Science.gov

Sample records for atomic emission spectroscopy

  1. [Experimental study on flame temperature measurement by double line of atomic emission spectroscopy].

    PubMed

    Chen, Xiao-Bin; Cai, Xiao-Shu; Fan, Xue-Liang; Shen, Jia-Qi

    2009-12-01

    The flame temperature was measured by the double line of atomic emission spectroscopy according to the spectra of K (766.5 and 769.9 nm) whose relative intensity was obtained by fiber spectrometer. The principles, methods and experiment system were described. The temperature measured by the double line of atomic emission spectroscopy was compared to the results measured by thermal couple under the condition of thermal equilibrium of blackbody furnace. The comparison indicated a good coherence between these two measurement methods. The method was demonstrated on coal powder and timber, and the temperature measured corresponded to reality. PMID:20210126

  2. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  3. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    PubMed

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  4. Indirect determination of cations by ion chromatography and anions by atomic emission spectroscopy

    SciTech Connect

    Ervin, A.M.; Panayappan, R.; Cooper, J.C.

    1988-11-01

    A method for the indirect determination of cations by Ion Chromatography (IC) and anions by Atomic Emission Spectroscopy (DCP) is described. The method allows for quantification of suspected impurities in aqueous systems where multiple analyses are desired. The described method is based on the selection of a precipitating agent for the desired analyte. In this study, silver(I) and barium(II) were analyzed indirectly by IC, and chloride and sulfate, by DCP.

  5. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  6. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    SciTech Connect

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials.

  7. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  8. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  9. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    SciTech Connect

    Nilsson, A.; Wassdahl, N.; Weinelt, M.

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  10. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Perring, Loïc; Basic-Dvorzak, Marija

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99+/-5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. PMID:12324843

  11. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  12. Laser Ablation Solid Sampling processes investigated usinginductively coupled plasma - atomic emission spectroscopy (ICP-AES)

    SciTech Connect

    Mao, X.L.; Ciocan, A.C.; Borisov, O.V.; Russo, R.E.

    1997-07-01

    The symbiotic relationship between laser ablation mechanismsand analytical performance using inductively coupled plasma-atomicemission spectroscopy are addressed in this work. For both cases, it isimportant to ensure that the ICP conditions (temperature and electronnumber density) are not effected by the ablated mass. By ensuring thatthe ICP conditions are constant, changes in spectral emission intensitywill be directly related to changes in laser ablation behavior. Mg ionicline to atomic line ratios and excitation temperature were measured tomonitor the ICP conditions during laser-ablation sample introduction. Thequantity of ablated mass depends on the laser pulse duration andwavelength. The quantity of mass removed per unit energy is larger whenablating with shorter laser wavelengths and pulses. Preferential ablationof constituents from a multicomponent sample was found to depend on thelaser beam properties (wavelength and pulse duration). Fornanosecond-pulsed lasers, thermal vaporization dominates the ablationprocess. For picosecond-pulsed lasers, a non-thermal mechanism appears todominate the ablation process. This work will describe the mass ablationbehavior during nanosecond and picosecond laser sampling into the ICP.The behavior of the ICP under mass loading conditions is firstestablished, followed by studies of the ablation behavior at variouspower densities. A thermal vaporization model is used to explainnanosecond ablation, and a possible non-thermal mechanism is proposed toexplain preferential ablation of Zn and Cu from brass samples duringpicosecond ablation.

  13. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  14. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  15. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  16. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  17. Methyl oleate as matrix simulacrum for the simultaneous determination of metals in biodiesel samples by flame atomic emission spectroscopy.

    PubMed

    Ferreira, Conny Cerai; Costa, Letícia Malta; Barbeira, Paulo Jorge Sanches

    2015-06-01

    A measurement procedure for direct and simultaneous quantification of Na, K and Ca in biodiesel by flame atomic emission spectroscopy (FAES) was developed. A lab-made device was constructed by coupling a nebulizer/combustion system from a commercial photometer to a continuous emission detector in a spectral range of 255 to 862 nm. Instrumental optimizations were carried out evaluating the most important variables, such as gas flow rates and sample introduction temperature, indicating that a temperature of 50°C enhances the analytical signals and assures good precision. The direct analysis method was properly validated and presented limits of quantification of 0.09, 0.07 and 0.43 μg kg(-1) for Na, K and Ca, respectively. Accuracy of the proposed procedure was checked by comparing the results with those obtained by the standard procedure described in ABNT NBR 15556 and the standard addition method. PMID:25863364

  18. The application of atomic emission spectroscopy to chromatographic analyses for element-selective detection

    SciTech Connect

    Seeley, J.A.

    1992-01-01

    The goal of this work was to investigate the properties of existing atomic emission systems which are useful for element-selective detection of chromatographic effluent. A microwave induced plasma (MIP) system has been optimized for the selective detection of boron in the effluent of a gas chromatograph. A method was developed for the analysis of total boron present in several lubrication oil additives and in several formulated lubrication oils. Values obtained by this method compare favorably with those obtained by other atomic emission spectroscopic (AES) methods. A direct current plasma (DCP) system has been optimized for the selective detection of boron in flowing organic liquid streams. A method was developed for the analysis of total boron present in several lubrication oil additives by flow injection analysis (FIA). A method was also developed for the qualitative separation [open quotes]speciation[close quotes] of these additives by size exclusion chromatography-DCP. Values obtained through this method compare favorably with values obtained through other AES methods. The MIP system was optimized for the selective detection of titanium in the effluent of the gas chromatograph. This system was used to analyze a group of reaction mixtures containing novel titanium chelates and organo-metallic compounds, as well as several organo-titanium-boron compounds. The MIP system was optimized for the selective detection of several of the group VA and group VIA elements in the effluent of the gas chromatograph. This system was used to characterize a series of coal standards (the Argonne Premium Coal Standards) by pyrolysis-GC-AES. Volatile compounds containing nitrogen, oxygen and sulfur were detected. The Py-GC-AES method was used to characterize several other coal, sedimentary and kerogen samples. Volatile phosphorous, arsenic, and selenium compounds were detected, as were compounds of nitrogen, oxygen and sulfur.

  19. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  20. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  1. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    SciTech Connect

    Hasselstroem, J.; Karis, O.; Weinelt, M.

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  2. High speed analysis of agricultural samples using inductively coupled plasma-atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Isaac, R. A.; Johnson, W. C.

    The determination of potassium, phosphorus, calcium, magnesium, zinc and manganese in soil extracts are reported at an analysis rate of 200 samples h -1. A 4 cm 3volume of soil is extracted with a 20 ml solution of 0.025 N H 2SO 4-0.05 N HCl (Mehlich I). The filtered solution is then placed on a Technicon Sampler IV, which is interfaced to an 1CP emission spectrometer. This extract is analyzed for all the nutrients above. In addition to soil extracts, the ICP is used for mineral analyses of feed samples at a sample rate of 120 samples h -1. Several "American Association of Feed Control Officials" check feed samples have been analyzed and the results will be discussed comparing the ICP results with other laboratories participating in the program. The preparation of feed samples involves ashing a 1 g sample at 500°C for 4 h. The ashed sample was then taken up in hot HCl and diluted to 250 ml. Analyses are also performed by ICP on water, heavy metals in sewage sludge, and on other materials. The ICP technique has increased the efficiency of our laboratory to the extent that one technician can do the same work that formerly required four technicians.

  3. Current Trends in Atomic Spectroscopy.

    ERIC Educational Resources Information Center

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  4. Conditional ramsey spectroscopy with synchronized atoms.

    PubMed

    Xu, Minghui; Holland, M J

    2015-03-13

    We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity. We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes indefinitely, even in the presence of spontaneous emission and other sources of individual-atom dephasing. This could have important consequences for atomic clocks and a wide range of precision metrology applications. PMID:25815931

  5. Spectroscopy, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the electromagnetic…

  6. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  7. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  8. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  9. Atomic Spectroscopy for Soft-X Lasers

    NASA Astrophysics Data System (ADS)

    Pedrotti, Kenneth Donald

    The realization of lasers in the extreme ultraviolet (XUV) is hampered by a lack of knowledge concerning the location and properties of useful atomic levels. This dissertation presents the results of experimental investigations of core-excited levels in alkali-metal atoms and alkaline -earth ions. A novel hollow-cathode discharge device has been developed for production of excited atoms of interest for laser construction. This device has been used to find new levels in Na I and Mg II using emission spectroscopy. A novel high-resolution laser technique called extinction spectroscopy has been demonstrated in Li by the measurement of the lifetime of an autoionizing level. A tunable coherent radiation source at 110 nm was also developed and used to make high-resolution absorption measurements on Cs transitions considered for use in the creation of a VUV Laser.

  10. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  11. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  12. Selection of operating conditions and analytical procedure in multi-metal analysis of animal tissues by d.c. plasma-atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Frank, Adrian; Petersson, Lars R.

    In order to expand the analytical capacity and achieve better utilization of tissue materials (liver, kidney, etc.) so as to assess the degrees of environmental pollution, a method for simultaneous determination of 14 metals (Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, V, W, and Zn) has been developed by applying d.c. plasma-atomic emission spectroscopy. The analytical emission lines were chosen after considering the absence of more important interfering emission lines from elements present in the matrix, and taking into account their intensity, background, range of linearity and working range. At increasing ionic buffer concentration most metals seem to have a region of relatively little change in intensity. A 0.25 M LiNO 3 solution was chosen as ionic buffer. Optimization of plasma position to obtain maximum light intensity at each of the analytical wavelengths was studied with both single- and multi-element cassettes. The intention was to find a plasma position with satisfactory light intensity for all metals to be determined simultaneously. Spectral interferences, stray light effects included, from elements present in the matrix were investigated and linear relationships were usually found between the "false" signal contribution and the concentration of the interfering element. These signals were expressed as spectral interference correction coefficients (SICC values) on a concentration equivalent basis, viz. μ ml -1 per μ ml -1. The effect of Ca on the analytical emission lines of Al, Pb, and W was not linear in contrast to the usual relationship. Organ tissues are prepared by automated wet digestion. Transfer of sample solution from the sample tray into the plasma is performed automatically. A microcomputer is used for evaluation of metal contents in the solutions, background correction by use of SICC values, and final calculation of metal concentrations in the tissues.

  13. Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Finlayson-Pitts, B. J.

    2003-01-01

    The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.

  14. Fabrication methods for compact atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hawkins, Aaron R.; Hulbert, John F.; Carroll, Brandon T.; Wu, Bin; Schmidt, Holger

    2008-02-01

    Atomic spectroscopy relies on photons to probe the energy states of atoms, typically in a gas state. In addition to providing fundamental scientific information, this technique can be applied to a number of photonic devices including atomic clocks, laser stabilization references, slow light elements, and eventually quantum communications components. Atomic spectroscopy has classically been done using bulk optics and evacuated transparent vapor cells. Recently, a number of methods have been introduced to dramatically decrease the size of atomic spectroscopy systems by integrating optical functionality. We review three of these techniques including: 1) photonic crystal fiber based experiments, 2) wafer bonded mini-cells containing atomic vapors and integrated with lasers and detectors, and 3) hollow waveguides containing atomic vapors fabricated on silicon substrates. In the context of silicon photonics, we will emphasize the hollow waveguide platform. At the heart of these devices is the anti-resonant reflecting optical waveguide (ARROW). ARROW fabrication techniques will be described for both hollow and solid core designs. Solid-core waveguides are necessary to direct light on and off the silicon chip while confining atomic vapors to hollow-core waveguides. We will also discuss the methods and challenges of attaching rubidium vapor reservoirs to the chip. Experimental results for optical spectroscopy of rubidium atoms on a chip will be presented.

  15. Solving a Mock Arsenic-Poisoning Case Using Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tarr, Matthew A.

    2001-01-01

    A new upper-level undergraduate atomic spectroscopy laboratory procedure has been developed that presents a realistic problem to students and asks them to assist in solving it. Students are given arsenic-laced soda samples from a mock crime scene. From these samples, they are to gather evidence to help prosecute a murder suspect. The samples are analyzed by inductively coupled plasma atomic emission spectroscopy or by atomic absorbance spectroscopy to determine the content of specific metal impurities. By statistical comparison of the samples' composition, the students determine if the soda samples can be linked to arsenic found in the suspect's home. As much as possible, the procedures and interpretations are developed by the students. Particular emphasis is placed on evaluating the limitations and capabilities of the analytical method with respect to the demands of the problem.

  16. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  17. Estimating atomic sizes with Raman spectroscopy.

    PubMed

    Wang, Dingdi; Guo, Wenhao; Hu, Juanmei; Liu, Fang; Chen, Lisheng; Du, Shengwang; Tang, Zikang

    2013-01-01

    We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10±0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures.

  18. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  19. [Optical emission spectroscopy of MPCVD plasma].

    PubMed

    Ma, Zhi-bin; Wu, Jian-peng; Tao, Li-ping; Cao, Wei; Li, Guo-wei; Wang, Jian-hua

    2013-09-01

    The plasma of CH4/H2 was diagnosed with optical emission spectroscopy on a high-pressure microwave plasma apparatus at 2.45 GHz. The existing radicals in the plasma and the influence of the methane concentration on radical concentration and distribution were researched. The results indicate that the radicals of CH, Halpha, Hbeta, Hgamma, C2 and little impurity atom Mo exist in the plasma. The intensity of emission spectrum of the radicals increases with the increase in the methane concentration, especially the intensity of C2 has a notable increase. The ratio of the intensity of the CH to Halpha is unchanging with the increase in methane concentration, while that of C2 to Halpha has a marked increase. The uniformity of the space distribution of the radicals becomes worse with the increase in methane concentration.

  20. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  1. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. PMID:27428600

  2. Neutrino spectroscopy with atoms and molecules

    NASA Astrophysics Data System (ADS)

    Fukumi, Atsushi; Kuma, Susumu; Miyamoto, Yuki; Nakajima, Kyo; Nakano, Itsuo; Nanjo, Hajime; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Taniguchi, Takashi; Uetake, Satoshi; Wakabayashi, Tomonari; Yamaguchi, Takuya; Yoshimi, Akihiro; Yoshimura, Motohiko

    2012-12-01

    We systematically investigate the new experimental method of using atoms or molecules to measure the important parameters of neutrinos that are still to be determined: the absolute mass scale, the mass hierarchy pattern (normal or inverted), the neutrino mass type (Majorana or Dirac), and the CP-violating phases, including Majorana phases. Most of these observables are difficult to measure in neutrino oscillation experiments. There are advantages to using atomic targets, such as the closeness of available atomic energies to anticipated neutrino masses, over nuclear target experiments such as the end point spectrum of β decay and two-electron line spectrum in the neutrinoless double β decay, both of which address some of the overlapping objectives with atomic/molecular experiments. A disadvantage of using atomic targets, the smallness of rates, is overcome by the macro-coherent amplification mechanism. The atomic or molecular process we use is a cooperative deexcitation of a collective body of atoms in a metastable level |e> emitting a neutrino pair and a photon: |erangle rArr |grangle + γ + ν _i ν _j, where νis are neutrino mass eigenstates. The macro-coherence is developed by trigger-laser irradiation of two colors, which frequently causes the two-photon process |erangle leftrArr |grangle + γ +γ , |erangle + γ leftrArr |g rangle + γ inside the target. We discuss important aspects of the macro-coherence development in detail, by setting up the master equation for the target Bloch vector (whose components are population difference and medium polarization) and the propagating electric field. Our master equation includes the effects of phase decoherence of medium polarization and decay of population difference. The spectral rate (the number of events per unit time) of macro-coherent radiative emission of a neutrino pair has three parts, and is given by a factorized formula of the form (overall ω-independent rate denoted by Γ0) × (spectral shape function

  3. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    ERIC Educational Resources Information Center

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  4. Scanning Josephson spectroscopy on the atomic scale

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2016-04-01

    The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.

  5. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  6. Amplitude spectroscopy of a solid-state artificial atom.

    PubMed

    Berns, David M; Rudner, Mark S; Valenzuela, Sergio O; Berggren, Karl K; Oliver, William D; Levitov, Leonid S; Orlando, Terry P

    2008-09-01

    The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.

  7. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed.

  8. Quantitative atomic spectroscopy for primary thermometry

    SciTech Connect

    Truong, Gar-Wing; Luiten, Andre N.; May, Eric F.; Stace, Thomas M.

    2011-03-15

    Quantitative spectroscopy has been used to measure accurately the Doppler broadening of atomic transitions in {sup 85}Rb vapor. By using a conventional platinum resistance thermometer and the Doppler thermometry technique, we were able to determine k{sub B} with a relative uncertainty of 4.1x10{sup -4} and with a deviation of 2.7x10{sup -4} from the expected value. Our experiment, using an effusive vapor, departs significantly from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly absorbing molecules in a diffusive regime. In these circumstances, very different systematic effects such as magnetic sensitivity and optical pumping are dominant. Using the model developed recently by Stace and Luiten, we estimate the perturbation due to optical pumping of the measured k{sub B} value was less than 4x10{sup -6}. The effects of optical pumping on atomic and molecular DBT experiments is mapped over a wide range of beam size and saturation intensity, indicating possible avenues for improvement. We also compare the line-broadening mechanisms, windows of operation and detection limits of some recent DBT experiments.

  9. Field emission spectroscopy of SiC

    NASA Astrophysics Data System (ADS)

    Nikiforov, K. A.; Trofimov, V. V.; Egorov, N. V.

    2016-08-01

    Experimental set up for the natural experiment and measurement model are presented to obtain the feld emission energy distribution spectrum out of silicon carbide in case of the macro-sample having a macroscopic shape of a tip. The prototype of feld emission 6H - SiC monolithic cathode is proposed for spectroscopy measurements, and characterised by current-voltage dependence at macroscale interelectrode distance.

  10. Towards Atomic Column-by-Column Spectroscopy

    SciTech Connect

    Pennycook, S.J.; Rafferty, B.

    1998-09-06

    The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.

  11. Fourier transform stimulated emission pumping spectroscopy

    NASA Astrophysics Data System (ADS)

    Felker, P. M.; Henson, B. F.; Corcoran, T. C.; Connell, L. L.; Hartland, G. V.

    1987-12-01

    Theoretical and experimental results that demonstrate a new technique of non-linear interferometry based on stimulated emission pumping spectroscopy (SEPS) are presented. It is shown that splittings between the initial and final states in SEP processes can be measured by the method. Advantages and disadvantages of the technique relative to spectral domain SEPS are discussed.

  12. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  13. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  14. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  15. Laser Spectroscopy of Atoms and Molecules.

    ERIC Educational Resources Information Center

    Schawlow, Arthur L.

    1978-01-01

    Surveys new laser techniques and a variety of spectroscopic experiments that can be used to detect, measure and study very small numbers of atoms on molecules. The range of applicability of these techniques is also included. (HM)

  16. Resonant spectroscopy of the antihydrogen atom

    SciTech Connect

    Labzowsky, Leonti; Solovyev, Dmitri

    2003-07-01

    The spectra of the hydrogen and antihydrogen atoms in the presence of an external electric field are compared. It is shown that the nonresonant corrections to the transition frequency may contain terms linear in the electric field. The existence of these terms does not violate space and time parity and leads to a difference in the resonant spectroscopic measurements for the hydrogen and antihydrogen atoms in an external electric field.

  17. Modern applications of terahertz emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrel, Shayne Matthew

    Terahertz (THz) emission spectroscopy (TES) is newly developed experimental technique capable of measuring ultrafast dynamics in a variety of systems. Unlike pump-probe spectroscopies where the signals are obtained indirectly, the THz waveform emitted by the dynamical process serves as the signal field. Information about processes involving a time-dependent magnetization, polarization or current is obtained using TES. The detection scheme is polarization sensitive and allows the direction of the dynamical event to be recovered. The role of solvation on intramolecular charge transfer in DMANS (4-(dimethylamino)-4'-nitrostilbene) is studied using TES in three solvents: benzene, toluene, and 1,3-dichlorobenzene. These solvents have similar molecular structures but different polarities and dielectric constants. The charge transfer dynamics are found to depend on the solvent. A secondary feature in the THz emission appearing 4-6 Ps after the main pulse provides evidence that DMANS may undergo a twisted intramolecular charge transfer state (TICT) upon photoexcitation. The ultrafast magnetization dynamics of polycrystalline Ni and single Fe films ranging in thickness from 5 nm to 60 nm are reported using TES. For samples thicker than the visible optical skin depth, (˜10 nm for Ni and ˜27 nm for Fe), the emission is easily interpreted using Lenz's law. For films thinner than visible optical skin depth, the emission patterns are qualitatively different. These results suggest that there are two generation mechanisms at work: one that arises purely from bulk demagnetization in the thick sample limit and another that is the result of difference frequency generation enhanced by the magnetized surface. A comparative study of the magnetization dynamics of a 40 nm Ni and 40 Fe film shows that the magnetization recovers faster in Fe than in Ni. The dependence of optical rectification and shift currents in unbiased GaAs (111) is reported using TES. It is found that the dependence

  18. Fiber Optic Switch For Broadband Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    De Groot, Wim; Myers, Roger; Zube, Dieter

    1994-01-01

    Many high-temperature processes comprise large-scale phenomena. Studying spatial and temporal correlations of physical processes between several locations within characteristic scales provides desired information on macroscopic physical processes. Achieved with emission spectroscopy by use of multiple optical fibers. Simultaneous coupling of light from these fibers into single available spectrometer and/or monochromator not accomplished without added expense of two-dimensional array and increased complexity of calibration. Quasi-simultaneous coupling, while maintaining optimum alignment and maximum throughput of broadband emission, achieved by use of fiber optic multiscanner. Instrument used successfully in study of frozen-flow losses internal to flow of plasma inside nozzle of arc jet. Instrument includes two hollow disks of different sizes and stepping motor.

  19. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  20. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  1. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  2. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  3. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  4. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    SciTech Connect

    Robinson, J.W.; Skelly, E.M.

    1982-01-01

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant form of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.

  5. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  6. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  7. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  8. SPECTRW: A software package for nuclear and atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalfas, C. A.; Axiotis, M.; Tsabaris, C.

    2016-09-01

    A software package to be used in nuclear and atomic spectroscopy is presented. Apart from analyzing γ and X-ray spectra, it offers many additional features such as de-convolution of multiple photopeaks, sample analysis and activity determination, detection system evaluation and an embedded code for spectra simulation.

  9. Single atom identification by energy dispersive x-ray spectroscopy

    SciTech Connect

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  10. Spectroscopy and Dynamics of K Atoms on Argon Clusters.

    PubMed

    Douady, J; Awali, S; Poisson, L; Soep, B; Mestdagh, J M; Gervais, B

    2015-06-11

    We present a combined experimental and simulation study of the 4s → 4p photoexcitation of the K atom trapped at the surface of ArN clusters made of a few hundred Ar atoms. Our experimental method based on photoelectron spectroscopy allows us to firmly establish that one single K atom is trapped at the surface of the cluster. The absorption spectrum is characterized by the splitting of the atomic absorption line into two broad bands, a Π band associated with p orbitals parallel to the cluster surface and a Σ band associated with the perpendicular orientation. The spectrum is consistent with observations reported for K atoms trapped on lighter inert gas clusters, but the splitting between the Π and Σ bands is significantly larger. We show that a large amount of K atoms are transiently stuck and eventually lost by the Ar cluster, in contrast with previous observations reported for alkaline earth metal systems. The excitation in the Σ band leads systematically to the ejection of the K atom from the Ar cluster. On the contrary, excitation in the Π band leads to the formation of a bound state. In this case, the analysis of the experimental photoelectron spectrum by means of nonadiabatic molecular dynamics simulation shows that the relaxation drives the system toward a basin where the coordination of the K atom is 2.2 Ar atoms on the average, in a poorly structured surface.

  11. Current Status of Atomic Spectroscopy Databases at NIST

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander; Ralchenko, Yuri; Reader, Joseph

    2016-05-01

    NIST's Atomic Spectroscopy Data Center maintains several online databases on atomic spectroscopy. These databases can be accessed via the http://physics.nist.gov/PhysRefData web page. Our main database, Atomic Spectra Database (ASD), recently upgraded to v. 5.3, now contains critically evaluated data for about 250,000 spectral lines and 109,000 energy levels of almost all elements in the periodic table. This new version has added several thousand spectral lines and energy levels of Sn II, Mo V, W VIII, and Th I-III. Most of these additions contain critically evaluated transition probabilities important for astrophysics, technology, and fusion research. A new feature of ASD is providing line-ratio data for diagnostics of electron temperature and density in plasmas. Saha-Boltzmann plots have been modified by adding an experimental feature allowing the user to specify a multi-element mixture. We continue regularly updating our bibliography databases, ensuring comprehensive coverage of current literature on atomic spectra for energy levels, spectral lines, transition rates, hyperfine structure, isotope shifts, Zeeman and Stark effects. Our other popular databases, such as the Handbook of Basic Atomic Spectroscopy Data, searchable atlases of spectra of Pt-Ne and Th-Ne lamps, and non-LTE plasma-kinetics code comparisons, continue to be maintained.

  12. Optical Emission Spectroscopy in an Unmagnetized Plasma

    NASA Astrophysics Data System (ADS)

    Milhone, Jason; Cooper, Christopher; Desangles, Victor; Nornberg, Mark; Seidlitz, Blair; Forest, Cary; WiPAL Team

    2015-11-01

    An optical emission spectroscopic analysis has been developed to measure electron temperature, neutral burnout, and Zeff in Ar and He plasmas in the Wisconsin plasma astrophysics laboratory (WiPAL). The WiPAL vacuum chamber is a 3 meter diameter spherical vessel lined with 3000 SmCo permanent magnets (B > 3 kG) that create an axisymmetric multi-cusp ring for confining the plasma. WiPAL is designed to study unmagnetized plasmas that are hot (Te > 10 eV), dense (ne >1018), and with high ionization fraction. Electron temperature and density can be measured via Langmuir probes. However, probes can disturb the plasma, be difficult to interpret, and become damaged by large heat loads from the plasma. A low cost non-invasive spectroscopy system capable of scanning the plasma via a linear stage has been installed to study plasma properties. From the neutral particle emission, the neutral burnout and estimated neutral temperature can be inferred. A modified coronal model with metastable states is being implemented to determine Te for Ar plasmas.

  13. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  14. Use of LEED, Auger emission spectroscopy and field ion microscopy in microstructural studies.

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Buckley, D. H.; Pepper, S. V.; Brainard, W. A.

    1972-01-01

    The studies reported were conducted to gain a fundamental understanding of adhesion and dynamic friction on an atomic or microscopic level. Fundamental aspects of low energy electron diffraction (LEED), Auger emission spectroscopy (AES), and field ion microscopy (FIM) are discussed. Typical results of studies conducted are considered, giving attention to LEED-AES experiments, pin and disk experiments, and field ion microscope investigations.

  15. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  16. Comparison between dressed-atom and bare-atom pictures in laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Berman, P. R.; Salomaa, Rainer

    1982-05-01

    The theory of the interaction between radiation fields and atoms as applied to laser spectroscopy can be approached using either a bare-atom picture (BAP) or dressed-atom picture (DAP). In the BAP, the basis states are those of the free atoms and free field while, in the DAP, the basis states encompass some part of the atom-field interaction. The theory of saturation spectroscopy in three-level systems is discussed using both approaches. Whereas calculations are usually more easily done using the BAP, one can gain useful insight into the underlying physical processes from the DAP. Moreover, when the radiation field strengths (in frequency units) are larger than the relaxation rates in the problem, the DAP equations simplify considerably and lead to line-shape expressions which may be given a simple interpretation. The DAP is used to obtain resonance conditions for traveling-wave fields interacting with three- and four-level atoms and for a standing-wave saturator and traveling-wave probe interacting with a three-level atom. In addition, the DAP is applied to several problems involving optical coherent transients. A comparison is made between the various advantages of the BAP and DAP and an interesting duality between the two approaches is noted.

  17. Diagnostics of O Atoms in Inductively Coupled O2 Plasma Employing Vacuum Ultraviolet Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagai, Hisao; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Takashima, Seigou

    2002-10-01

    The compact measurement system for absolute densities of oxygen (O) atom has been developed employing a vacuum ultraviolet absorption spectroscopy (VUVAS) technique with a high-pressure micro-discharge hollow cathode lamp (MHCL) as a light source. The influences of self-absorption, emission line profiles of the MHCL, and the background absorption on determination of absolute O atom density were investigated. This system has been applied for measuring of absolute O atom densities in an inductively coupled O2 plasma. O atom densities were estimated to be on the order of 4 x 10^11 -4 x 10^12 cm-3, at an O2 pressure ranging from 1.3 to 26.7 Pa. The behavior of O atom density measured using VUVAS technique was consistent with that obtained by actinometry technique using 844.6 nm and 777.2 nm. Moreover, the lifetime of O atom in the afterglow plasma has been investigated. The decay curves of the O atom density were fitted with exponential functions. The extinction process of O atom in the inductively coupled O2 plasma is discussed.

  18. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    SciTech Connect

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  19. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    ERIC Educational Resources Information Center

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  20. Spectroscopy of Rb atoms in hollow-core fibers

    SciTech Connect

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-05-15

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  1. Atomic jet with ionization detection for laser spectroscopy of Rydberg atoms under collisions and fields

    NASA Astrophysics Data System (ADS)

    Philip, G.

    2008-03-01

    An efficient atomic jet setup offering many unprecedented advantages over a conventional heat pipe setup used in multi-photon spectroscopy, mainly of alkaline-earth metals, has been constructed by a scheme in which the sample material is encapsulated in a disposable cartridge oven located inside a thermally stabilised heat-pipe and is made to effuse in to a row of atomic beams merging to form a jet target. This novel scheme combines the advantages of both high density atomic beam with convenient geometry for orthogonal excitation and high sensitive ionisation detection capabilities of thermionic diodes, besides eliminating several problems inherent in the usual heat-pipe operation. Out of various designs, typical results are presented for a linear heat-pipe with vertical atomic jet used in two-photon spectroscopy of highly excited states of Sr I. Controlled excitations of both Rydberg and non-Rydberg states, which cannot otherwise be accessed from the ground state due to parity and spectroscopic selection rules, have been achieved by employing a weak electric field complimented by collisions. The atomic jet setup is also found very useful for the study of collisional broadening and shift of excited states and time evolution of Rydberg atoms.

  2. Applications of beam-foil spectroscopy to atomic collisions in solids

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  3. Spectroscopy of highly-ionized atoms using position-sensitive detection

    NASA Astrophysics Data System (ADS)

    Kukla, K. W.; Livingston, A. E.; Serpa, F. G.; Zacarias, A. S.; Berry, H. G.; Dunford, R. W.; Kanter, E.; Cheng, S.; Suleiman, J.; Curtis, L. J.; Träbert, E.

    1993-06-01

    We report new results of atomic structure and atomic lifetime measurements in highly-ionized few electron atoms obtained using position-sensitive detection of extreme ultraviolet emission from excited fast ions. Data is presented from experiments run at the Notre Dame Tandem Accelerator and at the Argonne ATLAS facility using beam-foil spectroscopy with a photon-counting position-sensitive imaging detector. The results include excited state lifetimes in Si XI and Si XII involving both resonance transitions and Rydberg transitions, spectra of high-ionized He-like, Li-like, and Be-like nickel including comparisons of electron capture and excitation processes for charge selected beams and spectra and lifetimes in highly-charged bromine ions for both allowed and forbidden transitions.

  4. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  5. Laser cooling, trapping, and Rydberg spectroscopy of neutral holmium atoms

    NASA Astrophysics Data System (ADS)

    Hostetter, James Allen

    This thesis focuses on progress towards using ensembles of neutral holmium for use in quantum computing operations. We are particularly interested in using a switchable interaction between neutral atoms, the Rydberg blockade, to implement a universal set of quantum gates in a collective encoding scheme that presents many benefits over quantum computing schemes which rely on physically distinct qubits. We show that holmium is uniquely suited for operations in a collective encoding basis because it has 128 ground hyperfine states, the largest number of any stable, neutral atom. Holmium is a rare earth atom that is very poorly described for our purposes as it has never been cooled and trapped, its spectrum is largely unknown, and it presents several unique experimental challenges related to its complicated atomic structure and short wavelength transitions. We demonstrate important progress towards overcoming these challenges. We produce the first laser cooling and trapping of holmium into a MOT. Because we use a broad cooling transition, our cooling technique does not require the use of a Zeeman slower. Using MOT depletion spectroscopy, we provide precise measurements of holmium's Rydberg states and its ionization potential. Our work continues towards cooling holmium into a dipole trap by calculating holmium's AC polarizability and demonstrating the results of early attempts at an optical dipole trap. We provide details of future upgrades to the experimental apparatus and discuss interesting potential for using holmium in quantum computing using single atoms in a magnetically trapped lattice. This thesis shows several promising indicators for continued work in this field.

  6. Atomic and molecular data for optical stellar spectroscopy

    NASA Astrophysics Data System (ADS)

    Heiter, U.; Lind, K.; Asplund, M.; Barklem, P. S.; Bergemann, M.; Magrini, L.; Masseron, T.; Mikolaitis, Š.; Pickering, J. C.; Ruffoni, M. P.

    2015-05-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2-10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 105 stars.

  7. A CAVITY RINGDOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2002-01-01

    The first quarter of this project to develop a Cavity Ringdown Spectroscopy mercury continuous emission monitor involved acquisition and verification of the laser system to be used, initial cavity design, and initial software development for signal processing and data acquisition.

  8. Atomic Multiplets in X-ray Spectroscopies of Solids

    NASA Astrophysics Data System (ADS)

    Delley, Bernard; Uldry, Anne-Christine

    2013-03-01

    The electronic structures of compounds involving open d- and f- shell are studied frequently by X-ray and electron spectroscopies. For a better understanding of the multiplets arising in spectra involving one or more open shells, we have developed recently an easy to use program multiX,[2] which is available to download.[3] This first step allows the inclusion of the crystal environment as a crystal field entered simply as positions and charges of a cluster of atoms around the core hole site. This often gives valuable insights in the case of x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray spectroscopy (RIXS) measurements. However, in many cases it is desirable to allow for hybridization of the open shell electrons with the orbitals of neighbor atoms. This requires dealing with a significantly larger active Hilbert space. This is addressed with our recent Lanczos-based procedure to calculate spectra. First results will be discussed. Swiss SNF grant 200021-129970 is gratefully acknowledged.

  9. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy.

    PubMed

    Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry

    2015-07-01

    We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α. Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1  rad s-1. No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3×10(-18)  eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.

  10. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy.

    PubMed

    Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry

    2015-07-01

    We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α. Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1  rad s-1. No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3×10(-18)  eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks. PMID:26182090

  11. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry

    2015-07-01

    We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α . Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α . Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1 rad s-1 . No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 ×10-18 eV . Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.

  12. Atomic-Scale Imaging and Spectroscopy Using Scanning Tunneling Microscopy.

    NASA Astrophysics Data System (ADS)

    Youngquist, Michael George

    Advances in scanning tunneling microscopy (STM) instrumentation and applications are presented. An ultrahigh vacuum (UHV) scanning tunneling microscope incorporating computer-controlled two-dimensional sample translation and in vacuo tip and sample transfer was developed. Its performance is documented through large-area and atomic -resolution imaging of highly stepped Si(111) 7 x 7 reconstructed surfaces and physisorbed clusters on graphite. An STM with automated approach and intra-Dewar spring suspension was developed for operation in cryogenic liquids. A high performance digital signal processor (DSP) based control system was constructed, and software with advanced spectroscopic imaging and data processing capabilities was developed. The feasibility of individual-molecule vibrational spectroscopy via STM-detected inelastic electron tunneling is assessed. In preliminary experiments, a low-temperature STM was used for energy gap and phonon spectroscopy of superconducting Pb films. The first STM observation of phonon density of states effects in a superconductor is reported. A systematic UHV STM imaging and spectroscopy study of 2H-MoS_2 was conducted. Atom -resolved images from three distinct imaging modes are presented. Occasional appearance of negative differential resistance (NDR) in I vs. V measurements is traced to changing tip electronic structure rather than localized surface states. Other potential NDR mechanisms are discussed including electron trap charging and resonant tunneling through a double-barrier quantum well structure arising from layer separation in the MoS_2 crystal. DNA was imaged at atomic resolution with a UHV STM. Images show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles have atom-for-atom correlation with the A-DNA van der Waals surface. This work demonstrates the potential of the STM for characterization of large biomolecular structures. Impurity-pinned steps on silicon and gold surfaces

  13. Combination of optical emission and broadband absorption spectroscopy for diagnostics of HID lamps

    NASA Astrophysics Data System (ADS)

    Ruhrmann, Cornelia; Bergner, Andre; Hoebing, Thomas; Mentel, Juergen; Awakowicz, Peter

    2011-11-01

    HID lamps are used in several fields of application e.g. in street or automotive lighting as well as in video projection systems. Most of these lamps contain mercury to generate a high pressure buffer gas filling and thereby an appropriate power input into the arc. Due to its toxicity, the replacement of mercury is of particular interest in recent research of HID lamps. Currently, the emission coefficient of a mercury double line is used to determine the plasma temperature and thereby particle densities inside an HID lamp. A combination of optical emission and broadband absorption spectroscopy allows evaluating the plasma temperature without the need of mercury emission lines. It offers in combination with emission spectroscopy the possibility to calculate the total density of atoms and ions of elements also inside a mercury-free HID lamp. In this paper the measuring method is applied to a mercury-containing special research HID lamp (YAG lamp), seeded with rare earth iodines.

  14. Angle-resolved photoelectron spectroscopy of atomic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meulen, P.; Krause, M. O.; de Lange, C. A.

    1991-06-01

    Using synchrotron-radiation-based, angle-resolved photoelectron spectroscopy, the relative partial photoionization cross sections for the production of the 4 S 0 and 2 D 0 ionic states in atomic oxygen, as well as the corresponding asymmetry parameters, are measured from threshold at 13.62 to about 30 eV. The cross sections are placed on an absolute scale using previous data obtained with an electron spectroscopy modulation method. Attention is focused on the numerous autoionization resonances below the 2p -12D0, 2p -12P0, and 2s -14Pe limits. The behavior of the asymmetry parameters across these resonances is observed for the first time. The 2s2p4(4Pe)3p(3S0,3P0,3D0) resonances are fitted by a Fano-type profile to obtain accurate values for the position, width, and q parameter.

  15. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    SciTech Connect

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  16. Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition

    SciTech Connect

    Proslier, Th.; Zasadzinski, J.; Ciovati, Gianluigi; Kneisel, Peter K.; Elam, J. W.; Norem, J.; Pellin, M. J.

    2009-11-01

    We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

  17. Resonantly enhanced Bragg-scattering spectroscopy of an atomic transition

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Qiao, Cuifang; Li, Chuanliang; Chen, Fenghua

    2016-07-01

    A novel resonantly enhanced Bragg-scattering (REBS) spectroscopy from a population difference grating (PDG) is reported. The PDG is formed by a standing-wave (SW) pump field, which periodically modulates the space population distributions of two levels in the 87Rb D1 line. Then, a probe beam, having identical frequency and orthogonal polarization with the SW pump field, is Bragg-scattered by the PDG. The research achievement shows that the Bragg-scattered light is strongest at an atomic transition, and forms an REBS spectrum with a high signal-to-noise ratio and sub-natural linewidth. The observed REBS can be applied in precise frequency measurements.

  18. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  19. Atomic emission in the ultraviolet nightglow

    NASA Astrophysics Data System (ADS)

    Sharp, W. E.; Siskind, D. E.

    1989-12-01

    An observation of the ultraviolet nightglow between 2670 A and 3040 A was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter UV spectrometer operating at 3.5 A resolution viewed the earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2852 A is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2972 A line from O(1S) was less than that predicted from the accepted O(1S) branching ratio and acceptable ratios of Herzberg I to 5577 A emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  20. Production of ultra slow antiprotons, its application to atomic collisions and atomic spectroscopy - ASACUSA project

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasunori

    1999-06-01

    The Atomic Spectroscopy And Collisions Using Slow Antiprotons (ASACUSA) project aims at studying collision dynamics with slow antiprotons and high precision spectroscopy of antiprotonic atoms. To realize these purposes, the production of high quality ultra slow antiproton beams is essential, which is achieved by the combination of antiproton decelerator (AD) from 3 GeV to 5 MeV, a radio frequency quadrupole (RFQ) decelerator from 5 MeV to 50 keV, and finally an electromagnetic trap from 50 keV to 10 eV. From the atomic physics point of view, an antiproton is an extremely heavy electron and/or a negatively charged proton, i.e., the antiproton is a unique tool to shed light on collision dynamics from the other side of the world. In addition to this fundamentally important feature, the antiproton has also a big practical advantage, i.e., it annihilates with the target nuclei emitting several energetic pions, which provides high detection efficiency with very good time resolution. Many-body effects which are of great importance to several branches of science will be studied through ionization and antiprotonic atom formation processes under single collision conditions. Various antiprotonic atoms including protonium ( p¯p) are expected to be meta-stable in vacuum, which is never true for those in dense media except for antiprotonic helium. High precision spectroscopy of protonium will for the first time become feasible benefited by this meta-stability. The present review reports briefly the production scheme of ultra slow antiproton beams and several topics proposed in the ASACUSA project.

  1. Spectroscopy of lithium atoms and molecules on helium nanodroplets.

    PubMed

    Lackner, Florian; Poms, Johannes; Krois, Günter; Pototschnig, Johann V; Ernst, Wolfgang E

    2013-11-21

    We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–He(m), m = 1–3) formation process in the Li–He(N) system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–He(N) systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu(+)). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu(+)(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied.

  2. Detecting Hydrogen Atoms in Solid Parahydrogen Using FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, David T.; Ruzi, Mahmut

    2012-06-01

    Our group is currently studying the 193.3 nm photochemistry of a number of precursor molecules isolated in solid parahydrogen (pH_2) using high-resolution FTIR spectroscopy. In photochemical studies of formic acid and ammonia, right after the photolysis laser is turned off, we observe metastable satellite peaks in close proximity to the strong rovibrational transition out of the ground state of the respective monomer photoproducts H_2O and NH_3. In both cases, there are two satellite peaks near the R(0) monomer transition. We have assigned these satellite features to H-H_2O and H-NH_3 radical clusters that form via reactions of the photoproduct with the pH_2 host. We will present IR spectroscopic studies of these two H-atom cluster systems that we hope to use in future photochemical studies to measure the concentration of H-atoms in our sample using FTIR spectroscopy. K. A. Kufeld, W. R. Wonderly, L. O. Paulson, S. C. Kettwich, and D. T. Anderson, J. Phys. Chem. Lett. 3, 342-347 (2012).

  3. Atomic emission in the ultraviolet nightglow

    SciTech Connect

    Sharp, W.E.; Siskind, D.E. )

    1989-12-01

    An observation of the ultraviolet nightglow between 2,670 {angstrom} and 3,040 {angstrom} was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter uv spectrometer operating at 3.5 {angstrom} resolution viewed the Earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2,852 {angstrom} is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2,972 {angstrom} line from O({sup 1}S) was less than that predicted from the accepted O({sup 1}S) branching ratio and acceptable ratios of Herzberg I to 5,577 {angstrom} emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  4. Spectroscopy of unusual emission-line stars

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.

    1988-01-01

    New spectroscopic observations are reported for ten stars that have been identified in the literature as having H-alpha emission with suspected F, G, or K spectral types. Three of the stars are shown to be BE stars, two are confirmed as early-type supergiants, three show composite (F or K + B) spectra, one is a 'post-T Tauri' star, and one is an ordinary F star without emission.

  5. Medical applications of atomic force microscopy and Raman spectroscopy.

    PubMed

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  6. Spectroscopy of the 3 micron emission features

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.; Lacy, J. H.; Persson, S. E.; Mcgregor, P. J.; Soifer, B. T.

    1985-01-01

    High-spectral-resolution observations of the 3.3 and 3.4 microns features in the three planetary nebulae NGC 7027, IC 418, and BD +30 deg 3639, in the H II region S106, and in the 'red rectangle' HD 44179 are presented. The profile of the unidentified 3.3 microns emission feature is similar in all five sources. The unidentified feature previously referred to as the 3.4 microns feature actually consists of two components, a low-level emission from 3.35 to 3.60 microns and a narrow emission peak at 3.40 microns. The strength of the latter feature relative to that of the 3.3 microns feature varies by a a factor of three from source to source. The origin and properties of these features may be explained by further development of the small-grain models of Sellgren (1984) and Leger and Puget (1984).

  7. NIST Atomic Spectroscopy Databases in Support of Astronomy

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Kramida, A.; Ralchenko, Y.

    2012-01-01

    Joseph Reader1, Alexander Kramida1, Yuri Ralchenko1 1National Institute of Standards and Technology, Gaithersburg, Maryland. The NIST Atomic Spectroscopy Data Center maintains a number of online databases supporting astronomical observations of atomic spectra. The available numerical and bibliographic databases can be accessed from the NIST Physical Measurement Laboratory website www.nist.gov/pml/data/atomspec.cfm. The largest one, the Atomic Spectra Database (ASD), contains wavelength and energy level data for nearly 180,000 spectral lines including 73,400 oscillator strengths. ASD also includes 92,500 energy levels for various ions of 89 elements. In addition to tabular data, ASD can generate dynamic Grotrian diagrams and Saha/LTE spectra, which can be tailored to the user's needs. We continue to systematically expand this database according to needs of the astrophysics and fusion energy science communities. Our bibliographic databases for atomic spectra are updated about every two weeks; they serve as a valuable resource in searching for the latest data. We also provide online non-LTE codes for plasma modeling. Our compilations of spectral data are largely oriented to the needs of astronomers. Recently completed are extensive compilations for Ar, Cr, Ti, and Ni, and a new compilation for Ca is in progress. Recent updates of line lists and transition probabilities include data for H, He, Li, Be, B, C, N, F, Ne, Na, Mg Al, Cl, Sr, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, and Ba. We welcome suggestions from astronomers regarding spectra to be compiled and added to the online databases. Spectral atlases of Pt/Ne and Th/Ar hollow cathode lamps for wavelength calibration of astronomical spectrometers can also be found at his website. Our Data Center is supported by NASA (agreement NNH09AL771) and by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

  8. EQUIB: Atomic level populations and line emissivities calculator

    NASA Astrophysics Data System (ADS)

    Howarth, I. D.; Adams, S.; Clegg, R. E. S.; Ruffle, D. P.; Liu, X.-W.; Pritchet, C. J.; Ercolano, B.

    2016-03-01

    The Fortran program EQUIB solves the statistical equilibrium equation for each ion and yields atomic level populations and line emissivities for given physical conditions, namely electron temperature and electron density, appropriate to the zones in an ionized nebula where the ions are expected to exist.

  9. Plasma emission spectroscopy method of tumor therapy

    DOEpatents

    Fleming, K.J.

    1997-03-11

    Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics. 6 figs.

  10. Plasma emission spectroscopy method of tumor therapy

    DOEpatents

    Fleming, Kevin J.

    1997-01-01

    Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics.

  11. Fourier spectroscopy of the stratospheric emission

    NASA Technical Reports Server (NTRS)

    Carli, B.; Mencaraglia, F.; Bonetti, A.

    1980-01-01

    Stratospheric emission spectra in the submillimeter range have been recorded with a resolution of 0.0033/cm with a balloon-borne interferometer. Several minor atmospheric constituents have been identified in a preliminary analysis of the spectra; these are water vapor, oxygen, ozone isotopes, nitric acid, nitrous oxide, hydrofluoric and hydrochloric acids, and carbon monoxide.

  12. Atomic absorption spectrometry with a flame emission source

    NASA Astrophysics Data System (ADS)

    Calloway, Clifton P.; Jones, Bradley T.

    1994-12-01

    An atomic absorption spectrometer with flame atomization and a flame emission light source is described. The light source is prepared by aspirating a solution containing a high concentration of analyte into the emission flame. Two different source flames (air/acetylene and nitrous oxide/acetylene) have been evaluated, with the N 2O flame providing better signal to noise ratios ( S/N) in most cases. Source S/N values as high as 5900 (Cr) have been observed. Experimental parameters have been optimized for nine test elements to give limits of detection obtained with this system that are in some cases as good as those obtained with the traditional hollow cathode lamp source; for example, Cu (4 ng/ml), Mn (3 ng/ml) and Ni (5 ng/ml). Linear dynamic ranges typically span 2-3 orders of magnitude. This system offers an inexpensive emission source with the ability to quickly change the setup to accommodate different analytes.

  13. Modulation transfer spectroscopy in a lithium atomic vapor cell.

    PubMed

    Sun, Dali; Zhou, Chao; Zhou, Lin; Wang, Jin; Zhan, Mingsheng

    2016-05-16

    We have investigated modulation transfer spectroscopy of D2 transitions of 7Li atoms in a vapor cell. The role of the intensity of the probe beam in the spectrum is important, we have seen unique characteristics of the signal in the crossover peak. In order to find the best signal for laser locking, the slope and frequency offset of the zero-crossing signal are determined. The dependence of the modulation transfer spectra on polarizations of pump and probe beam is demonstrated. The residual amplitude modulation in the system is also considered, and the distortion of the spectra due to the modulation is analyzed. It was found that the crossover peak is more suitable for frequency stabilization due to its better residual amplitude modulation compensation.

  14. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  15. Modulation transfer spectroscopy in a lithium atomic vapor cell.

    PubMed

    Sun, Dali; Zhou, Chao; Zhou, Lin; Wang, Jin; Zhan, Mingsheng

    2016-05-16

    We have investigated modulation transfer spectroscopy of D2 transitions of 7Li atoms in a vapor cell. The role of the intensity of the probe beam in the spectrum is important, we have seen unique characteristics of the signal in the crossover peak. In order to find the best signal for laser locking, the slope and frequency offset of the zero-crossing signal are determined. The dependence of the modulation transfer spectra on polarizations of pump and probe beam is demonstrated. The residual amplitude modulation in the system is also considered, and the distortion of the spectra due to the modulation is analyzed. It was found that the crossover peak is more suitable for frequency stabilization due to its better residual amplitude modulation compensation. PMID:27409886

  16. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  17. Magnetic-field-assisted atomic polarization spectroscopy of 4 He

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Wang, Haidong; Wu, Teng; Peng, Xiang; Guo, Hong; Cream Team

    2016-05-01

    Atomic polarization spectroscopy (PS) is a high resolution sub-Doppler atomic spectroscopic technique with free modulation. It is always desirable to obtain a PS signal with zero background as it can provide a more preferable laser frequency stabilization performance. There are many factors that can affect the PS signal background, i.e., the laser power, the laser polarization and the magnetic field. Here, we demonstrate a method for observing and analyzing the effects on the PS signal of 4 He under different magnetic fields. At the beginning, under nearly zero magnetic field, the large asymmetrical PS signal background has been observed and cannot be eliminated by only optically adjusting. Then, we find that the PS signal profile can be changed and controlled by varying the magnetic field with transverse or longitudinal direction and different intensity. The optimized PS signal with symmetrical dispersive profile and zero background is obtained when the magnetic field is chosen and controlled in the transverse direction and more than 20000nT intensity. Similar phenomenon cannot be observed under the longitudinal magnetic field. A theoretical model is also presented, which explains and agrees well with our experimental results.

  18. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  19. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  20. Theory of single molecule emission spectroscopy

    SciTech Connect

    Bel, Golan; Brown, Frank L. H.

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  1. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-17

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  2. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  3. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'Skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  4. [Detection of Lead in Water by Electrolyte Cathode Atmospheric Glow Discharge Emission Spectroscopy].

    PubMed

    Zheng, Pei-chao; Zhang, Bin; Wang, Jin-mei; Wang, Xiao-meng; Liu, Hong-di; Yang, Rui

    2015-07-01

    A device based on electrolyte cathode atmospheric glow discharge atomic emission spectroscopy (ELCAD-AES) has been developed to determine the metal ion Pb in water. The emission intensity of Ph was significantly enhanced with the increase concentration of Pb, and the emission intensity has a linear relationship with concentration while the concentration of Pb in the range of 10-80 mg x L(-1). The effects of discharge current and easily ionizable elements on the emission spectral of Pb were investigated, and the emission intensity reached greatest when the discharge current increased to 70 mA, and the easily ionizable elements generated weak effect on the emission spectral of Pb. The effect of acidification regent on emission spectral of Pb was discussed. It was found that it perform best when acidified with HNO3, and reducing the pH can improve the emission intensity of Pb effectively. The emission intensity of Pb at different region was detected near cathode region, thus obtained the best detection position. Under the optimized experimental parameters, the detection limit of Ph was 0.7 mg x L(-1) and relative standard deviation was 1.7%. The recovery of samples was 95%-106%, result and shows that this method has better accuracy. These results provide an available method for further research of detection trace heavy mental elements in water using ELCAD-AES. PMID:26717769

  5. Mars exploration via thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.; Blasius, Karl R.; Christensen, Philip; Silverman, Steven; Ruff, Steven; Wyatt, Michael; Mehall, Greg; Peralta, Richard J.; Bates, Duane

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, the Arizona State University (ASU), and Raytheon Space and Airborne Systems (SAS) Santa Barbara Remote Sensing (SBRS) have executed a series of successful Mars exploration missions. These have recently been publicized on television and the internet with the early 2004 Mars Exploration Rover (MER) mission geological robots that have revolutionized our detailed knowledge of the planet's geology and atmosphere. This latest mission success has its foundation in missions dating back to 1969. Over the past thirty-five years NASA has demonstrated a long-term commitment to planetary science and solar system exploration that continues with a commitment recently expressed by President Bush and codified in a reorganization of the NASA space sciences mission directorate. This paper reports on a small but exciting aspect of this sweeping NASA program, and illustrates the benefits and efficiency with which planetary and solar system exploration can be accomplished. Key in the success is the vision not only of NASA in general, but of the mission Principal Investigator, in particular. The specific series of missions leading to MER contains an underlying vision of carefully planned geological investigations using remote sensing instrumentation, starting with broad survey, leading to more finely resolved global imaging, and finally to landing instrumentation capable of detailed rock and soil analyses. The mission started with broad and relatively coarse spatial resolution orbital surveys with fine spectral capability focused on identifying the overall geological and atmospheric character of the planet accomplished from 1996 to the present conducted by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). This led to the more detailed global imaging at finer spatial resolution offered by the Mars 2001 Odyssey Mission Thermal Emission Imaging System (THEMIS) which identified specific

  6. Far ultraviolet atomic and molecular nitrogen emissions in the dayglow

    NASA Technical Reports Server (NTRS)

    Takacs, P. Z.; Feldman, P. D.

    1977-01-01

    A scanning spectrophotometer was used to observe the far ultraviolet day airglow between 1130 and 1520 A at 4.4-A spectral resolution. Fourteen bands of the N2 Lyman-Birge-Hopfield (LBH) system are clearly resolved and suggest a total LBH system zenith column emission rate of 3810 plus or minus 520 R extrapolated to the subsolar point. A photoelectron flux model (based on recent photoelectron flux measurements and the observed LBH altitude profile) is used to derive the direct and dissociative excitation contributions to the atomic nitrogen emissions. The calculated atomic nitrogen density agrees with other measurements, although it is an order of magnitude greater than previous photochemical model results.

  7. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-01-01

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. PMID:24906107

  8. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  9. Emission Spectroscopy Following the Multiphoton Photolysis of Halomethanes at Near-Ultraviolet Wavelengths

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Nan; Liao, Hsiang-Fu; Hou, Guang-Yi; Yang, Shi-Xing; Chang, Bor-Chen

    2010-06-01

    Emission spectroscopy including nascent emission and laser-induced dispersed fluorescence was adopted to investigate the multiphoton photolysis mechanism of halomethanes at near-ultraviolet wavelengths in a slow flow system. In the 266 nm photolysis of the interested halomethanes (CHBr_3, CHBr_2Cl, CHBrCl_2, CH_2Br_2, CHI_3, CH_2I_2, and CH_3I), several excited species such as CH (A^2Δ, B^2Σ^-, and C^2Σ^+), atomic Br or I, and C_2 (d^3Π_g) were observed in the nascent emission spectra. Halomethylenes (CHX, X= Br, Cl, I), the reactive intermediates, were not observed in nascent emission spectra, but they can be found using laser-induced dispersed fluorescence spectroscopy following excitation of their ~A1A' '(0,v_2,0)←~X1A^'(0,0,0) transitions. Interestingly, CHBr was seen only in the photolysis of CHBr_3, whereas CHCl was only discovered when the precursor is CHBr_2Cl or CHBrCl_2. The photolysis laser power dependence and emission waveform measurements were also conducted. In addition, nascent emission spectra following the photolysis at longer near-ultraviolet wavelengths (280 nm and 355 nm) were acquired. The results show the distinctive differences between the photolysis of bromomethanes (CHBr_3, CHBr_2Cl, CHBrCl_2, and CH_2Br_2) and that of iodomethanes (CHI_3, CH_2I_2, and CH_3I). Our recent progress will be presented.

  10. Infrared [Fe II] Emission Lines from Radiative Atomic Shocks

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Raymond, John C.; Kim, Hyun-Jeong

    2016-06-01

    [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by te{raymond1979} with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., fethreefive/fetwofive, fefive/fetwofive, and fefive/feoneseven, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

  11. Emission spectroscopy study of CF{sub 4} decomposition in an Ar-H{sub 2} inductive plasma torch

    SciTech Connect

    Ricard, A.; Al Ayoubi, S.; Cavvadias, S.; Amouroux, J.

    1995-12-31

    Radiative species in Ar RF plasma torch with addition of H{sub 2}, CH{sub 4} and CF{sub 4} polluting gases have been analyzed by emission spectroscopy. An efficient etching by F atoms of reactor quartz tube is detected from Si atom emission when a few 10{sup {minus}3} CF{sub 4} is introduced into the Ar plasma. The Si emission disappeared with H{sub 2} introduction into the Ar-CF{sub 4} gas mixture which has been correlated with HF formation. From C atomic emission, it is deduced that CF{sub 4} as CH{sub 4} polluting gases are largely dissociated into the Ar plasma torch.

  12. [Detection of metal residue in aqueous solutions by electrolyte cathode atmospheric glow discharge emission spectroscopy].

    PubMed

    Zheng, Pei-chao; Wang, Hong-mei; Li, Jian-quan; Han, Hai-yan; Xi, Xiao-qin; Chu, Yan-nan

    2010-07-01

    Toxic metal elements in waters and wastewaters contaminate the environment and greatly threaten the health of human beings, therefore developing a rapid monitor for metal residues in aqueous solutions is urgently required. In the present work, a new homemade apparatus of electrolyte cathode atmospheric glow discharge emission spectroscopy was developed and described. It can detect and discriminate many kinds of trace mental elements by atomic emission spectrum from atmospheric pressure liquid cathode glow discharge. In order to estimate the analytical performance of the present atmospheric pressure electrolyte cathode glow discharge emission spectroscopy system, the detection limit values for Na, Li, Cu, Pb and Mn were obtained based on 3sigma of the background signal, and the current limits of detection were 0.008, 0.005, 1.1, 2.06 and 1.95 mg L(-1), respectively. It demonstrates that the atmospheric pressure electrolyte cathode glow discharge emission spectroscopy has a promising application in real time measurements of metal residues in aqueous solutions. PMID:20828006

  13. Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Vujošević, D.; Mozetič, M.; Cvelbar, U.; Krstulović, N.; Milošević, S.

    2007-05-01

    Optical emission spectroscopy was applied for plasma characterization during sterilization of substrates contaminated with bacteria. The amount of 1010/ml cells of Escherichia coli was carefully applied to glass substrates and exposed to oxygen plasma glow discharge at different pressures between 30 and 200Pa. Plasma was created in a glass discharge tube by an inductively coupled rf generator at the frequency of 27.12MHz and output power of about 250W. The electron temperature and plasma density were estimated with a double Langmuir probe. They were between 3 and 5eV and 2 and 35×1015m-3. Density of neutral oxygen atoms was measured with a catalytic probe, and was between 2 and 6×1021m-3. Optical emission spectroscopy was performed with a low resolution spectrometer. The emission from carbon monoxide and nitrogen molecules was used to monitor the evolution of bacteria degradation. Both signals expressed a well defined maximum corresponding to peak erosion of bacteria by plasma radicals. As the sterilization was accomplished, both CO and N2 lines fell below the detection limit of the spectrometer. The bacteria degradation was also monitored by scanning electron microscope (SEM) and culturing. The SEM images corresponded well with the evolution of CO and N2 lines so the optical emission spectroscopy found a reliable tool for monitoring the sterilization process.

  14. Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli

    SciTech Connect

    Vujosevic, D.; Mozetic, M.; Cvelbar, U.; Krstulovic, N.; Milosevic, S.

    2007-05-15

    Optical emission spectroscopy was applied for plasma characterization during sterilization of substrates contaminated with bacteria. The amount of 10{sup 10}/ml cells of Escherichia coli was carefully applied to glass substrates and exposed to oxygen plasma glow discharge at different pressures between 30 and 200 Pa. Plasma was created in a glass discharge tube by an inductively coupled rf generator at the frequency of 27.12 MHz and output power of about 250 W. The electron temperature and plasma density were estimated with a double Langmuir probe. They were between 3 and 5 eV and 2 and 35x10{sup 15} m{sup -3}. Density of neutral oxygen atoms was measured with a catalytic probe, and was between 2 and 6x10{sup 21} m{sup -3}. Optical emission spectroscopy was performed with a low resolution spectrometer. The emission from carbon monoxide and nitrogen molecules was used to monitor the evolution of bacteria degradation. Both signals expressed a well defined maximum corresponding to peak erosion of bacteria by plasma radicals. As the sterilization was accomplished, both CO and N{sub 2} lines fell below the detection limit of the spectrometer. The bacteria degradation was also monitored by scanning electron microscope (SEM) and culturing. The SEM images corresponded well with the evolution of CO and N{sub 2} lines so the optical emission spectroscopy found a reliable tool for monitoring the sterilization process.

  15. ATOMIC AND MOLECULAR PHYSICS: Spontaneous Emission of a Polarized Atom in a Medium Between Two Parallel Mirrors

    NASA Astrophysics Data System (ADS)

    Wang, De-Hua; Huang, Kai-Yun; Xu, Qiang

    2010-01-01

    Using the photon closed orbit theory, the spontaneous emission rate of a polarized atom in a medium between two parallel mirrors is derived and calculated. It is found that the spontaneous emission rate of a polarized atom between the mirrors is related to the atomic position and the polarization direction. The results show that in the vicinity of the mirror, the variation of the spontaneous emission rate depends crucially on the atomic polarization direction. With the increase of the polarization angle, the oscillation in the spontaneous emission rate becomes decreased. For the polarization direction parallel to the mirror plane, the oscillation is the greatest; while for the perpendicular polarization direction, the oscillation is nearly vanished. The agreement between our result and the quantum electrodynamics result suggests the correctness of our calculation. This study further verifies that the atomic spontaneous emission process can be effectively controlled by changing the polarization orientation of the atom.

  16. Spontaneous emission of an atom in the presence of nanobodies

    SciTech Connect

    Klimov, Vasilii V; Ducloy, M; Letokhov, V S

    2001-07-31

    The effect of nanobodies, i.e., the bodies whose size is small compared to the emission wavelength, on spontaneous emission of an atom located near them is considered. The results of calculations performed within the framework of quantum and classical electrodynamics are presented both in analytic and graphical forms and can be readily used for planning experiments and analysis of experimental data. It is shown that nanobodies can be used to control efficiently the rate of spontaneous transitions. Thus, an excited atom located near a nanocylinder or a nanospheroid pole, whose transition dipole moment is directed normally to the nanobody surface, can decay with the rate that is tens and hundreds times higher than the decay rate in a free space. In the case of some (negative) dielectric constants, the decay rate can increase by a factor of 10{sup 5}-10{sup 6} and more. On the other hand, the decay of an excited atom whose transition dipole moment is directed tangentially to the nanobody surface substantially slows down. The probability of nonradiative decay of the excited state is shown to increase substantially in the presence of na-nobodies possessing losses. (review)

  17. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy

    SciTech Connect

    Verhoff, B.; Harilal, S. S.; Freeman, J. R.; Diwakar, P. K.; Hassanein, A.

    2012-11-01

    We investigated the spatial and temporal evolution of temperature and electron density associated with femto- and nanosecond laser-produced plasmas (LPP) from brass under similar laser fluence conditions. For producing plasmas, brass targets were ablated in vacuum employing pulses either from a Ti:Sapphire ultrafast laser (40 fs, 800 nm) or from a Nd:YAG laser (6 ns, 1064 nm). Optical emission spectroscopy is used to infer the density and temperature of the plasmas. The electron density (n{sub e}) was estimated using Stark broadened profiles of isolated lines while the excitation temperature (T{sub exc}) was estimated using the Boltzmann plot method. At similar fluence levels, continuum and ion emission are dominant in ns LPP at early times (<50 ns) followed by atomic emission, while the fs LPP provided an atomic plume throughout its visible emission lifetime. Though both ns and fs laser-plasmas showed similar temperatures ({approx}1 eV), the fs LPP is found to be significantly denser at shorter distances from the target surface as well as at early phases of its evolution compared to ns LPP. Moreover, the spatial extension of the plume emission in the visible region along the target normal is larger for fs LPP in comparison with ns LPP.

  18. Current Problems in X-Ray Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Joseph I.; Williams, David B.; Lyman, Charles E.

    1989-01-01

    Various problems that limit X-ray analysis in the analytical electron microscope are reviewed. Major emphasis is given to the trade-off between minimum mass fraction and spatial resolution. New developments such as high-brightness electron guns, new X-ray spectrometers and clean high-vacuum analysis conditions will lead to major improvements in the accuracy and detectability limits of X-ray emission spectroscopy.

  19. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  20. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    SciTech Connect

    Milosavljevic, Vladimir; MacGearailt, Niall; Daniels, Stephen; Turner, Miles M.; Cullen, P. J.

    2013-04-28

    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  1. The role of total-reflection X-ray fluorescence in atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Tölg, G.; Klockenkämper, R.

    1993-02-01

    Total-reflection X-ray fluorescence (TXRF) is a universal and economic method for the simultaneous determination of elements with atomic numbers > 11 down to the lower pg-level. It is a microanalytical tool for the analysis of small sample amounts placed on flat carriers and for contaminations on flat sample surfaces. Analyses of stratified near-surface layers are made possible by varying the incident angle of the primary beam in the region of total-reflection. This non-destructive method is especially suitable for thin layers of a few nanometres, deposited on wafer material although not usable as a microprobe method with a high lateral resolution. Furthermore, depth profiles of biological samples can be recorded by means of microtome sectioning of only a few micrometres, as, for example in the gradient analysis of human organs. In addition to micro- and surface-layer analysis, TXRF is effectively applied to element trace analysis. Homogeneous solutions, for example aqueous solutions, high-purity adds or body fluids, are pipetted onto carriers and, after evaporation, the dry residues are analysed directly down to the pg/ml region. Particularly advantageous is the absence of matrix effects, so that an easy calibration can be carried out by adding a single internal standard element. A digestion or separation step preceding the actual determination becomes necessary if a more complex matrix is to be analysed or especially low detection limits have to be reached. A critical evaluation of the recent developments in atomic spectroscopy places TXRF in a leading position. Its outstanding features compete with those of e.g. electrothermal atomic absorption spectrometry (ETAAS), microwave induced plasma optical emission spectroscopy (MIP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) in the field of micro- and trace analysis and with Rutherford backscattering (RBS) and secondary ion mass spectrometry (SIMS) in the surface-layer analysis.

  2. Spatial Resolution of Combined Wavelength Modulation Spectroscopy with Integrated Cavity Output Spectroscopy for Atomic Oxygen Detection

    NASA Astrophysics Data System (ADS)

    Matsui, Makoto; Nakajima, Daisuke

    2015-09-01

    For developments of thermal protection system, atomic oxygen plays important role. However, its measurement method has not been established because the pressure in front of TPS test materials is as high as a few kPa. Our group proposed combined wavelength modulation and integrated output spectroscopies based on the forbidden transition at OI 636 nm to measure the ground-state number densities. In this study, WM-ICOS system is developed and applied to a microwave oxygen plasma to evaluate measurable region. As a result, the estimated number density by ICOS could be measured as low as 1021 m21. For the condition, WM-ICOS was applied. The signal to noise ratio of the 2f signal was 40.4. Then, the sensitivity was improved about 26. This result corresponding to the measurement limit of the partial atomic oxygen pressure of 250 Pa. The sensitivity of WM-ICOS was found to enough to diagnose the shock layer in high enthalpy flows. However, the spatial resolution was as large as 8 mm. The size of the beam pattern depends on the cavity length, robust ness of the cavity and accuracy of the cavity alignment. In this presentation, the relationship among these parameters will be discussed.

  3. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    SciTech Connect

    Not Available

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  4. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  5. Optical Emission Spectroscopy of Microplasma Discharge in Sea Water

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Hatta, Akimitsu; Furuta, Hiroshi; Oh, Jun-Seok; Okamura, Yo; Kitamura, Kensuke; Hashimoto, Yusuke

    2015-09-01

    We have been investigating microplasma discharge in sea water for optical emission spectroscopy. Microplasma discharge in artificial sea water (10ASW) was carried using needle-to-plane platinum electrode system. The gap, between electrodes, was ranged from 10 to 60 microns. The electricity source was impulse generatorwith MOSFET switch and variable capacitance and inductance. The maximum voltage and current for this scheme were respectively 1 kV and 10 A, pulse width 10 μs. It has been confirmed that, using the micro-gap configuration, spark discharges were ignited at the conventional breakdown voltages below 1kV, even in the conductive sea water. Was noted formation of small bubbles before of the plasma ignition process. The mechanism of formation of these bubbles is mostly Joule heating because of high currents. It has been speculated that plasma discharge initiates in bubbles. Optical emission spectroscopy of microplasma in sea water was carried. In the spectra, emission peaks for H, O, Na, Mg, Ca, Cl and Pt were clearly detected. Besides the main components of 10ASW, contaminants from the electrodes appeared in the spectra. The characteristics of microplasma discharge in sea water and analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129. The ASW was provided from Prof. Kei Okamura of Kochi University.

  6. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  7. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

    PubMed

    Mitchell, D G; Brandt, P C; Roelof, E C; Dandouras, J; Krimigis, S M; Mauk, B H

    2005-05-13

    The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.

  8. Detection of single atoms by resonance ionization spectroscopy

    SciTech Connect

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of /sup 81/Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs.

  9. Resonance ionization spectroscopy: counting noble-gas atoms

    SciTech Connect

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  10. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.

    2016-05-01

    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  11. Diagnostics of a see-through hollow cathode discharge by emission, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas

    Atomic line filters have been suggested to be attractive in areas of Doppler velocimetry, resonance fluorescence detection, and resonance ionization detection. They are based on the resonant absorption of photons by an atomic vapor, and allow all other radiation to pass. This allows the detection of very low levels of light superimposed on a large optical background. Several elements have been studied for use as atomic line filters, such as the alkali metals, alkaline earths, and thallium. As previously recognized, thallium is especially attractive since the 535.046 nm metastable transition overlaps with the second harmonic output of an Nd:La2Be2O 5 (BEL) laser (1070 nm). This makes thallium ideal for certain applications as an atomic line filter. Recently a see-through hollow cathode lamp, or galvatron (Hamamatsu), was made commercially available. The galvatron geometry is unique compared to traditional hollow cathode lamps since the cathode and cell are oriented in a T-shape, with the cathode bored completely through to allow the propagation of a light source through the cathode. This allows multi-step excitation of the atomic vapor, not easily accomplished with a traditional hollow cathode lamp. The advantages that a galvatron offers over conventional atomic reservoirs make it an attractive candidate for the application as an atomic line filter; however, little spectroscopic data have been found in the literature. For this reason, Doppler temperatures, number densities, quantum efficiencies, and lifetimes have been determined in order to characterize this atomic reservoir as a potential atomic line filter. These parameters are determined by use of various spectroscopic techniques which include emission, absorption, time-resolved fluorescence, and time-resolved laser-induced saturated fluorescence spectroscopy. From these measurements, it has been demonstrated that a galvatron is an attractive atomic reservoir for applications as an atomic line filter. The

  12. Electron impact spectroscopy. [for atom and molecule quantum state investigation

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    The concepts of electron impact spectroscopy are discussed, comparing the electron spectroscopy techniques with those of the optical spectroscopy. The main advantage of the electron spectroscopy is to be found in the elimination of optical selection rules in excitation processes and the ability to scan the spectrum from the infrared to the X-ray region. The range of the method is indicated through a review of several examples, including electron impact excitation of Ba and rotational excitation of H2. The sensitivity of the method is demonstrated by vibrational excitation spectrum of N2. It is shown that the application of the method to the inner-shell excitation allows to obtain information about molecular species which are not commonly available, while spectroscopy of negative ions yields information about their energy and symmetry properties. However, the techniques are still under development and more data are expected to become available in the coming years.

  13. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes.

    PubMed

    Löhner, Alexander; Ashraf, Khuram; Cogdell, Richard J; Köhler, Jürgen

    2016-08-22

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour.

  14. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes

    PubMed Central

    Löhner, Alexander; Ashraf , Khuram; Cogdell, Richard J.; Köhler, Jürgen

    2016-01-01

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour. PMID:27545197

  15. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  16. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  17. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  18. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  19. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    PubMed Central

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  20. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    PubMed

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-01

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  1. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  2. Noise spectroscopy with large clouds of cold atoms

    NASA Astrophysics Data System (ADS)

    Kashanian, Samir Vartabi; Eloy, Aurélien; Guerin, William; Lintz, Michel; Fouché, Mathilde; Kaiser, Robin

    2016-10-01

    Noise measurement is a powerful tool to investigate many phenomena from laser characterization to quantum behavior of light. In this paper, we report on intensity noise measurements obtained when a laser beam is transmitted through a large cloud of cold atoms. While this measurement could possibly be used to investigate complex processes such as the influence of atomic motion, one is first limited by the conversion of the intrinsic laser frequency noise to intensity noise via the atomic resonance. This conversion is studied here in detail. We show that, while experimental intensity noise spectra collapse onto the same curve at low Fourier frequencies, some differences appear at higher frequencies when the probe beam is detuned from the center of the resonance line. A simple model, based on a mean-field approach, which corresponds to describing the atomic cloud by a dielectric susceptibility, is sufficient to understand the main features. Using this model, the noise spectra allow extracting some quantitative information on the laser noise as well as on the atomic sample.

  3. Spectroscopy of Molecular Hydrogen Emission from KH 15D

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Charbonneau, David; Harrington, Joseph

    2004-01-01

    We report infrared spectroscopy of the unusual eclipsing pre-main-sequence object KH 15D, obtained using NIRSPEC on Keck II. During eclipse, observations using low spectral resolution (λ/δλ~1000) reveal the presence of prominent molecular hydrogen emission in five lines near 2 μm. The relative line strengths are consistent with thermal excitation at T~2800+/-300 K. Observations out of eclipse, at both low and high spectral resolution (λ/δλ~2×104), show reduced contrast with the stellar continuum. The change in contrast for the strongest line, 1-0 S(1), is consistent with an approximately constant emission line superposed on a variable stellar continuum. Emission in the 1-0 S(1) line is observed to extend by >~4" both east and west of the stellar point-spread function (PSF; >~3000 AU). Observed at high spectral resolution, the velocity and the intensity structure of the 1-0 S(1) profile are both asymmetric. East of the stellar PSF (by 1.1"-2.3") the emission is blueshifted (-63 km s-1) and has significantly greater intensity than the marginally redshifted component (+2 km s-1, approximately consistent with zero) that dominates west of the stellar PSF. The spatial extent of the emission and the excitation temperature suggest shock excitation of ambient gas by a bipolar outflow from the star and/or the disk. However, it is difficult to account for the observed radial velocity unless the outflow axis is inclined significantly to the plane of the sky. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Directed spontaneous emission from an extended ensemble of N atoms: timing is everything.

    PubMed

    Scully, Marlan O; Fry, Edward S; Ooi, C H Raymond; Wódkiewicz, Krzysztof

    2006-01-13

    A collection of static atoms is fixed in a crystal at a low temperature and prepared by a pulse of incident radiation of wave vector . The atoms are well described by an entangled Dicke-like state, in which each atom carries a characteristic phase factor exp(ik0.r(j)), where is the atomic position in the crystal. It is shown that a single photon absorbed by the N atoms will be followed by spontaneous emission in the same direction. Furthermore, phase matched emission is found when one photon is absorbed by N atoms followed by two-photon down-conversion.

  5. Precision Spectroscopy of Atomic Hydrogen and the Proton Size Puzzle

    NASA Astrophysics Data System (ADS)

    Udem, Thomas

    2016-05-01

    Precise determination of transition frequencies of simple atomic systems are required for a number of fundamental applications such as tests of quantum electrodynamics (QED), the determination of fundamental constants and nuclear charge radii. The sharpest transition in atomic hydrogen occurs between the metastable 2S state and the 1S ground state. Its transition frequency has now been measured with almost 15 digits accuracy using an optical frequency comb and a cesium atomic clock as a reference. A recent measurement of the Lamb shift in muonic hydrogen is in significant contradiction to the hydrogen data if QED calculations are assumed to be correct. We hope to contribute to the resolution of this so called `proton size puzzle' by providing additional experimental input from the hydrogen side.

  6. Rydberg atom spectroscopy enabled by blackbody radiation ionization

    SciTech Connect

    Lu Xiaoxu; Sun Yuan; Metcalf, Harold

    2011-09-15

    We have excited helium atoms from their metastable 2 {sup 3} S state to Rydberg states in the range 13Atoms in a thermal beam (100 K) cross partially overlapping laser beams of the appropriate frequencies in the counterintuitive order to exploit the high efficiency of stimulated rapid adiabatic passage. The interaction region is between two plates that can be used for Stark tuning in a few V/cm field or for field ionization. At fields much too low for field ionization, we observe signals attributed to ionization by blackbody radiation. Multiple tests confirm this attribution as the cause of ionization. For example, by heating the plates we observe the expected signal increases. Our experiments reinforce previous work where the interaction between Rydberg atoms and room temperature blackbody radiation is important for experiments.

  7. Development of the charge exchange recombination spectroscopy and the beam emission spectroscopy on the EAST tokamak.

    PubMed

    Li, Y Y; Fu, J; Lyu, B; Du, X W; Li, C Y; Zhang, Y; Yin, X H; Yu, Y; Wang, Q P; von Hellermann, M; Shi, Y J; Ye, M Y; Wan, B N

    2014-11-01

    Charge eXchange Recombination Spectroscopy (CXRS) and Beam Emission Spectroscopy (BES) diagnostics based on a heating neutral beam have recently been installed on EAST to provide local measurements of ion temperature, velocity, and density. The system design features common light collection optics for CXRS and BES, background channels for the toroidal views, multi-chord viewing sightlines, and high throughput lens-based spectrometers with good signal to noise ratio for high time resolution measurements. Additionally, two spectrometers each has a tunable grating to observe any wavelength of interest are used for the CXRS and one utilizes a fixed-wavelength grating to achieve higher diffraction efficiency for the BES system. A real-time wavelength correction is implemented to achieve a high-accuracy wavelength calibration. Alignment and calibration are performed. Initial performance test results are presented.

  8. Characterization of the atomic emission in inconel 718 alloy metal vapor arcs

    SciTech Connect

    Williamson, R.L.; Peebles, H.C.; Bertram, L.A.; Hareland, W.A.; Zanner, F.J.

    1986-01-01

    Visible and uv emission spectroscopy was used to identify and study various atomic species in the plasma of a vacuum arc furnace during a remelt of Inconel 718. The studies were carried out at a base pressure of 10 mtorr, and with the furnace backfilled with CO to a total pressure of 100 mtorr. Various emitting species were identified, and the internal energy distributions of a number of these species were mapped out using Boltzmann plots. Internal temperatures of 6000 to 7000/sup 0/K were measured for the neutral atomic species in the low pressure arc, while a value of 11,600/sup 0/K was obtained for the ion temperature. In addition, the density of the highly volatile element Mn in the interelectrode region was found to be greatly enhanced compared to its relative abundance in the bulk alloy, indicating the importance of vaporization in determining the atomic composition of the arc plasma. Increasing the furnace pressure resulted in an increase in the temperature of the neutral species of 1500 to 4000/sup 0/K, and an apparent suppression of the Mn vaporization rate.

  9. High-sensitivity laser spectroscopy with atoms from a cooled helium jet

    SciTech Connect

    Lewis, D.A.; Evans, R.M.; Davids, C.N.; Finn, M.A.; Kaufman, S.L.; Greenlees, G.W.

    1983-01-01

    We have developed a cryogenic He-jet system which efficiently transports radioactive atoms produced on-line at the Argonne National Laboratory Tandem-Linac Accelertor away from the production region and forms them into a cool atomic beam. This atomic beam will be probed with high sensitivity laser spectroscopy using the photon burst method. The ultimate goal of this work is to determine the sizes, shapes, and magnetic moments of short-lived nuclei through their atomic hyperfine structure. Preliminary measurements with the He-jet system and the adaption of the photon burst method to this new geometry are described.

  10. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  11. Advances in fast-atom-bombardment mass spectroscopy

    SciTech Connect

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons.

  12. Spectroscopy of Mn atoms isolated in solid {sup 4}He

    SciTech Connect

    Moroshkin, P. Lebedev, V.; Weis, A.

    2014-06-07

    We present an experimental study of the laser-induced luminescence spectra of Mn atoms in solid helium matrices. We observe transitions of the valence electron and of inner-shell electrons. We find that the Mn-He interaction perturbs the inner-shell transitions to a lesser extent than the valence-electron transitions. The observed lineshapes of the inner-shell transitions of Mn are similar to those of an inner-shell transition in Ba studied earlier. At the same time, they are more strongly perturbed than the corresponding transitions in Au and Cu under the same conditions. We suggest a qualitative explanation of these observations based on the atomic bubble model. Our results also suggest that the inner-shell transitions of Mn in solid He are more strongly perturbed than the same lines of Mn isolated in solid Ar or Kr matrices.

  13. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2016-03-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the β--decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). Here we discuss the production of a gas cell that fulfills the stringent requirements for cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged.

  14. GABI: a compact detector for GRB prompt emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Ubertini, P.; Bazzano, A.; Federici, M.; Fiocchi, M. T.; Lotti, S.; Grindlay, J. E.; Gehrels, N.; Uslenghi, M.; Fiorini, M.; Perotti, F.

    Triggering on sky transient events can be efficiently accomplished by coded mask instruments, which can also provide positions with arcmin or sub-arcmin accuracy, but at the expense of weight and power. On the other hand good broadband spectroscopy is possible using much lighter systems, that could also provide a coarse positioning capability (˜ degrees). We present the concept of a compact, light detector based on NaI(Tl) scintillator, that can be used to complement other soft X-ray or IR/optical telescopes in detecting transients and characterizing them. The Gamma-Ray Burst Imager (GABI) will operate in the energy range 8-1000 keV that is optimal for the detection of the prompt emission of Gamma-Ray Bursts (GRB). GABI is being proposed for accomodation on board Lobster, a candidate mission of the NASA Explorer Program.

  15. Optical emission spectroscopy of carbon arc for nanomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Vekselman, Vladislav; Stratton, Brentley; Raitses, Yevgeny

    2015-11-01

    Arc plasma assisted synthesis of carbon nanostructures is one of the most efficient and simple production methods. In spite of a long time use of this method in materials science research and industrial applications, the role of the plasma in nucleation and growth of nanostructures is not well understood. This is due to complexity of physico-chemical processes governing the plasma nanosynthesis. The objective of this work is to characterize the atmospheric pressure arc plasma used for synthesis of various carbon nanostructures. Optical emission spectroscopy was carried out to determine the distribution of temperature and density of carbon plasma in the synthesis zone as a function of arc discharge parameters. Accurate and detailed mapping of plasma parameters elucidate the general trend governing the formation of carbon nanostructures. This work was supported by DOE contract DE-AC02-09CH11466.

  16. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    NASA Astrophysics Data System (ADS)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  17. Scandium oxide coated polycrystalline tungsten studied using emission microscopy and photoelectron spectroscopy.

    PubMed

    Wan, Congshang; Vaughn, Joel M; Sadowski, Jerzy T; Kordesch, Martin E

    2012-08-01

    Thermionic electron emission from 200 to 500 nm thick coatings of scandium oxide on tungsten foil have been examined in thermionic emission microscopy, spectroscopic photoelectron microcopy, synchrotron radiation and ultraviolet photoelectron spectroscopy (UPS). A clear dependence of the scandium oxide-W electron yield on the grain orientation of the polycrystalline tungsten is observed in thermionic emission and photoelectron emission.

  18. Consistency of atomic data for the interpretation of beam emission spectra

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Brix, M.; Giroud, C.; Jaspers, R. J. E.; Marchuk, O.; O'Mullane, M. G.; Ralchenko, Yu; Surrey, E.; von Hellermann, M. G.; Zastrow, K. D.; Contributors, JET-EFDA

    2010-12-01

    Several collisional-radiative (CR) models (Anderson et al 2000 Plasma Phys. Control. Fusion 42 781-806, Hutchinson 2002 Plasma Phys. Control. Fusion 44 71-82, Marchuk et al 2008 Rev. Sci. Instrum. 79 10F532) have been developed to calculate the attenuation and the population of excited states of hydrogen or deuterium beams injected into tokamak plasmas. The datasets generated by these CR models are needed for the modelling of beam ion deposition and (excited) beam densities in current experiments, and the reliability of these data will be crucial to obtain helium ash densities on ITER combining charge exchange and beam emission spectroscopy. Good agreement between the different CR models for the neutral beam (NB) is found, if corrections to the fundamental cross sections are taken into account. First the Hα and Hβ beam emission spectra from JET are compared with the expected intensities. Second, the line ratios within the Stark multiplet are compared with the predictions of a sublevel resolved model. The measured intensity of the full multiplet is ≈30% lower than expected on the basis of beam attenuation codes and the updated beam emission rates, but apart from the atomic data this could also be due to the characterization of the NB path and line of sight integration and the absolute calibration of the optics. The modelled n = 3 to n = 4 population agrees very well with the ratio of the measured Hα to Hβ beam emission intensities. Good agreement is found as well between the NB power fractions measured with beam emission in plasma and on the JET Neutral Beam Test Bed. The Stark line ratios and σ/π intensity ratio deviate from a statistical distribution, in agreement with the CR model in parabolic states from Marchuk et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 011002).

  19. X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Kortov, V. S.; Kurmaev, É. Z.; Gavrilov, N. V.; Wilks, R. G.; Moewes, A.

    2008-12-01

    Quartz glass samples and compacted SiO2 nanopowders have been studied by x-ray emission (Cu L 2, 3 transition 3 d4 s → 2 p 1/2, 3/2) and photoluminescence spectroscopy following pulsed Cu+ ion implantation (energy, 30 keV; pulse current up to 0.5 A; pulse duration, 400 μs; irradiation doses, 1015, 1016, and 2 × 1017 cm-2). It has been established that ion irradiation gives rise to the formation of glassy and compacted SiO2 samples of nanosized metallic and oxide phases in the structure. An analysis of Cu L x-ray emission spectra has shown that copper nanoparticles are thermodynamically metastable and chemically active because ion beam bombardment transfers them readily to the oxide form. This results from the radiation-stimulated fracture of regular Si-O-Si bonds in amorphous SiO2 and the formation of defective Si-Si bonds, followed by capture of oxygen by copper atoms. The enhanced degree of oxidation of copper ions in SiO2 nanostructured pellets can be reduced by coimplantation and thermal annealing. Optical spectroscopy studies suggest that, in glasses and SiO2 nanostructured pellets, there exist metallic Cu{/n 0} nanoclusters, which at low temperatures exhibit quantum-confined photoluminescence with a characteristic stepped excitation spectrum.

  20. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  1. A heated chamber burner for atomic absorption spectroscopy.

    PubMed

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable.

  2. Kinetics and continuum emission of negative atomic ions in partially ionized plasmas

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1991-01-01

    Kinetics and continuum emission of negative ions are studied in stationary atomic hydrogen, nitrogen, and oxygen plasmas. The intensity of the negative-ion emission was found to be neglibible when compared to those of bound-bound and free-bound emission at low and medium particle densities. However, the negative-ion continuum emission can contribute significantly in certain parts of the emission spectrum at high particle densities.

  3. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    SciTech Connect

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  4. Atomic data for stellar spectroscopy: recent successes and remaining needs

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Lawler, James E.; Wood, Michael P.; Den Hartog, Elizabeth A.; Cowan, John J.

    2014-11-01

    Stellar chemical composition analyses provide vital insights into galactic nucleosynthesis. Atomic line data are critical inputs to stellar abundance computations. Recent lab studies have made significant progress in refining and extending knowledge of transition probabilities, isotopic wavelength shifts, and hyperfine substructure patterns for the absorption lines that are of most interest to stellar spectroscopists. The observable neutron-capture (n-capture) element species (Z \\gt 30) have been scrutinized in lab studies by several groups. For many species the uncertainties in experimental oscillator strengths are ≤slant 10%, which permits detailed assessment of rapid and slow n-capture nucleosynthesis contributions. In this review, extreme examples of r-process-enriched stars in the galactic halo will be shown, which suggest that the description of observable n-capture abundances in these stars is nearly complete. Unfortunately, there are serious remaining concerns about the reliability of observed abundances of lighter elements. In particular, it is not clear that line formation in real stellar atmospheres is being modeled correctly. But for many elements with Z \\lt 30 the atomic transition data are not yet settled. Highlights will be given of some recent large improvements, with suggestions for the most important needs for the near future.

  5. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    SciTech Connect

    Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  6. Comparative study of bandwidths in copper delafossites from x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Shin, D.; Foord, J. S.; Payne, D. J.; Arnold, T.; Aston, D. J.; Egdell, R. G.; Godinho, K. G.; Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Mugnier, E.; Yaicle, C.; Rougier, A.; Colakerol, L.; Glans, P. A.; Piper, L. F. J.; Smith, K. E.

    2009-12-01

    The widths of the valence bands in the copper (I) delafossites CuGaO2 , CuInO2 , and CuScO2 have been measured by OK -shell x-ray emission spectroscopy and are compared with previous experimental work on CuAlO2 and CuCrO2 . In agreement with recent density-functional theory calculations it is found that the bandwidth decreases in the series CuAlO2>CuGaO2>CuInO2>CuScO2 . It is shown that states at the top of the valence band are of dominant Cu3dz2 atomic character but with significant mixing with O2p states.

  7. Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy

    SciTech Connect

    Wei, Wenfu; Wu, Jian; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-09-21

    We investigate the evolution of the species from both the target and the air, and the plasma parameter distribution of the nanosecond laser-produced plasmas in atmospheric air. The technique used is spatially resolved optical emission spectroscopy. It is argued that the N II from the air, which is distributed over a wider region than the target species in the early stages of the discharge, is primarily formed by the shock wave. The ionized species have a larger expansion velocity than the excited atoms in the first ∼100 ns, providing direct evidence for space-charge effects. The electron density decreases with the distance from the target surface in the early stages of the discharge, and both the electron density and the excited temperature variation in the axial direction are found to become insignificant at later stages.

  8. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.

    2012-11-01

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  9. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas.

    PubMed

    Guszejnov, D; Pokol, G I; Pusztai, I; Refy, D; Zoletnik, S; Lampert, M; Nam, Y U

    2012-11-01

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  10. A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy.

    PubMed

    Thewes, Nicolas; Loskill, Peter; Spengler, Christian; Hümbert, Sebastian; Bischoff, Markus; Jacobs, Karin

    2015-12-01

    The atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using "bacterial probes". Thereby, bacterial probes are AFM cantilevers that provide a single bacterium or a cluster of bacteria as the contact-forming object. We present a step-by-step protocol for preparing bacterial probes, performing force spectroscopy experiments and processing force spectroscopy data. Additionally, we provide a general insight into the field of bacterial cell force spectroscopy.

  11. A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy.

    PubMed

    Thewes, Nicolas; Loskill, Peter; Spengler, Christian; Hümbert, Sebastian; Bischoff, Markus; Jacobs, Karin

    2015-12-01

    The atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using "bacterial probes". Thereby, bacterial probes are AFM cantilevers that provide a single bacterium or a cluster of bacteria as the contact-forming object. We present a step-by-step protocol for preparing bacterial probes, performing force spectroscopy experiments and processing force spectroscopy data. Additionally, we provide a general insight into the field of bacterial cell force spectroscopy. PMID:26701715

  12. Atomic mass measurements and nuclear spectroscopy at TRISTAN

    NASA Astrophysics Data System (ADS)

    Brenner, D. S.

    1981-02-01

    This research program is concerned with measuring atomic masses and decay schemes of short-lived, neutron-rich fission products with the TRISTAN on-line mass separator located at the High Flux Beam Reactor (HFBR), Brookhaven National Laboratory. The determination of accurate masses for neutron rich nuclei is useful in refining mass equations which, in turn, are important for calculations related to astrophysical processes and to control and to safety of nuclear reactors. During the period covered by this report, efforts were made to aid Brookhaven personnel in the installation and testing of TRISTAN and the associated computer systems, and to begin a program of measurements of beta-ray end-point energies and nuclear decay schemes following successful demonstration of the facility.

  13. Surface Raman spectroscopy with and without reverse Kretschmann configuration: Effect of evanescent-wave-coupled emission

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Lu, Dan-Feng; Gao, Ran; Cheng, Jin; Qi, Zhi-Mei

    2016-06-01

    Evanescent-wave-coupled emission has been used for reverse Kretschmann fluorescence and Raman spectroscopies with high collection efficiency. However, it has a negative effect on the common surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy without the reverse Kretschmann configuration because the coupling of a large fraction of light power into the substrate impairs the Raman signal backscattered in air. A rough core layer can significantly weaken evanescent-wave-coupled emission, which is conducive to enhancing the backscattered Raman signal. In this work, we theoretically investigate the surface-plasmon-coupled emission and its effects on surface Raman spectroscopy.

  14. Sub-Kilohertz Optical Spectroscopy with a Time Domain Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Ruschewitz, F.; Peng, J. L.; Hinderthür, H.; Schaffrath, N.; Sengstock, K.; Ertmer, W.

    1998-04-01

    We report on the sub-kilohertz optical spectroscopy on the 1S0- 3P1 intercombination transition in magnesium at 457 nm. The spectroscopic signal is probed by a time domain atom interferometer. The realization of this time domain atom interferometer with laser cooled and trapped atoms allows extremely long interaction times and leads to resolutions down to 491 Hz (FWHM). This corresponds to a high line Q factor of 1.3×1012. Because of the high accuracy in the determination of the line center, applications with respect to an optical frequency standard are possible.

  15. Single-photon modulation by the collective emission of an atomic chain

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zubairy, M. Suhail

    2014-11-01

    We study the collective spontaneous emission of a linear atomic chain excited by a single photon. The interaction between the atoms and the common vacuum field can significantly change the eigenenergy and the spontaneous emission rate of the system. Due to the dipole-dipole interactions, the system prepared in a single-photon timed Dicke state is the superposition of superradiant and subradiant eigenstates that can have a nonexponential decay dynamics. We can tune the frequency and linewidth of the superradiant and subradiant emission from a timed Dicke state by changing the direction of the atomic dipole moment or the atomic separation. In addition, the emission direction of the superradiant and subradiant photons also depends on the polarization of the atoms.

  16. The Development of Cavity Ringdown Spectroscopy as a Sensitive Continuous Emission Monitor for Metals

    SciTech Connect

    Miller, George P.

    1999-06-01

    The aim of this study is to evaluate cavity ringdown spectroscopy (CRDS) as an ultra-sensitive technique for trace analysis of metals. Potential applications of CRDS meeting the Department of Energy needs include: Mercury Continuous Emission Monitor Multi-Metal Emissions Monitor Radionuclide Detector and Monitor CRDS is based upon the measurement of the rate of light absorption in a closed optical cavity. A laser pulse is injected into a stable optical cavity through one of the cavity mirrors. This light pulse is trapped between the mirror surfaces and decays exponentially over time at a rate determined by the round trip losses within the cavity. When used for trace analysis, the primary loss mechanisms governing the decay time are mirror reflectivity losses, atomic absorption from the sample, and Rayleigh scattering from air in the cavity. The decay time is given by t= d c 1- R ( )+ als + bd [ ] (1) where d is the cavity length, R is the reflectivity of the cavity mirrors, a is the familiar Beer's Law absorption coefficient of a sample in the cavity, ls is the length of the optical path through the sample (i.e., approximately the graphite furnace length), b is the wavelength-dependent Rayleigh scattering attenuation coefficient, and c is the speed of light. Thus, variations in a caused by changes in the sample concentration are reflected in the ringdown time. As the sample concentration increases (i.e., a increases), the ringdown time decreases yielding an absolute measurement for a. With the use of suitable mirrors, it is possible to achieve thousands of passes through the sample resulting in a significant increase in sensitivity. An additional benefit is that it is not subject to collisional quenching, the branching of fluorescence emission into multiple transitions, and the ability to detect only a fraction of the fluorescence photons that occur in laser-excited atomic fluorescence (LEAFS). One other advantage of the ringdown technique is the ability to use

  17. Detection of viruses: atomic force microscopy and surface enhanced raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper demonstrated the capability of atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS) to function effectively as ultra-sensitive readout tools for chip-scale platforms designed for pathogen detection in complex biological media. AFM allows direct (i.e. label-free) vi...

  18. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  19. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  20. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    SciTech Connect

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.

  1. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGES

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  2. Spatially Resolved Atomic and Molecular Spectroscopy in Microelectronics Processing Plasmas

    SciTech Connect

    Hebner, G.A.

    1998-10-14

    Plasma processing of microelectronic materials is strongly dependent on the generation and control of neutral radial and ion species generated in a plasma. For example, process uniformity across a #er is drken by a combination of plasma charged particle and neutral uniformity. Due to extensive rexarch and engineering the current generation of commercial plasma reactors can generate very radially uniform ion distributions, usually better than ~ 2 perwnt as determined by ion saturation measurements. Due in part to the difficulty associated with determining the neutral radial distributions, control of the neutral radical uniformity is less well developed. This abstract will review our recent measurements of the spatial distribution of severaI important atomic and molecukw species in inductively coupled plasmas through C12 / BCIJ / Ar containing gas mixtures. Measured species include the ground state Cl and BC1 densities as well as the metastable argon density. The fbeus of this review will be on the experimental techniques and results. In addition to assisting in the development of a fbndarnental understanding of the important pkunna physics, these measurements have been used to benchmark multi dimensional plasma discharge codes.

  3. Spatial and temporal variations in infrared emissions of the upper atmosphere. 1. Atomic oxygen (λ 63 μm) emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Khomich, V. Yu.

    2016-09-01

    Rocket and balloon measurement data on atomic-oxygen (λ 63 µm) emission in the upper atmosphere are presented. The data from the longest (1989-2003) period of measurements of the atomic-oxygen (λ 63 µm) emission intensity obtained by spectral instruments on sounding balloons at an altitude of 38 km at midlatitudes have been systematized and analyzed. Regularities in diurnal and seasonal variations in the intensity of this emission, as well as in its relation with solar activity, have been revealed.

  4. Spectroscopy for cold atom gases in periodically modulated optical lattice potential

    NASA Astrophysics Data System (ADS)

    Tokuno, Akiyuki; Giamarchi, Thierry

    2011-03-01

    Cold atoms in optical lattices are vigorously studied experimentally and theoretically as one of the candidates for a quantum simulator. At the same time, further development of probes to microscopic structure of systems is needed. We propose a novel spectroscopy in cold atom experiments by use of periodic phase-modulation of optical lattice potentials. Corresponding to the statistics of atoms, we formulate the different observables: The energy absorption rate for bosonic atom gases, and the doublon production rate for fermionic atom gases. These observables are formulated within the linear response theory. Interestingly they are given by the imaginary part of the retarded current-current correlation function which is familiar as a quantity corresponding to an optical conductivity. As an example, we discuss one-dimensional Mott insulating state, and also compare our spectroscopy with another known spectroscopy by amplitude-modulation of an optical lattice. This work was supported in part by the Swiss SNF under MaNEP and division II.

  5. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  6. Laser spectroscopy of thulium atoms implanted in liquid and solid 4He

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi; Hatakeyama, Atsushi; Koichi, Gosyono-O.; Wada, Shigeaki; Takahashi, Yoshiro; Yabuzaki, Tsutomu

    1997-07-01

    The excitation, emission spectra, and decay curves of the emission intensity of thulium atoms implanted in liquid and solid helium were observed in the presence and absence of an external magnetic field. The observed narrow line (width ~0.1 nm) of the excitation spectrum at 590.60 nm is assigned as a zero-phonon transition from the electronic ground state 4f13(2Fo7/2)6s2, which indicates that the transition between the inner shells is weakly perturbed by surrounding helium atoms. The pressure dependence of the emission wavelength suggests that the symmetry of helium atoms distributed around a thulium atom in the solid phase is similar to that in the liquid phase. The emission intensity was stable and large in the solid phase since thulium atoms were trapped at a density of 1010-1011 atoms/cm3. The lifetime of the excited state was measured to be 7.09+/-0.04 μs, which was longer than that of the 4f12(3H6)5d5/26s2 (6,5/2)7/2 state of free thulium atoms. The excited state is expected to be a mixed state of the 4f125d6s2 and 4f136s6p configurations. The metastable state 4f13(2Fo5/2)6s2 is populated by a radiative transition from this excited state and relaxes to the ground state through a magnetic dipole transition. The lifetime of the metastable state of a neutral thulium atom was measured to be 75+/-3 ms.

  7. Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds

    SciTech Connect

    Dagdigian, Paul J.; Khachatrian, Ani; Babushok, Valeri I.

    2010-05-01

    A kinetic model to predict the relative intensities of the atomic C/H/N/O emission lines in laser-induced breakdown spectroscopy (LIBS) has been developed for organic compounds. The model includes a comprehensive set of chemical processes involving both neutral and ionic chemistry and physical excitation and de-excitation of atomic levels affecting the neutral, ionic, and excited-state species concentrations. The relative excited-state atom concentrations predicted by this modeling are compared with those derived from the observed LIBS intensities for 355 nm ns laser irradiation of residues of two organic compounds on aluminum substrate. The model reasonably predicts the relative excited-state concentrations, as well as their time profiles. Comparison of measured and computed concentrations has also allowed an estimation of the degree of air entrainment.

  8. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  9. Two-channel emission model for collective quantum jumps in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Cayayan, Lyndon; Clemens, James

    2016-05-01

    We consider a system of driven, damped Rydberg atoms with dipole-dipole energy shifts which can give rise to a Rydberg blockade when the atoms are driven on resonance and collective quantum jumps when the atoms are driven off resonance. For the damping we consider a two-channel emission model with competition between fully independent and fully collective spontaneous emission. For independent emission a quasiclassical model predicts a bistable steady state and quantum fluctuations drive collective jumps between the two bistable branches. We show that the collective emission is enhanced, relative to the independent emission, which shifts the total effective spontaneous emission rate and impacts the presence or absence of bistability predicted by the quasiclassical model.

  10. Plasma control using neural network and optical emission spectroscopy

    SciTech Connect

    Kim, Byungwhan; Bae, Jung Ki; Hong, Wan-Shick

    2005-03-01

    Due to high sensitivity to process parameters, plasma processes should be tightly controlled. For plasma control, a predictive model was constructed using a neural network and optical emission spectroscopy (OES). Principal component analysis (PCA) was used to reduce OES dimensionality. This approach was applied to an oxide plasma etching conducted in a CHF{sub 3}/CF{sub 4} magnetically enhanced reactive ion plasma. The etch process was systematically characterized by means of a statistical experimental design. Three etch outputs (etch rate, profile angle, and etch rate nonuniformity) were modeled using three different approaches, including conventional, OES, and PCA-OES models. For all etch outputs, OES models demonstrated improved predictions over the conventional or PCA-OES models. Compared to conventional models, OES models yielded an improvement of more than 25% in modeling profile angle and etch rate nonuniformtiy. More than 40% improvement over PCA-OES model was achieved in modeling etch rate and profile angle. These results demonstrate that nonreduced in situ data are more beneficial than reduced one in constructing plasma control model.

  11. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  12. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Mantenieks, M. A.; Parsons, M. L.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  13. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  14. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  15. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  16. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    SciTech Connect

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  17. Characterization of RF He-N2/Ar mixture plasma via Langmuir probe and optical emission spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Hussain, S. S.; Zakaullah, M.; Zaka-ul-Islam, M.

    2016-08-01

    A Magnetic Pole Enhanced inductively coupled RF H e - N 2 / A r plasma is characterized using a Langmuir probe and optical emission spectroscopy (OES) techniques. The effect of helium mixing on electron density ( n e ) and temperature ( T e ) , electron energy probability functions (EEPFs), [ N ] atomic density, and N 2 dissociation is investigated. A Langmuir probe and a zero slope method based on trace rare gas-optical emission spectroscopy (TRG-OES) are employed to measure the electron temperature. It is noted that the electron temperature shows an increasing trend for both methods. However, the temperature measured by a zero slope method T e ( Z . S ) approaches the temperature measured by a Langmuir probe; T e ( L . P ) at 56% and above helium concentration in the discharge. "Advance actinometry" is employed to monitor the variation in [ N ] atomic density with helium concentration and gas pressure. It is noted that [ N ] atomic density increases at 56% and above helium in the discharge, which is consistent with the trend of electron temperature and EEPFs. A drastic enhancement in N 2 dissociation fraction D 1 determined by "advance actinometry" is noted at 56% and above helium concentration in the mixture due to modifications in different population and depopulation mechanisms. However, it is also noted that the dissociation fraction D 2 determined by intensity ratio method increases linearly with helium addition.

  18. Temperature measurement of wood flame based on the double line method of atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Hao, Xiaojian; Liu, Zhenhua; Sang, Tao

    2016-01-01

    Aimed at the testing requirement of the transient high temperature in explosion field and the bore of barrel weapon, the temperature measurement system of double line of atomic emission spectrum was designed, the method of flame spectrum testing system were used for experimental analysis. The experimental study of wood burning spectra was done with flame spectrum testing system. The measured spectra contained atomic emission spectra of the elements K, Na, and the excitation ease of two kinds atomic emission spectra was analyzed. The temperature was calculated with two spectral lines of K I 766.5nm and 769.9nm. The results show that, compared with Na, the excitation temperature of K atomic emission spectra is lower. By double line method, the temperature of wood burning is 1040K, and error is 3.7%.

  19. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Nikiforov, Anton Yu; González, Manuel Á.; Leys, Christophe; Pei Lu, Xin

    2013-02-01

    The characteristics of plasma temperatures (gas temperature and electron excitation temperature) and electron density in a pulsed-dc excited atmospheric helium plasma jet are studied by relative and absolute optical emission spectroscopy (OES). High-resolution OES is performed for the helium and hydrogen lines for the determination of electron density through the Stark broadening mechanism. A superposition fitting method composed of two component profiles corresponding to two different electron densities is developed to fit the investigated lines. Electron densities of the orders of magnitude of 1021 and 1020 m-3 are characterized for the center and edge regions in the jet discharge when the applied voltage is higher than 13.0 kV. The atomic state distribution function (ASDF) of helium demonstrates that the discharge deviates from the Boltzmann-Saha equilibrium state, especially for the helium lower levels, which are significantly overpopulated. Local electron excitation temperatures T13 and Tspec corresponding to the lower and upper parts of the helium ASDF are defined and found to range from 1.2 eV to 1.4 eV and 0.2 eV to 0.3 eV, respectively. A comparative analysis shows that the Saha balance is valid in the discharge for helium atoms at high excited states.

  20. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  1. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    NASA Astrophysics Data System (ADS)

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to Hα at 656.3 nm implied an electron density and gas temperature of 2 × 1014 cm-3 and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and Hα intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e- → O + H + e-.

  2. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  3. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    PubMed

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-01

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.

  4. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    SciTech Connect

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  5. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  6. Some Historic and Current Aspects of Plasma Diagnostics Using Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger

    2013-03-01

    The use of atomic spectroscopy in the diagnostics of hot plasma, whether terrestrial or astrophysical, has a long and distinguished history. Some examples of past highlights will be given, along with a mention of their impact on contemporary thinking. In terms of more current lines of research on atomic spectroscopy relevant to plasma diagnostics, we will discuss more subtle effects concerning the influence of magnetic and nuclear interactions on atomic structure. For example, there are more effects of magnetic fields on atomic structure than the often though about Zeeman splitting of atomic energy levels. As magnetic fields exist in many astrophysical plasmas and also in Tokomak machines, this line of research may be of great importance to these very important branches of physics. Similarly, effects of nuclear-spin, through the hyperfine interaction, can have dramatic effects on the lifetimes of forbidden transitions. Again, important additions to plasma diagnostics are expected through effects caused by the hyperfine interaction. We will also stress the importance of Electron Beam Ion Traps as excellent laboratory light sources to study such potentially very interesting effects.

  7. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    NASA Astrophysics Data System (ADS)

    Hori, M.; Dax, A.; Soter, A.

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  8. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    NASA Astrophysics Data System (ADS)

    Hori, M.; Dax, A.; Soter, A.

    2012-12-01

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  9. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2003-04-01

    Accurate reporting of mercury concentration requires a detailed model that includes experimental parameters that vary, such as: pressure, temperature, concentration, absorption cross-section, and isotopic structure etc. During this quarter a theoretical model has been developed to model the 253.7 nm mercury transition. In addition, while testing the interferent species SO{sub 2}, SRD was able to determine the absorption cross-section experimentally and add this to the theoretical model. Assuming that the baseline losses are due to the mirror reflectivity and SO{sub 2}, SRD can now determine the concentrations of both mercury and SO{sub 2} from the data taken. For the CRD instrument to perform as a continuous emission monitor it will be required to monitor mercury concentrations over extended periods of time. The stability of monitoring mercury concentrations over time with the CRD apparatus was tested during the past quarter. During a test which monitored the mercury concentration every 2 seconds it was found that the standard deviation, of a signal from about 1.25 ppb Hg, was only 30 ppt. SRD continued interferent gas testing during this past quarter. This included creating a simulated flue gas composed of the gases tested individually by SRD. The detection limits for mercury, although dependent on the concentration of SO{sub 2} in the simulated gas matrix, remained well below the ppb range. It was determined that for the gases tested the only measurable changes in the baseline level occurred for SO{sub 2} and mercury. Speciation studies continued with mercury chloride (HgCl{sub 2}). This included checking for spectral speciation with both Hg and HgCl{sub 2} present in the CRD cavity. There was no observable spectral shift. Also a pyrolysis oven was incorporated into the gas delivery system both for tests with HgCl{sub 2} as well as atomization of the entire gas stream. The pyrolysis tests conducted have been inconclusive thus far.

  10. Work on an Atomic Beam Apparatus for Precision Laser Spectroscopy of Tritium

    NASA Astrophysics Data System (ADS)

    McNeil, David; Khademian, Ali; Shiner, David

    2004-05-01

    An apparatus for precision spectroscopy of tritium is being constructed. One goal is to measure the nuclear size of tritium using the 1S to 2S transition. The apparatus is designed to reduce the amount of radioactive atoms required and minimize hydrogen background. Storing and releasing tritium in an active getter will help to reuse tritium atoms while minimizing contamination. We have investigated the use of several materials such as uranium, titanium and palladium for storing hydrogen isotopes. Preliminary results for tritium storage and hydrogen outgassing in the vacuum chamber will be presented.

  11. Role of transient processes in resonance line spectroscopy of caesium atoms in cells with antirelaxation coating

    SciTech Connect

    Sevost'yanov, D I; Yakovlev, V P; Kozlov, A N; Vasil'ev, V V; Zibrov, S A; Velichansky, Vladimir L

    2013-07-31

    We study the peculiarities of the absorption spectra in D{sub 1,2}-lines of Cs, caused by optical pumping in cells with antirelaxation coating. In these cells the internal state of the atom, which arose under optical pumping by a monochromatic laser field, is preserved with a high probability in a collision with the wall. As a result, the optical pumping action extends to the entire volume of the cell and to all the velocities of the atoms. This leads to the speed-dependent scanning distortions of the absorption line profile. The detected features should be considered when using laserpumped quantum magnetometers with antirelaxation-coated cells. (laser spectroscopy)

  12. Tunable Diode Laser Absorption Spectroscopy of Metastable Atoms in Dusty Plasmas

    SciTech Connect

    Hoang Tung Do; Hippler, Rainer

    2008-09-07

    Spatial density profile of neon metastable produced in dusty plasma was investigated by means of tunable diode laser absorption spectroscopy. The line averaged measured density drops about 30% with the presence of dust particles. The observations provide evidence for a significant interaction between atoms and powder particles which are important for energy transfer from plasma to particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with dust particle surface is about some tens of mW/m{sup 2}.

  13. The Development of Cavity Ringdown Spectroscopy as a Sensitive Continuous Emission Monitor for Metals

    SciTech Connect

    Miller, George P.

    2000-06-01

    The aim of this study is to evaluate cavity ringdown spectroscopy (CRDS) as an ultrasensitive technique for trace analysis of metals. Potential applications of CRDS to meet stated Department of Energy needs include: Mercury Continuous Emission Monitor Multi-Metal Emissions Monitor Radionuclide Detector and Monitor A full description of the technique can be found in Ref. 1. Briefly, CRDS is based upon the measurement of the rate of light absorption in a closed optical cavity. PMT Cavity Mirror Sample Cavity Mirror Laser Pulse A laser pulse is injected into a stable optical cavity through one of the cavity mirrors. This light pulse is trapped between the mirror surfaces and decays exponentially over time at a rate determined by the round trip losses within the cavity. When used for trace analysis, the primary loss mechanisms governing the decay time are mirror reflectivity losses, atomic absorption from the sample, and Rayleigh scattering from air in the cavity. The decay time is given by t = d c 1- R ( ) +als + bd [ ] (1) where d is the cavity length, R is the reflectivity of the cavity mirrors, a is the familiar Beer's Law absorption coefficient of a sample in the cavity, ls is the length of the optical path through the sample (i.e., approximately the graphite furnace length), b is the wavelength-dependent Rayleigh scattering attenuation coefficient, and c is the speed of light. Thus, variations in a caused by changes in the sample concentration are reflected in the ringdown time. As the sample concentration increases (i.e., a increases), the ringdown time decreases yielding an absolute measurement for a. With the use of suitable mirrors, it is possible to achieve thousands of passes through the sample. This results in an effective path length reaching into the kilometers and a corresponding increase in sensitivity. An additional benefit is that it is not subject to collisional 2 quenching and the branching that occur in techniques such as laser-excited atomic

  14. Testing synthetic amyloid-β aggregation inhibitor using single molecule atomic force spectroscopy.

    PubMed

    Hane, Francis T; Lee, Brenda Y; Petoyan, Anahit; Rauk, Arvi; Leonenko, Zoya

    2014-04-15

    Alzheimer's disease is a neurodegenerative disease with no known cure and few effective treatment options. The principal neurotoxic agent is an oligomeric form of the amyloid-β peptide and one of the treatment options currently being studied is the inhibition of amyloid aggregation. In this work, we test a novel pseudopeptidic aggregation inhibitor designated as SG1. SG1 has been designed to bind at the amyloid-β self-recognition site and prevent amyloid-β from misfolding into β sheet. We used atomic force spectroscopy, a nanoscale measurement technique, to quantify the binding forces between two single amyloid peptide molecules. For the first time, we demonstrate that single molecule atomic force spectroscopy can be used to assess the effectiveness of amyloid aggregation inhibitors by measuring the experimental yield of binding and can potentially be used as a screening technique for quick testing of efficacy of inhibitor drugs for amyloid aggregation.

  15. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  16. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, M. L.; Dunand, D. C.

    2015-07-01

    Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture's artist, foundry, date of creation, date of casting, and casting method.

  17. Diffusive and inelastic scattering in ballistic-electron-emission spectroscopy and ballistic-electron-emission microscopy

    SciTech Connect

    Lee, E.Y.; Turner, B.R.; Schowalter, L.J.

    1993-07-01

    Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottky barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.

  18. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    EPA Science Inventory

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  19. Transmittance, Reflectance, and Emission Spectroscopy of Meteorites from the UV to the IR Spectral Range

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; Koulen, J. M.; Ferrari, S.; Martellato, E.

    2016-08-01

    Transmittance, reflectance, and emissivity Spectra of six meteorites have been collected at the Planetary Spectroscopy Laboratory (PSL) of DLR in Berlin in the whole spectral range from the UV to the IR.

  20. Workshop on Thermal Emission Spectroscopy and Analysis of Dust, Disk, and Regoliths

    NASA Technical Reports Server (NTRS)

    Sprague, Ann L. (Editor); Lynch, David K. (Editor); Sitko, Michael (Editor)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the workshop on Thermal Emission Spectroscopy and analysis of Dust, Disks and Regoliths, held April 28-30, 1999, in Houston Texas.

  1. Measuring the One-Particle Excitations of Ultracold Fermionic Atoms by Stimulated Raman Spectroscopy

    SciTech Connect

    Dao, T.-L.; Georges, Antoine; Dalibard, Jean; Salomon, Christophe; Carusotto, Iacopo

    2007-06-15

    We propose a Raman spectroscopy technique which is able to probe the one-particle Green function, the Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative examples of experimentally accessible spectra. The efficiency of the method is validated by means of simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures of, e.g., a d-wave pseudogap are clearly visible.

  2. New energy levels of atomic niobium by laser induced fluorescence spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Öztürk, I. K.; Başar, Gö; Er, A.; Güzelçimen, F.; Başar, Gü; Kröger, S.

    2015-01-01

    Laser-induced fluorescence spectroscopy was applied in order to find new energy levels of the niobium atom. A continuous wave tuneable titanium-sapphire laser in the wavelength range from 750 to 865 nm and a hollow-cathode lamp were used. We discovered four energy levels of even parity, three lying levels below 19 000 cm-1 and one at much higher energy. Additionally hyperfine structure data of six levels of odd parity were determined.

  3. Nonlinear spectroscopy of Sr atoms in an optical cavity for laser stabilization

    NASA Astrophysics Data System (ADS)

    Christensen, Bjarke T. R.; Henriksen, Martin R.; Schäffer, Stefan A.; Westergaard, Philip G.; Tieri, David; Ye, Jun; Holland, Murray J.; Thomsen, Jan W.

    2015-11-01

    We study the nonlinear interaction of a cold sample of 88Sr atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit, and we investigate the implications for applications to laser stabilization. The atoms are probed on the weak intercombination line |5 s21S0>-|5 s 5 p 3P1> at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures—the cavity transmitted phase and absorption—by employing frequency modulation (FM) spectroscopy (noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free-space situation in which no cavity is present. Furthermore, the nonlinear dynamics of the phase dispersion slope is experimentally investigated, and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.

  4. First application of superconducting transition-edge sensor microcalorimeters to hadronic atom X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Okada, S.; Bennett, D. A.; Curceanu, C.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hirenzaki, S.; Hays-Wehle, J. P.; Hilton, G. C.; Ikeno, N.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Koike, T.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Swetz, D. S.; Tatsuno, H.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Yamagata-Sekihara, J.; Zmeskal, J.

    2016-09-01

    High-resolution pionic atom X-ray spectroscopy was performed with an X-ray spectrometer based on a 240 pixel array of superconducting transition-edge sensor (TES) microcalorimeters at the πM1 beam line of the Paul Scherrer Institute. X-rays emitted by pionic carbon via the 4f→3d transition and the parallel 4d→3p transition were observed with a full width at half maximum energy resolution of 6.8 eV at 6.4 keV. The measured X-ray energies are consistent with calculated electromagnetic values which considered the strong interaction effect assessed via the Seki-Masutani potential for the 3p energy level, and favor the electronic population of two filled 1s electrons in the K-shell. Absolute energy calibration with an uncertainty of 0.1 eV was demonstrated under a high-rate hadron beam condition of 1.45 MHz. This is the first application of a TES spectrometer to hadronic atom X-ray spectroscopy and is an important milestone towards next-generation high-resolution kaonic atom X-ray spectroscopy.

  5. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  6. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    PubMed

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  7. Theoretical analysis of the spectroscopy of atomic Bose-Hubbard systems

    NASA Astrophysics Data System (ADS)

    Inaba, Kensuke; Yamashita, Makoto

    2016-04-01

    We provide a numerical method to calculate comprehensively the microwave and the laser spectra of ultracold bosonic atoms in optical lattices at finite temperatures. Our formulation is built up with the sum rules, up to the second order, derived from the general principle of spectroscopy. The sum rule approach allows us to discuss the physical origins of a spectral peak shift and also a peak broadening. We find that a spectral broadening of superfluid atoms can be determined from number fluctuations of atoms, while that of normal-state atoms is mainly attributed to quantum fluctuations resulting from hopping of atoms. To calculate spectra at finite temperatures, based on the sum rule approach, we provide a two-mode approximation assuming that spectra of the superfluid and normal state atoms can be calculated separately. Our method can properly deal with multipeak structures of spectra resulting from thermal fluctuations and also coexisting of the superfluid and the normal states. By combining the two-mode approximation with a finite temperature Gutzwiller approximation, we calculate spectra at finite temperatures by considering realistic systems, and the calculated spectra show nice agreements with those in experiments.

  8. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface.

    PubMed

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  9. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    SciTech Connect

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p{sub z} atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  10. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  11. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    PubMed

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  12. Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks

    NASA Astrophysics Data System (ADS)

    Zanon-Willette, T.; Minissale, M.; Yudin, V. I.; Taichenachev, A. V.

    2016-06-01

    The next generation of atomic frequency standards based on an ensemble of neutral atoms or a single-ion will provide very stringent tests in metrology, applied and fundamental physics requiring a new step in very precise control of external systematic corrections. In the proceedings of the 8th Symposium on Frequency Standards and Metrology, we present a generalization of the recent Hyper-Ramsey spectroscopy with separated oscillating fields using composites pulses in order to suppress field frequency shifts induced by the interrogation laser itself. Sequences of laser pulses including specific selection of phases, frequency detunings and durations are elaborated to generate spectroscopic signals with a strong reduction of the light-shift perturbation by off resonant states. New optical clocks based on weakly allowed or completely forbidden transitions in atoms, ions, molecules and nuclei will benefit from these generalized Ramsey schemes to reach relative accuracies well below the 10-18 level.

  13. Precision spectroscopy of Mg atoms in a magneto-optical trap

    SciTech Connect

    Goncharov, A N; Brazhnikov, D V; Shilov, A M; Bagayev, S N; Bonert, A E

    2014-06-30

    We report the results of experimental investigations aimed at creation of the optical frequency standard based on magnesium atoms cooled and localised in a magneto-optical trap (MOT). An experimentally realised MOT for magnesium made it possible to obtain a cloud comprising ∼10{sup 6} – 10{sup 7} atoms at a temperature of 3 – 5 mK. The results of ultra-high resolution spectroscopy of intercombination {sup 1}S{sub 0} – {sup 3}P{sub 1} transition for Mg atom are presented, the resonances in time-domain separated optical fields with the half-width of Γ = 500 Hz are recorded, which corresponds to the Q-factor of the reference line Q = ν/Δν ∼ 1.3 × 10{sup 12}. (extreme light fields and their applications)

  14. X-ray absorption spectroscopy in electrical fields: An element-selective probe of atomic polarization

    NASA Astrophysics Data System (ADS)

    Ney, V.; Wilhelm, F.; Ollefs, K.; Rogalev, A.; Ney, A.

    2016-01-01

    We have studied a range of polar and nonpolar materials using x-ray absorption near-edge spectroscopy (XANES) in external electric fields. An energy shift of the XANES by a few meV/kV is found which scales linearly with the applied voltage, thus being reminiscent of the linear Stark effect. This is corroborated by the consistent presence of this energy shift in polar thin films and bulk crystals and its absence in nonpolar materials as well as in conducting films. The observed energy shift of the XANES is different between two atomic species in one specimen and appears to scale linearly with the atomic number of the studied element. Therefore, XANES in electrical fields opens the perspective to study atomic polarization with element specificity in a range of functional materials.

  15. Electronic Structure of In2O3 from Resonant X-ray Emission Spectroscopy

    SciTech Connect

    Piper, L.; DeMasi, A; Cho, S; Smith, K; Fuchs, F; Bechstedt, F; Korber, C; Klein, A; Payne, D; Egdell, R

    2009-01-01

    The valence and conduction band structures of In2O3 have been measured using a combination of valence band x-ray photoemission spectroscopy, O K-edge resonant x-ray emission spectroscopy, and O K-edge x-ray absorption spectroscopy. Excellent agreement is noted between the experimental spectra and O 2p partial density of states calculated within hybrid density functional theory. Our data are consistent with a direct band gap for In2O3.

  16. A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor

    SciTech Connect

    Christopher C. Carter

    2004-12-15

    The Sensor Research & Development Corporation (SRD) has undertaken the development of a Continuous Emissions Monitor (CEM) for mercury based on the technique of Cavity Ring-Down Spectroscopy (CRD). The project involved building an instrument for the detection of trace levels of mercury in the flue gas emissions from coal-fired power plants. The project has occurred over two phases. The first phase concentrated on the development of the ringdown cavity and the actual detection of mercury. The second phase dealt with the construction and integration of the sampling system, used to carry the sample from the flue stack to the CRD cavity, into the overall CRD instrument. The project incorporated a Pulsed Alexandrite Laser (PAL) system from Light Age Incorporated as the source to produce the desired narrow band 254 nm ultra-violet (UV) radiation. This laser system was seeded with a diode laser to bring the linewidth of the output beam from about 150 GHz to less than 60 MHz for the fundamental beam. Through a variety of non-linear optics the 761 nm fundamental beam is converted into the 254 nm beam needed for mercury detection. Detection of the mercury transition was verified by the identification of the characteristic natural isotopic structure observed at lower cavity pressures. The five characteristic peaks, due to both natural isotopic abundance and hyperfine splitting, provided a unique identifier for mercury. SRD scientists were able to detect mercury in air down below 10 parts-per-trillion by volume (pptr). This value is dependent on the pressure and temperature within the CRD cavity at the time of detection. Sulfur dioxide (SO{sub 2}) absorbs UV radiation in the same spectral region as mercury, which is a significant problem for most mercury detection equipment. However, SRD has not only been able to determine accurate mercury concentrations in the presence of SO{sub 2}, but the CRD instrument can in fact determine the SO{sub 2} concentration as well. Detection of

  17. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    now essentially solved. The experimental accuracy is already so high that also higher-order QED effects become observable, and several groups are now active in trying to evaluate such effects from first principles. Another related field where substantial progress has recently been made involves precision measurements of X-ray transitions. This has created an interest in the study of deep inner holes in heavy atoms, where large relativistic and QED effects appear. These effects are as large as in corresponding highly charged ions, but the interpretation requires that the many-body effects from the surrounding electrons are accurately extracted. This is a big challenge at present. Atomic collision physics with highly charged ions has been dominated in recent years by the search for a possibility to describe electron-electron interaction within the dynamics of collisions. The experiments on multielectron transfer reactions with highly charged ions posed in this respect quite a challenge to the theory. The models developed to meet this were often based on methods and terminologies developed for describing the inter-electronic interactions in atomic structure. This caused many controversial discussions, also during this symposium. A new and fast rising field is the interaction of highly charged ions with solid surfaces. This may become an important link between atomic physics and condensed-matter physics, stimulated by the opportunity to study effects in coupled many-body systems present in the case when a large amount of electrons is transferred from the solid to each single ion. Furtheron, collision experiments with cooled ion beams in ion storage rings open new dimensions also for atomic spectroscopy. It appears possible that transition and binding energies can be measured in recombination of very heavy ions with a better quality than by conventional Auger electron or X-ray spectroscopy. Obviously, it is not possible to cover all the fields mentioned here in a single

  18. Quantification of the Rubidium in Beverage Products Micro Samples by Platinum-wire Loop in Flame Atomization Atomic Emission Spectrometry.

    PubMed

    Kékedy-Nagy, Ladislau; Zsigmond, Andreea R; Cordoş, Emil A

    2010-12-01

    The rubidium content in 3 µL of some beverage products (beer, wine, vegetable and fruit juices) atomized from a Ptwire in the methaneair flame has been determined by atomic emission spectrometry. The flame atomization conditions of rubidium were optimized, they are: λ = 780.0 nm, the height of 8 mm over the burner head, gas flow rates of 300 L h-1 air and 34 L h-1 methane. The effect of Na, K, Cs, Sr and acetone on the emission of rubidium was studied too. The limit of quantification (6σ) obtained is of 4.3±1.8 pg in the presence of 50 mg L-1 K and 5% v/v acetone (P = 0.05). The rubidium content of the samples has been determined with continuous nebulization and by atomization from the Ptwire, using the standard calibration curve and the standard addition method. The results of the two procedures agree within the determination errors. PMID:24061895

  19. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  20. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  1. Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma - basic investigations and analytical results

    NASA Astrophysics Data System (ADS)

    Pietsch, W.; Petit, A.; Briand, A.

    1998-05-01

    We report in this paper, the first determination of the isotope ratio (238/235) in an uranium sample by optical emission spectroscopy on a laser-produced plasma at reduced pressure (2.67 Pa). Investigations aimed at developing a new application of laser ablation for analytical isotope control of uranium are presented. Optimized experimental conditions allow one to obtain atomic emission spectra characterized by the narrowest possible line widths of the order of 0.01 nm for the investigated transition UII 424.437 nm. We show the possibility to achieve a relative precision in the range of 5% for an enrichment of 3.5% 235U. The influence of different relevant plasma parameters on the measured line width is discussed.

  2. Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device

    SciTech Connect

    Fujii, K.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2013-01-15

    We observe the Balmer-{alpha}, -{beta}, and -{gamma} lines of hydrogen atoms and Q branches of the Fulcher-{alpha} band of hydrogen molecules simultaneously with their polarization resolved for large helical device. From the fit including the line splits and the polarization dependences by the Zeeman effect, the emission locations, intensities, and the temperatures of the atoms and molecules are determined. The emission locations of the hydrogen atoms are determined outside but close to the last closed flux surface (LCFS). The results are consistent with a previous work (Phys. Plasmas 12, 042501 (2005)). On the other hand, the emission locations of the molecules are determined to be in the divertor legs, which is farer from those of the atoms. The kinetic energy of the atoms is 1 {approx} 20 eV, while the rotational temperature of molecules is {approx}0.04 eV. Additionally, substantial wings, which originate from high velocity atoms and are not reproduced by the conventional spectral analysis, are observed in the Balmer line profiles. We develop a one-dimensional model to simulate the transport of the atoms and molecules. The model reproduces the differences of the emission locations of the atoms and molecules when their initial temperatures are assumed to be 3 eV and 0.04 eV, respectively. From the model, the wings of the Balmer-{alpha} line is attributed to the high velocity atoms exist deep inside the LCFS, which are generated by the charge exchange collisions with hot protons there.

  3. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    NASA Astrophysics Data System (ADS)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  4. Scanning Tunneling Microscopy and Spectroscopy: I. Semimetals and Semiconductors. I. Atom-Resolved Imaging of DNA.

    NASA Astrophysics Data System (ADS)

    Driscoll, Robert James

    1993-01-01

    The topographic and electronic structure of semimetal and semiconductor surfaces were investigated using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), respectively. The long-range morphology and atomic -scale characteristics of cleaved materials, including highly oriented pyrolitic graphite (HOPG), boronated pyrolitic graphite (BPG), titanium disulfide, and gallium arsenide (GaAs), were revealed by STM performed in ultrahigh vacuum (UHV). Atom-resolved constant current topographs and current -imaging data, as well as barrier height information, are presented. Both point and line defects were observed on these surfaces. Visual evidence of coulombic screening caused by adsorption of charged species on n-GaAs(110) is provided. On BPG samples, containing up to 0.5% boron, boron substituent atoms appeared as protrusions approximately 3 A in diameter, with a density consistent with the known concentration. The BPG surface contained numerous line defects, including large-angle grain boundaries, and monolayer -deep etch pits. The effects of stress on the morphology of an annealed vicinal Si(111) wafer were explored. The height and orientation of step bunches, as well as terrace widths, on the (7 x 7) surface were determined. Line fault defects at step kinks were observed; theories for the origin and structure of these features based on stress relief are proposed. Current imaging tunneling spectroscopy (CITS) revealed differences between the adatom sites of the (7 x 7) surface. Atom-resolved barrier height images were also obtained. The measured barrier height was seen to depend strongly on the "cleanliness" of the STM tip. In addition, atom-resolved STM images of duplex DNA supported on a HOPG surface were obtained in UHV. These images revealed double-helical structure, major and minor groove alternation, base pairs, and atomic-scale substructure. The DNA dimensions derived from the STM data were in agreement with dimensions from x

  5. INTRODUCTION: 26th EGAS Conference of the European Group for Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Corbalán, R.; Orriols, G.; Pi, F.

    1995-01-01

    The 26th conference of EGAS, the European Group for Atomic Spectroscopy, was held in Bellaterra (Barcelona), Spain, 12-15 July 1994. The conference was hosted by the Departament de Física, Universitat Autònoma de Barcelona, and brought together 216 participants from 29 countries. The program comprised 14 survey lectures by invited speakers and 230 contributed papers (45 oral and 185 posters). Applications of atomic spectroscopy are taking an increasingly important place in the EGAS conferences. This year a Symposium on Spectroscopy for Environmental Analysis was held during the meeting. Six of the survey lectures were presented at this Symposium. Thirteen of the invited lectures have been prepared for publication by the authors and are gathered in the present issue of Physica Scripta. The conference organizers thank all sponsors, especially the Spanish Direccción General de Investigación Científica y Técnica (DGICYT) and the Comisión Interministerial de Ciencia y Tecnología (CICYT), the Direcció General de Recerca (DGR) of the Generalitat de Catalunya, the Fundació Catalana per la Recerca, the Universitat Politècnica de Catalunya and the International Science Foundation (ISF), for supporting the 26th EGAS meeting.

  6. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential.

  7. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. PMID:26628660

  8. Use of LEED, Auger emission spectroscopy and field ion microscopy in microstructural studies

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Buckley, D. H.; Pepper, S. V.; Brainard, W. A.

    1972-01-01

    Surface research tools such as LEED, Auger emission spectroscopy analysis, and field ion microscopy are discussed. Examples of their use in studying adhesion, friction, wear, and lubrication presented. These tools have provided considerable insight into the basic nature of solid surface interactions. The transfer of metals from one surface to another at the atomic level has been observed and studied with each of these devices. The field ion microscope has been used to study polymer-metal interactions and Auger analysis to study the mechanism of polymer adhesion to metals. LEED and Auger analysis have identified surface segregation of alloying elements and indicated the influence of these elements in metallic adhesion. LEED and Auger analysis have assisted in adsorption studies in determining the structural arrangement and quantity of adsorbed species present in making an understanding of the influence of these species on adhesion possible. These devices are assisting in the furtherance of understanding of the fundamental mechanism involved in the adhesion, friction, wear, and lubrication processes.

  9. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented. PMID:26724090

  10. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented.

  11. Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process

    NASA Astrophysics Data System (ADS)

    Boselli, M.; Colombo, V.; Ghedini, E.; Gherardi, M.; Sanibondi, P.

    2013-06-01

    In this work, a plasma arc welding process with constant current in the range 25-70 A operating in pure Ar is characterized by means of both thermo-fluid-dynamic modelling under the assumption of local thermodynamic equilibrium (LTE) and two-temperature thermal non-equilibrium modelling (2T), allowing a comparison of the LTE temperature fields with electron and heavy particle temperature fields: thermal non-equilibrium is strongest in the fringes of the arc and upstream the plasma flow even though a temperature difference between electrons and heavy particles is also found in the arc core in the nozzle orifice, due to the high velocity of the gas. Also, excitation temperature of Ar atoms is obtained from optical emission spectroscopy measurements using a new method (called hybrid method) that extends the usability of the Boltzmann plot method to spatial regions where the signal-to-noise ratio of the spectral lines adopted in the calculation is poor. Good agreement is obtained between the modelling predicted electron temperature and the measured excitation temperature in the whole investigated spatial region.

  12. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    SciTech Connect

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-15

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D{sub α} or H{sub α} lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10{sup 6} s{sup −1} per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D{sub α} light emission from the plasma confined in a magnetic trap are presented.

  13. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of Dα or Hα lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ˜106 s-1 per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of Dα light emission from the plasma confined in a magnetic trap are presented.

  14. Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy.

    PubMed

    Sano, Y; Kawayama, I; Tabata, M; Salek, K A; Murakami, H; Wang, M; Vajtai, R; Ajayan, P M; Kono, J; Tonouchi, M

    2014-01-01

    Being an atomically thin material, graphene is known to be extremely susceptible to its environment, including defects and phonons in the substrate on which it is placed as well as gas molecules that surround it. Thus, any device design using graphene has to take into consideration all surrounding components, and device performance needs to be evaluated in terms of environmental influence. However, no methods have been established to date to readily measure the density and distribution of external perturbations in a quantitative and non-destructive manner. Here, we present a rapid and non-contact method for visualizing the distribution of molecular adsorbates on graphene semi-quantitatively using terahertz time-domain spectroscopy and imaging. We found that the waveform of terahertz bursts emitted from graphene-coated InP sensitively changes with the type of atmospheric gas, laser irradiation time, and ultraviolet light illumination. The terahertz waveform change is explained through band structure modifications in the InP surface depletion layer due to the presence of localized electric dipoles induced by adsorbed oxygen. These results demonstrate that terahertz emission serves as a local probe for monitoring adsorption and desorption processes on graphene films and devices, suggesting a novel two-dimensional sensor for detecting local chemical reactions. PMID:25116593

  15. The interaction of 193-nm excimer laser radiation with single-crystal zinc oxide: The generation of atomic Zn line emission at laser fluences below breakdown

    SciTech Connect

    Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.; Boatner, L. A.

    2013-08-28

    The production of gas phase atomic and ionic line spectra accompanying the high laser fluence irradiation of solid surfaces is well known and is most often due to the production and interaction of high densities of atoms, ions, and electrons generated from laser-induced breakdown. The resulting plasma expands and moves rapidly away from the irradiated spot and is accompanied by intense emission of light. This type of “plume” is well studied and is frequently exploited in the technique of chemical analysis known as laser induced breakdown spectroscopy. Here, we describe a similar but weaker emission of light generated in vacuum by the laser irradiation of single crystal ZnO at fluences well below breakdown; this emission consists entirely of optical line emission from excited atomic Zn. We compare the properties of the resulting laser-generated gas-phase light emission (above and below breakdown) and describe a mechanism for the production of the low-fluence optical emission resulting from a fortuitous choice of material and laser wavelength.

  16. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Gao, Fei; Qiu, Yishen; Feng, Xiaohua; Zheng, Yuanjin

    2016-07-01

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  17. Thermal Emissivity-Based Chemical Spectroscopy through Evanescent Tunneling.

    PubMed

    Poole, Zsolt L; Ohodnicki, Paul R

    2016-04-01

    A new spectroscopic technique is presented, with which environmentalchemistry-induced thermal emissivity changes of thin films are extracted with high isolation through evanescent tunneling. With this method the hydrogen-induced emissivity changes of films of TiO2 , Pd-TiO2 , and Au-TiO2 , with properties of high conductivity, hydrogen chemisorption, and plasmonic activity, are characterized in the UV-vis and NIR wavelength ranges, at 1073 K.

  18. Emission spectroscopy for coal-fired cyclone furnace diagnostics.

    PubMed

    Wehrmeyer, Joseph A; Boll, David E; Smith, Richard

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuel-lean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and O2 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  19. Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Shpilman, Z.; Gouzman, I.; Grossman, E.; Akhvlediani, R.; Hoffman, A.

    2007-12-01

    Diamond surface oxidation by atomic oxygen, annealing up to ˜700°C, and in situ exposure to thermally activated hydrogen were studied by high resolution electron energy loss spectroscopy (HREELS). After atomic oxygen (AO) exposure, HREELS revealed peaks associated with CHx groups, carbonyl, ether, and peroxide-type species and strong quenching of the diamond optical phonon and its overtones. Upon annealing of the oxidized surfaces, the diamond optical phonon overtones at 300 and 450meV emerge and carbonyl and peroxide species gradually desorb. The diamond surface was not completely regenerated after annealing to ˜700°C and in situ exposure to thermally activated hydrogen, probably due to the irreversible deterioration of the surface by AO.

  20. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-08-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field ϕ =ϕ0cos(mϕt ) , can induce oscillating variations in the fundamental constants through their interactions with the standard model sector. We calculate the effects of such possible interactions, which may include the linear interaction of ϕ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive limits on the linear interaction of ϕ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of ϕ with the Higgs boson, our derived limits improve on existing constraints by up to 2-3 orders of magnitude.

  1. Note: In situ measurement of vacuum window birefringence by atomic spectroscopy

    SciTech Connect

    Steffen, Andreas; Alt, Wolfgang; Genske, Maximilian; Meschede, Dieter; Robens, Carsten; Alberti, Andrea

    2013-12-15

    We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10{sup −8} and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses.

  2. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets

    SciTech Connect

    Krasnokutski, Serge A.; Huisken, Friedrich

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al–He{sub n} vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm{sup −1}). However, using the same laser wavelength, we were unable to detect any Al{sub n} photoion with n larger than two.

  3. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, M.; Hill, C.; Decker, T.; Black, J. A.; Schmidt, H.; Hawkins, A.

    2016-03-01

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F' = 2, 3, 4 transitions of the D2 line in 85Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  4. Real-time atomic absorption mercury continuous emission monitor

    NASA Astrophysics Data System (ADS)

    Zamzow, Daniel S.; Bajic, Stanley J.; Eckels, David E.; Baldwin, David P.; Winterrowd, Chris; Keeney, Robert

    2003-08-01

    A continuous emission monitor (CEM) for mercury (Hg) in combustor flue gas streams has been designed and tested for the detection of Hg by optical absorption. A sampling system that allows continuous introduction of stack gas is incorporated into the CEM, for the sequential analysis of elemental and total Hg. A heated pyrolysis tube is used in the system to convert oxidized Hg compounds to elemental Hg for analysis of total Hg; the pyrolysis tube is bypassed to determine the elemental Hg concentration in the gas stream. A key component of the CEM is a laboratory-designed and -assembled echelle spectrometer that provides simultaneous detection of all of the emission lines from a Hg pen lamp, which is used as the light source for the optical absorption measurement. This feature allows for on-line spectroscopic correction for interferent gases such as sulfur dioxide and nitrogen dioxide, typically present in combustion stack gas streams, that also absorb at the Hg detection wavelength (253.65 nm). This article provides a detailed description of the CEM system, the characteristics and performance of the CEM, and the results of field tests performed at the Environmental Protection Agency-Rotary Kiln at Research Triangle Park, NC.

  5. Determining beryllium in drinking water by graphite furnace atomic absorption spectroscopy

    SciTech Connect

    Lytle, D.A.; Schock, M.R.; Dues, N.R.; Doerger, J.U.

    1993-01-01

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers successfully eliminated common chemical interferences in drinking water samples analyzed for beryllium content, as well as interferences encountered during jar testing of beryllium removal by alum coagulation. The method proved to be a simple, accurate, and precise alternative to the method of standard additions. Method detection limit was 0.09 microgram/l, with a linear calibration range of 0 to 6 microgram/l.

  6. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    PubMed Central

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  7. Atomic Force Microscopy and Infrared Spectroscopy Studies of Hydrogen Baked Si Surfaces

    NASA Astrophysics Data System (ADS)

    Vatel, Olivier; Verhaverbeke, Steven; Bender, Hugo; Caymax, Matty; Chollet, Frederic; Vermeire, Bert; Mertens, Paul; André, Elie; Heyns, Marc

    1993-10-01

    A H2 pre-bake at temperatures over 1050°C is typically used prior to Si epitaxial growth. In this study surface microroughness probed with tapping mode Atomic Force Microscopy (AFM) is correlated with multiple internal reflection infrared spectroscopy measurements for the different steps involved before epitaxy. A novel sample preparation technique was used for the multiple internal reflection set-up. A strong correlation was found between the presence of surface terraces and the IR double monohydride peaks for H2 annealed Si surfaces. We therefore put forward that the terraces are due to the H2 pre-bake step. These terraces remain after epitaxial deposition.

  8. Spectroscopy with Laser-cooled Francium and Progress on Atomic Parity Non-conservation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiehang

    Francium, the heaviest alkali, possesses a unique combination of structural simplicity and great sensitivity to effects such as atomic parity non-conservation (APNC). We report in this thesis our progress towards measuring weak-interaction physics in a low energy system: the francium atom. We have built a new generation of high-efficiency laser cooling and trapping facility at TRIUMF national laboratory in Canada. We constructed a precision science chamber and demonstrate francium atom transfer into the precision trap, where the electromagnetic field environments can be exquisitely controlled such that weak-interaction studies via optical and microwave excitations can take place. We perform laser spectroscopy measurements of the hyperfine structure and isotope shifts in a chain of francium isotopes near the neutron closed shell (N = 126), including both ground and isomeric nuclear states. These measurements provide a basis for benchmarking state of the art atomic theory, as well as future nuclear structure calculations in Fr, necessary for interpreting the weak-interaction studies. These developments lay important foundations for precision parity non-conservation measurements with francium.

  9. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Jiao, Yuechun; Han, Xiaoxuan; Yang, Zhiwei; Li, Jingkui; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2016-08-01

    We study Rydberg atoms modulated by strong radio-frequency (rf) fields with a frequency of 70 MHz. The Rydberg atoms are prepared in a room-temperature cesium cell, and their level structure is probed using electromagnetically induced transparency (EIT). As the rf field increases from the weak- into the strong-field regime, the range of observed rf-induced phenomena progresses from ac level shifts through increasingly pronounced and numerous rf modulation sidebands to complex state mixing and level crossings with high - l hydrogenlike states. Weak anharmonic admixtures in the rf field generate clearly visible modifications in the Rydberg EIT spectra. A Floquet analysis is employed to model the Rydberg spectra, and good agreement with the experimental observations is found. Our results show that all-optical spectroscopy of Rydberg atoms in vapor cells can serve as an antenna-free, atom-based, and calibration-free technique to measure rf electric fields and to analyze their higher-harmonic contents.

  10. Velocity distribution function of sputtered Cu atoms obtained by time resolved optical absorption spectroscopy

    SciTech Connect

    Kang, Namjun; Gaboriau, Freddy; Ricard, Andre; Oh, Soo-ghee

    2010-01-15

    A new method based on time resolved optical absorption spectroscopy is proposed to determine the velocity distribution function of sputtered Cu atoms in a magnetron plasma discharge. The method consists of applying a short pulse of 1.5 {mu}s and of recording time variations in copper atom density in off pulse at different positions (1, 2, and 3 cm) from target surface under 3-30 mTorr. The time evolution of the density is then converted into velocity distribution. We estimate that only sputtered atoms with radial velocity component lower than 0.5 km/s are detected. The average velocity of Cu atoms is evaluated as the first order moment of the velocity distribution functions. The velocity distribution functions become the more dispersive the farther from target surface. The average velocities vary in the range of 2.5-3 km/s at the vicinity of target surface whereas at 3 cm a decrease from 2.5 to 1.2 km/s is observed at 30 mTorr.

  11. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  12. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  13. Variations in the atomic oxygen 630 nm emission intensity related to orography

    NASA Astrophysics Data System (ADS)

    Nasyrov, G. A.

    2009-08-01

    The spatial variations in the emission intensity, related to internal gravity waves (IGWs) generated in the troposphere when the air flows around the Kopet Dagh mountain range, and the regularities of these variations have been detected for the first time based on the photometric measurements of the spatial distribution of the atomic oxygen 630 nm emission intensity, performed in 1967 at Vannovskii station of the Physicotechnical Institute, Academy of Sciences of the Turkmen SSR.

  14. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  15. Vibrational spectroscopy of a transient species through time-resolved Fourier transform infrared emission spectroscopy: The vinyl radical

    SciTech Connect

    Letendre, Laura; Liu, Dean-Kuo; Pibel, Charles D.; Halpern, Joshua B.; Dai, Hai-Lung

    2000-06-01

    An approach for detecting the vibrational spectrum of transient species is demonstrated on the vinyl radical. Photodissociation of carefully chosen precursors at selected photolysis wavelengths produce highly vibrationally excited radicals. Infrared (IR) emission from these radicals is then measured by time-resolved Fourier transform spectroscopy with nanosecond time resolution. All nine vibrational bands of the vinyl radical, generated from four different precursors, are obtained and reported here for the first time. (c) 2000 American Institute of Physics.

  16. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  17. Microplasma-based atomic emission detectors for gas chromatography.

    PubMed

    Miclea, M; Okruss, M; Kunze, K; Ahlman, N; Franzke, J

    2007-08-01

    This paper is an update on the development of microplasmas as detectors for gas chromatography. Direct current (dc), alternating current (ac), and radio frequency (rf) microplasmas developed in recent years will be described with their significant analytical results, which mostly concern the detection of halogens and sulfur. New results will be added which employ a microhollow cathode discharge (MHCD) as excitation source. Emphasis will be given to this microplasma which has already been implemented as an element-selective detector for emission spectrometry and as ionization source for mass spectrometry. The possibility to use it as a multielement-selective detector for gas chromatography will be presented. A discussion of the published detection limits of all these microplasmas is given.

  18. HPLC-ICP atomic emission spectrometry in environmental analysis

    SciTech Connect

    Frame, E.M.S.

    1996-10-01

    Trace concentrations of many compounds are difficult to determine directly by traditional chromatographic techniques. Organosilicon compounds, for example, have no chromophoric groups. Size exclusion (SEC) and high performance liquid chromatography (HPLC) can separate high and low molecular weight organosilicon compounds, but routinely employ detectors with insufficient sensitivity for trace concentrations in environmental samples. Elemental analysis methods such as inductively coupled plasma optical emission spectrometry (ICP) provide excellent element sensitivity but no speciation information. Interfacing of a chromatographic method with ICP has been shown to provide quantitative determination of trace compounds while retaining the chemical speciation information. This work will describe the power of the HPLC-ICP combination for trace compounds in environmental samples to identify and determine ppm levels of organometallics.

  19. Remote sensing of the troposphere by infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Glavich, Thomas A.

    1989-01-01

    This paper describes the concept of a cryogenic IR imaging Fourier transform spectrometer, called the Tropospheric Emission Spectrometer (TES), designed for observations of the troposphere and lower stratosphere from a near-earth orbit, using natural thermal emission and reflected sunlight. The principal molecular species to be measured by TES are O3, CO, CO2, N2O, H2O, H2O2, NO, NO2, HNO3, NH3, CH4, C2H6, C2H2, SO2, COS, CFCl3, and CF2Cl2. The TES is scheduled for a launch on the second polar platform of the Earth Observing System in 1998.

  20. Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma

    NASA Astrophysics Data System (ADS)

    Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor

    2016-02-01

    An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.

  1. Atomic force spectroscopy and density-functional study of graphene corrugation on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Voloshina, Elena; Dedkov, Yuriy

    2016-06-01

    Graphene, the thinnest material in the world, can form moiré structures on different substrates, including graphite, h -BN, or metal surfaces. In such systems, the structure of graphene, i.e., its corrugation, as well as its electronic and elastic properties, are defined by the combination of the system geometry and local interaction strength at the interface. The corrugation in such structures on metals is heavily extracted from diffraction or local probe microscopy experiments, and it can be obtained only via comparison with theoretical data, which usually simulate the experimental findings. Here we show that graphene corrugation on metals can be measured directly employing atomic force spectroscopy, and the obtained value coincides with state-of-the-art theoretical results. The presented results demonstrate an unexpected space selectivity for the Δ f (z ) signal in the atomic force spectroscopy in the moiré graphene lattice on Ru(0001), which is explained by the different response of the graphene layer on the indentation process. We also address the elastic reaction of the formed graphene nanodoms on the indentation process by the scanning tip that is important for the modeling and fabrication of graphene-based nanoresonators on the nanoscale.

  2. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy.

    PubMed

    Jungjohann, Katherine L; Evans, James E; Aguiar, Jeffery A; Arslan, Ilke; Browning, Nigel D

    2012-06-01

    Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis. PMID:22640968

  3. Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Jungjohann, K. L.; Evans, James E.; Aguiar, Jeff; Arslan, Ilke; Browning, Nigel D.

    2012-06-04

    Observation of growth, synthesis, dynamics and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope (TEM). In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle, and demonstrate characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution based catalysis and biological research.

  4. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy.

    PubMed

    Jungjohann, Katherine L; Evans, James E; Aguiar, Jeffery A; Arslan, Ilke; Browning, Nigel D

    2012-06-01

    Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

  5. Atomic emission line wavelength calculations below 2000 angstroms for Lithium II through Cobalt XXVI

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1971-01-01

    Atomic-emission-line wavelengths are presented which were calculated from wavelengths of previously identified transition sequences using second-degree polynomials fitted to known wave numbers by the least squares method. Wavelengths less than 2000 angstroms are included for ions from Li II to Co XXVI. The computer program written in FORTRAN 4 is also included.

  6. Determination of microelements in uncontaminated natural water from the Baikal region by atomic emission spectrometry

    SciTech Connect

    Kuznetsova, A.I.; Chumakova, N.L.

    1995-10-01

    In this study, concentration by evaporation was used to determine 17 microelements (B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ag, Sn, Ba, and Pb) in water from Lake Baikal and its tributaries by atomic-emission spectrometry with the arc excitation of spectra.

  7. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  8. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  9. Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy

    NASA Astrophysics Data System (ADS)

    Muñoz Burgos, J. M.; Burrell, K. H.; Solomon, W. M.; Grierson, B. A.; Loch, S. D.; Ballance, C. P.; Chrystal, C.

    2013-09-01

    Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D.

  10. High-resolution infrared spectroscopy of atomic bromine in solid parahydrogen and orthodeuterium

    NASA Astrophysics Data System (ADS)

    Raston, Paul L.; Kettwich, Sharon C.; Anderson, David T.

    2013-10-01

    This work extends our earlier investigation of the near-infrared absorption spectroscopy of atomic bromine (Br) trapped in solid parahydrogen (pH2) and orthodeuterium (oD2) [S. C. Kettwich, L. O. Paulson, P. L. Raston, and D. T. Anderson, J. Phys. Chem. A 112, 11153 (2008)]. We report new spectroscopic observations on a series of double transitions involving excitation of the weak Br-atom spin-orbit (SO) transition (2P1/2 ← 2P3/2) in concert with phonon, rotational, vibrational, and rovibrational excitation of the solid molecular hydrogen host. Further, we utilize the rapid vapor deposition technique to produce pH2 crystals with a non-equilibrium mixture of face centered cubic (fcc) and hexagonal closed packed (hcp) crystal domains in the freshly deposited solid. Gentle annealing (T = 4.3 K) of the pH2 sample irreversibly converts the higher energy fcc crystal domains to the slightly more stable hcp structure. We follow the extent of this conversion process using the intensity of the U1(0) transition of solid pH2 and correlate crystal structure changes with changes in the integrated intensity of Br-atom absorption features. Annealing the pH2 solid causes the integrated intensity of the zero-phonon Br SO transition to increase approximately 45% to a value that is 8 times larger than the gas phase value. We show that the magnitude of the increase is strongly correlated to the fraction of hcp crystal domains within the solid. Theoretical calculations presented in Paper II show that these intensity differences are caused by the different symmetries of single substitution sites for these two crystal structures. For fully annealed Br-atom doped pH2 solids, where the crystal structure is nearly pure hcp, the Br-atom SO transition sharpens considerably and shows evidence for resolved hyperfine structure.

  11. Emission of energetic neutral atoms from water ice under Ganymede surface-like conditions

    NASA Astrophysics Data System (ADS)

    Wieser, Martin; Futaana, Yoshifumi; Barabash, Stas; Wurz, Peter

    2016-05-01

    The co-rotating plasma around Jupiter precipitates on the surfaces of the jovian moons, where it is not hindered by a local magnetic field. Precipitating ions lead to the emission of energetic neutral atoms, which are produced via backscattering and sputtering processes, from the surface. The European Space Agency's JUICE mission to Jupiter carries as part of the Particle Environment Package experiment an imaging energetic neutral atom spectrometer called the jovian Neutrals Analyzer (JNA). When it is in orbit around Ganymede, JNA will measure the energetic neutral atom flux emitted from the surface of Ganymede in the energy range from 10 eV to 3300 eV. The surface of Ganymede consists of a large fraction of water ice. To characterize the expected energetic neutral atom fluxes from water ice due to precipitating jovian plasma, we impacted protons and singly charged oxygen ions with energies up to 33 keV on a salty water ice target kept at Ganymede surface conditions. Emitted energetic atoms were measured energy- and mass-resolved using the JNA prototype instrument. The data show high yields for energetic neutral atoms per incident ion in the JNA energy range. For incident protons, energetic neutral atom yields between 0.28 at 1 keV and ∼40 at 33 keV were observed. For incident singly charged oxygen ions, the observed energetic neutral atom yield ranged from 0.8 for at 3 keV to ∼170 at 23 keV.

  12. Optical emission spectroscopy and Langmuir probe diagnostics of CH{sub 3}F/O{sub 2} inductively coupled plasmas

    SciTech Connect

    Karakas, Erdinc; Donnelly, Vincent M.; Economou, Demetre J.

    2013-06-07

    A CH{sub 3}F:O{sub 2} (50%:50%) inductively coupled discharge, sustained in a compact plasma reactor, was investigated as a function of power (20-400 W) and pressure (9-30 mTorr), using optical emission spectroscopy and Langmuir probe measurements. The electron density increased linearly with power but only weakly with pressure. The effective electron temperature was nearly independent of power and pressure. The gas temperature, obtained from the rotational structure of N{sub 2} (C {yields} B) optical emission, increased from 400 to 900 K as a function of inductive mode power between 75 and 400 W at 10 mTorr. For constant feed gas flow, the absolute H, F, and O atom densities, estimated by optical emission rare gas actinometry, increased linearly with power. The absolute number density ratios H/Ar, F/Ar, and O/Ar, increased, decreased, and remained constant, respectively, with pressure. The H-atom density was estimated to be 5.4 Multiplication-Sign 10{sup 13} cm{sup -3} at 400 W and 10 mTorr (gas temperature = 900 K), implying a high degree of dissociation of the CH{sub 3}F feedstock gas. The F and O atom number densities were much lower (8.3 Multiplication-Sign 10{sup 12} cm{sup -3} and 5.9 Multiplication-Sign 10{sup 12} cm{sup -3}, respectively) for the same conditions, suggesting that most of the fluorine and oxygen is contained in reaction products HF, CO, CO{sub 2}, H{sub 2}O, and OH. The relative number densities of HF, CO, and CO{sub 2} were observed to first rapidly increase with power, and then reach a plateau or decay slightly at higher power. Reaction mechanisms were proposed to explain the observed behavior of the number density of F and HF vs. power and pressure.

  13. Optical emission spectroscopy and Langmuir probe diagnostics of CH3F/O2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc; Donnelly, Vincent M.; Economou, Demetre J.

    2013-06-01

    A CH3F:O2 (50%:50%) inductively coupled discharge, sustained in a compact plasma reactor, was investigated as a function of power (20-400 W) and pressure (9-30 mTorr), using optical emission spectroscopy and Langmuir probe measurements. The electron density increased linearly with power but only weakly with pressure. The effective electron temperature was nearly independent of power and pressure. The gas temperature, obtained from the rotational structure of N2 (C → B) optical emission, increased from 400 to 900 K as a function of inductive mode power between 75 and 400 W at 10 mTorr. For constant feed gas flow, the absolute H, F, and O atom densities, estimated by optical emission rare gas actinometry, increased linearly with power. The absolute number density ratios H/Ar, F/Ar, and O/Ar, increased, decreased, and remained constant, respectively, with pressure. The H-atom density was estimated to be 5.4 × 1013 cm-3 at 400 W and 10 mTorr (gas temperature = 900 K), implying a high degree of dissociation of the CH3F feedstock gas. The F and O atom number densities were much lower (8.3 × 1012 cm-3 and 5.9 × 1012 cm-3, respectively) for the same conditions, suggesting that most of the fluorine and oxygen is contained in reaction products HF, CO, CO2, H2O, and OH. The relative number densities of HF, CO, and CO2 were observed to first rapidly increase with power, and then reach a plateau or decay slightly at higher power. Reaction mechanisms were proposed to explain the observed behavior of the number density of F and HF vs. power and pressure.

  14. Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy.

    PubMed

    Hwang, Bing-Joe; Sarma, Loka Subramanyam; Chen, Jiun-Ming; Chen, Ching-Hsiang; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Lee, Jyh-Fu; Tang, Mau-Tsu

    2005-08-10

    In this report, we describe a general methodology to determine the extent of alloying or atomic distribution quantitatively in bimetallic nanoparticles (NPs) by X-ray absorption spectroscopy (XAS). The structural parameters determined in these studies serve as a quantitative index and provide a general route to determine the structural aspects of the bimetallic NPs. We have derived various types of possible structural models based on the extent of alloying and coordination number parameters of bimetallic NPs. We also discussed the nature of homo- and heterometallic interactions in bimetallic NPs based on the extent of alloying. Herein, we use carbon-supported platinum-ruthenium bimetallic nanoparticles to demonstrate the proposed methodology, and this can be extended further to get more insights into the alloying extent or atomic distribution of other bimetallic systems. The results demonstrated in this paper open up methods to determine the atomic distribution of bimetallic NPs, which is an extremely important parameter that strongly influences the physicochemical properties of NPs and their applications.

  15. Determination of Elemental Ratio in an Atomic Column by Electron Energy Loss Spectroscopy.

    PubMed

    Haruta, Mitsutaka; Hosaka, Yoshiteru; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi; Kurata, Hiroki

    2016-07-26

    Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Å radius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Å radius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds. PMID:27341006

  16. Collinear laser spectroscopy of atomic cadmium. Extraction of nuclear magnetic dipole and electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Frömmgen, Nadja; Balabanski, Dimiter L.; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-06-01

    Hyperfine structure A and B factors of the atomic 5 s5 p 3P2 → 5 s6 s 3S1 transition are determined from collinear laser spectroscopy data of 107-123Cd and 111 m-123 m Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with s 1/2 and d 5/2 nuclear ground states and isomeric h 11/2 states is evaluated and a linear relationship is observed for all nuclear states except s 1/2. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic 5 s5 p 3P2 level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.

  17. Photoelectron and photoion spectroscopy of atoms, nanoparticles, and nanoplasmas irradiated with strong femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.

    Modern femtosecond lasers can produce pulses of light that are shorter than the vibrational periods in molecules and have electric fields stronger than the Coulomb field that binds electrons in atoms. These short pulse lasers enable the observation of chemical reactions, the production of attosecond bursts of high-energy photons, and the precision-machining of solid materials with minimal heat transport to the material. In this thesis, I describe three experiments that provide new insight into strong-field (1014 Watts/cm2) femtosecond laser-matter interactions in three important regimes. First, I discuss the strong-field ionization of gas-phase atoms, identify a new structure in the photoelectron angular distribution of xenon gas, and explain this structure as a result of field-driven electrons colliding with the Coulomb potential of the ion. Second, I describe a new method to perform photoelectron and photoion spectroscopy on single, isolated nanoparticles and demonstrate this technique by observing the directional ion ejection that takes place in the laser ablation of nanostructures. Finally, I present the first experimental observations of shock wave propagation in nanoscale plasmas. These findings will guide future efforts to probe the structure of atoms and molecules on the femtosecond timescale, design nanomaterials that enhance light on the subwavelength scale, and produce high-energy ions from plasmas.

  18. Determination of Elemental Ratio in an Atomic Column by Electron Energy Loss Spectroscopy.

    PubMed

    Haruta, Mitsutaka; Hosaka, Yoshiteru; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi; Kurata, Hiroki

    2016-07-26

    Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Å radius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Å radius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds.

  19. LZIFU: IDL emission line fitting pipeline for integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting

    2016-07-01

    LZIFU (LaZy-IFU) is an emission line fitting pipeline for integral field spectroscopy (IFS) data. Written in IDL, the pipeline turns IFS data to 2D emission line flux and kinematic maps for further analysis. LZIFU has been applied and tested extensively to various IFS data, including the SAMI Galaxy Survey, the Wide-Field Spectrograph (WiFeS), the CALIFA survey, the S7 survey and the MUSE instrument on the VLT.

  20. Infrared Spectroscopy of Pa-beta and [Fe II] Emission in NGC 4151

    NASA Technical Reports Server (NTRS)

    Knop, R. A.; Armus, L.; Larkin, J. E.; Matthews, K.; Shupe, D. L.; Soifer, B. T.

    1996-01-01

    We present spatially resolved 1.24-1.30 micron spectroscopy with a resolution of 240 km/s of the Seyfert 1.5 galaxy NGC 4151. Broad Pa-beta, narrow Pa-beta, and narrow [Fe II] (lambda = 1.2567 micron) emission lines are identified in the spectrum. Additionally, a spatially unresolved narrow component probably due to [S ix] (lambda = 1.25235 micron) is observed on the nucleus. The narrow Pa-beta and [Fe II] lines are observed to be extended over a scale of 5 sec. The spatial variation of the velocity centers of the Pa-beta and [Fe II] lines show remarkable similarity, and additionally show similarities to the velocity structure previously observed in ground based spectroscopy of [O III] emission in NGC 4151. This leads to the conclusion that the [Fe II] emission arises in clouds in the Seyfert narrow line region that are physically correlated with those narrow line clouds responsible for the optical emission. The [Fe II] emission line, however, is significantly wider than the Pa-beta emission line along the full spatial extent of the observed emission. This result suggests that despite the correlation between the bulk kinematics of Pa-beta and [Fe II], there is an additional process, perhaps fast shocks from a wind in the Seyfert nucleus, contributing to the [Fe II] emission.

  1. Imaging spectroscopy of solar microwave radiation. 1: Flaring emission

    NASA Technical Reports Server (NTRS)

    Lim, Jeremy; Gary, Dale E.; Hurford, Gordon J.; Lemen, James R.

    1994-01-01

    We present observations of an impulsive microwave burst on the Sun with both high spatial and spectral resolution, made with the Solar Array at the Owens Valley Radio Observatory (OVRO). We used the measured brightness temperature spectrum to infer the emission process responsible for each microwave source, and to derive physical conditions in the source region. We confimed our predictions using soft X-ray measurements from Geostationary Operational Environmental Satellite (GOES), soft X-ray images from Yohkoh, and H-alpha flare images together with sunspots and magnetogram images from the Big Bear Solar Observatory.

  2. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  3. A CAVITY RINGDOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2002-10-01

    Work on the Cavity Ring-Down (CRD) mercury spectrometer this past quarter concentrated on the actual detection of mercury and the beginning of flue gas interference testing. After obtaining the initial mercury signal detection was done at various pressures and concentrations. The Alexandrite laser system used for the CRD spectrometer has a narrow enough linewidth to spectrally resolve the isotopic structure of mercury. This includes both isotopic frequency shifts as well as hyperfine splittings due to a couple of the odd isotopes of mercury. Initial flue gas inteferent testing concentrated on SO{sub 2}, which is expected to cause the greatest interference with mercury detection due to its absorption of ultra-violet light in the same region as that of the mercury atomic line.

  4. Infrared emission spectroscopy of atmospheric-pressure ball plasmoids

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; Deutsch, Bradley; Bhargava, Rohit; McCall, Benjamin J.

    2016-04-01

    We report the first (to our knowledge) infrared emission spectra collected from water-based laboratory ball plasmoid discharges. A "ball plasmoid" results from a unique type of pulsed DC plasma discharge in which a sphere of plasma is seen to grow and eventually separate from a central electrode and last for a few hundred milliseconds without an external power source before dissipating. Typical recombination rates for plasmas at ambient conditions are on the order of a millisecond or less, however ball plasmoids have been observed to last a few hundred milliseconds, and there is no explanation in the literature that fully accounts for this large discrepancy in lifetime. The spectra are dominated by emission from water and from hydroxyl radical; PGOPHER was used to fit the experimental spectra to extract rotational temperatures for these molecules. The temperatures of the bending and stretching modes of H2O were determined to be 1900 ± 300 K and 2400 ± 400 K, respectively and the rotational temperature of OH was found to be 9200 ± 1500 K.

  5. Local field emission spectroscopy of InSb micrograins

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Glukhovskoy, E. G.; Mosiyash, D. S.

    2015-11-01

    Local electron density-of-state spectra and level parameters in indium antimonide (InSb) micrograins have been studied using a tunneling microscope in the field-electron emission regime. The activation energies (ψ) of electron levels and electron lifetimes (τ) on these levels have been determined based on the correspondence of current-voltage characteristics to the probabilities of emission. Several local electron levels in a near-surface region of intrinsic ( i-InSb) micrograins are identified with ψ ˜ 0.73, 1.33, 1.85, 2.15, and 5.1 eV and τ ˜ 5 × 10-8-3 × 10-7 s, respectively. A physical model is proposed, according to which "light" electrons are localized due to the Coulomb interaction and their dimensional quantization takes place in the near-surface zone as determined by the effective mass, energy, and concentration of electrons and the radius of curvature of the micrograin surface.

  6. Electron spectroscopy of surfaces by impact of metastable He atoms: CO on Pd(110)

    NASA Astrophysics Data System (ADS)

    Conrad, H.; Ertl, G.; Küppers, J.; Sesselmann, W.; Haberland, H.

    1982-09-01

    Deexcitation of metastable He∗ 2 1S (excitation energy E∗ = 20.6 eV) or 2 3S ( E* =19.8 eV) atoms at a clean Pd(110) surface proceeds through a two-stage process (resonance ionization + Auger neutralization, RI + AN). The measured electron energy distribution reflects the self-convolution of the local density of states of the outmost atomic layer. A CO adlayer suppresses the RI step and the spectra are caused by Auger deexcitation (Penning ionization). Comparison with corresponding UPS data allows identification of the valence orbitals of the adsorbate. Emission up to the Fermi level is ascribed to contributions from the 5σ level. The effectively available excitation energy in front of the adlayer is lowered by 0.5 eV. Extensive data on the variation of the intensities from the adsorbate valence levels with angle of incidence as well as of emission are presented and are analyzed in terms of an empirical model.

  7. Review of atomic data needs for active charge-exchange spectroscopy on ITERa)

    NASA Astrophysics Data System (ADS)

    Marchuk, O.; Bertschinger, G.; Biel, W.; Delabie, E.; von Hellermann, M. G.; Jaspers, R.; Reiter, D.

    2008-10-01

    The quantitative exploitation of active beam spectra is largely based on an advanced atomic modeling. Under the ITER operating conditions the penetration depth of a diagnostic beam into the plasma core crucially affects the intensities of spectral lines and hence the uncertainties of derived plasma parameters. A critical review of atomic data and an assessment of its error margins are, therefore, urgently needed. The aim of the present work is to verify the existing beam-stopping and beam-emission data for hydrogen beam in fusion plasmas. The agreement between the ADAS database and the present calculations is found to be within 5% for the beam-stopping data in a H-plasma. The calculation of beam attenuation in the presence of He-ash (4%) and Be ions (2%) demonstrates the agreement between the present data and the ADAS database within 10%. Finally, the maximum deviation of 15% is found only for beam-emission data at the electron density of 1×1012-2×1012cm-3, which is significantly below the ITER density of 1014cm-3.

  8. Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 1. Application to sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Thorpe, Michael T.; Rogers, A. Deanne; Bristow, Thomas F.; Pan, Cong

    2015-11-01

    Thermal emission spectroscopy is used to determine the mineralogy of sandstone and mudstone rocks as part of an investigation of linear spectral mixing between sedimentary constituent phases. With widespread occurrences of sedimentary rocks on the surface of Mars, critical examination of the accuracy associated with quantitative models of mineral abundances derived from thermal emission spectra of sedimentary materials is necessary. Although thermal emission spectroscopy has been previously proven to be a viable technique to obtain quantitative mineralogy from igneous and metamorphic materials, sedimentary rocks, with natural variation of composition, compaction, and grain size, have yet to be examined. In this work, we present an analysis of the thermal emission spectral (~270-1650 cm-1) characteristics of a suite of 13 sandstones and 14 mudstones. X-ray diffraction and traditional point counting procedures were all evaluated in comparison with thermal emission spectroscopy. Results from this work are consistent with previous thermal emission spectroscopy studies and indicate that bulk rock mineral abundances can be estimated within 11.2% for detrital grains (i.e., quartz and feldspars) and 14.8% for all other mineral phases present in both sandstones and mudstones, in comparison to common in situ techniques used for determining bulk rock composition. Clay-sized to fine silt-sized grained phase identification is less accurate, with differences from the known ranging from ~5 to 24% on average. Nevertheless, linear least squares modeling of thermal emission spectra is an advantageous technique for determining abundances of detrital grains and sedimentary matrix and for providing a rapid classification of clastic rocks.

  9. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy.

    PubMed

    Kapadia, A J; Tourassi, G D; Sharma, A C; Crowell, A S; Kiser, M R; Howell, C R

    2008-05-21

    Iron overload disorders have been the focus of several quantification studies involving non-invasive imaging modalities. Neutron spectroscopic techniques have demonstrated great potential in detecting iron concentrations within biological tissue. We are developing a neutron spectroscopic technique called neutron stimulated emission computed tomography (NSECT), which has the potential to diagnose iron overload in the liver at clinically acceptable patient dose levels through a non-invasive scan. The technique uses inelastic scatter interactions between atomic nuclei in the sample and incoming fast neutrons to non-invasively determine the concentration of elements in the sample. This paper discusses a non-tomographic application of NSECT investigating the feasibility of detecting elevated iron concentrations in the liver. A model of iron overload in the human body was created using bovine liver tissue housed inside a human torso phantom and was scanned with a 5 MeV pulsed beam using single-position spectroscopy. Spectra were reconstructed and analyzed with algorithms designed specifically for NSECT. Results from spectroscopic quantification indicate that NSECT can currently detect liver iron concentrations of 6 mg g(-1) or higher and has the potential to detect lower concentrations by optimizing the acquisition geometry to scan a larger volume of tissue. The experiment described in this paper has two important outcomes: (i) it demonstrates that NSECT has the potential to detect clinically relevant concentrations of iron in the human body through a non-invasive scan and (ii) it provides a comparative standard to guide the design of iron overload phantoms for future NSECT liver iron quantification studies.

  10. Soft-x-ray emission spectroscopy study of the electronic structure of nonstoichiometric silicon nitride

    NASA Astrophysics Data System (ADS)

    Nithianandam, V. Jeyasingh; Schnatterly, S. E.

    1987-07-01

    Soft-x-ray emission spectroscopy was used to investigate the electronic structure of nonstoichiometric silicon nitride samples of different compositions. The Si L23 x-ray emission spectra from these samples are presented and interpreted using a two-phase linear superposition model for the valence-band region. We assumed a model for the valence-band edge and for the emission in the gap region due to trap states and the Si 2p core exciton. The results obtained from these fits are compared with relevant models and other experiments.

  11. APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS

    EPA Science Inventory

    Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...

  12. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  13. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses

    USGS Publications Warehouse

    Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.

    2007-01-01

    This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.

  14. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  15. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective.

  16. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis.

    PubMed

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  17. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    SciTech Connect

    Jen, H.H.

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  18. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

    PubMed Central

    2015-01-01

    X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pump–probe technique. PMID:26568779

  19. Sampling and analysis of particulate matter by glow discharge atomic emission and mass spectrometries.

    PubMed

    Marcus, R K; Dempster, M A; Gibeau, T E; Reynolds, E M

    1999-08-01

    The direct introduction of particulate matter into glow discharge atomic emission and mass spectrometry sources through a particle beam/momentum separator apparatus is described. Vacuum action through a narrow (0.0625 in. i.d.) stainless steel tube allows the introduction of discrete samples of NIST SRM 1648 urban particulate matter (UPM) and caffeine in powder form. Introduction of "ambient" airborne particulate matter is also possible. Particles passing through the aerodynamic momentum separator impinge on the heated (∼200-250 °C) inner surface of the glow discharge plasma volume and are flash-vaporized. The resultant atoms/molecules are subjected to excitation/ionization collisions within the low-pressure (0.5-5 Torr of He or Ar) plasma, producing characteristic photon emission and/or signature ionic species. In this way, atomic emission and mass spectrometry identification of particle constituents is possible. Basic design aspects of the apparatus are presented, and demonstrations of atomic emission detection of the constituents in the NIST SRM illustrate the general characteristics of the approach. Transient atomic emission signals are captured for the introduction of preweighed, discrete samples, with the integrated areas used to construct analytical response curves. Limits of detection using this relatively simple atomic emission system are on the order of tens of nanograms for sample masses of ∼50 μg. Mass spectrometric monitoring of introduced caffeine particles and a mixture of polycyclic aromatic hydrocarbons (PAHs) illustrates the ability of the glow discharge plasma to produce high-quality, library (electron impact) searchable mass spectra of molecular species while also yielding isotopic identification of elemental components of the UPM. Limits of detection for Fe in the NIST SRM are on the order of 175 ng of material, equivalent to ∼7 ng of analyte Fe. It is believed that the small size, low power consumption, ease of operation, and multimode

  20. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    SciTech Connect

    Kobayashi, Atsushi; Ohta, Jitsuo; Ueno, Kohei; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-04

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on −R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of −c and m-faces on the −R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  1. Monitoring of Metallic-atom-density in Plasma Processes by Light Source for Absorption Spectroscopy using Micro Hollow Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Ito, Masafumi

    It is important to monitor the density of species in plasma or sputtering processes for controlling the process precisely because both composition and property of films are affected by the density of species such as radicals and ions. Absorption spectroscopy is a powerful method to monitor the density of species in the plasma. We have developed a multi-micro hollow cathode lamp (multi-MHCL) for monitoring densities of multi-metallic-atoms in the plasma or sputtering processes. The multi-MHCL is a compact light source in compared with the conventional light sources, and can emit multi-atomic lines simultaneously. The multi-MHCL was applied to an absorption spectroscopy for measuring densities of Zn and In atoms in a radio frequency magnetron sputtering process using IZO (Indium Zinc Oxide) target. The densities of Zn and In atoms were successfully measured in the range of 109 to 1010cm-3.

  2. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  3. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  4. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter

    2002-12-31

    SRD tested a number of different length cavities during this past quarter. Continuous transmission was observed with cavity lengths from 65 to 12 cm. The 65 cm cavity was replaced with a 39 cm cavity for work performed during this quarter. Flue gas components were tested for background absorptions and any interference with the determination of accurate mercury concentrations. Sulfur dioxide was found to absorb fairly strongly in the region of the mercury transition, but the Cavity Ring-Down (CRD) instrument was still able to detect mercury at subparts-per-billion by volume (ppb) levels. Additional flue gases tested included H{sub 2}O, CO, CO{sub 2}, NO, NO{sub 2}. None of these flue gas constituents showed any observable absorption in the ultraviolet region near the atomic mercury transition. Work was also initiated in speciation studies. In particular mercury chloride (HgCl{sub 2}) was tested. A mercury signal was detected from a gas stream containing HgCl{sub 2}. SRD was not able to determine definitively if there exists a spectral shift great enough to separate HgCl{sub 2} from elemental mercury in these initial tests.

  5. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    PubMed

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  6. Development of laser optogalvanic spectroscopy as a probe of alkali atoms in an MHD environment

    SciTech Connect

    Monts, D.L.; Qian, S.; Cook, R.L.; Shepard, W.S.

    1995-02-01

    Application of Laser Optogalvanic Spectroscopy (LOGS) to MHD combustion systems requires selection of an appropriate alkali atom electronic transition to monitor. These studies suggest that in MHD combustion systems, it is desirable to use cesium, which occurs as an impurity in potassium compounds, as a surrogate for potassium rather than to directly monitor potassium in order to obtain reliable determinations of seed concentration. Studies were also performed to investigate the effect of electrode corrosion on the normalized LOGS signal intensity at a fixed wavelength (578.238 nm). During six-hour experiments in a near-stoichiometric flame, the normalized LOGS signal intensity decreased by 40-50% for a -960 V rod electrode and by 10-20% for a -500 V rod electrode. These changes are attributed to buildup of an oxide coating on the electrode, reducing the collection efficiency of the electrode.

  7. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy.

    PubMed

    Bevilaqua, D; Diéz-Perez, I; Fugivara, C S; Sanz, F; Benedetti, A V; Garcia, O

    2004-08-01

    The microbiological leaching of chalcopyrite (CuFeS(2)) is of great interest because of its potential application to many CuFeS(2)-rich ore materials. However, the efficiency of the microbiological process is very limited because this mineral is one of the most refractory to bacterial attack. Knowledge of bacterial role during chalcopyrite oxidation is very important in order to improve the efficiency of bioleaching operation. The oxidative dissolution of a massive chalcopyrite electrode by Acidithiobacillus ferrooxidans was evaluated by electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). A massive chalcopyrite electrode was utilized in a Tait-type electrochemical cell in acid medium for different immersion times in the presence or absence of bacterium. The differences observed in the impedance diagrams were correlated with the adhesion process of bacteria on the mineral surface. PMID:15219250

  8. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  9. Scanning tunneling spectroscopy of lead sulfide quantum wells fabricated by atomic layer deposition.

    PubMed

    Lee, Wonyoung; Dasgupta, Neil P; Jung, Hee Joon; Lee, Jung-Rok; Sinclair, Robert; Prinz, Fritz B

    2010-12-01

    We report the use of scanning tunneling spectroscopy (STS) to investigate one-dimensional quantum confinement effects in lead sulfide (PbS) thin films. Specifically, quantum confinement effects on the band gap of PbS quantum wells were explored by controlling the PbS film thickness and potential barrier height. PbS quantum well structures with a thickness range of 1-20 nm were fabricated by atomic layer deposition (ALD). Two barrier materials were selected based on barrier height: aluminum oxide as a high barrier material and zinc oxide as a low barrier material. Band gap measurements were carried out by STS, and an effective mass theory was developed to compare the experimental results. Our results show that the band gap of PbS thin films increased as the film thickness decreased, and the barrier height increased from 0.45 to 2.19 eV.

  10. Isotope shift in erbium I by laser-atomic-beam spectroscopy

    NASA Astrophysics Data System (ADS)

    Okamura, H.; Matsuki, S.

    1987-04-01

    High-resolution laser spectroscopy has been performed on an atomic beam of natural erbium isotopes. The isotope shift in the 582.7 nm transitions [4f126s2( 3H6)-->4f12( 3H6)66( 3P01)J=7] for the pairs of 162,164,166,167,168,170Er I was obtained with an accuracy of about 4 MHz. Relative changes of mean-square nuclear charge radii δ for these isotopes were thus deduced. The isotope shift in 167Er, obtained from the well-resolved hyperfine components, shows similar even-odd staggering effect in δ found in the nearby elements.

  11. QED, Nuclear Size, and the Cosmos: Applications of High Precision Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gillaspy, John

    2013-04-01

    I will survey some recent results from the Atomic Spectroscopy Group at NIST, focusing on topics that are most relevant to this Meeting, including evidence for a discrepancy between experiment and calculation based on three-body quantum electrodynamics (QED) [PRL, 109, 153001 (2012)], testing a method for determining nuclear sizes at the sub-attometer scale [PRL, 107, 023001 (2011)], and determining x-ray line ratios for astrophysical plasma diagnostics [ApJ, 728, 132 (2011)]. A common theme underlying these studies is to establish a basis for understanding discrepancies between prior results from various groups. This work was done in collaboration with S. Brewer, N. Brickhouse, R. Brown, C. Chantler, G.-X. Chen, A. Henins, L. Hudson, J. Kimpton, M. Kinnane, J. Laming, T. Lin, K. Makonyi, A. Payne, J. Pomeroy, J. Porto, C. Sansonetti, E. Silver, C. Simien, L. Smale, E. Takacs, J. Tan, L. Tedesco, and S. Wu.

  12. Compact solid-state laser source for 1S-2S spectroscopy in atomic hydrogen

    SciTech Connect

    Kolachevsky, N.; Alnis, J.; Bergeson, S. D.; Haensch, T. W.

    2006-02-15

    We demonstrate a compact solid-state laser source for high-resolution two-photon spectroscopy of the 1S-2S transition in atomic hydrogen. The source emits up to 20 mW at 243 nm and consists of a 972 nm diode laser, a tapered amplifier, and two doubling stages. The diode laser is actively stabilized to a high-finesse cavity. We compare the new source to the stable 486 nm dye laser used in previous experiments and record 1S-2S spectra using both systems. With the solid-state laser system, we demonstrate a resolution of the hydrogen spectrometer of 6x10{sup 11}, which is promising for a number of high-precision measurements in hydrogenlike systems.

  13. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    SciTech Connect

    Arp, U.; LeBrun, T.; Southworth, S.H.; Jung, M.; MacDonald, M.A.

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  14. Determination of cadmium, copper, and lead in sodium chloride food salts by flame atomic absorption spectroscopy.

    PubMed

    Alvarez De Eulate, M J; Montoro, R; Ybañez, N; De La Guardia, M

    1986-01-01

    A method for determination of Cd, Cu, and Pb in sodium chloride food salt samples has been developed. It consists of extraction in 4-methyl-2-pentanone of the complexes formed with ammonium pyrrolidine dithiocarbamate and further analysis of the extracts by flame atomic absorption spectroscopy. Detection limits in ng/g salt were 0.2 for Cd, 0.7 for Cu, and 10.0 for Pb. The coefficients of variation of 12 independent analyses were 13% for Cd (at a level of 0.4 ppb), 18% for Cu (1.6 ppb), and 5% for Pb (40 ppb). The recoveries were 100 +/- 0% for Cd, 115 +/- 14% for Cu, and 100 +/- 13% for Pb. PMID:3771460

  15. Determination of scandium in sea-water by atomic-absorption spectroscopy.

    PubMed

    Chau, Y K; Wong, P Y

    1968-08-01

    A method for the determination of scandium in sea-water at the sub-microgram level has been developed. Scandium is coprecipitated with iron(III) hydroxide at pH 8-9, and then separated from the iron by ion-exchange. The final concentration is achieved by extracting the scandium into a solution of oxine in butanol. A nitrous oxide-acetylene flame is used for the determination by atomic-absorption spectroscopy. Recoveries of 99-100% are obtained. The storage of the solutions before analysis has been investigated by radiometric techniques with (46)Sc. The scandium concentration in surface waters of the South China Sea was found to be 0.01 +/- 0.005 microg/l .

  16. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers.

    PubMed

    Cook, D J; Schlemmer, S; Balucani, N; Wagner, D R; Harrison, J A; Steiner, B; Saykally, R J

    1998-02-26

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  17. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  18. Time-resolved spectroscopy of spin-current emission from a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Tateno, Yuma; Fukami, Masaya; Tashiro, Takaharu; Ando, Kazuya

    2016-05-01

    We demonstrate time-resolved spectroscopy of spin-current emission from a magnetic insulator using the inverse spin Hall effect (ISHE). We measured magnetic field dependence of the spin-current emission in the time domain and found that the spectral shape of the ISHE voltage changes with time. The change in the spectral shape is due to field and power dependent temporal oscillation of the spin pumping driven by parametric magnons. The observed oscillating spin-current emission driven by dipole-exchange magnons is well reproduced by a model calculation based on the S theory. In contrast, the spin-current emission driven by short-wavelength exchange magnons cannot be reproduced with this model, illustrating an important role of higher-order nonlinear effects in the spin-current emission.

  19. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.

    PubMed

    Wang, Zilong; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-09-01

    We demonstrate Raman spectroscopy on a high index thin film tantalum pentoxide waveguide and compare collection of Raman emission from the waveguide end with that from the waveguide surface. Toluene was used as a convenient model analyte, and a 40-fold greater signal was collected from the waveguide end. Simulations of angular and spatial Raman emission distributions showed good agreement with experiments, with the enhancement resulting from efficient collection of power from dipoles near the surface into the high-index waveguide film and substrate, combined with long interaction length. The waveguide employed was optimized at the excitation wavelength but not at emission wavelengths, and full optimization is expected to lead to enhancements comparable to surface-enhanced Raman spectroscopy in robust low-cost metal-free and nanostructure-free chips.

  20. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy.

    PubMed

    Wang, Zilong; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-09-01

    We demonstrate Raman spectroscopy on a high index thin film tantalum pentoxide waveguide and compare collection of Raman emission from the waveguide end with that from the waveguide surface. Toluene was used as a convenient model analyte, and a 40-fold greater signal was collected from the waveguide end. Simulations of angular and spatial Raman emission distributions showed good agreement with experiments, with the enhancement resulting from efficient collection of power from dipoles near the surface into the high-index waveguide film and substrate, combined with long interaction length. The waveguide employed was optimized at the excitation wavelength but not at emission wavelengths, and full optimization is expected to lead to enhancements comparable to surface-enhanced Raman spectroscopy in robust low-cost metal-free and nanostructure-free chips. PMID:27607994

  1. Noninvasive, real-time measurements of plasma parameters via optical emission spectroscopy

    SciTech Connect

    Wang Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.; Radovanov, Svetlana; Persing, Harold

    2013-03-15

    Plasma process control applications require acquisition of diagnostic data at a rate faster than the characteristic timescale of perturbations to the plasma. Diagnostics based on optical emission spectroscopy of intense emission lines permit rapid noninvasive measurements with low-resolution ({approx}1 nm), fiber-coupled spectrographs, which are included on many plasma process tools for semiconductor processing. Here the authors report on rapid analysis of Ar emissions with such a system to obtain electron temperatures, electron densities, and metastable densities in argon and argon/mixed-gas (Ar/N{sub 2}, Ar/O{sub 2}, Ar/H{sub 2}) inductively coupled plasmas. Accuracy of the results (compared to measurements made by Langmuir probe and white-light absorption spectroscopy) are typically better than {+-}15% with a time resolution of 0.1 s, which is more than sufficient to capture the transient behavior of many processes, limited only by the time response of the spectrograph used.

  2. Predicting Reactor Antineutrino Emissions Using New Precision Beta Spectroscopy

    SciTech Connect

    Asner, David M.; Burns, Kimberly A.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wootan, David W.

    2013-05-01

    Neutrino experiments at nuclear reactors are currently vital to the study of neutrino oscillations. The observed antineutrino rates at reactors are typically lower than model expectations. This observed deficit is called the “reactor neutrino anomaly”. A new understanding of neutrino physics may be required to explain this deficit, though model estimation uncertainties may also play a role in the apparent discrepancy. PNNL is currently investigating an experimental technique that promises reduced uncertainties for measured data to support these hypotheses and interpret reactor antineutrino measurements. The experimental approach is to 1) direct a proton accelerator beam on a metal target to produce a source of neutrons, 2) use spectral tailoring to modify the neutron spectrum to closely simulate the energy distribution of a power reactor neutron spectrum, 3) irradiate isotopic fission foils (235U, 238U, 239Pu, 241Pu) in this neutron spectrum so that fissions occur at energies representative of a reactor, 4) transport the beta particles released by the fission products in the foils to a beta spectrometer, 5) measure the beta energy spectrum, and 6) invert the measured beta energy spectrum to an antineutrino energy spectrum. A similar technique using a beta spectrometer and isotopic fission foils was pioneered in the 1980’s at the ILL thermal reactor. Those measurements have been the basis for interpreting all subsequent antineutrino measurements at reactors. A basic constraint in efforts to reduce uncertainties in predicting the antineutrino emission from reactor cores is any underlying limitation of the original measurements. This may include beta spectrum energy resolution, the absolute normalization of beta emission to number of fission, statistical counting uncertainties, lack of 238U data, the purely thermal nature of the IIL reactor neutrons used, etc. An accelerator-based neutron source that can be tailored to match various reactor neutron spectra

  3. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter

    2003-09-30

    The work performed during this quarter by SRD scientists and engineers focused on a number of tasks. The initial acquisition of some hardware needed and the actual construction of the sampling system have begun. This sampling system will contain the pyrolysis oven to atomize the sample gas stream needed for total gaseous mercury measurements, the CRD cavity to acquire the ring-down signal needed to obtain the mercury concentration, various tubing, and temperature and pressure measurement equipment. The amount of tubing and valves have been cut to a minimum to try and reduce the resident time the sample flue gas stream is in the sampling system and minimize the possibility that the gases in the sample gas stream will react with the elements of the sampling system and change the component mixture contained in the flue gas. In an effort to minimize the equipment that needs to be close to the actual sampling port, SRD scientists decided to fiber optically couple the laser to the CRD cavity. However, the ultra-violet (UV) light needed for the mercury transition presents a problem as fiber optics can be solarized by the UV radiation thereby changing the transmission characteristics. SRD has obtained a solarization-resistant fiber. SRD scientists were then able to couple the UV laser light into the fiber and inject the output of the fiber into the CRD cavity and obtain a ring-down signal. Long-term effects of the UV radiation on the fiber optic are being monitored to detect any change in the transmission of the laser light to the cavity. Additional requirements of the mercury CRD monitor will be to not only monitor the mercury concentration continuously but also perform the measurements over extended periods of time. SRD has extended some previously performed shorter-term studies to longer time intervals. The results of these initial long-term studies are very promising.

  4. Model for atomic oxygen visible line emissions in Comet C/1995 O1 Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil

    2013-03-01

    We have recently developed a coupled chemistry-emission model for the green (5577 Å) and red-doublet (6300, 6364 Å) emissions of atomic oxygen on Comet C/1996 B2 Hyakutake. In the present work we applied our model to Comet C/1995 O1 Hale-Bopp, which had an order of magnitude higher H2O production rate than Comet Hyakutake, to evaluate the photochemistry associated with the production and loss of O(1S) and O(1D) atoms and emission processes of green and red-doublet lines. We present the wavelength-dependent photo-attenuation rates for different photodissociation processes forming O(1S) and O(1D). The calculated radiative efficiency profiles of O(1S) and O(1D) atoms show that in Comet Hale-Bopp the green and red-doublet emissions are emitted mostly above radial distances of 103 and 104 km, respectively. The model calculated [OI] 6300 Å emission surface brightness and average intensity over the Fabry-Pérot spectrometer field of view are consistent with the observation of Morgenthaler et al. (Morgenthaler, J.P. et al. [2001]. Astrophys. J. 563, 451-461), while the intensity ratio of green to red-doublet emission is in agreement with the observation of Zhang et al. (Zhang, H.W., Zhao, G., Hu, J.Y. [2001]. Astron. Astophys. 367 (3), 1049-1055). In Comet Hale-Bopp, for cometocentric distances less than 105 km, the intensity of [OI] 6300 Å line is mainly governed by photodissociation of H2O. Beyond 105 km, O(1D) production is dominated by photodissociation of the water photochemical daughter product OH. Whereas the [OI] 5577 Å emission line is controlled by photodissociation of both H2O and CO2. The calculated mean excess energy in various photodissociation processes show that the photodissociation of CO2 can produce O(1S) atoms with higher excess velocity compared to the photodissociation of H2O. Thus, our model calculations suggest that involvement of multiple sources in the formation of O(1S) could be a reason for the larger width of green line than that of red

  5. Atomic-Scale Spectroscopy of Gated Monolayer MoS2.

    PubMed

    Zhou, Xiaodong; Kang, Kibum; Xie, Saien; Dadgar, Ali; Monahan, Nicholas R; Zhu, X-Y; Park, Jiwoong; Pasupathy, Abhay N

    2016-05-11

    The electronic properties of semiconducting monolayer transition-metal dichalcogenides can be tuned by electrostatic gate potentials. Here we report gate-tunable imaging and spectroscopy of monolayer MoS2 by atomic-resolution scanning tunneling microscopy/spectroscopy (STM/STS). Our measurements are performed on large-area samples grown by metal-organic chemical vapor deposition (MOCVD) techniques on a silicon oxide substrate. Topographic measurements of defect density indicate a sample quality comparable to single-crystal MoS2. From gate voltage dependent spectroscopic measurements, we determine that in-gap states exist in or near the MoS2 film at a density of 1.3 × 10(12) eV(-1) cm(-2). By combining the single-particle band gap measured by STS with optical measurements, we estimate an exciton binding energy of 230 meV on this substrate, in qualitative agreement with numerical simulation. Grain boundaries are observed in these polycrystalline samples, which are seen to not have strong electronic signatures in STM imaging. PMID:27064662

  6. High-resolution atomic force microscopy and spectroscopy of native membrane proteins

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Muller, Daniel J.

    2011-08-01

    Membranes confining cells and cellular compartments are essential for life. Membrane proteins are molecular machines that equip cell membranes with highly sophisticated functionality. Examples of such functions are signaling, ion pumping, energy conversion, molecular transport, specific ligand binding, cell adhesion and protein trafficking. However, it is not well understood how most membrane proteins work and how the living cell regulates their function. We review how atomic force microscopy (AFM) can be applied for structural and functional investigations of native membrane proteins. High-resolution time-lapse AFM imaging records membrane proteins at work, their oligomeric state and their dynamic assembly. The AFM stylus resembles a multifunctional toolbox that allows the measurement of several chemical and physical parameters at the nanoscale. In the single-molecule force spectroscopy (SMFS) mode, AFM quantifies and localizes interactions in membrane proteins that stabilize their folding and modulate their functional state. Dynamic SMFS discloses fascinating insights into the free energy landscape of membrane proteins. Single-cell force spectroscopy quantifies the interactions of live cells with their environment to single-receptor resolution. In the future, technological progress in AFM-based approaches will enable us to study the physical nature of biological interactions in more detail and decipher how cells control basic processes.

  7. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.

    PubMed

    Jin, Albert J; Lafer, Eileen M; Peng, Jennifer Q; Smith, Paul D; Nossal, Ralph

    2013-03-01

    Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate.

  8. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    SciTech Connect

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  9. Atomic-scale roughness of Li metal surface evident in soft X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prendergast, David; Wan, Liwen; Liang, Yufeng; Chuang, Yi-De; Qiao, Ruimin; Yan, Shishen; Yang, Wanli

    2015-03-01

    Realizing Li metal electrodes depends on fundamental understanding and efficient control of surface properties, which requires reliable characterization of the Li metal surface. Controlled experiments of Li K-edge soft X-ray absorption spectroscopy (XAS) reveal evidence of steady oxidation of the Li metal surface even under ultrahigh vacuum (UHV) conditions. The XAS of the short-lived Li metal surface, prepared by in-situ scratching, exhibits a prominent peak at 55.6 eV, more intense and at a slightly higher energy than the first peak expected for bulk Li metal at 55 eV. First-principles XAS calculations explain the origin of both the increased intensity and energy shift. This required the use of surface structural models with under-coordinated Li atoms and an estimated 4 Åinelastic mean-free-path for Auger electrons, implying extreme surface sensitivity of the measurements to the first 2-3 atomic layers. This work provides a benchmark on both experiment and theory for further studies of Li and other reactive metal surfaces, which are currently under scrutiny for next-generation energy storage devices. DP, LW, and YL acknowledge support from the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Dept. of Energy, Office of Science, Basic Energy Sciences.

  10. Microplasmas as vacuum ultraviolet source for Cl-atom density measurements by resonance absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Virginie; Bauville, Gérard; Sadeghi, Nader; Puech, Vincent

    2011-11-01

    A micro-hollow cathode discharge was used to generate radiation on the chlorine atom resonance lines. Such radiation could be used to measure, by resonance absorption spectroscopy, the density of chlorine atoms in either ground state (3p5 2P3/2) or in the fine structure metastable state (3p5 2P1/2), which is located at 882.35 cm-1. Among the nine analysed lines in the 132-142 nm spectral region, only those at 137.953 and 139.653 nm, which are strong enough and are not affected by the self-absorption, can be used for the resonance absorption diagnostic of the ground state and the metastable state, respectively. The best operating conditions of the lamp source are 0.5% of Cl2 in argon at 150 mbar and 4 mA discharge current. The measured 800 ± 30 K gas temperature of the microplasma, indicates that under these specific conditions, these two lines are dominantly Doppler broadened. So their profile is Gaussian shaped with full widths at half maximum of (4.7 ± 0.1) × 10-4 nm.

  11. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: initial test with elemental Hg.

    PubMed

    Sahay, Peeyush; Scherrer, Susan T; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p (3)P(0) in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 10(9) (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 10(6) (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (<50 ppm) and higher concentration ranges (>50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p (3)P(0) is achieved to be 2.24 parts per 10(12) (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min(-1); the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the

  12. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    SciTech Connect

    Sahay, Peeyush; Scherrer, Susan T.; Wang Chuji

    2012-09-15

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p {sup 3}P{sub 0} in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 10{sup 9} (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 10{sup 6} (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (<50 ppm) and higher concentration ranges (>50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p {sup 3}P{sub 0} is achieved to be 2.24 parts per 10{sup 12} (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min{sup -1}; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements

  13. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  14. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    SciTech Connect

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  15. Identification of microcrystalline rocks using thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Rogers, D.; Glotch, T. D.; Arnold, J. A.

    2015-12-01

    High-silica deposits on Mars have been discovered from orbit (Holden Crater, Mawrth Vallis) and from landed surface missions to both Gusev Crater (Spirit) and Gale Crater (Curiosity). The character of these silica deposits can be used to understand both the depositional environment (i.e. fumarole vs. sinter) and/or diagenetic process. Initial work has shown that, in the case of opaline silica, there are differences in spectral shape that may be related to surface textural features imparted during formation or post-depositional alteration. Due to the increasing importance of understanding microcrystalline deposits on Mars, here, we study the effects of crystal size and surface roughness on thermal infrared emission spectra of micro- and macro-crystalline quartz. The spectra of chert and macro-crystalline quartz have significant differences in both spectral contrast, and in the rounded doublet between ~1000-1250 cm-1, which can shift and appear less rounded in microcrystalline samples. We find that microcrystalline minerals exhibit naturally rough surfaces compared to their macrocrystalline counterparts at the 10 micron scale; and that this roughness causes distinct spectral differences within the Reststrahlen bands. We find that surface roughness, if rough on the scale of the wavelengths where the wavelength-dependent absorption coefficient (k) is large, can cause not only decreased spectral contrast, but also substantial changes in spectral shape. The spectral shape differences are small enough that the composition of the material is still recognizable, but large enough such that a roughness effect could be detected. We find that my studying the thermal infrared spectral character of the sample, it may be possible to make general inferences about microcrystallinity, and thus aid in the potential reconstruction of sedimentary rock diagenesis.

  16. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC

    NASA Astrophysics Data System (ADS)

    Endres, Christian P.; Schlemmer, Stephan; Schilke, Peter; Stutzki, Jürgen; Müller, Holger S. P.

    2016-09-01

    The Cologne Database for Molecular Spectroscopy, CDMS, was founded 1998 to provide in its catalog section line lists of mostly molecular species which are or may be observed in various astronomical sources (usually) by radio astronomical means. The line lists contain transition frequencies with qualified accuracies, intensities, quantum numbers, as well as further auxiliary information. They have been generated from critically evaluated experimental line lists, mostly from laboratory experiments, employing established Hamiltonian models. Separate entries exist for different isotopic species and usually also for different vibrational states. As of December 2015, the number of entries is 792. They are available online as ascii tables with additional files documenting information on the entries. The Virtual Atomic and Molecular Data Centre, VAMDC, was founded more than 5 years ago as a common platform for atomic and molecular data. This platform facilitates exchange not only between spectroscopic databases related to astrophysics or astrochemistry, but also with collisional and kinetic databases. A dedicated infrastructure was developed to provide a common data format in the various databases enabling queries to a large variety of databases on atomic and molecular data at once. For CDMS, the incorporation in VAMDC was combined with several modifications on the generation of CDMS catalog entries. Here we introduce related changes to the data structure and the data content in the CDMS. The new data scheme allows us to incorporate all previous data entries but in addition allows us also to include entries based on new theoretical descriptions. Moreover, the CDMS entries have been transferred into a mySQL database format. These developments within the VAMDC framework have in part been driven by the needs of the astronomical community to be able to deal efficiently with large data sets obtained with the Herschel Space Telescope or, more recently, with the Atacama Large

  17. Interlayer Potassium And Its Neighboring Atoms in Micas: Crystal-Chemical Modeling And Xanes Spectroscopy

    SciTech Connect

    Brigatti, M.F.; Malferrari, D.; Poppi, M.; Mottana, A.; Cibin, G.; Marcelli, A.; Cinque, G.

    2009-05-12

    A detailed description of the interlayer site in trioctahedral true micas is presented based on a statistical appraisal of crystal-chemical, structural, and spectroscopic data determined on two sets of trioctahedral micas extensively studied by both X-ray diffraction refinement on single crystals (SC-XRD) and X-ray absorption fine spectroscopy (XAFS) at the potassium K-edge. Spectroscopy was carried out on both random powders and oriented cleavage flakes, the latter setting taking advantage of the polarized character of synchrotron radiation. Such an approach (AXANES) is shown to be complementary to crystal-chemical investigation based on SC-XRD refinement. However, the results are not definitive as they focus on few samples having extreme features only (e.g., end-members, unusual compositions, and samples with extreme and well-identified substitution mechanisms). The experimental absorption K-edge (XANES) for potassium was decomposed by calculation and extrapolated into a full in-plane absorption component ({sigma}{parallel}) and a full out-of-plane absorption component ({sigma}{perpendicular}). These two patterns reflect different structural features: {sigma}{parallel}represents the arrangement of the atoms located in the mica interlayer space and facing tetrahedral sheets; {sigma}{perpendicular} is associated with multiple-scattering interactions entering deep into the mica structure, thus also reflecting interactions with the heavy atoms (essentially Fe) located in the octahedral sheet. The out-of-plane patterns also provide insights into the electronic properties of the octahedral cations, such as their oxidation states (e.g., Fe{sup 2+} and Fe{sup 3+}) and their ordering (e.g., trans- vs. cis-setting). It is also possible to distinguish between F- and OH-rich micas due to peculiar absorption features originating from the F vs. OH occupancy of the O4 octahedral site. Thus, combining crystal-chemical, structural, and spectroscopic information is shown to be a

  18. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  19. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter

    2004-03-31

    The construction of the sampling system was completed during the past quarter. The sampling system has been built on a 3 feet x 4 feet x 2 inch breadboard table. The laser system, all the associated optics, and the mounts and hardware needed to couple the UV light into the fiber optic have also been condensed and placed on an identical 3 feet x 4 feet x 2 inch breadboard table. This reduces the footprint of each system for ease of operation at a field test facility. The two systems are only connected with a fiber optic, to bring the UV light to the CRD cavity, and a single coaxial cable used to apply a voltage to the diode seed laser to scan the frequency over the desired mercury transition. SRD software engineers applied a couple of software fixes to correct the problems of the diode seed laser drifting or mode hopping. Upon successful completion of the software fixes another long-term test was conducted. A nearly 3 day long, 24 hours/day, test was run to test out the new subroutines. Everything appeared to work as it should and the mercury concentrations were accurately reported for the entire test, with the exception of a small interval of time when the intensity of the UV light dropped low enough that the program was no longer triggering properly. After adjusting the power of the laser the program returned to proper operation. With the successful completion of a relatively long test SRD software engineer incorporated the new subroutine into an entirely new program. This program operates the CRD instrument automatically as a continuous emissions monitor for mercury. In addition the program also reports the concentration of SO{sub 2} determined in the sample flue gas stream. Various functions, operation of, and a description of the new program have been included with this report. This report concludes the technical work associated with Phase II of the Cavity Ring-Down project for the continuous detection of trace levels of mercury. The project is presently

  20. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2003-06-30

    Previous work on the detection of mercury using the cavity ring-down (CRD) technique has concentrated on the detection and characterization of the desired mercury transition. Interferent species present in flue gas emissions have been tested as well as a simulated flue gas stream. Additionally, work has been done on different mercury species such as the elemental and oxidized forms. The next phase of the effort deals with the actual sampling system. This sampling system will be responsible for acquiring a sample stream from the flue gas stack, taking it to the CRD cavity where it will be analyzed and returning the gas stream to the stack. In the process of transporting the sample gas stream every effort must be taken to minimize any losses of mercury to the walls of the sampling system as well as maintaining the mercury in its specific state (i.e. elemental, oxidized, or other mercury compounds). SRD first evaluated a number of commercially available sampling systems. These systems ranged from a complete sampling system to a number of individual components for specific tasks. SRD engineers used some commercially available components and designed a sampling system suited to the needs of the CRD instrument. This included components such as a pyrolysis oven to convert all forms of mercury to elemental mercury, a calibration air source to ensure mirror alignment and quality of the mirror surfaces, and a pumping system to maintain the CRD cavity pressure from atmospheric pressure (760 torr) down to about 50 torr. SRD also began evaluating methods for the CRD instrument to automatically find the center of a mercury transition. This procedure is necessary as the instrument must periodically measure the baseline losses of the cavity off of the mercury resonance and then return to the center of the transition to accurately measure the mercury concentration. This procedure is somewhat complicated due to the isotopic structure of the 254 nm mercury transition. As a result of

  1. Stratospheric Trace Gas Distributions from Far Infrared Thermal Emission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Guo, Jing

    1987-09-01

    An inversion algorithm has been developed to retrieve stratospheric trace gas distributions from high resolution far infrared limb thermal emission spectral data. The algorithm follows an onion peel approach and employs a non-linear least-square-fit spectral analysis technique. The infrared radiative transfer model used to compute the spectrum is based on full line-by-line and layer-by-layer calculations and includes curvature and refraction effects. Finite instrument field of view effects have been studied. An inversion algorithm has also been developed to correct observation angles. The spectral measurements were made in the Balloon Intercomparison Campaign (BIC), October, 1982, using a Fourier transform spectrometer. The observed spectra have an unapodized spectral resolution of 0.0033 cm ^{-1}, and cover the spectral region between 20-100 cm^{-1}. Spectral data for selected limb sequences have been calibrated. The instrument line shape function has been empirically determined. The observation angles of the spectra have been corrected from spectral lines of O_2 in the 23 -84 cm^{-1} region to have an accuracy within 4 arc minutes. The vertical profiles of O_3, H_2O, HDO, HCN, ^ {16}O^{16}O ^{18}O, and ^ {16}O^{18}O ^{16}O in the stratosphere have been retrieved with an altitude resolution of about 4-5 km in the 20-37 km range. The results are compared with available measurements in literature. The vertical profiles of O_3, H_2 O, and HDO are retrieved from spectral lines in the 20-100 cm^{-1} region. The variation of the D/H ratio of water vapor is derived. The vertical profile of HCN is retrieved from spectral lines in the 32-56 cm^{-1} region. The volume mixing ratio of HCN is found to be 139 pptv at 20 km, 127 pptv at 25 km, and increasing to 172 pptv at 37 km. The vertical profiles of stratospheric ^ {16}O^{16}O ^{18}O and ^ {16}O^{18}O ^{16}O are retrieved from spectral lines in the 39-76 cm^{-1 } region. The ratio of total heavy isotopic ozone ^{50}O_3 to

  2. Europa - Ultraviolet emissions and the possibility of atomic oxygen and hydrogen clouds

    NASA Technical Reports Server (NTRS)

    Wu, F.-M.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    Emission signals from Europa with wavelength below 800 A were detected by the Pioneer 10 ultraviolet photometer. In the present paper, improved procedures for data reduction are used to determine the spatial region as well as the intensity of the suggested emission sources. The observations indicate a cloud with a radius of about 1.5 Jupiter radii and an apparent brightness of approximately 10 rayleighs for a wavelength of 500 A. It is argued that neutral oxygen atoms, along with neutral hydrogen, are produced through dissociation of water ice on the surface of Europa by particle impact. Electron impact ionization excitation of oxygen atoms in the resulting cloud then gives rise to the observed emission. The present source brightness and cloud radius results are used to estimate an oxygen column density of the order of 10 trillion per sq cm, while the density of atomic hydrogen is at most 100 billion per sq cm and 1 trillion per sq cm for molecular hydrogen.

  3. Cooperative spontaneous emission from indistinguishable atoms in arbitrary motional quantum states

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-09-01

    We investigate superradiance and subradiance of indistinguishable atoms with quantized motional states, starting with an initial total state that factorizes over the internal and external degrees of freedom of the atoms. Due to the permutational symmetry of the motional state, the cooperative spontaneous emission, governed by a recently derived master equation [F. Damanet et al., Phys. Rev. A 93, 022124 (2016), 10.1103/PhysRevA.93.022124], depends only on two decay rates γ and γ0 and a single parameter Δdd describing the dipole-dipole shifts. We solve the dynamics exactly for N =2 atoms, numerically for up to 30 atoms, and obtain the large-N limit by a mean-field approach. We find that there is a critical difference γ0-γ that depends on N beyond which superradiance is lost. We show that exact nontrivial dark states (i.e., states other than the ground state with vanishing spontaneous emission) only exist for γ =γ0 and that those states (dark when γ =γ0 ) are subradiant when γ <γ0 .

  4. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments.

    PubMed

    Nevin, Austin; Echard, Jean-Philippe; Thoury, Mathieu; Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo

    2009-11-15

    The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.

  5. Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma

    SciTech Connect

    Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor

    2015-12-19

    An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderate resolution Czerny–Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.

  6. Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma

    DOE PAGES

    Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor

    2015-12-19

    An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderate resolution Czerny–Turnermore » spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.« less

  7. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  8. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  9. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  10. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  11. Coupling atom probe tomography and photoluminescence spectroscopy: exploratory results and perspectives.

    PubMed

    Rigutti, Lorenzo; Vella, Angela; Vurpillot, François; Gaillard, Aurore; Sevelin-Radiguet, Nicolas; Houard, Jonathan; Hideur, Ammar; Martel, Gilles; Jacopin, Gwénolé; De Luna Bugallo, Andrés; Deconihout, Bernard

    2013-09-01

    The development of laser-assisted atom probes makes it possible, in principle, to exploit the femtosecond laser pulse not only for triggering ion evaporation from a nanometric field emission tip, but also for generating photons via the radiative recombination of electron-hole pairs in tips made of dielectric materials. In this article we demonstrate a first step towards a correlation of micro-photoluminescence (μ-PL) and laser-assisted tomographic atom probe (LA-TAP) analysis applied separately on the same objects, namely on ZnO microwires. In particular, we assess that the use of the focused ion beam (FIB) tip preparation method significantly degrades the radiative recombination yield of the analyzed microwires. We discuss the strategies to avoid the FIB-induced damage on the optical properties of the sample and how to get beyond the correlated μ-PL and LA-TAP analysis with a coupled approach allowing to perform the two analyses within the same instrument. PMID:23489908

  12. Atomic H and N emissions from High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Kurunczi, P.; Becker, K.

    2000-06-01

    Hollow cathode discharge plasmas in geometries where the aperture in the hollow cathode has a diameter of 0.1 mm or less (microhollow cathode discharges, MHCDs) are efficient sources of ultraviolet (UV) and vacuum ultraviolet (VUV) excimer radiation when operated at high pressures (up to atmospheric pressure). We observed intense, monochromatic H Lyman-alpha and Lyman-beta line emissions at 121.6 nm and 102.5 nm, respectively, from MHCD plasmas in high-pressure Ne with small admixtures (up to 3 Torr) of H2. The underlying processes for the emissions were identified as very efficient near-resonant energy transfer processes between Ne excimers formed in the high pressure discharge plasma and H2 leading to the dissociation of H2 and the formation of H(n=2) and H(n=3) atoms. We have now extended these studies to Ne/N2 mixtures and observed intense, monochromatic atomic N emissions at 113.4 nm and 120.0 nm. Possible mechanisms for the emission of these N lines may involve energy transfer processes between Ne excimers and metastable N2(A) molecules. Further details will be presented at the Conference.

  13. Surface sensitivity of ion-induced Auger electron emission (IAE) spectroscopy

    NASA Astrophysics Data System (ADS)

    Verucchi, R.; Altieri, S.; Valeri, S.

    1995-07-01

    We investigated the electron emission induced by energetic sputter-deposited Si particles during ion beam sputter deposition of Si on Ge substrate. Electron emission is strictly similar to the ion-induced Auger (IAE) Si spectra and originates in SiSi collisions. Monitoring this "IAE-like" Si yield during the Si layer-by-layer growth, we measured the surface sensitivity of particle-induced electron emission for different energies of the involved particles and for different experimental geometries. We found that the depth sampled by IAE spectroscopy critically depends on the experimental parameters. The surface sensitivity of IAE is, in several cases, larger than that of the corresponding, conventional electron-induced Auger electron emission.

  14. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy.

    PubMed

    Chalbot, M-C; Nikolich, G; Etyemezian, V; Dubois, D W; King, J; Shafer, D; Gamboa da Costa, G; Hinton, J F; Kavouras, I G

    2013-10-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking.

  15. [The Emission Spectroscopy of Nitrogen Discharge under Low Voltage at Room Temperature].

    PubMed

    Shen, Li-hua; Yu, Chun-xia; Yan, Bei; Zhang, Cheng-xiao

    2015-03-01

    A set of direct current (DC) discharge device of N2 plasma was developed, carbon nanotubes (CNT) modified ITO electrode was used as anode, aluminum plate as cathode, with -80 μm separation between them. Nitrogen emission spectra was observed at room temperature and low DC voltage (less than 150 V), and the emission spectrometry was used to diagnose the active species of the process of nitrogen discharge. Under DC discharge, the strongest energy band N2 (C3π(u)), the weak Gaydon's Green system N2 (H3 -Φ(u)-G3 Δ(g)) and the emission line of nitrogen atoms (4 p-4 p0) at 820 nm were observed. Found that metastable state of nitrogen molecules were the main factors leading to a series of excited state nitrogen atoms and nitrogen ionization. Compared the emission spectra under DC with that under alternating current (AC) (1.1 kV), and it can be seen that under DC the spectra band of nitrogen atoms can be obviously observed, and there was a molecular band in the range of 500 - 800 nm. The effect of oxygen and hydrogen on the emission spectra of nitrogen was investigated. The results showed that the oxygen inhibited the luminescence intensity of nitrogen, but the shape of spectra unchanged. All of the second positive system, Gaydon's Green system and atomic lines of nitrogen can be observed. The second positive system and Gaydon's Green system of nitrogen will be greatly affected when the volume ratio of nitrogen and hydrogen greatly affected is 1 : 1, which was due to the hydrogen. The hydrogen can depresse nitrogen plasma activation, and make the Gaydon's Green System disappeared. CNT modified ITO electrode can reduce the breakdown voltage, and the optical signal generated by the weakly ionized gas can be observed by the photo-multiplier tube at low voltage of 10 V. PMID:26117899

  16. Investigation of microplasma discharge in sea water for optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Okamura, Yo; Kitamura, Kensuke; Hashimoto, Yusuke; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-07-01

    Microplasma discharge in sea water for optical emission spectroscopy was investigated using a needle-to-plane electrode system. The electrodes of a Pd needle and a Pt plate were placed with a gap of 25 µm in typical artificial sea water or locally sampled natural deep sea water. A pulse current source, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the sea water between the electrodes, was used. The circuit parameters were optimized to decrease the breakdown voltage and the spark duration to suppress erosion of the electrodes. Using a microgap configuration, spark discharges were reproducibly ignited in the highly conductive sea water at low breakdown voltages. The ignition of spark discharges required not only a critical voltage sufficient for breakdown, but also a critical energy for preheating of the sea water, sufficient for bubble formation. The possibility of using optical emission spectroscopy of microplasma in water is shown for identifying elemental composition of sea water.

  17. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  18. Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines.

    PubMed

    Elcoroaristizabal, Saioa; Callejón, Raquel M; Amigo, Jose M; Ocaña-González, Juan A; Morales, M Lourdes; Ubeda, Cristina

    2016-09-01

    Browning in sparkling wines was assessed by the use of excitation-emission fluorescence spectroscopy combined with PARAllel FACtor analysis (PARAFAC). Four different cava sparkling wines were monitored during an accelerated browning process and subsequently storage. Fluorescence changes observed during the accelerated browning process were monitored and compared with other conventional parameters: absorbance at 420nm (A420) and the content of 5-hydroxymethyl-2-furfural (5-HMF). A high similarity of the spectral profiles for all sparkling wines analyzed was observed, being explained by a four component PARAFAC model. A high correlation between the third PARAFAC factor (465/530nm) and the commonly used non-enzymatic browning indicators was observed. The fourth PARAFAC factor (280/380nm) gives us also information about the browning process following a first order kinetic reaction. Hence, excitation-emission fluorescence spectroscopy, together with PARAFAC, provides a faster alternative for browning monitoring to conventional methods, as well as useful key indicators for quality control.

  19. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions

    NASA Astrophysics Data System (ADS)

    Ciocan, A. C.; Mao, X. L.; Borisov, Oleg V.; Russo, R. E.

    1998-03-01

    The amount of ablated mass can influence the temperature and excitation characteristics of the inductively coupled plasma (ICP) and must be taken into account to ensure accurate chemical analysis. The ICP electron number density was investigated by using measurements of the Mg ionic to atomic resonant-line ratios during laser ablation of an aluminum matrix. The ICP excitation temperature was measured by using selected Fe lines during laser ablation of an iron matrix. A Nd:YAG laser (3 ns pulse duration) at 266 nm was used for these ablation-sampling studies. Laser energy, power density, and repetition rate were varied in order to change the quantity of ablated mass into the ICP. Over the range of laser operating conditions studied herein, the ICP was not significantly influenced by the quantity of solid sample. Therefore, analytical measurements can be performed accurately and fundamental studies of laser ablation processes (such as ablation mass roll-off, fractional vaporization) can be investigated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  20. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    SciTech Connect

    Schaefer, Michael E-mail: schlaf@mail.usf.edu; Schlaf, Rudy E-mail: schlaf@mail.usf.edu

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  1. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  2. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS2014)

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo

    2015-04-01

    This volume contains a collection of contributions from the invited speakers at the 2014 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces held in Metz, France, from 15th to 18th July 2014. This biennial conference alternates with the ICPEAC satellite International Symposium on (e,2e), Double Photoionization and Related Topics, and is concerned with experimental and theoretical studies of radiation interactions with matter. These include many-body and electron-electron correlation effects in excitation, and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. More than 80 scientists, from 19 different countries around the world, came together to discuss the most recent progress on these topics. The scientific programme included 28 invited talks and a poster session extending over the three days of the meeting. Amongst the 51 posters, 11 have been selected and were advertised through short talks. Besides, Professor Nora Berrah gave a talk in memory of Professor Uwe Becker who sadly passed away shortly after co-chairing the previous edition of this conference. Financial support from the Institut Jean Barriol, Laboratoire SRSMC, Groupement de Recherche THEMS (CNRS), Ville de Metz, Metz Métropole, Conseil Général de la Moselle and Région Lorraine is gratefully acknowledged. Finally, I would like to thank the members of the local committee and the staff of the Université de Lorraine for making the conference run smoothly, the International Advisory Board for building up the scientific programme, the sessions chairpersons, those who gave their valuable time in carefully refereeing the articles of this volume and last, but not least, all participants for contributing to lively and fruitful discussions throughout the meeting.

  3. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  4. GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B

    SciTech Connect

    Waldmann, I. P.; Tinetti, G.; Drossart, P.; Swain, M. R.; Deroo, P.; Griffith, C. A.

    2012-01-01

    We investigate the K- and L-band dayside emission of the hot-Jupiter HD 189733b with three nights of secondary eclipse data obtained with the SpeX instrument on the NASA Infrared Telescope Facility. The observations for each of these three nights use equivalent instrument settings and the data from one of the nights have previously been reported by Swain et al. We describe an improved data analysis method that, in conjunction with the multi-night data set, allows increased spectral resolution (R {approx} 175) leading to high-confidence identification of spectral features. We confirm the previously reported strong emission at {approx}3.3 {mu}m and, by assuming a 5% vibrational temperature excess for methane, we show that non-LTE emission from the methane {nu}{sub 3} branch is a physically plausible source of this emission. We consider two possible energy sources that could power non-LTE emission and additional modeling is needed to obtain a detailed understanding of the physics of the emission mechanism. The validity of the data analysis method and the presence of strong 3.3 {mu}m emission are independently confirmed by simultaneous, long-slit, L-band spectroscopy of HD 189733b and a comparison star.

  5. ATOMIC AND MOLECULAR PHYSICS: Scaled-energy spectroscopy of a |M| = 1 Rydberg barium atom in an electric field

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Quan, Wei; Shen, Li; Yang, Hai-Feng; Shi, Ting-Yun; Liu, Xiao-Jun; Liu, Hong-Ping; Zhan, Ming-Sheng

    2009-11-01

    We observe strong energy-dependent quantum defects in the scaled-energy Stark spectra for |M| = 1 Rydberg states of barium atoms at three scaled energies: ɛ = -2.000, ɛ = -2.500 and ɛ = -3.000. In an attempt to explain the observations, theoretical calculations of closed orbit theory based on a model potential including core effect are performed for non-hydrogenic atoms. While such a potential has been uniformly successful for alkali atoms with a single valence electron, it fails to match experimental results for barium atoms in the 6snp Rydberg states with two valence electrons. Our study points out that this discrepancy is due to the strong perturbation from the 5d8p state, which voids the simple approximation for constant quantum defects of principle quantum number n.

  6. Low-energy electro- and photo-emission spectroscopy of GaN materials and devices

    SciTech Connect

    Piccardo, Marco; Weisbuch, Claude; Iveland, Justin; Nakamura, Shuji; Speck, James S.; Martinelli, Lucio Peretti, Jacques; Choi, Joo Won

    2015-03-21

    In hot-electron semiconductor devices, carrier transport extends over a wide range of conduction states, which often includes multiple satellite valleys. Electrical measurements can hardly give access to the transport processes over such a wide range without resorting to models and simulations. An alternative experimental approach however exists which is based on low-energy electron spectroscopy and provides, in a number of cases, very direct and selective information on hot-electron transport mechanisms. Recent results obtained in GaN crystals and devices by electron emission spectroscopy are discussed. Using near-band-gap photoemission, the energy position of the first satellite valley in wurtzite GaN is directly determined. By electro-emission spectroscopy, we show that the measurement of the electron spectrum emitted from a GaN p-n junction and InGaN/GaN light-emitting diodes (LEDs) under electrical injection of carriers provides a direct observation of transport processes in these devices. In particular, at high injected current density, high-energy features appear in the electro-emission spectrum of the LEDs showing that Auger electrons are being generated in the active region. These measurements allow us identifying the microscopic mechanism responsible for droop which represents a major hurdle for widespread adoption of solid-state lighting.

  7. First hydrogen operation of NIO1: Characterization of the source plasma by means of an optical emission spectroscopy diagnostic.

    PubMed

    Barbisan, M; Baltador, C; Zaniol, B; Cavenago, M; Fantz, U; Pasqualotto, R; Serianni, G; Vialetto, L; Wünderlich, D

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a compact and flexible radio frequency H(-) ion source, developed by Consorzio RFX and INFN-LNL. The aim of the experimentation on NIO1 is the optimization of both the production of negative ions and their extraction and beam optics. In the initial phase of its commissioning, NIO1 was operated with nitrogen, but now the source is regularly operated also with hydrogen. To evaluate the source performances, an optical emission spectroscopy diagnostic was installed. The system includes a low resolution spectrometer in the spectral range of 300-850 nm and a high resolution (50 pm) one, to study, respectively, the atomic and the molecular emissions in the visible range. The spectroscopic data have been interpreted also by means of a collisional-radiative model developed at IPP Garching. Besides the diagnostic hardware and the data analysis methods, the paper presents the first plasma measurements across a transition to the full H mode, in a hydrogen discharge. The characteristic signatures of this transition in the plasma parameters are described, in particular, the sudden increase of the light emitted from the plasma above a certain power threshold. PMID:26932047

  8. Influence of atomic tip structure on the intensity of inelastic tunneling spectroscopy data analyzed by combined scanning tunneling spectroscopy, force microscopy, and density functional theory

    NASA Astrophysics Data System (ADS)

    Okabayashi, Norio; Gustafsson, Alexander; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J.

    2016-04-01

    Achieving a high intensity in inelastic scanning tunneling spectroscopy (IETS) is important for precise measurements. The intensity of the IETS signal can vary by up to a factor of 3 for various tips without an apparent reason accessible by scanning tunneling microscopy (STM) alone. Here, we show that combining STM and IETS with atomic force microscopy enables carbon monoxide front-atom identification, revealing that high IETS intensities for CO/Cu(111) are obtained for single-atom tips, while the intensity drops sharply for multiatom tips. Adsorption of the CO molecule on a Cu adatom [CO/Cu/Cu(111)] such that the molecule is elevated over the substrate strongly diminishes the tip dependence of IETS intensity, showing that an elevated position channels most of the tunneling current through the CO molecule even for multiatom tips, while a large fraction of the tunneling current bypasses the CO molecule in the case of CO/Cu(111).

  9. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  10. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Oroudjev, E; Soares, J; Arcdiacono, S; Thompson, J B; Fossey, S A; Hansma, H G

    2002-04-30

    Despite its remarkable materials properties, the structure of spider dragline silk has remained unsolved. Results from two probe microscopy techniques provide new insights into the structure of spider dragline silk. A soluble synthetic protein from dragline silk spontaneously forms nanofibers, as observed by atomic force microscopy. These nanofibers have a segmented substructure. The segment length and amino acid sequence are consistent with a slab-like shape for individual silk protein molecules. The height and width of nanofiber segments suggest a stacking pattern of slab-like molecules in each nanofiber segment. This stacking pattern produces nano-crystals in an amorphous matrix, as observed previously by NMR and x-ray diffraction of spider dragline silk. The possible importance of nanofiber formation to native silk production is discussed. Force spectra for single molecules of the silk protein demonstrate that this protein unfolds through a number of rupture events, indicating a modular substructure within single silk protein molecules. A minimal unfolding module size is estimated to be around 14 nm, which corresponds to the extended length of a single repeated module, 38 amino acids long. The structure of this spider silk protein is distinctly different from the structures of other proteins that have been analyzed by single-molecule force spectroscopy, and the force spectra show correspondingly novel features.

  11. Accurate force spectroscopy in tapping mode atomic force microscopy in liquids

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Melcher, John; Raman, Arvind

    2010-01-01

    Existing force spectroscopy methods in tapping mode atomic force microscopy (AFM) such as higher harmonic inversion [M. Stark, R. W. Stark, W. M. Heckl, and R. Guckenberger, Proc. Natl. Acad. Sci. U.S.A. 99, 8473 (2002)] or scanning probe acceleration microscopy [J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, Proc. Natl. Acad. Sci. U.S.A. 103, 4813 (2006)] or integral relations [M. Lee and W. Jhe, Phys. Rev. Lett. 97, 036104 (2006); S. Hu and A. Raman, Nanotechnology 19, 375704 (2008); H. Hölscher, Appl. Phys. Lett. 89, 123109 (2006); A. J. Katan, Nanotechnology 20, 165703 (2009)] require and assume as an observable the tip dynamics in a single eigenmode of the oscillating microcantilever. We demonstrate that this assumption can distort significantly the extracted tip-sample interaction forces when applied to tapping mode AFM with soft cantilevers in liquid environments. This exception is due to the fact that under these conditions the second eigenmode is momentarily excited and the observed tip dynamics clearly contains contributions from the fundamental and second eigenmodes. To alleviate this problem, a simple experimental method is proposed to screen the second eigenmode contributions in the observed tip deflection signal to allow accurate tip-sample force reconstruction in liquids. The method is implemented experimentally to reconstruct interaction forces on polymer, bacteriorhodopsin membrane, and mica samples in buffer solutions.

  12. Cadmium accumulation in the crayfish, Procambarus clarkii, using graphite furnace atomic absorption spectroscopy

    SciTech Connect

    Diaz-Mayans, J.; Hernandez, F.; Medina, J.; Del Ramo, J.; Torreblanca, A.

    1986-11-01

    Lake Albufera and the surrounding rice-field waters are being subject to very heavy loads of sewage and toxic industrial residues (including heavy metals and pesticides) from the many urban and wastewaters in this area. The American red crayfish Procambarus clarkii is native to the Louisiana marshes (USA). In 1978, the crayfish appeared in Lake Albufera near Valencia (Spain), and presently, without adequate sanitary controls, the crayfish is being fished commercially for human consumption. In view of this interest, it is important to have accurate information on concentrations of cadmium in natural waters and cadmium levels of tissues of freshwaters animals used as human food, as well as the accumulation rates of this metal in this animal. In the present study, the authors investigated the accumulation of cadmium in several tissues of the red crayfish, P clarkii (Girard) from Lake Albufera following cadmium exposure. Determinations of cadmium were made by flameless atomic absorption spectroscopy and the standard additions method. Digestion of samples was made by wet ashing in open flasks with concentrated HNO/sub 3/ at 80-90/sup 0/C.

  13. Investigating the mechanical properties of zona pellucida of whole human oocytes by atomic force spectroscopy.

    PubMed

    Andolfi, Laura; Masiero, Elena; Giolo, Elena; Martinelli, Monica; Luppi, Stefania; Dal Zilio, Simone; Delfino, Ines; Bortul, Roberta; Zweyer, Marina; Ricci, Giuseppe; Lazzarino, Marco

    2016-08-01

    The role of mechanics in numerous biological processes is nowadays recognized, while in others, such as the fertilization process, it is still neglected. In the case of oocytes the description of their mechanical properties could improve the comprehension of the oocyte-spermatozoon interaction and be helpful for application in in vitro fertilization (IVF) clinics. Herein the mechanical properties of whole human oocytes (HOs) immediately after retrieval are investigated by indentation measurements with atomic force spectroscopy under physiological conditions. Measurements are performed on immature (metaphase I - MI) and mature (metaphase II - MII) HOs. According to their morphological characteristics MII-HOs are classified as "suitable" and "rejected"; these latter would be usually rejected for intracytoplasmic sperm injection (ICSI). For all maturation stages we observe that the elastic response of the zona pellucida (ZP) outer layer was different and distinguishable from the rest of the ZP-HO. The elasticity of this ZP outer layer varies with maturation and quality: stiffness decreases from immature MI to good quality MII, up to poor-quality rejected MII. An indirect analysis with IVF outcome indicates that the ZP outer layer of analysed HOs donated by women who achieved pregnancy is stiffer than that of HOs from women with negative outcome. Our findings suggest that mechanical properties can represent important oocyte quality indicators that may be exploited for the design of innovative ICSI dedicated cell sorters. PMID:27476747

  14. Measurement of nickel, cobalt and chromium in toy make-up by atomic absorption spectroscopy.

    PubMed

    Corazza, Monica; Baldo, Federica; Pagnoni, Antonella; Miscioscia, Roberta; Virgili, Annarosa

    2009-01-01

    Cosmetics should not contain more than 5 ppm of nickel, chromium or cobalt and, in order to minimize the risk of sensitization in very sensitive subjects, the target amount should be as low as 1 ppm. However, there are no published reports on the presence of these metals in toy make-up. This study analysed 52 toy make-ups using atomic absorption spectroscopy. More than 5 ppm of nickel was present in 14/52 (26.9%) samples. Chromium exceeded 5 ppm in 28/52 (53.8%) samples, with values over 1000 ppm in 3 eye shadows. Cobalt was present in amounts over 5 ppm in 5/52 (9.6%) samples. Powdery toy make-up (eye shadows) had the highest levels of metals, and "creamy" toy make-up (lip gloss and lipsticks) the lowest. Toy make-ups are potentially sensitizing items, especially for atopic children, who have a damaged skin barrier that may favour penetration of allergens.

  15. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum. PMID:27427698

  16. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum.

  17. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    PubMed

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  18. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  19. Valley polarization and coherence in atomically thin tungsten disulfide via optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Bairen; Zeng, Hualing; Dai, Junfeng; Gong, Zhirui; Cui, Xiaodong

    Atomically thin group-VI transition metal dichalcogenides (TMDC) has been emerging as a family of intrinsic 2-dimensional crystals with a sizeable bandgap, opening a potential avenue for ultimate electronics and optoelectronics. Besides, the characteristic structural inversion symmetry breaking in monolayers leads to non-zero but contrasting Berry curvatures and orbital magnetic moments at K/K' valleys. These features provide an opportunity to manipulate electrons' additional internal degrees of freedom, namely the valley degree of freedom, making monolayer TMDC a promising candidate for the conceptual valleytronics. Here, our experimental approach on valley dependent circular dichroism in monolayer and bilayer WS2 via optical spectroscopy are elaborated. Consequently, the polarization of photoluminescence inherits that of excitations, circularly and linearly polarized, confirming the valley dependent selectivity rule. However, the valley polarization and valley coherence in bilayer WS2 owing to the coupling of spin, valley and layer degrees of freedom, are anomalously robust compared with monolayer WS2. We propose potential mechanisms of the anomalous behavior in WS2 bilayers.

  20. Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy.

    PubMed

    Rodriguez, R D; Sheremet, E; Müller, S; Gordan, O D; Villabona, A; Schulze, S; Hietschold, M; Zahn, D R T

    2012-12-01

    There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

  1. Compact metal probes: A solution for atomic force microscopy based tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodriguez, R. D.; Sheremet, E.; Müller, S.; Gordan, O. D.; Villabona, A.; Schulze, S.; Hietschold, M.; Zahn, D. R. T.

    2012-12-01

    There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

  2. Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H- ion sources

    SciTech Connect

    Han, Baoxi; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2014-01-01

    An RF-driven, Cs-enhanced H- ion source feeds the SNS accelerator with a high current (typically >50 mA), ~1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a mean for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN chamber and an external RF antenna are also briefly discussed.

  3. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  4. [Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method].

    PubMed

    He, Ying; Zhang, Yu-jun; You, Kun; Wang, Li-ming; Gao, Yan-wei; Xu, Jin-feng; Gao, Zhi-ling; Ma, Wen-qi

    2016-03-01

    It needs on-line monitoring of ammonia concentration on dairy feedlot to disclose ammonia emissions characteristics accurately for reducing ammonia emissions and improving the ecological environment. The on-line monitoring system for ammonia concentration has been designed based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology combining with long open-path technology, then the study has been carried out with inverse dispersion technique and the system. The ammonia concentration in-situ has been detected and ammonia emission rules have been analyzed on a dairy feedlot in Baoding in autumn and winter of 2013. The monitoring indicated that the peak of ammonia concentration was 6.11 x 10(-6) in autumn, and that was 6.56 x 10(-6) in winter. The concentration results show that the variation of ammonia concentration had an obvious diurnal periodicity, and the general characteristic of diurnal variation was that the concentration was low in the daytime and was high at night. The ammonia emissions characteristic was obtained with inverse dispersion model that the peak of ammonia emissions velocity appeared at noon. The emission velocity was from 1.48 kg/head/hr to 130.6 kg/head/hr in autumn, and it was from 0.004 5 kg/head/hr to 43.32 kg/head/hr in winter which was lower than that in autumn. The results demonstrated ammonia emissions had certain seasonal differences in dairy feedlot scale. In conclusion, the ammonia concentration was detected with optical technology, and the ammonia emissions results were acquired by inverse dispersion model analysis with large range, high sensitivity, quick response without gas sampling. Thus, it's an effective method for ammonia emissions monitoring in dairy feedlot that provides technical support for scientific breeding.

  5. Ozone-stimulated emission due to atomic oxygen population inversions in an argon microwave plasma torch

    SciTech Connect

    Lukina, N. A.; Sergeichev, K. F.

    2008-06-15

    It is shown that, in a microwave torch discharge in an argon jet injected into an oxygen atmosphere at normal pressure, quasi-resonant energy transfer from metastable argon atoms to molecules of oxygen and ozone generated in the torch shell and, then, to oxygen atoms produced via the dissociation of molecular oxygen and ozone leads to the inverse population of metastable levels of atomic oxygen. As a result, the excited atomic oxygen with population inversions becomes a gain medium for lasing at wavelengths of 844.6 and 777.3 nm (the 3{sup 3}P-3{sup 3}S and 3{sup 5}P-3{sup 5}S transitions). It is shown that an increase in the ozone density is accompanied by an increase in both the lasing efficiency at these wavelength and the emission intensity of the plasma-forming argon at a wavelength of 811.15 nm (the {sup 2}P{sup 0}4s-{sup 2}P{sup 0}4p transition). When the torch operates unstably, the production of singlet oxygen suppresses ozone generation; as a result, the lasing effect at these wavelengths disappears.

  6. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination.

    PubMed

    Cai, Yi; Zhang, Ya-Jie; Wu, De-Fu; Yu, Yong-Liang; Wang, Jian-Hua

    2016-04-19

    The low atomization and excitation capability of nonthermal microplasma, e.g., dielectric barrier discharge (DBD), has greatly hampered its potential applications for the determination of metals in solution. In the present work, an inspiring development is reported for direct atomization and excitation of cadmium in aqueous solution by DBD and facilitates highly sensitive determination. A DBD microplasma is generated on the nozzle of a pneumatic micronebulizer to focus the DBD energy on a confined space and atomize/excite metals in the spray. Meanwhile, an appropriate sample matrix and nebulization in helium further improves the atomization and excitation capability of DBD. With cadmium as a model, its emission is recorded by a CCD spectrometer at 228.8 nm. By using an 80 μL sample solution nebulized at 3 μL s(-1), a linear range of 5-1000 μg L(-1) along with a detection limit of 1.5 μg L(-1) is achieved, which is comparable to those obtained by commercial bulky inductively coupled plasma (ICP)-based instrumentations. PMID:27030025

  7. The use of a hairpin resonator probe and emission spectroscopy to determine instabilities during silicon etching

    NASA Astrophysics Data System (ADS)

    Kavanagh, David; Morshed, Mohammed; Daniels, Stephen

    2008-10-01

    The hairpin resonator probe is a diagnostic method which determines electron density. The probe was placed in a capacitively coupled plasma SF6 plasma during the etching of silicon and the steady state electron density determined. Due to the absence of substrate cooling, the temperature increase in the chamber as the etch process progressed begins to heat and damage the photoresist. As a result the photoresist begins to desorb and outgas, releasing organic polymers into the discharge. These effluents react with the bulk plasma chemistry and have the effect of reducing the electron density measured by the probe. Optical emission spectroscopy was also used to monitor emissions from the plasma. Emissions from non process gasses were also observed as a result of the photoresist heating. These results allow for the consideration of the hairpin resonator probe as a diagnostic for plasma process monitoring

  8. United States Environmental Protection Agency Fourier transform infrared spectroscopy test program for emissions measurement

    SciTech Connect

    Lay, L.T.

    1994-12-31

    The US Environmental Protection Agency (EPA) published amendments to the Clean Air Act (CAA) November 15, 1990. Title 3 of the CAA amendments included a list of 189 hazardous air pollutants (HAPs) for which emission test procedures must be established. An extractive emission test method, using Fourier Transform Infrared (FTIR) spectroscopy, is being developed for measuring HAP compounds. The FTIR procedure has the potential to detect over 100 of the listed compounds plus additional compounds such as criteria pollutants. This procedure has the ability to detect multiple compounds simultaneously and will provide near real-time data. Since the development of the extractive FTIR procedure, many source categories have been screened for HAP emissions using this technique. Modifications to the procedure have been made and validation testing has been performed. Currently, this technique is being used to collect data for maximum achievable control technology (MACT) standard development.

  9. A study of carbonates, sulfates, and phosphates using thermal emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Wenrich, M. L.; Christensen, P. R.

    1993-01-01

    Thermal emission spectroscopy is useful for identifying mineralogies including carbonates, sulfates, and phosphates. Each of these groups of minerals has a distinct emissivity profile that allows for general identification (e.g., carbonate). Laboratory data are being collected that suggest the potential for determining specific composition of these minerals (e.g., calcite, magnesite). Previous studies of Mars suggest that the above groups of minerals should be present. On Mars fine-grained mineralogies are likely to be intimately mixed due to aeolian activity. Mixtures of calcite with palagonite will be studied to determine the volume percent requirement for salt identification and to understand the complexities of fine-grained mixtures observed by thermal emission. Further work with mixtures will include sulfate and phosphate mineralogies.

  10. Deconvolution-based correction of alkali beam emission spectroscopy density profile measurements

    SciTech Connect

    Pusztai, I.; Pokol, G.; Refy, D.; Por, G.; Dunai, D.; Anda, G.; Zoletnik, S.; Schweinzer, J.

    2009-08-15

    A deconvolution-based correction method of the beam emission spectroscopy (BES) density profile measurement is demonstrated by its application to simulated measurements of the COMPASS and TEXTOR tokamaks. If the line of sight is far from tangential to the flux surfaces, and the beam width is comparable to the scale length on which the light profile varies, the observation may cause an undesired smoothing of the light profile, resulting in a non-negligible underestimation of the calculated density profile. This effect can be reduced significantly by the emission reconstruction method, which gives an estimate of the emissivity along the beam axis from the measured light profile, taking the finite beam width and the properties of the measurement into account in terms of the transfer function of the observation. Characteristics and magnitude of the mentioned systematic error and its reduction by the introduced method are studied by means of the comprehensive alkali BES simulation code RENATE.

  11. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    SciTech Connect

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J.

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  12. Spectroscopy of optically selected BL Lac objects and their γ-ray emission

    SciTech Connect

    Sandrinelli, A.; Treves, A.; Farina, E. P.; Landoni, M.; Falomo, R.; Foschini, L.; Sbarufatti, B.

    2013-12-01

    We present Very Large Telescope optical spectroscopy of nine BL Lac objects of unknown redshift belonging to the list of optically selected radio-loud BL Lac candidates. We explore their spectroscopic properties and possible link with gamma-ray emission. From the new observations we determine the redshifts of four objects from faint emission lines or from absorption features of their host galaxies. In three cases we find narrow intervening absorptions from which a lower limit to the redshift is inferred. For the remaining two featureless sources, lower limits to the redshift are deduced from the absence of spectral lines. A search for γ counterpart emission shows that six out of the nine candidates are Fermi γ-ray emitters and we find two new detections. Our analysis suggests that most of the BL Lac objects still lacking redshift information are most likely located at high redshifts.

  13. CHIANTI-AN ATOMIC DATABASE FOR EMISSION LINES. XII. VERSION 7 OF THE DATABASE

    SciTech Connect

    Landi, E.; Del Zanna, G.; Mason, H. E.; Young, P. R.; Dere, K. P.

    2012-01-10

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, and ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7 has been released, which includes several new ions, significant updates to existing ions, as well as Chianti-Py, the implementation of CHIANTI software in the Python programming language. All data and programs are freely available at http://www.chiantidatabase.org, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

  14. Interactions of protons with furan molecules studied by collision-induced emission spectroscopy at the incident energy range of 50-1000 eV

    NASA Astrophysics Data System (ADS)

    Wasowicz, Tomasz J.; Pranszke, Boguslaw

    2016-08-01

    Investigations of the ion-molecule reactions provide insight into many fields ranging from the stellar wind interaction with interstellar media, up to medicine and industrial applications. Besides the applications, the understanding of these processes is itself a problem of fundamental importance. Thus, interactions of protons with the gas-phase furan molecules have been investigated for the first time in the energy range of 50-1000 eV exploiting collision-induced emission spectroscopy. Recorded spectra reveal emission of the atomic H β to H θ lines of the hydrogen Balmer series and the molecular bands of vibrationally and rotationally excited diatomic CH fragments created in the A2 Δ and B2Σ- electronic states. The measurements of the emission yields of the excited fragments by recording their intensities at different projectile energies have been performed. The highest yields have been observed for production of hydrogen atoms which intensities rapidly decreased with increasing principal quantum number n . From the H ( n = 4-7) intensity ratios depopulation factors of hydrogen excited states have been determined at each impact energy and possible collisional mechanisms leading to enhanced production of the hydrogen atoms have been suggested. We compare and discuss our results with improved data set of proton collisions with tetrahydrofuran (THF) molecules, the hydrogenated derivatives of furan.

  15. Interactions of protons with furan molecules studied by collision-induced emission spectroscopy at the incident energy range of 50-1000 eV

    NASA Astrophysics Data System (ADS)

    Wasowicz, Tomasz J.; Pranszke, Boguslaw

    2016-08-01

    Investigations of the ion-molecule reactions provide insight into many fields ranging from the stellar wind interaction with interstellar media, up to medicine and industrial applications. Besides the applications, the understanding of these processes is itself a problem of fundamental importance. Thus, interactions of protons with the gas-phase furan molecules have been investigated for the first time in the energy range of 50-1000 eV exploiting collision-induced emission spectroscopy. Recorded spectra reveal emission of the atomic Hβ to Hθ lines of the hydrogen Balmer series and the molecular bands of vibrationally and rotationally excited diatomic CH fragments created in the A2Δ and B2Σ- electronic states. The measurements of the emission yields of the excited fragments by recording their intensities at different projectile energies have been performed. The highest yields have been observed for production of hydrogen atoms which intensities rapidly decreased with increasing principal quantum number n. From the H (n = 4-7) intensity ratios depopulation factors of hydrogen excited states have been determined at each impact energy and possible collisional mechanisms leading to enhanced production of the hydrogen atoms have been suggested. We compare and discuss our results with improved data set of proton collisions with tetrahydrofuran (THF) molecules, the hydrogenated derivatives of furan. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  16. Transition of correlated-electron emission in nonsequential double ionization of Ar atoms.

    PubMed

    Zhang, Zilong; Zhang, Jingtao; Bai, Lihua; Wang, Xu

    2015-03-23

    Emission of the two electrons released from nonsequential double ionization of argon atoms is anticorrelated at lower laser intensities but is correlated at higher laser intensities. Such a transition is caused by the momentum change of recollision-induced-ionization (RII) electrons. At lower laser intensities, the Coulomb repulsion between the two RII electrons dominates the motion of electrons and pushes them leaving the laser field back-to-back. At higher laser intensities, the drift momentum obtained from the laser field dominates the motion of electrons and drives them leaving the laser field side-by-side.

  17. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry.

    PubMed

    López-Artíguez, M; Cameán, A; Repetto, M

    1993-01-01

    This paper describes a method for the determination of heavy metals (Co, Ni, Cu, Cd, Pb) in urine by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method proposed requires purification of the samples with activated charcoal under acidic conditions before preconcentration by complexation with ammonium pyrrolidinedithiocarbamate (APDC). The formed complexes are extracted with methyl isobutyl ketone (MIBK) and the resulting residue is finally digested under acid oxidant conditions. Because of its low detection limit (below 10 micrograms/L), this procedure can be applied conveniently for toxicological diagnostic purposes. PMID:8429621

  18. Photochemistry of atomic oxygen green and red-doublet emissions in comets at larger heliocentric distances

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil

    2014-06-01

    Context. In comets, the atomic oxygen green (5577 Å) to red-doublet (6300, 6364 Å) emission intensity ratio (G/R ratio) of 0.1 has been used to confirm H2O as the parent species producing forbidden oxygen emission lines. The larger (>0.1) value of G/R ratio observed in a few comets is ascribed to the presence of higher CO2 and CO relative abundances in the cometary coma. Aims: We aim to study the effect of CO2 and CO relative abundances on the observed G/R ratio in comets observed at large (>2 au) heliocentric distances by accounting for important production and loss processes of O(1S) and O(1D) atoms in the cometary coma. Methods: Recently we have developed a coupled chemistry-emission model to study photochemistry of O(1S) and O(1D) atoms and the production of green and red-doublet emissions in comets Hyakutake and Hale-Bopp. In the present work we applied the model to six comets where green and red-doublet emissions are observed when they are beyond 2 au from the Sun. Results: The collisional quenching of O(1S) and O(1D) can alter the G/R ratio more significantly than that due to change in the relative abundances of CO2 and CO. In a water-dominated cometary coma and with significant (>10%) CO2 relative abundance, photodissociation of H2O mainly governs the red-doublet emission, whereas CO2 controls the green line emission. If a comet has equal composition of CO2 and H2O, then ~50% of red-doublet emission intensity is controlled by the photodissociation of CO2. The role of CO photodissociation is insignificant in producing both green and red-doublet emission lines and consequently in determining the G/R ratio. Involvement of multiple production sources in the O(1S) formation may be the reason for the observed higher green line width than that of red lines. The G/R ratio values and green and red-doublet line widths calculated by the model are consistent with the observation. Conclusions: Our model calculations suggest that in low gas production rate comets the G

  19. Energetic Neutral Atom Emissions From Venus: VEX Observations and Theoretical Modeling

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.

    2007-01-01

    Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.

  20. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Variation of the emission characteristics of an atom located near an ideally conducting conical surface

    NASA Astrophysics Data System (ADS)

    Klimov, Vasilii V.; Perventsev, Ya A.

    1999-10-01

    The line width and the emission frequency of an atom located near the vertex of an ideally conducting cone or inside a conical cavity in an ideal conductor are analysed. It is shown that the influence of the vertex diminishes with decrease in the vertex angle. On the other hand, the line width and the emission frequency of an atom located in a conical cavity may both increase and decrease greatly, depending on the position of the atom and on the vertex angle of the cavity. The results obtained may prove useful in the development of both monatomic microlasers and spectrally selective near-field nanoscopes.

  1. Characterization of aging in organic materials on atomic-, meso- and macro-length scales by {sup 13}C NMR spectroscopy

    SciTech Connect

    Assink, R.A.; Jamison, G.M.; Alam, T.M.; Gillen, K.T.

    1997-10-01

    A fundamental understanding of aging in an organic material requires that one understand how aging affects the chemical structure of a material, and how these chemical changes are related to the material`s macroscopic properties. This level of understanding is usually achieved by examining the material on a variety of length scales ranging from atomic to meso-scale to macroscopic. The authors are developing and applying several {sup 13}C nuclear magnetic resonance (NMR) spectroscopy experiments to characterize the aging process of organic materials over a broad range of length scales. Examples of studies which range from atomic to macroscopic will be presented.

  2. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  3. Terahertz spectroscopy of low-dimensional nanomaterials: nonlinear emission and ultrafast electrodynamics

    NASA Astrophysics Data System (ADS)

    Luo, Liang; Wang, Jigang

    2015-08-01

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emitters using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?

  4. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE PAGES

    Luo, Liang; Wang, Jigang

    2016-01-01

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  5. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    SciTech Connect

    Luo, Liang; Wang, Jigang

    2016-01-01

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emitters using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?

  6. Hybrid Modeling of Hydrogen Energetic Neutral Atoms from Mars: Emission from Subsolar Magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Kallio, Esa; Barabash, Stas; Futaana, Yoshifumi

    2015-04-01

    We simulated the hydrogen energetic neutral atom (ENA) emission from the subsolar magnetosheath of Mars using a hybrid scheme in order to reproduce multiple features of the statistical features obtained from statistical observations of the Neutral Particle Detectors on the Mars Express spacecraft. We track the charge exchange reaction between the ions produced by the hybrid plasma model under a Martian neutral exosphere model. The simulation exhibits a directional emission of hydrogen ENAs from dayside magnetosheath. Particularly, the stronger ENA emission in the opposite direction of the solar wind convection electric field is reproduced, being consistent with the observations, by a corresponding asymmetry in the proton flux at the lower magnetosheath. This proton flux asymmetry is caused by the mass loading of ionospheric heavy ions in the direction of the convection electric field. We also investigate the influences of the upstream solar wind dynamic pressure. We demonstrate that higher dynamic pressure causes stronger and more anisotropic ENA emission, besides the influence of the proton flux. This dependence suggests that the induced magnetic boundary is lower during higher dynamic pressure, where the sheath protons can access to a denser exosphere and thus the charge exchange rate is higher.

  7. Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Harrison Thliveris, Stephanie

    1993-01-01

    Thermal infrared spectroscopy has become an increasingly important tool for remote compositional analysis and geologic mapping. Most published laboratory measurements have been obtained in bidirectional reflection or transmission, whereas remotely sensed thermal infrared data are obtained by measuring the emitted energy. Section 2 of this paper describes a laboratory technique for determining calibrated emissivities of natural surfaces. Equations are developed to account for the energy reflected from the environment and to determine directly the sample temperature from measurements of hot and cold blackbody targets. Two methods for determining emissivity are developed: one in which only a hot sample measurement is made and the reflected background energy is removed by modeling, and a second in which the sample is cooled and the reflected energy is measured directly. Relative emissivity can be obtained to approximately 1% and absolute emissivities can be obtained to 2-15%, depending on the validity of the assumption that the emissivity of the sample is unity at some wavelength. The emission data agree well within the hemispherically integrated reflection data but point out probelms associated with bidirectional reflectance measurements. Section 3 applies emissivity measurements to the study of layered surfaces consisting of desert varnish coatings on granite and granodiorite rock suites. Two linear models are developed: the first assumes linear mixing of independent emission from the substrate and varnish (checkerboard model); the second models tansmission through an absorbing/emitting medium. Regardless of whether the varnish is or is not relatively transparant and strongly absorptive, the spectral effect of varnish increases linearly with varnish thickness, indicating that thick patches of varnish dominate the spectral properties. As a result, medium varnish thickness can be determined from spectral measurements. In addition, the composition of a substrate can be

  8. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  9. Trace rare gases optical emission spectroscopy: nonintrusive method for measuring electron temperatures in low-pressure, low-temperature plasmas.

    PubMed

    Malyshev, M V; Donnelly, V M

    1999-11-01

    Trace rare gases optical emission spectroscopy (TRG-OES) is a new, nonintrusive method for determining electron temperatures (T(e)) and, under some conditions, estimating electron densities (n(e)) in low-temperature, low-pressure plasmas. The method is based on a comparison of atomic emission intensities from trace amounts of rare gases (an equimixture of He, Ne, Ar, Kr, and Xe) added to the plasma, with intensities calculated from a model. For Maxwellian electron energy distribution functions (EEDFs), T(e) is determined from the best fit of theory to the experimental measurements. For non-Maxwellian EEDFs, T(e) derived from the best fit describes the high-energy tail of the EEDF. This method was reported previously, and was further developed and successfully applied to several laboratory and commercial plasma reactors. It has also been used in investigations of correlations between high-T(e) and plasma-induced damage to thin gate oxide layers. In this paper, we provide a refined mechanism for the method and include a detailed description of the generation of emission from the Paschen 2p manifold of rare gases both from the ground state and through metastable states, a theoretical model to calculate the number density of metastables (n(m)) of the rare gases, a practical procedure to compute T(e) from the ratios of experimental-to-theoretical intensity ratios, a way to determine the electron density (n(e)), a discussion of the range of sensitivity of TRG-OES to the EEDF, and an estimate of the accuracy of T(e). The values of T(e) obtained by TRG-OES in a transformer-coupled plasma reactor are compared with those obtained with a Langmuir probe for a wide range of pressures and powers. The differences in T(e) from the two methods are explained in terms of the EEDF dependence on pressure.

  10. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires.

    PubMed

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco; Casari, Carlo S

    2015-01-01

    Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single-triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  11. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  12. Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response

    SciTech Connect

    Miccio, Luis A. Colmenero, Juan; Kummali, Mohammed M.; Alegría, Ángel; Schwartz, Gustavo A.

    2014-05-14

    The use of an atomic force microscope for studying molecular dynamics through dielectric spectroscopy with spatial resolution in the nanometer scale is a recently developed approach. However, difficulties in the quantitative connection of the obtained data and the material dielectric properties, namely, frequency dependent dielectric permittivity, have limited its application. In this work, we develop a simple electrical model based on physically meaningful parameters to connect the atomic force microscopy (AFM) based dielectric spectroscopy experimental results with the material dielectric properties. We have tested the accuracy of the model and analyzed the relevance of the forces arising from the electrical interaction with the AFM probe cantilever. In this way, by using this model, it is now possible to obtain quantitative information of the local dielectric material properties in a broad frequency range. Furthermore, it is also possible to determine the experimental setup providing the best sensitivity in the detected signal.

  13. Correlation of plasma characteristics to etch rate and via sidewall angle in a deep reactive ion etch system using Langmuir probe and optical emission spectroscopy

    SciTech Connect

    Koirala, S. P.; Awaah, I.; Burkett, S. L.; Gordon, M. H.

    2011-01-15

    A Langmuir probe and optical emission spectroscopy were used in a deep reactive ion etch system to correlate plasma parameters (atomic fluorine and argon emission, electron density, ion density, and electron average energy) with the etch rate and via sidewall angle. All data were obtained for coil powers ranging from 200 to 800 W, platen powers ranging from 7 to 16 W, and pressure ranging from 3.8 to 62 mTorr with constant SF{sub 6} and Ar flow rates of 112 and 18 SCCM (SCCM denotes cubic centimeter per minute at STP), respectively. Results indicate that there is a correlation with etch rate for all plasma parameters except for argon emission. For argon emission, the etch rate exhibits a double-valued relation where the etch rate can either increase or decrease with increasing argon emission intensity due to changes in pressure which affect the energy coupling efficiency. As expected, the etch rate increases for measured increases in fluorine emission, electron density, and ion density. The etch rate, however, decreases with increasing average electron energy due to collision processes. In contrast, no correlation is observed between any of the measured plasma parameters with sidewall angle. The last result is consistent with the idea that sidewall angle is primarily controlled by the passivation cycle as opposed to the etching cycle, where all the authors' data were obtained.

  14. Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Verreycken, T.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2012-08-01

    In this contribution, nanosecond pulsed discharges in N2 and N2/0.9% H2O at atmospheric pressure (at 300 K) are studied with time-resolved imaging, optical emission spectroscopy and Rayleigh scattering. A 170 ns high-voltage pulse is applied across two pin-shaped electrodes at a frequency of 1 kHz. The discharge consists of three phases: an ignition phase, a spark phase and a recombination phase. During the ignition phase the emission is mainly caused by molecular nitrogen (N2(C-B)). In the spark and recombination phase mainly atomic nitrogen emission is observed. The emission when H2O is added is very similar, except the small contribution of Hα and the intensity of the molecular N2(C-B) emission is less. The gas temperature during the ignition phase is about 350 K, during the discharge the gas temperature increases and is 1 µs after ignition equal to 750 K. The electron density is obtained by the broadening of the N emission line at 746 nm and, if water is added, the Hα line. The electron density reaches densities up to 4 × 1024 m-3. Addition of water has no significant influence on the gas temperature and electron density. The diagnostics used in this study are described in detail and the validity of different techniques is compared with previously reported results of other groups.

  15. Synthesis, structure, and emission spectroscopy of luminescent Pt(COD)(dithiolate) complexes

    SciTech Connect

    Bevilacqua, J.M.; Zuleta, J.A.; Eisenberg, R.

    1993-08-18

    The synthesis, characterization, X-ray structure determination and emission spectroscopy of two Pt(COD)(S-S) complexes are reported where COD = 1,5-cycloctadiene (COD) and S-S is maleonitriledithiolate (mnt) for complex 1 and 1-(ethoxycarbonyl)-1-cyanoethylene-2,2-dithiolate (ecda) for complex 2. Both complexes are isolated in high yield from the reaction of Pt(COD)Cl{sub 2} and the corresponding dianionic dithiolate salt. Orange crystals of 1 (C{sub 12}H{sub 12}N{sub 2}PtS{sub 2}) are monoclinic, space group P2{sub 1}/n (No. 14). Each complex possess a square planar structure with chelating diolefin and dithiolate ligands. Proton NMR spectroscopy shows that the solid-state structures are maintained in solution. The complexes are luminescent at low temperature in the solid state and in frozen glasses. In the solid state at 77 K, Pt(COD)(mnt) exhibits a highly structured emission ({lambda}{sub max} = 560 nm, 17.9 kcm{sup {minus}1}) with a vibronic progression of {approximately}1400 cm{sup {minus}1}, whereas for Pt(COD)(ecda), the emission is broad and featureless ({lambda}{sub max} = 525 nm, 19.0 kcm{sup {minus}1}). The emissive state for both complexes is assigned as a metal-to-dithiolate charge transfer with differences in the structure and energy of the emissions resulting from differences in the {pi}*{sub dithiolate} orbital of the mnt and ecda ligands.

  16. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  17. Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy

    PubMed Central

    Ambrosetti, Elena; Scoles, Giacinto; Casalis, Loredana

    2016-01-01

    Summary Background: DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. Results: We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. Conclusion: We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in

  18. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    PubMed

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  19. Laser-induced Fluorescence and Optical Emission Spectroscopy for the Determination of Reactive Species in the Effluent of Atmospheric Pressure Low Temperature Plasma Jets

    NASA Astrophysics Data System (ADS)

    Pei, Xuekai; Razavi, Hamid; Lu, Xinpei; Laroussi, Mounir

    2014-10-01

    OH radicals and O atoms are important active species in various applications of room temperature atmospheric pressure plasma jet (RT-APPJ). So the determination of absolute density of OH radicals and O atoms in RT-APPJs is necessary. In this work, the time and spatially resolved OH radicals density of a RT-APPJ are measured using the laser-induced fluorescence (LIF) technology. In addition, the spatial distribution of the emitting species along the axial direction of the jet is of interest and is measured using optical emission spectroscopy. The absolute OH density of the RT-APPJ is about 2.0 × 1013 cm-3 at 5 mm away from the plasma jet nozzle and 1 μs after the discharge. The OH density reaches a maximum when H2O concentration in helium gas flow is about 130ppm. In order to control the OH density, the effect of voltage polarity, applied voltage magnitude, pulse frequency, pulse width on the OH density are also investigated and discussed. O atoms are investigated by TA-LIF. It is demonstrated that the O atoms density reaches a maximum when O2 percent is about 0.3% in pure He and the lifetime of O atoms in RT-APPJ is much longer (up to dozens of ms) than OH radicals.

  20. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  1. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces

    NASA Astrophysics Data System (ADS)

    Dowek, Danielle; Bennani, Azzedine; Lablanquie, Pascal; Maquet, Alfred

    2008-12-01

    The 2008 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces was held in Paris from 30 June to 2 July 2008. This biennial conference alternates with the International Symposium on (e,2e), Double Photoionization and Related Topics which is a satellite of the International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) conference. Over 110 participants from 20 countries gathered to examine the latest developments in the field of radiation interactions with matter. These include electron-electron correlation effects in excitation and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. The present proceedings gathers the contributions of invited speakers and is intended to provide a detailed state-of-the-art account of the various facets of the field. Special thanks are due to Université Paris Sud XI, CNRS, and the laboratories LCAM, LIXAM and LCPMR which provided financial support for the organization of the conference. We are also grateful to the contribution of the companies Varian and RoentDek Handels GmbH. Guest Editors: Danielle Dowek and Azzedine Bennani LCAM, Université Paris Sud XI, France Pascal Lablanquie and Alfred Maquet LCPMR, Université Pierre et Marie Curie, Paris, France INTERNATIONAL SCIENTIFIC COMMITTEE Lorenzo Avaldi, (Italy) Alexei Grum Grzhimailo, (Russia) Klaus Bartschat, (USA) Nikolai Kabachnik, (Russia) Jamal Berakdar, (Germany) Birgit Lohmann, (Australia) Nora Berrah, (USA) Don H Madison, (USA) Michael Brunger, (Australia) Francis Penent, (France) Albert Crowe, (UK) Bernard Piraux, (Belgium) Claude Dal Cappello, (France) Roberto Rivarola, (Argentina) JingKang Deng, (China) Emma Sokkel, (Ireland) Alexander Dorn, (Germany) Giovanni Stefani, (Italy) Reinhardt Dorner, (Germany) Noboru Watanabe, (Japan) François Frémont, (France) LOCAL ORGANIZING COMMITTEE Azzedine BENNANI (Chair

  2. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, nutrition, and biomedicine. Emphasis is being placed on: (1) generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; (2) computer modelings of ICP discharges to predict the behavior of new and existing plasmas; (3) diagnostic studies of high temperature plasmas and sample introduction systems to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; (4) development and characterization of new, low cost sample introduction systems that consume microliter or microgram quantities of samples; and (5) investigation of new membrane separators for stripping solvent from sample aerosol to reduce various interferences and to enhance sensitivity and selectivity in plasma spectrometry.

  3. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  4. Excitation–emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    NASA Astrophysics Data System (ADS)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation–emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann–Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 – 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  5. Excitation-emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    NASA Astrophysics Data System (ADS)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  6. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  7. OROCHI experiment: Laser spectroscopy of RI atoms in superfluid helium for measurements of nuclear spins and electromagnetic moments

    NASA Astrophysics Data System (ADS)

    Furukawa, Takeshi

    2014-09-01

    We have been developing a new laser spectroscopy technique named as OROCHI (Optical RI-atom Observation in Condensed Helium as Ion-catcher) for measurements of nuclear spins and electromagnetic moments of low yield exotic radioisotopes (RIs). In this technique, we use superfluid helium (He II) liquid as a stopping material of RI beam in which in-situ laser spectroscopy of the RI atoms stopped in He II is carried out. The characteristic features of He II, i.e. high trapping efficiency of He II liquid for accelerated ion beams and the characteristics of atomic spectra in He II, enables us to measure the nuclear spins and moments of the extremely low yield RIs. So far, we have demonstrated the feasibility of our method to deduce the nuclear spins and moments with stable Rb, Cs, Ag and Au isotopes supplied into He II by laser sputtering technique. In addition, we have also succeeded in observing laser-radiowave/microwave double resonance signals of 84-87Rb atoms injected into He II as energetic ion beam. In these on-line experiment, the 84-87Rb isotope beams (intensity: up to 105 particles/s) were provided with RIPS beamline in RIKEN, and introduced into He II filled in a cryostat. Special care was taken in controlling the stopping position of injected Rb isotopes. Aluminum energy degraders of varied thickness from 0 to 0.8 mm were placed upstream of the beam injection window of the He II cryostat for optimizing the stopping position The 84-87Rb atoms stopped and then neutralized in He II were optically pumped and polarized with circularly polarized pumping laser light whose wavelength were tuned to 780 nm, D1 absorption line of Rb atoms in He II. The polarized atoms were subjected to irradiation of radiowave or microwave, and then we demonstrated the double resonance spectroscopy for observing the Zeeman transition of 84-87Rb atoms and the hyperfine transition of 87Rb, respectively In this presentation we will show the details of OROCHI technique and the present

  8. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.

    PubMed

    Taichenachev, A V; Yudin, V I; Oates, C W; Hoyt, C W; Barber, Z W; Hollberg, L

    2006-03-01

    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method--a single clock laser combined with a dc magnetic field--relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline-earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10(-17) for the metrologically preferred even isotopes.

  9. Determination of atomic hydrogen in hydrocarbons by means of the reflected electron energy loss spectroscopy and the X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanas'ev, V. P.; Gryazev, A. S.; Efremenko, D. S.; Kaplya, P. S.; Ridzel, O. Y.

    2016-09-01

    Elastic peaks electron spectroscopy (EPES) is a perspective tool for measuring the hydrogen atomic density in hydrocarbons. It is known that hydrogen elastic peaks overlap inelastic energy loss spectra. This fact complicates the quantitative interpretation of EPES spectra. In this paper, a novel technique based on the joint use of EPES and X-ray photoelectron spectroscopy (PES) is proposed. A key part of the method is the inelastic scattering background subtraction which is performed in two steps. At the first step, differential inelastic scattering cross-sections are retrieved from PES spectra, while at the second step, the retrieved cross-sections are used to remove the inelastic scattering signal from EPES spectra. Both REELS and PES spectra are described on the base of the invariant imbedding method forming a consistent framework for the surface state analysis. A good agreement is obtained between calculated spectra and experimental data.

  10. Grating spectrometer system for beam emission spectroscopy diagnostics using high-energy negative-ion-based neutral beam injection on LHD.

    PubMed

    Kado, S; Oishi, T; Yoshinuma, M; Ida, K

    2010-10-01

    A beam emission spectroscopy (BES) system was developed for density gradient and fluctuation diagnostics in the Large Helical Device (LHD). In order to cover the large Doppler shift of the Hα beam emission because of the high-energy negative-ion-based neutral beam atom (acceleration voltage V(acc)=90-170 kV) and the large motional Stark splitting due to the large v×B field (magnetic field B=3.0 T), a grating spectrometer was used instead of a conventional interference filter system. The reciprocal linear dispersion is about 2 nm/mm, which is sufficient to cover the motional Stark effect spectra using an optical fiber with a diameter of 1 mm.

  11. Luminescence spectroscopy of matrix-isolated atomic manganese: site size and orbital occupancy dependence of crystal field splitting.

    PubMed

    Collier, Martin A; Byrne, Owen; Murray, Ciaran; McCaffrey, John G

    2010-04-28

    Narrow linewidth emission features observed in the near-UV following y (6)P state excitation of atomic manganese isolated in the solid rare gases are assigned to b (4)D and a (4)P states. These states arise from the 3d(5)4s(2) electronic configuration, identical to that of the (6)S ground state, and the origin of the narrow linewidths. Two thermally stable sites, labeled blue and red on the basis of their position in absorption spectra, are occupied by atomic Mn in Ar and Kr while a single site is present in Xe. The red site produces a single, narrow line emission for the b (4)D state at 329 nm. In contrast, a lineshape analysis of the complex blue site b (4)D state emission between 331 and 332 nm reveals the occurrence of three zero phonon lines (ZPLs). Millisecond emission decay curves recorded for these features are found to be complex, requiring double and triple exponential fit functions. The origins of the complex decays and multiple ZPLs are shown to arise from weak crystal field splitting (CFS) of the J=7/2 spin-orbit level of the b (4)D state of atomic Mn isolated in the blue site of the solid rare gases. Fields of cubic symmetry are capable of inducing splitting for J>3/2 so atoms isolated in both single vacancy and tetravacancy sites in the fcc lattices of the solid rare gases are prone to this effect. b (4)D state emission is also produced following y (6)P excitation for Mn atoms occupying the red sites in Ar and Kr. However, Mn atoms isolated in the larger tetravacancy sites have small matrix shifts and do not exhibit any CFS. The magnitudes of the weak CF splittings are shown to depend on both the excited state electronic configurations 3d(5)4s(2) b (4)D and 3d(6)4s(1) a (4)D states and the size of the matrix site occupied by atomic Mn.

  12. Excitation-emission matrices (EEMs) and synchronous fluorescence spectroscopy (SFS) investigations of gastrointestinal tissues

    NASA Astrophysics Data System (ADS)

    Genova, Ts.; Borisova, E.; Zhelyazkova, Al.; Semyachkina-Glushkovskaya, O.; Penkov, N.; Keremedchiev, M.; Vladimirov, B.; Avramov, L.

    2015-01-01

    In this report we will present our recent investigations of the fluorescence properties of lower part gastrointestinal tissues using excitation-emission matrix and synchronous fluorescence spectroscopy measurement modalities. The spectral peculiarities observed will be discussed and the endogenous sources of the fluorescence signal will be addressed. For these fluorescence spectroscopy measurements the FluoroLog 3 system (HORIBA Jobin Yvon, France) was used. It consists of a Xe lamp (300 W, 200-650 nm), a double mono-chromators, and a PMT detector with a work region at 220- 850 nm. Autofluorescence signals were detected in the form of excitation-emission matrices for the samples of normal mucosa, dysphasia and colon carcinoma and specific spectral features for each tissue were found. Autofluorescence signals from the same samples are observed through synchronous fluorescence spectroscopy, which is a novel promising modality for fluorescence spectroscopy measurements of bio-samples. It is one of the most powerful techniques for multicomponent analysis, because of its sensitivity. In the SFS regime, the fluorescence signal is recorded while both excitation λexc and emission wavelengths λem are simultaneously scanned. A constant wavelength interval is maintained between the λexc and λem wavelengths throughout the spectrum. The resulted fluorescence spectrum shows narrower peak widths, in comparison with EEMs, which are easier for identification and minimizes the chance for false determinations or pretermission of specific spectral feature. This modality is also faster, than EEMs, a much smaller number of data points are required.1 In our measurements we use constant wavelength interval Δλ in the region of 10-200 nm. Measurements are carried out in the terms of finding Δλ, which results in a spectrum with most specific spectral features for comparison with spectral characteristics observed in EEMs. Implementing synchronous fluorescence spectroscopy in optical

  13. Application of 57Co emission Mössbauer spectroscopy to studying biocomplexes in frozen solutions

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Kulikov, L. A.; Perfiliev, Yu. D.; Antonyuk, L. P.; Kuzmann, E.; Vértes, A.

    2005-09-01

    Emission Mössbauer spectroscopy with the 57Co isotope was used to study very dilute rapidly frozen aqueous solutions of cobalt(II) complexes with low-molecular-weight biomolecules (aromatic amino acids anthranilic acid and L-tryptophan) and within a sophisticated biopolymer, bacterial glutamine synthetase, a key enzyme of nitrogen metabolism. The appearance of after-effects of the 57Co→57Fe nuclear transformation as well as the coordination properties of the cation and the ligands in the complexes are discussed on the basis of their Mössbauer parameters.

  14. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment.

  15. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy

    PubMed Central

    Bixler, Joel N.; Cone, Michael T.; Hokr, Brett H.; Mason, John D.; Figueroa, Eleonora; Fry, Edward S.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2014-01-01

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  16. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  17. Adhesion and transfer of PTFE to metals studied by auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum has been studied using Auger emission spectroscopy. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  18. Applying light-emitting diodes with narrowband emission features in differential spectroscopy.

    PubMed

    Sihler, Holger; Kern, Christoph; Pöhler, Denis; Platt, Ulrich

    2009-12-01

    LEDs are a promising new type of light source for differential optical absorption spectroscopy (DOAS). Varying differential structures in the emission spectrum of LEDs, however, display a potentially severe problem. We show that the structures, which originate from a Fabry-Pérot etalon, may be removed by tilting the emitter, which at the same time increases the radiant flux coupled into the subsequent optical system. The results of long-path DOAS measurements, where we apply our method on a blue LED for the suppression of periodic structures, are also presented. PMID:19953172

  19. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Belostotskiy, Sergey G.; Ouk, Tola; Donnelly, Vincent M.; Economou, Demetre J.; Sadeghi, Nader

    2010-03-01

    Optical emisssion spectroscopy was employed to study a high pressure (100 s of Torr), slot-type (600 μm interelectrode gap), argon dc microdischarge, with added traces of nitrogen. Spatially resolved gas temperature profiles were obtained by analyzing rovibrational bands of the N2 first positive system. The gas temperature peaked near the cathode and increased with current. The contribution of Stark broadening to the hydrogen Hβ emission lineshape was used to extract the electron density. The axial distribution of electron density as well as visual observation revealed that the microdischarge positive column was highly constricted. The electron density near the sheath edge increased with both pressure and current.

  20. The emission of oxygen green line and density of O atom determined by using ISUAL and SABER measurements

    NASA Astrophysics Data System (ADS)

    Gao, H.; Nee, J.-B.; Xu, J.

    2012-04-01

    Emissions of the 557.7 nm green line airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite in May and November 2008 are studied here to derive the density distributions of the atomic oxygen by using atmospheric parameters from MSISE-00 model and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) measurements. The May observations were made in 10 days from a fixed orbit of longitude (100° E) with the results showing emission rate and O atom density both peaked at heights of about 90 km over 10° to 20° latitudes in the Northern Hemisphere (NH). In the Southern Hemisphere (SH), the emission rate and density of O atom are both low compared with those in NH. In November, the observations were made as the satellite traveled over all 14 orbits around the earth, covering all longitudes and latitudes of 25° S-45° N. Strong peaks of emission rates and O atoms are found at heights of about 95 km in the mid-latitudes in both hemispheres. In the equator, the airglow layer has a weaker emission rate but with higher altitude compared with those of mid-latitudes. In the lower and upper mesosphere at heights below 85 km and above 105 km, there are more O atoms in the equatorial regions than in the mid-latitudes. And there is a good correlation between the O atom and the temperature structure. A comparison with O atom distribution derived from OH airglow observed by TIMED/SABER at about the same time shows similar results.

  1. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    PubMed

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  2. Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Whitehead, D. J.; Crouse, P. L.; Schmidt, M. J. J.; Li, L.; Turner, M. W.; Smith, A. J. E.

    2008-10-01

    Studies have shown excimer laser cleaning to be an effective non-chemical alternative method for removing contaminants from surfaces of titanium alloys in preparation for electron beam welding and diffusion bonding, with reference to aerospace applications. Among several important criteria for process acceptability, is the absence of oxide formation. This paper investigates the viability of using a probe beam reflection (PBR) system and laser plume emission spectroscopy (PES) for detection of incipient oxide formation on three typical aerospace titanium alloys, viz. Ti64, Ti6246, and IMI834. These diagnostic techniques have been shown to be capable of sensing different components in the emission plume and yield quantitative results. Results from this work correlate closely with previously reported cleaning mechanisms. The oxidation threshold, as well as the operating window for successful decontamination, is discussed.

  3. Real-time tissue differentiation based on optical emission spectroscopy for guided electrosurgical tumor resection

    PubMed Central

    Spether, Dominik; Scharpf, Marcus; Hennenlotter, Jörg; Schwentner, Christian; Neugebauer, Alexander; Nüßle, Daniela; Fischer, Klaus; Zappe, Hans; Stenzl, Arnulf; Fend, Falko; Seifert, Andreas; Enderle, Markus

    2015-01-01

    Complete surgical removal of cancer tissue with effective preservation of healthy tissue is one of the most important challenges in modern oncology. We present a method for real-time, in situ differentiation of tissue based on optical emission spectroscopy (OES) performed during electrosurgery not requiring any biomarkers, additional light sources or other excitation processes. The analysis of the optical emission spectra, enables the differentiation of healthy and tumorous tissue. By using multi-class support vector machine (SVM) algorithms, distinguishing between tumor types also seems to be possible. Due to its fast reaction time (0.05s) the method can be used for real-time navigation helping the surgeon achieve complete resection. The system’s easy realization has been proven by successful integration in a commercial electro surgical unit (ESU). In a first step the method was verified by using ex vivo tissue samples. The histological analysis confirmed, 95% of correctly classified tissue types. PMID:25909025

  4. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    PubMed

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster). PMID:26647056

  5. Optical Emission Spectroscopy for CO2 Dissociation using a Dielectric Barrier Discharge (VADER)

    NASA Astrophysics Data System (ADS)

    Lindon, Michael; Scime, Earl; Gallagher, Michael; Shekhawat, Dushyant; Bergen, Mike; Berry, Dave

    2010-11-01

    VADER (the Versatile Atmospheric Dielectric barrier discharge ExpeRiment) operates at atmospheric pressure and employs high voltage pulses across a quartz dielectric spanning an anode-cathode pair to create a high density, non-thermal, cool plasma in a variety of gasses. In CO2 plasmas, energetic electrons from the tail of the non-thermal electron distribution excite CO2 molecular states and provide a pathway for CO2 dissociation that requires less energy per molecule than conventional thermal dissociation processes. CO2 dissociation by-products can then be used as feedstock gasses for chemical synthesis. Here we have used optical emission spectroscopy in the reaction zone of VADER to monitor the density of reaction products and optimize the dissociation process. The optical emission measurements are correlated with real-time residual gas analyzer (RGA) measurements of the discharge exhaust gas.

  6. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period. PMID:22242505

  7. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  8. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    NASA Astrophysics Data System (ADS)

    Lafitte, Bruno; Aubes, Michel; Zissis, Georges

    2007-12-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light. We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic. X-rays photons are mainly absorbed and not scattered by PCA. Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp. By comparing diagnostic methods, we put in evidence the difficulty of taking into account the scattering of light mathematically.

  9. Electronic Structure of LiC6 Studied by Soft X-Ray Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mansour, A.; Schnatterly, S.

    1987-04-01

    We present and discuss carbon K soft X-ray emission spectra of Highly Ordered Pyrolytic Graphite (HOPG) and LiC6, stage 1 Li intercalated graphite. These measurements allow us to observe the filling of the carbon π states by the electrons from the donor alkali atoms. By fitting the shape of these donor-filled π states with simple models, we can determine several parameters describing the electronic density of states near the Fermi energy in this material. In addition knowing the charge transfer, and measuring the area under the donor-filled π states allows us to evaluate the intensity enhancement seen in X-ray emission near the Fermi energy relative to the rest of the π band.

  10. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  11. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  12. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    SciTech Connect

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-10-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called {open_quotes}hollow atoms{close_quotes} must be taken into account for adequate description of plasma radiation.

  13. Phase of thermal emission spectroscopy for properties measurements of delaminating thermal barrier coatings

    SciTech Connect

    Yu Fengling; Bennett, Ted D.

    2005-11-15

    Phase of thermal emission spectroscopy is developed for determining the thermal properties of thermal barrier coating (TBC) in the presence of thermal contact resistance between the coating and the substrate. In this method, a TBC sample is heated using a periodically modulated laser and the thermal emission from the coating is collected using an infrared detector. The phase difference between the heating signal and the emission signal is measured experimentally. A mathematical model is developed to predict the phase difference between the laser and the measured emission, which considers the coating properties and the thermal contact resistance of the interface. An electron-beam physical vapor deposition thermal barrier coating with local regions delaminated by laser shock is characterized using this technique. The measurements are made on two regions of the coating, one where good thermal contact between the coating and substrate exists and the other where the interface has been damaged by laser shock. The results for the thermal properties and thermal contact resistance of the interface are presented and compared.

  14. Optical emission spectroscopy of point-plane corona and back-corona discharges in air

    NASA Astrophysics Data System (ADS)

    Czech, T.; Sobczyk, A. T.; Jaworek, A.

    2011-12-01

    Results of spectroscopic investigations and current-voltage characteristics of corona discharge and back discharge on fly-ash layer, generated in point-plane electrode geometry in air at atmospheric pressure are presented in the paper. The characteristics of both discharges are similar but differ in the current and voltage ranges of all the discharge forms distinguished during the experiments. Three forms of back discharge, for positive and negative polarity, were investigated: glow, streamer and low-current back-arc. In order to characterize ionisation and excitation processes in back discharge, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash layer removed. The emission spectra were measured in two discharge zones: near the tip of needle electrode and near the plate. Visual forms of the discharge were recorded with digital camera and referred to current-voltage characteristics and emission spectra. The measurements have shown that spectral lines emitted by back discharge depend on the form of discharge and the discharge current. From the comparison of the spectral lines of back and normal discharges an effect of fly ash layer on the discharge morphology can be determined. The recorded emission spectra formed by ionised gas and plasma near the needle electrode and fly ash layer are different. It should be noted that in back arc emission, spectral lines of fly ash layer components can be distinguished. On the other hand, in needle zone, the emission of high intensity N2 second positive system and NO γ lines can be noticed. Regardless of these gaseous lines, also atomic lines of dust layer were present in the spectrum. The differences in spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. The aim of these studies is to better

  15. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy

    SciTech Connect

    Song, M. A.; Lee, Y. W.; Chung, T. H.

    2011-02-15

    The properties of low-pressure inductively coupled nitrogen-argon plasmas were investigated by using a Langmuir probe combined with optical emission spectroscopy (OES) under the conditions of pressures in the range of 1-30 mTorr and applied rf powers of 200-600 W. In the experiments, the argon was introduced as an actinometer and as an adding gas. The effect of the argon content in the gas mixture was examined in the range of 5%-80%. The electron energy probability function (EEPF), the electron density, and the electron temperature were obtained by using an rf-compensated Langmuir probe. The dissociation fractions were obtained from the OES actinometry. The electron temperature was also obtained by OES corona model and compared with that measured by the probe. The second positive and first negative systems of spectral bands from nitrogen molecules were analyzed to estimate the vibrational and rotational temperatures. The effects of the control parameters on the plasma parameters and dissociation fraction were investigated. While the calculated nitrogen atom density increased with power, it exhibited a maximum value near the Ar content of 30%.

  16. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  17. Pump-probe spectroscopy in degenerate two-level atoms with arbitrarily strong fields

    NASA Astrophysics Data System (ADS)

    Zigdon, T.; Wilson-Gordon, A. D.; Goren, C.; Rosenbluh, M.; Friedmann, H.

    2007-03-01

    We review our previous work on pump-probe spectroscopy in realistic degenerate two-level systems and model systems. In particular, we discuss the role of transfer of coherence (TOC) between the ground and excited hyperfine states in producing electromagnetically-induced transparency (EIA) peaks in the probe spectrum, when an F g goes to F e = F g +1 transition in an alkali-metal atom interacts with a strong pump and weak probe that have perpendicular polarizations. When the pump is rho + polarized and the probe pi polarized, this system can be modelled by an N system. We also discuss the role of transfer of population (TOP) between the Zeeman levels of the ground hyperfine state in producing EIA peaks when the pump and probe have the same polarization. This system can be modelled using a double two-level system. The role of Doppler broadening and phase-changing collisions in modifying the EIA-TOC and EIA-TOP absorption and refraction spectra is also discussed. All these spectra were calculated using MATLAB programs that both construct and solve the relevant Bloch equations. In our recent work, we consider the effect of a strong probe on the pump absorption and refraction spectra when the pump and probe polarizations are linear and perpendicular. It is difficult to solve this problem numerically due to the large number frequencies involved. In order to simplify the problem, we considered two cases: (i) rho + polarized pump and pi polarized probe, and (ii) rho + polarized pump and rho - polarized probe, and investigated a series of transitions in both Rb and Cs, using modified versions of the MATLAB programs devised for the weakprobe case. A number of interesting differences from the weak-probe case were found. For example, when the probe is sufficiently strong, we found the pump and probe spectra to show complementary behavior. In addition, as the number of Zeeman levels increase, the EIA peaks become progressively sharper, and are accompanied by steeper dispersion.

  18. In situ transmission infrared spectroscopy of high-kappa oxide atomic layer deposition onto silicon surfaces

    NASA Astrophysics Data System (ADS)

    Ho, Ming-Tsung

    Ultra-thin aluminum oxide (Al2O3) and hafnium oxide (HfO2) layers have been grown by atomic layer deposition (ALD) using tri-methyl-aluminum (TMA) and tetrakis-ethyl-methyl-amino-hafnium (TEMAH) respectively with heavy water (D2O) as the oxidizing agent. Several different silicon surfaces were used as substrates such as hydrogen terminated silicon (H/Si), SC2 (or RCA 2) cleaned native silicon oxide (SiO 2/Si), and silicon (oxy)nitride. In-situ transmission Fourier transform infrared spectroscopy (FTIR) has been adopted for the study of the growth mechanisms during ALD of these films. The vibrational spectra of gas phase TEMAH and its reaction byproducts with oxidants have also been investigated. Density functional theory (DFT) normal mode calculations show a good agreement with the experimental data when it is combined with linear wave-number scaling method and Fermi resonance mechanism. Ether (-C-O-C-) and tertiary alkylamine (N(R1R 2R3)) compounds are the two most dominant products of TEMAH reacting with oxygen gas and water. When ozone is used as the oxidant, gas phase CH2O, CH3NO2, CH3-N=C=O and other compounds containing -(C=O)- and --C-O-C- (or --O-C-) segments are observed. With substrate temperatures less than 400°C and 300°C for TMA and TEMAH respectively, Al oxide and Hf oxide ALD can be appropriately performed on silicon surfaces. Thin silicon (oxy)nitride thermally grown in ammonia on silicon substrate can significantly reduce silicon oxide interlayer formation during ALD and post-deposition annealing. The crystallization temperature of amorphous ALD grown HfO2 on nitridized silicon is 600°C, which is 100°C higher than on the other silicon surfaces. When HfO2 is grown on H/Si(111) at 100°C deposition temperature, minimum 5--10 ALD cycles are required for the full surface coverage. The steric effect can be seen by the evolution of the H-Si stretching mode at 2083 cm-1. The observed red shift of H-Si stretching to ˜ 2060 cm-1 can be caused by Si

  19. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  20. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.