Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys
NASA Astrophysics Data System (ADS)
Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi
2011-10-01
The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.
Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro
2008-11-03
Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less
1997 Technical Digest Series. Volume 7: Applications of High Field and Short Wavelength Sources VII
1997-03-01
clusters irradiated with ultrashort , high intensity laser pulses can exhibit "ionization ig- nition" which leads...8, 9]. 25-atom Ne clusters and 25-atom Ar clusters are modelled as irradiated by a 800 nm, 15 fs (fwhm) laser pulse with peak intensities ranging...Measurements of the spatial and spectral properties of ultrashort , intense laser pulses propagating in underdense plasmas demonstrate
Interaction of intense laser pulses with hydrogen atomic clusters
NASA Astrophysics Data System (ADS)
Du, Hong-Chuan; Wang, Hui-Qiao; Liu, Zuo-Ye; Sun, Shao-Hua; Li, Lu; Ma, Ling-Ling; Hu, Bi-Tao
2010-03-01
The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.
NASA Astrophysics Data System (ADS)
Sommani, Piyanuch; Ichihashi, Gaku; Ryuto, Hiromichi; Tsuji, Hiroshi; Gotoh, Yasuhito; Takaoka, Gikan H.
2011-01-01
Biocompatibility of silicone rubber sheet (SR) was improved by the water cluster ion irradiation for adhesion patterning of mesenchymal stem cells (MSCs). The water cluster ions were irradiated at acceleration voltage of 6 kV and doses of 1014-1016 ions/cm2. The effect of ion dose on changes in wettability and surface atomic bonding state was observed. Compared to the unirradiated SR, about four-time smoother surface on the irradiated one was observed. Water contact angle decreased with an increase in the ion dose up to 1×1015 ions/cm2. With an increase in ion dose, XPS showed decrease of atomic carbon due to lateral sputtering effect and increase of atomic oxygen due to surface oxidation. After 7 days in vitro culture, the complete adhesion pattern of the rat MSCs was obtained on the irradiated SR at dose of 1×1015 ions/cm2, corresponding to the low contact angle of 87°. At low dose, the partial pattern on the irradiated region was observed instead.
NASA Astrophysics Data System (ADS)
Zhu, Te; Jin, Shuoxue; Zhang, Peng; Song, Ligang; Lian, Xiangyu; Fan, Ping; Zhang, Qiaoli; Yuan, Daqing; Wu, Haibiao; Yu, Runsheng; Cao, Xingzhong; Xu, Qiu; Wang, Baoyi
2018-07-01
The formation of helium bubble precursors, i.e., helium-vacancy complexes, was investigated for Fe9Cr alloy, which was uniformly irradiated by using 100 keV helium ions with fluences up to 5 × 1016 ions/cm2 at RT, 523, 623, 723, and 873 K. Helium-irradiation-induced microstructures in the alloy were probed by positron annihilation technique. The results show that the ratio of helium atom to vacancy (m/n) in the irradiation induced HemVn clusters is affected by the irradiation temperature. Irradiated at room temperature, there is a coexistence of large amounts of HemV1 and mono-vacancies in the sample. However, the overpressured HemVn (m > n) clusters or helium bubbles are easily formed by the helium-filled vacancy clusters (HemV1 and HemVn (m ≈ n)) absorbing helium atoms when irradiated at 523 K and 823 K. The results also show that void swelling of the alloy is the largest under 723 K irradiation.
NASA Astrophysics Data System (ADS)
Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, Ya.; Möslang, A.; Vladimirov, P.
2017-09-01
The atom probe tomography of the nanostructure evolution in ODS1 Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti steels under heavy ion irradiation at 300 and 573 K is performed. The samples were irradiated by 5.6 MeV Fe2+ ions and 4.8 MeV Ti2+ ions to a fluence of 1015 cm-2. It is shown that the number of nanoclusters increases by a factor of 2-3 after irradiation. The chemical composition of the clusters in the steels changes after irradiation at 300 K, whereas the chemical composition of the clusters in the 13.5Cr-0.3Ti ODS steel remains the same after irradiation at 573 K.
Hyde, J M; Cerezo, A; Williams, T J
2009-04-01
Statistical analysis of atom probe data has improved dramatically in the last decade and it is now possible to determine the size, the number density and the composition of individual clusters or precipitates such as those formed in reactor pressure vessel (RPV) steels during irradiation. However, the characterisation of the onset of clustering or co-segregation is more difficult and has traditionally focused on the use of composition frequency distributions (for detecting clustering) and contingency tables (for detecting co-segregation). In this work, the authors investigate the possibility of directly examining the neighbourhood of each individual solute atom as a means of identifying the onset of solute clustering and/or co-segregation. The methodology involves comparing the mean observed composition around a particular type of solute with that expected from the overall composition of the material. The methodology has been applied to atom probe data obtained from several irradiated RPV steels. The results show that the new approach is more sensitive to fine scale clustering and co-segregation than that achievable using composition frequency distribution and contingency table analyses.
Report on simulation of fission gas and fission product diffusion in UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni
2016-07-22
In UO 2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO 2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functionalmore » theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe U3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe U3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe U3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the Xe U3O cluster for intrinsic conditions than under irradiation. We speculate that differences in the irradiation conditions and their impact on the Xe U3O cluster can explain the wide range of diffusivities reported in experimental studies. However, all vacancy-mediated mechanisms underestimate the Xe diffusivity compared to the empirical radiation-enhanced rate used in most fission gas release models. We investigate the possibility that diffusion of small fission gas bubbles or extended Xe-vacancy clusters may give rise to the observed radiation-enhanced diffusion coefficient. These studies highlight the importance of U divacancies and an octahedron coordination of uranium vacancies encompassing a Xe fission gas atom. The latter cluster can migrate via a multistep mechanism with a rather low effective barrier, which together with irradiation-induced clusters of uranium vacancies, gives rise to the irradiation-enhanced diffusion coefficient observed in experiments.« less
Surface heating of electrons in atomic clusters irradiated by ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Krainov, V. P.; Sofronov, A. V.
2014-04-01
We consider a mechanism for electron heating in atomic clusters at the reflections of free electrons from the cluster surface. Electrons acquire energy from the external laser field during these reflections. A simple analytical expression has been obtained for acquired electron kinetic energy during the laser pulse. We find conditions when this mechanism dominates compared to the electron heating due to the well-known induced inverse bremsstrahlung at the electron-ion collisions inside clusters.
Small-scale characterisation of irradiated nuclear materials: Part I – Microstructure
Edmondson, P. D.; London, A.; Xu, A.; ...
2014-11-26
The behaviour of nanometre-scale precipitates in oxide dispersion strengthened (ODS) ferritic alloys and tungsten-rhenium alloys for nuclear applications has been examined by atom probe tomography (APT). Low Re content tungsten alloys showed no evidence of Re clustering following self-ion irradiation whereas the 25 at.% Re resulted in cluster formation. The size and composition of clusters varied depending on the material form during irradiation (pre-sharpened needle or bulk). Lastly, these results highlight the care that must be taken in interpreting data from ion irradiated pre-sharpened needles due to the presence of free surfaces. Self-ion irradiation of the ODS ferritic alloy resultedmore » in a change in the composition of the clusters, indicating a transition from a near-stoichiometric Y 2Ti 2O 7 composition towards a Ti 2YO 5.« less
The effect of primary recoil spectrum on radiation induced segregation in nickel-silicon alloys
NASA Astrophysics Data System (ADS)
Averback, R. S.; Rehn, L. E.; Wagner, W.; Ehrhart, P.
1983-08-01
Segregation of silicon to the surface of Ni-12.7 at% Si alloys during 2.0-MeV He and 3.25-MeV Kr irradiations was measured using Rutherford backscattering spectrometry. For equal calculated defect production rates the Kr irradiation was < 3 % as efficient as the He irradiation for promoting segregation in the temperature range, 450 °C-580 °C. It was further observed that Kr preirradiation of specimens dramatically reduced segregation during subsequent He irradiation. A model for cascade annealing in Ni-Si alloys is presented which qualitatively explains the segregation results. The model assumes that small interstitial-atom-clusters form in individual cascades and that these clusters become trapped at silicon solute atoms. The vacancy thereby becomes the more mobile defect. The model should also have relevance for the observation that void swelling in nickel is suppressed by the addition of silicon solute.
Effect of 0.25 and 2.0 MeV He-Ion Irradiation on Short-Range Ordering in Model (EFDA) Fe-Cr Alloys
NASA Astrophysics Data System (ADS)
Dubiel, Stanisław M.; Żukrowski, Jan; Serruys, Yves
2018-05-01
The effects of He+ irradiation on a distribution of Cr atoms in Fe100-x Cr x (x = 5.8, 10.75, 15.15) alloys were studied by 57Fe Conversion Electron Mössbauer Spectroscopy (CEMS). The alloys were irradiated with doses up to 12 × 1016 ions/cm2 with 0.25 and 2.0 MeV He+ ions. The distribution of Cr atoms within the first two coordination shells around Fe atoms was expressed with short-range order parameters α 1 (first-neighbor shell, 1NN), α 2 (second-neighbor shell, 2NN), and α 12 (1NN + 2NN). In non-irradiated alloys, α 1 >0 and α 2 <0 was revealed for all three samples. The value of α 12 ≈0, i.e., the distribution of Cr atoms averaged over 1NN and 2NN, was random. The effect of the irradiation of the Fe94.2Cr5.8 alloy was similar for the two energies of He+, viz., increase of number of Cr atoms in 1NN and decrease in 2NN. Consequently, the degree of ordering increased. For the other two samples, the effect of the irradiation depends on the composition, and is stronger for the less energetic ions where, for Fe89.25Cr10.75 alloy, the disordering disappeared and some traces of Cr clustering appeared. In Fe84.85Cr15.15 alloy, the clustering was clear. In the samples irradiated with 2. 0 MeV He+ ions, the ordering also survived in the samples with x = 10.75 and 15.15, yet its degree became smaller than in the Fe94.2Cr5.8 alloy.
Debelle, Aurelien; Boulle, Alexandre; Chartier, Alain; ...
2014-11-25
We present a combination of experimental and computational evaluations of disorder level and lattice swelling in ion-irradiated materials. Information obtained from X-ray diffraction experiments is compared to X-ray diffraction data generated using atomic-scale simulations. The proposed methodology, which can be applied to a wide range of crystalline materials, is used to study the amorphization process in irradiated SiC. Results show that this process can be divided into two steps. In the first step, point defects and small defect clusters are produced and generate both large lattice swelling and high elastic energy. In the second step, enhanced coalescence of defects andmore » defect clusters occurs to limit this increase in energy, which rapidly leads to complete amorphization.« less
Irradiation-enhanced α' precipitation in model FeCrAl alloys
Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...
2016-02-17
We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less
High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditmire, Todd
We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor ofmore » 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and tested a cluster generator based on the Laser Ablation of Microparticles (LAM) method.« less
Fibrous structure in GaSb surfaces irradiated with fast Cu cluster ions
NASA Astrophysics Data System (ADS)
Tsuchida, Hidetsugu; Nitta, Noriko; Yanagida, Yusuke; Okumura, Yuya; Murase, Ryu
2018-04-01
The effect of fast cluster irradiation on the formation of fibrous structures is investigated for single crystal GaSb surfaces irradiated by Cun+ ions (n = 1-3) with an energy of 0.4 MeV/atom at ion fluences up to 5 × 1015 cm-2. We study the cluster size dependence on the growth of fibrous network structures. With increasing cluster size, the shape of the fiber changed from rod-like to spherical. To quantitatively evaluate this cluster effect, a fiber diameter d in rod or spherical portion is examined as a function of ion fluence Φ and cluster size n. We find that the fiber diameter nonlinearly increases and follows the relation d ∝nα×Φ , with α≈2 . This evidently implies that the amount of defects generated by n-sized cluster bombardments varies as n2 for n ≤3 . Cluster ion irradiation enhances the defect generation owing to the overlap between cascades of individual cluster constituents and is therefore effective for the growth of nanofibers.
Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.
Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F
2018-04-23
We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.
NASA Astrophysics Data System (ADS)
Krainov, V. P.; Roshchupkin, A. S.
2001-12-01
Dynamics of the inner and outer above-barrier ionization and of the Coulomb explosion are calculated for large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses. We have found that the Coulomb forces predominate in the expansion of these clusters in comparison with the hydrodynamic forces. The energy distribution of the iodine multiple atomic ions in laser focal volume is derived. Results of our calculations are in a good agreement with the recent experimental data of Tisch et al. [Phys. Rev. A 60, 3076 (1999)].
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
Evolution of irradiation-induced strain in an equiatomic NiFe alloy
Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...
2017-07-10
Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less
Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espiau de Lamaestre, R.; Fontainebleau Research Center, Corning SA, 77210 Avon; Bea, H.
2007-11-15
The synthesis of Ag nanoclusters in soda lime silicate glasses and silica was studied by optical absorption and electron spin resonance experiments under both low (gamma ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution--notably via their interaction with defects--are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: Irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolvedmore » noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which, in turn, leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence but also--and primarily--on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag{sup +} to Ag{sup 0}) as compared to gamma photon irradiation.« less
Atomic structure of nano voids in irradiated 3C-SiC
NASA Astrophysics Data System (ADS)
Lin, Yan-Ru; Chen, Liu-Gu; Hsieh, Cheng-Yo; Hu, Alice; Lo, Sheng-Chuan; Chen, Fu-Rong; Kai, Ji-Jung
2018-01-01
It is important to understand the atomic structure of defect clusters in SiC, a promising material for nuclear application. In this study, we have directly observed and identified nano voids in ion irradiated 3C-SiC at 800 °C, 20 dpa through ABF and HAADF STEM images. A quantitative method was used to analyze HAADF images in which atomic columns with a difference in the number of atoms could be identified and scattered intensities can be computed. Our result shows that these voids are composed of atomic vacancies in an octahedral arrangement. The density of the void was measured by STEM to be 9.2 × 1019m-3 and the size was ∼1.5 nm.
NASA Astrophysics Data System (ADS)
Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan
2015-08-01
The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.
From solid solution to cluster formation of Fe and Cr in α-Zr
NASA Astrophysics Data System (ADS)
Burr, P. A.; Wenman, M. R.; Gault, B.; Moody, M. P.; Ivermark, M.; Rushton, M. J. D.; Preuss, M.; Edwards, L.; Grimes, R. W.
2015-12-01
To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques - atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.
A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe
NASA Astrophysics Data System (ADS)
Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.
2018-03-01
The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).
Irradiation-induced microchemical changes in highly irradiated 316 stainless steel
NASA Astrophysics Data System (ADS)
Fujii, K.; Fukuya, K.
2016-02-01
Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni-Si or Ni-Si-Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni-Si clusters (3-4 nm in diameter), and large Ni-Si and Ni-Si-Mn clusters (8-10 nm in diameter). The total cluster number density was 7.7 × 1023 m-3. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni-Si clusters correspond to γ‧ phase precipitates while the Ni-Si-Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.
NASA Astrophysics Data System (ADS)
Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.
2012-12-01
Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.
NASA Astrophysics Data System (ADS)
Hazarika, J.; Kumar, A.
2016-12-01
Polypyrrole (PPy) nanofibers have been synthesized by interfacial polymerization method and irradiated with 160 MeV Ni12+ ions under vacuum with fluences in the range of 1010-1012 ions/cm2. High-resolution transmission electron microscopy results show that upon swift heavy ion (SHI) irradiation the PPy nanofibers become denser. The crystallinity of PPy nanofibers increases upon SHI irradiation, while their d-spacing decreases. Upon SHI irradiation, the polaron absorption band gets red-shifted indicating reduction in the optical band gap energy of the irradiated PPy nanofibers. The indirect optical band gap energy is decreased as compared to corresponding direct optical band gap energy. The number of carbon atoms per conjugation length (N) and carbon atoms per cluster (M) of the SHI-irradiated PPy nanofibers increase with increasing the irradiation fluence. Fourier transform infrared spectra reveal the enhancement in intensity of some characteristic vibration bands upon SHI irradiation. The thermal stability of the PPy nanofibers is enhanced on SHI irradiation. The charge carriers in both pristine and irradiated PPy nanofibers follow the correlated barrier hopping mechanism. Scaling of ac conductivity reveals that the conduction mechanism is independent of the SHI irradiation fluence.
NASA Astrophysics Data System (ADS)
Boucerredj, N.; Beggas, K.
2016-10-01
We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.
NASA Astrophysics Data System (ADS)
Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime
2018-02-01
Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan
The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less
Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan
2015-08-04
The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less
Study of irradiation induced surface pattern and structural changes in Inconel 718 alloy
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Zhao, Zhenjiang; Wang, Jian; Zhang, Yifei
2018-05-01
Helium ions irradiation induced surface pattern and structural changes of Inconel 718 alloy were studied with the combined utilization of atomic force microscopy (AFM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, SRIM-2013 software was used to calculate the sputtering yield and detailed collision events. The result shows that, irradiation dose play an important role in altering the pattern of the surface. Enhanced irradiation aggravated the surface etching and increased the surface roughness. In ion irradiated layer, large amount of interstitials, vacancies and defect sinks were produced. Moreover, in samples with increasing dose irradiation, the dependence of interplanar spacing variation due to point defects clustering on sink density was discussed.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
Irradiation effects in UO2 and CeO2
NASA Astrophysics Data System (ADS)
Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.
2013-10-01
Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.
On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel Steel Weld.
Lindgren, Kristina; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias
2017-04-01
Radiation induced clustering affects the mechanical properties, that is the ductile to brittle transition temperature (DBTT), of reactor pressure vessel (RPV) steel of nuclear power plants. The combination of low Cu and high Ni used in some RPV welds is known to further enhance the DBTT shift during long time operation. In this study, RPV weld samples containing 0.04 at% Cu and 1.6 at% Ni were irradiated to 2.0 and 6.4×1023 n/m2 in the Halden test reactor. Atom probe tomography (APT) was applied to study clustering of Ni, Mn, Si, and Cu. As the clusters are in the nanometer-range, APT is a very suitable technique for this type of study. From APT analyses information about size distribution, number density, and composition of the clusters can be obtained. However, the quantification of these attributes is not trivial. The maximum separation method (MSM) has been used to characterize the clusters and a detailed study about the influence of the choice of MSM cluster parameters, primarily on the cluster number density, has been undertaken.
NASA Astrophysics Data System (ADS)
Sahi, Qurat-ul-ain; Kim, Yong-Soo
2018-04-01
The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.
NASA Astrophysics Data System (ADS)
Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong
2017-04-01
We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.
NASA Astrophysics Data System (ADS)
Shibagaki, K.; Takada, N.; Sasaki, K.; Kadota, K.
2002-09-01
We have carried out mass spectral analysis of positive ions produced by laser ablation of a copolymer of ethylene and tetrafluoroethylene (ETFE: [CH 2CH 2CF 2CF 2] n) in vacuum using time-of-flight mass spectrometry (TOF-MS). The surfaces of the ETFE targets irradiated by different numbers of laser pulse were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Heavy carbon cluster ions C n+ with n≥30 were observed in the mass spectra. The fractional abundance of heavy clusters in the mass spectrum decreased with the number of laser pulse. On the other hand, carbon became rich in the atomic composition of the laser-irradiated surface, and the eroded area on the surface increased with the number of laser pulse. From these results, it is suggested that the carbon-rich material surface results in the less efficient production of heavy carbon clusters. In addition, it is also suggested that clustering reactions in eroded craters do not contribute to the synthesis of heavy clusters.
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy
Yang, Tengfei; Xia, Songqin; Guo, Wei; ...
2017-09-29
Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less
Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tengfei; Xia, Songqin; Guo, Wei
Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Woo-Young; Seol, Jae-Bok, E-mail: jb-seol@postech.ac.kr; Kwak, Chan-Min
The compositional distribution of In atoms in InGaN/GaN multiple quantum wells is considered as one of the candidates for carrier localization center, which enhances the efficiency of the light-emitting diodes. However, two challenging issues exist in this research area. First, an inhomogeneous In distribution is initially formed by spinodal decomposition during device fabrication as revealed by transmission electron microscopy. Second, electron-beam irradiation during microscopy causes the compositional inhomogeneity of In to appear as a damage contrast. Here, a systematic approach was proposed in this study: Electron-beam with current density ranging from 0 to 20.9 A/cm{sup 2} was initially exposed to themore » surface regions during microscopy. Then, the electron-beam irradiated regions at the tip surface were further removed, and finally, atom probe tomography was performed to run the samples without beam-induced damage and to evaluate the existence of local inhomegenity of In atoms. We proved that after eliminating the electron-beam induced damage regions, no evidence of In clustering was observed in the blue-emitting InGaN/GaN devices. In addition, it is concluded that the electron-beam induced localization of In atoms is a surface-related phenomenon, and hence spinodal decomposition, which is typically responsible for such In clustering, is negligible for biaxially strained blue-emitting InGaN/GaN devices.« less
Space-filling, multifractal, localized thermal spikes in Si, Ge and ZnO
NASA Astrophysics Data System (ADS)
Ahmad, Shoaib; Abbas, Muhammad Sabtain; Yousuf, Muhammad; Javeed, Sumera; Zeeshan, Sumaira; Yaqub, Kashif
2018-04-01
The mechanism responsible for the emission of clusters from heavy ion irradiated solids is proposed to be thermal spikes. Collision cascade-based theories describe atomic sputtering but cannot explain the consistently observed experimental evidence for significant cluster emission. Statistical thermodynamic arguments for thermal spikes are employed here for qualitative and quantitative estimation of the thermal spike-induced cluster emission from Si, Ge and ZnO. The evolving cascades and spikes in elemental and molecular semiconducting solids are shown to have fractal characteristics. Power law potential is used to calculate the fractal dimension. With the loss of recoiling particles' energy the successive branching ratios get smaller. The fractal dimension is shown to be dependent upon the exponent of the power law interatomic potential D = 1/2m. Each irradiating ion has the probability of initiating a space-filling, multifractal thermal spike that may sublime a localized region near the surface by emitting clusters in relative ratios that depend upon the energies of formation of respective surface vacancies.
Optimizing the ionization and energy absorption of laser-irradiated clusters
NASA Astrophysics Data System (ADS)
Kundu, M.; Bauer, D.
2008-03-01
It is known that rare-gas or metal clusters absorb incident laser energy very efficiently. However, due to the intricate dependencies on all the laser and cluster parameters, it is difficult to predict under which circumstances ionization and energy absorption are optimal. With the help of three-dimensional particle-in-cell simulations of xenon clusters (up to 17256 atoms), it is shown that for a given laser pulse energy and cluster, an optimum wavelength exists that corresponds to the approximate wavelength of the transient, linear Mie-resonance of the ionizing cluster at an early stage of negligible expansion. In a single ultrashort laser pulse, the linear resonance at this optimum wavelength yields much higher absorption efficiency than in the conventional, dual-pulse pump-probe setup of linear resonance during cluster expansion.
Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe
2017-04-01
Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai
2017-07-01
Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chi; Chen, Wei-Ying; Zhang, Xuan
Microstructural changes resulted from neutron irradiation and post-irradiation annealing in a high-temperature ultra-fine precipitate strengthened (HT-UPS) stainless steel were characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Three HT-UPS samples were neutron-irradiated to 3 dpa at 500 °C, and after irradiation, two of them were annealed for 1 h at 600 °C and 700 °C, respectively. Frank dislocation loops were the dominant defect structure in both the as-irradiated and 600 °C post-irradiation-annealed (PIAed) samples, and the loop sizes and densities were similar in these two samples. Unfaulted dislocation loops were observed in the 700 °C PIAed sample, and the loop density was greatly reducedmore » in comparison with that in the as-irradiated sample. Nano-sized MX precipitates were observed under TEM in the 700 °C PIAed sample, but not in the 600 °C PIAed or the as-irradiated samples. The titanium-rich clusters were identified in all three samples using APT. The post-irradiation annealing (PIA) caused the growth of the Ti-rich clusters with a stronger effect at 700 °C than at 600 °C. The irradiation caused elemental segregations at the grain boundary and the grain interior, and the grain boundary segregation behavior is consistent with observations in other irradiated austenitic steels. APT results showed that PIA reduced the magnitude of irradiation induced segregations.« less
A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels
NASA Astrophysics Data System (ADS)
Odette, G. R.; Wirth, B. D.
1997-11-01
Nanostructural features that form in reactor pressure vessel steels under neutron irradiation at around 300°C lead to significant hardening and embrittlement. Continuum thermodynamic-kinetic based rate theories have been very successful in modeling the general characteristics of the copper and manganese nickel rich precipitate evolution, often the dominant source of embrittlement. However, a more detailed atomic scale understanding of these features is needed to interpret experimental measurements and better underpin predictive embrittlement models. Further, other embrittling features, believed to be subnanometer defect (vacancy)-solute complexes and small regions of modest enrichment of solutes are not well understood. A general approach to modeling embrittlement nanostructures, based on the concept of a computational microscope, is described. The objective of the computational microscope is to self-consistently integrate atomic scale simulations with other sources of information, including a wide range of experiments. In this work, lattice Monte Carlo (LMC) simulations are used to resolve the chemically and structurally complex nature of CuMnNiSi precipitates. The LMC simulations unify various nanoscale analytical characterization methods and basic thermodynamics. The LMC simulations also reveal that significant coupled vacancy and solute clustering takes place during cascade aging. The cascade clustering produces the metastable vacancy-cluster solute complexes that mediate flux effects. Cascade solute clustering may also play a role in the formation of dilute atmospheres of solute enrichment and enhance the nucleation of manganese-nickel rich precipitates at low Cu levels. Further, the simulations suggest that complex, highly correlated processes (e.g. cluster diffusion, formation of favored vacancy diffusion paths and solute scavenging vacancy cluster complexes) may lead to anomalous fast thermal aging kinetics at temperatures below about 450°C. The potential technical significance of these phenomena is described.
NASA Astrophysics Data System (ADS)
Ahmedabadi, Parag; Kain, Vivekanand; Gupta, Manu; Samajdar, I.; Sharma, S. C.; Bhagwat, P.; Chowdhury, R.
2011-08-01
The effect of niobium carbide precipitates on radiation induced segregation (RIS) behaviour in type 347 stainless steel was investigated. The material in the as-received condition was irradiated using double-loop 4.8 MeV protons at 300 °C for 0.43 dpa (displacement per atom). The RIS in the proton irradiated specimen was characterized using double-loop electrochemical potentiokinetic reactivation (DL-EPR) test followed by atomic force microscopic examination. The nature of variation of DL-EPR values with the depth matched with the variation of the calculated irradiation damage (dpa) with the depth. The attack on grain boundaries during EPR tests was negligible indicating absence of chromium depletion zones. The interface between niobium carbide and the matrix acts as a sink for point defects generated during irradiation and this had reduced point defect flux toward grain boundaries. The attack was noticed at a few large cluster of niobium carbide after the DL-EPR test at the depth of maximum attack for the irradiated specimen. Pit-like features were not observed within the matrix indicating the absence of chromium depletion regions within the matrix.
NASA Astrophysics Data System (ADS)
Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.
2014-05-01
An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.
Characterisation of irradiation-induced defects in ZnO single crystals
NASA Astrophysics Data System (ADS)
Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.
2016-01-01
Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.
NASA Astrophysics Data System (ADS)
Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.
2017-09-01
We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.
NASA Astrophysics Data System (ADS)
Okunev, V. D.; Samoilenko, Z. A.; Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S. J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J.; Wolny-Marszałek, M.; Jeżabek, M.; Varyukhin, V. N.; Antoshina, I. A.
2016-02-01
We show that сluster magnetism in ferromagnetic amorphous Fe67Cr18B15 alloy is related to the presence of large, D=150-250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30-100 Å, α-(Fe, Cr) and Fe3B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10-20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×1018 ions/cm2) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×1018 ions/cm2, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T) T2 is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×1018 ions/cm2, the transition to a dependence ρ(T) T1/2 is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×1018 ions/cm2, a return to the dependence ρ(T) T2 is observed.
The role of nickel in radiation damage of ferritic alloys
Osetsky, Y.; Anento, Napoleon; Serra, Anna; ...
2014-11-26
According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this study, we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe–Ni alloys. We have foundmore » that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1 nm (37SIAs) cluster is practically immobile at T < 500 K in the Fe–0.8 at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. Finally, this effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe–Ni ferritic alloys.« less
He ion irradiation effects on multiwalled carbon nanotubes structure
NASA Astrophysics Data System (ADS)
Elsehly, Emad M.; Chechenin, Nikolay G.; Makunin, Alexey V.; Shemukhin, Andrey A.; Motaweh, Hussien A.
2017-03-01
Samples of multi-walled carbon nanotubes (MWNTs) were irradiated with 80 keV He ions. Scanning electron microscopy (SEM) inspection showed that the average outer diameters of the tube decreased as a result of ion irradiation. The samples were also characterized using Raman spectrometry by analysis of the intensity of main bands in the spectra of virgin and irradiated MWNT samples. Modifications of the disorder mode (D-band) and the tangential mode (G-band) were studied as a function of irradiation fluences. Raman spectra showed that as the fluence increases, the MWNTs first show disorder due to the produced defects, and then amorphization under still higher fluence of ion irradiation. Thermal and athermal mechanisms of the radiation induced MWNTs modifications are discussed. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.
In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers
Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...
2016-04-09
By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less
Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...
2016-01-01
The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less
Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J. C. Séamus; Ghigo, Gianluca; Gu, Genda D.; Kwok, Wai-Kwong
2015-01-01
Maximizing the sustainable supercurrent density, JC, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because JC amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSexTe1−x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or “columnar defects,” plus a higher density of single atomic site “point” defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields. PMID:26601180
Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong
2015-05-01
Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinhero, Patrick; Windes, William
2015-03-10
The fast particle radiation damage effect of graphite, a main material in current and future nuclear reactors, has significant influence on the utilization of this material in fission and fusion plants. Atoms on graphite crystals can be easily replaced or dislocated by fast protons and result in interstitials and vacancies. The currently accepted model indicates that after most of the interstitials recombine with vacancies, surviving interstitials form clusters and furthermore gather to create loops with each other between layers. Meanwhile, surviving vacancies and interstitials form dislocation loops on the layers. The growth of these inserted layers cause the dimensional increase,more » i.e. swelling, of graphite. Interstitial and vacancy dislocation loops have been reported and they can easily been observed by electron microscope. However, observation of the intermediate atom clusters becomes is paramount in helping prove this model. We utilize fast protons generated from the University of Missouri Research Reactor (MURR) cyclotron to irradiate highly- oriented pyrolytic graphite (HOPG) as target for this research. Post-irradiation examination (PIE) of dosed targets with high-resolution transmission electron microscopy (HRTEM) has permit observation and analysis of clusters and dislocation loops to support the proposed theory. Another part of the research is to validate M.I. Heggie’s Ruck and Tuck model, which introduced graphite layers may fold under fast particle irradiation. Again, we employed microscopy to image irradiated specimens to determine how the extent of Ruck and Tuck by calculating the number of folds as a function of dose. Our most significant accomplishment is the invention of a novel class of high-intensity pure beta-emitters for long-term lightweight batteries. We have filed four invention disclosure records based on the research conducted in this project. These batteries are lightweight because they consist of carbon and tritium and can be fabricated to conform to many geometric shapes. In addition, we have published eight peer-reviewed American Nuclear Society (ANS) transactions, and presented our findings at ANS National Meetings, and several universities.« less
Water oxidation by size selected Co 27 clusters supported on Fe 2O 3
Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...
2016-09-22
The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...
2017-04-13
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Self-organized nanostructure formation on the graphite surface induced by helium ion irradiation
NASA Astrophysics Data System (ADS)
Dutta, N. J.; Mohanty, S. R.; Buzarbaruah, N.; Ranjan, M.; Rawat, R. S.
2018-06-01
The effects of helium ion irradiation on the graphite surface are studied by employing a plasma focus device. The device emits helium ion pulse having energies in the range of a few keV to a few MeV and flux on the order of 1025 m-2 s-1 at 60 mm axial position from the anode tip. The field emission scanning electron microscopy confirms the formation of multi-modal spherical and elongated agglomerated structures on irradiated samples surface with increase in agglomerate size with increasing number of irradiation shots. The transient annealing in each irradiation was not enough to cause the Oswald ripening or sintering of particles into bigger particle or crystal size but only resulted in clustering. The atomic force micrographs reveal an increase in average surface roughness with increasing ion irradiation. The Raman study demonstrates increase in disordered D peak along with reduced crystallite size (La) with increasing number of irradiation shots.
Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
2017-01-01
Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175
Opto-chemical response of CR-39 and polystyrene to swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Singh, Lakhwant; Singh Samra, Kawaljeet; Singh, Ravinder
2007-02-01
The samples of CR-39 and polystyrene (PS) polymers have been irradiated with 64Cu 9+ (120 MeV) and 12C 5+ (70 MeV) ion beams having fluence ranging from 1 × 10 11 to 1 × 10 13 ions/cm -2. UV spectra of irradiated samples reveal that the optical band gap decreases from 5.50 to 2.75 eV in CR-39 and from 4.36 to 1.73 eV in PS. The correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39. FTIR spectra reveal that there is the formation of hydroxyl, alkene, alkyne and carboxylic groups in the Cu-ion irradiated PS. In CR-39, changes in the intensity of the bands on irradiation relative to pristine samples without appearance of any new band have been observed and discussed.
NASA Astrophysics Data System (ADS)
Beaton, Daniel A.; Steger, M.; Christian, T.; Mascarenhas, A.
2018-02-01
In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs1-xBix epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giapintzakis, J.; Lee, W.C.; Rice, J.P.
Single crystals of R{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}}, (R=Y, Eu and Gd), have been irradiated with 0.4--1.0 MeV electrons in directions near the c-axis. An incident threshold electron energy for producing flux pinning defects has been found. In-situ TEM studies found no visible defects induced by electron irradiation. This means that point defects or small clusters ({le} 20 {Angstrom}) are responsible for the extra pinning. A consistent interpretation of the data suggests that the most likely pinning defect is the displacement of a Cu atom from the CuO{sub 2} planes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaton, Daniel A.; Steger, M.; Christian, T.
In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.
Beaton, Daniel A.; Steger, M.; Christian, T.; ...
2017-12-14
In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.
TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2018-04-01
The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.
NASA Astrophysics Data System (ADS)
Rammah, Y. S.; Abdalla, A. M.
2017-12-01
The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.
Simulations of Xe and U diffusion in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.
2012-09-10
Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms andmore » vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.« less
Atomic scale modeling of defect production and microstructure evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.
1997-04-01
Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitialmore » clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.« less
Bottom-up formation of robust gold carbide
Westenfelder, Benedikt; Biskupek, Johannes; Meyer, Jannik C.; Kurasch, Simon; Lin, Xiaohang; Scholz, Ferdinand; Gross, Axel; Kaiser, Ute
2015-01-01
A new phenomenon of structural reorganization is discovered and characterized for a gold-carbon system by in-situ atomic-resolution imaging at temperatures up to 1300 K. Here, a graphene sheet serves in three ways, as a quasi transparent substrate for aberration-corrected high-resolution transmission electron microscopy, as an in-situ heater, and as carbon supplier. The sheet has been decorated with gold nanoislands beforehand. During electron irradiation at 80 kV and at elevated temperatures, the accumulation of gold atoms has been observed on defective graphene sites or edges as well as at the facets of gold nanocrystals. Both resulted in clustering, forming unusual crystalline structures. Their lattice parameters and surface termination differ significantly from standard gold nanocrystals. The experimental data, supported by electron energy loss spectroscopy and density-functional theory calculations, suggests that isolated gold and carbon atoms form – under conditions of heat and electron irradiation – a novel type of compound crystal, Au-C in zincblende structure. The novel material is metastable, but surprisingly robust, even under annealing condition. PMID:25772348
Collision-induced dissociation of protonated water clusters
NASA Astrophysics Data System (ADS)
Berthias, F.; Buridon, V.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Märk, T. D.
2014-06-01
Collision-induced dissociation (CID) has been studied for protonated water clusters H+(H2O)n, with n = 2-8, colliding with argon atoms at a laboratory energy of 8 keV. The experimental data have been taken with an apparatus (Device for Irradiation of Molecular Clusters, `Dispositif d'Irradiation d'Agrégats Moléculaire,' DIAM) that has been recently constructed at the Institut de Physique Nucléaire de Lyon. It includes an event-by-event mass spectrometry detection technique, COINTOF (correlated ion and neutral fragment time of flight). The latter device allows, for each collision event, to detect and identify in a correlated manner all produced neutral and charged fragments. For all the studied cluster ions, it has allowed us to identify branching ratios for the loss of i = 1 to i = n water molecules, leading to fragment ions ranging from H+(H2O)i=n-1 all the way down to the production of protons. Using a corresponding calibration technique we determine total charged fragment production cross sections for incident protonated water clusters H+(H2O)n, with n = 2-7. Observed trends for branching ratios and cross sections, and a comparison with earlier data on measured attenuation cross sections for water clusters colliding with other noble gases (He and Xe), give insight into the underlying dissociation mechanisms.
Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems
NASA Astrophysics Data System (ADS)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2018-01-01
We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production to the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.
Savoca, Marco; Lagutschenkov, Anita; Langer, Judith; Harding, Dan J; Fielicke, André; Dopfer, Otto
2013-02-14
Vibrational spectra of mixed silicon carbide clusters Si(m)C(n) with m + n = 6 in the gas phase are obtained by resonant infrared-vacuum-ultraviolet two-color ionization (IR-UV2CI for n ≤ 2) and density functional theory (DFT) calculations. Si(m)C(n) clusters are produced in a laser vaporization source, in which the silicon plasma reacts with methane. Subsequently, they are irradiated with tunable IR light from an IR free electron laser before they are ionized with UV photons from an F(2) laser. Resonant absorption of one or more IR photons leads to an enhanced ionization efficiency for Si(m)C(n) and provides the size-specific IR spectra. IR spectra measured for Si(6), Si(5)C, and Si(4)C(2) are assigned to their most stable isomers by comparison with calculated linear absorption spectra. The preferred Si(m)C(n) structures with m + n = 6 illustrate the systematic transition from chain-like geometries for bare C(6) to three-dimensional structures for bare Si(6). In contrast to bulk SiC, carbon atom segregation is observed already for the smallest n (n = 2).
Nanosecond laser-cluster interactions at 109-1012 W/cm 2
NASA Astrophysics Data System (ADS)
Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.
2017-08-01
An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.
Silver Nanoparticles Formed in a Colloidal System and a Polymer Matrix
NASA Astrophysics Data System (ADS)
Potapov, A. L.; Agabekov, V. E.; Belyi, V. N.
2018-05-01
The growth kinetics and particle-size distribution of Ag particles in a polyvinyl alcohol (PVA) composite, PVA film, and aqueous sol were studied using UV and visible spectroscopy, atomic force microscopy, and dynamic light scattering. A hypsochromic shift (55 nm) of the Ag nanoparticle (NP) surface plasmon absorption maximum was measured on going from the PVA composite to the film. The kinetics of Ag NP formation and their sizes were shown to depend considerably on UV irradiation, ultrasound action, and PVA concentration. It was established that UV irradiation accelerated Ag NP formation in the presence of reductants and destroyed the resulting NPs with a deficit of reductant. Partial destruction of the Ag NPs occurred under the influence of ultrasound whereas ultrasound action after UV irradiation reduced Ag+ on the clusters.
Irradiation-induced defect formation and damage accumulation in single crystal CeO 2
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
2017-11-15
Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less
Irradiation-induced defect formation and damage accumulation in single crystal CeO2
NASA Astrophysics Data System (ADS)
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
2018-01-01
The accumulation of irradiation-induced disorder in single crystal CeO2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO2 thin films using 2 MeV Au2+ ions were carried out up to a total fluence of 1.3 ×1016 cm-2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes in correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.
Irradiation-induced defect formation and damage accumulation in single crystal CeO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Joseph T.; Zhang, Yanwen; Weber, William J.
Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less
Effect of Ar ion on the surface properties of low density polyethylene
NASA Astrophysics Data System (ADS)
Zaki, M. F.
2016-04-01
In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 1015ions/cm2. The optical, chemical and hardness properties have been investigated using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to the formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for the pristine sample to 2.3 eV for that sample irradiated with the highest fluence of the Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing Ar ion fluences. FTIR spectra showed the formation of new bands of the bombarded polymer samples. Furthermore, polar groups were created on the surface of the irradiated samples which refer to the increase of the hydrophilic nature of the surface of the irradiated samples. The Vicker's hardness increased from 4.9 MPa for the pristine sample to 17.9 MPa for those bombarded at the highest fluence. This increase is attributed to the increase in the crosslinking and alterations of the bombarded surface into hydrogenated amorphous carbon, which improves the hardness of the irradiated samples. The bombarded LDPE surfaces may be used in special applications to the field of the micro-electronic devices and shock absorbers.
NASA Astrophysics Data System (ADS)
Rammah, Y. S.; Awad, E. M.
2018-05-01
Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.
NASA Astrophysics Data System (ADS)
Aboy, María; Santos, Iván; López, Pedro; Marqués, Luis A.; Pelaz, Lourdes
2018-04-01
Several atomistic techniques have been combined to identify the structure of defects responsible for X and W photoluminescence lines in crystalline Si. We used kinetic Monte Carlo simulations to reproduce irradiation and annealing conditions used in photoluminescence experiments. We found that W and X radiative centers are related to small Si self-interstitial clusters but coexist with larger Si self-interstitials clusters that can act as nonradiative centers. We used molecular dynamics simulations to explore the many different configurations of small Si self-interstitial clusters, and selected those having symmetry compatible with W and X photoluminescence centers. Using ab initio simulations, we calculated their formation energy, donor levels, and energy of local vibrational modes. On the basis of photoluminescence experiments and our multiscale theoretical calculations, we discuss the possible atomic configurations responsible for W and X photoluminescence centers in Si. Our simulations also reveal that the intensity of photoluminescence lines is the result of competition between radiative centers and nonradiative competitors, which can explain the experimental quenching of W and X lines even in the presence of the photoluminescence centers.
NASA Astrophysics Data System (ADS)
Zhang, Weiping; Shen, Zhenyu; Tang, Rui; Jin, Suoxue; Song, Yaoxiang; Long, Yunxiang; Wei, Yaxia; Zhou, Xiong; Chen, Cheng; Guo, Liping
2018-07-01
An effective method to improve the irradiation resistance of austenitic stainless steels is adding oversized solutes into steels. In this work, the irradiation resistances of two type of modified 310S steels, in one of which Zr was added and in another Nb, Ta, and W were added, were investigated by proton irradiations at 563 K. Irradiation induced vacancy-type defects was characterized with positron annihilation spectroscopy (PAS), while dislocation loops and bubbles whose size are greater than 1 nm are characterized with transmission electron microscopy (TEM). It is found that the relative S parameter ΔS/S extracted from PAS is more effective than S parameter in evaluating the quantity of vacancy-type defects. It was revealed from ΔS/S that more vacancy-type defects produced in (Nb, Ta, W)-added steels than that in Zr-added steels, and this trend became more obvious with the dose increasing. S-W curves reveal that proton irradiation induced two kinds of vacancy-type defects, i.e. vacancy clusters and proton-vacancy clusters. TEM observation shows that the density of small bubbles induced by proton in (Nb, Ta, W)-added steels is much higher than that in Zr-added steels. Both 1/3 <1 1 1> and 1/2 <1 1 0> dislocation loops were observed with TEM in all of the specimens. The mean size and number density of dislocation loops in (Nb, Ta, W)-added steels are slightly larger than that in Zr-added steels, and increased with increasing irradiation dose. Both PAS and TEM observations shows that irradiation damage in Zr-added steels is less serious than that (Nb, Ta, W)-added steels, and the possible mechanisms are discussed through the enhancement of point defect recombination by oversized solute atoms.
Sueishi, Yuichiro; Sakaguchi, Norihito; Shibayama, Tamaki; Kinoshita, Hiroshi; Takahashi, Heishichiro
2003-01-01
We have investigated the formation of cascade clusters and structural changes in them by means of electron irradiation following ion irradiation in an austenitic stainless steel. Almost all of the cascade clusters, which were introduced by the ion irradiation, grew to form interstitial-type dislocation loops or vacancy-type stacking fault tetrahedra after electron irradiation at 623 K, whereas a few of the dot-type clusters remained in the matrix. It was possible to recognize the concentration of Ni and Si by radiation-induced segregation around the dot-type clusters. After electron irradiation at 773 K, we found that some cascade clusters became precipitates (delta-Ni2Si) due to radiation-induced precipitation. This suggests that the cascade clusters could directly become precipitation sites during irradiation.
Clusters in intense x-ray pulses
NASA Astrophysics Data System (ADS)
Bostedt, Christoph
2012-06-01
Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster plasma. The results will be compared to theoretical predictions and discussed in light of current developments at free-electron laser sources.
Elsässer, Thilo; Brons, Stephan; Psonka, Katarzyna; Scholz, Michael; Gudowska-Nowak, Ewa; Taucher-Scholz, Gisela
2008-06-01
The investigation of fragment length distributions of plasmid DNA gives insight into the influence of localized energy distribution on the induction of DNA damage, particularly the clustering of double-strand breaks. We present an approach that determines the fragment length distributions of plasmid DNA after heavy-ion irradiation by using the Local Effect Model. We find a good agreement of our simulations with experimental fragment distributions derived from atomic force microscopy (AFM) studies by including experimental constraints typical for AFM. Our calculations reveal that by comparing the fragmentation in terms of fluence, we can uniquely distinguish the effect of different radiation qualities. For very high-LET irradiation using nickel or uranium ions, no difference between their fragment distributions can be expected for the same dose level. However, for carbon ions with an intermediate LET, the fragmentation pattern differs from the distribution for very high-LET particles. The results of the model calculations can be used to determine the optimal experimental parameters for a demonstration of the influence of track structure on primary radiation damage. Additionally, we compare the results of our model for two different plasmid geometries.
Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production tomore » the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.« less
Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2018-01-18
We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production tomore » the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.« less
Effect of Ar ion on the surface properties of low density polyethylene.
Zaki, M F
2016-04-15
In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 10(15) ions/cm(2). The optical, chemical and hardness properties have been investigated using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to the formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for the pristine sample to 2.3 eV for that sample irradiated with the highest fluence of the Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing Ar ion fluences. FTIR spectra showed the formation of new bands of the bombarded polymer samples. Furthermore, polar groups were created on the surface of the irradiated samples which refer to the increase of the hydrophilic nature of the surface of the irradiated samples. The Vicker's hardness increased from 4.9 MPa for the pristine sample to 17.9 MPa for those bombarded at the highest fluence. This increase is attributed to the increase in the crosslinking and alterations of the bombarded surface into hydrogenated amorphous carbon, which improves the hardness of the irradiated samples. The bombarded LDPE surfaces may be used in special applications to the field of the micro-electronic devices and shock absorbers. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bharti, Madhu Lata; Dutt, Sanjay; Joshi, Veena
2017-10-01
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50 MeV lithium (Li3+) and 80 MeV carbon (C5+) ions to the fluences of 3 × 1014, 1 × 1015, 1 × 1016 and 1 × 1017 ions µm-2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV-Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R., E-mail: wrwampl@sandia.gov; Myers, Samuel M.
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers,more » and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, G. S.; Joshi, D. S.; Tripathy, S. P., E-mail: sam.tripathy@gmail.com, E-mail: tripathy@barc.gov.in
2016-07-14
In this work, electron induced modifications on the bulk etch rate, structural and optical parameters of CR-39 polymer were studied using gravimetric, FTIR (Fourier Transform Infrared) and UV–vis (Ultraviolet–Visible) techniques, respectively. CR-39 samples were irradiated with 10 MeV electron beam for different durations to have the absorbed doses of 1, 10, 550, 5500, 16 500, and 55 000 kGy. From the FTIR analysis, the peak intensities at different bands were found to be changing with electron dose. A few peaks were observed to shift at high electron doses. From the UV-vis analysis, the optical band gaps for both direct and indirect transitions weremore » found to be decreasing with the increase in electron dose whereas the opacity, number of carbon atoms in conjugation length, and the number of carbon atoms per cluster were found to be increasing. The bulk etch rate was observed to be increasing with the electron dose. The primary objective of this investigation was to study the response of CR-39 to high electron doses and to determine a suitable pre-irradiation condition. The results indicated that, the CR-39 pre-irradiated with electrons can have better sensitivity and thus can be potentially applied for neutron dosimetry.« less
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Multi-scale modeling of irradiation effects in spallation neutron source materials
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ito, T.; Iwase, H.; Kaneko, Y.; Kawai, M.; Kishida, I.; Kunieda, S.; Sato, K.; Shimakawa, S.; Shimizu, F.; Hashimoto, S.; Hashimoto, N.; Fukahori, T.; Watanabe, Y.; Xu, Q.; Ishino, S.
2011-07-01
Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.
An empirical potential for simulating vacancy clusters in tungsten.
Mason, D R; Nguyen-Manh, D; Becquart, C S
2017-12-20
We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-energy defect structures and formation energies with high accuracy. A significant difference to other popular embedded-atom empirical potentials for tungsten is the correct prediction of surface energies. Interstitial properties and short-range pairwise behaviour remain similar to the Ackford-Thetford potential on which it is based, making this potential well-suited to simulations of microstructural evolution following irradiation damage cascades. Using atomistic kinetic Monte Carlo simulations, we predict vacancy cluster dissociation in the range 1100-1300 K, the temperature range generally associated with stage IV recovery.
Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism
NASA Astrophysics Data System (ADS)
Debelle, Aurélien; Crocombette, Jean-Paul; Boulle, Alexandre; Chartier, Alain; Jourdan, Thomas; Pellegrino, Stéphanie; Bachiller-Perea, Diana; Carpentier, Denise; Channagiri, Jayanth; Nguyen, Tien-Hien; Garrido, Frédérico; Thomé, Lionel
2018-01-01
Modification of materials using ion beams has become a widespread route to improve or design materials for advanced applications, from ion doping for microelectronic devices to emulation of nuclear reactor environments. Yet, despite decades of studies, major issues regarding ion/solid interactions are not solved, one of them being the lattice-strain development process in irradiated crystals. In this work, we address this question using a consistent approach that combines x-ray diffraction (XRD) measurements with both molecular dynamics (MD) and rate equation cluster dynamics (RECD) simulations. We investigate four distinct materials that differ notably in terms of crystalline structure and nature of the atomic bonding. We demonstrate that these materials exhibit a common behavior with respect to the strain development process. In fact, a strain build-up followed by a strain relaxation is observed in the four investigated cases. The strain variation is unambiguously ascribed to a change in the defect configuration, as revealed by MD simulations. Strain development is due to the clustering of interstitial defects into dislocation loops, while the strain release is associated with the disappearance of these loops through their integration into a network of dislocation lines. RECD calculations of strain depth profiles, which are in agreement with experimental data, indicate that the driving force for the change in the defect nature is the defect clustering process. This study paves the way for quantitative predictions of the microstructure changes in irradiated materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.; Quevedo, H. J.; Bernstein, A. C.
We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less
Bang, W.; Quevedo, H. J.; Bernstein, A. C.; ...
2014-12-10
We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure themore » average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.« less
Object Kinetic Monte Carlo Simulations of Radiation Damage In Bulk Tungsten
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard; Roche, Kenneth; Kurtz, Richard; Wirth, Brian
2015-11-01
Results are presented for the evolution of radiation damage in bulk tungsten investigated using the object KMC simulation tool, KSOME, as a function of dose, dose rate and primary knock-on atom (PKA) energies in the range of 10 to 100 keV, at temperatures of 300, 1025 and 2050 K. At 300 K, the number density of vacancies changes minimally with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that larger clusters are formed at higher dose rates. Although the average vacancy cluster size increases slightly, the vast majority exists as mono-vacancies. At 1025 K void lattice formation was observed at all dose rates for cascades below 60 keV and at lower dose rates for higher PKA energies. After the appearance of initial features of the void lattice, vacancy cluster density increased minimally while the average vacancy cluster size increases rapidly with dose. At 2050 K, no accumulation of defects was observed over a broad range of dose rates for all PKA energies studied in this work. Further comparisons of results of irradiation simulations at various dose rates and PKA spectra, representative of the High Flux Isotope Reactor and future fusion relevant irradiation facilities will be discussed. The U.S. Department of Energy, Office of Fusion Energy Sciences (FES) and Office of Advanced Scientific Computing Research (ASCR) has supported this study through the SciDAC-3 program.
Zn nanoparticle formation in FIB irradiated single crystal ZnO
NASA Astrophysics Data System (ADS)
Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.
2018-03-01
We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.
Off-stoichiometric defect clustering in irradiated oxides
NASA Astrophysics Data System (ADS)
Khalil, Sarah; Allen, Todd; EL-Azab, Anter
2017-04-01
A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Myers, Samuel M.
2014-02-01
A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defectsmore » within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquis, Emmanuelle; Wirth, Brian; Was, Gary
Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering,more » and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and grain boundaries in the ion-irradiated alloys. More significant segregation was observed in the neutron irradiated alloys. For the more concentrated alloys, irradiation did not affect existing Cr segregation to grain boundaries and segregation to dislocation loops was not observed perhaps due to a change in the dislocation loop structure with increasing Cr concentration. Precipitation of α’ was observed in the neutron irradiated alloys containing over 9 at.% Cr. However ion irradiation appears to suppress the precipitation process. Initial low dose ion irradiation experiments strongly suggest a cascade recoil effect. The systematic analysis of grain boundary orientation on Cr segregation was significantly challenged by carbon contamination during ion irradiation or by existing carbon and therefore carbide formation at grain boundaries (sensitization). The combination of the proposed systematic experimental approach with atomistic modeling of diffusion processes directly addresses the programmatic need for developing and benchmarking predictive models for material degradation taking into account atomistic kinetics parameters« less
Laser-induced fabrication of nanoporous monolayer WS2 membranes
NASA Astrophysics Data System (ADS)
Danda, Gopinath; Masih Das, Paul; Drndić, Marija
2018-07-01
Porous transition metal dichalcogenides (TMDs) are promising candidates for a variety of catalytic, purification, and energy storage applications. Despite recent advances, current fabrication techniques face issues concerning scalability and control over sample porosity. By utilizing water-assisted laser irradiation, we present here a new method for the fabrication of micron-scale, atomically-thin nanoporous tungsten disulfide (WS2) membranes. The electronic and physical structures of the porous membranes are characterized with photoluminescence (PL) spectroscopy and aberration-corrected scanning transmission electron microscopy (AC-STEM), respectively. With increasing laser irradiation dose, we observe a decay of PL signal, and a relative increase in the trion contribution compared to that of the neutral exciton, suggesting defect-related n-type doping and degradation of the membrane. AC-STEM images show the nucleation of tungsten oxide islands on the membrane, and the formation of triangular defect clusters containing a combination of nanopores and oxide-filled regions, providing insight at the atomic level into the photo-oxidation process in TMDs. A linear dependence of the nanoporous area percentage on the laser irradiation dose over the range of 102–105 W cm‑2 is observed. The methods proposed here pave the way for the scalable production of nanoporous membranes through the laser-induced photo-oxidation of WS2 and other transition metal dichalcogenides.
NASA Astrophysics Data System (ADS)
Ali, Dilawar; Butt, M. Z.; Ishtiaq, Mohsin; Waqas Khaliq, M.; Bashir, Farooq
2016-11-01
Poly-allyl-diglycol-carbonate (CR-39) specimens were irradiated with 5.2 MeV doubly charged carbon ions using Pelletron accelerator. Ion dose was varied from 5 × 1013 to 5 × 1015 ions cm-2. Optical, structural, and chemical properties were investigated by UV-vis spectroscopy, x-ray diffractometer, and FTIR/Raman spectroscopy, respectively. It was found that optical absorption increases with increasing ion dose. Absorption edge shifts from UV region to visible region. The measured opacity values of pristine and ion implanted CR-39 range from 0.0519 to 4.7959 mm-1 following an exponential growth (9141%) with the increase in ion dose. The values of direct and indirect band gap energy decrease exponentially with an increase in ion dose by 59% and 71%, respectively. However, average refractive index in the visible region increases from 1.443 to 2.864 with an increase in ion dose, by 98%. A linear relation between band gap energy and crystallite size was observed. Both the number of carbon atoms in conjugation length and the number of carbon atoms per cluster increase linearly with the increase in ion dose. FTIR spectra showed that on C+2 ions irradiation, the intensity of all bands decreases gradually without appearance of any new band, indicating degradation of polymer after irradiation. Raman spectra revealed that the density of -CH2- group decreases on C+2 ions irradiation. However, the structure of CR-39 is completely destroyed on irradiation with ion dose 1 × 1015 and 5 × 1015 ions cm-2.
Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.
1982-04-01
Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Dependingmore » on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.« less
Photothermal and photoacoustic processes of laser activated nano-thermolysis of cells
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Lukianova, Ekaterina; Mitskevich, Pavel; Smolnikova, Victoria; Potapnev, Michail; Konopleva, Marina; Andreeff, Michael; Oraevsky, Alexander
2007-02-01
Laser Activated Nano-Thermolysis was recently proposed for selective damage of individual target (cancer) cells by pulsed laser induced microbubbles around superheated clusters of optically absorbing nanoparticles (NP). One of the clinical applications of this technology is the elimination of residual tumor cells from human blood and bone marrow. Clinical standards for the safety and efficacy of such procedure require the development and verification of highly selective and controllable mechanisms of cell killing. Our previous experiments showed that laser-induced microbubble is the main damaging factor in the case cell irradiation by short laser pulses above the threshold. Our current aim was to study the cell damage mechanisms and analyze selectivity and efficacy of cell damage as a function of NP parameters, NP-cell interaction conditions, and conditions of bubble generation around NP and NP clusters in cells. Generation of laser-induced bubbles around gold NP with diameters 10-250 nm was studied in Acute Myeloblast Leukemia (AML) cultures, normal stem and model K562 human cells. Short laser pulses (10 ns, 532 nm) were applied to those cells in vitro and the processes in cells were investigated with photothermal, fluorescent and atomic force microscopies and also with fluorescence flow cytometry. We have found that the best selectivity of cell damage is achieved by (1) forming large clusters of optically absorbing NP in target cells and (2) irradiating the cells with single laser pulses with the lowest fluence that can generate microbubble only around large clusters but not around single NP. Laser microbubbles with the lifetime from 20 ns to 2000 ns generated in individual cells caused damage and lysis of the cellular membrane and consequently cell death. Laser microbubbles did not damage normal cells around the damaged target (tumor) cell. Laser irradiation with equal fluence did not cause any damage of cells without accumulated NP clusters.
NASA Astrophysics Data System (ADS)
Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.
2017-01-01
The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.
Thermal conductivity of electron-irradiated graphene
NASA Astrophysics Data System (ADS)
Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios
2017-10-01
We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.
High-mass heterogeneous cluster formation by ion bombardment of the ternary alloy Au 7Cu 5Al 4
Zinovev, Alexander V.; King, Bruce V.; Veryovkin, Igor V.; ...
2016-02-04
The ternary alloy Au 7Cu 5Al 4 was irradiated with 0.1–10 keV Ar + and the surface composition analyzed using laser sputter neutral mass spectrometry. Ejected clusters containing up to seven atoms, with masses up to 2000 amu, were observed. By monitoring the signals from sputtered clusters, the surface composition of the alloy was seen to change with 100 eV Ar + dose, reaching equilibrium after 10 nm of the surface was eroded, in agreement with TRIDYN simulation and indicating that the changes were due to preferential sputtering of Al and Cu. Ejected gold containing clusters were found to increasemore » markedly in intensity while aluminum containing clusters decreased in intensity as a result of Ar sputtering. Such an effect was most pronounced for low energy (<1 keV) Ar + sputtering and was consistent with TRIDYN simulations of the depth profiling. As a result, the component sputter yields from the ternary alloy were consistent with previous binary alloy measurements but showed greater Cu surface concentrations than expected from TRIDYN simulations.« less
Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures
NASA Astrophysics Data System (ADS)
Yamakawa, K.; Shimomura, Y.
1999-01-01
The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.
Simulation of defects in fusion plasma first wall materials
NASA Astrophysics Data System (ADS)
T, Troev; N, Nankov; T, Yoshiie
2014-06-01
Numerical calculations of radiation damages in beryllium, alpha-iron and tungsten irradiated by fusion neutrons were performed using molecular dynamics (MD) simulations. The displacement cascades efficiency has been calculated using the Norgett-Robinson-Torrens (NRT) formula, the universal pair-potential of Ziegler-Biersack-Littmark (ZBL) and the EAM inter-atomic potential. The pair potential overestimates the defects production by a factor of 2. The ZBL pair potential results and the EAM are comparable at higher primary knock-on atom (PKA) energies (E > 100 keV). We found that the most common types of defects are single vacancies, di-vacancies, interstitials and small number of interstitial clusters. On the bases of calculated results, the behavior of vacancies, empty nano-voids and nano-voids with hydrogen and helium were discussed.
Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment
NASA Astrophysics Data System (ADS)
Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.
2005-01-01
A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.
Dose-Rate Effects in Breaking DNA Strands by Short Pulses of Extreme Ultraviolet Radiation.
Vyšín, Luděk; Burian, Tomáš; Ukraintsev, Egor; Davídková, Marie; Grisham, Michael E; Heinbuch, Scott; Rocca, Jorge J; Juha, Libor
2018-05-01
In this study, we examined dose-rate effects on strand break formation in plasmid DNA induced by pulsed extreme ultraviolet (XUV) radiation. Dose delivered to the target molecule was controlled by attenuating the incident photon flux using aluminum filters as well as by changing the DNA/buffer-salt ratio in the irradiated sample. Irradiated samples were examined using agarose gel electrophoresis. Yields of single- and double-strand breaks (SSBs and DSBs) were determined as a function of the incident photon fluence. In addition, electrophoresis also revealed DNA cross-linking. Damaged DNA was inspected by means of atomic force microscopy (AFM). Both SSB and DSB yields decreased with dose rate increase. Quantum yields of SSBs at the highest photon fluence were comparable to yields of DSBs found after synchrotron irradiation. The average SSB/DSB ratio decreased only slightly at elevated dose rates. In conclusion, complex and/or clustered damages other than cross-links do not appear to be induced under the radiation conditions applied in this study.
NASA Astrophysics Data System (ADS)
Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.
2012-04-01
The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common sources for Co, Mg, Fe, Ca, Cr, Ni, Sn, Li and Sb and Na, V, Cl, Mn, Al, Br and K. The PCA/FA identified 3 dominant factors as responsible for the data structure, explaining 84.5% of the total variance in the dataset.
Ion irradiation induced surface modification studies of polymers using SPM
NASA Astrophysics Data System (ADS)
Tripathi, A.; Kumar, Amit; Singh, F.; Kabiraj, D.; Avasthi, D. K.; Pivin, J. C.
2005-07-01
Various types of scanning probe microscopy (SPM) techniques: atomic force microscopy (AFM) (contact and tapping in height and amplitude mode), scanning tunnelling microscopy (STM) and conducting atomic force microscopy (C-AFM) are used for studying ion beam induced surface modifications, nanostructure/cluster formation and disintegration in polymers and similar soft carbon based materials. In the present study, the results of studies on four materials, namely, (A) methyltriethoxysilane/phenyltriethoxysilane (MTES/PTES) based gel, (B) triethoxisilane (TH) based gel, (C) highly oriented pyrolytic graphite (HOPG) bulk and (D) fullerene (C60) thin films are discussed. In the case of Si based gels prepared from pre-cursors containing organic groups (MTES/PTES), hillocks are observed at the surface and their size decreases from 70 to 25 nm with increasing fluence, whereas, in the case of a gel with a stoichiometry SiO1.25H1, prepared from TH, an increases in the size of hillocks is observed. Hillocks are also formed at the surface of HOPG irradiated with 120 MeV Au beam at a low fluence, whereas, formation of craters and a re-organisation of surface features is observed at a higher fluence. In the case of C60 films, 120 MeV Au ion irradiation induces the formation of conducting ion tracks, which is attributed to the transformation from insulating C60 to conducting graphite like carbon.
Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach
NASA Astrophysics Data System (ADS)
Jiang, Hao
Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.
Suppression of vacancy cluster growth in concentrated solid solution alloys
Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...
2016-12-13
Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less
NASA Astrophysics Data System (ADS)
Londos, C. A.; Sgourou, E. N.; Chroneos, A.
2012-12-01
Infrared spectroscopy was used to study the production and evolution of oxygen-vacancy (VOn for n = 1, 2, 3 and VmO for m = 1, 2, 3) clusters, in electron-irradiated Czochralski silicon (Cz-Si) samples, doped with isovalent dopants. It was determined that the production of the VO pair is enhanced in Ge-doped Si but is suppressed in Sn and Pb-doped Si. The phenomenon is discussed in terms of the competition between isovalent dopants and oxygen atoms in capturing vacancies in the course of irradiation. In the case of Ge, only transient GeV pairs form, leading finally to an increase of the VO production. Conversely, for Sn and Pb the corresponding pairs with vacancies are stable, having an opposite impact on the formation of VO pairs. Regarding V2O and V3O clusters, our measurements indicate that Ge doping enhances their formation, although Sn and Pb dopants suppress it. Similar arguments as those for the VO pair could be put forward, based on the effect of isovalent impurities on the availability of vacancies. Additionally, it was found that the conversion ratio of VO to VO2 decreases as the covalent radius of the isovalent dopant increases. These results are discussed in terms of the local strains introduced by the isovalent dopants in the Si lattice. These local strains affect the balance of the intrinsic defects created as a result of irradiation, as well as the balance between the two main reactions (VO + Oi → VO2 and VO + SiI → Oi) participating in the VO annealing, leading finally to a decrease of the VO2 production. The larger the covalent radius of the isovalent dopant (rGe < rSn < rPb), the larger the introduced strains in the lattice and then the less the VO2 formation in accordance with our experimental results. Interestingly, an opposite trend was observed for the conversion ratio of VO2 to VO3. The phenomenon is attributed to the enhanced diffusivity of oxygen impurity as a result of the presence of isovalent dopants, leading to an enhanced formation of the VO3 cluster. The results indicate that isovalent doping of Si is an effective way to control the formation of the deleterious oxygen-vacancy clustering that can affect Si-based devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfang, E-mail: zjf260@jiangnan.edu.cn; Wang, Chao; Wang, Yinlin
2015-11-15
The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}{sub n} (1), {[Pr_4N][WS_4Cu_4(CN)_3]}{sub n} (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}{sub n} (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}{sub n} (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}{sub n} (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS{sub 4}Cu{sub 3}]{sup +} and single CN{sup −} bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS{sub 4}Cu{sub 4}]{supmore » 2+} and single CN{sup −} bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS{sub 3}Cu{sub 3}]{sup +} linked by single CN{sup −} bridges, but containing the different cations [Pr{sub 4}N]{sup +} and [Bu{sub 4}N]{sup +}, respectively. 5 is constructed from nest-shaped clusters [MoOS{sub 3}Cu{sub 3}]{sup +} and single CN{sup −} bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN{sup −} bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr{sub 4}N]{sup +} vs. [Bu{sub 4}N]{sup +}) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2 exhibits effective photocatalytic properties. - Highlights: • Reaction variables affecting Mo(W)/S/Cu cluster-based CPs is firstly explored. • Replacing central metal atom had a pronounced effect on W/S/Cu cluster-based CPs. • Photocatalytic activities of Mo(W)/S/Cu cluster-based CPs are firstly investigated.« less
NASA Astrophysics Data System (ADS)
Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong
2017-09-01
Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (Tg) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Li, Kun; Cheng, Yingchun; Wang, Qingxiao; Yao, Yingbang; Schwingenschlögl, Udo; Zhang, Xixiang; Yang, Wei
2012-04-01
Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. Electronic supplementary information (ESI) available: Additional Figures for characterization of mono-layer CVD graphene samples with free edges and Pt atoms decorations and analysis of the effect of electron irradiation; supporting movie on edge evolution. See DOI: 10.1039/c2nr00059h
Optimization of self-interstitial clusters in 3C-SiC with genetic algorithm
NASA Astrophysics Data System (ADS)
Ko, Hyunseok; Kaczmarowski, Amy; Szlufarska, Izabela; Morgan, Dane
2017-08-01
Under irradiation, SiC develops damage commonly referred to as black spot defects, which are speculated to be self-interstitial atom clusters. To understand the evolution of these defect clusters and their impacts (e.g., through radiation induced swelling) on the performance of SiC in nuclear applications, it is important to identify the cluster composition, structure, and shape. In this work the genetic algorithm code StructOpt was utilized to identify groundstate cluster structures in 3C-SiC. The genetic algorithm was used to explore clusters of up to ∼30 interstitials of C-only, Si-only, and Si-C mixtures embedded in the SiC lattice. We performed the structure search using Hamiltonians from both density functional theory and empirical potentials. The thermodynamic stability of clusters was investigated in terms of their composition (with a focus on Si-only, C-only, and stoichiometric) and shape (spherical vs. planar), as a function of the cluster size (n). Our results suggest that large Si-only clusters are likely unstable, and clusters are predominantly C-only for n ≤ 10 and stoichiometric for n > 10. The results imply that there is an evolution of the shape of the most stable clusters, where small clusters are stable in more spherical geometries while larger clusters are stable in more planar configurations. We also provide an estimated energy vs. size relationship, E(n), for use in future analysis.
NASA Astrophysics Data System (ADS)
You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.
2017-08-01
The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.
Stability chart of small mixed 4He-3He clusters
NASA Astrophysics Data System (ADS)
Guardiola, R.; Navarro, J.
2003-11-01
A stability chart of mixed 4He and 3He clusters has been obtained by means of the diffusion Monte Carlo method, using both the Aziz HFD-B and the Tang-Toennies-Yiu atom-atom interaction. The investigated clusters contain up to eight 4He atoms and up to 20 3He atoms. One single 4He binds 20 3He atoms, and two 4He bind 1, 2, 8, and more than 14 3He atoms. All clusters with three or more 4He atoms are bound, although the combinations 4He33He9,10,11 and 4He34He9 are metastable. Clusters with 2, 8, and 20 3He atoms are particularly stable and define magic 3He numbers.
Platinum clusters with precise numbers of atoms for preparative-scale catalysis.
Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa
2017-09-25
Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.
Conductive tracks of 30-MeV C60 clusters in doped and undoped tetrahedral amorphous carbon
NASA Astrophysics Data System (ADS)
Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.
2013-07-01
In insulating tetrahedral amorphous carbon (ta-C), the irradiation with 30-MeV C60 cluster ions leads to the formation of well conducting tracks. While electrical currents through individual tracks produced with monoatomic projectiles (e.g. Au or U) often exhibit rather large track to track fluctuations, C60 clusters are shown to generate highly conducting tracks with very narrow current distributions. Additionally, all recorded current-voltage curves show linear characteristics. These findings are attributed to the large specific energy loss dE/dx of the 30-MeV C60 clusters. We also investigated C60 tracks in ta-C films which were slightly doped with B, N or Fe during film growth. Doping apparently increases the ion track conductivity. However, at the same time the insulating characteristics of the pristine ta-C film can be reduced. The present C60 results are compared with data from earlier experiments with monoatomic heavy ion beams. The investigations were performed by means of atomic force microscopy including temperature dependent conductivity measurements of single ion tracks.
Microwave effects on NiMoS and CoMoS single-sheet catalysts.
Borges, I; Silva, Alexander M; Modesto-Costa, Lucas
2018-05-04
Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-24
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
Pulsar-irradiated stars in dense globular clusters
NASA Technical Reports Server (NTRS)
Tavani, Marco
1992-01-01
We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.
Formation of metallic clusters in oxide insulators by means of ion beam mixing
NASA Astrophysics Data System (ADS)
Talut, G.; Potzger, K.; Mücklich, A.; Zhou, Shengqiang
2008-04-01
The intermixing and near-interface cluster formation of Pt and FePt thin films deposited on different oxide surfaces by means of Pt+ ion irradiation and subsequent annealing was investigated. Irradiated as well as postannealed samples were investigated using high resolution transmission electron microscopy. In MgO and Y :ZrO2 covered with Pt, crystalline clusters with mean sizes of 2 and 3.5nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In MgO samples covered with FePt, clusters with mean sizes of 1 and 2nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In Y :ZrO2 samples covered with FePt, clusters up to 5nm in size were found after the Pt+ irradiation with 2×1016cm-2 and subsequent annealing. In LaAlO3 the irradiation was accompanied by a full amorphization of the host matrix and appearance of embedded clusters of different sizes. The determination of the lattice constant and thus the kind of the clusters in samples covered by FePt was hindered due to strong deviation of the electron beam by the ferromagnetic FePt.
Interaction of intense ultrashort pulse lasers with clusters.
NASA Astrophysics Data System (ADS)
Petrov, George
2007-11-01
The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys. Plasmas 12 063103 (2005); 13 033106 (2006) [2] G. M. Petrov, J. Davis, European Phys. J. D 41 629 (2007) [3] G. M. Petrov, J. Davis, A. L. Velikovich, Plasma Phys. Contr. Fusion 48 1721 (2006) [4] G. M. Petrov, J. Davis, A. L. Velikovich, J. Phys. B 39 4617 (2006)
NASA Astrophysics Data System (ADS)
Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar
2015-09-01
Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).
NASA Astrophysics Data System (ADS)
Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.
2018-01-01
Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.
Tailoring optical properties of TiO2-Cr co-sputtered films using swift heavy ions
NASA Astrophysics Data System (ADS)
Gupta, Ratnesh; Sen, Sagar; Phase, D. M.; Avasthi, D. K.; Gupta, Ajay
2018-05-01
Effect of 100 MeV Au7+ ion irradiation on structure and optical properties of Cr-doped TiO2 films has been studied using X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, UV-Visible spectroscopy, X-ray reflectivity, and atomic force microscopy. X-ray reflectivity measurement implied that film thickness reduces as a function of ion fluence while surface roughness increases. The variation in surface roughness is well correlated with AFM results. Ion irradiation decreases the band gap energy of the film. Swift heavy ion irradiation enhances the oxygen vacancies in the film, and the extra electrons in the vacancies act as donor-like states. In valence band spectrum, there is a shift in the Ti3d peak towards lower energies and the shift is equivalent to the band gap energy obtained from UV spectrum. Evidence for band bending is also provided by the corresponding Ti XPS peak which exhibits a shift towards lower energy due to the downward band bending. X-ray absorption studies on O Kand Cr L3,2 edges clearly indicate that swift heavy ion irradiation induces formation of Cr-clusters in TiO2 matrix.
Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Cheng, Daojian; Huang, Shiping; Wang, Wenchuan
2006-11-01
Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.
Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.
Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo
2014-07-11
Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.
Structures of 38-atom gold-platinum nanoalloy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atomsmore » are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.« less
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J
2018-04-28
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
NASA Astrophysics Data System (ADS)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
On induced-modifications in optical properties of Makrofol® DE 1-1 SSNTD by UVB and UVA
NASA Astrophysics Data System (ADS)
Al-Amri, A.; El Ghazaly, M.; Abdel-Aal, M. S.
The induced modifications in the optical properties of Makrofol® DE 1-1 solid state nuclear track detectors upon irradiation by UVB (302 nm) and UVA (365 nm) were characterized and compared. Makrofol® DE 1-1 detectors were irradiated separately for different durations with UVB (302 nm) and UVA (365 nm). The measurements revealed insignificant changes were observed at all in UVA (365 nm)-irradiated Makrofol® DE 1-1, irrespective the irradiation time (dose). All UVB (302 nm)-irradiated Makrofol® DE 1-1 detectors show a substantial red shift in UV-Vis spectra and a continuous increase in absorbance as the exposure time (Dose) to UVB increases. UVC-irradiated Makrofol® DE 1-1 exhibits absorption bands at 315 ± 5 nm in UV-visible spectra. The absorption increases exponential with the increasing the UVB irradiation time gets saturated started from 75 h to 400 h. In the visible light range no significant changes were observed in Makrofol® DE 1-1 detector irrespective the exposure time to UVB of 302 nm. It is found that the direct band gap is higher than indirect band gap and both decrease with the increase in the irradiation time of UVB of 302 nm. The obtained results of the Urbach energy and carbon atoms per cluster indicate that both increase with the increase in the irradiation time to UVB (302 nm). The induced modification in the optical properties of Makrofol® DE 1-1 can be used in UVB dosimetry, meanwhile it is not applicable for UVA of 365 nm.
Enhancement of deuterium retention in damaged tungsten by plasma-induced defect clustering
NASA Astrophysics Data System (ADS)
Jin, Younggil; Roh, Ki-Baek; Sheen, Mi-Hyang; Kim, Nam-Kyun; Song, Jaemin; Kim, Young-Woon; Kim, Gon-Ho
2017-12-01
The enhancement of deuterium retention was investigated for tungsten in the presence of both 2.8 MeV self-ion induced cascade damage and fuel hydrogen isotope plasma. Vacancy clustering in cascade damaged polycrystalline tungsten occurred due to deuterium irradiation and was observed near the grain boundary by using all-step transmission electron microscopy analysis. Analysis of the highest desorption temperature peak using thermal desorption spectroscopy supports reasonable evidence of defect clustering in the damaged polycrystalline tungsten. The defect clustering was neither observed on the damaged polycrystalline tungsten without deuterium irradiation nor on the damaged single-crystalline tungsten with deuterium irradiation. This result implies the synergetic role of deuterium and grain boundary on defect clustering. This study proposes a path for the defect transform from point defect to defect cluster, by the agglomeration between irradiated deuterium and cascade damage-induced defect. This agglomeration may induce more severe damage on the tungsten divertor at which the high fuel hydrogen ions, fast neutrons, and self-ions are irradiated simultaneously and it would increase the in-vessel tritium inventory.
NASA Astrophysics Data System (ADS)
Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.
2015-03-01
Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time. Electronic supplementary information (ESI) available: The deconvoluted reference spectra are given in ESI Fig. 1-9. See DOI: 10.1039/c4nr07051h
NASA Astrophysics Data System (ADS)
Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli
2018-04-01
Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.
Melting of size-selected gallium clusters with 60-183 atoms.
Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F
2014-07-10
Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.
Multi-scale Modeling of Radiation Damage: Large Scale Data Analysis
NASA Astrophysics Data System (ADS)
Warrier, M.; Bhardwaj, U.; Bukkuru, S.
2016-10-01
Modification of materials in nuclear reactors due to neutron irradiation is a multiscale problem. These neutrons pass through materials creating several energetic primary knock-on atoms (PKA) which cause localized collision cascades creating damage tracks, defects (interstitials and vacancies) and defect clusters depending on the energy of the PKA. These defects diffuse and recombine throughout the whole duration of operation of the reactor, thereby changing the micro-structure of the material and its properties. It is therefore desirable to develop predictive computational tools to simulate the micro-structural changes of irradiated materials. In this paper we describe how statistical averages of the collision cascades from thousands of MD simulations are used to provide inputs to Kinetic Monte Carlo (KMC) simulations which can handle larger sizes, more defects and longer time durations. Use of unsupervised learning and graph optimization in handling and analyzing large scale MD data will be highlighted.
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.
Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi
2016-02-18
Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters.
Surface study of irradiated sapphires from Phrae Province, Thailand using AFM
NASA Astrophysics Data System (ADS)
Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.
2017-09-01
The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.
Hund’s rule in superatoms with transition metal impurities
Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford
2011-01-01
The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542
Hund's rule in superatoms with transition metal impurities.
Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford
2011-06-21
The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.
Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K
2001-04-01
The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.
Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.
Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui
2015-02-21
Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ < 332 nm. The obtained results clearly show that H-atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for the candidate structures at the B3LYP/aug-cc-pVTZ level.
Photoionization of rare gas clusters
NASA Astrophysics Data System (ADS)
Zhang, Huaizhen
This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the angular distribution parameter values of the two-spin-orbit components from Ar 2p clusters are slightly different. When comparing the beta values for Ar between atoms and clusters, we found different results between Ar 3s atoms and clusters, and between Ar 3p atoms and clusters. Argon cluster resonance from surface and bulk were also measured. Furthermore, the angular distribution parameters of Ar cluster photoelectrons and Ar atom photoelectrons in the 3s → np ionization region were obtained.
Atomically precise cluster catalysis towards quantum controlled catalysts
Watanabe, Yoshihide
2014-01-01
Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. PMID:27877723
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
Liu, Yuanyuan; Chai, Xiaoqi; Cai, Xiao; Chen, Mingyang; Jin, Rongchao; Ding, Weiping; Zhu, Yan
2018-06-19
Clusters with an exact number of atoms are of particular research interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Herein we explore the effects of the single-foreign-atom (Au, Pd and Pt) doping into the core of an Ag cluster with 25-atoms on the catalytic properties, where the foreign atom is protected by 24 Ag atoms (i.e., Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster is found to have a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C-C bond formation to produce propiolic acid. Our studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W
2006-12-05
We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.
Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
NASA Astrophysics Data System (ADS)
Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto
2018-04-01
We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.
Meta-atom cluster acoustic metamaterial with broadband negative effective mass density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huaijun; Zhai, Shilong; Ding, Changlin
2014-02-07
We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expectmore » that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM.« less
Gnaser, Hubert; Radny, Tobias
2015-12-01
Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.
Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling
NASA Astrophysics Data System (ADS)
Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun
2018-02-01
Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.
Nedolya, Anatoliy V; Bondarenko, Natalya V
2016-12-01
Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction <011> occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.
Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E
2017-05-01
Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.
The study of structures and properties of PdnHm(n=1-10, m=1,2) clusters by density functional theory
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Chen, Guo-Xiang; Zhang, Jian-Min; Wu, Hua
2018-04-01
The geometrical evolution, local relative stability, magnetism and charge transfer characteristics of PdnHm(n = 1-10, m = 1,2) have been systematically calculated by using density functional theory. The studied results show that the most stable geometries of PdnH and PdnH2 (n = 1-10) can be got by doping one or two H atoms on the sides of Pdn clusters except Pd6H and Pd6H2. It is found that doping one or two H atoms on Pdn clusters cannot change the basic framework of Pdn. The analysis of stability shows that Pd2H, Pd4H, Pd7H, Pd2H2, Pd4H2 and Pd7H2 clusters have higher local relative stability than neighboring clusters. The analysis of magnetic properties demonstrates that absorption of hydrogen atoms decreases the average atomic magnetic moments compared with pure Pdn clusters. More charges transfer from H atoms to Pd atoms for Pd6H and Pd6H2 clusters, demonstrating the adsorption of hydrogen atoms change from side adsorption to surface adsorption.
Deformation twinning in irradiated ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Wang, K.; Dai, Y.; Spätig, P.
2018-04-01
Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.
Scattering Response of Sucrose Clusters with Intense XFEL Pulses in Water Window
NASA Astrophysics Data System (ADS)
Ho, Phay; Benedikt Daurer, Benedikt; Bielecki, Johan; Hantke, Max; Maia, Filipe; Knight, Chris; Hajdu, Janos; Young, Linda; Bostedt, Christoph
2017-04-01
We present a combined experimental and theoretical study about the effects of non-linear x-ray ionization dynamics on the scattering response of molecular clusters in the soft x-ray regime that includes and goes beyond the water window. Nanosized sucrose clusters were irradiated with intense XFEL pulses (photon energy from 500 to 1500 eV and pulse duration of 180 fs). Surprisingly, the measured scattering signals near the oxygen K-edge in the water window are found to be substantially smaller than those at higher photon energies. We employ Monte-Carlo/Molecular Dynamics calculations to investigate the x-ray processes as a function of pulse parameters (photon energy, bandwidth and pulse duration) and cluster size. We demonstrate the important role of resonant excitation (RE) in the molecular scattering response in the water window. In particular, 1s ->2p RE cycling enabled in the oxygen atom/ion provide additional ionization pathways which, combined with the long pulse duration, lead to substantial reduction in scattering power of sugar clusters for photon energies just below the oxygen K-edge. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.
Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures
NASA Astrophysics Data System (ADS)
Angelié, C.; Soudan, J.-M.
2017-05-01
The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes towards a more stable structure without regularity. The 38 atom cluster exhibits a nearly glassy relaxation, through a cascade of six metastable states of long life. This behaviour, as that of the 147 atom cluster towards the amorphous state, shows that difficulties to reach ergodicity in the lower half of the solid zone are related to particular features of the potential energy landscape, and not necessarily to a too large size of the system. Comparisons of the cEAM iron system with published results about Lennard-Jones systems and DFT calculations are made. The results of the previous clusters have been combined with that of Paper II to plot the cohesive energy Ec and the melting temperature Tm in terms of the cluster atom number Nat. The Nat -1 /3 linear dependence of the melting temperature (Pawlow law) is observed again for Nat > 150. In contrast, for Nat < 150, the curve diverges strongly from the Pawlow law, giving it an overall V-shape, with a linear increase of Tm when Nat goes from 55 to 13 atoms. Surprisingly, the 38 atom cluster is anomalously below the overall curve.
A phase field model for segregation and precipitation induced by irradiation in alloys
NASA Astrophysics Data System (ADS)
Badillo, A.; Bellon, P.; Averback, R. S.
2015-04-01
A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.
NASA Astrophysics Data System (ADS)
Grotheer, H.-H.; Wolf, K.; Hoffmann, K.
2011-08-01
Premixed laminar flat ethylene flames were investigated for nascent nanoparticles through photoionization mass spectrometry (PIMS). Using an atmospheric McKenna burner and ethylene air flames coupled to an atmospheric sampling system, within a relatively narrow C/O range two modes of these particles were found, which can be clearly distinguished with regard to their temperature dependence, their reactivity, and their ionization behaviour. Behind a diesel engine the same particles were observed. These results were corroborated using a low pressure ethylene-O2 flame coupled to a high resolution mass spectrometer. In this case, due to a special inlet system, it was possible to operate the flame in a fairly wide C/O range without clogging of the inlet nozzles. This allowed pursuing the development of particle size distribution functions (PSDF) well into the regime of mature soot. In addition, on the low mass side of the particle spectra measurements with unity resolution were possible and this allowed gaining information concerning their growth mechanism and structure. Finally, in an attempt to mimic Laser Induced Incandescence (LII) experiments the soot-laden molecular beam was exposed to IR irradiation. This resulted in a near complete destruction of nascent particles under LII typical fluences. Small C clusters between 3 and 17 C atoms were found. In addition and with much higher intensities, clusters comprising several hundreds of C atoms were also detected, the latter even at very low fluences when small clusters were totally absent.
Structure and Stability of GeAu{sub n}, n = 1-10 clusters: A Density Functional Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyanka,; Dharamvir, Keya; Sharma, Hitesh
2011-12-12
The structures of Germanium doped gold clusters GeAu{sub n} (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu{sub n} clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu{sub n} clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding siliconmore » doped gold cluster. The HUMO-LOMO gap for Au{sub n}Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.« less
NASA Astrophysics Data System (ADS)
Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.
2003-05-01
The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.
Amino, T.; Arakawa, K.; Mori, H.
2016-01-01
The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352
Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.
Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang
2018-01-16
The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.
NASA Astrophysics Data System (ADS)
Jiao, Z.; Hesterberg, J.; Was, G. S.
2018-03-01
Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.
Exploration of dynamical regimes of irradiated small protonated water clusters
NASA Astrophysics Data System (ADS)
Ndongmouo Taffoti, U. F.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Wang, Z. P.
2010-05-01
We explore from a theoretical perspective the dynamical response of small water clusters, (H2O)nH3O+ with n=1,2,3, to a short laser pulse for various frequencies, from infrared (IR) to ultra-violet (UV) and intensities (from 6×10^{13} W/cm^2 to 5×10^{14} W/cm^2). To that end, we use time-dependent local-density approximation for the electrons, coupled to molecular dynamics for the atomic cores (TDLDA-MD). The local-density approximation is augmented by a self-interaction correction (SIC) to allow for a correct description of electron emission. For IR frequencies, we see a direct coupling of the laser field to the very light H+ ions in the clusters. Resonant coupling (in the UV) and/or higher intensities lead to fast ionization with subsequent Coulomb explosion. The stability against Coulomb pressure increases with system size. Excitation to lower ionization stages induced strong ionic vibrations. The latter maintain a rather harmonic pattern in spite of the sizeable amplitudes (often 10% of the bond length).
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, Alexei N.; Popov, Yuri V.; Gryzlova, Elena V.; Solov'yov, Andrey V.
2017-07-01
The conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS-2016) brought together near to a hundred scientists in the field of electronic, photonic, atomic and molecular collisions, and spectroscopy from around the world. We deliver an Editorial of a topical issue presenting original research results from some of the participants on both experimental and theoretical studies involving many particle spectroscopy of atoms, molecules, clusters and surfaces. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu.V. Popov, and A.V. Solov'yov.
Observation of a barium xenon exciplex within a large argon cluster.
Briant, M; Gaveau, M-A; Mestdagh, J-M
2010-07-21
Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.
NASA Technical Reports Server (NTRS)
Garofalini, S. H.; Halicioglu, T.; Pound, G. M.
1981-01-01
Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.K.
2001-01-30
A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (Emore » > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.« less
Probing the Structural, Electronic, and Magnetic Properties of Ag n V (n = 1-12) Clusters.
Xiong, Ran; Die, Dong; Xiao, Lu; Xu, Yong-Gen; Shen, Xu-Ying
2017-12-16
The structural, electronic, and magnetic properties of Ag n V (n = 1-12) clusters have been studied using density functional theory and CALYPSO structure searching method. Geometry optimizations manifest that a vanadium atom in low-energy Ag n V clusters favors the most highly coordinated location. The substitution of one V atom for an Ag atom in Ag n + 1 (n ≥ 5) cluster modifies the lowest energy structure of the host cluster. The infrared spectra, Raman spectra, and photoelectron spectra of Ag n V (n = 1-12) clusters are simulated and can be used to determine the most stable structure in the future. The relative stability, dissociation channel, and chemical activity of the ground states are analyzed through atomic averaged binding energy, dissociation energy, and energy gap. It is found that V atom can improve the stability of the host cluster, Ag 2 excepted. The most possible dissociation channels are Ag n V = Ag + Ag n - 1 V for n = 1 and 4-12 and Ag n V = Ag 2 + Ag n - 2 V for n = 2 and 3. The energy gap of Ag n V cluster with odd n is much smaller than that of Ag n + 1 cluster. Analyses of magnetic property indicate that the total magnetic moment of Ag n V cluster mostly comes from V atom and varies from 1 to 5 μ B . The charge transfer between V and Ag atoms should be responsible for the change of magnetic moment.
NASA Astrophysics Data System (ADS)
Sahi, Qurat-ul-ain; Kim, Yong-Soo
2018-05-01
Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.
Site-specific polarizabilities as descriptors of metallic behavior in atomic clusters
NASA Astrophysics Data System (ADS)
Jackson, Koblar; Jellinek, Julius
The electric dipole polarizability of a cluster is a measure of its response to an applied electric field. The site specific polarizability method decomposes the total cluster polarizability into contributions from individual atoms and also allows it to be partitioned into charge transfer and electric dipole contributions. By systematically examining the trends in these quantities for several types of metal atom clusters over a wide range of cluster sizes, we find common characteristics that uniquely link the behavior of the clusters to that of the corresponding bulk metals for clusters as small as 10 atoms. We discuss these trends and compare and contrast them with results for non-metal clusters. This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy under Grant SC0001330 (KAJ) and Contract No. DE-AC02-06CH11357 (JJ).
Effects of erbium,chromium:YSGG laser irradiation on canine mandibular bone.
Kimura, Y; Yu, D G; Fujita, A; Yamashita, A; Murakami, Y; Matsumoto, K
2001-09-01
Only relatively few reports have described the morphological effects on bone produced by erbium,chromium: yttrium,scandium,gallium,garnet (Er,Cr:YSGG) laser irradiation, and none has investigated the atomic changes or estimated the temperature increases involved. The objectives of this study were to investigate the morphological, atomic, and temperature changes in irradiated areas during and after laser irradiation, and to evaluate the cutting effect on canine mandibular bone in vitro. Two canine mandibular bones were cut into 3 to 5 cm pieces and irradiated by an Er,Cr:YSGG laser utilizing a water-air spray at 5 W and 8 Hz for 10 or 30 seconds. During and after laser irradiation, temperature increases in the irradiated areas were measured by thermography. The samples were then observed by stereoscopy and scanning electron microscopy to determine morphological changes and by energy dispersive x-ray spectroscopy to evaluate atomic alterations. Regular holes or grooves having sharp edges and smooth walls were produced, but no melting or carbonization was observed. The maximum temperature increase was an average 12.6 degrees C for 30-second irradiation. The continuous time of a temperature increase of more than 10 degrees C was consistently less than 10 seconds. An atomic analytical examination revealed that the calcium:phosphorus ratio was not significantly changed between the lased and unlased areas (P>0.0 1). These results showed that the Er,Cr:YSGG laser cuts canine mandibular bone effectively without burning, melting, or altering the calcium:phosphorus ratio of the irradiated bone.
Gao, Yipeng; Zhang, Yongfeng; Schwen, Daniel; Jiang, Chao; Sun, Cheng; Gan, Jian; Bai, Xian-Ming
2018-04-26
Nano-structured superlattices may have novel physical properties and irradiation is a powerful mean to drive their self-organization. However, the formation mechanism of superlattice under irradiation is still open for debate. Here we use atomic kinetic Monte Carlo simulations in conjunction with a theoretical analysis to understand and predict the self-organization of nano-void superlattices under irradiation, which have been observed in various types of materials for more than 40 years but yet to be well understood. The superlattice is found to be a result of spontaneous precipitation of voids from the matrix, a process similar to phase separation in regular solid solution, with the symmetry dictated by anisotropic materials properties such as one-dimensional interstitial atom diffusion. This discovery challenges the widely accepted empirical rule of the coherency between the superlattice and host matrix crystal lattice. The atomic scale perspective has enabled a new theoretical analysis to successfully predict the superlattice parameters, which are in good agreement with independent experiments. The theory developed in this work can provide guidelines for designing target experiments to tailor desired microstructure under irradiation. It may also be generalized for situations beyond irradiation, such as spontaneous phase separation with reaction.
Quasi-planar elemental clusters in pair interactions approximation
NASA Astrophysics Data System (ADS)
Chkhartishvili, Levan
2016-01-01
The pair-interactions approximation, when applied to describe elemental clusters, only takes into account bonding between neighboring atoms. According to this approach, isomers of wrapped forms of 2D clusters - nanotubular and fullerene-like structures - and truly 3D clusters, are generally expected to be more stable than their quasi-planar counterparts. This is because quasi-planar clusters contain more peripheral atoms with dangling bonds and, correspondingly, fewer atoms with saturated bonds. However, the differences in coordination numbers between central and peripheral atoms lead to the polarization of bonds. The related corrections to the molar binding energy can make small, quasi-planar clusters more stable than their 2D wrapped allotropes and 3D isomers. The present work provides a general theoretical frame for studying the relative stability of small elemental clusters within the pair interactions approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kira, M., E-mail: mackillo.kira@physik.uni-marburg.de
Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approachmore » are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.« less
NASA Astrophysics Data System (ADS)
Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping
2017-02-01
To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.
Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.
Manzoor, Dar; Pal, Sourav
2015-06-18
Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.
Does Each Atom Count in the Reactivity of Vanadia Nanoclusters?
Zhang, Mei-Qi; Zhao, Yan-Xia; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui
2017-01-11
Vanadium oxide cluster anions (V 2 O 5 ) n V x O y - (n = 1-31; x = 0, 1; and x + y ≤ 5) with different oxygen deficiencies (Δ = 2y-1-5x = 0, ± 1, and ±2) have been prepared by laser ablation and reacted to abstract hydrogen atoms from alkane molecules (n-butane) in a fast flow reactor. When the cluster size n is less than 25, the Δ = 1 series [(V 2 O 5 ) n O - clusters] that can contain atomic oxygen radical anions (O •- ) generally have much higher reactivity than the other four cluster series (Δ = -2, -1, 0, and 2), indicating that each atom counts in the hydrogen-atom abstraction (HAA) reactivity. Unexpectedly, all of the five cluster series have similar HAA reactivity when the cluster size is greater than 25. The critical dimension of vanadia particles separating the cluster behavior (each atom counts) from the bulk behavior (each atom contributes a little part) is thus about 1.6 nm (∼V 50 O 125 ). The strong electron-phonon coupling of the vanadia particles has been proposed to create the O •- radicals (V 5+ = O 2- + heat → V 4+ -O •- ) for the n > 25 clusters with Δ = -2, -1, 0, and 2. Such a mechanism is supported by a comparative study with the scandium system [(Sc 2 O 3 ) n Sc x O y - (n = 1-29; x = 0, 1; and x + y ≤ 4)] for which the Δ = 1 series [(Sc 2 O 3 ) n O - clusters] always have much higher HAA reactivity than the other cluster series.
Luckey, T D
2008-01-01
Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment.
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.
2017-08-01
Tensile response of irradiated symmetric grain boundaries to the externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its undertaken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trapping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.
NASA Astrophysics Data System (ADS)
Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.
2015-04-01
This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.
Composition formulas of binary eutectics
Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.
2015-01-01
The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618
Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters.
Yuan, D W; Wang, Yang; Zeng, Zhi
2005-03-15
Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.
Considerable knock-on displacement of metal atoms under a low energy electron beam.
Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan
2017-03-15
Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.
NASA Astrophysics Data System (ADS)
Yuan, H. K.; Kuang, A. L.; Tian, C. L.; Chen, H.
2014-03-01
The structural evolutions and electronic properties of bimetallic Aun-xPtx (n = 2-14; x ⩽ n) clusters are investigated by using the density functional theory (DFT) with the generalized gradient approximation (GGA). The monatomic doping Aun-1Pt clusters are emphasized and compared with the corresponding pristine Aun clusters. The results reveal that the planar configurations are favored for both Aun-1Pt and Aun clusters with size up to n = 13, and the former often employ the substitution patterns based on the structures of the latter. The most stable clusters are Au6 and Au6Pt, which adopt regular planar triangle (D3h) and hexagon-ring (D6h) structures and can be regarded as the preferential building units in designing large clusters. For Pt-rich bimetallic clusters, their structures can be obtained from the substitution of Pt atoms by Au atoms from the Ptn structures, where Pt atoms assemble together and occupy the center yet Au atoms prefer the apex positions showing a segregation effect. With respect to pristine Au clusters, AunPt clusters exhibit somewhat weaker and less pronounced odd-even oscillations in the highest occupied and lowest unoccupied molecular-orbital gaps (HOMO-LUMO gap), electron affinity (EA), and ionization potential (IP) due to the partially released electron pairing effect. The analyses of electronic structure indicate that Pt atoms in AuPt clusters would delocalize their one 6s and one 5d electrons to contribute the electronic shell closure. The sp-d hybridizations as well as the d-d interactions between the host Au and dopant Pt atoms result in the enhanced stabilities of AuPt clusters.
MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.
Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo
2017-11-16
Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.
MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster
Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.; Santiago, Ulises; Plascencia-Villa, German; Weiss, Simon C.; de la Cruz, M. Jason; Black, David M.; Alvarez, Marcos M.; Lopez-Lozano, Xochitl; Barnes, Christopher O.; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L.; Gonen, Tamir; Jose-Yacaman, Miguel; Calero, Guillermo
2018-01-01
Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au146(p-MBA)57 (p-MBA: para-mercaptobenzoic acid), solved by electron diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault. PMID:29072840
Formation of the nitrogen aggregates in annealed diamond by neutron irradiation
NASA Astrophysics Data System (ADS)
Mita, Y.; Nisida, Y.; Okada, M.
2018-02-01
Neutron heavy irradiation was performed on synthetic diamonds contain nitrogen atoms in isolated substitutional form (called "type Ib diamond") and they were annealed under a pressure of 6 GPa. A large number of nitrogen B-aggregate which consists of four substitutional nitrogen atoms symmetrically surrounding a vacancy was formed within 30 m from single nitrogen atoms. Furthermore it is observed that, in these diamonds, single nitrogen atoms coexist with the B-aggregates, which is unexplainable by the simple nitrogen aggregation model.
Relaxation channels of multi-photon excited xenon clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904
2015-09-21
The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.
Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms
NASA Astrophysics Data System (ADS)
Wu, Genhua; Sun, Yan; Wu, Xia; Chen, Run; Wang, Yan
2017-10-01
The stable structures of Cu-Au-Pt clusters up to 147 atoms are optimized by using an improved adaptive immune optimization algorithm (AIOA-IC method), in which several motifs, such as decahedron, icosahedron, face centered cubic, sixfold pancake, and Leary tetrahedron, are randomly selected as the inner cores of the starting structures. The structures of Cu8AunPt30-n (n = 1-29), Cu8AunPt47-n (n = 1-46), and partial 75-, 79-, 100-, and 147-atom clusters are analyzed. Cu12Au93Pt42 cluster has onion-like Mackay icosahedral motif. The segregation phenomena of Cu, Au and Pt in clusters are explained by the atomic radius, surface energy, and cohesive energy.
Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions.
Usami, N; Furusawa, Y; Kobayashi, K; Lacombe, S; Reynaud-Angelin, A; Sage, E; Wu, Ting-Di; Croisy, A; Guerquin-Kern, J-L; Le Sech, C
2008-07-01
This work investigates whether a synergy in cell death induction exists in combining atomic ions irradiation and addition of platinum salts. Such a synergy could be of interest in view of new cancer therapy protocol based on atomic ions--hadrontherapy--with the addition of radiosensitizing agents containing high-Z atoms. The experiment consists in irradiating by fast ions cultured cells previously exposed to dichloroterpyridine Platinum (PtTC) and analyzing cell survival by a colony-forming assay. Chinese Hamster Ovary (CHO) cells were incubated for six hours in medium containing 350 microM PtTC, and then irradiated by fast ions C(6+) and He(2+), with Linear Energy Transfer (LET) within range 2-70 keV/microm. In some experiments, dimethyl sulfoxide (DMSO) was added to investigate the role of free radicals. The intracellular localization of platinum was determined by Nano Secondary Ion Mass Spectroscopy (Nano-SIMS). For all LET examined, cell death rate is largely enhanced when irradiating in presence of PtTC. At fixed irradiation dose, cell death rate increases with increasing LET, while the platinum relative effect is larger at low LET. This finding suggests that hadrontherapy or protontherapy therapeutic index could be improved by combining irradiation procedure with concomitant chemotherapy protocols using platinum salts.
Luckey, T. D.
2008-01-01
Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment. PMID:19088902
ELECTRON IRRADIATION OF SOLIDS
Damask, A.C.
1959-11-01
A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.
DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2013-09-30
Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keVmore » exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. Y.; Gao, N.; Setyawan, W.
Tensile response of irradiated symmetric grain boundaries to externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its under- taken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trap- ping efficiencymore » to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.« less
Computational and Experimental Studies of the Radiation Response of Gd2Ti2O7 Pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram; Weber, William J.
2005-12-16
The structure and property changes in Gd2Ti2O7 (polycrystalline pyrochlore) were examined following irradiation with 1 MeV Kr+, 0.6 MeV Bi+ and 4 MeV Au2+ ions over the temperature range 30-950 K. Gd2Ti2O7 readily amorphizes with a low temperature (30 K) critical dose for amorphization of {approx} 0.15 displacements per atom (dpa). The critical temperature above which amorphization does not occur is about 1190 K. Nano-indentation studies reveal that the structural changes were accompanied by decreases of 15% in the Young's modulus. 1 MeV Kr+ irradiation of amorphous Gd2Ti2O7 at 1065 K resulted in ion-beam-assisted recrystallization. These experimental studies were complementedmore » with molecular dynamics simulations of low energy recoils in Gd2Ti2O7 and Gd2Zr2O7 using a Buckingham type potential. The displacement threshold energy surface in both pyrochlores is highly anisotropic. Displacement energies are higher for all sublattices in the titanate pyrochlore compared to the zirconate. Ti sublattice displacements require energies in excess of 100 eV, and result in multiple displacements and defect clusters. The formation of these clusters might impede dynamic defect recovery and facilitate amorphization.« less
NASA Astrophysics Data System (ADS)
Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo
2002-08-01
Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.
NASA Astrophysics Data System (ADS)
Korol, Andrey V.; Solov'yov, Andrey
2013-01-01
Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.
Features of structural response of mechanically loaded crystallites to irradiation
NASA Astrophysics Data System (ADS)
Korchuganov, Aleksandr V.
2015-10-01
A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.
The stability of vacancy clusters and their effect on helium behaviors in 3C-SiC
NASA Astrophysics Data System (ADS)
Sun, Jingjing; Li, B. S.; You, Yu-Wei; Hou, Jie; Xu, Yichun; Liu, C. S.; Fang, Q. F.; Wang, Z. G.
2018-05-01
We have carried out systematical ab initio calculations to study the stability of vacancy clusters and their effect on helium behaviors in 3C-SiC. It is found that the formation energies of vacancy clusters containing only carbon vacancies are the lowest although the vacancies are not closest to each other, while the binding energies of vacancy clusters composed of both silicon and carbon vacancies in the closest neighbors to each other are the highest. Vacancy clusters can provide with free space for helium atoms to aggregate, while interstitial sites are not favorable for helium atoms to accumulate. The binding energies of vacancy clusters with helium atoms increase almost linearly with the ratio of helium to vacancy, n/m. The binding strength of vacancy cluster having the participation of the silicon vacancy with helium is relatively stronger than that without silicon vacancy. The vacancy clusters with more vacancies can trap helium atoms more tightly. With the presence of vacancy clusters in the material, the diffusivity of helium will be significantly reduced. Moreover, the three-dimension electron density is calculated to analyze the interplay of vacancy clusters with helium.
MARMOT simulations of Xe segregation to grain boundaries in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael; Casillas, Luis
2012-06-20
Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less
Electronic levels and charge distribution near the interface of nickel
NASA Technical Reports Server (NTRS)
Waber, J. T.
1982-01-01
The energy levels in clusters of nickel atoms were investigated by means of a series of cluster calculations using both the multiple scattering and computational techniques (designated SSO) which avoids the muffin-tin approximation. The point group symmetry of the cluster has significant effect on the energy of levels nominally not occupied. This influences the electron transfer process during chemisorption. The SSO technique permits the approaching atom or molecule plus a small number of nickel atoms to be treated as a cluster. Specifically, molecular levels become more negative in the O atom, as well as in a CO molecule, as the metal atoms are approached. Thus, electron transfer from the nickel and bond formation is facilitated. This result is of importance in understanding chemisorption and catalytic processes.
NASA Astrophysics Data System (ADS)
Seif, Dariush; Ghoniem, Nasr M.
2014-12-01
A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the implementation of a path-integral approach may proceed if the distribution is known experimentally to significantly stray from a Gaussian description.
Point defect induced segregation of alloying solutes in α-Fe
NASA Astrophysics Data System (ADS)
You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.
2016-10-01
Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom 〈110〉 dumbbell is also found to tightly bind with multiple solute atoms. The 〈110〉-S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.
About the atomic structures of icosahedral quasicrystals
NASA Astrophysics Data System (ADS)
Quiquandon, Marianne; Gratias, Denis
2014-01-01
This paper is a survey of the crystallographic methods that have been developed these last twenty five years to decipher the atomic structures of the icosahedral stable quasicrystals since their discovery in 1982 by D. Shechtman. After a brief recall of the notion of quasiperiodicity and the natural description of Z-modules in 3-dim as projection of regular lattices in N>3-dim spaces, we give the basic geometrical ingredients useful to describe icosahedral quasicrystals as irrational 3-dim cuts of ordinary crystals in 6-dim space. Atoms are described by atomic surfaces (ASs) that are bounded volumes in the internal (or perpendicular) 3-dim space and the intersections of which with the physical space are the actual atomic positions. The main part of the paper is devoted to finding the major properties of quasicrystalline icosahedral structures. As experimentally demonstrated, they can be described with a surprisingly few high symmetry ASs located at high symmetry special points in 6-dim space. The atomic structures are best described by aggregations and intersections of high symmetry compact interpenetrating atomic clusters. We show here that the experimentally relevant clusters are derived from one generic cluster made of two concentric triacontahedra scaled by τ and an external icosidodecahedron. Depending on which ones of the orbits of this cluster are eventually occupied by atoms, the actual atomic clusters are of type Bergman, Mackay, Tsai and others….
Self-organized formation of quantum dots of a material on a substrate
Zhang, Zhenyu; Wendelken, John F.; Chang, Ming-Che; Pai, Woei Wu
2001-01-01
Systems and methods are described for fabricating arrays of quantum dots. A method for making a quantum dot device, includes: forming clusters of atoms on a substrate; and charging the clusters of atoms such that the clusters of atoms repel one another. The systems and methods provide advantages because the quantum dots can be ordered with regard to spacing and/or size.
NASA Astrophysics Data System (ADS)
Majumder, Chiranjib; Kulshreshtha, S. K.
2004-12-01
Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.
Zhou, Min; Dick, Jeffrey E; Bard, Allen J
2017-12-06
We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.
NASA Astrophysics Data System (ADS)
Zhao, Ya-Ru; Zhang, Hai-Rong; Qian, Yu; Duan, Xu-Chao; Hu, Yan-Fei
2016-03-01
Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1-10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even-odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1-10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study.
Radiation response of nanotwinned Cu under multiple-collision cascades
NASA Astrophysics Data System (ADS)
Wu, Lianping; Yu, Wenshan; Hu, Shuling; Shen, Shengping
2018-07-01
In this paper, multiple collision cascades (MCC) of nanotwinned (nt) Cu with three different twin spacings are performed to model the response of nt Cu upon a radiation dose of 1 displacements per atom (dpa). Considering the defects developed with high randomness in the material during a MCC process, each MCC in a nt Cu is conducted for eight times. This enables us to analyze some average properties of defect clusters in the radiated nt Cu with different twin spacings at the different radiation doses. We also analyze the microstructural evolution in the nt Cu during the MCC. Smaller size of defect clusters and lower defect density are seen in the nt Cu with smaller twin spacing. In addition, a number of defect clusters could be removed via their frequent interactions with the coherent twin boundaries (CTBs) during the MCC. This induces either the migration of CTBs or the healing of CTBs. Moreover, the potential formation and elimination mechanisms of stacking fault are found to be due to the climb of Frank partial dislocation and glide of Shockley partial dislocations. This study provides further evidence on the irradiation tolerance of CTBs and the self-healing capability of CTBs in response to radiation.
Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S.; Hasegawa, N.; Kishimoto, M.
A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a stronglymore » coupled cluster nanoplasma with several eV was generated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnov, P. O., E-mail: kpo1980@gmail.com; Eliseeva, N. S.; Kuzubov, A. A., E-mail: alex_xx@rambler.ru
2012-01-15
The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
NASA Astrophysics Data System (ADS)
Lang, Lin; Tian, Zean; Xiao, Shifang; Deng, Huiqiu; Ao, Bingyun; Chen, Piheng; Hu, Wangyu
2017-02-01
Molecular dynamics simulations have been performed to investigate the structural evolution of Cu64.5Zr35.5 metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.
Defects in metal crystals. Progress report, May 1, 1980-April 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidman, D.N.
1981-01-01
During the past year a strong endeavor was made to redirect the efforts of the research group to determine atomic mechanisms for the formation of metal silicides, among other problems, produced as a result of: (a) ion or electron irradiation of metal-silicon sandwiches; and (b) the ion irradiation of subsaturated binary alloys containing silicon. In addition, an appreciable component of the research is aimed at understanding the atomic mechanisms responsible for radiation-induced segregation and RIP in a wide range of fast-neutron irradiated refractory metals and alloys. In these same neutron irradiated specimens a search is being made for the speciesmore » that are responsible for the nucleation of voids. In particular, the voids are being examined, by the atom-probe field-ion microscope technique, for the interstitial impurities helium, carbon, nitrogen and oxygen. Evidence was obtained for the presence of carbon in a void of a fast neutron-irradiated molybdenum (titanium) alloy.« less
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.
Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F
2018-01-22
Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Particle characteristics of different materials after ultra-short pulsed laser (USPL) irradiation
NASA Astrophysics Data System (ADS)
Meister, Joerg; Schelle, Florian; Kowalczyk, Philip; Frentzen, Matthias
2012-01-01
The exposition of nanoparticles caused by laser application in dental health care is an open discussion. Based on the fact that nanoparticles can penetrate through the mucosa, the knowledge about particle characteristics after irradiation with an USPL is of high importance. Therefore, the aim of this study was to investigate the particle characteristics, especially the size of the ablated debris after USPL irradiation. The irradiation was carried out with an USP Nd:YVO4 laser with a center wavelength of 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. The materials investigated were dental tissues and dental restorative materials (composite and amalgam), ceramic and different metals (gold and aluminium). The samples were irradiated with a power density in the order of 300 GW/cm2 at distances of 5, 10, 15, and 20 mm. The debris was collected on an object plate. SEM pictures were used for analysis of the ablation debris. Depending on the irradiated material, we observed different kinds of structures: vitreous, flocculent, and pellet-like. The mean particle sizes were 10 x 10 up to 30 x 30 μm2. In addition, a cluster of ablated matter (nanometer range) distributed over the whole irradiated area was found. With increasing distances the cluster structure reduced from multi-layer to mono-layer clusters. Particle sizes in the micrometer and nanometer range were found after irradiation with an USPL. The nanoparticles create a cluster structure which is influenced by increasing distances.
Ligand-protected gold clusters: the structure, synthesis and applications
NASA Astrophysics Data System (ADS)
Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.
2015-11-01
Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.
Catalysis applications of size-selected cluster deposition
Vajda, Stefan; White, Michael G.
2015-10-23
In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less
Uţă, M M; King, R B
2012-05-31
Structures of the beryllium-centered germanium clusters Be@Ge(n)(z) (n = 8, 7, 6; z = -4, -2, 0, +2) have been investigated by density functional theory to provide some insight regarding the smallest metal cluster that can encapsulate an interstitial atom. The lowest energy structures of the eight-vertex Be@Ge(8)(z) clusters (z = -4, -2, 0, +2) all have the Be atom at the center of a closed polyhedron, namely, a D(4d) square antiprism for Be@Ge(8)(4-), a D(2d) bisdisphenoid for Be@Ge(8)(2-), an ideal O(h) cube for Be@Ge(8), and a C(2v) distorted cube for Be@Ge(8)(2+). The Be-centered cubic structures predicted for Be@Ge(8) and Be@Ge(8)(2+) differ from the previously predicted lowest energy structures for the isoelectronic Ge(8)(2-) and Ge(8). This appears to be related to the larger internal volume of the cube relative to other closed eight-vertex polyhedra. The lowest energy structures for the smaller seven- and six-vertex clusters Be@Ge(n)(z) (n = 7, 6; z = -4, -2, 0, +2) no longer have the Be atom at the center of a closed Ge(n) polyhedron. Instead, either the Ge(n) polyhedron has opened up to provide a larger volume for the Be atom or the Be atom has migrated to the surface of the polyhedron. However, higher energy structures are found in which the Be atom is located at the center of a Ge(n) (n = 7, 6) polyhedron. Examples of such structures are a centered C(2v) capped trigonal prismatic structure for Be@Ge(7)(2-), a centered D(5h) pentagonal bipyramidal structure for Be@Ge(7), a centered D(3h) trigonal prismatic structure for Be@Ge(6)(4-), and a centered octahedral structure for Be@Ge(6). Cluster buildup reactions of the type Be@Ge(n)(z) + Ge(2) → Be@Ge(n+2)(z) (n = 6, 8; z = -4, -2, 0, +2) are all predicted to be highly exothermic. This suggests that interstitial clusters having an endohedral atom inside a bare post transition element polyhedron with eight or fewer vertices are less than the optimum size. This is consistent with the experimental observation of several types of 10-vertex polyhedral bare post transition element clusters with interstitial atoms but the failure to observe such clusters with external polyhedra having eight or fewer vertices.
Local structure of NiPd solid solution alloys and its response to ion irradiation
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun; ...
2018-04-27
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Local structure of NiPd solid solution alloys and its response to ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Rios, Daniel; Gillett-Kunnath, Miriam M; Taylor, Jacob D; Oliver, Allen G; Sevov, Slavi C
2011-03-21
Nickel atoms were inserted into nine-atom deltahedral Zintl ions of E(9)(4-) (E = Ge, Sn) via reactions with Ni(cod)(2) (cod = cyclooctadiene), and [Ni@Sn(9)](3-) was structurally characterized. Both the empty and the Ni-centered clusters react with TlCp (Cp = cyclopentadienyl anion) and add a thallium vertex to form the deltahedral ten-atom closo-species [E(9)Tl](3-) and [Ni@E(9)Tl](3-), respectively. The structures of [Ge(9)Tl](3-) and [Ni@Sn(9)Tl](3-) showed that, as expected, the geometry of the ten-atom clusters is that of a bicapped square antiprism where the Tl-atom occupies one of the two capping vertices. This illustrates that centering a nine-atom cluster with a nickel atom does not change its reactivity toward TlCp. All compounds were characterized by electrospray mass spectrometry.
Steenbergen, Krista G; Gaston, Nicola
2013-10-07
First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.
Accelerating atomic structure search with cluster regularization
NASA Astrophysics Data System (ADS)
Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.
2018-06-01
We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.
Absence of single critical dose for the amorphization of quartz under ion irradiation
NASA Astrophysics Data System (ADS)
Zhang, S.; Pakarinen, O. H.; Backholm, M.; Djurabekova, F.; Nordlund, K.; Keinonen, J.; Wang, T. S.
2018-01-01
In this work, we first simulated the amorphization of crystalline quartz under 50 keV 23 Na ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eVṡatom-1 . We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eVṡatom-1 . The continued evolution of the SiO2 structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
MeV ion-induced movement of lattice disorder in single crystalline silicon
NASA Astrophysics Data System (ADS)
Sen, P.; Akhtar, J.; Russell, F. M.
2000-08-01
We provide experimental evidence for the transport of atomic disorder over large distances, in device grade single-crystalline silicon, following irradiation with 200 MeV silver ions. Pile-up of lattice defects or disorder is effected at predetermined locations, spatially separated from the irradiation site. These are revealed by STM scans with atomic resolution, of an intermediate region, spanning from irradiated to shadowed parts of the crystal surface. The experimental results are consistent with transport of disorder through breather-like intrinsic localised excitations.
Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters.
Cheng, Daojian; Wang, Wenchuan; Huang, Shiping
2008-05-14
Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.
Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys
NASA Astrophysics Data System (ADS)
Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng
2018-05-01
The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.
Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen
NASA Astrophysics Data System (ADS)
Fadanelli, R. C.; Grande, P. L.; Schiwietz, G.
2008-03-01
The electronic energy loss of molecular clusters as a function of impact parameter is far less understood than atomic energy losses. For instance, there are no analytical expressions for the energy loss as a function of impact parameter for cluster ions. In this work, we describe two procedures to evaluate the combined energy loss of molecules: Ab initio calculations within the semiclassical approximation and the coupled-channels method using atomic orbitals; and simplified models for the electronic cluster energy loss as a function of the impact parameter, namely the molecular perturbative convolution approximation (MPCA, an extension of the corresponding atomic model PCA) and the molecular unitary convolution approximation (MUCA, a molecular extension of the previous unitary convolution approximation UCA). In this work, an improved ansatz for MPCA is proposed, extending its validity for very compact clusters. For the simplified models, the physical inputs are the oscillators strengths of the target atoms and the target-electron density. The results from these models applied to an atomic hydrogen target yield remarkable agreement with their corresponding ab initio counterparts for different angles between cluster axis and velocity direction at specific energies of 150 and 300 keV/u.
Autoionization following nanoplasma formation in atomic and molecular clusters
NASA Astrophysics Data System (ADS)
Schütte, Bernd; Lahl, Jan; Oelze, Tim; Krikunova, Maria; Vrakking, Marc J. J.; Rouzée, Arnaud
2016-05-01
Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Phase stability and electronic structure of UMo2Al20: A first-principles study
NASA Astrophysics Data System (ADS)
Liu, Peng-Chuang; Xian, Ya-Jiang; Wang, Xin; Zhang, Yu-Ting; Zhang, Peng-Cheng
2017-09-01
In this paper, the phase stability of UMo2Al20 was explored using cluster formula in combination with first-principles calculations. Cluster formula analysis uncovered that the compound was composed of two principal clusters, i.e. [Mo-Al12] and [U-Al16]. The electronic interactions between U, Mo and Al atoms in this compound were discussed using elastic property, Bader charges and energy-resolved local bonding analysis, as well as the electronic interactions between Mo and Al atoms in [Mo-Al12] cluster and between U and Al atoms in [U-Al16] cluster. It revealed that UMo2Al20 satisfied the mechanical stability criterion for cubic system, and exhibited near ionic bonding character with weak bonding directionality. The calculations within both standard DFT and HSE frameworks demonstrated that U and Al atoms acted as an electron donor while Mo atoms acted as electron acceptor. The intrinsic stability of UMo2Al20 mainly stemmed from the bonding states of Mo-Al bonds and Al-Al bonds in [Mo-Al12] cluster. These calculations provide a further insight on the CeCr2Al20-type ternary compounds.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Aruga, Yasuhiro; Kozuka, Masaya; Takaki, Yasuo; Sato, Tatsuo
2014-12-01
Temporal changes in the number density, size distribution, and chemical composition of clusters formed during natural aging at room temperature and pre-aging at 363 K (90 °C) in an Al-0.62Mg-0.93Si (mass pct) alloy were evaluated using atom probe tomography. More than 10 million atoms were examined in the cluster analysis, in which about 1000 clusters were obtained for each material after various aging treatments. The statistically proven records show that both number density and the average radius of clusters in pre-aged materials are larger than in naturally aged materials. It was revealed that the fraction of clusters with a low Mg/Si ratio after natural aging for a short time is higher than with other aging treatments, regardless of cluster size. This indicates that Si-rich clusters form more easily after short-period natural aging, and that Mg atoms can diffuse into the clusters or possibly form another type of Mg-Si cluster after prolonged natural aging. The formation of large clusters with a uniform Mg/Si ratio is encouraged by pre-aging. It can be concluded that an increase of small clusters with various Mg/Si ratios does not promote the bake-hardening (BH) response, whereas large clusters with a uniform Mg/Si ratio play an important role in hardening during the BH treatment at 443 K (170 °C).
Revealing the Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-Organization.
Krishnan, N M Anoop; Wang, Bu; Sant, Gaurav; Phillips, James C; Bauchy, Mathieu
2017-09-20
Despite the crucial role of concrete in the construction of nuclear power plants, the effects of radiation exposure (i.e., in the form of neutrons) on the calcium-silicate-hydrate (C-S-H, i.e., the glue of concrete) remain largely unknown. Using molecular dynamics simulations, we systematically investigate the effects of irradiation on the structure of C-S-H across a range of compositions. Expectedly, although C-S-H is more resistant to irradiation than typical crystalline silicates, such as quartz, we observe that radiation exposure affects C-S-H's structural order, silicate mean chain length, and the amount of molecular water that is present in the atomic network. By topological analysis, we show that these "structural effects" arise from a self-organization of the atomic network of C-S-H upon irradiation. This topological self-organization is driven by the (initial) presence of atomic eigenstress in the C-S-H network and is facilitated by the presence of water in the network. Overall, we show that C-S-H exhibits an optimal resistance to radiation damage when its atomic network is isostatic (at Ca/Si = 1.5). Such an improved understanding of the response of C-S-H to irradiation can pave the way to the design of durable concrete for radiation applications.
Derivatized gold clusters and antibody-gold cluster conjugates
Hainfeld, James F.; Furuya, Frederic R.
1994-11-01
Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.
NASA Technical Reports Server (NTRS)
Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.
1997-01-01
The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.
NASA Astrophysics Data System (ADS)
Kapustin, P.; Svetukhin, V.; Tikhonchev, M.
2017-06-01
The atomic displacement cascade simulations near symmetric tilt grain boundaries (GBs) in hexagonal close packed-Zirconium were considered in this paper. Further defect structure analysis was conducted. Four symmetrical tilt GBs -∑14?, ∑14? with the axis of rotation [0 0 0 1] and ∑32?, ∑32? with the axis of rotation ? - were considered. The molecular dynamics method was used for atomic displacement cascades' simulation. A tendency of the point defects produced in the cascade to accumulate near the GB plane, which was an obstacle to the spread of the cascade, was discovered. The results of the point defects' clustering produced in the cascade were obtained. The clusters of both types were represented mainly by single point defects. At the same time, vacancies formed clusters of a large size (more than 20 vacancies per cluster), while self-interstitial atom clusters were small-sized.
Sequential desorption energy of hydrogen from nickel clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deepika,; Kumar, Rakesh, E-mail: rakesh@iitrpr.ac.in; R, Kamal Raj.
2015-06-24
We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage andmore » regeneration of Hydrogen as a clean energy carrier.« less
Yang, Zhi; Xiong, Shi-Jie
2008-09-28
The geometries stability, electronic properties, and magnetism of Y(n)O clusters up to n=14 are systematically studied with density functional theory. In the lowest-energy structures of Y(n)O clusters, the equilibrium site of the oxygen atom gradually moves from an outer site of the cluster, via a surface site, and finally, to an interior site as the number of the Y atoms increases from 2 to 14. Starting from n=12, the O atom falls into the center of the cluster with the Y atoms forming the outer frame. The results show that clusters with n=2, 4, 8, and 12 are more stable than their respective neighbors, and that the total magnetic moments of Y(n)O clusters are all quite small except Y(12)O cluster. The lowest-energy structure of Y(12)O cluster is a perfect icosahedron with a large magnetic moment 6mu(B). In addition, we find that the total magnetic moments are quenched for n=2, 6, and 8 due to the closed-shell electronic configuration. The calculated ionization potentials and electron affinities are in good agreement with the experimental results, which imply that the present theoretical treatments are satisfactory.
Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan
2016-02-01
Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.
Carbon, oxygen and intrinsic defect interactions in germanium-doped silicon
NASA Astrophysics Data System (ADS)
Londos, C. A.; Sgourou, E. N.; Chroneos, A.; Emtsev, V. V.
2011-10-01
Production and annealing of oxygen-vacancy (VO) and oxygen-carbon (CiOi, CiOiI) defects in germanium-doped Czochralski-grown silicon (Cz-Si) containing carbon are investigated. All the samples were irradiated with 2 MeV fast electrons. Radiation-produced defects are studied using infrared spectroscopy by monitoring the relevant bands in optical spectra. For the VO defects, it is established that the doping with Ge affects the thermal stability of VO (830 cm-1) defects as well as their fraction converted to VO2 (888 cm-1) defects. In Ge-free samples containing carbon, it was found that carbon impurity atoms do not affect the thermal stability of VO defects, although they affect the fraction of VO defects that is converted to VO2 complexes. Considering the oxygen-carbon complexes, it is established that the annealing of the 862 cm-1 band associated with the CiOi defects is accompanied with the emergence of the 1048 cm-1 band, which has earlier been assigned to the CsO2i center. The evolution of the CiOiI bands is also traced. Ge doping does not seem to affect the thermal stability of the CiOi and CiOiI defects. Density functional theory (DFT) calculations provide insights into the stability of the defect clusters (VO, CiOi, CiOiI) at an atomic level. Both experimental and theoretical results are consistent with the viewpoint that Ge affects the stability of the VO but does not influence the stability of the oxygen-carbon clusters. DFT calculations demonstrate that C attracts both Oi and VO pairs predominately forming next nearest neighbor clusters in contrast to Ge where the interactions with Oi and VO are more energetically favorable at nearest neighbor configurations.
Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S.; Takiyama, K.; Hasegawa, N.
Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasmamore » is generated.« less
C 60 -induced Devil's Staircase transformation on a Pb/Si(111) wetting layer
Wang, Lin -Lin; Johnson, Duane D.; Tringides, Michael C.
2015-12-03
Density functional theory is used to study structural energetics of Pb vacancy cluster formation on C 60/Pb/Si(111) to explain the unusually fast and error-free transformations between the “Devil's Staircase” (DS) phases on the Pb/Si(111) wetting layer at low temperature (~110K). The formation energies of vacancy clusters are calculated in C 60/Pb/Si(111) as Pb atoms are progressively ejected from the initial dense Pb wetting layer. Vacancy clusters larger than five Pb atoms are found to be stable with seven being the most stable, while vacancy clusters smaller than five are highly unstable, which agrees well with the observed ejection rate ofmore » ~5 Pb atoms per C 60. Furthermore, the high energy cost (~0.8 eV) for the small vacancy clusters to form indicates convincingly that the unusually fast transformation observed experimentally between the DS phases, upon C 60 adsorption at low temperature, cannot be the result of single-atom random walk diffusion but of correlated multi-atom processes.« less
Zhang, Xiuyun; Ng, Man-Fai; Wang, Yanbiao; Wang, Jinlan; Yang, Shuo-Wang
2009-09-22
Europium (Eu)-cyclootetatrene (COT = C(8)H(8)) multidecker clusters (Eu(n)COT(n+1), n = 1-4) are studied by relativistic density functional theory calculations. These clusters are found to be thermodynamically stable with freely rotatable COT rings, and their total magnetic moments (MMs) increase linearly along with the number of Eu atoms. Each Eu atom contributes about 7 mu(B) to the cluster. Meanwhile, the internal COT rings have little MM contribution while the external COT rings have about 1 mu(B) MM aligned in opposite direction to that of the Eu atoms. The total MM of the Eu(n)COT(n+1) clusters can thus be generalized as 7n - 2 mu(B) where n is the number of Eu atoms. Besides, the ground states of these clusters are ferromagnetic and energetically competitive with the antiferromagnetic states, meaning that their spin states are very unstable, especially for larger clusters. More importantly, we uncover an interesting bonding characteristic of these clusters in which the interior ionic structure is capped by two hybrid covalent-ionic terminals. We suggest that such a characteristic makes the Eu(n)COT(n+1) clusters extremely stable. Finally, we reveal that for the positively charged clusters, the hybrid covalent-ionic terminals will tip further toward the interior part of the clusters to form deeper covalent-ionic caps. In contrast, the negatively charged clusters turn to pure ionic structures.
Functionalization of Carbon Nanotubes using Atomic Hydrogen
NASA Technical Reports Server (NTRS)
Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)
2001-01-01
We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.
NASA Astrophysics Data System (ADS)
Pivin, J. C.; Colombo, P.; Sendova-Vassileva, M.; Salomon, J.; Sagon, G.; Quaranta, A.
1998-05-01
Thin films of polysiloxanes and polycarbosilanes with various substituents were converted into SiOC and SiC ceramics by irradiation with ions of increasing masses. The transformation kinetics as a function of the ion dose was assessed by means of ion beam analyses (RBS, NRA, ERDA), compaction measurements, spectroscopies of infrared absorption and Raman scattering. The kinetics depends strongly on the linear density of electronic excitations. The formed radicals tend to react with the atmosphere after irradiations when this density is too low for permitting their combination into crosslinks. Part of the C atoms segregate into clusters with a noticeable degree of tetragonal hybridization, varying with the nature of side groups in the polymeric precursor. This precipitation affords to the films interesting properties: (1) a strong yellow photoluminescence, within a given range of ion doses where the quantum dots of C are not too coarse or too numerous; (2) at higher doses, a hardness reaching that of amorphous SiC and three times that of films converted by heat treatment at 1000-1200°C (as evidenced by nanoindentation tests); (3) a greatly improved thermochemical stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Yang, Ying; Busby, Jeremy T.
Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Furthermore, such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Yang, Ying; Allen, Todd R.
Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang
2014-11-07
This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO 2 were derived for both intrinsic conditions and under irradiation. The importance of the large X eU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequencemore » of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.« less
NASA Astrophysics Data System (ADS)
Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir
2018-02-01
Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T < 100 °C. In a depth profile manner, the implantation impact according to defined peak profile was investigated using variable energy slow positrons, with the primary focus on the 2-13 dpa region. The obtained data were compared to published data on Optifer IX steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.
Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.
Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki
2016-01-07
Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.
High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+
NASA Astrophysics Data System (ADS)
Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.
2018-03-01
The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.
Helium cluster isolation spectroscopy
NASA Astrophysics Data System (ADS)
Higgins, John Paul
Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.
Structure determination in 55-atom Li-Na and Na-K nanoalloys.
Aguado, Andrés; López, José M
2010-09-07
The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.
Gupta, Ujjwal; Reber, Arthur C; Clayborne, Penee A; Melko, Joshua J; Khanna, Shiv N; Castleman, A W
2008-12-01
Synergistic studies of bismuth doped tin clusters combining photoelectron spectra with first principles theoretical investigations establish that highly charged Zintl ions, observed in the condensed phase, can be stabilized as isolated gas phase clusters through atomic substitution that preserves the overall electron count but reduces the net charge and thereby avoids instability because of coulomb repulsion. Mass spectrometry studies reveal that Sn(8)Bi(-), Sn(7)Bi(2)(-), and Sn(6)Bi(3)(-) exhibit higher abundances than neighboring species, and photoelectron spectroscopy show that all of these heteroatomic gas phase Zintl analogues (GPZAs) have high adiabatic electron detachment energies. Sn(6)Bi(3)(-) is found to be a particularly stable cluster, having a large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. Theoretical calculations demonstrate that the Sn(6)Bi(3)(-) cluster is isoelectronic with the well know Sn(9)(-4) Zintl ion; however, the fluxionality reported for Sn(9)(-4) is suppressed by substituting Sn atoms with Bi atoms. Thus, while the electronic stability of the clusters is dominated by electron count, the size and position of the atoms affects the dynamics of the cluster as well. Substitution with Bi enlarges the cage compared with Sn(9)(-4) making it favorable for endohedral doping, findings which suggest that these cages may find use for building blocks of cluster assembled materials.
Mechanisms of electrical isolation in O+ -irradiated ZnO
NASA Astrophysics Data System (ADS)
Zubiaga, A.; Tuomisto, F.; Coleman, V. A.; Tan, H. H.; Jagadish, C.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.
2008-07-01
We have applied positron annihilation spectroscopy combined with sheet resistance measurements to study the electrical isolation of thin ZnO layers irradiated with 2 MeV O+ ions at various fluences. Our results indicate that Zn vacancies, the dominant defects detected by positrons, are produced in the irradiation at a relatively low rate of about 2000cm-1 when the ion fluence is at most 1015cm-2 and that vacancy clusters are created at higher fluences. The Zn vacancies introduced in the irradiation act as dominant compensating centers and cause the electrical isolation, while the results suggest that the vacancy clusters are electrically inactive.
Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters
NASA Astrophysics Data System (ADS)
Dillinger, Sebastian; Mohrbach, Jennifer; Niedner-Schatteburg, Gereon
2017-11-01
We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5-20, m = 1 - mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.
Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials
NASA Astrophysics Data System (ADS)
Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.
2000-12-01
Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.
Derivatized gold clusters and antibody-gold cluster conjugates
Hainfeld, J.F.; Furuya, F.R.
1994-11-01
Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzanov, A. S.; Obolenskiy, S. V., E-mail: obolensk@rf.unn.ru; Kozlov, V. A.
We analyze the electron transport through the thin base of a GaAs heterojunction bipolar transistor with regard to fluctuations in the spatial distribution of defect clusters induced by irradiation with a fissionspectrum fast neutron flux. We theoretically demonstrate that the homogeneous filling of the working region with radiation-induced defect clusters causes minimum degradation of the dc gain of the heterojunction bipolar transistor.
Metal-atom Interactions and Clustering in Organic Semiconductor Systems
NASA Astrophysics Data System (ADS)
Tomita, Yoko; Park, Tea-uk; Nakayama, Takashi
2017-07-01
The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
Classification Order of Surface-Confined Intermixing at Epitaxial Interface
NASA Astrophysics Data System (ADS)
Michailov, M.
The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.
NASA Astrophysics Data System (ADS)
Toshima, Naoki; Yamaji, Yumi; Teranishi, Toshiharu; Yonezawa, Tetsu
1995-03-01
Carbon dioxide was reduced to methane by visible-light irradiation of a solution composed of tris(bipyridine)ruthenium(III) as photosensitizer, ethylenediaminetetraacetic acid disodium salt as sacrificial reagent, methyl viologen as electron relay, and a colloidal dispersion of polymer-protected noble-metal clusters, prepared by alcohol-reduction, as catalyst. Among the noble-metal clusters examined, Pt clusters showed the highest activity for the formation of methane as well as hydrogen. In order to improve the activity, oxidized clusters and bimetallic clusters were also applied. For example, the CH4 yield in 3-h irradiation increased from 51 x 10-3 μmol with unoxidized Pt clusters to 72 x 10-3 μmol with partially oxidized ones. In the case of Pt/Ru bimetalic systems, the improvement of the catalytic activity by air treatment was much greater than in case of monometallic clusters.
Electronic and magnetic properties of small rhodium clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework.more » The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.« less
NASA Astrophysics Data System (ADS)
Deng, Xiao-Jiao; Kong, Xiang-Yu; Liang, Xiaoqing; Yang, Bin; Xu, Hong-Guang; Xu, Xi-Ling; Feng, Gang; Zheng, Wei-Jun
2017-12-01
The structural, electronic, and magnetic properties of FeGen-/0 (n = 3-12) clusters were investigated by using anion photoelectron spectroscopy in combination with density functional theory calculations. For both anionic and neutral FeGen (n = 3-12) clusters with n ≤ 7, the dominant structures are exohedral. The FeGe8-/0 clusters have half-encapsulated boat-shaped structures, and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage from n = 9 to 11. The structures of FeGe10-/0 can be viewed as two Ge atoms symmetrically capping the opening of the boat-shaped structure of FeGe8, and those of FeGe12-/0 are distorted hexagonal prisms with the Fe atom at the center. Natural population analysis shows that there is an electron transfer from the Ge atoms to the Fe atom at n = 8-12. The total magnetic moment of FeGen-/0 and local magnetic moment of the Fe atom have not been quenched.
Kong, Fanjie; Hu, Yanfei
2014-03-01
The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).
NASA Astrophysics Data System (ADS)
Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y.; Nobusada, Katsuyuki; Jin, Rongchao
2016-03-01
Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications. Electronic supplementary information (ESI) available: The pump dependent transient absorption spectra and the corresponding global analysis results. See DOI: 10.1039/c6nr01008c
Classical plasma dynamics of Mie-oscillations in atomic clusters
NASA Astrophysics Data System (ADS)
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
NASA Astrophysics Data System (ADS)
Li, Maozhi; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ho, Kai-Ming
2008-05-01
Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of β relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of β relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long time scale.
Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.
2002-12-01
The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.
On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel
NASA Astrophysics Data System (ADS)
Lösönen, Pekka
2017-12-01
Irradiation resolution of gas atoms and vacancies from intra- and intergranular bubbles in sintered UO2 fuel was studied by comparing macroscopic models with a more mechanistic approach. The applied macroscopic models imply the resolution rate of gas atoms to be proportional to gas concentration in intragranular bubbles and at grain boundary (including intergranular bubbles). A relation was established between the macroscopic models and a single encounter of an energetic fission fragment with a bubble. The effect of bubble size on resolution was quantified. The number of resoluted gas atoms per encounter of a fission fragment per bubble was of the same order of magnitude for intra- and intergranular bubbles. However, the resulting macroscopic resolution rate of gas atoms was about two orders of magnitude larger from intragranular bubbles. The number of vacancies resoluted from a grain face bubble by a passing fission fragment was calculated. The obtained correlations for resolution of gas atoms from intragranular bubbles and grain boundaries and for resolution of vacancies from grain face bubbles were used to demonstrate the effect of irradiation resolution on fission gas release.
Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis.
Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy
2018-05-01
This study aims to cast light on the nature of interactions and cooperativity that exists in linear dimethyl sulfoxide (DMSO) clusters using dispersion corrected density functional theory. In the linear DMSO, DMSO molecules in the middle of the clusters are bound strongly than at the terminal. The plot of the total binding energy of the clusters vs the cluster size and mean polarizabilities vs cluster size shows an excellent linearity demonstrating the presence of cooperativity effect. The computed incremental binding energy of the clusters remains nearly constant, implying that DMSO addition at the terminal site can happen to form an infinite chain. In the linear clusters, two σ-hole at the terminal DMSO molecules were found and the value on it was found to increase with the increase in cluster size. The quantum theory of atoms in molecules topography shows the existence of hydrogen and SO⋯S type in linear tetramer and larger clusters. In the dimer and trimer SO⋯OS type of interaction exists. In 2D non-covalent interactions plot, additional peaks in the regions which contribute to the stabilization of the clusters were observed and it splits in the trimer and intensifies in the larger clusters. In the trimer and larger clusters in addition to the blue patches due to hydrogen bonds, additional, light blue patches were seen between the hydrogen atom of the methyl groups and the sulphur atom of the nearby DMSO molecule. Thus, in addition to the strong H-bonds, strong electrostatic interactions between the sulphur atom and methyl hydrogens exists in the linear clusters. Copyright © 2018 Elsevier Inc. All rights reserved.
The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study
NASA Astrophysics Data System (ADS)
Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong
2018-05-01
The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.
Surface passivation for tight-binding calculations of covalent solids.
Bernstein, N
2007-07-04
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Surface passivation for tight-binding calculations of covalent solids
NASA Astrophysics Data System (ADS)
Bernstein, N.
2007-07-01
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
Li, Yejun; Tam, Nguyen Minh; Claes, Pieterjan; Woodham, Alex P; Lyon, Jonathan T; Ngan, Vu Thi; Nguyen, Minh Tho; Lievens, Peter; Fielicke, André; Janssens, Ewald
2014-09-18
The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.
Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G
2015-03-24
The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.
The irradiation behavior of atomized U-Mo alloy fuels at high temperature
NASA Astrophysics Data System (ADS)
Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.
2001-04-01
Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.
Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F
2015-05-28
Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and hence, also affecting the location of the Ce(III) cations and the structure of the TM13 clusters.
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael K.; Parish, Chad M.; Bei, Hongbin
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
Miller, Michael K.; Parish, Chad M.; Bei, Hongbin
2014-12-18
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
NASA Astrophysics Data System (ADS)
Miller, M. K.; Parish, C. M.; Bei, H.
2015-07-01
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.
Pauling, L
1988-06-01
Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.
Pauling, Linus
1988-01-01
Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929
NASA Astrophysics Data System (ADS)
Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.
2017-07-01
Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.
2016-12-01
Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.
Hardening of ODS ferritic steels under irradiation with high-energy heavy ions
NASA Astrophysics Data System (ADS)
Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.
2017-09-01
Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.
Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters
NASA Astrophysics Data System (ADS)
Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.
2018-04-01
In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.
Formation of fivefold axes in the FCC-metal nanoclusters
NASA Astrophysics Data System (ADS)
Myasnichenko, Vladimir S.; Starostenkov, Mikhail D.
2012-11-01
Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.
Equilibrium geometries, electronic and magnetic properties of small AunNi- (n = 1-9) clusters
NASA Astrophysics Data System (ADS)
Tang, Cui-Ming; Chen, Xiao-Xu; Yang, Xiang-Dong
2014-05-01
Geometrical, electronic and magnetic properties of small AunNi- (n = 1-9) clusters have been investigated based on density functional theory (DFT) at PW91P86 level. An extensive structural search shows that the relative stable structures of AunNi- (n = 1-9) clusters adopt 2D structure for n = 1-5, 7 and 3D structure for n = 6, 8-9. And the substitution of a Ni atom for an Au atom in the Au-n+1 cluster obviously changes the structure of the host cluster. Moreover, an odd-even alternation phenomenon has been found for HOMO-LUMO energy gaps, indicating that the relative stable structures of the AunNi- clusters with odd-numbered gold atoms have a higher relative stability. Finally, the natural population analysis (NPA) and the vertical detachment energies (VDE) are studied, respectively. The theoretical values of VDE are reported for the first time to our best knowledge.
Catalysis by clusters with precise numbers of atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyo, Eric C.; Vajda, Stefan
2015-07-03
Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less
Thermodynamic properties of small aggregates of rare-gas atoms
NASA Technical Reports Server (NTRS)
Etters, R. D.; Kaelberer, J.
1975-01-01
The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.
Photodissociation and caging of HBr and HI molecules on the surface of large rare gas clusters.
Baumfalk, R; Nahler, N H; Buck, U
2001-01-01
Photodissociation experiments were carried out at a wavelength of 243 nm for single HBr and HI molecules adsorbed on the surface of large Nen, Arn, Krn and Xen clusters. The average size is about
DOE Office of Scientific and Technical Information (OSTI.GOV)
Numakura, H.
The structure and the formation mechanism of oxides during internal oxidation have attracted much attention, and extensive studies have been carried out on this subject. Recently, Jang et al. reported the results of atom-probe microanalysis of oxide particles, or solute-oxygen clusters, in an internally oxidized Cu-0.16 at.% Mg alloy. They found that the composition varies from particle to particle even in the same specimen, and reported that some clusters consist only of magnesium atoms. On the basis of the results, they suggested that the oxidation proceeds in this alloy as follows: (1) the solute atoms form clusters, (2) the clustersmore » absorb oxygen atoms to form both hypo- and hyperstoichiometric oxide particles, (3) the particles grow to form the stoichiometric oxide, MgO. They show the presence of Mg atom clusters with no oxygen association. By assuming that the analyzed area is in the unoxidized region, i.e., ahead of the oxidation front, they interpret this observation as evidence for clustering of the solute atoms prior to oxide formation. However, according to the phase diagram, such clustering is not expected in the absence of oxygen, since the solute concentration, 0.16 at.%, is far below the solubility limit at the oxidation temperature of 900[degree]C, about 3.5 at.%. In atom probe experiments, it sometimes happens that detection efficiencies for different ion species are considerably different because some experimental parameters are not chosen properly. It seems possible that the data resulted from an unusually low detection efficiency for O ions. Since their conclusion raises an important issue on the mechanism of internal oxidation, it is desirable to examine experimental conditions carefully, and to check the reproducibility of data.« less
Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun
2009-04-30
By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.
AFM study of the morphologic change of HDPE surface photografted with glycidyl methacrylate.
Wang, Huiliang; Han, Jianmei
2009-05-01
The UV-induced grafting of glycidyl methacrylate (GMA) onto high-density polyethylene (HDPE) and the atomic force microscopy (AFM) study of the morphologic change of the grafted surface are reported. The grafting was carried out in GMA acetone solutions with different monomer concentrations. Grafting was much faster in a solution with a higher monomer concentration. FTIR analyses proved that GMA had been successfully grafted onto HDPE. The morphologies of grafted HDPE surfaces changed with UV irradiation time. The monomer concentration had a significant effect on the morphologies of the grafted HDPE surfaces. The HDPE surface grafted in a solution with a higher monomer concentration was much rougher than that grafted in a solution with a lower monomer concentration. The growth models of the grafted granules or clusters are also proposed.
Defect-induced magnetism in cobalt-doped ZnO epilayers
NASA Astrophysics Data System (ADS)
Ciatto, G.; Di Trolio, A.; Fonda, E.; Alippi, P.; Polimeni, A.; Capizzi, M.; Varvaro, G.; Bonapasta, A. Amore
2014-02-01
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoO epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciatto, G.; Fonda, E.; Trolio, A. Di
We used a synergic Co-edge X-ray absorption spectroscopy (XAS) and density functional theory calculations approach to perform a study of defects which could account for the room temperature ferromagnetism of ZnCoO, an oxide of great potential interest in semiconductor spintronics. Our results suggest that a key role is played by specific defect complexes in which O vacancies are located close to the Co atoms. Extended defects such as Co clusters have a marginal function, although we observe their formation at the epilayer surface under certain growth conditions. We also show preliminary results of the study of hydrogen-induced defects in ZnCoOmore » epilayers deliberately hydrogen irradiated via a Kaufman source. Hydrogen was in fact predicted to mediate a ferromagnetic spin-spin interaction between neighboring magnetic impurities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G.; Allen, Todd R.
2016-02-23
A detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe–Cr–Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling, is presented. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy,more » while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region.« less
Structures and stability of metal-doped Ge nM (n = 9, 10) clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua
The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Structures and stability of metal-doped Ge nM (n = 9, 10) clusters
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...
2015-06-26
The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Structures and stability of metal-doped GenM (n = 9, 10) clusters
NASA Astrophysics Data System (ADS)
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.
2015-06-01
The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.
Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai; ...
2017-12-20
For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less
Optical Properties of Ar Ions Irradiated Nanocrystalline ZrC and ZrN Thin Films
NASA Technical Reports Server (NTRS)
Martin, C.; Miller, K. H.; Makino, H.; Craciun, D.; Simeone, D.; Craciun, V.
2017-01-01
Thin nanocrystalline ZrC and ZrN films (less than 400 nanometers), grown on (100) Si substrates at a substrate temperature of 500 degrees Centigrade by the pulsed laser deposition (PLD) technique, were irradiated by 800 kiloelectronvolts Ar ion irradiation with fluences from 1 times 10(sup 14) atoms per square centimeter up to 2 times 10(sup 15) atoms per square centimeter. Optical reflectance data, acquired from as-deposited and irradiated films, in the range of 500-50000 per centimeter (0.06–6 electronvolts), was used to assess the effect of irradiation on the optical and electronic properties. Both in ZrC and ZrN films we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate, i.e. possible increase in mobility, at higher irradiation flux. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major structural changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai
For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, E.; Vancoevering, G.; Was, G. S.
2017-02-01
Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.
NASA Astrophysics Data System (ADS)
Yadav, P. S.; Yadav, R. K.; Agrawal, B. K.
2007-02-01
An ab initio study of the stability, structural and electronic properties has been made for 49 gallium nitride nanoclusters, GaxNy (x+y = 2-5). Among the various configurations corresponding to a fixed x+y = n value, the configuration possessing the maximum value of binding energy (BE) is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize the geometries of the nanoclusters fully. The binding energies (BEs), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps and the bond lengths have been obtained for all the clusters. We have considered the zero-point energy (ZPE) corrections ignored by the earlier workers. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have been investigated for the most stable structures. The configurations containing the N atoms in majority are seen to be the most stable structures. The strong N-N bond has an important role in stabilizing the clusters. For clusters containing one Ga atom and all the others as N atoms, the BE increases monotonically with the number of the N atoms. The HOMO-LUMO gap and IP fluctuate with the cluster size n, having larger values for the clusters containing odd number of N atoms. On the other hand, the EA decreases with the cluster size up to n = 3, and shows slow fluctuations thereafter for the larger clusters. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA) because of the lower energies of the most stable ground state of the cationic (anionic) clusters. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in experiments.
Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schwarz, Helmut
2018-06-25
Mechanistic insight into the thermal O-H bond activation of water by the cubane-like, prototypical heteronuclear oxide cluster [Al 2 Mg 2 O 5 ] •+ has been derived from a combined experimental/computational study. Experiments in the highly diluted gas phase using Fourier transform ion-cyclotron resonance mass spectrometry show that hydrogen-atom abstraction from water by the cluster cation [Al 2 Mg 2 O 5 ] •+ occurs at ambient conditions accompanied by the liberation of an OH • radical. Due to a complete randomization of all oxygen atoms prior to fragmentation about 83% of the oxygen atoms of the hydroxyl radical released originate from the oxide cluster itself. The experimental findings are supported by detailed high-level quantum chemical calculations. The theoretical analysis reveals that the transfer of a formal hydrogen atom from water to the metal-oxide cation can proceed mechanistically via proton- or hydrogen-atom transfer exploiting different active sites of the cluster oxide. In addition to the unprecedented oxygen-atom scrambling, one of the more general and quite unexpected findings concerns the role of spin density at the hydrogen-acceptor oxide atom. While this feature is so crucial for [M-O] + /CH 4 couples, it is much less important in the O-H bond activation of water.
Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi
2015-12-24
Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.
NASA Astrophysics Data System (ADS)
Nakayama, Akira; Yamashita, Koichi
2001-01-01
Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].
Influence of Cr doping on the stability and structure of small cobalt oxide clusters.
Tung, Nguyen Thanh; Tam, Nguyen Minh; Nguyen, Minh Tho; Lievens, Peter; Janssens, Ewald
2014-07-28
The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, ConO+m and Con-1CrO+m (n = 2, 3; m = 2-6 and n = 4; m = 3-8), has been investigated using photodissociation mass spectrometry. Oxygen-rich ConO+m clusters (m ≥ n + 1 for n = 2, 4 and m ≥ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Con-1 CrO+m clusters, except CoCrO+2 and CoCrO+3, prefer to decay by eliminating a neutral oxygen molecule. Co2O+2, Co4O+3, Co4O+4, and CoCrO+2 are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.
Joining of graphene flakes by low energy N ion beam irradiation
NASA Astrophysics Data System (ADS)
Wu, Xin; Zhao, Haiyan; Pei, Jiayun; Yan, Dong
2017-03-01
An approach utilizing low energy N ion beam irradiation is applied in joining two monolayer graphene flakes. Raman spectrometry and atomic force microscopy show the joining signal under 40 eV and 1 × 1014 cm-2 N ion irradiation. Molecular dynamics simulations demonstrate that the joining phenomenon is attributed to the punch-down effect and the subsequent chemical bond generation between the two sheets. The generated chemical bonds are made up of inserted ions (embedded joining) and knocked-out carbon atoms (saturation joining). The electronic transport properties of the joint are also calculated for its applications.
Magic Numbers in Small Iron Clusters: A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunja; Mohrland, Andrew B.; Weck, Philippe F.
2014-10-03
We perform ab initio spin-polarized density functional calculations of Fen aggregates with n ≤ 17 atoms to reveal the origin of the observed magic numbers, which indicate particularly high stability of clusters with 7, 13 and 15 atoms. Our results clarify the controversy regarding the ground state geometry of clusters such as Fe5and indicate that magnetism plays an important role in determining the stability and magic numbers in small iron clusters.
Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.
García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar
2017-08-17
To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.
Finding Semirigid Domains in Biomolecules by Clustering Pair-Distance Variations
Schreiner, Wolfgang
2014-01-01
Dynamic variations in the distances between pairs of atoms are used for clustering subdomains of biomolecules. We draw on a well-known target function for clustering and first show mathematically that the assignment of atoms to clusters has to be crisp, not fuzzy, as hitherto assumed. This reduces the computational load of clustering drastically, and we demonstrate results for several biomolecules relevant in immunoinformatics. Results are evaluated regarding the number of clusters, cluster size, cluster stability, and the evolution of clusters over time. Crisp clustering lends itself as an efficient tool to locate semirigid domains in the simulation of biomolecules. Such domains seem crucial for an optimum performance of subsequent statistical analyses, aiming at detecting minute motional patterns related to antigen recognition and signal transduction. PMID:24959586
Comparative investigation of pure and mixed rare gas atoms on coronene molecules.
Rodríguez-Cantano, Rocío; Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; González-Lezana, Tomás; Villarreal, Pablo; Pérez de Tudela, Ricardo; Pirani, Fernando; Hernández-Rojas, Javier; Bretón, José
2017-01-21
Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.
Huang, Xintao; Yang, Jucai
2017-12-26
The most stable structures and electronic properties of TmSi n (n = 3-10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n + 1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n = 3-10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n = 3-10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, R.H.
1994-12-27
In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.
Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin
2017-01-01
The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density. PMID:28079191
Formation of Clustered DNA Damage after High-LET Irradiation: A Review
NASA Technical Reports Server (NTRS)
Hada, Megumi; Georgakilas, Alexandros G.
2008-01-01
Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.
Forck, Richard M; Pradzynski, Christoph C; Wolff, Sabine; Ončák, Milan; Slavíček, Petr; Zeuch, Thomas
2012-03-07
Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.
Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y; Nobusada, Katsuyuki; Jin, Rongchao
2016-04-07
Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M1@Au24(SR)18 (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au25(SR)18 cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.
Zhou, Meng; Qian, Huifeng; Sfeir, Matthew Y.; ...
2016-02-29
Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M 1@Au 24(SR) 18 (M = Pd, Pt; R = CH 2CH 2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M 1Au 12 core states; (2) core to shell relaxation in a few picoseconds; and (3)more » relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au 25(SR) 18 cluster. As a result, the detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.« less
Cluster size dependence of high-order harmonic generation
NASA Astrophysics Data System (ADS)
Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.
2017-08-01
We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Haifeng; Lin, Sen; Goetze, Joris
CeO2 supports are unique in their ability to trap ionic Pt, providing exceptional stability for isolated single atoms of Pt. Here, we explore the reactivity and stability of single atom Pt species for the industrially important reaction of light alkane dehydrogenation. The single atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but we observe no selectivity towards propene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when Sn is added to ceria, the single atom Pt catalyst undergoes an activation phase where it transforms into Pt-Sn clusters under reaction conditions. Formation ofmore » small Pt-Sn clusters allows the catalyst to achieve high selectivity towards propene, due to facile desorption of the product. The CeO2-supported Pt-Sn clusters are very stable, even during extended reaction at 680 °C. By adding water vapor to the feed, coke formation can almost completely be suppressed. Furthermore, the Pt-Sn clusters can be readily transformed back to the atomically dispersed species on ceria via oxidation, making Pt-Sn/CeO2 a fully regenerable catalyst.« less
Equilibrium structure and atomic vibrations of Nin clusters
NASA Astrophysics Data System (ADS)
Borisova, Svetlana D.; Rusina, Galina G.
2017-12-01
The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.
NASA Astrophysics Data System (ADS)
Hu, Yan-Fei; Jiang, Gang; Meng, Da-Qiao
2012-01-01
The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n = 1-10) and pure gold Au n (n ≤ 11) clusters. For the geometric structures of the Au n Rb (n = 1-10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n -1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n = 4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even-odd alternation phenomenon. The same pronounced even-odd alternations are found for the HOMO-LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster.
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Haijian; Huang, Hanchen; Wang, Jian
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Classification of ligand molecules in PDB with graph match-based structural superposition.
Shionyu-Mitsuyama, Clara; Hijikata, Atsushi; Tsuji, Toshiyuki; Shirai, Tsuyoshi
2016-12-01
The fast heuristic graph match algorithm for small molecules, COMPLIG, was improved by adding a structural superposition process to verify the atom-atom matching. The modified method was used to classify the small molecule ligands in the Protein Data Bank (PDB) by their three-dimensional structures, and 16,660 types of ligands in the PDB were classified into 7561 clusters. In contrast, a classification by a previous method (without structure superposition) generated 3371 clusters from the same ligand set. The characteristic feature in the current classification system is the increased number of singleton clusters, which contained only one ligand molecule in a cluster. Inspections of the singletons in the current classification system but not in the previous one implied that the major factors for the isolation were differences in chirality, cyclic conformations, separation of substructures, and bond length. Comparisons between current and previous classification systems revealed that the superposition-based classification was effective in clustering functionally related ligands, such as drugs targeted to specific biological processes, owing to the strictness of the atom-atom matching.
DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip
2017-10-11
Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.
Helium trapping in aluminium near the critical dose on blister formation
NASA Astrophysics Data System (ADS)
Fukahori, T.; Kanda, Y.; Mori, K.; Tobimatsu, H.
1985-08-01
Blistering and flaking caused by energetic He ions emitted from the plasma in fusion reactors possibly contribute to first-wall erosion. In order to study their characteristics, the numbers of He atoms trapped in He-ion-irradiated Al samples have been measured by a He atom measurement system and every sample has been observed by a scanning electron microscope. The samples have been prepared from a polycrystalline plate and irradiated with 20 keV He ions at room temperature. The saw-tooth like variation of the trapped He atoms with the dose has three edges corresponding to the blistering, flaking and double flaking, respectively. The critical doses for the three events are found to be 4 × 10 21, 7 × 10 21, 12 × 10 21 He atoms m -2, respectively. The average number of He atoms included in an event is 5.4 × 10 10 He atoms in the case of the blistering and 2.1 × 10 11 He atoms in the case of flaking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, M. B., E-mail: begonia@ubu.es; Vega, A.; Balbás, L. C.
2014-05-07
Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic propertiesmore » of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For n{sub c} = 21, the smallest size of endohedral Ti doped cationic clusters, the Ar binding energy decreases drastically, whereas the Ar-cluster distance increases substantially, point to Ar physisorption, as assumed by the experimentalists. Calculated Ar adsorption energies agree well with available experimental binding energies.« less
Pauling, Linus
1988-01-01
A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 Å is assigned to rapidly solidified Cu5Ni3Si2 and V15Ni10Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45° twinning on the basal plane. PMID:16593915
Pauling, L
1988-04-01
A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 A is assigned to rapidly solidified Cu(5)Ni(3)Si(2) and V(15)Ni(10)Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45 degrees twinning on the basal plane.
Effect of Ar{sup +} ion irradiation on the microstructure of pyrolytic carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Shanglei; Zhang, Dongsheng; Yang, Xinmei
2015-03-21
Pyrolytic carbon (PyC) coatings prepared by chemical vapor deposition were irradiated by 300 keV Ar{sup +} ions. Then, atomic force microscopy, synchrotron-based grazing incidence X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, and transmission electron microscopy were employed to study how Ar{sup +} irradiation affects the microstructure of PyC, including the microstructural damage mechanisms and physics driving these phenomena. The 300 keV Ar{sup +} ion irradiation deteriorated the structure along the c-axis, which increased the interlayer spacing between graphene layers. With increasing irradiation dose, the density of defect states on the surface of PyC coating increases, and the basal planes gradually loses theirmore » initial ordering resulting in breaks in the lattice and turbulence at the peak damage dose reaches 1.58 displacement per atom (dpa). Surprisingly, the PyC becomes more textured as it becomes richer in structural defects with increasing irradiation dose.« less
Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions
NASA Astrophysics Data System (ADS)
Medvedev, N.; Volkov, A. E.; Ziaja, B.
2015-12-01
In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects (μm-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.
Influence of UV irradiation on hydroxypropyl methylcellulose polymer films
NASA Astrophysics Data System (ADS)
Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.
2018-05-01
Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.
Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2017-12-01
The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.
1973-01-01
Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.
Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.; Smith, R. L.
1973-01-01
Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.
1988-04-01
Continue on reverse if necessary and identify by block number) Cluster beams offer a means of depositing high-quality thin films at low...either directly inclustered vapors of nonvolatile materials or Indirectly by bombarding the film duringdeposition with clusters of inert gases. When a...electron volt energy per atom. The suprathermal energy of thej depositing atoms is thought to produce unique thin films (either in quality, or in the ability
Hao, Zhi-Min; Chao, Meng-Yao; Liu, Yan; Song, Ying-Lin; Yang, Jun-Yi; Ding, Lifeng; Zhang, Wen-Hua; Lang, Jian-Ping
2018-06-19
Five stable clusters sharing the cuboidal [Ni4O4] skeleton are subjected to third-order nonlinear optical (NLO) property measurements. Preliminary results suggest that the NLO property is largely defined by the cluster core skeleton and the directly coordinated atoms, with limited contribution from the heavy atoms peripherally attached to the aromatic ligands.
Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.
Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M
2005-08-18
Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of the structural variations present in the cluster species studied shows an increase in C-H bond lengths with cluster size that closely correlates with the increased thermodynamic drive to full dehydrogenation. This correlation strongly suggests that all steps in the reaction are barrierless, and that weakening of the C-H bonds is directly reflected in the thermodynamics of the overall dehydrogenation process. It is also demonstrated that reaction exergonicity in the initial partial dehydrogenation step must be carried through as excess internal energy into the second dehydrogenation step.
Effect of MeV electron irradiation on the free volume of polyimide
NASA Astrophysics Data System (ADS)
Alegaonkar, P. S.; Bhoraskar, V. N.
2004-08-01
The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.
Ion mobility studies of PdC{sub n}{sup +} clusters: Where are the fullerenes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelimov, K.B.; Jarrold, M.F.
1995-12-14
Gas-phase ion mobility measurements have been used to study the structures and isomerization of PdC{sub n}{sup +} (n = 10-60) clusters. Non-fullerene isomers of PdC{sub n}{sup +} clusters are similar to those of C{sub n}{sup +} and MC{sub n}{sup +} (M = La and Nb) clusters, and include metal-containing mono- and bicyclic rings and graphite sheets. Neither endohedral nor nonendohedral PdC{sub n} {sup +} fullerene isomers are detected. When collisionally heated, PdC{sub n}{sup +} clusters efficiently convert into fullerenes, but the exothermicity of this process results in the loss of the Pd atom and the formation of a pure carbonmore » cluster cation. PdC{sub n}{sup +} bicyclic rings with an odd number of carbon atoms efficiently isomerize into monocyclic rings, while no evidence is found for this isomerization process for bicyclic rings with an even number of carbon atoms. 18 refs., 4 figs.« less
Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian
2015-11-01
We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.
Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.
Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J
2016-01-01
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.
Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms
Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.
2016-01-01
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367
Atomic structure of a decagonal Al-Pd-Mn phase
NASA Astrophysics Data System (ADS)
Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer
2017-12-01
We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.
NASA Astrophysics Data System (ADS)
You, Yan; Yoshida, Katsumi; Yano, Toyohiko
2018-05-01
Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.
NASA Astrophysics Data System (ADS)
Zhou, Pan-Pan; Liu, Shubin; Ayers, Paul W.; Zhang, Rui-Qin
2017-10-01
Condensed-to-atom Fukui functions which reflect the atomic reactivity like the tendency susceptible to either nucleophilic or electrophilic attack demonstrate the bonding trend of an atom in a molecule. Accordingly, Fukui functions based concepts, that is, bonding reactivity descriptors which reveal the bonding properties of molecules in the reaction were put forward and then applied to pericyclic and cluster reactions to confirm their effectiveness and reliability. In terms of the results from the bonding descriptors, a covalent bond can readily be predicted between two atoms with large Fukui functions (i.e., one governs nucleophilic attack while the other one governs electrophilic attack, or both of them govern radical attacks) for pericyclic reactions. For SinOm clusters' reactions, the clusters with a low O atom ratio readily form a bond between two Si atoms with big values of their Fukui functions in which they respectively govern nucleophilic and electrophilic attacks or both govern radical attacks. Also, our results from bonding descriptors show that Si—Si bonds can be formed via the radical mechanism between two Si atoms, and formations of Si—O and O—O bonds are possible when the O content is high. These results conform with experimental findings and can help experimentalists design appropriate clusters to synthesize Si nanowires with high yields. The approach established in this work could be generalized and applied to study reactivity properties for other systems.
NASA Astrophysics Data System (ADS)
Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom
2018-05-01
We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.
Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti
2015-12-15
We assess the consequences of the interface model-embedded-cluster or periodic-slab model-on the ability of DFT calculations to describe charge transfer (CT) in a particularly challenging case where periodic-slab calculations indicate a delocalized charge-transfer state. Our example is Cu atom adsorption on ZnO(10(1)0), and in fact the periodic slab calculations indicate three types of CT depending on the adsorption site: full CT, partial CT, and no CT. Interestingly, when full CT occurs in the periodic calculations, the calculated Cu atom adsorption energy depends on the underlying ZnO substrate supercell size, since when the electron enters the ZnO it delocalizes over as many atoms as possible. In the embedded-cluster calculations, the electron transferred to the ZnO delocalizes over the entire cluster region, and as a result the calculated Cu atom adsorption energy does not agree with the value obtained using a large periodic supercell, but instead to the adsorption energy obtained for a periodic supercell of roughly the same size as the embedded cluster. Different density functionals (of GGA and hybrid types) and basis sets (local atom-centered and plane-waves) were assessed, and we show that embedded clusters can be used to model Cu adsorption on ZnO(10(1)0), as long as care is taken to account for the effects of CT. © 2015 Wiley Periodicals, Inc.
Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wei, E-mail: qinw@qdu.edu.cn; Xia, Lin-Hua; Zhao, Li-Zhen
The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Related Structure Characters and Stability of Structural Defects in a Metallic Glass
Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng
2018-01-01
Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298
Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R
2009-04-02
In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziegielewski, J.; Jezowska-Trzebiatowska, B.; Kozlowski, H.
Commercial samples of 6-aminopenicillanic acid (6-APA), potassium benzyl- penicillin; procaine benzyl-penicillin, procaine hydrochlorides and sodium 3-(o- chlorophenyl)-5-methyl-4-isoxasol penicillin salt were irradiated with 0.5 to 40 Mrad and examined by the EPR method within the temperature range 100 to 300 deg K. No influence of the irradiation dose on powder EPR spectra structure has been stated, except for benzyl-penicillin procaine. In irradiated samples of antibiotics the presence of radicals with unpaired electrons on sulfur atoms and carbon atoms abuttmg on the thioether group has been stated. (auth)
MD simulation of plastic deformation nucleation in stressed crystallites under irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korchuganov, A. V., E-mail: avkor@ispms.tsc.ru; Zolnikov, K. P., E-mail: kost@ispms.tsc.ru; Kryzhevich, D. S., E-mail: kryzhev@ispms.tsc.ru
2016-12-15
The investigation of plastic deformation nucleation in metals and alloys under irradiation and mechanical loading is one of the topical issues of materials science. Specific features of nucleation and evolution of the defect system in stressed and irradiated iron, vanadium, and copper crystallites were studied by molecular dynamics simulation. Mechanical loading was performed in such a way that the modeled crystallite volume remained unchanged. The energy of the primary knock-on atom initiating a cascade of atomic displacements in a stressed crystallite was varied from 0.05 to 50 keV. It was found that atomic displacement cascades might cause global structural transformationsmore » in a region far larger than the radiation-damaged area. These changes are similar to the ones occurring in the process of mechanical loading of samples. They are implemented by twinning (in iron and vanadium) or through the formation of partial dislocation loops (in copper).« less
Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.; Marsik, S. J.
1974-01-01
The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.
Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odette, G.R.; Lucas, G.E.; Wirth, B.
1997-02-01
Radiation enhanced diffusion at RPV operating temperatures around 290{degrees}C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper,more » nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools.« less
A study of the pressure vessel steel of the WWER-440 unit 1 of the Kozloduy nuclear power plant
NASA Astrophysics Data System (ADS)
Kostadinova, E.; Velinov, N.; Avdjieva, T.; Mitov, I.; Rusanov, V.
2017-11-01
A comparison between highly neutron irradiated samples from the region of weld № 4 and low irradiated samples from weld № 1 taken from the pressure vessel of the WWER-440 Unit № 1 of the Kozloduy NPP has been performed. Measurements of the residual activity of samples from the outer surface of the reactor pressure vessel bottom corpus reveal very low activity of 60Co. Insofar as there the base and weld metal appear to be exposed to a very low neutron fluence, the samples from these locations can be considered as practically not affected and may serve as a reference basis for comparison with highly irradiated pressure vessel regions. The Mössbauer parameters isomer shift (IS) and quadrupole splitting (QS) were found to be absolutely irradiation insensitive. A stepwise reduction of the internal hyperfine magnetic field Bhf, each by about 2.6 T, was observed. This can be attributed to the replacement of one or two surrounding iron atoms as first nearest neighbors by non-iron alloying atoms. The Mössbauer experimental line widths for irradiated and non-irradiated samples are practically the same, which is a quite unexpected result. The area fraction ratio for the three main Zeeman sextet subspectra S1:S2:S3 shows very high irradiation sensitivity. For the bottom low irradiated region of the reactor vessel the values are S1:S2:S3 = 50.1:40.0:9.4. After seven years of operation between the pressure vessel annealing in 1989 and the autumn of 1996 when the samples from weld № 4 were taken the ratio changes strongly to S1:S2:S3 = 56.4:34.7:8.5. A possible explanation of this result is that neutron irradiation gives rise to a precipitation process involving predominantly alloying atoms as Ni, Mn, Cr, Mo and V which become mobile and precipitate in the form of carbides and/or P-rich phases and alloying atom aggregates. This "refinement" process lowers the partial area of subspectra S2 and S3 where alloying atoms are involved and leads to a higher area fraction of the pure iron component S1, which is the major experimental result. For a more complete Mössbauer investigation on the processes of generation of structure defects caused by the neutron fluence, a new series of measurements will be performed by using a set of so-called surveillance specimens with different irradiation histories which are available only for the WWER-1000 reactors of the Kozloduy NPP.
NASA Astrophysics Data System (ADS)
Sahoo, B. K.; Das, B. P.
2018-05-01
Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.
Sahoo, B K; Das, B P
2018-05-18
Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.
Field, Kevin G.; Yang, Ying; Busby, Jeremy T.; ...
2015-03-09
Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Furthermore, such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less
The role of electronic mechanisms in surface erosion and glow phenomena
NASA Technical Reports Server (NTRS)
Haglund, Richard F., Jr.
1987-01-01
Experimental studies of desorption induced by electronic transitions (DIET) are described. Such studies are producing an increasingly complete picture of the dynamical pathways through which incident electronic energy is absorbed and rechanneled to produce macroscopic erosion and glow. These mechanistic studies can determine rate constants for erosion and glow processes in model materials and provide valuable guidance in materials selection and development. Extensive experiments with electron, photon, and heavy particle irradiation of alkali halides and other simple model materials have produced evidence showing that: (1) surface erosion, consisting primarily in the ejection or desorption of ground-state neutral atoms, occurs with large efficiencies for all irradiated species; (2) surface glow, resulting from the radiative decay of desorbed atoms, likewise occurs for all irradiating species; (3) the typical mechanism for ground-state neutral desorption is exciton formation, followed by relaxation to a permanent, mobile electronic defect which is the precursor to bond-breaking in the surface or near-surface bulk of the material; and (4) the mechanisms for excited atom formation may include curve crossing in atomic collisions, interactions with surface defect or impurity states, or defect diffusion.
Spectra of helium clusters with up to six atoms using soft-core potentials
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2011-11-01
In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.
Perspective: Size selected clusters for catalysis and electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro
We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less
Perspective: Size selected clusters for catalysis and electrochemistry
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; ...
2018-03-15
We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less
Perspective: Size selected clusters for catalysis and electrochemistry
NASA Astrophysics Data System (ADS)
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan
2018-03-01
Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.
Molecular dynamics study of the melting of a supported 887-atom Pd decahedron.
Schebarchov, D; Hendy, S C; Polak, W
2009-04-08
We employ classical molecular dynamics simulations to investigate the melting behaviour of a decahedral Pd(887) cluster on a single layer of graphite (graphene). The interaction between Pd atoms is modelled with an embedded-atom potential, while the adhesion of Pd atoms to the substrate is approximated with a Lennard-Jones potential. We find that the decahedral structure persists at temperatures close to the melting point, but that just below the melting transition, the cluster accommodates to the substrate by means of complete melting and then recrystallization into an fcc structure. These structural changes are in qualitative agreement with recently proposed models, and they verify the existence of an energy barrier preventing softly deposited clusters from 'wetting' the substrate at temperatures below the melting point.
Melting of isolated tin nanoparticles
Bachels; Guntherodt; Schafer
2000-08-07
The melting of isolated neutral tin cluster distributions with mean sizes of about 500 atoms has been investigated in a molecular beam experiment by calorimetrically measuring the clusters' formation energies as a function of their internal temperature. For this purpose the possibility to adjust the temperature of the clusters' internal degrees of freedom by means of the temperature of the cluster source's nozzle was exploited. The melting point of the investigated tin clusters was found to be lowered by 125 K and the latent heat of fusion per atom is reduced by 35% compared to bulk tin. The melting behavior of the isolated tin clusters is discussed with respect to the occurrence of surface premelting.
NASA Astrophysics Data System (ADS)
Chernakov, Dmitry I.; Sidorov, Alexander I.; Stolyarchuk, Maxim V.; Kozlova, Darya A.; Krykova, Victoria A.; Nikonorov, Nikolay V.
2018-02-01
It is shown experimentally that in photo-thermo-refractive glasses the transformation of charged silver subnanosized molecular clusters to neutral state by UV irradiation results in the increase of glass refractive index. The increment of the refractive index reaches Δn = 0.76·10-4. Computer simulation has shown that the polarizability of neutral molecular clusters is by 20-40% larger than of charged ones. The reason of this is the increase of electron density and volume of electron density surfaces during the transformation of molecular cluster to the neutral state. The transition molecular cluster from the ground state to the excited state also results in the increase of its polarizability.
NASA Astrophysics Data System (ADS)
Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.
2017-11-01
Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.
Structural and magnetic evolution of bimetallic MnAu clusters driven by asymmetric atomic migration.
Wei, Xiaohui; Zhou, Rulong; Lefebvre, Williams; He, Kai; Le Roy, Damien; Skomski, Ralph; Li, Xingzhong; Shield, Jeffrey E; Kramer, Matthew J; Chen, Shuang; Zeng, Xiao Cheng; Sellmyer, David J
2014-03-12
The nanoscale structural, compositional, and magnetic properties are examined for annealed MnAu nanoclusters. The MnAu clusters order into the L1(0) structure, and monotonic size-dependences develop for the composition and lattice parameters, which are well reproduced by our density functional theory calculations. Simultaneously, Mn diffusion forms 5 Å nanoshells on larger clusters inducing significant magnetization in an otherwise antiferromagnetic system. The differing atomic mobilities yield new cluster nanostructures that can be employed generally to create novel physical properties.
Ultra-small rhenium clusters supported on graphene.
Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José
2015-03-28
The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.
Ultra-small rhenium clusters supported on graphene
Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José
2015-01-01
The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176
Melting of Cu nanoclusters by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying
2003-04-01
We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to Tm, N= Tm,Bulk- αN-1/3, dropping from Tm,Bulk=1360 K to Tm,456=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.
Solving the scalability issue in quantum-based refinement: Q|R#1.
Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P
2017-12-01
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
Dahms, Sven O.; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E.
2013-01-01
Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome. PMID:23385464
Mechanical and microstructural changes in tungsten due to irradiation damage
NASA Astrophysics Data System (ADS)
Uytdenhouwen, I.; Schwarz-Selinger, T.; Coenen, J. W.; Wirtz, M.
2016-02-01
Stress-relieved pure tungsten received three damage levels (0.10, 0.25 and 0.50 dpa) by self-tungsten ion beam irradiation at room temperature. Positron annihilation spectroscopy showed the formation of mono-vacancies and vacancy clusters after ion beam exposure. In the first irradiation step (0-0.10 dpa) some splitting up of large vacancy clusters occurred which became more numerous. For increasing dose to 0.25 dpa, growth of the vacancy clusters was seen. At 0.50 dpa a change in the defect formation seems to occur leading to a saturation in the lifetime signal obtained from the positrons. Nano-indentation on the cross-sections showed a flat damage depth distribution profile. The nano-indentation hardness increased for increasing damage dose without any saturation up to 0.50 dpa. This means that other defects such as dislocation loops and large sized voids seem to contribute.
Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study
NASA Astrophysics Data System (ADS)
Goswami, Sohini; Saha, Sushmita; Yadav, R. K.
2015-11-01
An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in the experiments.
Self-Learning Off-Lattice Kinetic Monte Carlo method as applied to growth on metal surfaces
NASA Astrophysics Data System (ADS)
Trushin, Oleg; Kara, Abdelkader; Rahman, Talat
2007-03-01
We propose a new development in the Self-Learning Kinetic Monte Carlo (SLKMC) method with the goal of improving the accuracy with which atomic mechanisms controlling diffusive processes on metal surfaces may be identified. This is important for diffusion of small clusters (2 - 20 atoms) in which atoms may occupy Off-Lattice positions. Such a procedure is also necessary for consideration of heteroepitaxial growth. The new technique combines an earlier version of SLKMC [1] with the inclusion of off-lattice occupancy. This allows us to include arbitrary positions of adatoms in the modeling and makes the simulations more realistic and reliable. We have tested this new approach for the case of the diffusion of small 2D Cu clusters diffusion on Cu(111) and found good performance and satisfactory agreement with results obtained from previous version of SLKMC. The new method also helped reveal a novel atomic mechanism contributing to cluster migration. We have also applied this method to study the diffusion of Cu clusters on Ag(111), and find that Cu atoms generally prefer to occupy off-lattice sites. [1] O. Trushin, A. Kara, A. Karim, T.S. Rahman Phys. Rev B 2005
NASA Astrophysics Data System (ADS)
Cheng, Jian-Yih; Fisher, Brandon L.; Guisinger, Nathan P.; Lilley, Carmen M.
2017-12-01
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni-Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni-Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I-V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. All of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.
Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.; ...
2017-05-22
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less
Vafazadeh, Rasoul; Willis, Anthony C
2016-01-01
Two copper(II) clusters Cu(4)OCl(6)(pyrazole)4, 1, and Cu(4)OBr(6)(Br-pyrazole)4, 2, have been synthesized by reacting acetylacetone and benzohydrazide (1:1 ratio) with CuX(2) (X = Cl for 1 and X= Br for 2) in methanol solutions. The structures of both clusters have been established by X-ray crystallography. The clusters contain four Cu, one O, six μ(2)-X atoms, and four pyrazole ligands. The pyrazoles was prepared in situ by the reaction of acetylacetone with benzohydrazide in methanol under reflux. In 2, the methine hydrogens of the pyrazole ligands have been replaced by bromine atoms. The four copper atoms encapsulate the central O atom in a tetrahedral arrangement. All copper atoms are five-coordinate and have similar coordination environments with slightly distorted trigonal bipyramidal geometry. The cyclic voltammogram of the clusters 1 and 2 show a one-electron quasi-reversible reduction wave in the region 0.485 to 0.731 V, and a one-electron quasi-reversible oxidation wave in the region 0.767 to 0.898 V. In 1, one irreversible oxidative response is observed on the positive of side of the voltammogram at 1.512 V and this can be assigned to Cu(II) to Cu(III) oxidation.
Factors driving stable growth of He clusters in W: first-principles study
NASA Astrophysics Data System (ADS)
Feng, Y. J.; Xin, T. Y.; Xu, Q.; Wang, Y. X.
2018-07-01
The evolution of helium (He) bubbles is responsible for the surface morphology variation and subsequent degradation of the properties of plasma-facing materials (PFMs) in nuclear fusion reactors. These severe problems unquestionably trace back to the behavior of He in PFMs, which is closely associated with the interaction between He and the matrix. In this paper, we decomposed the binding energy of the He cluster into three parts, those from W–W, W–He, and He–He interactions, using density functional theory. As a result, we clearly identified the main factors that determine a steplike decrease in the binding energy with increasing number of He atoms, which explains the process of self-trapping and athermal vacancy generation during He cluster growth in the PFM tungsten. The three interactions were found to synergetically shape the features of the steplike decrease in the binding energy. Fairly strong He–He repulsive forces at a short distance, which stem from antibonding states between He atoms, need to be released when additional He atoms are continuously bonded to the He cluster. This causes the steplike feature in the binding energy. The bonding states between W and He atoms in principle facilitate the decreasing trend of the binding energy. The decrease in binding energy with increasing number of He atoms implies that He clusters can grow stably.
Lithium-air batteries, method for making lithium-air batteries
Vajda, Stefan; Curtiss, Larry A.; Lu, Jun; Amine, Khalil; Tyo, Eric C.
2016-11-15
The invention provides a method for generating Li.sub.2O.sub.2 or composites of it, the method uses mixing lithium ions with oxygen ions in the presence of a catalyst. The catalyst comprises a plurality of metal clusters, their alloys and mixtures, each cluster consisting of between 3 and 18 metal atoms. The invention also describes a lithium-air battery which uses a lithium metal anode, and a cathode opposing the anode. The cathode supports metal clusters, each cluster consisting of size selected clusters, taken from a range of between approximately 3 and approximately 18 metal atoms, and an electrolyte positioned between the anode and the cathode.
Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M
2016-01-18
Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J
2016-11-15
Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale scanning electrochemical microscopy (SECM) imaging to resolve the electrocatalytic activity of individual electrodeposited NPs within an ensemble sample yielding consistent high k 0 values of ≥2 cm/s for the hydrogen oxidation reaction (HOR) at different NPs. We envision that our advanced electrochemical approaches will enable us to systematically address structure effects on the catalytic activity, thus providing a quantitative guideline for electrocatalysts in energy-related applications.
Estimating carbon cluster binding energies from measured Cn distributions, n <= 10
NASA Astrophysics Data System (ADS)
Pargellis, A. N.
1990-08-01
Experimental data are presented for the cluster distribution of sputtered negative carbon clusters, C-n, with n≤10. Additionally, clusters have been observed with masses indicating they are CsC-2n, with n≤4. The C-n data are compared with the data obtained by other groups, for neutral and charged clusters, using a variety of sources such as evaporation, sputtering, and laser ablation. The data are used to estimate the cluster binding energies En, using the universal relation, En=(n-1)ΔHn+RTe [ln(Jn/J1)+0.5 ln(n)-α-(ΔSn-ΔS1)/R], derived from basic kinetic and thermodynamic relations. The estimated values agree astonishingly well with values from the literature, varying from published values by at most a few percent. In this equation, Jn is the observed current of n-atom clusters, ΔHn is the heat of vaporization, ΔH1=7.41 eV, and Te ≊0.25 eV (2900 K) is the effective source temperature. The relative change in cluster entropy during sublimation from the solid to vapor phase is approximated to first order by the relation (ΔSn-ΔS1)/R =3.1+0.9(n-2), and is fit to published data for n between 2 and 5 and temperatures between 2000 and 4000 K. The parameter α is empirical, obtained by fitting the data to known binding energies for Cn≤5 clusters. For evaporation sources, α must be zero, but α˜7 when sputtering with Cs+ ions, indicating the sputtered clusters appear to be in thermodynamic equilibrium, but not the atoms. Several possible mechanisms for the formation of clusters during sputtering are examined. One plausible mechanism is that atoms diffuse on the graphite surface to form clusters which are then desorbed by energetic, recoil atoms created in subsequent sputtering events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
Torreggiani, Armida; Domènech, Jordi; Orihuela, Ruben; Ferreri, Carla; Atrian, Sílvia; Capdevila, Mercè; Chatgilialoglu, Chryssostomos
2009-06-08
Metallothioneins (MTs) are sulfur-rich proteins capable of binding metal ions to give metal clusters. The metal-MT aggregates used in this work were Zn- and Cd-QsMT, where QsMT is an MT from the plant Quercus suber. Reactions of reductive reactive species (H(*) atoms and e(aq)(-)), produced by gamma irradiation of water, with Zn- and Cd-QsMT were carried out in both aqueous solutions and vesicle suspensions, and were characterized by different approaches. By using a biomimetic model based on unsaturated lipid vesicle suspensions, the occurrence of tandem protein/lipid damage was shown. The reactions of reductive reactive species with methionine residues and/or sulfur-containing ligands afford diffusible sulfur-centred radicals, which migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety into the trans isomer. Tailored experiments allowed the reaction mechanism to be elucidated in some detail. The formation of sulfur-centred radicals is accompanied by the modification of the metal-QsMT complexes, which were monitored by various spectroscopic and spectrometric techniques (Raman, CD, and ESI-MS). Attack of the H(*) atom and e(aq)(-) on the metal-QsMT aggregates can induce significant structural changes such as partial deconstruction and/or rearrangement of the metal clusters and breaking of the protein backbone. Substantial differences were observed in the behaviour of the Zn- and Cd-QsMT aggregates towards the reactive species, depending on the different folding of the polypeptide in these two cases.
Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL
2011-05-31
Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ce; Auger, Maria A.; Moody, Michael P.
In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470more » °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α' phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.« less
Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes
NASA Astrophysics Data System (ADS)
Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng
2016-06-01
Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19-centered-2-electron (19c-2e) π bond, 10 π electrons in total. This perfectly planar structure reveals the viability of creating a new class of hetero-borophenes and metallo-borophenes by doping metal atoms into the plane of monolayer boron atoms. This gives a new approach to design perspective hetero-borophenes and metallo-borophenes materials with tunable chemical, magnetic and optical properties.
Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho
2011-11-18
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Wang, D.; Gao, N.; Wang, Z. G.; Gao, X.; He, W. H.; Cui, M. H.; Pang, L. L.; Zhu, Y. B.
2016-10-01
Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from -2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along <1 1 1> direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to <1 1 1> has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
Albertí, Margarita; Huarte-Larrañaga, Fermín; Aguilar, Antonio; Lucas, José M; Pirani, Fernando
2011-05-14
The specific influence of X(-) ions (X = F,Cl, Br, I) in the solvation process of halide-benzene (X(-)-Bz) ionic heterodimers by Ar atoms is investigated by means of molecular dynamic (MD) simulations. The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering ensembles of n (n = 1-15 and n = 30) Ar atoms around the X(-)-Bz stable ionic dimers. The potential energy surfaces employed are based on an atom/ion-atom and atom/ion-bond decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions (RDF) and tridimensional (3D) probability densities.
Singh, Raman K; Iwasa, Takeshi; Taketsugu, Tetsuya
2018-05-25
A long-range corrected density functional theory (LC-DFT) was applied to study the geometric structures, relative stabilities, electronic structures, reactivity descriptors and magnetic properties of the bimetallic NiCu n -1 and Ni 2 Cu n -2 (n = 3-13) clusters, obtained by doping one or two Ni atoms to the lowest energy structures of Cu n , followed by geometry optimizations. The optimized geometries revealed that the lowest energy structures of the NiCu n -1 and Ni 2 Cu n -2 clusters favor the Ni atom(s) situated at the most highly coordinated position of the host copper clusters. The averaged binding energy, the fragmentation energies and the second-order energy differences signified that the Ni doped clusters can continue to gain an energy during the growth process. The electronic structures revealed that the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies of the LC-DFT are reliable and can be used to predict the vertical ionization potential and the vertical electron affinity of the systems. The reactivity descriptors such as the chemical potential, chemical hardness and electrophilic power, and the reactivity principle such as the minimum polarizability principle are operative for characterizing and rationalizing the electronic structures of these clusters. Moreover, doping of Ni atoms into the copper clusters carry most of the total spin magnetic moment. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films
NASA Astrophysics Data System (ADS)
Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia
2016-07-01
Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are given. The report also presents the results of computer simulation of protons and oxygen atoms interaction with polyimide, and a comparison of the experimental and calculated data.
NASA Technical Reports Server (NTRS)
Walch, S.
1984-01-01
The primary focus of this research has been the theoretical study of transition metal (TM) chemistry. A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method in the iron hydrogen studies is the cluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results.
NASA Astrophysics Data System (ADS)
Bhatt, Rinkesh; Bisen, D. S.; Bajpai, R.; Bajpai, A. K.
2017-04-01
In the present communication, binary blends of poly (vinyl alcohol) (PVA) and chitosan (CS) were prepared by solution cast method and the roughness parameters of PVA, native CS and CS-PVA blend films were determined using atomic force microscopy (AFM). Moreover, the changes in the morphology of the samples were also investigated after irradiation of gamma rays at absorbed dose of 1 Mrad and 10 Mrad for the scanning areas of 5×5 μm2, 10×10 μm2 and 20×20 μm2. Amplitude, statistical and spatial parameters, including line, 3D and 2D image profiles of the experimental surfaces were examined and compared to un-irradiated samples. For gamma irradiated CS-PVA blends the larger waviness over the surface was found as compared to un-irradiated CS-PVA blends but the values of average roughness for both the films were found almost same. The coefficient of skewness was positive for gamma irradiated CS-PVA blends which revealed the presence of more peaks than valleys on the blend surfaces.
Theoretical predictions of a bucky-diamond SiC cluster.
Yu, Ming; Jayanthi, C S; Wu, S Y
2012-06-15
A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).
Structure and properties of B20Si-/0/+ clusters
NASA Astrophysics Data System (ADS)
Lu, Qi Liang; Luo, Qi Quan; Li, Yi De; Huang, Shou Guo
2018-06-01
A global search for the lowest energy structure of B20Si-, B20Si0 and B20Si+ clusters is conducted. Structural transitions at different charge states are observed. B20Si- is a 2D planar configuration with no polygonal holes, and Si atom occupies a peripheral position. B20Si+ adopts a 3D tubular shape, and each Si is bonded with four B atoms. But for B20Si0, competition among quasi-planar, tubular and cage like structures is found. These structures differ greatly from that of pure B21 - cluster. The structural transition may result from changes in the framework of bonding, sp 2 hybridization, and structural mechanics. Some of the clusters' properties including frontier molecular orbital, on-site charge on Si atom, electron density, and magnetism are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yourshaw, Ivan
1998-07-09
The diatomic halogen atom-rare gas diatomic complexes KrBr -, XeBr -, and KrCl - are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar nBr - (n = 2-9) and Ar nI - (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halidemore » clusters. In these studies we obtain information about both the anionic and neutral clusters.« less
Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil
2012-01-01
Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454
Study of crystallization mechanisms of Fe nanoparticle
NASA Astrophysics Data System (ADS)
Kien, P. H.; Trang, G. T. T.; Hung, P. K.
2017-06-01
In this paper, the nanoparticle (NP) Fe was investigated by means of molecular dynamics simulation. The crystallization mechanism was studied through the time evolution of crystal cluster and potential energies of different atom types. The simulation shows that the NP was crystallized into bcc crystal structure when it was annealed at 900 K for long times. At early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which create the stable clusters in the core of NP. After that the crystal clusters grow in the direction to cover the core and then to spread into the surface of NP. Analyzing the energies of different type atoms, we found that the crystal growth is originated from specific atomic arrangement in the boundary region of crystal clusters.
Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron
Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean; ...
2018-04-11
Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.
Stability of nanoclusters in an oxide dispersion strengthened alloy under neutron irradiation
Liu, Xiang; Miao, Yinbin; Wu, Yaqiao; ...
2017-06-01
In this paper, we report atom probe tomography results of the nanoclusters in a neutron-irradiated oxide dispersion strengthened alloy. Following irradiation to 5 dpa at target temperatures of 300 °C and 450 °C, fewer large nanoclusters were found and the residual nanoclusters tend to reach an equilibrium Guinier radius of 1.8 nm. With increasing dose, evident decrease in peak oxygen and titanium (but not yttrium) concentrations in the nanoclusters was observed, which was explained by atomic weight, solubility, diffusivity, and chemical bonding arguments. Finally, the chemical modifications indicate the equilibrium size is indeed a balance of two competing processes: radiationmore » enhanced diffusion and collisional dissolution.« less
Formation of Core-Shell Ethane-Silver Clusters in He Droplets.
Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F
2017-08-17
Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.
Detonation of Meta-stable Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.
2008-05-31
We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetahmore » code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.« less
Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less
Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms
Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; ...
2016-01-07
Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less
First principles study of vibrational dynamics of ceria-titania hybrid clusters
NASA Astrophysics Data System (ADS)
Majid, Abdul; Bibi, Maryam
2017-04-01
Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO2, whereas two IR active and one Raman active modes were observed for CeO2. The comparative analysis indicates that the hybrid cluster CeTiO4 contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO4 to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.
NASA Astrophysics Data System (ADS)
Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.
2017-11-01
It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.
NASA Astrophysics Data System (ADS)
Li, Yu-Hao; Zhou, Hong-Bo; Deng, Huiqiu; Lu, Gang; Lu, Guang-Hong
2018-07-01
Using a first-principles method in combination with thermodynamic models, we investigate the interaction between rhenium/osmium (Re/Os) and defects to explore the mechanism of radiation-induced Re/Os precipitation in tungsten (W). We demonstrate that radiation-induced defects play a key role in the solute precipitation in W, especially for self-interstitial atoms (SIAs). The presence of SIAs can significantly reduce the total nucleation free energy change of Re/Os, and thus facilitate the nucleation of Re/Os in W. Further, SIA is shown to be easily trapped by Re/Os once overcoming a low energy barrier, forming a W-Re/Os mixed dumbbell. Such W-Re/Os dumbbell forms a high stable Re/Os-Re/Os dumbbell structure with the substitutional Re/Os atoms, which can serve as a trapping centre for subsequent interstitial-Re/Os, leading to the growth of Re/Os-rich clusters. Consequently, an interstitial-mediated migration and aggregation mechanism for Re/Os precipitation in W has been proposed. Our results reveale that the alloying elements-defects interaction has significantly effect on their behaviors under irradiation, which should be considered in the design of W-based alloys for future fusion devices.
Yin, Shi; Bernstein, Elliot R
2016-10-21
A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH) 1-3 - cluster anions are lower than those found for their respective FeS 1-3 - cluster anions. The experimental first VDEs for FeS 1-3 - clusters are observed to increase for the first two S atoms bound to Fe - ; however, due to the formation of an S-S bond for the FeS 3 - cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS 2 - cluster. The first VDEs of Fe(SH) 1-3 - cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS 1-3 - and Fe(SH) 1-3 - clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH) - is lower than that for FeS 2 - , but higher than that for Fe(SH) 2 - ; the first VDEs for FeS 2 (SH) - and FeS(SH) 2 - are close to that for FeS 3 - , but higher than that for Fe(SH) 3 - . The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.
NASA Astrophysics Data System (ADS)
Yin, Shi; Bernstein, Elliot R.
2016-10-01
A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3- cluster anions are lower than those found for their respective FeS1-3- cluster anions. The experimental first VDEs for FeS1-3- clusters are observed to increase for the first two S atoms bound to Fe-; however, due to the formation of an S-S bond for the FeS3- cluster, its first VDE is found to be ˜0.41 eV lower than the first VDE for the FeS2- cluster. The first VDEs of Fe(SH)1-3- cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3- and Fe(SH)1-3- clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)- is lower than that for FeS2-, but higher than that for Fe(SH)2-; the first VDEs for FeS2(SH)- and FeS(SH)2- are close to that for FeS3-, but higher than that for Fe(SH)3-. The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.
Ion beam processing and characterization of advanced optical materials
NASA Astrophysics Data System (ADS)
Zhu, Jie
Ion beams have been extensively applied for materials modification and characterization. In this dissertation, I will focus on the applications of ion beams for advanced optical materials. The first part of my work addresses the effects of 1.0 MeV proton irradiation on photoluminescence (PL) properties of self-assembled InAs QDs. Compared to the QDs grown in a GaAs thin film, the QDs embedded in an AlAs/GaAs superlattice structure exhibits much higher photoluminescence degradation resistance to proton irradiation. Proton irradiation combined with thermal annealing results in significant blueshifts in PL spectra of QDs embedded in GaAs, suggesting enhanced atomic intermixing in the QD systems due to point defects introduced by ion irradiation. In the second part of my work, ion channeling combined with Rutherford backscattering is applied to investigate In-Ga atomic intermixing processes in the proton irradiated InAs QD system. Ion channeling along the growth (<100>) direction shows evidence of In atoms with small displacement from the atomic row, which gives direct signature of QD lattice structures, allowing us to monitor atomic intermixing between In and Ga. Based on the channeling data, a model for In-Ga atomic intermixing in InAs/GaAs QD system is proposed, in which In-Ga atomic intermixing can take place along both the growth direction and the lateral direction in the QD layer. The third part of my dissertation is the elemental mapping of silica-based optical cross section using micron-ion-beam imaging techniques. This work is intended to examine the thermal stability of Ge-doped fiber cores in high-temperature environments. Our measurements show that Ge completely diffuses out of the core region following thermal annealing at 1000°C. This indicates that silica-based optical fibers cannot be used for applications at extreme high temperatures. The final part is the study of the effects of various wet treatment on GaN surface, which is a necessary step during the GaN device fabrication. In our work, the HCL treatment has reduced the Ga concentration on the surface for N type GaN. However, for samples with lower concentration of Si doping or P type GaN samples, this effect does not occur.
NASA Astrophysics Data System (ADS)
Closser, Kristina Danielle
This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as superpositions of atomic states with surface states appearing close to the atomic excitation energies and interior states being blue shifted by up to ≈2 eV. The dynamics resulting from excitation of He_7 were subsequently explored using ab initio molecular dynamics (AIMD). These simulations were performed with classical adiabatic dynamics coupled to a new state-following algorithm on CIS potential energy surfaces. Most clusters were found to completely dissociate and resulted in a single excited atomic state (90%), however, some trajectories formed bound, He*2 (3%), and a few yielded excited trimers (<0.5%). Comparisons were made with available experimental information on much larger clusters. Various applications of this state following algorithm are also presented. In addition to AIMD, these include excited-state geometry optimization and minimal energy path finding via the growing string method. When using state following we demonstrate that more physical results can be obtained with AIMD calculations. Also, the optimized geometries of three excited states of cytosine, two of which were not found without state following, and the minimal energy path between the lowest two singlet excited states of protonated formaldimine are offered as example applications. Finally, to address large clusters, a local variation of CIS was developed. This method exploits the properties of absolutely localized molecular orbitals (ALMOs) to limit the total number of excitations to scaling only linearly with cluster size, which results in formal scaling with the third power of the system size. The derivation of the equations and design of the algorithm are discussed in detail, and computational timings as well as a pilot application to the size dependence of the helium cluster spectrum are presented.
Atom probe tomography analysis of high dose MA957 at selected irradiation temperatures
NASA Astrophysics Data System (ADS)
Bailey, Nathan A.; Stergar, Erich; Toloczko, Mychailo; Hosemann, Peter
2015-04-01
Oxide dispersion strengthened (ODS) alloys are meritable structural materials for nuclear reactor systems due to the exemplary resistance to radiation damage and high temperature creep. Summarized in this work are atom probe tomography (APT) investigations on a heat of MA957 that underwent irradiation in the form of in-reactor creep specimens in the Fast Flux Test Facility-Materials Open Test Assembly (FFTF-MOTA) for the Liquid Metal Fast Breeder Reactor (LMFBR) program. The oxide precipitates appear stable under irradiation at elevated temperature over extended periods of time. Nominally, the precipitate chemistry is unchanged by the accumulated dose; although, evidence suggests that ballistic dissolution and reformation processes are occurring at all irradiation temperatures. At 412 °C-109 dpa, chromium enrichments - consistent with the α‧ phase - appear between the oxide precipitates, indicating radiation induced segregation. Grain boundaries, enriched with several elements including nickel and titanium, are observed at all irradiation conditions. At 412 °C-109 dpa, the grain boundaries are also enriched in molecular titanium oxide (TiO).
HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface
NASA Astrophysics Data System (ADS)
Wu, A.; Ribis, J.; Brachet, J.-C.; Clouet, E.; Leprêtre, F.; Bordas, E.; Arnal, B.
2018-06-01
Chromium-coated zirconium alloys are being studied as Enhanced Accident Tolerant Fuel Cladding for Light Water Reactors (LWRs). Those materials are especially studied to improve the oxidation resistance of LWRs current fuel claddings in nominal and at High Temperature (HT) for hypothetical accidental conditions such as LOss of Coolant Accident. Beyond their HT behavior, it is essential to assess the materials behavior under irradiation. A first generation chromium/Zircaloy-4 interface was thus irradiated with 20 MeV Kr8+ ions at 400 °C up to 10 dpa. High-Resolution Transmission Electron Microscopy and chemical analysis (EDS) were conducted at the Cr/Zr interface. The atomic structure of the interface reveals the presence of Zr(Fe, Cr)2 Laves phase, displaying both C14 and C15 structure. After irradiation, only the C14 structure was observed and atomic row matching was preserved across the different interfaces, thus ensuring a good adhesion of the coating after irradiation.
NASA Astrophysics Data System (ADS)
Jonnard, P.; Bercegol, H.; Lamaignère, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.
2005-03-01
The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5J/cm2, it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1J/cm2, we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix.
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.
2015-01-01
When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997
Process for metallization of a substrate by irradiative curing of a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
1999-01-01
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro
2014-12-04
In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.
A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster.
Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Wang, Lai-Sheng; Boldyrev, Alexander I
2013-10-14
The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24(-) possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moiety is puckered out of plane by 0.9 Å, reminiscent of the six-atom pentagonal caps of the well-known B12 icosahedral unit. The next closest isomer at the ROCCSD(T) level of theory has a tubular double-ring structure. Comparison of the simulated spectra with the experimental data shows that the global minimum quasi-planar B24(-) isomer is the major contributor to the observed photoelectron spectrum, while the tubular isomer has no contribution to the experiment. Chemical bonding analyses reveal that the periphery of the quasi-planar B24 constitutes 15 classical 2c-2e B-B σ-bonds, whereas delocalized σ- and π-bonds are found in the interior of the cluster with one unique 6c-2e π-bond responsible for bonding in the B-centered pentagon. The current work suggests that the 24-atom boron cluster continues to be quasi-2D, albeit the tendency to form filled pentagonal units, characteristic of 3D cage-like structures of bulk boron, is observed.
Detection and quantification of solute clusters in a nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael K.; Larson, David J.; Reinhard, D. A.
2014-12-26
A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 10 24 m –3 and 1.2 × 10 24 m –3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y andmore » O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less
Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.; ...
2017-03-28
Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.
Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faizur Rahman, A.T.M.
1975-03-01
A review is given on the activities of the laboratories of the Atomic Energy Centre, Dacca in the field of food irradiation. A $sup 60$Co gamma source was used for these studies. The effects of irradiation on rice grains and rice starch is investigated as well as the radurization of fish, the extension of shelf-life of fresh mango juice by combined heat and irradiation treatment, and inhibition of sprouting of potatoes by irradiation. (MG)
Zheng, Ce; Auger, Maria A.; Moody, Michael P.; ...
2017-04-24
In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470more » °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α' phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.« less
Stylianou, Andreas; Yova, Dido
2015-12-01
Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.
Effects of atomic oxygen on titanium dioxide thin film
NASA Astrophysics Data System (ADS)
Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi
2018-05-01
In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.
Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Pizzochero, Michele; Yazyev, Oleg V.
2018-04-01
Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguirre, B. A.; Bielejec, E.; Fleming, R. M.
Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less
Effect of γ-IRRADIATION on the Mechanical Properties of Al-Cu Alloy
NASA Astrophysics Data System (ADS)
Abo-Elsoud, M.; Ismail, H.; Sobhy, Maged S.
SEM observations and Vickers hardness tests were performed to identify the irradiation effects. γ-irradiation effect during the aging hardening process can be explained depending on the composition of the alloy and is used to derive quantitative information on the kinetics of the transformation precipitates. Increasing the Cu content of an Al-Cu alloy can improve the aging hardness. The present results of the hardness behavior, with SEM observations of surveillance specimens at different doses, suggest that the radiation-induced defects are probably complex valence-solute clusters. These clusters act as nuclei for the precipitation of θ-Al2Cu type. This can be effectively utilized to study the systematics of nucleation of precipitates at vacancy-type defects. γ-irradiation probably plays the key role in defects responsible for material strengthening and embrittlement.
Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...
2016-12-09
Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less
Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts.
Li, Shu-Long; Yin, Hui; Kan, Xiang; Gan, Li-Yong; Schwingenschlögl, Udo; Zhao, Yong
2017-11-15
We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C 3 N 4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C 3 N 4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C 3 N 4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C 3 N 4 gives rise to promising single-atom catalysts at low temperature.
NASA Astrophysics Data System (ADS)
Maruyama, Ryo; Tanaka, Hideyasu; Yamakita, Yoshihiro; Misaizu, Fuminori; Ohno, Koichi
2000-09-01
Penning ionization electron spectra (PIES) of CO 2 clusters have been observed for the first time. An unusually fast electron band with excess kinetic energies of 1.4-2.9 eV with respect to the monomer band for the ionic X state was observed for CO 2 clusters in collision with He*(2 3S) atoms. While for PIES with Ne*(3 3P), no such unusual band was observed. The unusual band is ascribed to autoionization into stable structures of ionic clusters to which direct ionization processes are almost impossible due to very small Franck-Condon overlaps associated with a very large geometry difference between the ionic and neutral clusters.
NASA Astrophysics Data System (ADS)
Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong
2018-04-01
Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.
Childhood Head and Neck Irradiation
... power plant accident in 1986, or during atomic bomb testing (1951-1958, Marshall Islands; 1951–1970, Nevada ... a child in the time frame of atomic bomb testing at the Nevada Test Site, you can ...
Al6H18: A baby crystal of γ-AlH3
NASA Astrophysics Data System (ADS)
Kiran, B.; Kandalam, Anil K.; Xu, Jing; Ding, Y. H.; Sierka, M.; Bowen, K. H.; Schnöckel, H.
2012-10-01
Using global-minima search methods based on the density functional theory calculations of (AlH3)n (n = 1-8) clusters, we show that the growth pattern of alanes for n ≥ 4 is dominated by structures containing hexa-coordinated Al atoms. This is in contrast to the earlier studies where either linear or ring structures of AlH3 were predicted to be the preferred structures in which the Al atoms can have a maximum of five-fold coordination. Our calculations also reveal that the Al6H18 cluster, with its hexa-coordination of the Al atoms, resembles the unit-cell of γ-AlH3, thus Al6H18 is designated as the "baby crystal." The fragmentation energies of the (AlH3)n (n = 2-8) along with the dimerization energies for even n clusters indicate an enhanced stability of the Al6H18 cluster. Both covalent (hybridization) and ionic (charge) contribution to the bonding are the driving factors in stabilizing the isomers containing hexa-coordinated Al atoms.
Recent development in deciphering the structure of luminescent silver nanodots
NASA Astrophysics Data System (ADS)
Choi, Sungmoon; Yu, Junhua
2017-05-01
Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Akansha; Sen, Prasenjit, E-mail: prasen@hri.res.in; Majumder, Chiranjib
Adsorption of pre-formed Ag{sub n} clusters for n = 1 − 8 on a graphite substrate is studied within the density functional theory employing the vdW-DF2 functional to treat dispersion interactions. Top sites above surface layer carbon atoms turn out to be most favorable for a Ag adatom, in agreement with experimental observations. The same feature is observed for clusters of almost all sizes which have the lowest energies when the Ag atoms are positioned over top sites. Most gas phase isomers retain their structures over the substrate, though a couple of them undergo significant distortions. Energetics of the adsorptionmore » can be understood in terms of a competition between energy cost of disturbing Ag–Ag bonds in the cluster and energy gain from Ag–C interactions at the surface. Ag{sub 3} turns out to be an exceptional candidate in this regard that undergoes significant structural distortion and has only two of the Ag atoms close to surface C atoms in its lowest energy structure.« less
Evolution of the properties of Al(n)N(n) clusters with size.
Costales, Aurora; Blanco, M A; Francisco, E; Pandey, Ravindra; Martín Pendás, A
2005-12-29
A global optimization of stoichiometric (AlN)(n) clusters (n = 1-25, 30, 35, ..., 95, 100) has been performed using the basin-hopping (BH) method and describing the interactions with simple and yet realistic interatomic potentials. The results for the smaller isomers agree with those of previous electronic structure calculations, thus validating the present scheme. The lowest-energy isomers found can be classified in three different categories according to their structural motifs: (i) small clusters (n = 2-5), with planar ring structures and 2-fold coordination, (ii) medium clusters (n = 6-40), where a competition between stacked rings and globular-like empty cages exists, and (iii) large clusters (n > 40), large enough to mix different elements of the previous stage. All the atoms in small and medium-sized clusters are in the surface, while large clusters start to display interior atoms. Large clusters display a competition between tetrahedral and octahedral-like features: the former lead to a lower energy interior in the cluster, while the latter allow for surface terminations with a lower energy. All of the properties studied present different regimes according to the above classification. It is of particular interest that the local properties of the interior atoms do converge to the bulk limit. The isomers with n = 6 and 12 are specially stable with respect to the gain or loss of AlN molecules.
Kouass Sahbani, Saloua; Sanche, Leon; Cloutier, Pierre; Bass, Andrew D; Hunting, Darel J
2014-11-20
Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.
Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...
2015-11-23
The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less
Microstructural evolution of ion-irradiated sol–gel-derived thin films
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...
2017-07-17
In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less
Sixteenth International Conference on the physics of electronic and atomic collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalgarno, A.; Freund, R.S.; Lubell, M.S.
1989-01-01
This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.
Radiation Damage Study in Natural Zircon Using Neutrons Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu
2011-03-30
Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emissionmore » of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.« less
Nagasawa, Hatsumi; Lin, Yu-Fen; Kato, Takamitsu A; Brogan, John R; Shih, Hung-Ying; Kurimasa, Akihiro; Bedford, Joel S; Chen, Benjamin P C; Little, John B
2017-02-01
The catalytic subunit of DNA dependent protein kinase (DNA-PKcs) and its kinase activity are critical for mediation of non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB) in mammalian cells after gamma-ray irradiation. Additionally, DNA-PKcs phosphorylations at the T2609 cluster and the S2056 cluster also affect DSB repair and cellular sensitivity to gamma radiation. Previously we reported that phosphorylations within these two regions affect not only NHEJ but also homologous recombination repair (HRR) dependent DSB repair. In this study, we further examine phenotypic effects on cells bearing various combinations of mutations within either or both regions. Effects studied included cell killing as well as chromosomal aberration induction after 0.5-8 Gy gamma-ray irradiation delivered to synchronized cells during the G 0 /G 1 phase of the cell cycle. Blocking phosphorylation within the T2609 cluster was most critical regarding sensitization and depended on the number of available phosphorylation sites. It was also especially interesting that only one substitution of alanine in each of the two clusters separately abolished the restoration of wild-type sensitivity by DNA-PKcs. Similar patterns were seen for induction of chromosomal aberrations, reflecting their connection to cell killing. To study possible change in coordination between HRR and NHEJ directed repair in these DNA-PKcs mutant cell lines, we compared the induction of sister chromatid exchanges (SCEs) by very low fluencies of alpha particles with mutant cells defective in the HRR pathway that is required for induction of SCEs. Levels of true SCEs induced by very low fluence of alpha-particle irradiation normally seen in wild-type cells were only slightly decreased in the S2056 cluster mutants, but were completely abolished in the T2609 cluster mutants and were indistinguishable from levels seen in HRR deficient cells. Again, a single substitution in the S2056 together with a single substitution in the T2609 cluster abolished SCE formation and thus also effectively interferes with HRR.
Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation
NASA Astrophysics Data System (ADS)
Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury
2018-03-01
The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.
BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation
NASA Astrophysics Data System (ADS)
Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi
2015-09-01
Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.
Plasmon excitations in doped square-lattice atomic clusters
NASA Astrophysics Data System (ADS)
Wang, Yaxin; Yu, Ya-Bin
2017-12-01
Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).
NASA Astrophysics Data System (ADS)
Qian, Elaine A.; Wixtrom, Alex I.; Axtell, Jonathan C.; Saebi, Azin; Jung, Dahee; Rehak, Pavel; Han, Yanxiao; Moully, Elamar Hakim; Mosallaei, Daniel; Chow, Sylvia; Messina, Marco S.; Wang, Jing Yang; Royappa, A. Timothy; Rheingold, Arnold L.; Maynard, Heather D.; Král, Petr; Spokoyny, Alexander M.
2017-04-01
The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.
Emmrich, Matthias; Huber, Ferdinand; Pielmeier, Florian; Welker, Joachim; Hofmann, Thomas; Schneiderbauer, Maximilian; Meuer, Daniel; Polesya, Svitlana; Mankovsky, Sergiy; Ködderitzsch, Diemo; Ebert, Hubert; Giessibl, Franz J
2015-04-17
Clusters built from individual iron atoms adsorbed on surfaces (adatoms) were investigated by atomic force microscopy (AFM) with subatomic resolution. Single copper and iron adatoms appeared as toroidal structures and multiatom clusters as connected structures, showing each individual atom as a torus. For single adatoms, the toroidal shape of the AFM image depends on the bonding symmetry of the adatom to the underlying structure [twofold for copper on copper(110) and threefold for iron on copper(111)]. Density functional theory calculations support the experimental data. The findings correct our previous work, in which multiple minima in the AFM signal were interpreted as a reflection of the orientation of a single front atom, and suggest that dual and triple minima in the force signal are caused by dimer and trimer tips, respectively. Copyright © 2015, American Association for the Advancement of Science.
Del Vitto, Annalisa; Pacchioni, Gianfranco; Lim, Kok Hwa; Rösch, Notker; Antonietti, Jean-Marie; Michalski, Marcin; Heiz, Ulrich; Jones, Harold
2005-10-27
We report on the optical absorption spectra of gold atoms and dimers deposited on amorphous silica in size-selected fashion. Experimental spectra were obtained by cavity ringdown spectroscopy. Issues on soft-landing, fragmentation, and thermal diffusion are discussed on the basis of the experimental results. In parallel, cluster and periodic supercell density functional theory (DFT) calculations were performed to model atoms and dimers trapped on various defect sites of amorphous silica. Optically allowed electronic transitions were calculated, and comparisons with the experimental spectra show that silicon dangling bonds [[triple bond]Si(.-)], nonbridging oxygen [[triple bond]Si-O(.-)], and the silanolate group [[triple bond]Si-O(-)] act as trapping centers for the gold particles. The results are not only important for understanding the chemical bonding of atoms and clusters on oxide surfaces, but they will also be of fundamental interest for photochemical studies of size-selected clusters on surfaces.
Quantum chemical calculation of the equilibrium structures of small metal atom clusters
NASA Technical Reports Server (NTRS)
Kahn, L. R.
1982-01-01
Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.
NASA Astrophysics Data System (ADS)
M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier
2012-11-01
We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.
NASA Astrophysics Data System (ADS)
Leleyter, M.; Olivi-Tran, N.
2008-12-01
We studied in tight-binding approximation involving spν hybridization (ν=2,3), some Si2Cn (n=3 to 42) microclusters. We then investigated, on one hand, fragments of fullerene-like structures (sp2), and on the other hand, nanodiamonds (sp3) of adamantane-type or a 44-atom nanodiamond (with 2 inner atoms which are assumed to play the role of bulk atoms). We compared the stabilities, i.e. the electronic energies of these clusters, according to the various positions of the 2 Si atoms. Results are very different in the two kinds of hybridization. Besides, they can be analysed according to two different points of view: either the clusters are considered as small particles with limited sizes, or they are assumed to be used as models in order to simulate the Si-atom behaviour in very larger systems. In sp2 hybridization (fullerene-like geometries), the most stable isomer is always encountered when the 2 Si atoms build a Si2 group, and this result holds for both viewpoints quoted above. Conversely, in sp3 hybridization (nanodiamonds), since Si atoms “prefer” sites having the minimum connectivity, they are never found in adjacent sites. We see that with a simple and fast computational method we can explain an experimental fact which is very interesting such as the relative position of two heteroatoms in the cluster. This enhances the generality and the fecondity in the tight binding approximation due essentially to the link between this model and the graph theory, link based on the topology of the clusters.
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, In Soo; Li, Zhanyong; Zheng, Jian
Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novelmore » catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.« less
Atomic-scale structure and electronic properties of GaN/GaAs superlattices
NASA Astrophysics Data System (ADS)
Goldman, R. S.; Feenstra, R. M.; Briner, B. G.; O'Steen, M. L.; Hauenstein, R. J.
1996-12-01
We have investigated the atomic-scale structure and electronic properties of GaN/GaAs superlattices produced by nitridation of a molecular beam epitaxially grown GaAs surface. Using cross-sectional scanning tunneling microscopy (STM) and spectroscopy, we show that the nitrided layers are laterally inhomogeneous, consisting of groups of atomic-scale defects and larger clusters. Analysis of x-ray diffraction data in terms of fractional area of clusters (determined by STM), reveals a cluster lattice constant similar to bulk GaN. In addition, tunneling spectroscopy on the defects indicates a conduction band state associated with an acceptor level of NAs in GaAs. Therefore, we identify the clusters and defects as nearly pure GaN and NAs, respectively. Together, the results reveal phase segregation in these arsenide/nitride structures, in agreement with the large miscibility gap predicted for GaAsN.
Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat
Nagy, K.L.; Manceau, A.; Gasper, J.D.; Ryan, J.N.; Aiken, G.R.
2011-01-01
Strong mercury(II)-sulfur (Hg-SR) bonds in natural organic matter, which influence mercury bioavailability, are difficult to characterize. We report evidence for two new Hg-SR structures using X-ray absorption spectroscopy in peats from the Florida Everglades with added Hg. The first, observed at a mole ratio of organic reduced S to Hg (Sred/Hg) between 220 and 1140, is a Hg4Sx type of cluster with each Hg atom bonded to two S atoms at 2.34 ?? and one S at 2.53 ??, and all Hg atoms 4.12 ?? apart. This model structure matches those of metal-thiolate clusters in metallothioneins, but not those of HgS minerals. The second, with one S atom at 2.34 ?? and about six C atoms at 2.97 to 3.28 ??, occurred at S red/Hg between 0.80 and 4.3 and suggests Hg binding to a thiolated aromatic unit. The multinuclear Hg cluster indicates a strong binding environment to cysteinyl sulfur that might impede methylation. Along with a linear Hg(SR)2 unit with Hg - S bond lengths of 2.34 ?? at Sred/Hg of about 10 to 20, the new structures support a continuum in Hg-SR binding strength in natural organic matter. ?? 2011 American Chemical Society.
Interatomic scattering in energy dependent photoelectron spectra of Ar clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patanen, M.; Benkoula, S.; Nicolas, C.
2015-09-28
Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.
Comparative study of local atomic structures in Zr2CuxNi1-x (x = 0, 0.5, 1) metallic glasses
NASA Astrophysics Data System (ADS)
Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.
2015-11-01
Extensive analysis has been performed to understand the key structural motifs accounting for the difference in glass forming ability in the Zr-Cu and Zr-Ni binary alloy systems. Here, the reliable atomic structure models of Zr2CuxNi1-x (x = 0, 0.5, 1) are constructed using the combination of X-ray diffraction experiments, ab initio molecular dynamics simulations and a constrained reverse Monte Carlo method. We observe a systematic variation of the interatomic distance of different atomic pairs with respect to the alloy composition. The ideal icosahedral content in all samples is limited, despite the high content of five-fold symmetry motifs. We also demonstrate that the population of Z-clusters in Zr2Cu glass is much higher than that in the Zr2Ni and Zr2Cu0.5Ni0.5 samples. And Z12 ⟨0, 0, 12, 0⟩ Voronoi polyhedra clusters prefer to form around Cu atoms, while Ni-centered clusters are more like Z11 ⟨0, 2, 8, 1⟩ clusters, which is less energetically stable compared to Z12 clusters. These two different structural properties may account for the higher glass forming ability of Zr2Cu alloy than that of Zr2Ni alloy.
Secondary ion formation during electronic and nuclear sputtering of germanium
NASA Astrophysics Data System (ADS)
Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.
2018-06-01
Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.
NASA Astrophysics Data System (ADS)
Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in
Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan
2014-06-25
Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated oxygen atoms on the surface of the super-reduced POM(27-) polyanion allows the huge Coulombic repulsion due to the presence of the excess electrons to be counterbalanced by the presence of Li countercations, which partially penetrate into the outer oxygen shell. This "semiporous molecular capacitor" structure is likely the reason for the effective electron uptake in POMs.
Special and general superatoms.
Luo, Zhixun; Castleman, A Welford
2014-10-21
Bridging the gap between atoms and macroscopic matter, clusters continue to be a subject of increasing research interest. Among the realm of cluster investigations, an exciting development is the realization that chosen stable clusters can mimic the chemical behavior of an atom or a group of the periodic table of elements. This major finding known as a superatom concept was originated experimentally from the study of aluminum cluster reactivity conducted in 1989 by noting a dramatic size dependence of the reactivity where cluster anions containing a certain number of Al atoms were unreactive toward oxygen while the other species were etched away. This observation was well interpreted by shell closings on the basis of the jellium model, and the related concept (originally termed "unified atom") spawned a wide range of pioneering studies in the 1990s pertaining to the understanding of factors governing the properties of clusters. Under the inspiration of a superatom concept, advances in cluster science in finding stable species not only shed light on magic clusters (i.e., superatomic noble gas) but also enlightened the exploration of stable clusters to mimic the chemical behavior of atoms leading to the discovery of superhalogens, alkaline-earth metals, superalkalis, etc. Among them, certain clusters could enable isovalent isomorphism of precious metals, indicating application potential for inexpensive superatoms for industrial catalysis, while a few superalkalis were found to validate the interesting "harpoon mechanism" involved in the superatomic cluster reactivity; recently also found were the magnetic superatoms of which the cluster-assembled materials could be used in spin electronics. Up to now, extensive studies in cluster science have allowed the stability of superatomic clusters to be understood within a few models, including the jellium model, also aromaticity and Wade-Mingos rules depending on the geometry and metallicity of the cluster. However, the scope of application of the jellium model and modification of the theory to account for nonspherical symmetry and nonmetal-doped metal clusters are still illusive to be further developed. It is still worth mentioning that a superatom concept has also been introduced in ligand-stabilized metal clusters which could also follow the major shell-closing electron count for a spherical, square-well potential. By proposing a new concept named as special and general superatoms, herein we try to summarize all these investigations in series, expecting to provide an overview of this field with a primary focus on the joint undertakings which have given rise to the superatom concept. To be specific, for special superatoms, we limit to clusters under a strict jellium model and simply classify them into groups based on their valence electron counts. While for general superatoms we emphasize on nonmetal-doped metal clusters and ligand-stabilized metal clusters, as well as a few isovalent cluster systems. Hopefully this summary of special and general superatoms benefits the further development of cluster-related theory, and lights up the prospect of using them as building blocks of new materials with tailored properties, such as inexpensive isovalent systems for industrial catalysis, semiconductive superatoms for transistors, and magnetic superatoms for spin electronics.
Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe2
2018-01-01
Studying the atomic structure of intrinsic defects in two-dimensional transition-metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lead to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T′, 3-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60° misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the nonencapsulated material and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation. PMID:29503509
Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials
NASA Astrophysics Data System (ADS)
Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.
2015-12-01
ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.