophysics Data System (ADS)

    Peterman, Phillip; Gibble, Kurt; Laurent, Phillipe; Salomon, Christophe

    2016-04-01

    We evaluate the microwave lensing frequency shift of the microgravity laser-cooled caesium clock PHARAO. We find microwave lensing frequency shifts of δν/ν  =  11  ×  10-17 to 13  ×  10-17, larger than the shift of typical fountain clocks. The shift has a weak dependence on PHARAO parameters, including the atomic temperature, size of the atomic cloud, detection laser intensities, and the launch velocity. We also find the lensing frequency shift to be insensitive to selection and detection spatial inhomogeneities and the expected low-frequency vibrations. We conservatively assign a nominal microwave lensing frequency uncertainty of  ±4  ×  10-17.

  8. Optical clocks and relativity.

    PubMed

    Chou, C W; Hume, D B; Rosenband, T; Wineland, D J

    2010-09-24

    Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

  9. Optical Clocks and Relativity

    NASA Astrophysics Data System (ADS)

    Chou, C. W.; Hume, D. B.; Rosenband, T.; Wineland, D. J.

    2010-09-01

    Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth’s surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

  10. Trapped Hydrogen Spectroscopy: Fundamental Constants and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Willmann, Lorenz

    2002-05-01

    Ultra high resolution spectroscopy was an essential ingredient in the realisation and observation of Bose-Einstein condensation of atomic hydrogen(D.G. Fried, T. Killian, L. Willmann, D. Landhuis, S. Moss, D. Kleppner, and T. Greytak, Phys. Rev. Lett. 81), 3807 (1998). That experiment is a good starting point to explore the possibilities for future spectroscopy of trapped ultracold hydrogen. Of particular interest are two aspects. Firstly, the exploitation of the intrinsically small linewidth of the 1S-2S transition of only 1.3 Hz as an optical frequency standard. Secondly, the precision determination of the 2S-nS energy splittings in hydrogen, which can be used to determine the Rydberg constant, the Lamb shift or the proton charge radius. We will combine these two aspects in the experiment. The absolut value of the hydrogen 1S-2S transition frequency(M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, Phys. Rev. Lett. 84), 5496 (2000) serves as an optical frequency standard for the measurements of the 2S-nS transition frequencies. The frequencies will be linked by a frequency comb generated by a mode locked laser. Currently, a femto second laser is being set up in collaboration with the group of F. Kärtner at MIT. The source of trapped atoms in the metastable 2S state is laser excitation of the 1S-2S transition, thus the 2S-nS spectroscopy can be done at the same time and in the same trapping field to reduce systematic effects.

  11. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    SciTech Connect

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-20

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  12. Distinguishing between evidence and its explanations in the steering of atomic clocks

    SciTech Connect

    Myers, John M.; Hadi Madjid, F.

    2014-11-15

    Quantum theory reflects within itself a separation of evidence from explanations. This separation leads to a known proof that: (1) no wave function can be determined uniquely by evidence, and (2) any chosen wave function requires a guess reaching beyond logic to things unforeseeable. Chosen wave functions are encoded into computer-mediated feedback essential to atomic clocks, including clocks that step computers through their phases of computation and clocks in space vehicles that supply evidence of signal propagation explained by hypotheses of spacetimes with metric tensor fields. The propagation of logical symbols from one computer to another requires a shared rhythm—like a bucket brigade. Here we show how hypothesized metric tensors, dependent on guesswork, take part in the logical synchronization by which clocks are steered in rate and position toward aiming points that satisfy phase constraints, thereby linking the physics of signal propagation with the sharing of logical symbols among computers. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation transports logical synchronization from the engineering of digital communications to a discipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge unforeseeable events. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication. - Highlights: • Atomic clocks are steered in frequency toward an aiming point. • The aiming point depends on a chosen wave function. • No evidence alone can determine the wave function. • The unknowability of the wave function has implications for spacetime curvature. • Variability in spacetime curvature limits the bit rate of communications.

  13. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks

    NASA Astrophysics Data System (ADS)

    Straessle, R.; Pellaton, M.; Affolderbach, C.; Pétremand, Y.; Briand, D.; Mileti, G.; de Rooij, N. F.

    2013-02-01

    A low-temperature sealing technique for micro-fabricated alkali vapor cells for chip-scale atomic clock applications is developed and evaluated. A thin-film indium bonding technique was used for sealing the cells at temperatures of ≤140 °C. These sealing temperatures are much lower than those reported for other approaches, and make the technique highly interesting for future micro-fabricated cells, using anti-relaxation wall coatings. Optical and microwave spectroscopy performed on first indium-bonded cells without wall coatings are used to evaluate the cleanliness of the process as well as a potential leak rate of the cells. Both measurements confirm a stable pressure inside the cell and therefore an excellent hermeticity of the indium bonding. The double-resonance measurements performed over several months show an upper limit for the leak rate of 1.5 × 10-13 mbar.l/s. This is in agreement with additional leak-rate measurements using a membrane deflection method on indium-bonded test structures.

  14. Methods and evaluation of frequency aging in distributed-feedback laser diodes for rubidium atomic clocks

    NASA Astrophysics Data System (ADS)

    Matthey, Renaud; Affolderbach, Christoph; Mileti, Gaetano

    2011-09-01

    Distributed-feedback laser diodes emitting at 780nm have been evaluated, with respect to the aging of the injection current required for reaching the rubidium D2 resonance line. Results obtained for lasers operating in air and in vacuum for 9 months are reported. When operated at constant temperature, the laser current required for emission at the wavelength of the desired atomic resonance is found to decrease by 50 to 80μA per month. The impact of this result on the lifetime and long-term performances of laser-pumped rubidium atomic clocks is discussed.

  15. Methods and evaluation of frequency aging in distributed-feedback laser diodes for rubidium atomic clocks.

    PubMed

    Matthey, Renaud; Affolderbach, Christoph; Mileti, Gaetano

    2011-09-01

    Distributed-feedback laser diodes emitting at 780 nm have been evaluated, with respect to the aging of the injection current required for reaching the rubidium D2 resonance line. Results obtained for lasers operating in air and in vacuum for 9 months are reported. When operated at constant temperature, the laser current required for emission at the wavelength of the desired atomic resonance is found to decrease by 50 to 80 μA per month. The impact of this result on the lifetime and long-term performances of laser-pumped rubidium atomic clocks is discussed.

  16. Quantum projection noise limited stability of a 88Sr+ atomic clock

    NASA Astrophysics Data System (ADS)

    Jian, B.; Dubé, P.; Madej, A. A.

    2016-06-01

    The evaluated accuracy of a single trapped 88Sr+ ion clock referenced to the 5s2 S 1/2 - 4d 2 D 5/2 transition at 445 THz at the National Research Council of Canada has reached 1.2 x 10-17 over recent years. On the other hand, the stability of an atomic clock determines how long the signals from two similar clocks have to be compared to reach a given level of uncertainty. Here, we report on the improvement of the stability of NRC's 88Sr+ single ion clock by reducing the Allan deviation from 1 x 10-14 to 3 x 10-15 at 1 second averaging time. This is done by the implementation of a clear out laser that transfers the ion from the metastable state to the ground state at each cycle, followed by a state-preparation step that transfers the ion to the desired ground state magnetic sublevel of the probed transition.

  17. Does the light shift drive frequency aging in the rubidium atomic clock?

    PubMed

    Camparo, James

    2005-07-01

    Frequency aging in the rubidium (Rb) vapor-cell atomic clock plays a significant role in the device's timekeeping ability. Though many researchers have speculated on the physical mechanism(s) driving the linear, deterministic frequency change (i.e., deltaf(t)/fo = At), there is little unambiguous experimental data regarding the phenomenon. Here, long-term data were used from on-orbit global positioning system (GPS) Rb clocks to examine one postulated mechanism for frequency aging (i.e., the light-shift effect). Defining the light shift of the clock's fractional frequency as alphaI/Io, where alpha is the light-shift coefficient, we find that temporal variations of the relative light intensity, I/Io, cannot account for frequency aging. However, for the population of clocks considered here, we obtain the intriguing result that alpha/A = 1.7 +/- 1.5. Thus, it may be that frequency aging is driven by the light-shift effect through temporal variations of the light-shift coefficient.

  18. Distinguishing between evidence and its explanations in the steering of atomic clocks

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Hadi Madjid, F.

    2014-11-01

    Quantum theory reflects within itself a separation of evidence from explanations. This separation leads to a known proof that: (1) no wave function can be determined uniquely by evidence, and (2) any chosen wave function requires a guess reaching beyond logic to things unforeseeable. Chosen wave functions are encoded into computer-mediated feedback essential to atomic clocks, including clocks that step computers through their phases of computation and clocks in space vehicles that supply evidence of signal propagation explained by hypotheses of spacetimes with metric tensor fields. The propagation of logical symbols from one computer to another requires a shared rhythm-like a bucket brigade. Here we show how hypothesized metric tensors, dependent on guesswork, take part in the logical synchronization by which clocks are steered in rate and position toward aiming points that satisfy phase constraints, thereby linking the physics of signal propagation with the sharing of logical symbols among computers. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation transports logical synchronization from the engineering of digital communications to a discipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge unforeseeable events. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication.

  19. Preparation of reduced-quantum-uncertainty input states for an atomic clock

    NASA Astrophysics Data System (ADS)

    Schleier-Smith, M. H.; Leroux, I. D.; Vuletić, V.

    2009-08-01

    Atomic clocks have reached the Standard Quantum Limit (SQL) of precision,1 set by the projection noise inherent in measurements on uncorrelated atoms. It is possible to overcome this limit by entangling the atoms to generate a "squeezed state" of the atomic ensemble. We use the collective interaction of an atomic ensemble with a far-detuned light field in an optical resonator to prepare squeezed states by two different methods: quantum non-demolition (QND) measurement and Hamiltonian evolution. We apply both methods to an ensemble of 5 x 104 87Rb atoms in a superposition of hyperfine clock states. We measure the suppression of projection noise and compare it to the accompanying reduction in signal, thereby quantifying the net gain in spectroscopic sensitivity. By QND measurement, with resolution up to 9 dB below the projection noise level, we achieve 3.0(8) dB of metrologically relevant squeezing. Whereas the measurement-based approach relies on knowledge of the (randomly distributed) measurement outcome to produce a conditionally squeezed state, the method of Hamiltonian evolution produces a known squeezed state independent of detector performance. We mimic the dynamics of the one-axis twisting Hamiltonian, proposed as a generator of squeezed states by Kitagawa and Ueda,2 by using the atom-induced frequency shift of the resonator mode and the corresponding resonator-field-induced shift of the atomic transition frequency to introduce an effective interaction among the atoms. The resulting deterministic squeezing is sufficient to allow a 6.0(4) dB improvement in spectroscopic sensitivity over the SQL.

  20. A highly miniaturized vacuum package for a trapped ion atomic clock

    NASA Astrophysics Data System (ADS)

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P.; Kellogg, James R.; Prestage, John D.

    2016-05-01

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Y b+. The fractional frequency stability of the clock was measured to be 2 × 10-11/τ1/2.

  1. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks.

    PubMed

    Gruet, F; Al-Samaneh, A; Kroemer, E; Bimboes, L; Miletic, D; Affolderbach, C; Wahl, D; Boudot, R; Mileti, G; Michalzik, R

    2013-03-11

    We report on the characterization and validation of custom-designed 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), for use in miniature Cs atomic clocks based on coherent population trapping (CPT). The laser relative intensity noise (RIN) is measured to be 1 × 10(-11) Hz(-1) at 10 Hz Fourier frequency, for a laser power of 700 μW. The VCSEL frequency noise is 10(13) · f(-1) Hz(2)/Hz in the 10 Hz < f < 10(5) Hz range, which is in good agreement with the VCSEL’s measured fractional frequency instability (Allan deviation) of ≈ 1 × 10(-8) at 1 s, and also is consistent with the VCSEL’s typical optical linewidth of 20-25 MHz. The VCSEL bias current can be directly modulated at 4.596 GHz with a microwave power of -6 to +6 dBm to generate optical sidebands for CPT excitation. With such a VCSEL, a 1.04 kHz linewidth CPT clock resonance signal is detected in a microfabricated Cs cell filled with Ne buffer gas. These results are compatible with state-of-the-art CPT-based miniature atomic clocks exhibiting a short-term frequency instability of 2-3 × 10(-11) at τ = 1 s and few 10(-12) at τ = 10(4) s integration time..

  2. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE PAGES

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the package wasmore » sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb+. The fractional frequency stability of the clock was measured to be 2 × 10-11 / τ1/2.« less

  3. A highly miniaturized vacuum package for a trapped ion atomic clock

    SciTech Connect

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P.; Kellogg, James R.; Prestage, John D.

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the package was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb+. The fractional frequency stability of the clock was measured to be 2 × 10-11 / τ1/2.

  4. Low-phase-noise frequency synthesizer for the trapped atom clock on a chip.

    PubMed

    Ramirez-Martinez, Fernando; Lours, Michel; Rosenbusch, Peter; Reinhard, Friedemann; Reichel, Jakob

    2010-01-01

    We report on the realization of a 6.834-GHz synthesis chain for the trapped atom clock on a chip (TACC) that is being developed at LNE-SYRTE. The chain is based on the frequency multiplication of a 100-MHz reference signal to obtain a signal at 6.4 GHz. It uses a comb generator based on a monolithic GaAs nonlinear transmission line. This is a novelty in the fabrication of high-stability microwave synthesizers. Measurements give a low flicker phase noise of -85 dBrad(2)/Hz at 1-Hz offset frequency and a white phase noise floor < -115 dBrad(2)/Hz. Based on these results, we estimate that the performance of the synthesizer is at least one order of magnitude better than the stability goal of TACC. This ensures that the synthesizer will not be limiting the clock performance.

  5. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  6. Status of the atomic fountain clock at the National Research Council of Canada

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Alcock, J.; Jian, B.; Gertsvolf, M.; Bernard, J.

    2016-06-01

    Despite the rapid advances in optical frequency standards, caesium fountain clocks retain a critical role as the most accurate primary frequency standards available. At the National Research Council Canada, we are working to develop a second generation caesium fountain clock. Work is currently underway to improve several systems of FCs1, such as the laser system and microwave local oscillator, which will be incorporated into its refurbished version, FCs2. In addition, we have added an optical pumping stage which has increased the detected atom number by over a factor of six. In collaboration with the National Physical Laboratory (NPL), we are planning on replacing the physics package of FCs1. We will report on several recent improvements to FCs1, along with our progress in the development of FCs2.

  7. Placing constraints on the time-variation of fundamental constants using atomic clocks

    NASA Astrophysics Data System (ADS)

    Nisbet-Jones, Peter

    2015-05-01

    Optical atomic frequency standards, such as those based on a single trapped ion of 171Yb+, now demonstrate systematic frequency uncertainties in the 10-17 -10-18 range. These standards rely on the principle that the unperturbed energy levels in atoms are fixed and can thus provide absolute frequency references. A frequency standard's uncertainty is therefore limited by the uncertainty in realising the idealized unperturbed environment. There exists the possibility however that the unperturbed level spacing is not fixed. Some theories that go beyond the Standard Model involve a time-variation of the fundamental ``constants'' - such as the fine structure constant - which determine these energy levels. Measurements of spectral lines in radiation emitted from distant galaxies around 1010 years ago are inconclusive, with some results suggesting the existence of a time-variation, and others observing nothing. By virtue of their very small measurement uncertainty atomic-clock experiments can, in timescales of only a few years, perform tests of present-day variation that are complementary to astrophysical data. Comparisons of frequency measurements between two or more atomic ``clock'' transitions that have different sensitivities to these constants enables us to directly measure any present-day time-variation. Combining recent results from the NPL 171Yb+ clock with measurements from other experiments worldwide places upper limits on the present-day time-variation of the proton-to-electron mass ratio μ and the fine-structure constant α of μ˙ / μ = 0 . 2 (1 . 1) ×10-16 yr-1 and μ˙ / μ = - 0 . 7 (2 . 1) ×10-17 .

  8. Performance of a prototype atomic clock based on lin parallel lin coherent population trapping resonances in Rb atomic vapor

    SciTech Connect

    Mikhailov, Eugeniy E.; Horrom, Travis; Belcher, Nathan; Novikova, Irina

    2010-03-15

    We report on the performance of the first table-top prototype atomic clock based on coherent population trapping (CPT) resonances with parallel linearly polarized optical fields (lin parallel lin configuration). Our apparatus uses a vertical-cavity surface-emitting laser (VCSEL) tuned to the D{sub 1} line of {sup 87}Rb with the current modulation at the {sup 87}Rb hyperfine frequency. We demonstrate cancellation of the first-order light shift by the proper choice of rf modulation power and further improve our prototype clock stability by optimizing the parameters of the microwave lock loop. Operating in these optimal conditions, we measured a short-term fractional frequency stability (Allan deviation) 2x10{sup -11}{tau}{sup -1/2} for observation times 1 s{<=}{tau}{<=}20 s. This value is limited by large VCSEL phase noise and environmental temperature fluctuation. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated lin parallel lin CPT resonance clock with environmental impacts minimized.

  9. Applications of State-Selected Atoms: From Relativity to Radiology

    NASA Astrophysics Data System (ADS)

    Walsworth, Ronald

    2005-05-01

    1905 saw both the development of special relativity and the construction of the first institution dedicated to radiology. A century later, AMO physics is playing an important role in these seemingly disparate fields through the application of state- selected atoms to highly-stable clocks and novel biomedical imaging tools. I will discuss the work of my group and others in these areas.

  10. Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks

    NASA Astrophysics Data System (ADS)

    Zanon-Willette, T.; Minissale, M.; Yudin, V. I.; Taichenachev, A. V.

    2016-06-01

    The next generation of atomic frequency standards based on an ensemble of neutral atoms or a single-ion will provide very stringent tests in metrology, applied and fundamental physics requiring a new step in very precise control of external systematic corrections. In the proceedings of the 8th Symposium on Frequency Standards and Metrology, we present a generalization of the recent Hyper-Ramsey spectroscopy with separated oscillating fields using composites pulses in order to suppress field frequency shifts induced by the interrogation laser itself. Sequences of laser pulses including specific selection of phases, frequency detunings and durations are elaborated to generate spectroscopic signals with a strong reduction of the light-shift perturbation by off resonant states. New optical clocks based on weakly allowed or completely forbidden transitions in atoms, ions, molecules and nuclei will benefit from these generalized Ramsey schemes to reach relative accuracies well below the 10-18 level.

  11. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; McDonald, G.; Döring, D.; Debs, J. E.; Barter, T. H.; Close, J. D.; Robins, N. P.; Haine, S. A.; Hanna, T. M.; Anderson, R. P.

    2011-06-01

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 106 Bose-condensed 87Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, mF=0rang→|F=2, mF=0rang clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 106 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  12. Automatic compensation of magnetic field for a rubidium space cold atom clock

    NASA Astrophysics Data System (ADS)

    Lin, Li; Jingwei, Ji; Wei, Ren; Xin, Zhao; Xiangkai, Peng; Jingfeng, Xiang; Desheng, Lü; Liang, Liu

    2016-07-01

    When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10-16. In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms. Project supported by the Ministry of Science and Technology of China (Grant No. 2013YQ09094304), the Youth Innovation Promotion Association, Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324).

  13. Colloquium: Physics of optical lattice clocks

    SciTech Connect

    Derevianko, Andrei; Katori, Hidetoshi

    2011-04-01

    Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10{sup -18} fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

  14. Colloquium: Physics of optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Katori, Hidetoshi

    2011-04-01

    Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10-18 fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

  15. Optical lattice polarization effects on magnetically induced optical atomic clock transitions

    SciTech Connect

    Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.

    2007-08-15

    We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.

  16. One-liter Hg ion clock for space and ground applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang; Le, Thanh; Beach, Maggie; Maleki, Lute; Tjoelker, Robert L.

    2003-01-01

    We describe the development of a small Hg ion clock suitable for space use. A small clock occupying 1-2 liters volume and producing stability of 10 to the power negative twelve, divided by square root pi would significantly advance the state of space-qualified atomic clocks. Based on recent measurements, this technology should produce long-term stability as good as 10 to the power negative fifteen.

  17. Determination of a high spatial resolution geopotential model using atomic clock comparisons

    NASA Astrophysics Data System (ADS)

    Lion, G.; Panet, I.; Wolf, P.; Guerlin, C.; Bize, S.; Delva, P.

    2017-01-01

    Recent technological advances in optical atomic clocks are opening new perspectives for the direct determination of geopotential differences between any two points at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. We present a first step in that direction with the aim and hope of triggering further work and efforts in this emerging field of chronometric geodesy and geophysics. We specifically focus on evaluating the contribution of this new kind of direct measurements in determining the geopotential at high spatial resolution (≈ 10 km). We studied two test areas, both located in France and corresponding to a middle (Massif Central) and high (Alps) mountainous terrain. These regions are interesting because the gravitational field strength varies greatly from place to place at high spatial resolution due to the complex topography. Our method consists in first generating a synthetic high-resolution geopotential map, then drawing synthetic measurement data (gravimetry and clock data) from it, and finally reconstructing the geopotential map from that data using least squares collocation. The quality of the reconstructed map is then assessed by comparing it to the original one used to generate the data. We show that adding only a few clock data points (less than 1% of the gravimetry data) reduces the bias significantly and improves the standard deviation by a factor 3. The effect of the data coverage and data quality on the results is investigated, and the trade-off between the measurement noise level and the number of data points is discussed.

  18. Progress Toward a Two-Photon Optical Atomic Clock in Neutral Silver

    NASA Astrophysics Data System (ADS)

    McKenna, David; Tanner, Carol

    2012-06-01

    Bender et al.ootnotetextP. L. Bender et al., Bull. Am. Phys. Soc. 21, 599 (1976). proposed Ag as an optical frequency standard. There are two narrow two-photon transitions 4d105s 2S1/2-4d95s2 2D5/2 (two 661nm photons) and 4d105s 2S1/2-4d95s2 2D3/2 (two 576nm photons) from the ground state. An advantage over single-photon optical clocks is that two equal counter-propagating photons will cancel the first order Doppler shift. The 4d95s2 2D3/2 state (width 4kHz) decays by two single photon emissions to the ground state via easily detectable photons at 338nm or 328nm. The 4d95s2 2D5/2 clock state is metastable (widthootnotetextR. H. Garstang, J. Res. Natl. Bur. Stand. Sect. A 68, 61 (1964). 0.8Hz) and decays via an electric quadrupole transition at 330.6nm. Our first goal is to observe excitation and decay of the 4d95s2 2D3/2 state in an atomic beam yielding optical frequencies for all hyperfine components in both 107, 109Ag. Our second goal is to observe excitation and decay of the clock state. We expect to achieve an atomic number density in the interaction region of 1010/cm3 at an oven temperature of ˜1300K. For a laser beam waist of 1cm, the transit-time-limited line width is ˜45kHz. One might expect a precision of ˜45Hz or 1/1013 in a measurement of the optical frequencies.

  19. Gyromagnetic factors and atomic clock constraints on the variation of fundamental constants

    NASA Astrophysics Data System (ADS)

    Luo, Feng; Olive, Keith A.; Uzan, Jean-Philippe

    2011-11-01

    We consider the effect of the coupled variations of fundamental constants on the nucleon magnetic moment. The nucleon g-factor enters into the interpretation of the measurements of variations in the fine-structure constant, α, in both the laboratory (through atomic clock measurements) and in astrophysical systems (e.g. through measurements of the 21 cm transitions). A null result can be translated into a limit on the variation of a set of fundamental constants, that is usually reduced to α. However, in specific models, particularly unification models, changes in α are always accompanied by corresponding changes in other fundamental quantities such as the QCD scale, ΛQCD. This work tracks the changes in the nucleon g-factors induced from changes in ΛQCD and the light quark masses. In principle, these coupled variations can improve the bounds on the variation of α by an order of magnitude from existing atomic clock and astrophysical measurements. Unfortunately, the calculation of the dependence of g-factors on fundamental parameters is notoriously model-dependent.

  20. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  1. Gyromagnetic factors and atomic clock constraints on the variation of fundamental constants

    SciTech Connect

    Luo Feng; Olive, Keith A.; Uzan, Jean-Philippe

    2011-11-01

    We consider the effect of the coupled variations of fundamental constants on the nucleon magnetic moment. The nucleon g-factor enters into the interpretation of the measurements of variations in the fine-structure constant, {alpha}, in both the laboratory (through atomic clock measurements) and in astrophysical systems (e.g. through measurements of the 21 cm transitions). A null result can be translated into a limit on the variation of a set of fundamental constants, that is usually reduced to {alpha}. However, in specific models, particularly unification models, changes in {alpha} are always accompanied by corresponding changes in other fundamental quantities such as the QCD scale, {Lambda}{sub QCD}. This work tracks the changes in the nucleon g-factors induced from changes in {Lambda}{sub QCD} and the light quark masses. In principle, these coupled variations can improve the bounds on the variation of {alpha} by an order of magnitude from existing atomic clock and astrophysical measurements. Unfortunately, the calculation of the dependence of g-factors on fundamental parameters is notoriously model-dependent.

  2. Testing for a cosmological influence on local physics using atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Hellings, R. W.; Canuto, V. M.; Goldman, I.

    1983-01-01

    The existence of a possible influence of the large-scale structure of the universe on local physics is discussed. A particular realization of such an influence is discussed in terms of the behavior in time of atomic and gravitational clocks. Two natural categories of metric theories embodying a cosmic infuence exist. The first category has geodesic equations of motion in atomic units, while the second category has geodesic equations of motion in gravitational units. Equations of motion for test bodies are derived for both categories of theories in the appropriate parametrized post-Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars are of sufficient precision to reveal (1) if such a cosmological influence exists at the level of Hubble's constant, and (2) which category of theories is appropriate for a descripton of the phenomenon.

  3. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-08-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field ϕ =ϕ0cos(mϕt ) , can induce oscillating variations in the fundamental constants through their interactions with the standard model sector. We calculate the effects of such possible interactions, which may include the linear interaction of ϕ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive limits on the linear interaction of ϕ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of ϕ with the Higgs boson, our derived limits improve on existing constraints by up to 2-3 orders of magnitude.

  4. Dependence of microwave-excitation signal parameters on frequency stability of caesium atomic clock

    NASA Astrophysics Data System (ADS)

    Petrov, A. A.; Davydov, V. V.; Vologdin, V. A.; Zalyotov, D. V.

    2015-11-01

    New scheme of the microwave - excitation signal for the caesium atomic clock is based on method of direct digital synthesis. The theoretical calculations and experimental research showed decrease step frequency tuning by several orders and improvement the spectral characteristics of the output signal of frequency synthesizer. A range of generated output frequencies is expanded, and the possibility of detuning the frequency of the neighboring resonance of spectral line that makes it possible to adjust the C-field in quantum frequency standard is implemented. Experimental research of the metrological characteristics of the quantum frequency standard on the atoms of caesium - 133 with new design scheme of the microwave - excitation signal showed improvement in daily frequency stability on 1.2*10-14.

  5. Optical Lattice Clocks

    NASA Astrophysics Data System (ADS)

    Oates, Chris

    2012-06-01

    Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths << 1 Hz). To suppress the effects of atomic motion/recoil, the atoms in the sample (˜10^4 atoms) are confined tightly in the potential wells of an optical standing wave (lattice). The wavelength of the lattice light is tuned to its ``magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates

  6. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Abdel Hafiz, M.; Micalizio, S.; Boudot, R.

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10-14 for the Cs cell clock and 2 × 10-14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10-15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  7. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    SciTech Connect

    François, B.; Calosso, C. E.; Micalizio, S.; Abdel Hafiz, M.; Boudot, R.

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  8. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    PubMed

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  9. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    NASA Astrophysics Data System (ADS)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.

  10. Utilization of the Deep Space Atomic Clock for Europa Gravitational Tide Recovery

    NASA Technical Reports Server (NTRS)

    Seubert, Jill; Ely, Todd

    2015-01-01

    Estimation of Europa's gravitational tide can provide strong evidence of the existence of a subsurface liquid ocean. Due to limited close approach tracking data, a Europa flyby mission suffers strong coupling between the gravity solution quality and tracking data quantity and quality. This work explores utilizing Low Gain Antennas with the Deep Space Atomic Clock (DSAC) to provide abundant high accuracy uplink-only radiometric tracking data. DSAC's performance, expected to exhibit an Allan Deviation of less than 3e-15 at one day, provides long-term stability and accuracy on par with the Deep Space Network ground clocks, enabling one-way radiometric tracking data with accuracy equivalent to that of its two-way counterpart. The feasibility of uplink-only Doppler tracking via the coupling of LGAs and DSAC and the expected Doppler data quality are presented. Violations of the Kalman filter's linearization assumptions when state perturbations are included in the flyby analysis results in poor determination of the Europa gravitational tide parameters. B-plane targeting constraints are statistically determined, and a solution to the linearization issues via pre-flyby approach orbit determination is proposed and demonstrated.

  11. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks

    SciTech Connect

    Porsev, Sergey G.; Derevianko, Andrei

    2006-08-15

    Blackbody radiation (BBR) shifts of the {sup 3}P{sub 0}-{sup 1}S{sub 0} clock transition in the divalent atoms Mg, Ca, Sr, and Yb are evaluated. The dominant electric-dipole contributions are computed using accurate relativistic many-body techniques of atomic structure. At room temperatures, the resulting uncertainties in the E1 BBR shifts are large and substantially affect the projected 10{sup -18} fractional accuracy of the optical-lattice-based clocks. A peculiarity of these clocks is that the characteristic BBR wavelength is comparable to the {sup 3}P fine-structure intervals. To evaluate relevant M1 and E2 contributions, a theory of multipolar BBR shifts is developed. The resulting corrections, although presently masked by the uncertainties in the E1 contribution, are required at the 10{sup -18} accuracy goal.

  12. Chronometric measurement of the orthometric height differences by means of atomic clocks

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Mazurova, Elena; Kanushin, Vadim F.; Karpik, Alexander P.; Tolstikov, Alexander S.; Gienko, Elena G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Ganagina, Irina G.; Karaush, Artem A.; Hanikova, Ekaterina A.

    2016-07-01

    We report on the experimental results of the approbation of a new physical method of determination of the potential difference of the gravity force and the orthometric heights by means of the measurement of the gravitational red shift of frequency with atomic clocks. The experiment has been performed on the territory of Altai Mountains between two geodetic stations "Shebalino" and "Seminsky" which are separated in altitude by about 850 meters. The mean value of the frequency shift caused by the change in the potential of the gravity force measured between the two geodetic stations was found to be equal to δ f/f=7.98× 10^{-14} with the dispersion being equal to σ _{f} =7.27× 10^{-15} . This difference perfectly agrees with the independent geodetic measurements of the height difference between the two stations.

  13. Two-step pulse observation to improve resonance contrast for coherent population trapping atomic clock

    NASA Astrophysics Data System (ADS)

    Yano, Yuichiro; Goka, Shigeyoshi; Kajita, Masatoshi

    2017-03-01

    We study resonance contrast by a two-step pulse observation method to enhance the frequency stability of coherent population trapping (CPT) atomic clocks. The proposed method is a two-step Raman-Ramsey scheme with low intensity during resonance observation and high intensity after the observation. This method reduces the frequency variation in the light intensity and maintains a high signal-to-noise ratio. The resonance characteristics were calculated by density matrix analysis of a Λ-type three-level system that was modeled on the ^{133}Cs D1 line, and the characteristics were also measured using a vertical-cavity surface-emitting laser and a Cs vapor cell.

  14. Direct Excitation of the Forbidden Clock Transition in Neutral {sup 174}Yb Atoms Confined to an Optical Lattice

    SciTech Connect

    Barber, Z.W.; Hoyt, C.W.; Oates, C.W.; Hollberg, L.; Taichenachev, A.V.; Yudin, V.I.

    2006-03-03

    We report direct single-laser excitation of the strictly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} clock transition in {sup 174}Yb atoms confined to a 1D optical lattice. A small ({approx}1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FWHM) with high contrast were observed, demonstrating a resonance quality factor of 2.6x10{sup 13}. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35{+-}0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks and can create new clock possibilities in other alkaline-earth-like atoms such as Mg and Ca.

  15. 85Rb D1-Line Coherent-Population-Trapping Atomic Clock for Low-Power Operation

    NASA Astrophysics Data System (ADS)

    Goka, Shigeyoshi

    2010-06-01

    A 85Rb D1-line coherent-population-trapping (CPT) atomic clock with a natural-mixture Rb gas cell is demonstrated. D1-line excitation can generate a larger CPT resonance amplitude, and the choice of 85Rb rather than conventional 87Rb is because of its lower ground-state hyperfine-splitting frequency. The frequency deviation for the D1 line was measured using the same experimental setup as that for the D2 line except for the vertical-cavity surface-emitting laser (VCSEL) wavelength and RF power. In the case of D1-line excitation, the CPT resonance amplitude was 1.5 times that for the D2 line, and the light shift sensitivity was one-half that for the D2 line. The Allan standard deviations for the 85Rb D1 line, estimated from the frequency deviations, are <2.5×10-12 per day. In addition, the required RF is 1.5 GHz and its power is only -8.0 dBm.

  16. 85Rb D1-Line Coherent-Population-Trapping Atomic Clock for Low-Power Operation

    NASA Astrophysics Data System (ADS)

    Shigeyoshi Goka,

    2010-06-01

    A 85Rb D1-line coherent-population-trapping (CPT) atomic clock with a natural-mixture Rb gas cell is demonstrated. D1-line excitation can generate a larger CPT resonance amplitude, and the choice of 85Rb rather than conventional 87Rb is because of its lower ground-state hyperfine-splitting frequency. The frequency deviation for the D1 line was measured using the same experimental setup as that for the D2 line except for the vertical-cavity surface-emitting laser (VCSEL) wavelength and RF power. In the case of D1-line excitation, the CPT resonance amplitude was 1.5 times that for the D2 line, and the light shift sensitivity was one-half that for the D2 line. The Allan standard deviations for the 85Rb D1 line, estimated from the frequency deviations, are <2.5× 10-12 per day. In addition, the required RF is 1.5 GHz and its power is only -8.0 dBm.

  17. Design of microwave signal source for CS chip-scale atomic clock

    NASA Astrophysics Data System (ADS)

    Lei, Ji; Zhi, Meng Hui; Li, Xin Wei; Liang, Tang; Qiao, Dong Hai

    2017-03-01

    Nowadays, some countries have already invented chip-scale atomic clock (CSAC) based on coherent population trapping (CPT), and it has been applied in every areas. According to its working principle, the microwave signal source is one of the decisive factors affecting its stability. Usually the microwave signal source is a phase-locked loop circuit, it mainly includes a frequency synthesizer, a voltage controlled oscillator (VCO) and a loop filter. This paper aims to develop a microwave signal source for Cs CSAC. First, a VCO should be designed, in order to validate the characteristic of the designed VCO, the VCO needs to be tested at high and low temperatures, and the results show that it has good stability of high and low temperatures. Second, for the purpose of verifying that the design and production consistency of the VCO are in good condition, 1000 VCOs are test, respectively. The statistical distribution of the phase noise at 1 kHz offset would be painted a curve. Finally, the designed VCO (PN: 61.01dBc/Hz@1kHz) will be applied in phase-locked loop, the test results show that the phase noise is ‑83.57dBc/Hz@300Hz, it is much better than ‑43dBc/Hz@300Hz which is the spec of CSAC. If the microwave signal source would be used in CSAC, its stability would be greatly improved.

  18. Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks.

    PubMed

    Ben-Aroya, I; Kahanov, M; Eisenstein, G

    2007-11-12

    We describe the optimization of a Frequency Locked Loop (FLL) in an atomic clock which is based on Coherent Population Trapping (CPT) in (87)Rb vapor using the D(2) transition. The FLL uses frequency modulation (FM) spectroscopy and we study the effect of FM parameters (modulation frequency and index) on the sensitivity and the signal to noise ratio of the feedback signal in the FLL. The clock which employs a small spherical glass cell containing (87)Rb atoms and a buffer gas, exhibits a short term stability of 3x10(-11)/ radicaltau. The long term relative frequency stability of the 10 MHz output is better than 10(-10) with a drift of 10(-11) per day.

  19. Effect of Irregularities in the Earth's Rotation on Relativistic Shifts in Frequency and Time of Earthbound Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Fateev, V. F.; Kopeikin, S. M.; Pasynok, S. L., S. L.

    2015-10-01

    The effect of irregularities in the earth's rotation (precession and nutation of the earth's axis of rotation, oscillations in the modulus of the angular velocity, periodic deviations in the line of the poles, and the angular momentum of the globe) on the frequency and time of high-stability atomic clocks are examined in terms of the theory of relativity. It is shown that the relative shift in frequency and time owing to these effects can exceed 5×10-16.

  20. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  1. Compact Microwave Mercury Ion Clock for Space Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tu, Meirong; Chung, Sang K.; MacNeal, Paul

    2007-01-01

    We review progress in developing a small Hg ion clock for space operation based on breadboard ion-clock physics package where Hg ions are shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability approx.1-2x10(exp -13) at 1 second, averaging to 10-15 at 1 day. This development shows that H-maser quality stabilities can be produced in a small clock package, comparable in size to an ultra-stable quartz oscillator required or holding 1-2x10(exp -13) at 1 second. We have completed an ion clock physics package designed to withstand vibration of launch and are currently building a approx. 1 kg engineering model for test. We also discuss frequency steering software algorithms that simultaneously measure ion signal size and lamp light output, useful for long term operation and self-optimization of microwave power and return engineering data.

  2. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect

    François, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  3. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    PubMed

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  4. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Danet, J. M.; Boudot, R.

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad2/Hz and -129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10-14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  5. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.

    2014-08-01

    The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.

  6. Proceedings of the Workshop on the Scientific Applications of Clocks in Space

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Editor)

    1997-01-01

    The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.

  7. Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

    PubMed

    Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji

    2015-07-17

    Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.

  8. Optimizing passive quantum clocks

    NASA Astrophysics Data System (ADS)

    Mullan, Michael; Knill, Emanuel

    2014-10-01

    We describe protocols for passive atomic clocks based on quantum interrogation of the atoms. Unlike previous techniques, our protocols are adaptive and take advantage of prior information about the clock's state. To reduce deviations from an ideal clock, each interrogation is optimized by means of a semidefinite program for atomic state preparation and measurement whose objective function depends on the prior information. Our knowledge of the clock's state is maintained according to a Bayesian model that accounts for noise and measurement results. We implement a full simulation of a running clock with power-law noise models and find significant improvements by applying our techniques.

  9. Reference clock parameters for digital communications systems applications

    NASA Technical Reports Server (NTRS)

    Kartaschoff, P.

    1981-01-01

    The basic parameters relevant to the design of network timing systems describe the random and systematic time departures of the system elements, i.e., master (or reference) clocks, transmission links, and other clocks controlled over the links. The quantitative relations between these parameters were established and illustrated by means of numerical examples based on available measured data. The examples were limited to a simple PLL control system but the analysis can eventually be applied to more sophisticated systems at the cost of increased computational effort.

  10. Editorial: Focus on Atom Optics and its Applications

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A

  11. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation

    SciTech Connect

    Affolderbach, Christoph; Mileti, Gaetano

    2005-07-15

    We present a compact and frequency-stabilized laser head based on an extended-cavity diode laser. The laser head occupies a volume of 200 cm{sup 3} and includes frequency stabilization to Doppler-free saturated absorption resonances on the hyperfine components of the {sup 87}Rb D{sub 2} lines at 780 nm, obtained from a simple and compact spectroscopic setup using a 2 cm{sup 3} vapor cell. The measured frequency stability is {<=}2x10{sup -12} over integration times from 1 s to 1 day and shows the potential to reach 2x10{sup -13} over 10{sup 2}-10{sup 5} s. Compact laser sources with these performances are of great interest for applications in gas-cell atomic frequency standards, atomic magnetometers, interferometers and other instruments requiring stable and narrow-band optical sources.

  12. Innovation and reliability of atomic standards for PTTI applications

    NASA Technical Reports Server (NTRS)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  13. Rydberg Spectroscopy in an Optical Lattice: Blackbody Thermometry for Atomic Clocks

    SciTech Connect

    Ovsiannikov, Vitali D.; Derevianko, Andrei; Gibble, Kurt

    2011-08-26

    We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of 25-30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions with 10{sup -16} accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition of 10{sup -18}.

  14. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.

    PubMed

    Ovsiannikov, Vitali D; Derevianko, Andrei; Gibble, Kurt

    2011-08-26

    We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of 25-30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions with 10(-16) accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition of 10(-18).

  15. Progress on Small Mercury Ion Clock for Space Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Thompson, Robert J.; MacNeal, Paul

    2009-01-01

    We have recently completed a breadboard ion-clock physics package based on Hg ions shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability approx.1-2x10-(sup 1)(sup 3) at 1 second, averaging to 10-(sup 1)? at 1 day. This development shows that H-maser quality stabilities can be produced in a small clock package, comparable in size to an ultra-stable quartz oscillator required for holding 1-2x10-(sup 1)(sup 3) at 1 second. This performance was obtained in a sealed vacuum configuration where only a getter pump was used to maintain vacuum. The vacuum tube containing the traps has now been under sealed vacuum conditions for over three years with no measurable degradation of ion trapping lifetimes or clock short-term performance. We have fabricated the vacuum tube, ion trap and UV windows from materials that will allow approx. 400 deg C bake-out to prepare for tube seal-off. This approach to the vacuum follows the methods used in flight vacuum tube electronics, such as flight TWTA's where tube operation lifetime and shelf life of up to 15 years is achieved.

  16. Compact Microwave Mercury Ion Clock for Space Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tu, Meirong; Chung, Sang K.; MacNeal, Paul

    2008-01-01

    We have recently completed a breadboard ion-clock physics package based on Hg ions shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability approximately 1 - 2 x 10(exp -13) at 1 second, averaging to 10(exp -15) at 1 day. This development shows that H-maser quality stabilities can be produced in a small clock package, comparable in size to an ultra-stable quartz oscillator required for holding 1 - 2 x 10(exp -13) at 1 second. This performance was obtained in a sealed vacuum configuration where only a getter pump was used to maintain vacuum. The vacuum tube containing the traps has now been under sealed vacuum conditions for nearly three years with no measurable degradation of ion trapping lifetimes or clock short-term performance. We have fabricated the vacuum tube, ion trap and UV windows from materials that will allow an approximately 400 C bake-out to prepare for tube seal-off. This approach to the vacuum follows the methods used in flight vacuum tube electronics, such as flight TWTA's where tube operation lifetime and shelf life of up to 15 years is achieved.

  17. Miniaturized Mercury Ion Clock for Ultrastable Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang; Lim, Lawrence; Le, Thanh

    2006-01-01

    We have recently completed a prototype ion-clock physics package based on Hg ions shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability 2-3x10-13 at 1 second, averaging to 10-15 at 1 day. This development shows that H-maser quality stabilities can be produced in a small clock package, comparable in size to an ultra-stable quartz oscillator required for holding 1-2x10-13 at 1 second. This performance was obtained in a sealed vacuum configuration where only a getter pump was used to maintain vacuum. The vacuum tube containing the traps has now been under sealed vacuum conditions for nearly 1.5 years with no measurable degradation of ion trapping lifetimes or clock short-term performance. Because the tube is sealed, the Hg source and Neon buffer gas are held indefinitely, for the life of the tube. There is no consumption of Hg in this system unlike in a Cs beam tube where lifetime is often limited by Cs depletion.

  18. Accuracy budget of the 88Sr optical atomic clocks at KL FAMO

    NASA Astrophysics Data System (ADS)

    Radzewicz, Czesław; Bober, Marcin; Morzyński, Piotr; Cygan, Agata; Lisak, Daniel; Bartoszek-Bober, Dobrosława; Masłowski, Piotr; Ablewski, Piotr; Zachorowski, Jerzy; Gawlik, Wojciech; Ciuryło, Roman; Zawada, Michał

    2016-08-01

    This paper presents a detailed accuracy budget of two independent strontium optical lattice clocks at the National Laboratory FAMO (KL FAMO) probed with a single shared ultra-narrow laser. The combined instability of the two frequency standards was 7× {10}-17 after 105s of averaging.

  19. Detection of ultrahigh resonance contrast in vapor-cell atomic clocks.

    PubMed

    Lin, Jinda; Deng, Jianliao; Ma, Yisheng; He, Huijuan; Wang, Yuzhu

    2012-12-15

    We propose and demonstrate a novel detection scheme of clock signals and obtain an ultrahigh resonance contrast up to 90%, which leads to the remarkable improvement of the precision of the signal-to-noise ratio. The frequency stability in terms of Allan deviation of the proposed detection scheme is improved by an order of magnitude under equivalent conditions.

  20. Optical clock networks

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz

    2017-01-01

    Within the last decade, optical atomic clocks have surpassed the best cesium clocks, which are used to realize the unit of time and frequency, in terms of accuracy and stability by about two orders of magnitude. When remote optical atomic clocks are connected by links without degradation in the clock signals, an optical clock network is formed, with distinct advantages for the dissemination of time, geodesy, astronomy and basic and applied research. Different approaches for time and frequency transfer in the microwave and optical regime, via satellites and free-space links, optical fibre links, or transportable optical atomic clocks, can be used to form a hybrid clock network that may allow a future redefinition of the unit of time based on an optical reference transition.

  1. Selection and amplification of a single optical frequency comb mode for laser cooling of the strontium atoms in an optical clock

    SciTech Connect

    Liu, Hui; Yin, Mojuan; Kong, Dehuan; Xu, Qinfang; Zhang, Shougang; Chang, Hong

    2015-10-12

    In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be applied over a broad spectral band to build narrow linewidth lasers for various applications.

  2. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts.

    PubMed

    Safronova, M S; Porsev, S G; Clark, Charles W

    2012-12-07

    We evaluated the C(6) coefficients of Yb-Yb, Yb-alkali, and Yb-group II van der Waals interactions with 2% uncertainty. The only existing experimental result for such quantities is for the Yb-Yb dimer. Our value, C(6)=1929(39) a.u., is in excellent agreement with the recent experimental determination of 1932(35) a.u. We have also developed a new approach for the calculation of the dynamic correction to the blackbody radiation shift. We have calculated this quantity for the Yb 6s(2) (1)S(0)-6s6p (3)P(0)(o) clock transition with 3.5% uncertainty. This reduces the fractional uncertainty due to the blackbody radiation shift in the Yb optical clock at 300 K to the 10(-18) level.

  3. Compact Microwave Mercury Ion Clock for Deep-Space Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Lim, Lawrence; Matevosian, Annond

    2007-01-01

    We have recently completed a breadboard ion-dock physics package based on Kg ions shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability -1-2xl0-13 at 1 second, averaging to 10-15 at 1 day. This development shows that 8- maser quality stabilities can be produced in a small clock package, comparable in size to an oItra-stable quartz oscillator required for holding 1-2xl0-13 at 1 second. This performance was obtained in a sealed vacuum configuration where only agetter pump was used to maintain vacuum. The vacuum tube containing the traps has now been onder sealed vacuum conditions for nearly two years with no measurable degradation of ion trapping lifetimes or clock short-term performance. We have fabricated the vacuum tube, ion trap and UV windows from materials that will allow a - 400 C tube bake-out to prepare for tube sealoff. This approach to the vacuum follows the methods used in mght vacuum tube electronics, such as flight TWTA's where tube operation lifetime and shelf life of up to 15 years is achieved. We use neon as a buffer gas with 2-3 times less pressure induced frequency pulling than helium and, being heavier, negligable diffusion losses will occur over the operation lifetime.

  4. RF-Interrogated End-State Chip-Scale Atomic Clock

    DTIC Science & Technology

    2007-11-01

    measured end-state resonance signal obtained from a 2 mm, 0.7 atm cesium vapor cell, without Zeeman interrogation. 57% Contrast 9.19165 GHz VCO CW ...feedback from the cesium optical absorption profile was fed back to the VCSEL temperature control to stabilize the laser wavelength. In this way, the...temperature. Feedback control was used to stabilize the VCSEL laser wavelength to the cesium optical absorption peak, clock local oscillator stabilized

  5. Monitoring signal integrity of atomic clocks by means of the GLRT

    NASA Astrophysics Data System (ADS)

    Nunzi, E.; Carbone, P.

    2008-12-01

    The generalized likelihood ratio test (GLRT) is a statistical fault detection method used for revealing fault occurrences in electronic systems. In this paper, the GLRT technique is analysed and customized for a rubidium frequency standard in order to reveal mean or standard deviation changes in the clock frequency. Experimental results are presented that confirm the effectiveness of the technique also when it is applied to data acquired from a rubidium clock. Monte Carlo simulations are shown in order to characterize the proposed method and to give a simple interpretation of the obtained results. The effectiveness of the GLRT has been already compared with standard tools such as the Allan variance (Nunzi E et al 2007 IEEE Trans. Instrum. Meas. 56 523-8). In particular, the sensitivity of the method with respect to the jump size has been analysed. In this paper, the fault detection technique is characterized with respect to its readiness in terms of the number of samples employed for obtaining a failure occurrence when applied to clock frequency. Results obtained are employed for giving practical indications on the design of this failure test.

  6. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  7. ac Stark shift measurements of the clock transition in cold Cs atoms: Scalar and tensor light shifts of the D2 transition

    NASA Astrophysics Data System (ADS)

    Costanzo, G. A.; Micalizio, S.; Godone, A.; Camparo, J. C.; Levi, F.

    2016-06-01

    The ac Stark shift, or light shift, is a physical phenomenon that plays a fundamental role in many applications ranging from basic atomic physics to applied quantum electronics. Here, we discuss experiments testing light-shift theory in a cold-atom cesium fountain clock for the Cs D2 transition (i.e., 6 2S1 /2→6 2P3 /2 at 852 nm). Cold-atom fountains represent a nearly ideal system for the study of light shifts: (1) The atoms can be perturbed by a field of arbitrary character (e.g., coherent field or nonclassical field); (2) there are no trapping fields to complicate data interpretation; (3) the probed atoms are essentially motionless in their center-of-mass reference frame, T ˜ 1 μK; and (4) the atoms are in an essentially collisionless environment. Moreover, in the present work the resolution of the Cs excited-state hyperfine splittings implies that the D2 ac Stark shift contains a nonzero tensor polarizability contribution, which does not appear in vapor phase experiments due to Doppler broadening. Here, we test the linearity of the ac Stark shift with field intensity, and measure the light shift as a function of field frequency, generating a "light-shift curve." We have improved on the previous best test of theory by a factor of 2, and after subtracting the theoretical scalar light shift from the experimental light-shift curves, we have isolated and tested the tensor light shift for an alkali D2 transition.

  8. Interim results from the characterization testing of the Engineering Development (EDM) rubidium clocks for satellite applications

    NASA Technical Reports Server (NTRS)

    Powers, Edward D., Jr.; Danzy, Fredrick

    1990-01-01

    Some interim results from the environmental testing program to evaluate the Engineering Design Model (EDM) of the EG and G Spaceborne Rubidium Clock are presented. This effort is in support of the Global Positioning System (GPS) BLOCK IIR program and is intended to characterize the performance of EG and G design for BLOCK IIR satellite applications. Two EG and G EDM units are currently under test at NRL's Clock Test Facility to measure the long-term frequency stability, drift, and frequency versus temperature characteristics.

  9. Characterization of commercially available vertical-cavity surface-emitting lasers tuned on Cs D1 line at 894.6  nm for miniature atomic clocks.

    PubMed

    Kroemer, Eric; Rutkowski, Jaroslaw; Maurice, Vincent; Vicarini, Rémy; Hafiz, Moustafa Abdel; Gorecki, Christophe; Boudot, Rodolphe

    2016-11-01

    We report on the metrological characterization of novel commercially available 894.6 nm vertical-cavity surface-emitting lasers (VCSELs), dedicated to Cs D1 line spectroscopy experiments. The thermal behavior of the VCSELs is reported, highlighting the existence of a minimum threshold current and maximum output power in the 55°C-60°C range. The laser relative intensity noise, measured to be -108  dB/Hz at 10 Hz Fourier frequency f for a laser power of 25 μW, is reduced with increased power. The VCSELs frequency noise is 108  Hz2/Hz at f=100  Hz. The spectral linewidth of the VCSELs is about 30 MHz. VCSELs injection current can be directly modulated at 4.596 GHz with microwave power in the range of -10 to +0  dBm to generate optical sidebands. A VCSEL was used in a microcell-based Cs atomic clock based on coherent population trapping. A preliminary clock short-term fractional frequency stability of 8×10-11τ-1/2 up to about 100 s is reported, demonstrating the suitability of these VCSELs for miniature atomic clock applications.

  10. Influence of the ac-Stark shift on GPS atomic clock timekeeping

    NASA Astrophysics Data System (ADS)

    Formichella, V.; Camparo, J.; Tavella, P.

    2017-01-01

    The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).

  11. Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.

    PubMed

    Huntemann, N; Sanner, C; Lipphardt, B; Tamm, Chr; Peik, E

    2016-02-12

    We experimentally investigate an optical frequency standard based on the (2)S1/2(F=0)→(2)F7/2(F=3) electric octupole (E3) transition of a single trapped (171)Yb+ ion. For the spectroscopy of this strongly forbidden transition, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these shifts is controlled by interleaved single-pulse Rabi spectroscopy, which reduces the related relative frequency uncertainty to 1.1×10(-18). To determine the frequency shift due to thermal radiation emitted by the ion's environment, we measure the static scalar differential polarizability of the E3 transition as 0.888(16)×10(-40)  J m(2)/V(2) and a dynamic correction η(300  K)=-0.0015(7). This reduces the uncertainty due to thermal radiation to 1.8×10(-18). The residual motion of the ion yields the largest contribution (2.1×10(-18)) to the total systematic relative uncertainty of the clock of 3.2×10(-18).

  12. Relativistic effects of the rotation of the earth on remote clock synchronization

    NASA Technical Reports Server (NTRS)

    Reinhardt, V.

    1974-01-01

    A treatment is given of relativistic clock synchronization effects due to the rotation of the earth. Unlike other approaches, the point of view of an earth fixed coordinate system is used which offers insight to many problems. An attempt is made to give the reader an intuitive grasp of the subject as well as to provide formulae for his use. Specific applications to global timekeeping, navigation, VLBI, relativistic clock experiments, and satellite clock synchronization are discussed. The question of whether atomic clocks are ideal clocks is also treated.

  13. Coherent population trapping resonances in Cs-Ne vapor microcells for miniature clocks applications

    SciTech Connect

    Boudot, R.; Dziuban, P.; Hasegawa, M.; Chutani, R. K.; Galliou, S.; Giordano, V.; Gorecki, C.

    2011-01-01

    We report the characterization of dark line resonances observed in Cs vapor microcells filled with a unique neon (Ne) buffer gas. The impact on the coherent population trapping (CPT) resonance of some critical external parameters such as laser intensity, cell temperature, and microwave power is studied. We show the suppression of the first-order light shift by proper choice of the microwave power. The temperature dependence of the Cs ground state hyperfine resonance frequency is shown to be canceled in the 77-80 deg. C range for various Ne buffer gas pressures. The necessity to adjust the Ne buffer gas pressure or the cell dimensions to optimize the CPT signal height at the frequency inversion temperature is pointed out. Based on such Cs-Ne microcells, we preliminary demonstrate a 852 nm vertical cavity surface emitted laser (VCSEL)-modulated based CPT atomic clock exhibiting a short term fractional frequency instability {sigma}{sub y}({tau})=1.5x10{sup -10{tau}-1/2} until 30 s. These results, similar to those published in the literature by others groups, prove the potential of our original microcell technology in view of the development of high-performance chip scale atomic clocks.

  14. Short-scale atomic clock based on the quantum magnetometers system

    NASA Astrophysics Data System (ADS)

    Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2016-03-01

    The experimental results of dependence of Allan variance as averaging time for system of two quantum magnetometers with laser pumping of the alkaline atoms are presented. Also the role of different components of luminous frequency shift of a radio optical resonance in case of an optimum operation mode of quantum magnetometers in such system is noted. It is shown that the effect of compensation of luminous shift components allows to reduce Allan variance in times of averaging more, than hundreds of seconds in comparison with the quantum standard of frequency on 0-0 transition.

  15. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks.

    PubMed

    Huntemann, N; Lipphardt, B; Tamm, Chr; Gerginov, V; Weyers, S; Peik, E

    2014-11-21

    Accurate measurements of different transition frequencies between atomic levels of the electronic and hyperfine structure over time are used to investigate temporal variations of the fine structure constant α and the proton-to-electron mass ratio μ. We measure the frequency of the (2)S1/2→(2)F7/2 electric octupole (E3) transition in (171)Yb(+) against two caesium fountain clocks as f(E3)=642,121,496,772,645.36  Hz with an improved fractional uncertainty of 3.9×10(-16). This transition frequency shows a strong sensitivity to changes of α. Together with a number of previous and recent measurements of the (2)S1/2→(2)D3/2 electric quadrupole transition in (171)Yb(+) and with data from other elements, a least-squares analysis yields (1/α)(dα/dt)=-0.20(20)×10(-16)/yr and (1/μ)(dμ/dt)=-0.5(1.6)×10(-16)/yr, confirming a previous limit on dα/dt and providing the most stringent limit on dμ/dt from laboratory experiments.

  16. Enhanced sensitivity to the fine-structure-constant variation in the Th IV atomic clock transition

    SciTech Connect

    Flambaum, V. V.; Porsev, S. G.

    2009-12-15

    Our calculations have shown that the 5f{sub 5/2}-7s{sub 1/2} 23 131 cm{sup -1} transition from the ground state in the ion Th{sup 3+} is very sensitive to the temporal variation of the fine-structure constant alpha=e{sup 2}/(Planck constant/2pi)c (q=-75 300 cm{sup -1}). The line is very narrow, the ion has been trapped and laser cooled, and the positive shifter line 5f{sub 5/2}-5f{sub 7/2} 4325 cm{sup -1} (q=+2900 cm{sup -1}) may be used as a reference. A comparison may also be made with a positive shifter in another atom or ion. This makes Th{sup 3+} a good candidate to search for the alpha variation.

  17. The ac stark shift and space-borne rubidium atomic clocks

    NASA Astrophysics Data System (ADS)

    Formichella, V.; Camparo, J.; Sesia, I.; Signorile, G.; Galleani, L.; Huang, M.; Tavella, P.

    2016-11-01

    Due to its small size, low weight, and low power consumption, the Rb atomic frequency standard (RAFS) is routinely the first choice for atomic timekeeping in space. Consequently, though the device has very good frequency stability (rivaling passive hydrogen masers), there is interest in uncovering the fundamental processes limiting its long-term performance, with the goal of improving the device for future space systems and missions. The ac Stark shift (i.e., light shift) is one of the more likely processes limiting the RAFS' long-term timekeeping ability, yet its manifestation in the RAFS remains poorly understood. In part, this comes from the fact that light-shift induced frequency fluctuations must be quantified in terms of the RAFS' light-shift coefficient and the output variations in the RAFS' rf-discharge lamp, which is a nonlinear inductively-couple plasma (ICP). Here, we analyze the light-shift effect for a family of 10 on-orbit Block-IIR GPS RAFS, examining decade-long records of their on-orbit frequency and rf-discharge lamp fluctuations. We find that the ICP's light intensity variations can take several forms: deterministic aging, jumps, ramps, and non-stationary noise, each of which affects the RAFS' frequency via the light shift. Correlating these light intensity changes with RAFS frequency changes, we estimate the light-shift coefficient, κLS, for the family of RAFS: κLS = -(1.9 ± 0.3) × 10-12/%. The 16% family-wide variation in κLS indicates that while each RAFS may have its own individual κLS, the variance of κLS among similarly designed RAFS can be relatively small. Combining κLS with our estimate of the ICP light intensity's non-stationary noise, we find evidence that random-walk frequency noise in high-quality space-borne RAFS is strongly influenced by the RAFS' rf-discharge lamp via the light shift effect.

  18. Optical lattice clocks near the QPN limit: a tenfold improvement in optical clock stability

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis

    2013-05-01

    Two classes of optical atomic clocks have surpassed microwave frequency standards: single-ion clocks and optical lattice clocks. Single-ion clocks hold the record for the lowest systematic uncertainty; however, many-atom lattice clocks have the potential to outperform single-ion clocks because the standard quantum limit to atomic clock instability (known as quantum projection noise or QPN) scales as 1 /√{Natoms}. For realistic atom numbers and coherence times, QPN-limited lattice clocks could average down to a given stability hundreds of times faster than the best ion clocks. Up to now lattice clocks with 1000 atoms have not shown improvement over the stability of single-ion clocks. Lattice clock stability has been limited by laser noise (via the optical Dick effect). To address this problem, we constructed a new clock laser with a thermal noise floor of 1 ×10-16 -an order of magnitude improvement over our previous clock laser. With this laser, we compare two lattice clocks, reaching instability of 1 ×10-17 in 2000 s for a single clock. This instability is within a factor of 2 of the theoretical QPN limit for 1000 atoms, representing the lowest reported instability for an independent clock. The high stability of many-particle clocks can come at the price of larger systematic uncertainty due to a frequency shift from atomic interactions. To minimize this shift, we use a cavity-enhanced lattice for our second clock. The high circulating power inside the cavity allows for a large trap volume, yielding a density at 2000 atoms that is 27 times smaller (than in our first clock) and permitting us to trap as many as 5 ×104 atoms. For 2000 atoms in our lattice, we measure a value for this shift (which is linear in density) of - 3 . 11 ×10-17 with an uncertainty of 8 . 2 ×10-19.

  19. Influence of laser sources with different spectral properties on the performance of vapor cell atomic clocks based on lin||lin CPT.

    PubMed

    Breschi, Evelina; Kazakov, George; Lammegger, Roland; Matisov, Boris; Windholz, Laurentius; Mileti, Gaetano

    2009-05-01

    We evaluate the influence of 2 types of laser sources with different spectral profiles on the performance of vapor cell atomic clocks based on lin||lin coherent population trapping (CPT) resonances. We show that a short-term stability of 1-2 x 10(-11) tau(-1/2) may be reached in a compact system using a modulated vertical cavity surface-emitting laser. Here the stability is limited by the detection noise level and can be improved up to a factor of 4 by increasing the lock-in detection frequency to several tens of kilohertz, which is not possible in standard double resonance atomic clocks. We compare these results with CPT prepared under the same experimental conditions, using 2 phase-locked extended cavity diode lasers, with which we predict a challenging short-term stability of 1-3 x 10(-13) tau(-1/2), comparable to the state-of-the-art laser-pumped Rb-clocks.

  20. First Results of the GPS.DM Observatory: Search for Dark Matter and Exotic Physics with Atomic Clocks and GPS Constellation

    NASA Astrophysics Data System (ADS)

    Roberts, Benjamin; Blewitt, Geoff; Dailey, Conner; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei; GPS. DM Collaboration

    2017-01-01

    Despite the overwhelming cosmological evidence for the existence of dark matter, and the considerable effort of the scientific community over decades, there is no evidence for dark matter in terrestrial experiments. The GPS.DM observatory uses the existing GPS constellation as a 50,000 km-aperture sensor array, analysing the satellite and terrestrial atomic clock data for exotic physics signatures. In particular, the collaboration searches for evidence of transient variations of fundamental constants correlated with the Earth's galactic motion through the dark matter halo. There already exists more than 10 years of good clock timing data that can be used in the search. This type of search is particularly sensitive to exotic forms of dark matter, such as topological defects. Supported by the NSF.

  1. Gravity, gauges and clocks

    NASA Astrophysics Data System (ADS)

    Teyssandier, Pierre; Tucker, Robin W.

    1996-01-01

    We discuss the definitions of standard clocks in theories of gravitation. These definitions are motivated by the invariance of actions under different gauge symmetries. We contrast the definition of a standard Weyl clock with that of a clock in general relativity and argue that the historical criticisms of theories based on non-metric compatible connections by Einstein, Pauli and others must be considered in the context of Weyl's original gauge symmetry. We argue that standard Einsteinian clocks can be defined in non-Riemannian theories of gravitation by adopting the Weyl group as a local gauge symmetry that preserves the metric and discuss the hypothesis that atomic clocks may be adopted to measure proper time in the presence of non-Riemannian gravitational fields. These ideas are illustrated in terms of a recently developed model of gravitation based on a non-Riemannian spacetime geometry.

  2. Microwave Cavity Clocks On Space Station

    NASA Technical Reports Server (NTRS)

    Lipa, J. a.; Nissen, J. A.; Wang, S.; Stricker, D. A.; Avaloff, D.

    2003-01-01

    We describe the status of a microwave cavity clock experiment to perform improved tests of Local Position Invariance and Lorentz Invariance on the International Space Station in conjunction with atomic clocks. Significant improvements over present bounds are expected in both cases. The oscillators can also be used to enhance the performance of atomic clocks at short time scales for other experiments.

  3. Comparison of mode estimation methods and application in molecular clock analysis

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Shah, Prachi

    2003-01-01

    BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.

  4. Applications of Atomic Resolution Atomic Force Microscopy to Nanoscience & Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor

    2001-03-01

    New developments in nanophysical scanning probe microscopy in terms of its unique relatonship to nanoscience, together with specific applications to nanoelectronic and biotechnology, will be discussed(1).Innovative examples of chemical physics at interfaces are analyzed where state-of-the-art non contact atomic force microscopy(nc-AFM) measurement of a specific physical or chemical property is correlated with position, orientation and/or location with atomic resolution. Analysis of specific current as well as future applications of nc-AFM to the detection, manipulation and fabrication of nanostructures on the molecular scale will be presented.Design features of nano-instrumentation based on carbon nanotube technology, high frequency solid state micro-oscillators and variable temperature applications will be presented.Specific examples pertaining to, (1) chemical bonding interaction on a semiconductor,(2) surface structure of an ionic insulator,(3) structural features in a biological interface and (4) nanofabrication of a quantum electron device, will be reviewed in terms of their innovativeness and significance to nanoscience and nanotechnology. 1 ``Scanning Probe Microscopies,Nanoscience & Nanotechnology" T.N. Rhodin, Proceedings of nc-AFM Workshop, July 2000, Hamburg, Germany. Springer Verlag U. Schwarz, H. Hoelscher and M. Wiesendanger, guest editors.

  5. High-Performance Coherent Population Trapping Clock with Polarization Modulation

    NASA Astrophysics Data System (ADS)

    Yun, Peter; Tricot, François; Calosso, Claudio Eligio; Micalizio, Salvatore; François, Bruno; Boudot, Rodolphe; Guérandel, Stéphane; de Clercq, Emeric

    2017-01-01

    We demonstrate a vapor-cell atomic-clock prototype based on a continuous-wave interrogation and double-modulation coherent population trapping (DM-CPT) technique. The DM-CPT technique uses a synchronous modulation of polarization and the relative phase of a bichromatic laser beam in order to increase the number of atoms trapped in a dark state, i.e., a nonabsorbing state. The narrow resonance, observed in the transmission of a Cs vapor cell, is used as a narrow frequency discriminator in an atomic clock. A detailed characterization of the CPT resonance versus numerous parameters is reported. A short-term fractional-frequency stability of 3.2 ×10-13τ-1 /2 up to a 100-s averaging time is measured. These performances are more than one order of magnitude better than industrial Rb clocks and are comparable to those of the best laboratory-prototype vapor-cell clocks. The noise-budget analysis shows that the short- and midterm frequency stability is mainly limited by the power fluctuations of the microwave used to generate the bichromatic laser. These preliminary results demonstrate that the DM-CPT technique is well suited for the development of a high-performance atomic clock, with the potential compact and robust setup due to its linear architecture. This clock could find future applications in industry, telecommunications, instrumentation, or global navigation satellite systems.

  6. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  7. Clocking in the face of unpredictability beyond quantum uncertainty

    NASA Astrophysics Data System (ADS)

    Madjid, F. Hadi; Myers, John M.

    2015-05-01

    In earlier papers we showed unpredictability beyond quantum uncertainty in atomic clocks, ensuing from a proven gap between given evidence and explanations of that evidence. Here we reconceive a clock, not as an isolated entity, but as enmeshed in a self-adjusting communications network adapted to one or another particular investigation, in contact with an unpredictable environment. From the practical uses of clocks, we abstract a clock enlivened with the computational capacity of a Turing machine, modified to transmit and to receive numerical communications. Such "live clocks" phase the steps of their computations to mesh with the arrival of transmitted numbers. We lift this phasing, known in digital communications, to a principle of logical synchronization, distinct from the synchronization defined by Einstein in special relativity. Logical synchronization elevates digital communication to a topic in physics, including applications to biology. One explores how feedback loops in clocking affect numerical signaling among entities functioning in the face of unpredictable influences, making the influences themselves into subjects of investigation. The formulation of communications networks in terms of live clocks extends information theory by expressing the need to actively maintain communications channels, and potentially, to create or drop them. We show how networks of live clocks are presupposed by the concept of coordinates in a spacetime. A network serves as an organizing principle, even when the concept of the rigid body that anchors a special-relativistic coordinate system is inapplicable, as is the case, for example, in a generic curved spacetime.

  8. Monodisperse atomizers for agricultural aviation applications

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Steely, S. L.

    1980-01-01

    Conceptual designs of two monodisperse spray nozzles are described and the rationale used in each design is discussed. The nozzles were designed to eliminate present problems in agricultural aviation applications, such as ineffective plant coverage, drift due to small droplets present in the spray being dispersed, and nonuniform swath coverages. Monodisperse atomization techniques are reviewed and a synopsis of the information obtained concerning agricultural aviation spray applications is presented.

  9. JPL Ultrastable Trapped Ion Atomic Frequency Standards.

    PubMed

    Burt, Eric A; Yi, Lin; Tucker, Blake; Hamell, Robert; Tjoelker, Robert L

    2016-07-01

    Recently, room temperature trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on three directions: 1) ultrastable atomic clocks, usually for terrestrial applications emphasizing ultimate stability performance and autonomous timekeeping; 2) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements; and 3) miniature clocks. In this paper, we concentrate on the first direction and present a design and the initial results from a new ultrastable clock referred to as L10 that achieves a short-term stability of 4.5 ×10(-14)/τ(1/2) and an initial measurement of no significant drift with an uncertainty of 2.4 ×10(-16) /day over a two-week period.

  10. Clock-Enhancing Small Molecules and Potential Applications in Chronic Diseases and Aging

    PubMed Central

    Gloston, Gabrielle F.; Yoo, Seung-Hee; Chen, Zheng (Jake)

    2017-01-01

    Normal physiological functions require a robust biological timer called the circadian clock. When clocks are dysregulated, misaligned, or dampened, pathological consequences ensue, leading to chronic diseases and accelerated aging. An emerging research area is the development of clock-targeting compounds that may serve as drug candidates to correct dysregulated rhythms and hence mitigate disease symptoms and age-related decline. In this review, we first present a concise view of the circadian oscillator, physiological networks, and regulatory mechanisms of circadian amplitude. Given a close association of circadian amplitude dampening and disease progression, clock-enhancing small molecules (CEMs) are of particular interest as candidate chronotherapeutics. A recent proof-of-principle study illustrated that the natural polymethoxylated flavonoid nobiletin directly targets the circadian oscillator and elicits robust metabolic improvements in mice. We describe mood disorders and aging as potential therapeutic targets of CEMs. Future studies of CEMs will shed important insight into the regulation and disease relevance of circadian clocks. PMID:28360884

  11. p-Wave Cold Collisions in an Optical Lattice Clock

    SciTech Connect

    Lemke, N. D.; Sherman, J. A.; Oates, C. W.; Ludlow, A. D.; Stecher, J. von; Rey, A. M.

    2011-09-02

    We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms' internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.

  12. The Brazilian time and frequency atomic standards program.

    PubMed

    Ahmed, Mushtaq; Magalhães, Daniel V; Bebeachibuli, Aida; Müller, Stella T; Alves, Renato F; Ortega, Tiago A; Weiner, John; Bagnato, Vanderlei S

    2008-06-01

    Cesium atomic beam clocks have been the workhorse for many demanding applications in science and technology for the past four decades. Tests of the fundamental laws of physics and the search for minute changes in fundamental constants, the synchronization of telecommunication networks, and realization of the satellite-based global positioning system would not be possible without atomic clocks. The adoption of optical cooling and trapping techniques, has produced a major advance in atomic clock precision. Cold-atom fountain and compact cold-atom clocks have also been developed. Measurement precision of a few parts in 10(15) has been demonstrated for a cold-atom fountain clock. We present here an overview of the time and frequency metrology program based on cesium atoms under development at USP São Carlos. This activity consists of construction and characterization of atomic-beam, and several variations of cold-atom clocks. We discuss the basic working principles, construction, evaluation, and important applications of atomic clocks in the Brazilian program.

  13. Mercury Ion Clock for a NASA Technology Demonstration Mission.

    PubMed

    Tjoelker, Robert; Prestage, John; Burt, Eric; Chen, Pin; Chong, Yong; Chung, Sang; Diener, William; Ely, Todd; Enzer, Daphna; Mojaradi, Hadi; Okino, Clayton; Pauken, Mike; Robison, David; Swenson, Brad; Tucker, Blake; Wang, R

    2016-03-21

    There are many different atomic frequency standard technologies but few meet the demanding performance, reliability, size, mass, and power constraints required for space operation. JPL is developing a linear ion trap based mercury ion clock, referred to as DSAC (Deep Space Atomic Clock) under NASA's Technology Demonstration Mission (TDM) program. This clock is expected to provide a new capability with broad application to space based navigation and science. A one year flight demonstration is planned as a hosted payload following an early 2017 launch. This first generation mercury ion clock for space demonstration has a volume, mass, and power of 17 liters, 16 kilograms, and 47 Watts respectively, with further reductions planned for follow-on applications. Clock performance with an SNR*Q limited stability of 1.5E-13/τ1/2 has been observed and a fractional frequency stability of 2E-15 at 1 day measured (no drift removed). Such a space based stability enables autonomous timekeeping of Δt<0.2 ns/day with a technology capable of even higher stability, if desired. To date the demonstration clock has been successfully subjected to mechanical vibration testing at the 14 grms level, thermal-vacuum operation over a range of 42 °C, and electro-magnetic susceptibility tests.

  14. High-temperature operating 894.6nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks.

    PubMed

    Zhang, Jianwei; Zhang, Xing; Zhu, Hongbo; Zhang, Jian; Ning, Yongqiang; Qin, Li; Wang, Lijun

    2015-06-01

    We report on the design and fabrication of 894.6nm vertical-cavity surface-emitting lasers (VCSELs) with extremely low threshold at high temperatures, for use in chip-scale Cs atomic clocks. A new design method based on the analysis of the threshold gain and the desired carrier density for different active region structures was proposed to gain the low transparent current density. The increase of the threshold current at higher temperatures was successfully suppressed by introducing the large gain-cavity detuning of VCSEL. By detuning the gain-cavity mode to be -11nm, the minimum threshold current of only 0.23mA at 70 °C was achieved. The operating temperature for emitting the wavelength of 894.6nm was 110 °C, with the single mode suppression ratio (SMSR) of more than 25dB and the threshold current of only 0.32mA.

  15. Microdroplet Sample Application in Electrothermal Atomization for Atomic Absorption Spectrometry.

    DTIC Science & Technology

    1982-03-29

    ad ideftify by Week amber) atomic absorption spectroscopy microsampl ing graphite- furnace AAS automation C> 20. AOSTRACT (Coninuhe an reveresi de It...furnace and spectrometer system as well as for partial support of this project. REFERENCES 1. J. D. Winefordner, Atomic Absorption Spectroscopy , G. F

  16. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  17. SRC: Smart Reminder Clock

    NASA Astrophysics Data System (ADS)

    Kasim, Shahreen; Hafit, Hanayanti; Leong, Tan Hua; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad

    2016-11-01

    Nowadays, some people facing the problem to wake up in the morning. This was result to absence of the classes, meetings, and even exams. The aim of this project is to develop an android application that can force the user to wake up. The method used in this application are pedometer and Short Message Service (SMS) function. This application need the user to take their smartphone and walk about 10 steps to disable it, when the alarm clock is activated. After that, when the alarm clock was rang, this alarm application has automatically send a message to the users’ friends or parents phone to wake them up.

  18. Application of atomic magnetometry in magnetic particledetection

    SciTech Connect

    Xu, Shoujun; Donaldson, Marcus H.; Pines, Alexander; Rochester,Simon M.; Budker, Dmitry; Yashchuk, Valeriy V.

    2006-09-17

    We demonstrate the detection of magnetic particles carriedby water in a continuous flow using an atomic magnetic gradiometer.Studies on three types of magnetic particles are presented: a singlecobalt particle (diameter ~;150 mum, multi-domain), a suspension ofsuperparamagnetic magnetite particles (diameter ~;1 mum), andferromagnetic cobalt nanoparticles (diameter ~;10 nm, 120 kA/mmagnetization). Estimated detection limits are 20 mum diameter for asingle cobalt particle at a water flow rate 30 ml/min, 5x103 magnetiteparticles at 160 ml/min, and 50 pl for the specific ferromagnetic fluidat 130 ml/min. Possible applications of our method arediscussed.

  19. The search for preoperative biomarkers for thyroid carcinoma: application of the thyroid circadian clock properties.

    PubMed

    Dibner, Charna; Sadowski, Samira Mercedes; Triponez, Frederic; Philippe, Jacques

    2017-03-01

    Accumulating evidence suggests that alterations in the molecular clocks underlying the circadian time-keeping system might be connected to changes in cell cycle, resulting in oncogenic transformation. The hypothalamic-pituitary-thyroid axis is driven by a circadian clock at several levels, with an endocrine feedback loop regulating thyroid-stimulating hormone. Changes in the expression levels of circadian and cell cycle markers may correlate with clinic-pathological characteristics in differentiated follicular thyroid carcinomas. Here we summarize recent advances in exploring complex regulation of the thyroid gland transcriptome and function by the circadian oscillator. We particularly focus on clinical implications of the parallel assessment of the circadian clock, cell-cycle and cell functionality markers in human thyroid tissue, which might help improving preoperative diagnostics of thyroid malignancies.

  20. Laser clock

    SciTech Connect

    Facklam, R.L.

    1983-05-26

    A laser clock includes a linear laser in one embodiment of the clock and a ring laser gyro in the other embodiment. The linear laser is frequency stabilized and utilizes a single active medium in the form of a low pressure gas, such as He-Ne, with a Doppler broadened gain curve. The ring laser gyro is a four frequency laser with a Faraday rotor. Detector and electronic circuitry associated with the laser of each embodiment detects a beat frequency and convert it to a clock signal.

  1. Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays.

    PubMed

    Hong, Tao; Cramer, Claire; Cook, Eryn; Nagourney, Warren; Fortson, E N

    2005-10-01

    We report an observation of the weak 6 1S0-6 3P0 transition in (171,173)Yb as an important step to establishing Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the 1S0 and 3P0 states of Yb atoms in an optical lattice.

  2. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping

    NASA Technical Reports Server (NTRS)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.

    2012-01-01

    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  3. Atomically Precise Metal Nanoclusters for Catalytic Application

    SciTech Connect

    Jin, Rongchao

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  4. Entangling the lattice clock: Towards Heisenberg-limited timekeeping

    SciTech Connect

    Weinstein, Jonathan D.; Beloy, Kyle; Derevianko, Andrei

    2010-03-15

    A scheme is presented for entangling the atoms of an optical lattice to reduce the quantum projection noise of a clock measurement. The divalent clock atoms are held in a lattice at a 'magic' wavelength that does not perturb the clock frequency - to maintain clock accuracy - while an open-shell J=1/2 'head' atom is coherently transported between lattice sites via the lattice polarization. This polarization-dependent 'Archimedes' screw' transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J=0, clock states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom are used to engineer entanglement and for clock readout.

  5. Physical Time and Thermal Clocks

    NASA Astrophysics Data System (ADS)

    Borghi, Claudio

    2016-10-01

    In this paper I discuss the concept of time in physics. I consider the thermal time hypothesis and I claim that thermal clocks and atomic clocks measure different physical times, whereby thermal time and relativistic time are not compatible with each other. This hypothesis opens the possibility of a new foundation of the theory of physical time, and new perspectives in theoretical and philosophical researches.

  6. A Grey Model Based on First Differences in the Application of Satellite Clock Bias Prediction

    NASA Astrophysics Data System (ADS)

    Liang, Yue-ji; Ren, Chao; Yang, Xiu-fa; Pang, Guang-feng; Lan, Lan

    2016-01-01

    In consideration of the characteristics of satellite clock bias (SCB), a grey GM(1,1) model based on the first difference method is proposed. The first differences between the SCB values of two adjacent epoches are firstly derived to obtain the corresponding first difference sequence. Then, a grey model is made based on the sequence to predict the first difference values for the time following. Finally, the predicted first difference sequence is recovered to be the corresponding predicted SCB. The clock bias data provided by the IGS (International GNSS Service) are used as the experimental data, and the cases with different lengths of modeling data and different prediction step lengths are compared and analyzed. The result shows that the prediction accuracy of this method is higher than that of traditional grey GM(1,1) model, especially for the PRN01 satellite clock, whose forecast effect is the best. With the first difference method, the model prediction accuracy and stability can be effectively improved and enhanced. This method is feasible and reliable for the relatively long term SCB prediction.

  7. Human Peripheral Clocks: Applications for Studying Circadian Phenotypes in Physiology and Pathophysiology

    PubMed Central

    Saini, Camille; Brown, Steven A.; Dibner, Charna

    2015-01-01

    Most light-sensitive organisms on earth have acquired an internal system of circadian clocks allowing the anticipation of light or darkness. In humans, the circadian system governs nearly all aspects of physiology and behavior. Circadian phenotypes, including chronotype, vary dramatically among individuals and over individual lifespan. Recent studies have revealed that the characteristics of human skin fibroblast clocks correlate with donor chronotype. Given the complexity of circadian phenotype assessment in humans, the opportunity to study oscillator properties by using cultured primary cells has the potential to uncover molecular details difficult to assess directly in humans. Since altered properties of the circadian oscillator have been associated with many diseases including metabolic disorders and cancer, clock characteristics assessed in additional primary cell types using similar technologies might represent an important tool for exploring the connection between chronotype and disease, and for diagnostic purposes. Here, we review implications of this approach for gathering insights into human circadian rhythms and their function in health and disease. PMID:26029154

  8. Application of Millisecond Pulsar Timing to the Long-Term Stability of Clock Ensembles

    NASA Technical Reports Server (NTRS)

    Foster, Roger S.; Matsakis, Demetrios N.

    1996-01-01

    We review the application of millisecond pulsars to define a precise long-term standard and positional reference system in a nearly inertial reference frame. We quantify the current timing precision of the best millisecond pulsars and define the required precise time and time interval (PTTI) accuracy and stability to enable time transfer via pulsars. Pulsars may prove useful as independent standards to examine decade-long timing stability and provide an independent natural system within which to calibrate any new, perhaps vastly improved atomic time scale. Since pulsar stability appears to be related to the lifetime of the pulsar, the new millisecond pulsar J173+0747 is projected to have a 100-day accuracy equivalent to a single HP5071 cesium standard. Over the last five years, dozens of new millisecond pulsars have been discovered. A few of the new millisecond pulsars may have even better timing properties.

  9. Resolving all-order method convergence problems for atomic physics applications

    SciTech Connect

    Gharibnejad, H.; Derevianko, A.; Eliav, E.; Safronova, M. S.

    2011-05-15

    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for a large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction (CI)+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct inversion of iterative subspace. Examples are presented for B, Al, Zn{sup +}, and Yb{sup +}. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications.

  10. Self-generating magnetometer with laser pumping employment in “end resonance” wall coated vapor cell atomic clocks

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Smolin, R. V.; Semenov, V. V.

    2016-06-01

    This paper presents the results of two double resonance signals correlation investigation. These signals were observed synchronously in optically oriented Rb87 vapors with laser pumping in a dual scheme: low frequency Mx-magnetometer and microwave frequency discriminator. Analytical studies of the scalar and vector light shift components contribution to the frequency instability of the end resonance microwave transitions are presented. An experimental demonstration of the light shift components mutual compensation in optically pumped Rb87 atoms was provided. The results were processed in terms of Allan variance, which demonstrated an effect of decreasing frequency variation at averaging times more than 100 s for a joint scheme of the end resonance microwave transition and selfgenerating (Mx) magnetometer.

  11. Constructive polarization modulation for coherent population trapping clock

    SciTech Connect

    Yun, Peter Danet, Jean-Marie; Holleville, David; Clercq, Emeric de; Guérandel, Stéphane

    2014-12-08

    We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potential of this scheme for applications to high performance atomic clocks.

  12. An Oscillator Model for rf-Discharge Lamps Used in Atomic Clocks: The rf-Discharge as a Complex Permeability Medium

    DTIC Science & Technology

    2013-08-15

    TRT, which we expect will be some complicated function of the neutral rubidium atom density in the discharge, [Rb]. Focusing on the Xe excitation...Fundamentals and Applications (Prentice Hall, Englewood Cliffs, NJ, 1970), Ch. 15. 2. R. G. Brewer, "High intensity low noise rubidium light source

  13. Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications

    PubMed Central

    Fang, JianCheng; Qin, Jie

    2012-01-01

    With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future. PMID:22778644

  14. Advances in atomic gyroscopes: a view from inertial navigation applications.

    PubMed

    Fang, JianCheng; Qin, Jie

    2012-01-01

    With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future.

  15. Multiphoton adiabatic passage for atom optics applications

    SciTech Connect

    Demeter, Gabor; Djotyan, Gagik P.

    2009-04-15

    We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counterpropagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several configurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such multiphoton adiabatic transitions for the manipulation of the atoms' mechanical state. In particular, we compare the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the heating, and compare them to the numerical results.

  16. A rubidium clock for SEEK-TALK

    NASA Technical Reports Server (NTRS)

    Riley, W. J.

    1983-01-01

    The development of a tactical rubidium frequency standard (TRFS) for the SEEK-TALK program is discussed. This effort, which is entering the prototype stage, is directed toward the establishment of a production capability for miniature rubidium clocks of medium stability capable of fast warmup and extreme ruggedness for military avionics applications. The overall unit consists of an ultraminiature physics package and four plug-in circuit boards inside a 2 1/2-inch square by 4-inch box. This size is achieved without the extensive use of hybrid microcircuitry, yet is believed to be the smallest atomic frequency standard yet developed.

  17. Advanced atomic force microscopy: Development and application

    NASA Astrophysics Data System (ADS)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  18. The SHM Hydrogen Atomic Clock for Space Applications. Development and Test of the PEM Physics Package

    DTIC Science & Technology

    1997-12-01

    ship experiment CRONOS . The SHM design is based on a miniature sapphire loaded microwave cavity which makes possible an active hydro- gen maser with...field. This is the purpose of the CRONOS experiment proposed by ON and sponsored by the Swiss PRODEX program of ESA. The RA mission and the CRONOS ...advantage of the technologies already developed for the SHM instrument in the course of the Radioastron & CRONOS project. It is foreseen to test the MAN

  19. Instrumentation for one-way satellite PTTI applications. [calibration and synchronization of clocks from navigation satellite

    NASA Technical Reports Server (NTRS)

    Osborne, A. E.

    1973-01-01

    A review of general principles and operational procedures illustrates how the typical passive user and omni receiving antenna can recover Precise Time and Time Interval (PTTI) information from a low altitude navigation satellite system for clock calibration and synchronization. Detailed discussions of concepts and theory of the receiver design are presented. The importance of RF correlation of the received and local PN encoded sequences is emphasized as a means of reducing delay uncertainties of the instrumentation to values compatible with nanosecond to submicrosecond PTTI objectives. Two receiver configurations were fabricated for use in satellite-to-laboratory experiments. In one receiver the delay-locked loop for PN signals synchronization used a dithered amplitude detection process while the second receiver used a complex sums phase detection method for measurement of delay error. The necessity for compensation of Doppler shift is discussed. Differences in theoretical signal acquisition and tracking performance of the design concepts are noted.

  20. Spin-1/2 Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.

    2009-08-01

    We experimentally investigate an optical clock based on Yb171 (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4×10-16, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

  1. Characterization of microwave MESFET circuits under laser illumination. Applications to phased array radar, microwave communications, and digital clock control

    NASA Astrophysics Data System (ADS)

    Genco, Sheryl M.

    1994-10-01

    Optical injection of MESFET's directly affects the operating characteristics of the devices. The MESFET properties, induced by optical injection, can stabilize oscillator operating frequency, control amplifier gain, and open the door for feasible integrated microwave-optical devices. The optical injection of DC MESFET's, oscillators, and amplifiers is explored. Systems applications, including phased array radar, wave division multiplexing (WDM), and computer clock control, are provided. The main contributions of this research are analyzing the modulation properties of the locked laser subsystem, using the locked laser system to inject MESFET devices and characterizing the photo-effects in MESFET circuits, reducing the phase noise in a microwave oscillator via optical injection, and developing a theoretical description of the injection properties of oscillators that can be used to describe an injection locked laser and a microwave oscillator with a change of constants.

  2. Characterization of Microwave Mesfet Circuits Under Laser Illumination: Applications to Phased Array Radar, Microwave Communications and Digital Clock Control.

    NASA Astrophysics Data System (ADS)

    Genco, Sheryl Marie

    Optical injection of MESFETs directly affects the operating characteristics of the devices. The MESFET properties, induced by optical injection, can stabilize oscillator operating frequency, control amplifier gain and open the door for feasible integrated microwave-optical devices. The optical injection of DC MESFETs, oscillators, and amplifiers, is explored. Systems applications, including phased array radar, wave division multiplexing (WDM) and computer clock control, are provided. The main contributions of this research are analyzing the modulation properties of the locked laser subsystem, using the locked laser system to inject MESFET devices and characterizing the photo-effects in MESFET circuits, reducing the phase noise in a microwave oscillator via optical injection and developing a theoretical description of the injection properties of oscillators that can be used to describe an injection locked laser and a microwave oscillator with a change of constants.

  3. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  4. The NIM Sr Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.

    2016-06-01

    A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.

  5. Blackbody Effects in the Yb Lattice Clock

    DTIC Science & Technology

    2012-05-21

    unprecedented levels of accuracy and stability. The most recent evaluation of the ytterbium optical lattice clock at NIST yielded a fractional frequency...108 153002, 2012. [4] V. A. Dzuba and A. Derevianko, “Dynamic polarizabilities and related properties of clock states of the ytterbium atom,” J. Phys. B...Experimental investigation of excited-state lifetimes in atomic ytterbium ,” Phys. Rev. A 53 3103, 1996.

  6. Timescale algorithms combining cesium clocks and hydrogen masers

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1992-01-01

    The United States Naval Observatory (USNO) atomic timescale, formerly based on an ensemble of cesium clocks, is now produced by an ensemble of cesium clocks and hydrogen masers. In order to optimize stability and reliability, equal clock weighting has been replaced by a procedure reflecting the relative, time-varying noise characteristics of the two different types of clocks. Correlation of frequency drift is required, and residual drift is avoided by the eventual complete deweighting of the masers.

  7. Strategic Applications of Ultra-Cold Atoms

    DTIC Science & Technology

    2008-03-07

    journals or in conference proceedings (N/A for none) 68.00Number of Papers published in peer-reviewed journals: Wolfgang Ketterle: New Frontiers with...Helmerson, V.S. Bagnato (American Institute of Physics, 2005) pp. 25-29. Wolfgang Ketterle: The Bose-Einstein Condensate- a Superfluid Gas of Coherent Atoms...Vuletic 0.10 No Wolfgang Ketterle 0.10 Yes David Pritchard 0.10 Yes Mara Prentiss 0.10 No 0.80FTE Equivalent: 8Total Number: Names of Under

  8. Gravitation, photons, clocks.

    NASA Astrophysics Data System (ADS)

    Okun, L. B.; Selivanov, K. G.; Telegdi, V.

    1999-10-01

    This paper is concerned with the classical phenomenon of gravitational red shift, the decrease in the measured frequency of a photon moving away from a gravitating body (e.g., the Earth) of the two current interpretations, one is that at higher altitudes the frequency-measuring clocks (atoms or atomic nuclei) run faster, i.e., their characteristic frequencies are higher, while the photon frequency in a static gravitational field is independent of the altitude and so the photon only reddens relative to the clocks. The other approach is that the photon reddens because it loses the energy when overcoming the attraction of the gravitational field. This view, which is especially widespread in popular science literature, ascribes such notions as a "gravitational mass" and "potential energy" to the photon. Unfortunately, also scientific papers and serious books on the general theory of relativity often employ the second interpretation as a "graphic" illustration of mathematically immaculate results. The authors show that this approach is misleading and only serves to create confusion in a simple subject.

  9. An Introduction to Atomic Layer Deposition with Thermal Applications

    NASA Technical Reports Server (NTRS)

    Dwivedi, Vivek H.

    2015-01-01

    Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.

  10. Optics and interferometry with atoms and molecules

    SciTech Connect

    Cronin, Alexander D.; Schmiedmayer, Joerg; Pritchard, David E.

    2009-07-15

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.

  11. Applications of atomic layer deposition in solar cells.

    PubMed

    Niu, Wenbin; Li, Xianglin; Karuturi, Siva Krishna; Fam, Derrick Wenhui; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Tok, Alfred Iing Yoong

    2015-02-13

    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  12. The strontium optical lattice clock: Optical spectroscopy with sub-hertz accuracy

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew D.

    One of the most well-developed applications of coherent interaction with atoms is atomic frequency standards and clocks. Atomic clocks find significant roles in a number of scientific and technological settings. State-of-the-art, laser-cooled, Cs-fountain microwave clocks have demonstrated impressive frequency measurement accuracy, with fractional uncertainties below the 10-15 level. On the other hand, frequency standards based on optical transitions have made substantial steps forward over the last decade, benefiting from their high operational frequencies. An interesting approach to such an optical standard uses atomic strontium confined in an optical lattice. The tight atomic confinement allows for nearly complete elimination of Doppler and recoil-related effects which can otherwise trouble the precise atomic interrogation. At the same time, the optical lattice is designed to equally perturb the two electronic clock states so that the confinement introduces a net zero shift of the natural transition frequency. This thesis describes the design and realization of an optical frequency standard using 87Sr confined in a 1-D optical lattice. Techniques for atomic manipulation and control are described, including two-stage laser cooling, proper design of atomic confinement in a lattice potential, and optical pumping techniques. With the development of an ultra-stable coherent laser light source, atomic spectral linewidths of the optical clock transition are observed below 2 Hz. High accuracy spectroscopy of the clock transition is carried out utilizing a femtosecond frequency comb referenced to the NIST-F1 Cs fountain. To explore the performance of an improved, spin-polarized Sr standard, a coherent optical phase transfer link is established between JILA and NIST. This enables remote comparison of the Sr standard against optical standards at NIST, such as the cold Ca standard. The high frequency stability of a Sr-Ca comparison (3 x 10-16 at 200 s) is used to make

  13. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  14. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.

    PubMed

    Wall, Michael L; Koller, Andrew P; Li, Shuming; Zhang, Xibo; Cooper, Nigel R; Ye, Jun; Rey, Ana Maria

    2016-01-22

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s-wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  15. Noise in state of the art clocks and their impact for fundamental physics

    NASA Technical Reports Server (NTRS)

    Maleki, L.

    2001-01-01

    In this paper a review of the use of advanced atomic clocks in testing the fundamental physical laws will be presented. Noise sources of clocks will be discussed, together with an outline their characterization based on current models. The paper will conclude with a discussion of recent attempts to reduce the fundamental, as well as technical noise in atomic clocks.

  16. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies.

  17. Magic wavelengths for terahertz clock transitions

    SciTech Connect

    Zhou Xiaoji; Xu Xia; Chen Xuzong; Chen Jingbiao

    2010-01-15

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the {sup 3}P{sub 0}, {sup 3}P{sub 1}, and {sup 3}P{sub 2} metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  18. Magic wavelengths for terahertz clock transitions

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoji; Xu, Xia; Chen, Xuzong; Chen, Jingbiao

    2010-01-01

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the 3P0, 3P1, and 3P2 metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  19. Measurements with Multiple Operational Fountain Clocks

    DTIC Science & Technology

    2011-05-01

    measurement can be made of the fountain frequencies versus the frequencies of the primary standards used in determining International Atomic Time (TAI...with four fountains indicate frequency agreement at the 10−15 level and good agreement with the primary frequency standards contributing to TAI. I...activities, 7 rubidium fountain clocks are being added to the clock ensemble. The fountains will serve as a long-term frequency reference, similar to

  20. The Allan variance in the presence of a compound Poisson process modelling clock frequency jumps

    NASA Astrophysics Data System (ADS)

    Formichella, Valerio

    2016-12-01

    Atomic clocks can be affected by frequency jumps occurring at random times and with a random amplitude. The frequency jumps degrade the clock stability and this is captured by the Allan variance. In this work we assume that the random jumps can be modelled by a compound Poisson process, independent of the other stochastic and deterministic processes affecting the clock stability. Then, we derive the analytical expression of the Allan variance of a jumping clock. We find that the analytical Allan variance does not depend on the actual shape of the jumps amplitude distribution, but only on its first and second moments, and its final form is the same as for a clock with a random walk of frequency and a frequency drift. We conclude that the Allan variance cannot distinguish between a compound Poisson process and a Wiener process, hence it may not be sufficient to correctly identify the fundamental noise processes affecting a clock. The result is general and applicable to any oscillator, whose frequency is affected by a jump process with the described statistics.

  1. Eliminating Tracking-System Clock Errors

    NASA Technical Reports Server (NTRS)

    Wu, Jiun-Tsong; Bertiger, William I.

    1989-01-01

    Problems of redundancy and correlation avoided. ORTHO computer program eliminates effect of clock errors in differential solutions for positions of users of Global Positioning System (GPS). Main application, elimination of clock errors in tracking system based on GPS. Written in FORTRAN 77.

  2. Continuous Nondemolition Measurement of the Cs Clock Transition Pseudospin

    SciTech Connect

    Chaudhury, Souma; Smith, Greg A.; Schulz, Kevin; Jessen, Poul S.

    2006-02-03

    We demonstrate a weak continuous measurement of the pseudospin associated with the clock transition in a sample of Cs atoms. Our scheme uses an optical probe tuned near the D{sub 1} transition to measure the sample birefringence, which depends on the z component of the collective pseudospin. At certain probe frequencies the differential light shift of the clock states vanishes, and the measurement is nonperturbing. In dense samples the measurement can be used to squeeze the collective clock pseudospin and has the potential to improve the performance of atomic clocks and interferometers.

  3. The JPL near-real-time VLBI system and its application to clock synchronization and earth orientation measurements

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.; Eubanks, T. M.; Roth, M. G.; Steppe, J. A.; Esposito, P. B.

    1983-01-01

    The JPL near-real-time VLBI system called Block I is discussed. The hardware and software of the system are described, and the Time and Earth Motion Precision Observations (TEMPO) which utilize Block I are discussed. These observations are designed to provide interstation clock synchronization to 10 nsec and to determine earth orientation (UT1 and polar motion - UTPM) to 30 cm or better in each component. TEMPO results for clock synchronization and UTPM are presented with data from the July 1980-August 1981 analyzed using the most recent JPL solution software and source catalog. Future plans for TEMPO and Block I are discussed.

  4. Cation Clock Reactions for the Determination of Relative Reaction Kinetics in Glycosylation Reactions: Applications to Gluco- and Mannopyranosyl Sulfoxide and Trichloroacetimidate Type Donors

    PubMed Central

    Adero, Philip O.; Furukawa, Takayuki; Huang, Min; Mukherjee, Debaraj; Retailleau, Pascal; Bohé, Luis

    2015-01-01

    The development of a cation clock method based on the intramolecular Sakurai reaction for probing the concentration dependence of the nucleophile in glycosylation reactions is described. The method is developed for the sulfoxide and trichloroacetimidate glycosylation protocols. The method reveals that O-glycosylation reactions have stronger concentration dependencies than C-glycosylation reactions consistent with a more associative, SN2-like character. For the 4,6-O-benzylidene-directed mannosylation reaction a significant difference in concentration dependence is found for the formation of the β- and α-anomers suggesting a difference in mechanism and a rationale for the optimization of selectivity regardless of the type of donor employed. In the mannose series the cyclization reaction employed as clock results in the formation of cis and trans-fused oxabicyclo[4,4,0]decanes as products with the latter being strongly indicative of the involvement of a conformationally mobile transient glycosyl oxocarbenium ion. With identical protecting group arrays cyclization in the glucopyranose series is more rapid than in the mannopyranose manifold. The potential application of related clock reactions in other carbenium ion-based branches of organic synthesis is considered. PMID:26207807

  5. Estimating the stability of N clocks with correlations.

    PubMed

    Torcaso, F; Ekstrom, C R; Burt, E A; Matsakis, D N

    2000-01-01

    Estimation of an atomic clock's frequency stability, separate from its reference, is often done using a three-cornered hat procedure. A major requirement for the success of this method is that clocks be uncorrelated. If this requirement is not satisfied, the three-cornered hat procedure can lead to misleading or even negative variance estimates. Others have considered this problem and developed an analysis that allows for the possibility of cross correlation between clocks. We have extended and applied these ideas to obtain mathematically consistent frequency stability estimates on atomic clock data from the U.S. Naval Observatory. In addition, we derived an expression for the clock weights that produce a minimum variance combination of clocks in the presence of correlations.

  6. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  7. Frequency comparison of optical lattice clocks beyond the Dick limit

    NASA Astrophysics Data System (ADS)

    Takamoto, Masao; Takano, Tetsushi; Katori, Hidetoshi

    2011-05-01

    The supreme accuracy of atomic clocks relies on the universality of atomic transition frequencies. The stability of a clock, meanwhile, measures how quickly the clock's statistical uncertainties are reduced. The ultimate measure of stability is provided by the quantum projection noise, which improves as 1/√N by measuring N uncorrelated atoms. Quantum projection noise limited stabilities have been demonstrated in caesium clocks and in single-ion optical clocks, where the quantum noise overwhelms the Dick effect attributed to local oscillator noise. Here, we demonstrate a synchronous frequency comparison of two optical lattice clocks using 87Sr and 88Sr atoms, respectively, for which the Allan standard deviation reached 1 × 10-17 in an averaging time of 1,600 s by cancelling out the Dick effect to approach the quantum projection noise limit. The scheme demonstrates the advantage of using a large number (N ~ 1,000) of atoms in optical clocks and paves the way to investigating the inherent uncertainties of clocks and relativistic geodesy on a timescale of tens of minutes.

  8. Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium

    NASA Astrophysics Data System (ADS)

    Kleine Büning, G.; Will, J.; Ertmer, W.; Rasel, E.; Arlt, J.; Klempt, C.; Ramirez-Martinez, F.; Piéchon, F.; Rosenbusch, P.

    2011-06-01

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of Rb87 by applying the recently discovered spin self-rephasing [C. Deutsch , Phys. Rev. Lett. 105, 020401 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.020401]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10-11τ-1/2, where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

  9. Extended coherence time on the clock transition of optically trapped rubidium.

    PubMed

    Büning, G Kleine; Will, J; Ertmer, W; Rasel, E; Arlt, J; Klempt, C; Ramirez-Martinez, F; Piéchon, F; Rosenbusch, P

    2011-06-17

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of (87)Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10(-11)τ(-1/2), where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

  10. Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium

    SciTech Connect

    Kleine Buening, G.; Will, J.; Ertmer, W.; Rasel, E.; Klempt, C.; Arlt, J.; Ramirez-Martinez, F.; Rosenbusch, P.; Piechon, F.

    2011-06-17

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

  11. Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock

    SciTech Connect

    Ludlow, A. D.; Lemke, N. D.; Sherman, J. A.; Oates, C. W.; Quemener, G.; Stecher, J. von; Rey, A. M.

    2011-11-15

    Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a {sup 171}Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold-collision shift is canceled below the 5x10{sup -18} fractional frequency level. We report inelastic two-body loss rates for {sup 3} P{sub 0} -{sup 3} P{sub 0} and {sup 1} S{sub 0} -{sup 3} P{sub 0} scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 {sup 171}Yb system are relevant for high-performance optical clocks as well as strongly interacting systems for quantum information and quantum simulation applications.

  12. A clock reaction based on molybdenum blue.

    PubMed

    Neuenschwander, Ulrich; Negron, Arnaldo; Jensen, Klavs F

    2013-05-30

    Clock reactions are rare kinetic phenomena, so far limited mostly to systems with ionic oxoacids and oxoanions in water. We report a new clock reaction in cyclohexanol that forms molybdenum blue from a noncharged, yellow molybdenum complex as precursor, in the presence of hydrogen peroxide. Interestingly, the concomitant color change is reversible, enabling multiple clock cycles to be executed consecutively. The kinetics of the clock reaction were experimentally characterized, and by adding insights from quantum chemical calculations, a plausible reaction mechanism was postulated. Key elementary reaction steps comprise sigmatropic rearrangements with five-membered or bicyclo[3.1.0] transition states. Importantly, numerical kinetic modeling demonstrated the mechanism's ability to reproduce the experimental findings. It also revealed that clock behavior is intimately connected to the sudden exhaustion of hydrogen peroxide. Due to the stoichiometric coproduction of ketone, the reaction bears potential for application in alcohol oxidation catalysis.

  13. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  14. Generalized Levinson theorem: Applications to electron-atom scattering

    NASA Astrophysics Data System (ADS)

    Rosenberg, Leonard; Spruch, Larry

    1996-12-01

    A recent formulation provides an absolute definition of the zero-energy phase shift δ for multiparticle single-channel scattering of a particle by a neutral compound target in a given partial wave l. This formulation, along with the minimum principle for the scattering length, leads to a determination of δ that represents a generalization of Levinson's theorem. In its original form that theorem is applicable only to potential scattering of a particle and relates δ/π to the number of bound states of that l. The generalized Levinson theorem relates δ/π for scattering in a state of given angular momentum to the number of composite bound states of that angular momentum plus a calculable number that, for a system described in the Hartree-Fock approximation, is the number of states of that angular momentum excluded by the Pauli principle. Thus, for example, for electron scattering by Na, with its (1s)2(2s)2(2p)63s configuration and with one L=0 singlet composite bound state, δ would be π+2π for s-wave singlet scattering, 0+3π for s-wave triplet scattering, and 0+π for both triplet and singlet p-wave scattering; the Pauli contribution has been listed first. The method is applicable to a number of e+/--atom and nucleon-nucleus scattering processes, but only applications of the former type are described here. We obtain the absolute zero-energy phase shifts for e--H and e--He scattering and, in the Hartree-Fock approximation for the target, for atoms that include the noble gases, the alkali-metal atoms, and, as examples, B, C, N, O, and F, which have one, two, three, four, and five p electrons, respectively, outside of closed shells. In all cases, the applications provide results in agreement with expectations.

  15. Tutorial: Clock and Clock Systems Performance Measures

    DTIC Science & Technology

    1995-12-01

    TUTORIAL: CLOCK AND CLOCK SYSTEMS PERFORMANCE MEASURES David W. Allan Allan’s TIME Introduction This tutorial contains basic material...very important ITU Handbook being prepared at this tim; which goes much further than this tutorial has time to do. I highly recommend it as an...the world who have written the ten chapters in this handbook. The title of the Handbook is, "Selection and use of Precise Frequency and Time Systems

  16. A Compact, High Performance Atomic Magnetometer for Biomedical Applications

    PubMed Central

    Shah, Vishal K.; Wakai, Ronald T.

    2013-01-01

    We present a highly sensitive room-temperature atomic magnetometer (AM), designed for use in biomedical applications. The magnetometer sensor head is only 2×2×5 cm3 and is constructed using readily available, low-cost optical components. The magnetic field resolution of the AM is <10 fT/√Hz, which is comparable to cryogenically cooled superconducting quantum interference device (SQUID) magnetometers. We present side-by-side comparisons between our AM and a SQUID magnetometer, and show that equally high quality magnetoencephalography (MEG) and magnetocardiography (MCG) recordings can be obtained using our AM. PMID:24200837

  17. A compact, high performance atomic magnetometer for biomedical applications.

    PubMed

    Shah, Vishal K; Wakai, Ronald T

    2013-11-21

    We present a highly sensitive room-temperature atomic magnetometer (AM), designed for use in biomedical applications. The magnetometer sensor head is only 2 × 2 × 5 cm3 and is constructed using readily available, low-cost optical components. The magnetic field resolution of the AM is <10 fT Hz–1/2, which is comparable to cryogenically cooled superconducting quantum interference device (SQUID) magnetometers. We present side-by-side comparisons between our AM and a SQUID magnetometer, and show that equally high quality magnetoencephalography and magnetocardiography recordings can be obtained using our AM.

  18. Storage, transportation, and atomization of CWF for residential applications

    SciTech Connect

    Grimanis, M.P.; Breault, R.W. ); Smit, F.J.; Jha, M.C. )

    1991-11-01

    This project investigated the properties and behavior with regard to handling, storage, and atomization in small-scale applications of different CWFs (coal water fuels) prepared from different parent coals and various beneficiation techniques as well as consideration for bulk storage and distribution. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation.

  19. Study on Atomization Characteristics for Power Generation Application

    NASA Astrophysics Data System (ADS)

    Anwar, Z. M.; Tan, E. S.; Adnan, R.; Azree Idris, Mohd

    2013-06-01

    The world is dependent on two common basic needs which is electricity and water supply. Thus, power generation is the pulse of a country's econmony. However, most of today's power is generated from fossil fuel which is non sustainable. This research aims to study the feasibility of biodiesel to substitute diesel fuel for gas turbine application. The objective is to investigate the atomization characteristics using various blend of biodiesel derived from transesterification of palm oil. There are five types of fuels tested which are pure Diesel, B20, B50, B80 and B100 which were experimentally tested in a spray atomizer to evaluate the relationship of the of the fuel blend ratio with atomization characteristics such as spray cone angle, spray tip penetration and Sauter Mean Diameter. Besides that, fuel chemical properties testing were conducted to ensure the fuel chemical properties for tested fuel meet the standard requirements for gas turbine fuel oil. Result shows that the higher blend of biodiesel will give larger SMD, longer spray tip penetration, and a smaller spray cone angle. The SMD was calculated based on a general equation. Meanwhile, spray angle and spray tip was obtained from photos captured and anlayzed using software.

  20. Atomic force microscopy application in biological research: a review study.

    PubMed

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-06-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  1. Clock genes and sleep.

    PubMed

    Landgraf, Dominic; Shostak, Anton; Oster, Henrik

    2012-01-01

    In most species--from cyanobacteria to humans--endogenous clocks have evolved that drive 24-h rhythms of behavior and physiology. In mammals, these circadian rhythms are regulated by a hierarchical network of cellular oscillators controlled by a set of clock genes organized in a system of interlocked transcriptional feedback loops. One of the most prominent outputs of the circadian system is the synchronization of the sleep-wake cycle with external (day-) time. Clock genes also have a strong impact on many other biological functions, such as memory formation, energy metabolism, and immunity. Remarkably, large overlaps exist between clock gene and sleep (loss) mediated effects on these processes. This review summarizes sleep clock gene interactions for these three phenomena, highlighting potential mediators linking sleep and/or clock function to physiological output in an attempt to better understand the complexity of diurnal adaptation and its consequences for health and disease.

  2. Superradiance on the millihertz linewidth strontium clock transition

    PubMed Central

    Norcia, Matthew A.; Winchester, Matthew N.; Cline, Julia R. K.; Thompson, James K.

    2016-01-01

    Laser frequency noise contributes a significant limitation to today’s best atomic clocks. A proposed solution to this problem is to create a superradiant laser using an optical clock transition as its gain medium. This laser would act as an active atomic clock and would be highly immune to the fluctuations in reference cavity length that limit today’s best lasers. We demonstrate and characterize superradiant emission from the millihertz linewidth clock transition in an ensemble of laser-cooled 87Sr atoms trapped within a high-finesse optical cavity. We measure a collective enhancement of the emission rate into the cavity mode by a factor of more than 10,000 compared to independently radiating atoms. We also demonstrate a method for seeding superradiant emission and observe interference between two independent transitions lasing simultaneously. We use this interference to characterize the relative spectral properties of the two lasing subensembles. PMID:27757423

  3. Performance and Applications of an Ensemble of Atomic Fountains

    DTIC Science & Technology

    2012-01-01

    clock based time scale,” Metrologia 49, pp. 180-188 (2012). [2] T. Parker, S. Jefferts, T. Heavner, and E. Donley, “Operation of the NIST-F1 caesium...fountain primary standard with a maser ensemble, including the impact of frequency transfer noise,” Metrologia 42, pp. 423-430 (2005). [3] J. Guéna, et

  4. Nuclear spin effects in optical lattice clocks

    SciTech Connect

    Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun

    2007-08-15

    We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.

  5. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  6. Cold Atom Source Containing Multiple Magneto-Optical Traps

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute

    2007-01-01

    An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.

  7. Evolution of the International Atomic Time TAI computation

    NASA Technical Reports Server (NTRS)

    Granveaud, M.

    1979-01-01

    The computation of the International Atomic Time (TAI), a worldwide time reference, is briefly examined. The types of atomic clocks, computation procedures, and time intercomparison between clocks utilizing navigation satellites are addressed. Changes in the system would essentially depend on the improvement of the atomic clocks.

  8. Using optical clock to probe quantum many-body physics

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    2016-05-01

    The progress of optical lattice clock has benefited greatly from the understanding of atomic interactions. At the same time, the precision of clock spectroscopy has been applied to explore many-body spin interactions including SU(N) symmetry. Our recent work on this combined front of quantum metrology and many-body physics includes the probe of spin-orbital physics in the lattice clock and the investigation of a Fermi degenerate gas of 105 87Sr atoms in a three-dimensional magic-wavelength optical lattice.

  9. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    SciTech Connect

    2012-04-22

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  10. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    ScienceCinema

    None

    2016-07-12

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  11. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  12. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  13. BUGS system clock distributor

    NASA Technical Reports Server (NTRS)

    Dietrich, Thomas M.

    1991-01-01

    A printed circuit board which will provide external clocks and precisely measure the time at which events take place was designed for the Bristol University Gas Spectrometer (BUGS). The board, which was designed to interface both mechanically and electrically to the Computer Automated Measurement and Control (CAMAC) system, has been named the BUGS system clock control. The board's design and use are described.

  14. Topics in atomic hydrogen standard research and applications

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1971-01-01

    Hydrogen maser based frequency and time standards have been in continuous use at NASA tracking stations since February 1970, while laboratory work at Goddard has continued in the further development and improvement of hydrogen masers. Concurrently, experimental work has been in progress with a new frequency standard based upon the hydrogen atom using the molecular beam magnetic resonance method. Much of the hydrogen maser technology is directly applicable to the new hydrogen beam standard, and calculations based upon realistic data indicate that the accuracy potential of the hydrogen atomic beam exceeds that of either the cesium beam tube or the hydrogen maser, possibly by several orders of magnitude. In addition, with successful development, the hydrogen beam standard will have several other performance advantages over other devices, particularly exceptional stability and long continuous operating life. Experimental work with a new laboratory hydrogen beam device has recently resulted in the first resonance transition curves, measurements of relative state populations, beam intensities, etc. The most important aspects of both the hydrogen maser and the hydrogen beam work are covered.

  15. Multifarious applications of atomic force microscopy in forensic science investigations.

    PubMed

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science.

  16. Push-pull laser-atomic oscillator.

    PubMed

    Jau, Y-Y; Happer, W

    2007-11-30

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the "field-independent 0-0 frequency" of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

  17. Push-Pull Laser-Atomic Oscillator

    SciTech Connect

    Jau, Y.-Y.; Happer, W.

    2007-11-30

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

  18. Evaluation of long term performance of continuously running atomic fountains

    NASA Astrophysics Data System (ADS)

    Peil, Steven; Hanssen, James L.; Swanson, Thomas B.; Taylor, Jennifer; Ekstrom, Christopher R.

    2014-06-01

    An ensemble of rubidium atomic fountain clocks has been put into operation at the US Naval Observatory (USNO). These fountains are used as continuous clocks in the manner of commercial caesium beams and hydrogen masers for the purpose of improved timing applications. Four fountains have been in operation for more than two years and are included in the ensemble used to generate the USNO master clock. Individual fountain performance is characterized by a white-frequency noise level below 2 × 10-13 and fractional-frequency stability routinely reaching the low 10-16 s. The highest performing pair of fountains exhibits stability consistent with each fountain integrating as white frequency noise, with Allan deviation surpassing 6 × 10-17 at 107 s, and with no relative drift between the fountains at the level of 7.5 × 10-19/day. As an ensemble, the fountains generate a timescale with white-frequency noise level of 1 × 10-13 and long-term frequency stability consistent with zero drift relative to the world's primary standards at 1 × 10-18/day. The rubidium fountains are reported to the BIPM as continuously running clocks, as opposed to secondary standards, the only cold-atom clocks so reported. Here we further characterize the performance of the individual fountains and the ensemble during the first two years in an operational environment, presenting the first look at long-term continuous behavior of fountain clocks.

  19. The applications of atomic force microscopy to vision science.

    PubMed

    Last, Julie A; Russell, Paul; Nealey, Paul F; Murphy, Christopher J

    2010-12-01

    The atomic force microscope (AFM) is widely used in materials science and has found many applications in biological sciences but has been limited in use in vision science. The AFM can be used to image the topography of soft biological materials in their native environments. It can also be used to probe the mechanical properties of cells and extracellular matrices, including their intrinsic elastic modulus and receptor-ligand interactions. In this review, the operation of the AFM is described along with a review of how it has been thus far used in vision science. It is hoped that this review will serve to stimulate vision scientists to consider incorporating AFM as part of their research toolkit.

  20. Electrocatalysts by atomic layer deposition for fuel cell applications

    SciTech Connect

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; Sun, Xueliang

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focus on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.

  1. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE PAGES

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; ...

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  2. Semiempirical hot atom theory. I - Initialization and application

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Chang, S.; Scattergood, T.

    1981-01-01

    A semiempirical approach to the modeling of the kinetics of reaction systems containing both hot and nonhot atoms is proposed. The approach is based on the probabilistic kinetic theory of hot-atom reactions formulated by Wolfgang (1963), with transmission probabilities estimated for a rectangular potential barrier for hot-atom and nonhot-atom reactions. A computational scheme for determining product concentrations following hot and nonhot reactions in a system containing photolytically produced hot atoms is then applied to the DBr + CH4 and HBr + CD4 hot hydrogen atom systems studied by Martin and Willard (1964), and good agreement is obtained between theoretical and experimental results.

  3. Medical applications of atomic force microscopy and Raman spectroscopy.

    PubMed

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  4. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  5. Suspension of Atoms Using Optical Pulses, and Application to Gravimetry

    SciTech Connect

    Hughes, K. J.; Burke, J. H. T.; Sackett, C. A.

    2009-04-17

    Atoms from a {sup 87}Rb condensate are suspended against gravity using repeated reflections from a pulsed optical standing wave. Up to 100 reflections are observed, yielding suspension times of over 100 ms. The local gravitational acceleration can be determined from the pulse rate required to achieve suspension. Further, a gravitationally sensitive atom interferometer was implemented using the suspended atoms. This technique could potentially provide a precision measurement of gravity without requiring the atoms to fall a large distance.

  6. Prototype of the DLR Operational Composite Clock: Methods and Test Cases

    DTIC Science & Technology

    2009-11-01

    Study of Time Scale Algorithms,” Metrologia , 28, 57-63. [2] R. Jones and P. Tryon, 1983, “Estimating Time From Atomic Clocks,” Journal of Research of...L. Galleani and P. Tavella, 2008, “Detection and identification of atomic clock anomalies,” Metrologia , 45, 127-133. [16] C. Zucca and P

  7. Technology development for laser-cooled clocks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  8. Application of cold beam of atoms and molecules for studying luminescence of oxygen atoms stimulated by metastable helium

    NASA Astrophysics Data System (ADS)

    Khmelenko, V. V.; Mao, S.; Meraki, A.; Wilde, S. C.; McColgan, P. T.; Pelmenev, A. A.; Boltnev, R. E.; Lee, D. M.

    2014-12-01

    We describe a method for creating a high flux beam of cold atoms and molecules. By using this beam method, spectroscopic studies of the afterglow of oxygen-helium gas mixtures at cryogenic temperatures were performed. The cooling by helium vapor of a helium jet containing trace amounts of oxygen after passing through a radiofrequency discharge zone led to the observation of strong emissions from atomic oxygen. The effect results from the increased efficiency of energy transfer from metastable helium atoms and molecules to the atomic oxygen in the cold dense helium vapor. The effect might find application for the detection of small quantities of impurities in helium gas as well as possible laser action.

  9. [Application of atomic force microscopy (AFM) in ophthalmology].

    PubMed

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  10. Laser cooling and trapping of atomic particles. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1994-02-01

    The bibliography contains citations concerning theory and experiments on laser cooling and laser trapping of neutral atoms and atomic ions. Atoms and ions are cooled by laser radiation pressure to very low Kelvin temperatures and confined in electromagnetic traps of very high density. Atomic particles cover sodium atoms, mercury ions, beryllium ions, magnesium ions, and hydrogen. Citations discuss applications in high performance spectroscopy, atomic clocks, microwave and optical frequency standards, relativistic neutral particle beam weapons, exotic fuels, cooling of electron beams, and space propulsion. (Contains a minimum of 185 citations and includes a subject term index and title list.)

  11. Laser cooling and trapping of atomic particles. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning theory and experiments on laser cooling and laser trapping of neutral atoms and atomic ions. Atoms and ions are cooled by laser radiation pressure to very low Kelvin temperatures and confined in electromagnetic traps of very high density. Atomic particles cover sodium atoms, mercury ions, beryllium ions, magnesium ions, and hydrogen. Citations discuss applications in high performance spectroscopy, atomic clocks, microwave and optical frequency standards, relativistic neutral particle beam weapons, exotic fuels, cooling of electron beams, and space propulsion. (Contains a minimum of 204 citations and includes a subject term index and title list.)

  12. Laser cooling and trapping of atomic particles. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning theory and experiments on laser cooling and laser trapping of neutral atoms and atomic ions. Atoms and ions are cooled by laser radiation pressure to very low Kelvin temperatures and confined in electromagnetic traps of very high density. Atomic particles discussed include sodium atoms, mercury ions, beryllium ions, magnesium ions, and hydrogen. Applications for high performance spectroscopy, atomic clocks, microwave and optical frequency standards, relativistic neutral particle beam weapons, exotic fuels, cooling of electron beams, and space propulsion are examined. (Contains a minimum of 151 citations and includes a subject term index and title list.)

  13. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  14. Resetting Biological Clocks

    ERIC Educational Resources Information Center

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  15. The Neurospora circadian clock: simple or complex?

    PubMed Central

    Bell-Pedersen, D; Crosthwaite, S K; Lakin-Thomas, P L; Merrow, M; Økland, M

    2001-01-01

    The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system. PMID:11710976

  16. Short-term GNSS satellite clock stability

    NASA Astrophysics Data System (ADS)

    Griggs, E.; Kursinski, E. R.; Akos, D.

    2015-08-01

    Global Navigation Satellite System (GNSS) clock stability is characterized via the modified Allan deviation using active hydrogen masers as the receiver frequency reference. The high stability of the maser reference allows the GNSS clock contribution to the GNSS carrier phase variance to be determined quite accurately. Satellite clock stability for four different GNSS constellations are presented, highlighting the similarities and differences between the constellations as well as satellite blocks and clock types. Impact on high-rate applications, such as GNSS radio occultation (RO), is assessed through the calculation of the maximum carrier phase error due to clock instability. White phase noise appears to dominate at subsecond time scales. However, while we derived the theoretical contribution of white phase modulation to the modified Allan deviation, our analysis of the GNSS satellite clocks was limited to 1-200 s time scales because of inconsistencies between the subsecond results from the commercial and software-defined receivers. The rubidium frequency standards on board the Global Positioning System (GPS) Block IIF, BeiDou, and Galileo satellites show improved stability results in comparison to previous GPS blocks for time scales relevant to RO. The Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) satellites are the least stable of the GNSS constellations in the short term and will need high-rate corrections to produce RO results comparable to those from the other GNSS constellations.

  17. Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, Robert L.; Taghavi, Shervin

    2011-01-01

    The use of the mercury ion isotope (201)Hg(+) was examined for an atomic clock. Taking advantage of the faster optical pumping time in (201)Hg(+) reduces both the state preparation and the state readout times, thereby decreasing the overall cycle time of the clock and reducing the impact of medium-term LO noise on the performance of the frequency standard. The spectral overlap between the plasma discharge lamp used for (201)Hg(+) state preparation and readout is much larger than that of the lamp used for the more conventional (199)Hg(+). There has been little study of (201)Hg(+) for clock applications (in fact, all trapped ion clock work in mercury has been with (199)Hg(+); however, recently the optical pumping time in (201)Hg(+) has been measured and found to be 0.45 second, or about three times faster than in (199)Hg(+) due largely to the better spectral overlap. This can be used to reduce the overall clock cycle time by over 2 seconds, or up to a factor of 2 improvement. The use of the (201)Hg(+) for an atomic clock is totally new. Most attempts to reduce the impact of LO noise have focused on reducing the interrogation time. In the trapped ion frequency standards built so far at JPL, the optical pumping time is already at its minimum so that no enhancement can be had by shortening it. However, by using (201)Hg(+), this is no longer the case. Furthermore, integrity monitoring, the mechanism that determines whether the clock is functioning normally, cannot happen faster than the clock cycle time. Therefore, a shorter cycle time will enable quicker detection of failure modes and recovery from them.

  18. Real-time simulation clock

    NASA Technical Reports Server (NTRS)

    Bennington, Donald R. (Inventor); Crawford, Daniel J. (Inventor)

    1990-01-01

    The invention is a clock for synchronizing operations within a high-speed, distributed data processing network. The clock is actually a distributed system comprising a central clock and multiple site clock interface units (SCIUs) which are connected by means of a fiber optic star network and which operate under control of separate clock software. The presently preferred embodiment is a part of the flight simulation system now in current use at the NASA Langley Research Center.

  19. Ultracold atoms and their applications (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 October 2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two

  20. Femtosecond frequency combs for optical clocks and timing transfer

    NASA Astrophysics Data System (ADS)

    Foreman, Seth M.

    The rapid development of femtosecond optical frequency combs over the last decade has brought together ultrastable phase control of both cw and mode-locked lasers and ultrafast time-domain applications. Frequency-domain laser stabilization techniques applied to the ultrashort-pulse trains emitted by a mode-locked laser result in a level of optical phase control previously achievable only for radio frequencies and microwaves. I present our work extending such control to mode-locked lasers for both timing and frequency stabilization applications of optical frequency combs. I first present a microwave technique for synchronizing two independent modelocked lasers at a level of timing precision less than the duration of an optical cycle, below 1 fs of residual rms timing jitter. Using these synchronized pulses, simultaneous sum- and difference-frequency generation of 400-nm and tunable mid-infrared fs pulses is demonstrated, opening the door for broadband coherent control of atomic and molecular systems. For frequency metrology, I report on an offset-free clockwork for an optical clock based on the 3.39-mum transition in methane. The clockwork's simplicity leads to a robust and reliable table-sized optical frequency reference with instability approaching a few parts in 1014. Then I describe a directly-octave-spanning, self-referenced Ti:sapphire laser employed as the robustly-running phase-coherent clockwork for an 87Sr optical lattice clock. The optical comb distributes the 2-s coherence time of the 698-nm ultrastable clock laser to its modes spanning the visible and near-IR spectrum, and is therefore simultaneously used as a hub for measuring absolute frequencies or frequency ratios between the Sr clock and other remotely-located microwave and optical atomic standards. Finally, I report on the transfer of ultrastable frequency references, both microwave and optical, through 10-km-scale optical fiber links. Actively stabilizing the optical phase delay of such a fiber

  1. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    SciTech Connect

    Safari, L.; Santos, J. P.; Amaro, P.; Jänkälä, K.; Fratini, F.

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  2. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Safari, L.; Santos, J. P.; Amaro, P.; Jänkälä, K.; Fratini, F.

    2015-05-01

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  3. Scrutinizing Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu 1ions for atomic clocks with uncertainties below the 10-19 level

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2016-12-01

    We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.

  4. Applications of Atom Trap Trace Analysis in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Jiang, W.; Bailey, K.; Mueller, P.; O'Connor, T. P.

    2013-05-01

    With the successful development of the Atom Trap Trace Analysis (ATTA) method, radiokrypton dating has become available for the first time to the Earth science community at large. This novel tool is enabling new research opportunities and improved understanding in the Earth sciences, with implications in studying climate change and in water resource management. Examples of applications of ATTA in the Earth sciences are: (1) ATTA measurements of 81Kr in the Nubian Aquifer of Africa, the Great Artesian Basin of Australia, and the Guarani Aquifer of South America have transformed our understanding of the long-term behavior of these large aquifer systems. 81Kr dating with more extensive sampling will be carried out on major aquifer systems around the world. (2) A systematic survey of 39Ar throughout the oceans, particularly when combined with 14C data, will fill major gaps in our knowledge of deep ocean circulation and mixing, and will allow more accurate predictions of oceanic sequestration of atmospheric CO2. (3) The feasibility and accuracy of 81Kr dating of old ice has been tested with the well-dated stratigraphy of Taylor Glacier in Antarctica. For more information, search for ``TANGR2012''. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  5. Applications of Atom Trap Trace Analysis in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Jiang, W.; Bailey, K.; Mueller, P.; O'Connor, T. P.

    2013-04-01

    With the successful development of the Atom Trap Trace Analysis (ATTA) method, radiokrypton dating has become available for the first time to the Earth science community at large. This novel tool is enabling new research opportunities and improved understanding in the Earth sciences, with implications in studying climate change and in water resource management. Examples of applications of ATTA in the Earth sciences are: (1) ATTA measurements of ^81Kr in the Nubian Aquifer of Africa, the Great Artesian Basin of Australia, and the Guarani Aquifer of South America have transformed our understanding of the long-term behavior of these large aquifer systems. ^81Kr dating with more extensive sampling will be carried out on major aquifer systems around the world. (2) A systematic survey of ^39Ar throughout the oceans, particularly when combined with ^14C data, will fill major gaps in our knowledge of deep ocean circulation and mixing, and will allow more accurate predictions of oceanic sequestration of atmospheric CO2. (3) The feasibility and accuracy of ^81Kr dating of old ice has been tested with the well-dated stratigraphy of Taylor Glacier in Antarctica. For more information, search for ``TANGR2012''.

  6. Ultracold photodissociation and progress towards a molecular lattice clock with 88 Sr

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Hsi; McGuyer, Bart; McDonald, Mickey; Apfelback, Florian; Grier, Andrew; Zelevinsky, Tanya

    2016-05-01

    Techniques originally developed for the construction of atomic clocks can be adapted to the study of ultracold molecules, with applications ranging from studies of ultracold chemistry to searches for new physics. We present recent experimental results involving studies of fully quantum state-resolved photodissociation of 88 Sr2 molecules, as well as progress toward building a molecular clock. First, our system has allowed for precise, quantum state-resolved photodissociation studies, revealing not only excellent control over quantum states but also a more accurate way to describe the photodissociation of diatomic molecules and access ultracold chemistry. Second, the molecular clock will allow us to search for a possible time variation of the proton-electron mass ratio. The ``oscillator'' of such a molecular clock would consist of the frequency difference between two lasers driving a two-photon Raman transition between deeply and intermediately-bound rovibrational levels in the electronic ground state. Accomplishing this task requires exploring several research directions, including the precision spectroscopy of bound states and developing tools for the control and minimization of differential lattice light shifts.

  7. Millisecond pulsars - Nature's most stable clocks

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph H., Jr.

    1991-07-01

    The author describes the role pulsars might play in time and frequency technology. Millisecond pulsars are rapidly rotating neutron stars: spherical flywheels some 20 km in diameter, 1.4 times as massive as the Sun, and spinning as fast as several thousand radians per second. Radio noise generated in a pulsar's magnetosphere by a highly beamed process is detectable over interstellar distances, as a periodic sequence of pulses similar to the ticks of an excellent clock. High-precision comparisons between pulsar time and terrestrial atomic time show that over intervals of several years, some millisecond pulsars have fractional stabilities comparable to those of the best atomic clocks. The author briefly reviews the physics of pulsars, discusses the techniques of pulsar timing measurements, and summarizes the results of careful studies of pulsar stabilities.

  8. Detection of weak frequency jumps for GNSS onboard clocks.

    PubMed

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector.

  9. Small Mercury Ion Clock for On-board Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang; Le, Thanh; Hamell, R.; Maleki, Lute; Tjoelker, Robert

    2004-01-01

    I.Small Ion Clock Approach and Heritage: a) No lasers, uwave cavities, cryogenics, atomic beams, etc. b) Ions are electrically shuttled between separate optical and microwave traps. II. Each trap is optimized for its task: quadrupole for optical state selection; multi-pole for microwave clock. a) Very good stability shown in USNO. Timescale running "open loop." III. "Open loop" operation means no self-measurements of frequency offsets: (Zeeman, ion temperature,... etc.) a) Fewer parts and procedures, produces stable output continuously. IV. Ion clock is not so sensitive to temperature fluctuations a) Measured u:nshielded temperature coefficient of few 10(exp -15) per C. b) No bulky temperature isolation needed.

  10. Cancellation of the Collisional Frequency Shift in Caesium Fountain Clocks

    SciTech Connect

    Szymaniec, K.; Chalupczak, W.; Tiesinga, E.; Williams, C. J.; Weyers, S.; Wynands, R.

    2007-04-13

    We have observed that the collisional frequency shift in primary caesium fountain clocks varies with the clock state population composition and, in particular, is zero for a given fraction of the |F=4,m{sub F}=0> atoms, depending on the initial cloud parameters. We present a theoretical model explaining our observations. The possibility of the collisional shift cancellation implies an improvement in the performance of caesium fountain standards and a simplification in their operation.

  11. Space clocks to test relativiy: ACES and SAGAS

    NASA Astrophysics Data System (ADS)

    Wolf, Peter; Salomon, Christophe; Reynaud, Serge

    2010-01-01

    Atomic clocks are an outstanding tool for the experimental verification of general relativity and more generally for fundamental astronomy (VLBI, pulsar timing, navigation, etc). Recent years have seen a rapid improvement in the performance of such clocks, promising new improved tests of relativity, in particular onboard terrestrial and interplanetary space missions. We present the scientific motivations of such tests taking the ACES Salomon et al. and SAGAS Wolf et al. (2009) projects as particular examples.

  12. Clock synchronisation experiment in India using symphonie satellite

    NASA Technical Reports Server (NTRS)

    Somayajulu, Y. V.; Mathur, B. S.; Banerjee, P.; Garg, S. C.; Singh, L.; Sood, P. C.; Tyagi, T. R.; Jain, C. L.; Kumar, K.

    1979-01-01

    A recent clock synchronization experiment between the National Physical Laboratory (NPL), New Delhi and Space Applications Center (SAC), Ahemedabad, in India via geostationary satellite symphonie 2, stationed at 49 E longitude, is reported. A two-way transmission using a microwave transponder considered to provide the greatest precision in synchronization of two remote clocks is described.

  13. Collisional Losses, Decoherence, and Frequency Shifts in Optical Lattice Clocks with Bosons

    SciTech Connect

    Lisdat, Ch.; Winfred, J. S. R. Vellore; Middelmann, T.; Riehle, F.; Sterr, U.

    2009-08-28

    We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition {sup 1}S{sub 0}-{sup 3}P{sub 0} at 698 nm with bosonic {sup 88}Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with {sup 88}Sr shows no degradation due to collisions on the fractional uncertainty level of 10{sup -16}.

  14. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Lin, Yi-Ge; Li, Ye; Lin, Bai-Ke; Meng, Fei; Zang, Er-Jun; Li, Tian-Chu; Fang, Zhan-Jun

    2014-12-01

    We report our observation of the spin polarized 1S0 → 3P0 clock transition spectrum in an optical lattice clock based on fermionic 87Sr. The atoms are trapped and pre-cooled to about 2 μK with two stages of laser cooling at 461 nm and 689 nm, respectively. Then the atoms are loaded into an optical lattice formed by the interference of counter-propagating laser beams at 813 nm. An external cavity diode laser at 698 nm, which is stabilized to a high finesse cavity with a linewidth of about 5 Hz and a drift rate of less than 0.2 Hz/s, is used to excite the atoms to the 3P0 state. The π-polarized clock transition spectrum of resolvable mF states is obtained by applying a small bias magnetic field along the polarization axis of the probe beam. A spin polarized clock transition spectrum as narrow as 10 Hz with an 80 ms probe pulse is obtained.

  15. 12 CFR 1263.3 - Decision on application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 60-day clock until the application again is deemed complete, and then resume the clock where it left... notify an applicant if the 60-day clock is stopped, and when the clock is resumed, and shall maintain...

  16. 12 CFR 1263.3 - Decision on application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 60-day clock until the application again is deemed complete, and then resume the clock where it left... notify an applicant if the 60-day clock is stopped, and when the clock is resumed, and shall maintain...

  17. 12 CFR 1263.3 - Decision on application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 60-day clock until the application again is deemed complete, and then resume the clock where it left... notify an applicant if the 60-day clock is stopped, and when the clock is resumed, and shall maintain...

  18. 12 CFR 1263.3 - Decision on application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 60-day clock until the application again is deemed complete, and then resume the clock where it left... notify an applicant if the 60-day clock is stopped, and when the clock is resumed, and shall maintain...

  19. Quantum primordial standard clocks

    SciTech Connect

    Chen, Xingang; Namjoo, Mohammad Hossein; Wang, Yi E-mail: mohammad.namjoo@cfa.harvard.edu

    2016-02-01

    In this paper, we point out and study a generic type of signals existing in the primordial universe models, which can be used to model-independently distinguish the inflation scenario from alternatives. These signals are generated by massive fields that function as standard clocks. The role of massive fields as standard clocks has been realized in previous works. Although the existence of such massive fields is generic, the previous realizations require sharp features to classically excite the oscillations of the massive clock fields. Here, we point out that the quantum fluctuations of massive fields can actually serve the same purpose as the standard clocks. We show that they are also able to directly record the defining property of the scenario type, namely, the scale factor of the primordial universe as a function of time a(t), but through shape-dependent oscillatory features in non-Gaussianities. Since quantum fluctuating massive fields exist in any realistic primordial universe models, these quantum primordial standard clock signals are present in any inflation models, and should exist quite generally in alternative-to-inflation scenarios as well. However, the amplitude of such signals is very model-dependent.

  20. Chicktacking pineal clock.

    PubMed

    Okano, Toshiyuki; Fukada, Yoshitaka

    2003-12-01

    Many tissues in non-mammalian vertebrates contain both photoreceptors and circadian clock systems. Among these photosensitive clock structures, the chick pineal gland has been characterized in detail from cellular and molecular aspects of the clock oscillation and entrainment. Analyses of the pineal photic-input pathway revealed a phase-shifting mechanism mediated by activation of G11, one of the Gq-type G-proteins. A major photoreceptive molecule, pinopsin, likely triggers this pathway by transmitting the light signal to the circadian oscillator. In the chick pineal oscillator, the transcription/translation-based autoregulatory feedback loop is composed of positive and negative elements (clock gene products) that are homologous to those identified in mammals. In the molecular cycling, a CACGTG E-box located in the promoter region of the negative element genes plays a central role in the transcriptional regulation. The phase of the molecular cycling is modulated by many regulatory components, among which E4BP4 and extracellular signal-regulated kinase (ERK) are closely associated with the photic entrainment. A light-responsive element was found in the promoter region of the Pinopsin gene, and the element included a CACGTG E-box, suggesting a novel role of the E-box as a point of convergence of light and circadian signals. These observations together point to general and unique features of the chick pineal circadian system among animal clocks.

  1. Room 103, transom woodwork and original clock. All clocks are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 103, transom woodwork and original clock. All clocks are driven by a common signal. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  2. 229Th the Bridge Between Nuclear and Atomic Interactions

    SciTech Connect

    Burke, J T; Casperson, R J; Swanberg, E L; Thomas, D

    2010-12-02

    The precise measurement of time has been a goal of physicists for centuries. With every new increase in our ability to measure time we have discovered new phenomena. The most advanced clocks available to us currently are atomic clocks that use electronic transitions to track the passage of time. In this proposal, I put forward the framework for the first nuclear clock estimated to be 1000 to 10000 times more precise than the current atomic clocks. This research will explore in detail the atomic nuclear interactions and help perfect and refine current atomic-nuclear interaction models. The realization of a {sup 229}Th nuclear clock will allow tests of cosmology by measuring the change of the fine structure constant as a function of time. The results of these experiments could dramatically alter our view of the universe, its past and future evolution. Precision clocks - with fundamental physics applications - require a long-lived quantum transition (two-level system) that is immune to external perturbations. Nuclear transitions would be better suited than atomic transitions for these applications except that nuclear transitions are typically much higher in energy and therefore cannot be accessed with table-top lasers. There is, however, one promising nuclear transition: the doublet between the ground and first excited states of the {sup 229}Th nucleus discovered by Helmer and Reich. This doublet has an energy splitting of 7.6 {+-} 0.5 eV, a spin difference of 1 h-bar, and an excited state half-life that could be as long as hours. A precision clock based on the {sup 229}Th nuclear doublet has been proposed by Peik et al. Their design is similar to the ion clock research being conducted at NIST in Boulder, CO. However, the NIST researchers use atomic transitions for their frequency standards. In the {sup 229}Th nuclear doublet transition is the frequency standard while atomic transitions are used to cool the ions and for probing the state of the {sup 229}Th nucleus

  3. Science 101: How Do Atomic Clocks Work?

    ERIC Educational Resources Information Center

    Science and Children, 2008

    2008-01-01

    You might be wondering why in the world we need such precise measures of time. Well, many systems we use everyday, such as Global Positioning Systems, require precise synchronization of time. This comes into play in telecommunications and wireless communications, also. For purely scientific reasons, we can use precise measurement of time to…

  4. Applications of atom interferometry - from ground to space

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  5. Tutorial: Clock and Clock Systems Performance Measures

    NASA Technical Reports Server (NTRS)

    Allan, David W.

    1996-01-01

    This tutorial contains basic material - familiar to many. This will be used as a foundation upon which we will build - bringing forth some new material and equations that have been developed especially for this tutorial. These will provide increased understanding toward parameter estimation of clock and clock system's performance. There is a very important International Telecommunications Union (ITU) handbook being prepared at this time which goes much further than this tutorial has time to do. I highly recommend it as an excellent resource document. The final draft is just now being completed, and it should be ready late in 1996. It is an outstanding handbook; Dr. Sydnor proposed to the ITU-R several years ago, and is the editor with my assistance. We have some of the best contributors in the community from around the world who have written the ten chapters in this handbook. The title of the handbook is 'Selection and use of Precise Frequency and Time Systems'. It will be available from the ITU secretariat in Geneva, Switzerland, but NAVTEC Seminars also plans to be a distributor.

  6. Circadian clocks, brain function, and development.

    PubMed

    Frank, Ellen; Sidor, Michelle M; Gamble, Karen L; Cirelli, Chiara; Sharkey, Katherine M; Hoyle, Nathaniel; Tikotzky, Liat; Talbot, Lisa S; McCarthy, Michael J; Hasler, Brant P

    2013-12-01

    Circadian clocks are temporal interfaces that organize biological systems and behavior to dynamic external environments. Components of the molecular clock are expressed throughout the brain and are centrally poised to play an important role in brain function. This paper focuses on key issues concerning the relationship among circadian clocks, brain function, and development, and discusses three topic areas: (1) sleep and its relationship to the circadian system; (2) systems development and psychopathology (spanning the prenatal period through late life); and (3) circadian factors and their application to neuropsychiatric disorders. We also explore circadian genetics and psychopathology and the selective pressures on the evolution of clocks. Last, a lively debate is presented on whether circadian factors are central to mood disorders. Emerging from research on circadian rhythms is a model of the interaction among genes, sleep, and the environment that converges on the circadian clock to influence susceptibility to developing psychopathology. This model may lend insight into effective treatments for mood disorders and inform development of new interventions.

  7. Atom-chip-based generation of entanglement for quantum metrology.

    PubMed

    Riedel, Max F; Böhi, Pascal; Li, Yun; Hänsch, Theodor W; Sinatra, Alice; Treutlein, Philipp

    2010-04-22

    Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.

  8. Spin–orbit-coupled fermions in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.

    2016-12-01

    Engineered spin–orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin–orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin–orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin–orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin–momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

  9. Estimating the instability of a composite clock

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2004-01-01

    A composite clock created from a local clock ensemble is known by its time offsets from the ensemble clocks. By a geometrical argument, estimate for the instability of the composite clock are calculated from the instabilities of the ensemble clocks, individually and against the composite clock. The method is illustrated by examples using simulated and real ensembles.

  10. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  11. Application of the model of delocalized atoms to metallic glasses

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.

    2017-01-01

    The parameters of the model of delocalized atoms applied to metallic glasses have been calculated using the data on empirical constants of the Vogel-Fulcher-Tammann equation (for the temperature dependence of viscosity). It has been shown that these materials obey the same glass-formation criterion as amorphous organic polymers and inorganic glasses. This fact qualitatively confirms the universality of the main regularities of the liquid-glass transition process for all amorphous materials regardless of their origin. The energy of the delocalization of an atom in metallic glasses, Δɛ e ≈ 20-25 kJ/mol, coincides with the results obtained for oxide inorganic glasses. It is substantially lower than the activation energies for a viscous flow and for ion diffusion. The delocalization of an atom (its displacement from the equilibrium position) for amorphous metallic alloys is a low-energy small-scale process similar to that for other glass-like systems.

  12. A Novel Method of Clock Synchronization in Distributed System

    NASA Astrophysics Data System (ADS)

    Li, G.; Niu, M. J.; Cai, Y. S.; Chen, X.; Ren, Y. Q.

    2016-03-01

    Time synchronization plays an important role in application of aircraft flying formation and constellation autonomous navigation, etc. In application of clock synchronization in the network system, it is not always true that each observed node may be interconnected, therefore, it is difficult to achieve time synchronization of network system with high precision in the condition that a certain node can only obtain the measurement information of clock from one of its corresponding neighbors, and cannot obtain from other nodes. According to this special problem, a novel method of high precision time synchronization of network system has been proposed. In this paper, we regard each clock as a node in the network system, and based on different distributed topology definition, the following three control algorithms of time synchronization under three circumstances have been designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. The validity of the designed clock synchronization protocol has been proved both theoretically and through numerical simulation.

  13. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  14. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  15. An optical lattice clock with accuracy and stability at the 10-18 level

    NASA Astrophysics Data System (ADS)

    Bloom, B. J.; Nicholson, T. L.; Williams, J. R.; Campbell, S. L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S. L.; Ye, J.

    2014-02-01

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4×10-18, which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard--stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  16. Application of atomic decomposition to gear damage detection

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chu, Fulei

    2007-04-01

    Atomic decomposition can represent arbitrary signals in an overcomplete dictionary sparsely and adaptively, and it can match the local structure of signals very well. Therefore, it possesses advantages over traditional basis-expansion-based signal analysis methods, in extracting characteristic waveforms from complicated mechanical vibration signals. Periodic impulses characterize damaged gear vibration. In order to extract the transient features of gear vibration, atomic decomposition methods, including method of frames (MOF), best orthogonal basis (BOB), matching pursuit (MP) and basis pursuit (BP), are used in the analysis of vibration signals from both healthy and faulty gearboxes. With a compound dictionary specially designed to match the local structure of signals, the meshing frequency and its harmonics, impulses and transient phenomena of the damaged gear vibration signals are extracted simultaneously. Furthermore, from the time-frequency plots of atomic decomposition, the gear tooth damage is recognized easily according to the periodic impulses. By comparing with traditional time-frequency analysis methods, e.g. short time Fourier transform and continuous wavelet transform, it is found that atomic decomposition is more effective in simultaneously extracting the impulses and harmonic components of damaged gear vibration signals.

  17. SAW atomization application on inhaled pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Qi, Aisha; Friend, James; Yeo, Leslie

    2008-12-01

    Pulmonary drug delivery transports the drug formulations directly to the respiratory tract in the form of inhaled particles or droplets. Because of the direct target treatment, it has significant advantages in the treatment of respiratory diseases, for example asthma. However, it is difficult to produce monodispersed particles/droplets in the 1-10 micron range, which is necessary for deposition in the targeted lung area or lower respiratory airways, in a controllable fashion. We demonstrate the use of surface acoustic waves (SAWs) as an efficient method for the generation of monodispersed micron dimension aerosols for the treatment of asthma. SAWs are ten nanometer order amplitude electroacoustic waves generated by applying an oscillating electric field to an interdigital transducer patterned on a piezoelectric substrate. The acoustic energy in the waves induces atomization of the working fluid, which contains a model drug, albuterol. Laser diffraction techniques employed to characterize the aerosols revealed mean diameter of the aerosol was around 3-4 μm. Parallel experiments employing a one-stage (glass) twin impinger as a lung model demonstrated a nearly 80% of atomized drug aerosol was deposited in the lung. The aerosol size distribution is relatively independent of the SAW frequency, which is consistent with our predictive scaling theory which accounts for the dominant balance between viscous and capillary stresses. Moreover, only 1-3 W powers consumption of SAW atomization suggests that the SAW atomizer can be miniaturized into dimensions commensurate with portable consumer devices.

  18. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  19. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  20. Relativity and Al^+ Optical Clocks

    NASA Astrophysics Data System (ADS)

    Chou, Chin-Wen; Hume, David B.; Wineland, David J.; Rosenband, Till

    2010-03-01

    We have constructed an optical clock based on quantum logic spectroscopy of an Al+ ion that has a fractional frequency inaccuracy of 8.6x10-18. The frequency of the ^1S0<->^3P0 clock transition is compared to that of a previously constructed Al^+ optical clock with a statistical measurement uncertainty of 7.0x10-18. The two clocks exhibit a relative stability of 2.8x10-15&-1/2circ;, and a fractional frequency difference of -1.8x10-17, consistent with the accuracy limit of the older clock. By comparing the frequencies of the clocks, we have observed relativistic effects, such as time dilation due to velocities less than 10 m/s and the gravitational red shift from a 0.33 m height change of one of the clocks.

  1. Clock Synchronization in Wireless Sensor Networks: An Overview

    PubMed Central

    Rhee, Ill-Keun; Lee, Jaehan; Kim, Jangsub; Serpedin, Erchin; Wu, Yik-Chung

    2009-01-01

    The development of tiny, low-cost, low-power and multifunctional sensor nodes equipped with sensing, data processing, and communicating components, have been made possible by the recent advances in micro-electro-mechanical systems (MEMS) technology. Wireless sensor networks (WSNs) assume a collection of such tiny sensing devices connected wirelessly and which are used to observe and monitor a variety of phenomena in the real physical world. Many applications based on these WSNs assume local clocks at each sensor node that need to be synchronized to a common notion of time. This paper reviews the existing clock synchronization protocols for WSNs and the methods of estimating clock offset and clock skew in the most representative clock synchronization protocols for WSNs. PMID:22389588

  2. A New Trapped Ion Clock Based on Hg-201(+)

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  3. Laser-Free Cold-Atom Gymnastics

    NASA Astrophysics Data System (ADS)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  4. Atomic temporal interval relations in branching time: calculation and application

    NASA Astrophysics Data System (ADS)

    Anger, Frank D.; Ladkin, Peter B.; Rodriguez, Rita V.

    1991-03-01

    A practical method of reasoning about intervals in a branching-time model which is dense, unbounded, future-branching, without rejoining branches is presented. The discussion is based on heuristic constraint- propagation techniques using the relation algebra of binary temporal relations among the intervals over the branching-time model. This technique has been applied with success to models of intervals over linear time by Allen and others, and is of cubic-time complexity. To extend it to branding-time models, it is necessary to calculate compositions of the relations; thus, the table of compositions for the 'atomic' relations is computed, enabling the rapid determination of the composition of arbitrary relations, expressed as disjunctions or unions of the atomic relations.

  5. Stable Kalman filters for processing clock measurement data

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.

    1989-01-01

    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.

  6. Application of Fourier-Fresnel Imaging to Neutral - Atom Interferometry

    DTIC Science & Technology

    1990-10-03

    this Moire pattern by maximizing the n - 1 harmonic signal. In addition, since the grating period d can be much larger than that required For the...acnil4cations of their work to light is quite limited.The results are primarily interesting in that they span t e toundarg between zraoezcidal Moire Frlnges...suitable For use by techniques available For eutral-acm iic erfermer. --- I : r1. Possible Layouts for a Neutral-Atom Interferometer . I. ! c Figure

  7. An Algorithm for the Detection of the Frequency Jumps in Space Clocks

    DTIC Science & Technology

    2010-11-01

    Tavella, 2008, “Detection and identification of atomic clock anomalies,” Metrologia , 45, 127-133. [4] L. Galleani, 2008, “Detection of changes in clock...noise using the time–frequency spectrum,” Metrologia , 45, 143-153. [5] I. Sesia, L. Galleani, and P. Tavella, 2007, “Implementation of the Dynamic

  8. Spaceborne clock system: Some alternatives for a proposed NASA experiment

    NASA Technical Reports Server (NTRS)

    Beehler, R. E.

    1971-01-01

    A spaceborne clock experiment is proposed with the objectives of improving international time and frequency comparisons, studying precise one-way Doppler tracking and one-way ranging techniques, performing relativistic studies, and developing new atomic frequency standards technology. Various alternatives are considered for accomplishing these goals, including the use of existing satellite and earth-based time dissemination systems as well as the development of a new frequency standard for this specific application. One conclusion is that several attractive alternatives already exist for meeting the goal of improved time and frequency dissemination. However, to achieve all the other 4 goals at the NASA-stated levels of accuracy, a spaceborne atomic frequency standard may be required. An analysis of achievements to date with quartz oscillators, rubidium standards, cesium beam standards, hydrogen masers, and several other possibilities leads to the conclusion that cesium and rubidium standards offer the best choices for the experiment as proposed by NASA. The greatest obstacle to a spaceborne atomic standard appears to be its electrical power requirements.

  9. Frequency ratios of optical lattice clocks at the 17th decimal place

    NASA Astrophysics Data System (ADS)

    Katori, Hidetoshi

    2016-05-01

    Optical lattice clocks benefit from a low quantum-projection noise by simultaneously interrogating a large number of atoms, which are trapped in an optical lattice tuned to the ``magic wavelength'' to largely cancel out light shift perturbation in the clock transition. About a thousand atoms enable the clocks to achieve 10-18 instability in a few hours of operation, allowing intensive investigation and control of systematic uncertainties. As optical lattice clocks have reached inaccuracies approaching 10-18, it is now the uncertainty of the SI second (~ 10-16) itself that restricts the measurement of the absolute frequencies of such optical clocks. Direct comparisons of optical clocks are, therefore, the only way to investigate and utilize their superb performance beyond the SI second. In this presentation, we report on frequency comparisons of optical lattice clocks with neutral strontium (87 Sr), ytterbium (171 Yb) and mercury (199 Hg) atoms. By referencing cryogenic Sr clocks, we determine frequency ratios, νYb/νSr and νHg/νSr, of a cryogenic Yb clock and a Hg clock with uncertainty at the mid 10-17 level. Such ratios provide an access to search for temporal variation of the fundamental constants. We also present remote comparisons between cryogenic Sr clocks located at RIKEN and the University of Tokyo over a 30-km-long phase-stabilized fiber link. The gravitational red shift Δν /ν0 ~ 1.1× 10-18 Δh cm-1 reads out the height difference of Δh ~ 15 m between the two clocks with uncertainty of 5 cm, which demonstrates a step towards relativistic geodesy. ERATO, JST.

  10. Chromatic dispersion induced PM-AM conversion and its application in the all-optical clock recovery of NRZ-DPSK signals

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Fu, Songnian; Zhong, Wen-de; Wen, Yang Jing; Shum, Ping

    2007-11-01

    We investigated the property of conversion between phase modulation (PM) and amplitude modulation (AM) in optical fiber transmission link due to chromatic dispersion (CD) for the purpose of clock information generation. As a result, a novel all-optical clock recovery (CR) scheme from 10 Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signal has been demonstrated experimentally. We introduce a chromatic dispersion induced clock tone from the NRZ-DPSK signal and feed it into a free-running semiconductor optical amplifier (SOA) based fiber ring laser to achieve an injection mode-locking. The generated mode-locked pulse is the corresponding regenerated clock of the original signal. Since no special component is required for NRZ-DPSK demodulation, our proposed method is very promising because of its simple configuration and higher stability. In experiments, 20km standard single mode fiber is employed to accumulate CD and generate PM-AM conversion hence regenerate clock tone of the NRZ-DPSK signal. The recovered clock signal with the extinction ratio over 15 dB and the root-mean-square timing jitter of 720 fs is achieved under 2 31-1 pseudorandom binary sequence NRZ-DPSK signals measurement. We also demonstrated a similar CR system by using a chirped fiber Bragg grating (CFBG) as the dispersion device. With the same operation principle, it is quite convenient and promising to extend our configuration to implement all-optical CR for NRZ-DPSK signal with data rate up to 40Gbps.

  11. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  12. Partial Wave Dispersion Relations: Application to Electron-Atom Scattering

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Drachman, Richard J.

    1999-01-01

    In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.

  13. Application of Density Functional Theory to Systems Containing Metal Atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    2006-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.

  14. Laser cooling and trapping of atomic particles. January 1970-September 1989 (Citations from the NTIS data base). Report for Jan 70-Sep 89

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning theory and experiments on laser cooling and laser trapping of neutral atoms and atomic ions. Atoms and ions are cooled by laser radiation pressure to very low Kelvin temperatures and confined in electromagnetic traps with very high density. Atomic particles discussed include sodium atoms, mercury ions, beryllium ions, magnesium ions, and hydrogen. Applications include high performance spectroscopy, atomic clocks, microwave and optical frequency standards, relativistic neutral particle beam weapons, exotic fuels, cooling of electron beams, and space propulsion. (Contains 97 citations fully indexed and including a title list.)

  15. An Anomaly Clock Detection Algorithm for a Robust Clock Ensemble

    DTIC Science & Technology

    2009-11-01

    41 st Annual Precise Time and Time Interval (PTTI) Meeting 121 AN ANOMALY CLOCK DETECTION ALGORITHM FOR A ROBUST CLOCK ENSEMBLE...clocks are in phase and on frequency all the time with advantages of relatively simple, robust, fully redundant, and improved performance. It allows...Algorithm parameters, such as the sliding window width as a function of the time constant, and the minimum detectable levels have been optimized and

  16. Spin-orbit coupling in a strontium optical lattice clock

    NASA Astrophysics Data System (ADS)

    Bothwell, Tobias; Bromley, Sarah; Kolkowitz, Shimon; Zhang, Xibo; Wall, Michael; Rey, Ana Maria; Ye, Jun

    2016-05-01

    Synthetic gauge fields are a promising tool for creating complex Hamiltonians with ultracold neutral atoms that may mimic the fractional Quantum Hall effect and other topological states. A promising approach is to use spin-orbit coupling to treat an internal degree of freedom as an effective `synthetic' spatial dimension. Here, this synthetic dimension is comprised by the internal ground and excited states used for high-precision clock spectroscopy in a fermionic strontium optical lattice clock. We report on our progress towards this goal in a system where atoms tunnel through a 1D optical lattice during clock interrogation. We present measurements of the lattice band structure under varying Lamb-Dicke parameters and in a regime where s-wave collisions are expected to contribute density dependent frequency shifts.

  17. Low-power, miniature 171Yb ion clock using an ultra-small vacuum package

    NASA Astrophysics Data System (ADS)

    Jau, Y.-Y.; Partner, H.; Schwindt, P. D. D.; Prestage, J. D.; Kellogg, J. R.; Yu, N.

    2012-12-01

    We report a demonstration of a very small microwave atomic clock using the 12.6 GHz hyperfine transition of the trapped 171Yb ions inside a miniature, completely sealed-off 3 cm3 ion-trap vacuum package. In the ion clock system, all of the components are highly miniaturized with low power consumption except the 369 nm optical pumping laser still under development for miniaturization. The entire clock, including the control electronics, consumes <300 mW. The fractional frequency instability of the miniature Yb+ clock reaches the 10-14 range after a few days of integration.

  18. Low-power, miniature {sup 171}Yb ion clock using an ultra-small vacuum package

    SciTech Connect

    Jau, Y.-Y.; Schwindt, P. D. D.; Partner, H.; Prestage, J. D.; Kellogg, J. R.; Yu, N.

    2012-12-17

    We report a demonstration of a very small microwave atomic clock using the 12.6 GHz hyperfine transition of the trapped {sup 171}Yb ions inside a miniature, completely sealed-off 3 cm{sup 3} ion-trap vacuum package. In the ion clock system, all of the components are highly miniaturized with low power consumption except the 369 nm optical pumping laser still under development for miniaturization. The entire clock, including the control electronics, consumes <300 mW. The fractional frequency instability of the miniature Yb{sup +} clock reaches the 10{sup -14} range after a few days of integration.

  19. Application of Group Theory to Some Problems in Atomic Physics.

    NASA Astrophysics Data System (ADS)

    Suskin, Mark Albert

    This work comprises three problems, each of which lends itself to investigation via the theory of groups and group representations. The first problem is to complete a set of operators used in the fitting of atomic energy levels of atoms whose ground configuration is f ^ 3. The role of group theory in the labelling of these operators and in their construction is explained. Values of parameters associated with a subset of the operators are also calculated via their group labels. The second problem is to explain the term inversion that occurs between states of the configuration of two equivalent electrons and certain of the states of the half-filled shell. This leads to generalizations that make it possible to investigate correspondences between matrix elements of effective operators taken between states of other configurations besides the two mentioned. This is made possible through the notion of quasispin. The third problem is the construction of recoupling coefficients for groups other than SO(3). Questions of phase convention and Kronecker-product multiplicities are taken up. Several methods of calculation are given and their relative advantages discussed. Tables of values of the calculated 6-j symbols are provided.

  20. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Peplinski, D. R.

    1985-01-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  1. Preliminary Evaluation of Atomization Characteristics of Improved Biodiesel for Gas Turbine Application

    NASA Astrophysics Data System (ADS)

    Kumaran, P.; Gopinathan, M.; Razali, N. M.; Kuperjans, Isabel; Hariffin, B.; Hamdan, H.

    2013-06-01

    Biodiesel is one of the clean burning alternative fuels derived from natural resources and animal fats which is promising fuel for gas turbine application. However, inferior properties of biodiesel such as high viscosity, density and surface tension results in inferior atomization and high emission, hence impedes the fuel compatible for gas turbine application and emits slightly higher emission pollutants due to inferior atomization. This research work focuses on preliminary evaluation of the atomization characteristics of derived from Malaysian waste cooking oil which is the physical properties are subsequently improved by a microwave assisted post treatment scheme. The results shows with improvement in physical properties achieved through the post treatment, biodiesel exhibits significantly better atomization characteristics in terms of spray angle, spray length, sauter mean diameter and shorter evaporation time compared to the biodiesel before improvement and fossil diesel.

  2. Circadian Clock, Cancer, and Chemotherapy

    PubMed Central

    2015-01-01

    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs. PMID:25302769

  3. Fast atom bombardment mass spectrometry and its application to the analysis of some peptides and proteins.

    PubMed

    Hemling, M E

    1987-02-01

    The techniques of fast atom bombardment mass spectrometry has overtaken (but not entirely replaced) field desorption mass spectrometry as the method of choice for the analysis of nonvolatile, thermally labile polar compounds. The ease with which information may be obtained on a wide variety of molecules is a result of the relative simplicity of the technique. A brief history of bioorganic mass spectrometry leading to the development of fast atom bombardment is presented, as well as a description of the method and ancillary techniques. Selected examples of its application to peptide and protein structural problems attest to the power and utility of fast atom bombardment mass spectrometry.

  4. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce

    2007-01-01

    In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.

  5. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  6. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  7. Huygens synchronization of two clocks.

    PubMed

    Oliveira, Henrique M; Melo, Luís V

    2015-07-23

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model.

  8. Application of the embedded atom method to Pb and Be

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Yang, Z.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1990-01-01

    We have derived the embedding energy functional and two-body potential of the embedded atom method using decreasing exponentials for both the electron density and the two body potential. The embedding function was obtained from the equation of state given by Rose et al. (1984). Because of the form of the embedding function, the equilibrium lattice constant, cohesive energy, and bulk modulus are automatically satisfied. The two parameters phi(e) and gamma of the two-body potential were determined by fitting to shear modulus and the single vacancy formation energy. Contributions of up to the third nearest neighbors were included in the evaluation of the charge density rho and the two-body potential phi. The stability and anisotropy of each structure were estimated and compared with the available experimental data.

  9. European plans for new clocks in space

    NASA Technical Reports Server (NTRS)

    Leschiutta, Sigfrido M.; Tavella, Patrizia

    1995-01-01

    An outline of the future European space research program where precise clocks are necessary is presented, pointing out how space applications are posing impressive requirements as regards clock mass, power, ruggedness, long life, accuracy and, in some cases, spectral purity. The material presented was gathered in some laboratories; useful information was obtained from the Space Agencies of France (CNES), Germany (DARA) and Italy (ASI), but the bulk is coming from a recent exercise promoted inside ESA (the European Space Agency) and aimed to prefigure space research activities at the beginning of the next millennium. This exercise was called Horizon 2000 plus; the outcomings were summarized in two reports, presented by ESA in may 1994. Precise clocks and time measurements are needed not only for deep-space or out-ward space missions, but are essential tools also for Earth oriented activities. In this latter field, the European views and needs were discussed in October 1994, in a meeting organized by ESA and devoted to Earth Observation problems. By a scrutiny of these reports, an analysis was performed on the missions requiring a precise clock on board and the driving requirements were pointed out, leading to a survey of the necessary PTTI developments that, to some extent, are in the realm of possibility but that pose serious challenges. In this report the use of frequency standards in the satellite navigation systems is not considered.

  10. Mapping the magnetic field vector in a fountain clock

    SciTech Connect

    Gertsvolf, Marina; Marmet, Louis

    2011-12-15

    We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.

  11. Record Stability via Improved Laser Coherence in Strontium-87 Optical Clocks

    NASA Astrophysics Data System (ADS)

    Campbell, Sara; Nicholson, Travis; Martin, Michael; Bloom, Benjamin; Williams, Jason; Bishof, Michael; Zhang, Xibo; Swallows, Matthew; Ye, Jun

    2013-05-01

    Many-particle clocks are promising candidates for next-generation frequency standards because quantum projection noise scales down with the square root of atom number. Previously, these clocks had been unable to demonstrate stability better than that of single-particle clocks, due to laser noise-induced instability via the Dick effect. We show that a better optical local oscillator with a 10-16 thermal noise floor directly results in a tenfold improvement in clock stability, now reaching 1 ×10-17 in 1000 s. Leveraging the superior precision of a many-particle clock, we are working toward a full systematic evaluation of our clock accuracy with a goal of 1 ×10-17 fractional uncertainty. One of the important systematics inherent in many-particle clocks is the density-dependent frequency shift. In a new system that traps thousands of atoms at low density, we now measure the density shift with a fractional uncertainty of 8 . 2 ×10-19. Additionally, to further improve our clock stability, we have developed a novel technique to evaluate the noise spectrum of our ultra-stable laser using 87Sr atoms as a quantum reference.

  12. Metrological characterization of the pulsed Rb clock with optical detection

    NASA Astrophysics Data System (ADS)

    Micalizio, S.; Calosso, C. E.; Godone, A.; Levi, F.

    2012-08-01

    We report on the implementation and metrological characterization of a vapour-cell Rb frequency standard working in a pulsed regime. The three main parts of the clock, physics package, optics and electronics, are described in detail in this paper. The prototype is designed and optimized to detect the clock transition in the optical domain. Specifically, the reference atomic transition, excited with a Ramsey scheme, is detected by observing the interference pattern on a laser absorption signal. The metrological analysis includes the observation and characterization of the clock signal and the measurement of frequency stability and drift. In terms of Allan deviation, the measured frequency stability is as low as 1.7 × 10-13τ-1/2, τ being the averaging time, and reaches the value of a few units of 10-15 for τ = 104 s, an unprecedented result for a vapour-cell clock. We discuss the physical effects leading to this result in this paper with particular care to laser and microwave noises transferred to the clock signal. The frequency drift, probably related to temperature, stays below 10-14 per day, and no evidence of flicker floor is observed. We also mention some possible improvements that in principle would lead to a clock stability below the 10-13 level at 1 s and to a drift of a few units of 10-15 per day.

  13. Frequency noise processes in a strontium ion optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Huang, G.; King, S. A.; Klein, H. A.; Gill, P.

    2015-02-01

    A recent comparison of the frequencies of a pair of optical clocks based on the 674 nm 2S1/2-2D5/2 optical clock transition in 88Sr+ has highlighted the need to understand factors affecting frequency instability. We have developed statistical models to show that our clock is capable of reaching the quantum projection noise limit; for our clock using 100 ms probe pulses, this is ˜3 × 10-15/√τ. However, this optical clock uses atomic transitions with a linear Zeeman shift, which can lead to a degradation in stability in the presence of magnetic field noise. We show that this generally leads to an increase in white frequency noise, even in cases dominated by magnetic field flicker or random walk noise. By taking into account both the quantum projection and magnetic field noise we are able to explain our observed frequency instabilities. This analysis will relate to any optical clock with a linear Zeeman shift where cancellation of this shift is achieved by interrogating pairs of components. Furthermore, implementing automatic control of lasers and minimization of micromotion requires pausing of the frequency servo occasionally; this leads to only a small degradation of frequency stability.

  14. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms

    PubMed Central

    Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  15. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.

    PubMed

    Zhang, S Y; Wu, J T; Zhang, Y L; Leng, J X; Yang, W P; Zhang, Z G; Zhao, J Y

    2015-10-13

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios.

  16. A self-sustaining atomic magnetometer with τ(-1) averaging property.

    PubMed

    Xu, C; Wang, S G; Feng, Y Y; Zhao, L; Wang, L J

    2016-06-30

    Quantum measurement using coherent superposition of intrinsic atomic states has the advantage of being absolute measurement and can form metrological standards. One example is the absolute measurement of magnetic field by monitoring the Larmor precession of atomic spins whilst another being the Ramsey type atomic clock. Yet, in almost all coherent quantum measurement, the precision is limited by the coherence time beyond which, the uncertainty decreases only as τ(-1/2). Here we show that by non-destructively measuring the phase of the Larmor precession and regenerating the coherence via optical pumping, the self-sustaining Larmor precession signal can persist indefinitely. Consequently, the precision of the magnetometer increases with time following a much faster τ(-1) rule. A mean sensitivity of 240  from 1 Hz to 10 Hz is realized, being close to the shot noise level. This method of coherence regeneration may also find important applications in improving the performance of atomic clocks.

  17. A self-sustaining atomic magnetometer with τ-1 averaging property

    NASA Astrophysics Data System (ADS)

    Xu, C.; Wang, S. G.; Feng, Y. Y.; Zhao, L.; Wang, L. J.

    2016-06-01

    Quantum measurement using coherent superposition of intrinsic atomic states has the advantage of being absolute measurement and can form metrological standards. One example is the absolute measurement of magnetic field by monitoring the Larmor precession of atomic spins whilst another being the Ramsey type atomic clock. Yet, in almost all coherent quantum measurement, the precision is limited by the coherence time beyond which, the uncertainty decreases only as τ-1/2. Here we show that by non-destructively measuring the phase of the Larmor precession and regenerating the coherence via optical pumping, the self-sustaining Larmor precession signal can persist indefinitely. Consequently, the precision of the magnetometer increases with time following a much faster τ-1 rule. A mean sensitivity of 240  from 1 Hz to 10 Hz is realized, being close to the shot noise level. This method of coherence regeneration may also find important applications in improving the performance of atomic clocks.

  18. Effects of neutron fluence on the operating characteristics of diode lasers used in atomic frequency standards. Technical report

    SciTech Connect

    Frueholz, R.P.; Camparo, J.C.; Delcamp, S.B.; Barnes, C.E.

    1990-08-15

    One of the next major advances in rubidium and cesium atomic clock technology will center on the use of diode lasers for optical pumping. The atomic clocks used on board satellites have the potential to interact with various forms of radiation that are not present in the laboratory environment, and the effects of this radiation on the laser's operating characteristics relevant to clock applications are not well known. The present report describes an ongoing experiment to study the effects of neutron fluence on the operating characteristics of Mitsubishi Transverse Junction Stripe (TJS) AlGaAs diode lasers. Different models of the TJS diode laser produce optical radiation in both the 780 and 850 nm range, appropriate for optical pumping in rubidium and cesium atomic clocks, respectively. In this phase, a set of TJS diode lasers has been exposed to a neutron fluence of 2 x 1012 n/cm2, and four laser characteristics were examined after each exposure. The laser's light output versus injection current and single-mode linewidth versus output power both influence the efficiency of optical pumping and hence the atomic clock's signal-to-noise ratio. We have also measured the laser's single-mode wavelength versus injection current (laser tuning). Since the diode laser must remain tuned to the appropriate atomic transition, any degradation in the ability to tune the laser will impact atomic clock reliability. Finally, the diode laser's gain curve has been studied at several injection currents below threshold. This diode laser characteristic is taken as an indicator of the neutron damage mechanisms in the laser's semiconductor material. Changes in these characteristics due to the neutron exposure are reported.

  19. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    ERIC Educational Resources Information Center

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  20. Digital processing clock

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1982-01-01

    Tthe digital processing clock SG 1157/U is described. It is compatible with the PTTI world where it can be driven by an external cesium source. Built-in test equipment shows synchronization with cesium through 1 pulse per second. It is built to be expandable to accommodate future time-keeping needs of the Navy as well as any other time ordered functions. Examples of this expandibility are the inclusion of an unmodulated XR3 time code and the 2137 modulate time code (XR3 with 1 kHz carrier).

  1. Clocks and cardiovascular function

    PubMed Central

    McLoughlin, Sarah C.; Haines, Philip; FitzGerald, Garret A.

    2016-01-01

    Circadian clocks in central and peripheral tissues enable the temporal synchronization and organization of molecular and physiological processes of rhythmic animals, allowing optimum functioning of cells and organisms at the most appropriate time of day. Disruption of circadian rhythms, from external or internal forces, leads to widespread biological disruption and is postulated to underlie many human conditions, such as the incidence and timing of cardiovascular disease. Here, we describe in vivo and in vitro methodology relevant to studying the role of circadian rhythms in cardiovascular function and dysfunction PMID:25707279

  2. Einstein’s Clocks

    SciTech Connect

    Lincoln, Don

    2015-09-09

    One of the most non-intuitive physics theories ever devised is Einstein’s Theory of Special Relativity, which claim such crazy-sounding things as two people disagreeing on such familiar concepts as length and time. In this video, Fermilab’s Dr. Don Lincoln shows that every single day particle physicists prove that moving clocks tick more slowly than stationary ones. He uses an easy to understand example of particles that move for far longer distances than you would expect from combining their velocity and stationary lifetime.

  3. CSAC Characterization and Its Impact on GNSS Clock Augmentation Performance.

    PubMed

    Fernández, Enric; Calero, David; Parés, M Eulàlia

    2017-02-14

    Chip Scale Atomic Clocks (CSAC) are recently-developed electronic instruments that, when used together with a Global Navigation Satellite Systems (GNSS) receiver, help improve the performance of GNSS navigation solutions in certain conditions (i.e., low satellite visibility). Current GNSS receivers include a Temperature Compensated Cristal Oscillator (TCXO) clock characterized by a short-term stability (τ = 1 s) of 10(-9) s that leads to an error of 0.3 m in pseudorange measurements. The CSAC can achieve a short-term stability of 2.5 × 10(-12) s, which implies a range error of 0.075 m, making for an 87.5% improvement over TCXO. Replacing the internal TCXO clock of GNSS receivers with a higher frequency stability clock such as a CSAC oscillator improves the navigation solution in terms of low satellite visibility positioning accuracy, solution availability, signal recovery (holdover), multipath and jamming mitigation and spoofing attack detection. However, CSAC suffers from internal systematic instabilities and errors that should be minimized if optimal performance is desired. Hence, for operating CSAC at its best, the deterministic errors from the CSAC need to be properly modelled. Currently, this modelling is done by determining and predicting the clock frequency stability (i.e., clock bias and bias rate) within the positioning estimation process. The research presented in this paper aims to go a step further, analysing the correlation between temperature and clock stability noise and the impact of its proper modelling in the holdover recovery time and in the positioning performance. Moreover, it shows the potential of fine clock coasting modelling. With the proposed model, an improvement in vertical positioning precision of around 50% with only three satellites can be achieved. Moreover, an increase in the navigation solution availability is also observed, a reduction of holdover recovery time from dozens of seconds to only a few can be achieved.

  4. CSAC Characterization and Its Impact on GNSS Clock Augmentation Performance

    PubMed Central

    Fernández, Enric; Calero, David; Parés, M. Eulàlia

    2017-01-01

    Chip Scale Atomic Clocks (CSAC) are recently-developed electronic instruments that, when used together with a Global Navigation Satellite Systems (GNSS) receiver, help improve the performance of GNSS navigation solutions in certain conditions (i.e., low satellite visibility). Current GNSS receivers include a Temperature Compensated Cristal Oscillator (TCXO) clock characterized by a short-term stability (τ = 1 s) of 10−9 s that leads to an error of 0.3 m in pseudorange measurements. The CSAC can achieve a short-term stability of 2.5 × 10−12 s, which implies a range error of 0.075 m, making for an 87.5% improvement over TCXO. Replacing the internal TCXO clock of GNSS receivers with a higher frequency stability clock such as a CSAC oscillator improves the navigation solution in terms of low satellite visibility positioning accuracy, solution availability, signal recovery (holdover), multipath and jamming mitigation and spoofing attack detection. However, CSAC suffers from internal systematic instabilities and errors that should be minimized if optimal performance is desired. Hence, for operating CSAC at its best, the deterministic errors from the CSAC need to be properly modelled. Currently, this modelling is done by determining and predicting the clock frequency stability (i.e., clock bias and bias rate) within the positioning estimation process. The research presented in this paper aims to go a step further, analysing the correlation between temperature and clock stability noise and the impact of its proper modelling in the holdover recovery time and in the positioning performance. Moreover, it shows the potential of fine clock coasting modelling. With the proposed model, an improvement in vertical positioning precision of around 50% with only three satellites can be achieved. Moreover, an increase in the navigation solution availability is also observed, a reduction of holdover recovery time from dozens of seconds to only a few can be achieved. PMID:28216600

  5. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  6. Cold atomic beam ion source for focused ion beam applications

    NASA Astrophysics Data System (ADS)

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-01

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 107 A m-2 sr-1 eV-1 and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 107 A m-2 sr-1 eV-1. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  7. The Mechanism of the Formaldehyde Clock Reaction.

    ERIC Educational Resources Information Center

    Burnett, M. G.

    1982-01-01

    Provides background information and problems with the formaldehyde clock reaction, including comparisons of experimental clock times reported in the literature and conditions for the reliable use of the formaldehyde clock based on a method discussed. (JN)

  8. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  9. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  10. Automatic minimisation of micromotion in a 88Sr+ optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Huang, G.; Klein, H. A.; Gill, P.

    2015-07-01

    Optical clocks based on narrow linewidth transitions in single cold ions confined in RF traps are being developed at a number of laboratories worldwide. For these ion clock systems, excess micromotion can cause both Stark and Doppler frequency shifts and also a degradation of frequency stability as a result of a reduced excitation rate to the clock transition. At NPL, we detect micromotion in our 88Sr+ optical clocks by observing the correlation between photon arrival times and the zero crossing of the RF trap drive signal. Recently, two nominally identical 88Sr+ optical clocks have been operated over several days and their frequencies compared against one another. During this time the dc voltages on the endcap and compensation voltage electrodes required to minimise the micromotion can change significantly, particularly following the loading of an ion. This paper describes an automatic method to monitor and minimise micromotion applicable to single ion clocks and which we demonstrate using our two NPL 88Sr+ ion clocks.

  11. The Application of DFT to Systems Containing Metal Atoms

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1996-01-01

    The application of density functional theory (DFT) to a series of metal containing systems will be described. The focus will be on the calculation of accurate bond energies, especially metal-ligand successive bond energies. The DFT results will be compared with experiment and other levels of theory. If time permits, metal clusters will also be discussed.

  12. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place.

    PubMed

    Rosenband, T; Hume, D B; Schmidt, P O; Chou, C W; Brusch, A; Lorini, L; Oskay, W H; Drullinger, R E; Fortier, T M; Stalnaker, J E; Diddams, S A; Swann, W C; Newbury, N R; Itano, W M; Wineland, D J; Bergquist, J C

    2008-03-28

    Time has always had a special status in physics because of its fundamental role in specifying the regularities of nature and because of the extraordinary precision with which it can be measured. This precision enables tests of fundamental physics and cosmology, as well as practical applications such as satellite navigation. Recently, a regime of operation for atomic clocks based on optical transitions has become possible, promising even higher performance. We report the frequency ratio of two optical atomic clocks with a fractional uncertainty of 5.2 x 10(-17). The ratio of aluminum and mercury single-ion optical clock frequencies nuAl+/nuHg+ is 1.052871833148990438(55), where the uncertainty comprises a statistical measurement uncertainty of 4.3 x 10(-17), and systematic uncertainties of 1.9 x 10(-17) and 2.3 x 10(-17) in the mercury and aluminum frequency standards, respectively. Repeated measurements during the past year yield a preliminary constraint on the temporal variation of the fine-structure constant alpha of alpha/alpha = (-1.6+/-2.3) x 10(-17)/year.

  13. Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place

    NASA Astrophysics Data System (ADS)

    Rosenband, T.; Hume, D. B.; Schmidt, P. O.; Chou, C. W.; Brusch, A.; Lorini, L.; Oskay, W. H.; Drullinger, R. E.; Fortier, T. M.; Stalnaker, J. E.; Diddams, S. A.; Swann, W. C.; Newbury, N. R.; Itano, W. M.; Wineland, D. J.; Bergquist, J. C.

    2008-03-01

    Time has always had a special status in physics because of its fundamental role in specifying the regularities of nature and because of the extraordinary precision with which it can be measured. This precision enables tests of fundamental physics and cosmology, as well as practical applications such as satellite navigation. Recently, a regime of operation for atomic clocks based on optical transitions has become possible, promising even higher performance. We report the frequency ratio of two optical atomic clocks with a fractional uncertainty of 5.2 × 10-17. The ratio of aluminum and mercury single-ion optical clock frequencies νAl+/νHg+ is 1.052871833148990438(55), where the uncertainty comprises a statistical measurement uncertainty of 4.3 × 10-17, and systematic uncertainties of 1.9 × 10-17 and 2.3 × 10-17 in the mercury and aluminum frequency standards, respectively. Repeated measurements during the past year yield a preliminary constraint on the temporal variation of the fine-structure constant α of α˙/α=(-1.6±2.3)×10-17/year.

  14. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  15. Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology

    SciTech Connect

    Hankin, Aaron Michael

    2014-08-01

    With the advent of laser cooling and trapping, neutral atoms have become a foundational source of accuracy for applications in metrology and are showing great potential for their use as qubits in quantum information. In metrology, neutral atoms provide the most accurate references for the measurement of time and acceleration. The unsurpassed stability provided by these systems make neutral atoms an attractive avenue to explore applications in quantum information and computing. However, to fully investigate the eld of quantum information, we require a method to generate entangling interactions between neutral-atom qubits. Recent progress in the use of highly-excited Rydberg states for strong dipolar interactions has shown great promise for controlled entanglement using the Rydberg blockade phenomenon. I report the use of singly-trapped 133Cs atoms as qubits for applications in metrology and quantum information. Each atom provides a physical basis for a single qubit by encoding the required information into the ground-state hyper ne structure of 133Cs. Through the manipulation of these qubits with microwave and optical frequency sources, we demonstrate the capacity for arbitrary single-qubit control by driving qubit rotations in three orthogonal directions on the Bloch sphere. With this control, we develop an atom interferometer that far surpasses the force sensitivity of other approaches by applying the well-established technique of lightpulsed atom-matterwave interferometry to single atoms. Following this, we focus on two-qubit interactions using highly-excited Rydberg states. Through the development of a unique single-photon approach to Rydberg excitation using an ultraviolet laser at 319 nm, we observe the Rydberg blockade interaction between atoms separated by 6.6(3) m. Motivated by the observation of Rydberg blockade, we study the application of Rydberg-dressed states for a quantum controlled-phase gate. Using a realistic simulation of the

  16. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  17. Prescaled phase-locked loop using phase modulation and spectral filtering and its application to clock extraction from 160-Gbit/s optical-time-division multiplexed signal.

    PubMed

    Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro

    2006-05-01

    We propose a prescaled phase-locked loop (PLL) using a simple optoelectronic phase comparator based on phase modulation and spectral filtering. Our phase comparator has a high dynamic range of over 9 dB and a high sensitivity comparable to that using an electrical mixer. A PLL composed of our phase comparator enables to extract a low-noise 10-GHz clock from a 160-Gbit/s optical-time-division multiplexed (OTDM) signal.

  18. Applications of warped geometries: From cosmology to cold atoms

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    This thesis describes several interrelated projects furthering the study of branes on warped geometries in string theory. First, we consider the non-perturbative interaction between D3 and D7 branes which stabilizes the overall volume in braneworld compactification scenarios. This interaction might offer stable nonsupersymmetric vacua which would naturally break supersymmetry if occupied by D3 branes. We derive the equations for the nonsupersymmetric vacua of the D3-brane and analyze them in the case of two particular 7-brane embeddings at the bottom of the warped deformed conifold. These geometries have negative dark energy. Stability of these models is possible but not generic. Further, we reevaluate brane/flux annihilation in a warped throat with one stabilized Kahler modulus. We find that depending on the relative size of various fluxes three things can occur: the decay process proceeds unhindered, the D3-branes are forbidden to decay classically, or the entire space decompactifies. Additionally, we show that the Kahler modulus receives a contribution from the collective 3-brane tension allowing significant changes in the compactified volume during the transition. Next, furthering the effort to describe cold atoms using AdS/CFT, we construct charged asymptotically Schrodinger black hole solutions of IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of many type IIB backgrounds and identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-horizon physics and thermodynamics of asymptotically Schrodinger black holes obtained in this way are essentially inherited from their AdS progenitors, and verify that they admit zero-temperature extremal limits with AdS2 near-horizon geometries. Finally, in an effort to understand rotating nonrelativistic systems we use the null Melvin twist technology on a charged rotating AdS black hole and discover a type of Godel space-time. We

  19. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    NASA Technical Reports Server (NTRS)

    Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.

    2010-01-01

    Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.

  20. Secondary atomization of coal-water fuels for gas turbine applications: Final report

    SciTech Connect

    Yu, T.U.; Kang, S.W.; Beer, J.M.

    1988-12-01

    The main research objective was to determine the effectiveness of the CWF treatments on atomization quality when applied to an ultrafine coal-water fuel (solids loading reduced to 50%) and to gas turbine operating conditions (atomization at elevated pressures). Three fuel treatment techniques were studied: (1) heating of CWF under pressure to produce steam as the pressure drops during passage of the CWF through the atomizer nozzle, (2) absorption of CO/sub 2/ gas in the CWF to produce a similar effect, and (3) a combination of the two treatments above. These techniques were expected to produce secondary atomization, that is, disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle, and to lead to better burnout and finer fly ash size distribution. A parallel objective was to present quantitative information on the spray characteristics (mean droplet size, radial distribution of droplet size, and spray shape) of CWF with and without fuel treatment, applicable to the design of CWF-burning gas turbine combustors. The experiments included laser diffraction droplet size measurements and high-speed photographic studies in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. Three systems of atomized sprays were studied: (1) water sprays heated to a range of temperatures at atmospheric pressure; (2) CWF sprays heated at atmospheric pressure to different temperatures; and (3) sprays at elevated pressure. 31 refs., 47 figs., 1 tab.