Science.gov

Sample records for atomic excitation energies

  1. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  2. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  3. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  4. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  5. Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame

    PubMed Central

    Khan, Ahsan U.

    1980-01-01

    Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925

  6. Low-energy electron elastic scattering cross sections for excited Au and Pt atoms

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Eure, Amanda R.; Msezane, Alfred Z.; Sokolovski, Dmitri

    2010-05-01

    Electron elastic total cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated in the electron impact energy range 0 ⩽ E ⩽ 4.0 eV. The cross sections are found to be characterized by very sharp long-lived resonances whose positions are identified with the binding energies of the excited anions formed during the collisions. The recent novel Regge-pole methodology wherein is embedded through the Mulholland formula the electron-electron correlations is used together with a Thomas-Fermi type potential incorporating the crucial core-polarization interaction for the calculations of the TCSs. The DCSs are evaluated using a partial wave expansion. The Ramsauer-Townsend minima, the shape resonances and the binding energies of the excited Au - and Pt - anions are extracted from the cross sections, while the critical minima are determined from the DCSs.

  7. Energies, radiative and Auger transitions of the core-excited states for the boron atom

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, Yan; Cong Gou, Bing

    2014-09-01

    Energies, radiative and Auger transitions of the 1s vacancy resonances 1s2s22p2, 1s2s22p3p, 1s2s2p3, 1s2p4, and 1s2p33p, 4L (L=S, P, D) for the neutral boron atom are calculated using the saddle-point variation and saddle-point complex-rotation methods. Large-scale wave functions are used to obtain reliable results. Relativistic and mass polarization corrections are included by the first-order perturbation theory. The calculated term energies, x-ray wavelengths, and Auger electron energies for these core-excited states are compared with available theoretical and experimental results. Auger electron energies and branching ratios are used to identify high-resolution B Auger spectrum produced in 300 keV B+ on CH4 collision experiment. It is found that the Auger decay of core-excited states of the boron atom gives significant contributions to Auger spectrum in the range of 165-210 eV, and many previously unknown line identifications are presented.

  8. A model for energy transfer in collisions of atoms with highly excited molecules.

    PubMed

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2015-05-21

    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  9. Two-atom interaction energies with one atom in an excited state: van der Waals potentials versus level shifts

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-05-01

    I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by Berman [Phys. Rev. A 91, 042127 (2015), 10.1103/PhysRevA.91.042127], Donaire et al. [Phys. Rev. Lett. 115, 033201 (2015), 10.1103/PhysRevLett.115.033201], and Milonni and Rafsanjani [Phys. Rev. A 92, 062711 (2015), 10.1103/PhysRevA.92.062711], for which precedent approaches have given conflicting results. In the first place, I discuss to what extent these works provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed by Berman, the van der Waals potential of the excited atom by Donaire et al., and the level shift of the excited atom by Milonni and Rafsanjani possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground-state atom computed by Milonni and Rafsanjani is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are, however, not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude, in agreement with Berman and with Milonni and Rafsanjani, that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast with Milonni and Rafsanjani, the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.

  10. Calculation of atomic excitation energies by time-dependent density functional theory within a modified linear response.

    PubMed

    Hu, Chunping; Sugino, Osamu; Tateyama, Yoshitaka

    2009-02-11

    Time-dependent density functional theory (TDDFT) has become a standard tool for investigation of electronic excited states. However, for certain types of electronic excitations, TDDFT is known to give systematically inaccurate results, which has been attributed to the insufficiency of conventional exchange-correlation functionals, such as the local density approximation (LDA). To improve TDDFT performance within LDA, a modified linear response (MLR) scheme was recently proposed, in which the responses from not only the ground state, but also the intermediate excited states are taken into account. This scheme was shown to greatly improve TDDFT performance on the prediction of Rydberg and charge-transfer excitation energies of molecules. Yet, for a validation of this TDDFT-MLR scheme for excitation energies, there remain issues to be resolved regarding Rydberg transitions of single atoms before going to larger systems. In the present work, we show an adapted algorithm to construct the intermediate excited states for rare-gas atoms. With the technique, Rydberg transition energies can be well decoded from LDA, as will also be shown in the application of the TDDFT-MLR scheme to other types of atoms.

  11. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.

    PubMed

    Delcorte, Arnaud

    2005-10-07

    This article reviews the recent progress in the understanding of kiloelectronvolt particle interactions with organic solids, including atomic displacements in a light organic medium, vibrational excitation and desorption of fragments and entire molecules. This new insight is the result of a combination of theoretical and experimental approaches, essentially molecular dynamics (MD) simulations and secondary ion mass spectrometry (SIMS). Classical MD simulations provide us with a detailed microscopic view of the processes occurring in the bombarded target, from the collision cascade specifics to the scenarios of molecular emission. Time-of-flight SIMS measures the mass and energy distributions of sputtered ionized fragments and molecular species, a precious source of information concerning their formation, desorption, ionization and delayed unimolecular dissociation in the gas phase. The mechanisms of energy transfer and sputtering are compared for bulk molecular solids, organic overlayers on metal and large molecules embedded in a low-molecular weight matrix. These comparisons help understand some of the beneficial effects of metal substrates and matrices for the analysis of molecules by SIMS. In parallel, I briefly describe the distinct ionization channels of molecules sputtered from organic solids and overlayers. The specific processes induced by polyatomic projectile bombardment, especially fullerenes, are discussed on the basis of new measurements and calculations. Finally, the perspective addresses the state-of-the-art and potential developments in the fields of surface modification and analysis of organic materials by kiloelectronvolt ion beams.

  12. Electron-impact excitation and ionization of atomic boron at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-05-01

    We present a comprehensive study of electron collisions with neutral boron atoms. The calculations were performed with the B-Spline R-matrix (close-coupling) method, by employing a parallelized version of the associated computer code. Elastic, excitation, and ionization cross sections were obtained for all transitions involving the lowest 11 states of boron, for incident electron energies ranging from threshold to 100 eV. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals was used to generate accurate wave functions for the target states. Close-coupling expansions including 13, 51, and 999 physical and pseudo states were set up to check the sensitivity of the predictions to variations in the theoretical model. The cross-section dataset generated in this work is expected to be the most accurate one available today and should be sufficiently comprehensive for most modeling applications involving neutral boron. Work supported by the China Scholarship Council and the United States National Science Foundation under Grants PHY-1403245 and PHY-1520970, and by the XSEDE allocation PHY-090031.

  13. Ionization of excited xenon atoms by electrons

    NASA Astrophysics Data System (ADS)

    Erwin, Daniel A.; Kunc, Joseph A.

    2004-08-01

    Measured cross sections for electron-impact ionization of excited Xe atoms are not presently available. Therefore, we combine in this work the formalisms of the binary encounter approximation and Sommerfeld’s quantization of atomic orbits and derive from first-principles cross sections for ionization of excited atoms by electrons of low and moderate energies (up to a few hundred eV ). The approach of this work can be used to calculate the cross sections for electron-impact ionization of excited atoms and atomic ions other than xenon.

  14. Electron Attachment in Low-Energy Electron Elastic Collisions with Au and Pt Atoms: Identification of Excited Anions

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Eure, A.; Felfli, Z.; Sokolovski, D.

    2009-11-01

    The recent Regge-pole methodology has been benchmarked [1] on the accurately measured binding energies of the excited Ge= and Sn= anions [2] through the binding energies (BEs) extracted from the Regge-pole calculated elastic total cross sections (TCSs). Here the methodology is applied together with a Thomas-Fermi type potential that incorporates the vital core polarization interaction to investigate the possibility of forming excited Au= and Pt= anions in low-energy electron elastic collisions with Au and Pt atoms. From the positions of the characteristic extremely narrow resonances in the total cross sections, we extract the binding energies of the excited Au= and Pt= anions formed as Regge resonances during the collisions. The angular life of the complexes thus formed is used to differentiate the stable excited bound states of the anions from the shape resonances [3]. The BEs for the excited Au= and Pt= anions are found to be 0.475eVand 0.543eV, respectively, challenging both theory and experiment to verify. [1] A. Msezane et al, Phys. Rev. A, Submitted (2009) [2] M. Scheer et al, Phys. Rev. A 58, 2844 (1998) [3] Z. Felfli et al, Phys. Rev. A 79, 012714 (2009)

  15. A method of combined treatment for the evaluation of core excitation energies in molecules involving heavy atoms

    NASA Astrophysics Data System (ADS)

    Maruani, J.; Khoudir, A.; Kuleff, A.; Tronc, M.; Giorgi, G.; Bonnelle, C.

    Core excitation energies (CEs) are known to depend on the chemical environment mostly through the charge transfered from or to the would-be excited atom in the ground-state molecule. We have made use of this peculiarity to set up a combined method for evaluating the CEs of molecules involving heavy atoms, where cumulated handicaps make direct calculations very difficult. We have evaluated the CEs of np levels in chromium, molybdenum and tungsten hexafluorides and compared the contributions of relaxation and relativity. In a first step, various approximate methods were used to evaluate the amount of charge transfered in the three hexafluorides, using the experimental geometries and testing different definitions of the charge. Results show the following trends: i) the calculated charge transfer increases as CrF6 << MoF6 < WF6; ii) Mulliken (balanced) charges vary in the order REX >> RHF > CISD > DFT, and Weinhold (natural) charges tend to be slightly larger; iii) our best (CISD) calculations give a natural percentage of electron transfer from the metal atom to the bonded fluorines of about 45% for CrF6, 56% for MoF6, and 59% for WF6. In a second step, numerical ab-initio, relativistic, [Delta]DF calculations of the total and orbital energies were performed on the ground-state and core-excited metal ions involving 1 to 5 valence ionizations. Core excitation energies were deduced and the relative importance of relaxation and relativity effects was discussed. In a last step, the core excitation energies for the molecules were evaluated by interpolating between values previously obtained for the free ions, using the net atomic charges derived for the ground-state molecules in our best previous approximation. The results are particularly striking for WF6: 1) for core excitations from the 2p1/2, 2p3/2 and 3p1/2, 3p3/2 levels, experimental energies are reproduced within 0.4-1.2 eV; 2) there is a relaxation alteration of the charge transfer stronger for the 3p than for the 2

  16. The role of the partner atom and resonant excitation energy in ICD in rare gas dimers

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Patrick; Ripani, Enrico; Bolognesi, Paola; Coreno, Marcello; Avaldi, Lorenzo; Devetta, Michele; Callegari, Carlo; Di Praia, Michele; Prince, Kevin; Richter, Robert; Alagial, Michele; Kivimäkil, Antti

    2014-04-01

    We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p-11/2 and 2p-13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy.

  17. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Son, Sang-Kil; Santra, Robin

    2017-04-01

    In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms, energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev. Lett. 110, 173005 (2013), 10.1103/PhysRevLett.110.173005. On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012), 10.1038/nphoton.2012.261. To investigate both relativistic and resonance effects, we extend the xatom toolkit to incorporate relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.

  18. Mean excitation energies for molecular ions

    NASA Astrophysics Data System (ADS)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  19. Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-04-01

    A theoretical method is presented for the estimation of cross sections and rates for excitation and charge-transfer processes in low-energy hydrogen-atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen-atom system. The calculation of potentials and nonadiabatic radial couplings using the method is demonstrated. The potentials are used together with the multichannel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wave functions, which can be determined from known atomic parameters. The method is applied to Li+H , Na+H , and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20 000 K.

  20. Dynamic Characteristics of Excited Atomic Systems

    NASA Astrophysics Data System (ADS)

    Bezuglov, N. N.; Dimitrijevic, M. S.; Klyucharev, A. N.; Mihajlov, A. A.

    2014-12-01

    The dynamics of excited atom interactions with other atoms, which often lead to associative ionization, is largely governed by stochastic diffusion of the valence electron through Rydberg states prior to the ionization. Such processes are associated with random changes of the energy state of the highly excited electron, and they are likely to influence the nuclear dynamics, especially at subthermal collision energies. Possibilities of manipulation of the chaotic dynamics of Rydberg states require a detailed exploration. For an electron in a given Rydberg state moving in a microwave field, which can be generated via interaction with another atom or molecule, there exists critical field strength, above which motion of the electron in the energy space is chaotic. Recently a way to block the dynamic chaos regime was shown, if a given Rydberg state is located somewhat above the middle between the two other states with the orbital quantum number differing by one, whereby level shifts can be controlled by employing Stark/Zeeman shifts in external DC electric/magnetic fields. The stochastic effects in collisions involving Rydberg particles, in which the initial and final reaction channels are connected via intermediate highly excited collision complexes with multiple crossings of energy levels, can be treated using the dynamic chaos approach (Chirikov criterion, Standard and Keppler mapping of time evolution of the Rydberg electron, solution of the Fokker-Plank- and Langevin-type of equations, etc.). Such approach to obtaining dynamics characteristics is a natural choice, since the treatment of Rydberg electron dynamics as a kind of diffusion process allowing one to bypass the multi-level-crossing problem, which can hardly be solved by conventional quantum chemistry methods.

  1. Measurements of Excitation Functions and Line Polarizations for Electron Impact Excitation of the n = 2, 3 States of Atomic Hydrogen in the Energy Range 11 - 2000 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.

    1993-01-01

    The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...

  2. [Radiative transport and collisional transfer of excitation energy in Cs(6P) atoms mixed with N2].

    PubMed

    Meng, Fan-Xin; Qin, Chen; Dai, Kang; Shen, Yi-Fan

    2008-05-01

    Applying the CW laser absorption and fluorescence method, the cross sections for the fine structure mixing and quenching of the Cs(6P) state, induced by collision with N2 molecules, were measured. Cesium atoms were optically excited to the 6P3/2 state. The excited atom density and spatial distribution were mapped by monitoring the absorption of a counterpropagating single mode laser beam, tuned to the 6P1 --> 8S(1/2) transitions, which could be translated parallel to the pump beam. The transmission factors, which describe the average probability that photons emitted within the fluorescence detection region can pass through the optically thick vapor without being absorbed, were calculated for 6P --> 6S(1/2) transitions. The N2 caused line broadening and therefore increased the effective pumping rate and radiative rates. The effective radiative rates were calculated for the 6P(J) --> 6S transitions. The fluorescence intensity I895 of the sensitized 6P(1/2) --> 6S(1/2) emission was measured as a function of N2 density in the range 2 x 10(16) < N < 1.4 x 10(17) cm(-3) at a constant temperature T = 337 K, which produced cesium density N0 = 1.25 x 10(12) cm(-3). The transparency of the cell was obtained by the absorption of light beam passing the cell. The transparency is not a simple function of N2 density. It was found that the quantity N/I895 (I895 being corrected for the cell transparency) exhibited a parabolic dependence on N, confirming that the quenching of the 6P(J) states is due to collision with N2 molecules instead of Cs ground state atoms. The coefficients of the second-order polynomial fitted through the measured data yielded the cross sections sigma3/2 --> 1/2 = (0.42 +/- 0.17) x 10(-16) cm2 and sigmaD = (1.31 +/- 0.52) x 10(-16) cm2 for the 6P(J) fine-structure mixing and quenching, respectively, due to collision with N2 molecules. The quenching rate coefficient is about 3 times larger than the rate coefficient for the fine-structure mixing. Our values for

  3. Excitation of Nb, Ta, and W atoms in sputtering processes

    SciTech Connect

    Vasil`eva, E.K.; Morozov, S.N.

    1995-12-01

    Optical emission spectra of sputtered atoms that arise under the bombardment of Nb, Ta, and W surfaces by xenon ions with an energy of 40 keV are studied in the wavelength range of 380 - 600 nm. The properties and mechanisms of the formation of excited atomic states in sputtering processes are discussed. 12 refs., 3 figs.

  4. Excited-state imaging of cold atoms

    NASA Astrophysics Data System (ADS)

    Sheludko, David V.; Bell, Simon C.; Vredenbregt, Edgar J. D.; Scholten, Robert E.

    2007-09-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes splitting predicted by the model was verified experimentally, showing excellent agreement. 780 nm lasers were used to cool and excite atoms within a magneto-optical trap, and the atoms were then illuminated by a 776 nm imaging laser. Several excited-state imaging techniques, including blue cascade fluorescence, on-resonance absorption, and DCI have been demonstrated. Initial results show that improved signal-to-noise ratio (SNR) will be required to accurately determine the excited state fraction. We have demonstrated magnetic field gradient compression of the cold atom cloud, and expect that further progress on compression and additional cooling will achieve sufficient diffraction contrast for quantitative state-selective imaging.

  5. Studies of Highly Excited Atoms.

    DTIC Science & Technology

    1986-04-02

    much smaller than the laser linewidth . We note that calculations show that a simlar resonance condition does not occur for the 16d state ir FIG. S. Plot...approximately 2 GHz (see Fig. 5) which is comparable shown here the large cross sections and narro . linewidth "- to the width of the previously observed...collison of two Rydherg atoms. We have extensively measured the linewidths and the collision cross sections and have determined their dependence on

  6. Interaction energy of nonidentical atoms

    NASA Astrophysics Data System (ADS)

    Berman, P. R.

    2015-04-01

    There are different results in the literature for the interaction energy of two separated nonidentical atoms in the case when one of the atoms is prepared in an excited state. Moreover, there are different ways to define this interaction energy. If the interaction energy is defined as a shift in the energy of the initial state of the combined atomic system, it is possible to carry out a time-dependent calculation that provides an unambiguous method for obtaining this shift. The time-dependent calculations lead to an interaction energy that is an oscillatory function of the interatomic separation, in contrast to the nonoscillatory behavior that is predicted using an alternative theory based on time-independent perturbation theory.

  7. An experimental setup for studying the core-excited atoms and molecules by electron impact using energy analysed electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.

    2017-07-01

    Operation and performance of an apparatus for studying the decay dynamics relevant to core-hole decay processes in atoms and molecules excited by energetic electrons using an energy analysed electron-ion coincidence technique are described in some detail. The setup consists of a time- and position sensitive double-field linear TOF mass spectrometer coupled with a dual MCP detector and a single-pass CMA to select the energy of detected electrons. Details of different components involved in the setup are presented and discussed. To demonstrate the performance and capability of the apparatus, we present some typical results extracted from the TOF argon ion-mass spectra observed in coincidence with 18-energy selected electrons emitted from interaction of a continuous beam of 3.5 keV electrons with a dilute gaseous target of argon atoms. Specifically, the variation of relative correlation probability for the final ion-charge states Ar1+ to Ar4+ produced in the considered collision reactions as a function of energy of emitted electrons is determined and discussed.

  8. An experimental setup for studying the core-excited atoms and molecules by electron impact using energy analysed electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.

    2017-02-01

    Operation and performance of an apparatus for studying the decay dynamics relevant to core-hole decay processes in atoms and molecules excited by energetic electrons using an energy analysed electron-ion coincidence technique are described in some detail. The setup consists of a time- and position sensitive double-field linear TOF mass spectrometer coupled with a dual MCP detector and a single-pass CMA to select the energy of detected electrons. Details of different components involved in the setup are presented and discussed. To demonstrate the performance and capability of the apparatus, we present some typical results extracted from the TOF argon ion-mass spectra observed in coincidence with 18-energy selected electrons emitted from interaction of a continuous beam of 3.5 keV electrons with a dilute gaseous target of argon atoms. Specifically, the variation of relative correlation probability for the final ion-charge states Ar1+ to Ar4+ produced in the considered collision reactions as a function of energy of emitted electrons is determined and discussed.

  9. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1980-08-15

    excited atom concentration by atomic absorption spectroscopy in the vacuum ultraviolet (6). Relatively efficient electronic to vibrational energy transfer...by the use of atomic absorption spectroscopy , permitted observation of both ground and electronically excited state bromine atoms. The deactivation of

  10. Excitation of atomic nitrogen by electron impact

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1972-01-01

    Absolute cross sections were measured for the excitation of the N I(1134, 1164, 1168, 1200, 1243, and 1743 A) multiplets by electron impact on atomic nitrogen. The presence of vibrationally excited molecular nitrogen in the discharged gas was confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200 and 1134 A resonance transitions is presented, as well as the branching ratio for the N I(1311/1164 A) multiplets. Striking differences in the distribution of intensity between the spectra of atomic nitrogen and molecular nitrogen excited by energetic electrons suggest an optical method for measuring the density of atomic nitrogen in the upper atmosphere.

  11. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms.

    PubMed

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2014-05-13

    Conventional time-dependent density functional theory (TDDFT) is based on a closed-shell Kohn-Sham (KS) singlet ground state with the adiabatic approximation, using either linear response (KS-LR) or the Tamm-Dancoff approximation (KS-TDA); these methods can only directly predict singly excited states. This deficiency can be overcome by using a triplet state as the reference in the KS-TDA approximation and "exciting" the singlet by a spin flip (SF) from the triplet; this is the method suggested by Krylov and co-workers, and we abbreviate this procedure as SF-KS-TDA. SF-KS-TDA can be applied either with the original collinear kernel of Krylov and co-workers or with a noncollinear kernel, as suggested by Wang and Ziegler. The SF-KS-TDA method does bring some new practical difficulties into play, but it can at least formally model doubly excited states and states with double-excitation character, so it might be more useful than conventional TDDFT (both KS-LR and KS-TDA) for photochemistry if these additional difficulties can be surmounted and if it is accurate with existing approximate exchange-correlation functionals. In the present work, we carried out calculations specifically designed to understand better the accuracy and limitations of the conventional TDDFT and SF-KS-TDA methods; we did this by studying closed-shell atoms and closed-shell monatomic cations because they provide a simple but challenging testing ground for what we might expect in studying the photochemistry of molecules with closed-shell ground states. To test their accuracy, we applied conventional KS-LR and KS-TDA and 18 versions of SF-KS-TDA (nine collinear and nine noncollinear) to the same set of vertical excitation energies (including both Rydberg and valence excitations) of Be, B(+), Ne, Na(+), Mg, and Al(+). We did this for 10 exchange-correlation functionals of various types, both local and nonlocal. We found that the GVWN5 and M06 functionals with nonlocal kernels in spin-flip calculations

  12. Plasmon excitations in the dimers formed by atom chains

    NASA Astrophysics Data System (ADS)

    Xue, Hong-jie; Hao, Da-peng; Zhang, Ming; Wang, Xiao-mei

    2017-02-01

    Based on the linear response theory in the random-phase approximation and the free-electron gas model, we study the plasmon excitations in the dimers formed by atom chains. With the help of energy absorption spectrum and charge distribution, the evolutions of longitudinal and transverse plasmon, and the effect of the system parameters such as size, atomic separation and electron filling on plasmon are obtained. In addition, the dipole, quadrupole, end and central plasmon are observed.

  13. Plasmon excitations in two-dimensional atomic cluster systems

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Qin; Yu, Ya-Bin; Xue, Hong-Jie; Wang, Ya-Xin; Chen, Jie

    2016-09-01

    Properties of plasmon excitations in two-dimensional (2D) atomic cluster systems are theoretically studied within an extended Hubbard model. The collective oscillation equations of charge, plasmon eigen-equations and the energy-absorption spectrum formula are presented. The calculated results show that different symmetries of plasmons exist in the cluster systems, and the symmetry of charge distribution in the plasmon resonance originate from the intrinsic symmetry of the corresponding eigen-plasmon modes, but not from the symmetry of applied external fields; however, the plasmon excitation with a certain polarization direction should be excited by the field in this direction, the dipole mode of plasmons can be excited by both uniform and non-uniform fields, but multipole ones cannot be excited by an uniform field. In addition, we show that for a given electron density, plasmon spectra are red-shifted with increasing size of the systems.

  14. Do static atoms outside a Schwarzschild black hole spontaneously excite?

    SciTech Connect

    Yu Hongwei; Zhou Wenting

    2007-08-15

    The spontaneous excitation of a two-level atom held static outside a four dimensional Schwarzschild black hole and in interaction with a massless scalar field in the Boulware, Unruh, and Hartle-Hawking vacuums is investigated, and the contributions of the vacuum fluctuations and radiation reaction to the rate of change of the mean atomic energy are calculated separately. We find that, for the Boulware vacuum, the spontaneous excitation does not occur and the ground-state atoms are stable, while the spontaneous emission rate for excited atoms in the Boulware vacuum, which is well behaved at the event horizon, is not the same as that in the usual Minkowski vacuum. However, for both the Unruh vacuum and the Hartle-Hawking vacuum, our results show that the atom would spontaneously excite, as if there were an outgoing thermal flux of radiation or as if it were in a thermal bath of radiation at a proper temperature which reduces to the Hawking temperature in the spatial asymptotic region, depending on whether the scalar field is in the Unruh or Hartle-Hawking vacuum.

  15. Highly Excited States of cs Atoms on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, F.; Theisen, M.; Koch, M.; Ernst, W. E.

    2011-06-01

    Cs atoms on the surface of helium nanodroplets have been excited to high lying nS (n = 8-11), nP (n = 8-11), and nD (n = 6-10) levels. A two-step excitation scheme via the 62P1/2(2Π1/2) state using two cw lasers was applied. This intermediate state has the advantage that a large fraction of the excited Cs atoms does not desorb from the helium nanodroplets. An absorption spectrum was recorded by detecting laser induced fluorescence light from the 62P3/2→62S1/2 transition. The pseudo-diatomic model for helium nanodroplets doped with single alkali-metal atoms holds for the observed spectrum. An investigation of spectral trends shows that the n'2P(Π)←62P1/2(2Π1/2) and n'2D(Δ)←62P1/2(2Π1/2) (n' > 9) transitions are lower in energy than the corresponding free-atom transitions. This indicates that the Cs*--HeN potential becomes attractive for these highly excited states. Our results suggest a possibility of generating an artificial super-atom with a positive ion core inside a helium nanodroplet and the electron outside, which will be subject to future experiments. M. Theisen, F. Lackner, F. Ancilotto, C. Callegari, and W.E. Ernst, Eur. Phys. J. D 61, 403-408 (2011)

  16. Electron impact excitation studies of unstable atomic species

    NASA Astrophysics Data System (ADS)

    Abdellatif, Ady Kamel

    The polarization of Balmer-alpha radiation excited in collisions of electrons with atomic hydrogen is presented for an electron energy range from threshold to 1000 eV. Measurements are in good agreement with calculations carried out using either convergent-close-coupling or R-matrix with pseudo-states approaches. Cascade is demonstrated to have a significant effect. Balmer-alpha excitation function data are also presented. A previous measurement of the polarization of Balmer-alpha following dissociative excitation of H2 by electrons is confirmed and extended. The electron impact excitation spectrum of atomic and molecular nitrogen in the VUV range (800 A--1800 A) is presented. The excitation functions of the 1135 A and the 1200 A transitions are obtained. About 5% of nitrogen molecules are dissociated using a microwave discharge source and a mixture of 95% helium and 5% nitrogen gases. Other lines proved to have too small an emission cross section for the electron impact excitation process on atomic nitrogen. Thus the 1243 A, 1494 A, 1745 A N lines and the 1085 A N+ line could not be studied using the small dissociation fractions obtained in the present work. Electron impact excitation of fluorine and sulfur atoms is presented. The spectrum of Sulfur Hexafluoride (SF6) in the VUV range from 800 A--1700 A is recorded. A 70% dissociation fraction was obtained using the microwave discharge unit with SF6 and He targets. The absolute emission cross section for the 807 A fluorine transition is found to be 2.21 +/- 1.20 x 10-19 cm 2 at 200 eV electron energy. As for sulfur, the absolute emission cross section for the 1474 A transition is 2.46 +/- 1.38 x 10-19 cm2 at 95 eV and for the 1667 A transition is 1.87 +/- 1.31 x 10-19 cm 2 at 85 eV.

  17. Energy from the Atom.

    ERIC Educational Resources Information Center

    Smith, Patricia L.

    This curriculum guide was written to supplement fifth and sixth grade science units on matter and energy. It was designed to provide more in-depth material on the atom. The first part, "Teacher Guide," contains background information, biographical sketches of persons in the history of nuclear energy, vocabulary, answer sheets, management sheets…

  18. Energy from the Atom.

    ERIC Educational Resources Information Center

    Smith, Patricia L.

    This curriculum guide was written to supplement fifth and sixth grade science units on matter and energy. It was designed to provide more in-depth material on the atom. The first part, "Teacher Guide," contains background information, biographical sketches of persons in the history of nuclear energy, vocabulary, answer sheets, management sheets…

  19. Spontaneous excitation of an atom in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Menezes, G.

    2017-03-01

    We consider radiative processes of an atom in a rotating black-hole background. We assume the atom, represented by a hypothetical two-level system, is coupled via a monopole interaction with a massless quantum scalar field prepared in each one of the usual physical vacuum states of interest. We constrain ourselves to two different states of motion for the atom, namely a static situation in which the atom is placed at a fixed radial distance, and also the case in which it has a stationary motion but with zero angular momentum. We study the structure of the rate of variation of the atomic energy. The intention is to clarify in a quantitative way the effect of the distinguished contributions of vacuum fluctuations and radiation reaction on spontaneous excitation and on spontaneous emission of atoms. In particular, we are interested in the comprehension of the combined action of the different physical processes underlying the Hawking effect in the scenario of rotating black holes as well as the Unruh-Starobinskii effect. We demonstrate that, in the case of static atoms, spontaneous excitation is also connected with the Unruh-Starobinskii effect, but only in the case of the quantum field prepared in the Frolov-Thorne vacuum state. In addition, we show that, in the zero angular momentum observer's perspective, the Boulware vacuum state contains an outward flux of particles as a consequence of the black-hole superradiance. The possible relevance of the findings in the present work is discussed.

  20. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  1. Two Step Excitation in Hot Atomic Sodium Vapor.

    PubMed

    Docters, Bernd; Wrachtrup, Jörg; Gerhardt, Ilja

    2017-09-18

    A two step excitation scheme in hot atomic sodium vapor is experimentally investigated. The observed effects reflect a coupling between the 3(2)S, 3(2)P and the 3(2)D states. We present the relative dependence on detuning of the two utilized lasers around λ = 589 nm and 819 nm. Unlike expected, we achieve a higher detuning dependence of the probe and the coupling laser by a factor of approximately three. The presented work aimed for a Rydberg excitation and quantum light storage. Such schemes are usually implemented with a red laser on the D-line transition and a coupling laser of shorter (typically blue) wavelength. Due to the fact that higher P-Rydberg states are approximately two times higher in energy than the 3(2)D state, a two photon transition from the atomic excited 3(2)P state to a Rydberg P state is feasible. This might circumvent laser frequency doubling whereby only two lasers might mediate a three photon process. The scheme of adding three k-vectors allows for electromagnetically induced transparency experiments in which the resulting k-vector can be effectively reduced to zero. By measurements utilizing electric fields and an analysis of the emission spectrum of the atomic vapor, we can exclude the excitation of the P-P two photon transition.

  2. Production of Excited Atomic Hydrogen and Deuterium from HD Photodissociation

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; McLaughlin, K. W.

    2008-05-01

    We have measured the production of Lyα, Hα, and Hβ fluorescence from atomic H and D for the photodissociation of HD by linearly-polarized photons with energies between 20 and 66 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Theoretical calculation are not yet available for HD, but comparison between the relative cross sections for H2, D2 and HD targets and the available theory for H2 and D2 [1] allow for an estimate of the relative strength of each dissociation channel in this energy range. [1] J. D. Bozek et al., J. Phys. B 39, 4871 (2006). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  3. Lowest ^{2}S Electronic Excitations of the Boron Atom.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2017-01-27

    A theoretical ab initio approach for calculating bound states of small atoms is developed and implemented. The approach is based on finite-nuclear-mass [non-Born-Oppenheimer (non-BO)] nonrelativistic variational calculations performed with all-particle explicitly correlated Gaussian functions and includes the leading relativistic and quantum electrodynamics energy corrections determined using the non-BO wave functions. The approach is applied to determine the total and transition energies for the lowest four ^{2}S electronic excitations of the boron atom. The transition energies agree with the available experimental values within 0.2-0.3  cm^{-1}. Previously, such accuracy was achieved for three- and four-electron systems.

  4. Lowest 2S Electronic Excitations of the Boron Atom

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2017-01-01

    A theoretical ab initio approach for calculating bound states of small atoms is developed and implemented. The approach is based on finite-nuclear-mass [non-Born-Oppenheimer (non-BO)] nonrelativistic variational calculations performed with all-particle explicitly correlated Gaussian functions and includes the leading relativistic and quantum electrodynamics energy corrections determined using the non-BO wave functions. The approach is applied to determine the total and transition energies for the lowest four 2S electronic excitations of the boron atom. The transition energies agree with the available experimental values within 0.2 - 0.3 cm-1 . Previously, such accuracy was achieved for three- and four-electron systems.

  5. Excited State Biexcitons in Atomically Thin MoSe2.

    PubMed

    Pei, Jiajie; Yang, Jiong; Wang, Xibin; Wang, Fan; Mokkapati, Sudha; Lü, Tieyu; Zheng, Jin-Cheng; Qin, Qinghua; Neshev, Dragomir; Tan, Hark Hoe; Jagadish, Chennupati; Lu, Yuerui

    2017-07-25

    The tightly bound biexcitons found in atomically thin semiconductors have very promising applications for optoelectronic and quantum devices. However, there is a discrepancy between theory and experiment regarding the fundamental structure of these biexcitons. Therefore, the exploration of a biexciton formation mechanism by further experiments is of great importance. Here, we successfully triggered the emission of biexcitons in atomically thin MoSe2, via the engineering of three critical parameters: dielectric screening, density of trions, and excitation power. The observed binding energy and formation dynamics of these biexcitons strongly support the model that the biexciton consists of a charge attached to a trion (excited state biexciton) instead of four spatially symmetric particles (ground state biexciton). More importantly, we found that the excited state biexcitons not only can exist at cryogenic temperatures but also can be triggered at room temperature in a freestanding bilayer MoSe2. The demonstrated capability of biexciton engineering in atomically thin MoSe2 provides a route for exploring fundamental many-body interactions and enabling device applications, such as bright entangled photon sources operating at room temperature.

  6. Electronically excited rubidium atom in a helium cluster or film

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Viel, Alexandra; Zillich, Robert E.

    2008-11-01

    We present theoretical studies of helium droplets and films doped with one electronically excited rubidium atom Rb∗ (P2). Diffusion and path integral Monte Carlo approaches are used to investigate the energetics and the structure of clusters containing up to 14 helium atoms. The surface of large clusters is approximated by a helium film. The nonpair additive potential energy surface is modeled using a diatomic in molecule scheme. Calculations show that the stable structure of Rb∗Hen consists of a seven helium atom ring centered at the rubidium, surrounded by a tirelike second solvation shell. A very different structure is obtained when performing a "vertical Monte Carlo transition." In this approach, a path integral Monte Carlo equilibration starts from the stable configuration of a rubidium atom in the electronic ground state adsorbed to the helium surface after switching to the electronically excited surface. In this case, Rb∗Hen relaxes to a weakly bound metastable state in which Rb∗ sits in a shallow dimple. The interpretation of the results is consistent with the recent experimental observations [G. Auböck et al., Phys. Rev. Lett. 101, 035301 (2008)].

  7. Single atom Rydberg excitation in a small dipole trap.

    PubMed

    Zuo, Zhanchun; Fukusen, Miho; Tamaki, Yoshihito; Watanabe, Tomoki; Nakagawa, Yusuke; Nakagawa, Ken'ichi

    2009-12-07

    We have realized a single atom trap using a magneto-optical trap (MOT) with a high magnetic field gradient and a small optical dipole trap. Using this trap, we demonstrate the excitation to a highly excited Rydberg state (n=43) with a single Rubidium atom.

  8. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  9. Optimal trajectories for efficient atomic transport without final excitation

    SciTech Connect

    Chen Xi; Torrontegui, E.; Muga, J. G.; Stefanatos, Dionisis; Li, Jr-Shin

    2011-10-15

    We design optimal harmonic-trap trajectories to transport cold atoms without final excitation, combining an inverse engineering technique based on Lewis-Riesenfeld invariants with optimal control theory. Since actual traps are not really harmonic, we keep the relative displacement between the center of mass of the transport modes and the trap center bounded. Under this constraint, optimal protocols are found according to different physical criteria. The minimum time solution has a ''bang-bang'' form, and the minimum displacement solution is of ''bang-off-bang'' form. The optimal trajectories for minimizing the transient energy are also discussed.

  10. Controlling Rydberg atom excitations in dense background gases

    NASA Astrophysics Data System (ADS)

    Cubel Liebisch, Tara; Schlagmüller, Michael; Engel, Felix; Nguyen, Huan; Balewski, Jonathan; Lochead, Graham; Böttcher, Fabian; Westphal, Karl M.; Kleinbach, Kathrin S.; Schmid, Thomas; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-09-01

    We discuss the density shift and broadening of Rydberg spectra measured in cold, dense atom clouds in the context of Rydberg atom spectroscopy done at room temperature, dating back to the experiments of Amaldi and Segrè in 1934. We discuss the theory first developed in 1934 by Fermi to model the mean-field density shift and subsequent developments of the theoretical understanding since then. In particular, we present a model whereby the density shift is calculated using a microscopic model in which the configurations of the perturber atoms within the Rydberg orbit are considered. We present spectroscopic measurements of a Rydberg atom, taken in a Bose-Einstein condensate and thermal clouds with densities varying from 5 × 1014 to 9 × 1012 cm-3. The density shift measured via the spectrum’s center of gravity is compared with the mean-field energy shift expected for the effective atom cloud density determined via a time of flight image. Lastly, we present calculations and data demonstrating the ability of localizing the Rydberg excitation via the density shift within a particular density shell for high principal quantum numbers.

  11. Production of Excited Atomic Hydrogen from Methane

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Andrianarijaona, V. M.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; McLaughlin, K. W.

    2009-05-01

    We have measured the production of Lyα and Hα fluorescence from atomic H for the photodissociation of CH4 by linearly-polarized photons with energies between 20 and 65 eV. Comparison between our Lyα relative cross section and that previously reported [1] show different peak height ratios. This also occurs in the Hα cross section when compared to previous data [2]. We do not observe as significant a drop in either cross section above 35 eV. Our measurements were taken with pressures two orders of magnitude lower than those used in ref. [1]. We present comparisons between data sets and a discussion of possible systematic effects. [1] H. Fukuzawa et al., J. Phys. B. 38, 565 (2005). [2] M. Kato et al., J. Phys. B. 35, 4383 (2002). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  12. TlII excitation cross-sections in collisions of slow electrons with thallium atoms

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu M.

    2016-09-01

    Excitation of a singly-charged thallium ion in electron collisions with thallium atoms has been studied experimentally. Seventy excitation cross sections have been measured at an exciting electron energy of 30 eV. Ten optical excitation functions (OEFs) have been recorded in the incident electron energy range of 0-200 eV. For seven TlII spectral series, the dependence of excitation cross-sections on the principal quantum numbers of upper levels has been studied. A comparison of findings with data from preceding publications is presented.

  13. Excited state distribution of reflected hydrogen atoms at metal surfaces - Development of theoretical models

    NASA Astrophysics Data System (ADS)

    Kato, D.; Kenmotsu, T.; Ohya, K.; Tanabe, T.

    2009-06-01

    Numerical methods were developed to study single electron capture by translating hydrogen atoms above metal surfaces. The present method gives predictions for hitherto unknown population distribution of excited species in hydrogen atoms reflected at the metal surfaces. The excited state abundance was calculated for Mo surface. Kinetic energy distribution of the reflected atoms was taken into account with the aid of the Monte-Carlo simulation code (ACAT). Energy distribution associated with the 3d 2 excited state in reflected neutrals consistently explains peak energy variation with incident energies of Doppler-shifted D α lines measured by Tanabe et al. Occupation probability of the magnetic sub-levels is obtained to be highly polarized. It suggests strong anisotropy in angular distribution of photon emission from the excited states created via the surface electron capture.

  14. Energy calculation for beryllium atom in different excited states (1s2 2s 3s), (1s 2s2 3s) and (1s 2s 3s2)

    NASA Astrophysics Data System (ADS)

    Al-Sharaa, Mayada J.; Mahmood, Maysoon A.; Madhkoor, Naaemh C. H.; Al-Bayati, Khalil H.

    2017-09-01

    The energy expectation value E has been evaluated for Beryllium different excited state and Be like ions such as B+1 and C+2 and the potential energy expectation value V has been evaluated too. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions. The results show that the expectation values of and < r12 -1> of (1s2s 3s2), (1s2s23s) and (1s2s 3s2) states increase when the atomic number (Z) increases for all shells for Be-like ions. All the studied properties are calculated using atomic units.

  15. Review of electron impact excitation cross sections for copper atom

    SciTech Connect

    Winter, N.W.; Hazi, A.U.

    1982-02-01

    Excitation of atomic copper by electron impact plays an important role in the copper vapor laser and accurate cross sections are needed for understanding and modeling laser performance. During the past seven years, there have been several attempts to normalize the relative elastic and inelastic cross sections measured by Trajmar and coworkers. However, each of these efforts have yielded different cross sections, and the uncertainty in the correct normalization of the data has been a source of confusion and concern for the kinetic modeling efforts. This difficulty has motivated us to review previous work on the electron impact excitation of copper atom and to perform new calculations of the inelastic cross sections using the impact parameter method. In this memorandum we review the previous attempts to normalize the experimental data and provide a critical assessment of the accuracy of the resulting cross sections. We also present new theoretical cross sections for the electron impact excitation of the /sup 2/S ..-->.. /sup 2/P/sup 0/ and /sup 2/S ..-->.. /sup 2/D transitions in copper. When the experimental cross sections are renormalized to the results of the impact parameter calculations, they are a factor of three smaller than those published in the latest paper of Trajmar et. al. At impact energies above 60 eV the excitation cross sections obtained with the impact parameter method agree well with the results of the very recent, unpublished, close-coupling calculations of Henry. This agreement suggests that the present normalization of the experimental cross sections is probably the most reliable one obtained to date.

  16. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum.

    PubMed

    Leino, Markku; Viel, Alexandra; Zillich, Robert E

    2011-01-14

    Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(∗) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(∗)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(∗)He(n) clusters. The structures obtained are however different with a He-Rb(∗)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.

  17. Self-excitation of Rydberg atoms at a metal surface

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-08-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg atoms in which this effect should be most pronounced is proposed and the necessary estimates are given.

  18. Symmetric eikonal model for projectile-electron excitation and loss in relativistic ion-atom collisions

    SciTech Connect

    Voitkiv, A. B.; Najjari, B.; Shevelko, V. P.

    2010-08-15

    At impact energies > or approx. 1 GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. To treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically high collision energies this model leads to an exact transition amplitude and is very well suited to describe the projectile-electron excitation and loss at energies above a few GeV/u. In particular, by considering a number of examples we demonstrate advantages of this model over the first Born approximation at impact energies of {approx}1-30 GeV/u, which are of special interest for atomic physics experiments at the future GSI facilities.

  19. Photon statistics of atomic fluorescence after {pi}-pulse excitation

    SciTech Connect

    Yoshimi, Kazuyoshi; Koshino, Kazuki

    2010-09-15

    The photon statistics of atomic fluorescence after {pi}-pulse excitation is investigated in a system in which the input and output ports are connected to an atom. Since spontaneous decay during input pulse excitation occurs, the output pulse generally contains a multiphoton component with a certain probability. We quantitatively evaluate the probability of the output pulse containing multiple photons and determine the conditions for ideal single-photon generation.

  20. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  1. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  2. Collective excitations of the hybrid atomic-molecular Bose-Einstein condensates

    SciTech Connect

    Gupta, Moumita; Dastidar, Krishna Rai

    2010-06-15

    We investigate the low-energy excitations of the spherically and axially trapped atomic Bose-Einstein condensate coupled to a molecular Bose gas by coherent Raman transitions. We apply the sum-rule approach of many-body response theory to derive the low-lying collective excitation frequencies of the hybrid atom-molecular system. The atomic and molecular ground-state densities obtained in Gross-Pitaevskii and modified Gross-Pitaevskii (including the higher order Lee-Huang-Yang term in interatomic interaction) approaches are used to find out the individual energy components and hence the excitation frequencies. We obtain different excitation energies for different angular momenta and study their characteristic dependence on the effective Raman detuning, the scattering length for atom-atom interaction, and the intensities of the coupling lasers. We show that the inclusion of the higher-order nonlinear interatomic interaction in modified Gross-Pitaevskii approach introduces significant corrections to the ground-state properties and the excitation frequencies both for axially and spherically trapped coupled {sup 87}Rb condensate system with the increase in the s-wave scattering length (for peak gas-parameter {>=}10{sup -3}). It has been shown that the excitation frequencies decrease with the increase in the effective Raman detuning as well as the s-wave scattering length, whereas excitation frequencies increase with the increase in the atom-molecular coupling strength. The frequencies in modified Gross-Pitaevskii approximation exhibit an upward trend after a certain value of scattering length and also largely deviate from the Gross-Pitaevskii results with the increase in s-wave scattering length. The strong dependence of excitation frequencies on the laser intensities used for Raman transitions manifests the role of atom-molecular coupling strength on the control of collective excitations. The collective excitation frequencies for the hybrid atom-molecular BEC differ

  3. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  4. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  5. Supersolitons: Solitonic Excitations in Atomic Soliton Chains

    SciTech Connect

    Novoa, David; Michinel, Humberto; Perez-Garcia, Victor M.

    2008-10-03

    We show that, by tuning interactions in nonintegrable vector nonlinear Schroedinger equations modeling Bose-Einstein condensates and other relevant physical systems, it is possible to achieve a regime of elastic particlelike collisions between solitons. This would allow one to construct a Newton's cradle with solitons and supersolitons: localized collective excitations in solitary-wave chains.

  6. Imaging spatial correlations of Rydberg excitations in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, Andrew; Sapiro, Rachel; Raithel, Georg

    2011-05-01

    Previously, Rydberg excitation blockades have been shown to cause a saturation of Rydberg excitation numbers in atom samples and a narrowing of the excitation number statistics, and they have been employed in quantum information experiments. In the experiment described in this talk, we present measurements of structures in the Rydberg pair correlation function similar to those predicted in. To achieve sufficient spatial magnification, we use the principle of field ion microscopy. A tungsten tip is placed close to a cold atom cloud in which several Rydberg excitations are prepared using a narrow-linewidth laser. To read out the sample, the tip voltage is suddenly switched to a high value. The Rydberg atoms are field-ionized, and the resultant ions are projected onto a nearby position-sensitive detector. We present the dependence of the pair correlation function on the principle quantum number and other parameters. We gratefully acknowledge support from AFOSR and NSF-FOCUS.

  7. Excitation of hydrogen atoms in collisions with helium atoms: the role of electron–electron interaction

    NASA Astrophysics Data System (ADS)

    Frémont, F.; Belyaev, A. K.

    2017-02-01

    Cross sections for producing H(nl) excited state atoms in H(1s) + He(1s2) collisions are calculated using the CTMC method, at impact energies ranging from 20 eV to 100 keV. The role of the electron correlation is studied. In the first step, the interactions between each pair of the three electrons are neglected. This leads to disagreement of the calculated total cross section for producing H(2l) atoms with previous experimental and theoretical results. In a second step, the electron–electron interaction is taken into account in a rigorous way, that is, in the form of the pure Coulomb potential. To make sure that the He target is stable before the collision, phenomenological potentials for the electron–helium-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulomb potential. The excitation cross section calculated in the frame of this model is in remarkable agreement with previous data in the range between 200 eV and 5 keV. At other energies, discrepancies are revealed, but only by a factor of less than 2 at high energies. The present results show the decisive role of the electron–electron interaction during collisions. In addition, they demonstrate the ability of classical mechanics to take into account the effects of the electron correlation.

  8. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  9. Outer-shell excitation mechanisms and static-mode laser-fluorescence spectroscopy of sputtered atoms

    SciTech Connect

    Gruen, D.M.; Pellin, M.J.; Young, C.E.; Mendelsohn, M.H.; DeWald, A.B.

    1982-01-01

    A review of the literature on atoms sputtered in electronically excited states is given together with a discussion of various mechanisms that have been proposed to account for the observations. The major observational features that have emerged from the older studies may be summarized as follows: (1) the kinetic energies of neutral atoms in highly excited electronic states are 1-2 orders of magnitude greater than E/sub b/, the surface binding energy; (2) relative yields show approximately exponential dependence on excitation energy with characteristic temperatures measured in thousands of degrees; (43) absolute yields are lower by 2-3 orders of magnitude than secondary ion yields which themselves are usually very small compared to total sputtering yields. In many cases, excited-state yields increase 1-2 orders of magnitude as a result of surface oxidation. 83 references.

  10. Collisional energy transfer from excited nitrogen dioxide

    SciTech Connect

    Patten, K.O.

    1991-05-01

    The radiative lifetimes of gaseous nitrogen dioxide excited by pulsed, tunable dye laser radiation are determined for excitation wavelengths ranging from 400 to 750 nm. When the data are expressed in the form of zero-pressure radiative rate constants (k{sub 0}/s{sup {minus}1}), they fit a linear equation with respect to excitation energy. This fit predicts a radiative lifetime of 64 {mu}s for 400 nm excitation and 102 {mu}s at 750 nm. The effects of pressure, observation delay time, and wavelength range of the fluorescence detection apparatus are determined for both radiative lifetime and quenching constant. Dispersed fluorescence spectra from excited nitrogen dioxide are analyzed into three-parameter functions that approximate the corresponding excited state population distributions. Energy transfer from nitrogen dioxide excited at 532 nm and colliding with thirteen buffer gases is studied by this population deconvolution method. The energy removal rate constants increase in the order Ne < Ar < Kr < Xe < He < CO < N{sub 2} < O{sub 2} < NO < NO{sub 2} < CO{sub 2} < SF{sub 6} < SO{sub 2}. The energy transfer rate constant is strongly correlated with the number of degrees of freedom of the buffer molecule and with low vibrational frequencies of the buffer molecule. Population deconvolution from excited nitrogen dioxide fluorescence spectra is again employed to find energy removal rate constants for the NO {sub 2}{sup *}-NO{sub 2} collisions, excited by dye laser at 475.34, 435.04, and 400.00 nm. The energy transfer rate constant increases with decreasing excitation wavelength. The energy removal rate constant between 400 and 532 nm excitation increases as the (3.6 {plus minus} 0.4) power of the excitation photon energy. 76 refs., 67 figs., 16 tabs.

  11. Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets.

    PubMed

    Bünermann, Oliver; Kornilov, Oleg; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2012-12-07

    The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 ± 0.2 eV, Rydberg atoms in n = 3 and n = 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n = 3 Rydberg atoms are ejected with kinetic energies as high as 0.85 eV, but their appearance is delayed by approximately 200 fs. In contrast, n = 4 Rydberg atoms appear within the time resolution of the experiment with considerably lower kinetic energies. Major features in the Rydberg atom kinetic energy distributions for both principal quantum numbers can be described within a simple elastic scattering model of localized perturbed atomic Rydberg atoms that are expelled from the droplet due to their repulsive interaction with the surrounding helium bath. Time-dependent kinetic energy distributions of He(2) (+) and He(3) (+) ions are presented that support the formation of molecular ions in an indirect droplet ionization process and the ejection of neutral Rydberg dimers on a similar time scale as the n = 3 Rydberg atoms.

  12. Reactive scattering of electronically excited alkali atoms with molecules

    SciTech Connect

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl/sup -/ repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O/sub 2/ is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO/sub 2/ is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed.

  13. Populating excited states of incoherent atoms using coherent light.

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Carlsten, J. L.

    1972-01-01

    Study of the influence of various experimental parameters on the interaction between a multimode high-intensity laser light and the absorbing atoms of an atomic gas. Using a simplified treatment of line broadening which does not include correlations between momentum-changing collisions and pressure-broadening collisions, expressions are obtained that show the effect of pressure, laser-pulse length, and intensity on the excitation. It is found that, as long as the dephasing time of the atomic system is sufficiently short, the interaction reduces to a two-body collision between the atoms and photons, where coherence effects do not occur.

  14. Velocity-dependent dipole forces on an excited atom

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Lambrecht, A.

    2016-02-01

    We present a time-dependent calculation of the velocity-dependent forces which act on an excited atomic dipole in relative motion with respect to ground state atoms of a different kind. Both its interaction with a single atom and with a dilute atomic plate are evaluated. In either case, the total force consists of a conservative van der Waals component and a nonconservative Röntgen component. On physical grounds, the former corresponds to the velocity-dependent recoil experienced by the excited atom in the processes of absorption and emission of the photons that it exchanges with the ground-state atoms on a periodic basis. The latter corresponds to the time-variation of the Röntgen momentum, which is also mediated by the periodic exchange of quasiresonant photons. We find that, at leading order, all these interactions are linear in velocity. In the nonretarded regime the van der Waals force dominates, being antiparallel to the velocity. On the contrary, in the retarded regime the velocity-dependent forces oscillate in space, van der Waals and Röntgen forces are of the same order in the atom-atom interaction, and the Röntgen component dominates in the atom-surface interaction.

  15. Radiative lifetimes, diffusion and energy pooling of Sr(5s5p( 3P J)) and Sr(5s4d( 1D 2)) studied by time-resolved atomic emission following pulsed dye-laser excitation

    NASA Astrophysics Data System (ADS)

    Husain, David; Roberts, Gareth

    1988-11-01

    A study is presented of the kinetic behaviour of the optically metastable states Sr(5s5p( 3P J)) and Sr(5s4d( 1D 2)), each separately generated by pulsed dye-laser excitation at λ = 689.3 nm (Sr(5s5p( 3P 1))←Sr(5s 2( 1S 0))) and λ = 496.1 nm (Sr(5s4d( 1D 2))←Sr(5s 2( 1S 0))) in the presence of helium buffer gas. Radiative and diffusional loss of both metastable states in helium, including the effect of radiation trapping for Sr(5s5p( 3P J)), have been investigated as a function of temperature and pressure by time-resolved emission measurements. We report the following radiative lifetimes: τ e(Sr( 3P 1)) = (19.6 -0.5+0.6) μs for fluorescence via the spin-forbidden transition to the ground state; and τ(Sr( 1D 2)) = (412 -9+10) μs for radiative loss to all lower-lying states. Both values are compared with the results of previous experimental work and theoretical calculations as appropriate. When expressed in the form D12 ∝ Tn, the measured temperature dependence of the diffusion coefficients D12(Sr( 3P J)-He) and D12(Sr( 1D 2-He) yielded n = 1.59±0.51 and n = 1.83±0.89, respectively. Rate constants for self-quenching of Sr( 3P J) and Sr( 1D 2) atoms by ground-state Sr( 1S 0) vapour are estimated to be kSr = (2.9-6.4)×10 -14 cm 3 atom -1 s -1 and k'Sr = (3.4±0.9)×10 -14 cm 3 atom -1 s -1 respectively. Whilst an upper limit of kHe⩽(2.6±0.6)×10 -15 cm 3 atom -1 s -1 is determined for collisional quenching of Sr( 3P J) atoms by He, no such effect could be observed for Sr( 1D 2) atoms. Energy pooling processes involving Sr(5s5p( 3P J)) atoms to yield the higher-lying 5s5p( 1P 1), 5s4d( 1D 2) and 5s6s( 3S 1) states are also investigated in the time domain, where the mechanisms for pooling formation are established from a quantitative comparison of the time dependence of atomic emission from the energy store and pooled states. For Sr(5s4d( 1D 2)), fluorescence from some 22 energy-pooled atomic states is reported, mostly arising from bimolecular

  16. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  17. Deactivation of Highly Vibrationally Excited OH by O Atoms

    NASA Astrophysics Data System (ADS)

    Copeland, R. A.; Smith, G. P.; Mlynczak, M. M.; Kalogerakis, K. S.

    2006-12-01

    The hydroxyl radical is a key player in the chemistry and energetics of the middle terrestrial atmosphere, and several studies have investigated energy transfer processes between OH(υ) and atmospheric molecules. Nevertheless, a gap exists in our understanding of its interaction with oxygen atoms. Oxygen atoms are present at about 10% of the oxygen molecule concentration at ~95 km and about 1% at 88 km, so if their rate constant is significantly faster than that of O2 and N2, they will strongly influence the intensity and the vibrational distribution extracted from the OH(υ) emission. We report laboratory measurements of the total removal rate constants of OH(υ = 8, 9) by O(3 P) atoms and preliminary measurements on CO2. These measurements are required so that we can quantify the importance of these collisional processes in the modeling of atmospheric OH emissions and evaluate the chemical heating rate from measurements by the SABER instrument aboard the TIMED satellite. In the experiments, we generate O(3P) and OH(υ) by photodissociation of ozone at 250 nm in a mixture of ozone, nitrogen, hydrogen. The highly excited vibrational levels OH(υ = 7-9) are produced in the reaction of H atoms with ozone that has not been photodissociated. We monitor the temporal evolution of the OH(υ = 8 and 9) population by laser excitation via the \\it B3Σ_u- \\textendash \\it X3Σ_g- (0,9) and (0,8) transitions near 237 nm and 226 nm, respectively, and subsequent detection of visible fluorescence emitted from the \\it B3Σ_u^{- } \\textendash \\it A3Σ_u+ band, an approach developed previously in our laboratory [1]. By controlling the initial conditions of the experiments, we can extract the rate coefficient for OH removal by O atoms in the system. For direct analysis of the OH signal rise to yield accurate rate coefficients an extremely good signal-to-noise-ratio is required. However, a preferred approach involves comparison of the OH signal relative intensity changes when

  18. Dissociative excitation of the manganese atom quartet levels by collisions e-MnBr2

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu M.

    2017-04-01

    Dissociative excitation of quartet levels of the manganese atom was studied in collisions of electrons with manganese dibromide molecules. Eighty-two cross-sections for transitions originating at odd levels and eleven cross-sections for transitions originating at even levels have been measured at an incident electron energy of 100 eV. An optical excitation function has been recorded in the electron energy range of 0–100 eV for transitions originating from 3d 64p z 4 F° levels. For the majority of transitions, a comparison of the resulting cross-section values to cross-sections produced by direct excitation is provided.

  19. Atomic resolution mapping of phonon excitations in STEM-EELS experiments.

    PubMed

    Egoavil, R; Gauquelin, N; Martinez, G T; Van Aert, S; Van Tendeloo, G; Verbeeck, J

    2014-12-01

    Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberration-corrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalized due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localization of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.

  20. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  1. Orientation and alignment of alkali p-states excited in low-energy collisions of alkali ions with noble gas atoms

    NASA Astrophysics Data System (ADS)

    Menner, B.; Ohlendorf, G.; Patorra, F.; Kempter, V.

    1990-12-01

    The orientation and alignment of Li(2 p) excited in 1 2.5 keV Li+ collisions with He and Ar, and of Na(3 p) excited in 2.5 keV Na+ collisions with He and Ne have been studied by the polarized photon-scattered particle coincidence technique. The covered range of scattering angles is between 1 and 18 degrees. The data are presented in terms of the alignment angle γ and the transferred angular momentum L ⊥. A qualitative analysis of the data is attempted on the basis of diabatic molecular orbital diagrams for the studied collisions systems.

  2. van der Waals interactions between excited-state atoms and dispersive dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Fichet, M.; Schuller, F.; Bloch, D.; Ducloy, M.

    1995-02-01

    van der Waals interactions between atoms and dielectric surfaces are reinvestigated. To describe the nonretarded interaction potential between a dispersive dielectric surface and an atom in an arbitrary internal energy state, we derive a general expression in terms of an integral, over real frequency, of the combined atom and surface polarizabilities. It is shown that, for excited atoms, the expression is equivalent to the one obtained by Wylie and Sipe [Phys. Rev. A 32, 2030 (1985)]. We thus demonstrate how to extend this approach to excited atoms interacting with birefringent dielectrics. For isotropic dielectrics, a method of integration in closed form allows us to derive an approximate formula for the van der Waals interaction constant in terms of resonance frequencies and oscillator strengths of both the atom and the dielectric. Frequency-dependent ``dielectric reflection'' coefficients are introduced for virtual atomic dipole couplings either in absorption or in emission. In absorption, the reflection coefficient is always positive and smaller than unity. In emission, it may take arbitrary values, positive or negative (corresponding to van der Waals repulsion). Such a behavior is shown to be related to resonant excitation exchange between the atomic system and the dielectric medium, when an atomic transition frequency gets in resonance with a dielectric absorption band. Numerical calculations performed for the cesium-sapphire system are shown to be in good agreement with data obtained by selective-reflection spectroscopy. Finally, experimental tests of the birefringent character of the sapphire response are discussed.

  3. Spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations

    SciTech Connect

    Chen, Jing; Hu, Jiawei; Yu, Hongwei

    2015-02-15

    We study the spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations by separately calculating the contribution to the excitation rate of vacuum fluctuations and a cross term which involves both vacuum fluctuations and radiation reaction, and demonstrate that although the spontaneous excitation for the atom in its ground state would occur in vacuum, such atoms in circular motion do not perceive a pure thermal radiation as their counterparts in linear acceleration do since the transition rates of the atom do not contain the Planckian factor characterizing a thermal bath. We also find that the contribution of the cross term that plays the same role as that of radiation reaction in the scalar and electromagnetic fields cases differs for atoms in circular motion from those in linear acceleration. This suggests that the conclusion drawn for atoms coupled with the scalar and electromagnetic fields that the contribution of radiation reaction to the mean rate of change of atomic energy does not vary as the trajectory of the atom changes from linear acceleration to circular motion is not a general trait that applies to the Dirac field where the role of radiation reaction is played by the cross term. - Highlights: • Spontaneous excitation of a circularly accelerated atom is studied. • The atom interacts with the Dirac field through nonlinear coupling. • A cross term involving vacuum fluctuations and radiation reaction contributes. • The atom in circular motion does not perceive pure thermal radiation. • The contribution of the cross term changes as the atomic trajectory varies.

  4. The RPA Atomization Energy Puzzle.

    PubMed

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  5. An Optically Excited Metastable Krypton Atomic Beam Source

    NASA Astrophysics Data System (ADS)

    Mastroianni, Michael; Orzel, Chad

    2006-05-01

    We report the construction of an optically excited metastable krypton atomic beam source. Ground-state Kr atoms are excited to the 5s[3/2]1 state by a 123 nm photon from a krypton resonance line lamp, then to the 5p[5/2]2 state by an 819 nm photon from a diode laser. From the 5p[3/2]2 state, they spontaneously decay into the 5s[3/2]2 (^3P2) metastable state with 77% probability. We characterize the source using both resonant fluorescence at 811 nm and a surface ionization detector. The source will be used to load a Kr* magneto-optical trap for Kr background evaluation by Atom Trap Trace Analysis.

  6. Molecular hydrogen formation by excited atom radiative association

    NASA Technical Reports Server (NTRS)

    Latter, William B.; Black, John H.

    1991-01-01

    The results from a semiclassical calculation of the thermal rate coefficient for the radiative association process H(n = 2) + H(n = 1) - H2 + hv are presented (n is the principal quantum number of the separated hydrogen atoms). The relative importance of this reaction in various environments is briefly discussed. Models of the early universe around the epoch of recombination and protostellar winds have been calculated which include the excited atom process. Not surprisingly, it is shown that the excited atom process will not be important in the general interstellar medium, except possibly in environments where the amount of Ly-alpha photon trapping is large. Examples may be the material surrounding quasars, active galactic nuclei, and bright H II regions. The most likely application of this process might be within rapidly evolving systems where a large transient n = 2 population of neutral hydrogen could result in a burst of molecular hydrogen formation.

  7. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1978-05-01

    laser development . In essence, this research concerns itself with the elucidation of the role of electronic energy in affecting the chemistry or photochemistry of excited halogen atoms and molecules. While much is known about the dynamics of chemical and physical processes which are carried out on the lowest potential energy hypersurface correlating with reactants and products in their electronic ground state, relatively little is known about the dynamics of such phenomena as energy transfer and chemical reactivity on higher-lying potential

  8. Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices

    SciTech Connect

    Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.

    2005-07-15

    Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.

  9. Electron-loss and excitation cross sections for a He+ ion colliding with various atoms

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiaki

    1985-10-01

    A unitarized impact-parameter method is applied to calculate the electron-loss and excitation cross sections for He+ ions colliding with atoms. The projectile ionization and excitation are dominantly caused by the average potential field of the target atom (atomic number Z2). The inelastic process of exciting the target atom contributes negligibly except for light target elements. We adopt the Molière potential to describe this average potential field. The energy dependences of the electron-loss cross sections in He, N2, and Ar targets are in good agreement with the reported data. In the case of the Kr target, the present theory yields larger cross sections than the data, especially below 1 MeV impact energy of a He+ projectile. The calculated loss cross sections at impact velocity ranging from 2v0 to 6v0 (v0=2.18×108 cm/s) show a weaker Z2 dependence in the large Z2 region than that given by the Bohr formula. As for the cross section for exciting the ground state of a projectile to the first excited state, a similar weak Z2 dependence can be found. The recent experimental results using 40-MeV F8+ ions colliding with He, Ne, Ar, and Kr targets have supported this tendency.

  10. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  11. Collisional excitation of NH3 by atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Bouhafs, N.; Rist, C.; Daniel, F.; Dumouchel, F.; Lique, F.; Wiesenfeld, L.; Faure, A.

    2017-09-01

    We report extensive theoretical calculations on the rotation-inversion excitation of interstellar ammonia (NH3) due to collisions with atomic and molecular hydrogen (both para- and ortho-H2). Close-coupling calculations are performed for total energies in the range 1-2000 cm-1 and rotational cross-sections are obtained for all transitions amongst the lowest 17 and 34 rotation-inversion levels of ortho- and para-NH3, respectively. Rate coefficients are deduced for kinetic temperatures up to 200 K. Propensity rules for the three colliding partners are discussed and we also compare the new results to previous calculations for the spherically symmetrical He and para-H2 projectiles. Significant differences are found between the different sets of calculations. Finally, we test the impact of the new rate coefficients on the calibration of the ammonia thermometer. We find that the calibration curve is only weakly sensitive to the colliding partner and we confirm that the ammonia thermometer is robust.

  12. Excited-state hydrogen atom transfer reaction in solvated 7-hydroxy-4-methylcoumarin.

    PubMed

    De Silva, Nuwan; Minezawa, Noriyuki; Gordon, Mark S

    2013-12-12

    Excited-state enol to keto tautomerization of 7-hydroxy-4-methylcoumarin (C456) with three water molecules (C456:3H2O), is theoretically investigated using time-dependent density functional theory (TDDFT) combined with the polarizable continuum model and 200 waters explicitly modeled with the effective fragment potential. The tautomerization of C456 in the presence of three water molecules is accompanied by an asynchronous quadruple hydrogen atom transfer reaction from the enol to the keto tautomer in the excited state. TDDFT with the PBE0 functional and the DH(d,p) basis set is used to calculate the excited-state reaction barrier height, absorption (excitation), and fluorescence (de-excitation) energies. These results are compared with the available experimental and theoretical data. In contrast to previous work, it is predicted here that the coumarin 456 system undergoes a hydrogen atom transfer, not a proton transfer. The calculated reaction barrier of the first excited state of C456:3H2O with 200 water molecules is found to be -0.23 kcal/mol without zero-point energy (-5.07 kcal/mol with zero point energy, i.e., the activation energy).

  13. Photothermal excitation setup for a modified commercial atomic force microscope

    SciTech Connect

    Adam, Holger; Rode, Sebastian; Schreiber, Martin; Kühnle, Angelika; Kobayashi, Kei; Yamada, Hirofumi

    2014-02-15

    High-resolution imaging in liquids using frequency modulation atomic force microscopy is known to suffer from additional peaks in the resonance spectrum that are unrelated to the cantilever resonance. These unwanted peaks are caused by acoustic modes of the liquid and the setup arising from the indirect oscillation excitation by a piezoelectric transducer. Photothermal excitation has been identified as a suitable method for exciting the cantilever in a direct manner. Here, we present a simple design for implementing photothermal excitation in a modified Multimode scan head from Bruker. Our approach is based on adding a few components only to keep the modifications as simple as possible and to maintain the low noise level of the original setup with a typical deflection noise density of about 15 fm/√(Hz) measured in aqueous solution. The success of the modification is illustrated by a comparison of the resonance spectra obtained with piezoelectric and photothermal excitation. The performance of the systems is demonstrated by presenting high-resolution images on bare calcite in liquid as well as organic adsorbates (Alizarin Red S) on calcite with simultaneous atomic resolution of the underlying calcite substrate.

  14. Electron scattering by laser-excited barium atoms

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Jensen, S. W.; Poe, R. T.

    1978-01-01

    Inelastic and superelastic scattering of 30- and 100-eV electrons by laser-excited 6s 6p 1P and subsequent cascade-populated 6s 6p 3P, 6s 5d 1D, and 6s 5d 3D Ba atoms have been observed. Absolute differential cross sections for the singlet and relative scattering intensities for the triplet species have been determined in the 5 to 20 deg angular region. Under the present conditions excitations dominate over deexcitations.

  15. Collisions of excited Na atoms with H2 molecules. I. Ab initio potential energy surfaces and qualitative discussion of the quenching process

    NASA Astrophysics Data System (ADS)

    Botschwina, Peter; Meyer, Wilfried; Hertel, Ingolf V.; Reiland, W.

    1981-12-01

    Potential energy surfaces have been calculated for the four lowest electronic states of Na (3 2S, 3 2P)+H2(1Σ+g) by means of the RHF-SCF and PNO-CEPA methods. For the so-called quenching process of Na (3 2P) by H2 at low initial translational energies (E-VRT energy transfer) the energetically most favorable path occurs in C2v symmetry, since—at intermediate Na-H2 separation—the ? 2B2 potential energy surface is attractive. From the CEPA calculations, the crossing point of minimal energy between the ? 2A1 and ? 2B2 surfaces is obtained at Rc = 3.57 a.u. and rc = 2.17 a.u. with an energy difference to the asymptotic limit (R = ∞, r = re) of -0.06 eV. It is thus classically accessible without any initial translational energy, but at low initial translational energies (˜0.1 eV) quenching will be efficient only for arrangements of collision partners close to C2v symmetry. There is little indication of an avoiding crossing with an ionic intermediate correlating asymptotically with Na+ and H2- as was assumed in previous discussions of the quenching process. The dependence of the total quenching cross sections on the initial translational energy is discussed by means of the ''absorbing sphere'' model, taking the initial zero-point vibrational energy of the hydrogen molecule into account. New experimental data of the product channel distribution in H2 for center-of-mass forward scattering are presented. The final vibrational states v' = 3, 2, 1, and 0 of H2 are populated to about 26%, 61%, 13%, and 0%, respectively. The observed distributions in H2 (and D2) may be rationalized by simple dynamic considerations on the basis of the calculated surfaces.

  16. Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ciocca, Marco

    1996-01-01

    The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.

  17. State-specific transport properties of partially ionized flows of electronically excited atomic gases

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-03-01

    State-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.

  18. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  19. Cross sections of collisional excitation transfer in collisions of rare-earth metal atoms in screened excited states with atoms of inert gases

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.

    2011-10-01

    We present and apply a method to determine the collisional excitation transfer (CET) cross sections in collisions of rare-earth metal (REM) atoms in the screened excited states 4fN - 15d6s2 with ground-state atoms of inert gases. The method is based on the fact that the upper laser levels are collisionally populated from the close-lying resonant levels, which are excited by electron impact, in REM vapour lasers. An experimental measurement of only one laser parameter (average lasing power) is required to determine the cross sections. The CET cross sections from the screened level 4f12(3H5)5d3/26s2, with energy E = 22 791.176 cm-1, to the unscreened 4f12(3H6)6s26p1/2 (E = 22 468.046 cm-1) and screened 4f13(2F07/2)5d6s(3D) (E = 22 559.502 cm-1) levels of thulium atoms in the collisions with helium atoms are estimated as an example.

  20. Collisions of excited Na atoms with H/sub 2/ molecules. I. Ab initio potential energy surfaces and qualitative discussion of the quenching process

    SciTech Connect

    Botschwina, P.; Meyer, W.; Hertel, I.V.; Reiland, W.

    1981-12-01

    Potential energy surfaces have been calculated for the four lowest electronic states of Na (3 /sup 2/S, 3 /sup 2/P)+H/sub 2/(/sup 1/..sigma../sup +//sub g/) by means of the RHF--SCF and PNO--CEPA methods. For the so-called quenching process of Na (3 /sup 2/P) by H/sub 2/ at low initial translational energies (E--VRT energy transfer) the energetically most favorable path occurs in C/sub 2v/ symmetry, since: at intermediate Na--H/sub 2/ separation: the A /sup 2/B/sub 2/ potential energy surface is attractive. From the CEPA calculations, the crossing point of minimal energy between the X /sup 2/A/sub 1/ and A /sup 2/B/sub 2/ surfaces is obtained at R/sub c/ = 3.57 a.u. and r/sub c/ = 2.17 a.u. with an energy difference to the asymptotic limit (R = infinity, r = r/sub e/) of -0.06 eV. It is thus classically accessible without any initial translational energy, but at low initial translational energies (approx.0.1 eV) quenching will be efficient only for arrangements of collision partners close to C/sub 2v/ symmetry. There is little indication of an avoiding crossing with an ionic intermediate correlating asymptotically with Na/sup +/ and H/sub 2//sup -/ as was assumed in previous discussions of the quenching process. The dependence of the total quenching cross sections on the initial translational energy is discussed by means of the ''absorbing sphere'' model, taking the initial zero-point vibrational energy of the hydrogen molecule into account. New experimental data of the product channel distribution in H/sub 2/ for center-of-mass forward scattering are presented. The final vibrational states v' = 3, 2, 1, and 0 of H/sub 2/ are populated to about 26%, 61%, 13%, and 0%, respectively. The observed distributions in H/sub 2/ (and D/sub 2/) may be rationalized by simple dynamic considerations on the basis of the calculated surfaces.

  1. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    SciTech Connect

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-05-15

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent.

  2. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-12-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  3. Atomic excitation and acceleration in strong laser fields

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Eichmann, U.

    2016-10-01

    Atomic excitation in the tunneling regime of a strong-field laser-matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results.

  4. Positron impact excitations of hydrogen atom embedded in weakly coupled plasmas: Formation of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Rej, Pramit; Ghoshal, Arijit

    2014-09-01

    Formation of Rydberg atoms due to 1s → n l m excitations of hydrogen, for arbitrary n, l, m, by positron impact in weakly coupled plasma has been investigated using a distorted-wave theory in the momentum space. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. Making use of a simple variationally determined wave function for the hydrogen atom, it has been possible to obtain the distorted-wave scattering amplitude in a closed analytical form. A detailed study has been made on the effects of plasma screening on the differential and total cross sections in the energy range 20-300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1s → n l m inelastic positron-hydrogen collisions for arbitrary n, l, m in weakly coupled plasmas is the first reported in the literature.

  5. Positron impact excitations of hydrogen atom embedded in weakly coupled plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-09-15

    Formation of Rydberg atoms due to 1s→nlm excitations of hydrogen, for arbitrary n, l, m, by positron impact in weakly coupled plasma has been investigated using a distorted-wave theory in the momentum space. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. Making use of a simple variationally determined wave function for the hydrogen atom, it has been possible to obtain the distorted-wave scattering amplitude in a closed analytical form. A detailed study has been made on the effects of plasma screening on the differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1s→nlm inelastic positron-hydrogen collisions for arbitrary n, l, m in weakly coupled plasmas is the first reported in the literature.

  6. Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface

    SciTech Connect

    Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Garcia de Abajo, F.J.

    1997-12-01

    We have scattered protons and hydrogen atoms with energies of some keV from a LiF(001) surface under a grazing angle of incidence. From the intensity of Lyman-{alpha} radiation (transition from n=2 to n=1, {lambda}=121.6 nm ) as a function of projectile energy for different azimuthal orientations of the crystal surface, we find clear evidence for a resonant coherent excitation of n=2 states of hydrogen atoms in the oscillating electric field in front of the insulator surface. {copyright} {ital 1997} {ital The American Physical Society}

  7. Complex-scaling treatment for quantum entanglement in doubly excited helium atom

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hao; Ho, Yew Kam

    2015-05-01

    Recently, we have investigated entanglement measures in natural atomic systems that involve two highly correlated indistinguishable spin-1/2 fermions (electrons). Linear entropy and von Neumann entropy were calculated for spatial (electron-electron orbital) entanglement measures for ground and singly excited bound states in two-electron atomic systems, such as He, H- and Ps-. In our present work, we carry out an investigation on entanglement in doubly excited resonance states of helium. Since resonance states are lying in the scattering continuum, their energies are no longer bound by the variational theorem; we apply the complex scaling method to solve the complex energy pole with which the resonance energy and resonance width are deduced. Hylleraas-type wave functions are used to consider correlation effects. Once the wave function for a doubly excited state is obtained, we apply the Schmidt decomposition method to calculate the linear entropy and von Neumann entropy for the doubly excited 2s2, 2 s3 s, 2p2, 3s2, and 3p21Se resonance states in the helium atom. Work supported by the Ministry of Science and Technology of Taiwan.

  8. Low energy neutral atom imaging

    SciTech Connect

    McComas, D.J.; Funsten, H.O.; Gosling, J.T.; Moore, K.R.; Thomsen, M.F.

    1992-01-01

    Energetic neutral atom (ENA) and low energy neutral atom (LENA) imaging of space plasmas are emerging new technology which promises to revolutionize the way we view and understand large scale space plasma phenomena and dynamics. ENAs and LENAs are produced in the magnetosphere by charge exchange between energetic and plasma ions and cold geocoronal neutrals. While imaging techniques have been previously developed for observing ENAs, with energies above several tens of keV, most of the ions found in the terrestrial magnetosphere have lower energies. We recently suggested that LENAs could be imaged by first converting the neutrals to ions and then electrostatically analyzing them to reject the UV background. In this paper we extend this work to examine in detail the sensor elements needed to make an LENA imager. These elements are (1) a biased collimator to remove the ambient plasma ions and electrons and set the azimuthal field-of-view; (2) a charge modifier to convert a portion of the incident LENAs to ions; (3) an electrostatic analyzer to reject UV light and set the energy passband; and (4) a coincidence detector to measure converted LENAs while rejecting noise and penetrating radiation. We also examine the issue of LENA imager sensitivity and describe ways of optimizing sensitivity in the various sensor components. Finally, we demonstrate in detail how these general considerations are implemented by describing one relatively straightforward design based on a hemispherical electrostatic analyzer.

  9. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination.

    PubMed

    Cai, Yi; Zhang, Ya-Jie; Wu, De-Fu; Yu, Yong-Liang; Wang, Jian-Hua

    2016-04-19

    The low atomization and excitation capability of nonthermal microplasma, e.g., dielectric barrier discharge (DBD), has greatly hampered its potential applications for the determination of metals in solution. In the present work, an inspiring development is reported for direct atomization and excitation of cadmium in aqueous solution by DBD and facilitates highly sensitive determination. A DBD microplasma is generated on the nozzle of a pneumatic micronebulizer to focus the DBD energy on a confined space and atomize/excite metals in the spray. Meanwhile, an appropriate sample matrix and nebulization in helium further improves the atomization and excitation capability of DBD. With cadmium as a model, its emission is recorded by a CCD spectrometer at 228.8 nm. By using an 80 μL sample solution nebulized at 3 μL s(-1), a linear range of 5-1000 μg L(-1) along with a detection limit of 1.5 μg L(-1) is achieved, which is comparable to those obtained by commercial bulky inductively coupled plasma (ICP)-based instrumentations.

  10. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    NASA Astrophysics Data System (ADS)

    Palan, Vikrant; Shepard, W. Steve

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2 mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250 g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength.

  11. Isotopic effects in scattering and kinetics of the atomic cascade of excited μ-p and μ-d atoms

    NASA Astrophysics Data System (ADS)

    Popov, V. P.; Pomerantsev, V. N.

    2017-02-01

    The quantum-mechanical calculations of the differential and integrated cross sections of the elastic scattering, Stark transitions, and Coulomb deexcitation at collisions of excited μ-p and μ-d atoms with hydrogen isotope atoms in the ground state are performed. The scattering processes are treated in a unified manner in the framework of the close-coupling approach. The basis used includes both open and closed channels corresponding to all exotic-atom states with principal quantum numbers from n =1 up to nmax=20 . The energy shifts of n s states due to electron vacuum polarization and finite nuclear size are taken into account. The kinetics of the atomic cascade of μ-p and μ-d atoms are studied in a wide range of relative target densities (φ =10-8-1 ) within the improved version of the extended cascade model, in which the results of the numerical quantum-mechanical calculations of the cross sections for quantum numbers and kinetic energies of muonic atoms that are of interest for the detailed cascade calculations, are used as input data. Initial (n ,l ,E ) distributions of muonic atoms at the instant of their formation and the target motion are taken into account explicitly in present cascade calculations. The comparison of the calculated cross sections, the kinetic-energy distributions of muonic atoms at the instant of their n p →1 s radiative transitions, as well as the absolute and relative x-ray yields for both muonic hydrogen and muonic deuterium reveals the isotopic effects, which, in principal, may be observed experimentally. The present results are mainly in very good agreement with experimental data available in the literature.

  12. Production of excited atomic hydrogen and deuterium from H2 and D2photodissociation

    SciTech Connect

    Bozek, J.D.; Furst, J.E.; Gay, T.J.; Gould, H.; Kilcoyne, A.L.D.; Machacek, J.R.; Martin, F.; McLaughlin, K.W.; Sanz-Vicario, J.L.

    2006-09-17

    We have measured the production of both Ly alpha and H alphafluorescence from atomic H and D for the photodissociation of H2 and D2by linearly polarized photons with energies between 24 and 60 eV. In thisenergy range, excited photofragments result primarily from the productionof doubly excited molecular species which promptly autoionize ordissociate into two neutrals. Our data are compared with ab initiocalculations of the dissociation process, in which both doubly excitedstate production and prompt ionization (nonresonant) channels areconsidered. Agreement between our experimental data and that of earlierwork, and with our theoretical calculations, is qualitative atbest.

  13. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  14. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  15. The formation of excited atoms during charge exchange between hydrogen ions and alkali atoms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nieman, R. A.

    1971-01-01

    The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).

  16. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-05-01

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature.

  17. Positron impact excitations of hydrogen atom embedded in dense quantum plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-11-15

    Formation of Rydberg atoms due to 1 s → nlm excitations of hydrogen by positron impact, for arbitrary n, l, m, in dense quantum plasma has been investigated using a distorted wave theory which includes screened dipole polarization potential. The interactions among the charged particles in the plasma have been represented by exponential cosine-screened Coulomb potentials. Making use of a simple variationally determined hydrogen wave function, it has been possible to obtain the distorted wave scattering amplitude in a closed analytical form. A detailed study has been made to explore the structure of differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1 s → nlm inelastic positron-hydrogen collisions in dense quantum plasma is the first reported in the literature.

  18. Excitation, ionization, and electron capture cross sections for collisions of Li{sup 3+} with ground state and excited hydrogen atoms

    SciTech Connect

    Murakami, I. Yan, J.; Sato, H.; Kimura, M.; Janev, R.K.; Kato, T.

    2008-03-15

    Using the available experimental and theoretical data, as well as the established cross section scaling relationships, a comprehensive cross section database for excitation, ionization and electron capture in collisions of Li{sup 3+} ions with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have the correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form.

  19. Optically excited structural transition in atomic wires on surfaces at the quantum limit

    NASA Astrophysics Data System (ADS)

    Frigge, T.; Hafke, B.; Witte, T.; Krenzer, B.; Streubühr, C.; Samad Syed, A.; Mikšić Trontl, V.; Avigo, I.; Zhou, P.; Ligges, M.; von der Linde, D.; Bovensiepen, U.; Horn-von Hoegen, M.; Wippermann, S.; Lücke, A.; Sanna, S.; Gerstmann, U.; Schmidt, W. G.

    2017-03-01

    Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

  20. Two-Step Excitation of rb and cs Atoms on he Nanodroplets

    NASA Astrophysics Data System (ADS)

    Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E.; Ancilotto, Francesco; Callegari, Carlo

    2010-06-01

    We present the first sequential excitation of atom-doped helium nanodroplets. Rubidium atoms on the surface of a helium nanodroplet are selectively excited to the 5^2P1/2 state so as not to desorb from the droplet. From there they are excited by a laser pulse to the 5^2D state; a laser-induced fluorescence (LIF) spectrum is recorded by monitoring the 62P→52S1/2 emission. We find some difference in the LIF spectrum as compared to that of the two-photon one-color direct excitation spectrum 5^2D←5^2S1/2. This indicates that the system does relax vibrationally during the lifetime of the 5^2P1/2 state. To model the LIF spectra we calculate the energy levels of the Rb atom as a function of its distance R from the center of the droplet. The Franck-Condon factors of the resulting potential energy curves agree with the experimental findings. A similar behavior has been found for cesium. New measurements predict that it also stays bound on the surface of the droplet in its 6^2P1/2 state. From there we further excited Cs monomers into their 6^2D state, where also the LIF spectrum is recorded by watching the 72P→62S1/2 emission. In the future these states can be used as a springboard to reach high-lying 2S and 2D states, and possibly create an artificial super-atom. G. Auböck, J. Nagl, C. Callegari, and W. E. Ernst, Phys. Rev. Lett. 101, 035301 (2008) F. Ancilotto, M. Pi, R. Mayol, M. Barranco, and K. Lehmann, J. Phys. Chem. A 111, 12695-12701 (2007)

  1. Optically excited structural transition in atomic wires on surfaces at the quantum limit.

    PubMed

    Frigge, T; Hafke, B; Witte, T; Krenzer, B; Streubühr, C; Samad Syed, A; Mikšić Trontl, V; Avigo, I; Zhou, P; Ligges, M; von der Linde, D; Bovensiepen, U; Horn-von Hoegen, M; Wippermann, S; Lücke, A; Sanna, S; Gerstmann, U; Schmidt, W G

    2017-03-29

    Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

  2. Electron-induced excitation of vibrations of Ce atoms inside a C80 cage

    NASA Astrophysics Data System (ADS)

    Stróżecka, A.; Muthukumar, K.; Larsson, J. A.; Dybek, A.; Dennis, T. J. S.; Mysliveček, J.; Voigtländer, B.

    2011-04-01

    Inelastic electron tunneling spectroscopy of Ce2@C80 dimetallofullerenes reveals a low-energy inelastic excitation that is interpreted using ab initio calculations and associated with the movements of encapsulated Ce atoms inside the C80 cage. The electron-vibration interaction in Ce2@C80 is unusually high, inducing a pronounced zero-bias anomaly in differential conductance of Ce2@C80. Our observations show that the atoms encapsulated in fullerene cages can actively participate in determining the properties of molecular junctions.

  3. Collective excitations of atoms and field modes in coupled cavities

    NASA Astrophysics Data System (ADS)

    Enaki, Nicolae A.; Bazgan, Sergiu

    2014-04-01

    The exact solution for the system formed from two or three q-bits doped in coupled cavities is discussed. The problem of indistinguishability between the excited radiators and the photons is analyzed using the intrinsic symmetry of the system. It is demonstrated that the solution is drastically simplified when the radiators and photons are considered as new polariton excitations. The exact solution of the Schrödinger equation is obtained for single and two excitations in each cavity considering the indistinguishability principle. This approach opens new possibilities for the interpretation of quantum entangled states in comparison with the traditional distinct situation (see e.g. Napoli and Messina 2001 Fortschr. Phys. 49 1059; Enaki and Bazgan 2013 Phys. Scr. T153 014022) due to the decrease in the number of degrees of freedom in the system. Considering that the energy of coupling between the radiators and the photons is larger than that of the coupling with an external vacuum field, we have found the master equation for the dumping of collective excitations. The time dependence of the population for new dressed quasi-levels of energy is obtained by solving the master equation analytically and numerically.

  4. Relativistic atomic structure calculations and electron impact excitations of Fe23+

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.

    2016-02-01

    Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.

  5. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-01

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  6. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble.

    PubMed

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-28

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  7. Spontaneous decay of an excited atom in an absorbing dielectric

    NASA Astrophysics Data System (ADS)

    Scheel, S.; Knöll, L.; Welsch, D.-G.

    1999-11-01

    Starting from the quantized version of Maxwell's equations for the electromagnetic field in an arbitrary linear Kramers-Kronig dielectric, the Heisenberg equations of motion for a two-level atom resonantly coupled to the radiation field in the presence of dispersive and absorbing dielectric bodies are derived. The theory is applied to the problem of spontaneous decay of excited atoms in absorbing media. The decay rate is calculated for the (Glauber-Lewenstein) real-cavity model, and a comparison with the recently studied (Clausius-Mosotti) virtual-cavity model [S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, Phys. Rev. A 60, 1590 (1999)] is given. It is shown that owing to nonradiative decay associated with absorption, the rate of spontaneous decay sensitively depends on the cavity radius, particularly when the atomic transition frequency approaches an absorption band of the medium. Only when the effect of absorption is fully disregarded, is the familiar local-field correction factor recovered.

  8. Excitation energy transfer in the photosystem I

    SciTech Connect

    Webber, Andrew N

    2012-09-25

    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in the transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.

  9. Spontaneous excitation of a uniformly accelerated atom coupled to vacuum Dirac field fluctuations

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2012-09-01

    We study the spontaneous excitation of a uniformly accelerated two-level atom nonlinearly coupled to vacuum Dirac field fluctuations using the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji and generalized by us to the present case in the current paper. We find that a cross term involving both vacuum fluctuations and radiation reaction appears, which is absent in the linear coupling cases such as an atom interacting with vacuum scalar or electromagnetic fluctuations. Furthermore, the contribution of this term actually dominates over that of radiation reaction. Thus, the mean rate of change of the atomic energy can no longer be distinctively separated into only the contributions of vacuum fluctuations and radiation reaction as in the scalar and electromagnetic cases where the coupling is linear. Our result shows that a uniformly accelerated atom interacting with vacuum Dirac fluctuations would spontaneously excite and a unique feature in sharp contrast to the scalar and electromagnetic cases is the appearance of a term in the excitation rate, which is proportional to the quartic acceleration.

  10. Semiclassical study of the quenching of excited-state fluorine atom by hydrogen molecule - Comparison between reactive and nonreactive processes

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Skuse, B. M.; Jaffe, R. L.; Komornicki, A.; Morokuma, K.; George, T. F.

    1980-01-01

    Semiclassical calculations are carried out for the quenching of excited-state fluorine atom by collinear collisions with hydrogen molecule. The overall quenching probability is the sum of two contributions: the reactive quenching probability associated with the formation of hydrogen fluoride and the nonreactive quenching probability leading to ground-state fluorine atom and hydrogen molecule. The reactive probability is greater in the threshold region of the collision energy, whereas the nonreactive probability dominates for energies above the threshold region.

  11. Rotational excitation of CH4 by He atoms

    NASA Astrophysics Data System (ADS)

    Yanga, B. H.; Stancil, P. C.

    2008-10-01

    Quantum close-coupling and coupled-state approximation scattering calculations for rotational energy transfer of rotationally excited CH4 due to collisions with He are presented for collision energies between 10-7 and 3000 cm-1 using the MP4 potential of Calderoni et al. [J. Chem. Phys. 121, 8261 (2004)]. State-to-state cross sections and rate coefficients from selected initial rotational states of CH4 in symmetries A, E, and F are studied from the ultra-cold to the thermal regime. Comparison of the cross sections with available theoretical results and experimental data show good agreement. Applications to astrophysics and cold laboratory environments are briefly addressed.

  12. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for

  13. Long Lived, Electronically Excited Atoms and Molecules: Excitation, Detection, Excitation Transfer and Spectroscopy

    DTIC Science & Technology

    2008-09-08

    34 Lawrance -Knight (LK)" deconvolution procedure to extract, from an LIF spectrum, the deperturbed energies of the "bright", "doorway", and dark states...Rev. Phys. Chem. 52, 811-852 (2001). 284. S. Altunata and R. W. Field, "An Assumption-Violating Application of the Lawrance -Knight Decon- volution

  14. De-Excitation of Guiding-Center Atoms.

    NASA Astrophysics Data System (ADS)

    Bass, E.; Dubin, D.

    2004-11-01

    The rate ν at which guiding-center antihydrogen atoms relax to the ground state is determined through theory and simulation. The rate is found to be slow compared to the rate atoms leave the trap in current antimatter recombination experiments.(G. Gabrielse et al.), Phys. Rev. Lett. 89, 213401 (2002); M. Amoretti et al., Nature (London) 419, 456 (2002). These experiments operate in the strongly magnetized regime where guiding-center atoms(M.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3), 1279 (1991). are expected, defined by \\chi = rc / b ≪ 1, with rc the positron cyclotron radius and b = e^2 / kT the classical distance of closest approach. The atoms evolve to deeper binding through two distinct collisional processes: drag on the positron orbit from large impact parameter collisions, and positron replacement from small impact parameter collisions. The rate of energy loss from drag, previously predicted to increase monotonically with binding energy,(L.I. Men'shikov and P.O. Fedichev, JETP 81), 78 (1995). is actually marked by an adiabatic cutoff,(E.M. Bass and D.H.E. Dubin, Phys. Plasmas 11), 1240 (2004). making rare close collisions the dominant relaxation process at deep binding. A Monte-Carlo simulation confirms this result.

  15. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  16. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  17. Energy transfer in strained graphene assisted by discrete breathers excited by external ac driving

    NASA Astrophysics Data System (ADS)

    Evazzade, Iman; Lobzenko, Ivan P.; Korznikova, Elena A.; Ovid'ko, Ilya A.; Roknabadi, Mahmood Rezaee; Dmitriev, Sergey V.

    2017-01-01

    In the present molecular-dynamics study, external ac driving is used at frequencies outside the phonon spectrum to excite gap DBs in uniformly strained graphene nanoribbon. Harmonic displacement or harmonic force is applied to a zigzag atomic chain of graphene. In the former case, nonpropagating DBs are excited on the atoms next to the driven atoms, while in the latter case the excited DBs propagate along the nanoribbon. The energy transfer along the nanoribbon assisted by the DBs is investigated in detail, and the differences between harmonic displacement driving and harmonic force driving are discussed. It is concluded that the amplitude of external driving at out-of-phonon spectrum frequencies should not necessarily be large to obtain a noticeable energy transfer to the system. Overall, our results suggest that external harmonic driving even at relatively small driving amplitudes can be used to control excitation of DBs and consequently the energy transfer to the system.

  18. Calculation of Rydberg energy levels for the francium atom

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Zhong; Chu, Jin-Min

    2010-06-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.

  19. The International Atomic Energy Agency

    ERIC Educational Resources Information Center

    Dufour, Joanne

    2004-01-01

    The dropping of atomic bombs on Hiroshima and Nagasaki in World War II inaugurated a new era in world history, the atomic age. After the war, the Soviet Union, eager to develop the same military capabilities as those demonstrated by the United States, soon rivaled the U.S. as an atomic and nuclear superpower. Faced by the possibility of…

  20. The International Atomic Energy Agency

    ERIC Educational Resources Information Center

    Dufour, Joanne

    2004-01-01

    The dropping of atomic bombs on Hiroshima and Nagasaki in World War II inaugurated a new era in world history, the atomic age. After the war, the Soviet Union, eager to develop the same military capabilities as those demonstrated by the United States, soon rivaled the U.S. as an atomic and nuclear superpower. Faced by the possibility of…

  1. Production of Excited Atomic Hydrogen and Deuterium from H2, D2 and HD Photodissociation

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Andrianarijaona, V. M.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; McLaughlin, K. W.

    2009-10-01

    We have measured the production of Lyα and Hα fluorescence from atomic H and D resulting from the photodissociation of H2, D2 and HD by linearly-polarized photons with energies between 20 and 65 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Comparison between the relative cross sections of H2 and D2 and the available theory show only qualitative agreement. We will discuss the various systematic effects which affect this and other types of synchrotron-based measurements in this energy range. Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  2. Associative ionization reactions involving excited atoms in nitrogen plasma

    SciTech Connect

    Popov, N. A.

    2009-05-15

    A model of kinetic processes in gas-discharge plasmas of pure nitrogen and its mixtures with nitrogen oxide and oxygen is presented. A distinctive feature of the model is that it includes associative ionization reactions involving N({sup 2}P) electronically excited atoms. Taking into account these processes allows one to explain both the anomalously slow decay of gas-discharge nitrogen plasma and the increase in the electron density in the region of the so-called pink afterglow in nitrogen. The possibility of substantially accelerating secondary ionization by adding NO molecules to a partially dissociated nitrogen is demonstrated. It is shown that such acceleration is caused by the associative ionization reaction N({sup 2}P) + O({sup 3}P) {yields} e + NO{sup +}. The calculated results agree well with available experimental data.

  3. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  4. Hydrogen abstraction from metal surfaces: when electron-hole pair excitations strongly affect hot-atom recombination.

    PubMed

    Galparsoro, Oihana; Pétuya, Rémi; Busnengo, Fabio; Juaristi, Joseba Iñaki; Crespos, Cédric; Alducin, Maite; Larregaray, Pascal

    2016-11-23

    Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering. The hot-atom recombination, which involves hyperthermal diffusion of the impinging atom on the surface, is significantly affected by the dissipation of energy mediated by electron-hole pair excitations at low coverage and low incidence energy. This issue is of importance as this abstraction mechanism is thought to largely contribute to molecular hydrogen formation from metal surfaces.

  5. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  6. Low-Pressure Microwave Excited Microplasmas as Sources of VUV Photons and Metastable Excited Atoms: Modeling

    NASA Astrophysics Data System (ADS)

    Kushner, Mark; Cooley, James; Xue, Jun; Urdhal, Randall

    2011-10-01

    Low pressure plasmas sustained in rare gases and rare gas mixtures can be efficient sources of VUV light from resonant optical transitions. Many applications would benefit from having small, inexpensive sources of plasma produced VUV light. To address this need, microwave wave excited microplasma sources in rare gases operating at pressures of <10 Torr are being developed. The microplasmas are sustained in ceramic cavities having cross sectional dimensions of <=1 mm, excited by a split-ring resonator antenna operated at 2.45 GHz. Power deposition is a few W. Hybrid computer modeling of microplasmas sustained in Ar has been performed to develop scaling laws for increasing the efficiency of VUV light production. The model includes a Monte Carlo simulation for the electron energy distribution and for radiation transport. Results from those studies will be discussed for plasma densities, electron energy distributions, VUV light production and excited state densities as a function of power, pressure and aspect ratio of the microplasma cavities. Modeling results will be compared to laser absorption spectroscopy of Ar excited state densities. Work supported by Agilent Technologies.

  7. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    The possibility of storing large amounts of energy in a free radical system such as atomic hydrogen is analyzed. Attention is focused on theoretical calculations of the ground state properties of spin-aligned atomic triplet hydrogen, deuterium, and tritium. The solid-liquid phase transition in atomic hydrogen is also examined.

  8. Nonperturbative analysis of the two-level atom: Applications to multiphoton excitation

    SciTech Connect

    Duvall, R.E.; Valeo, E.J.; Oberman, C.R.

    1987-08-01

    Selective excitation in an atomic system subjected to a slowly varying external electromagnetic field is studied using a two-level model. Time evolution of the system is found using an approach which is nonperturbative in the field strength. There is no constraint to small values of the applied field, that is, the field (in appropriate energy units) need not be small compared to the difference in energies of the two levels. Rather, we prey upon the fact that the situation of interest to us is where the frequency of the exciting field is small compared to the frequency associated with the level difference. Transition probabilities and resonance conditions are found which circumscribe both the large and small field limits. In the weak field limit the previous results of high-order perturbation theory are readily recovered. For a monochromatic field the characteristic features of resonance excitation at high harmonic number of the applied field are (a) extremely narrow resonance widths and (b) shifts in resonance positions which are strong functions of field intensity. Because of this sensitivity, we are able to demonstrate that when slow temporal evolution of the field amplitude is taken into account (e.g., due to finite pulse duration) the appropriate mean excitation rate is that due to the uncorrelated contribution of many resonances. The results of this analysis are used to estimate excitation rates in a specific atomic system, Cd/sup 12 +/, which are then compared to multiphoton ionization rates. Our calculations suggest that the ionization rate exceeds the excitation rate by several orders of magnitude. 15 refs., 3 figs.

  9. Phase dependent excitation of Rydberg atoms in non-zero average fields

    NASA Astrophysics Data System (ADS)

    Magnuson, Eric; Carrat, Vincent; Gallagher, Tom

    2016-05-01

    The final energy of an electron excited to a high lying Rydberg state in the presence of a microwave (MW) field shows a dependence on the phase of the field at which the excitation occurs. This phase dependence is comparable to that seen in strong field experiments using attosecond pulses to probe systems perturbed by intense infrared (IR) fields. In zero average field, final energies exhibit a phase dependence at twice the frequency of the MW field. We show a phase dependence at the same frequency as the MW field emerges in the presence of a non-zero average field, parallel to the MW polarization. To isolate phase dependence at the MW frequency, we amplitude modulate the IR excitation laser and phase lock this modulation to the MW field. Li atoms are excited to states near the ionization limit in the presence of a MW field, and bound Rydberg states (n>150) are detected. In an applied average field, we observe modulation of the Rydberg signal at the MW frequency. This modulation vanishes as the average field is zeroed, but persists even in fields large enough to ionize most of the population. We compare these results to symmetry arguments and a model of classical Rydberg orbits. An experiment to determine the absolute phase of the modulation relative the MW field is discussed. This work is supported by the US Department of Energy.

  10. Observation of low- and high-energy Gamow-Teller phonon excitations in nuclei.

    PubMed

    Fujita, Y; Fujita, H; Adachi, T; Bai, C L; Algora, A; Berg, G P A; von Brentano, P; Colò, G; Csatlós, M; Deaven, J M; Estevez-Aguado, E; Fransen, C; De Frenne, D; Fujita, K; Ganioğlu, E; Guess, C J; Gulyás, J; Hatanaka, K; Hirota, K; Honma, M; Ishikawa, D; Jacobs, E; Krasznahorkay, A; Matsubara, H; Matsuyanagi, K; Meharchand, R; Molina, F; Muto, K; Nakanishi, K; Negret, A; Okamura, H; Ong, H J; Otsuka, T; Pietralla, N; Perdikakis, G; Popescu, L; Rubio, B; Sagawa, H; Sarriguren, P; Scholl, C; Shimbara, Y; Shimizu, Y; Susoy, G; Suzuki, T; Tameshige, Y; Tamii, A; Thies, J H; Uchida, M; Wakasa, T; Yosoi, M; Zegers, R G T; Zell, K O; Zenihiro, J

    2014-03-21

    Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the (54)Fe → (54)Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.

  11. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, Hongtao

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  12. Energy transfer of non-equidistant radiators via the nonlinear excitation mechanism inside of an optical cavity

    NASA Astrophysics Data System (ADS)

    Pislari, Tatiana; Enaki, Nicolae

    2016-12-01

    The energy transferring between three q-bits system flying simultaneously through an optical cavity, is discussed. It is observed the migration of energy from one excited radiator with dipole forbidden transitions relatively to another two- radiators with half excitation energy of first atom. Photon entangled state between distinct atoms and their transfer is studied. These atoms in our interpretations are named, D - dipole forbidden atom, S1 and S2 - two dipole active atoms with summer energy ћɷ1 + ћɷ2 = ћɷn, ɷ1 observe the periodical transfer of energy from D- atom to ensemble of two S- atoms. This effect may be used for quantum gates processing in which the energy transfer depends on the input information. The quantum discord and entanglement for this system of q-bits was explored.

  13. Excitation of the {sup 229m}Th nuclear isomer via resonance conversion in ionized atoms

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-15

    Pressing problems concerning the optical pumping of the 7.6-eV {sup 229m}Th nuclear isomer, which is a candidate for a new nuclear optical reference point for frequencies, are examined. Physics behind the mechanism of the two-photon optical pumping of the isomer is considered. It is shown that, irrespective of the pumping scheme, a dominant contribution comes, in accord with what was proven earlier for the 3.5-eV isomer, from the resonance 8s–7s transition. Details of an optimum experimental scheme are discussed. It is shown that, after isomer excitation, the atom involved remains with a high probability in an excited state at an energy of about 0.5 eV rather than in the ground state, the required energy of the two photons being equal to the energy of the nuclear level plus the energy of the lowest 7s state of the atom. The estimated pumping time is about 1.5 s in the case where the field strength of each laser is 1 V/cm.

  14. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  15. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  16. Interference control of nonlinear excitation in a multi-atom cavity quantum electrodynamics system.

    PubMed

    Yang, Guoqing; Tan, Zheng; Zou, Bichen; Zhu, Yifu

    2014-12-01

    We show that by manipulating quantum interference in a multi-atom cavity quantum electrodynamics (CQED) system, the nonlinear excitation of the cavity-atom polariton can be resonantly enhanced while the linear excitation is suppressed. Under the appropriate conditions, it is possible to selectively enhance or suppress the polariton excitation with two free-pace laser fields. We report on an experiment with cold Rb atoms in an optical cavity and present experimental results that demonstrate such interference control of the CQED excitation and its direct application to studies of all-optical switching and cross-phase modulation of the cavity-transmitted light.

  17. One- and two-photon spectroscopy of highly excited states of alkali-metal atoms on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Pifrader, Alexandra; Allard, Olivier; Auböck, Gerald; Callegari, Carlo; Ernst, Wolfgang E.; Huber, Robert; Ancilotto, Francesco

    2010-10-01

    Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies (≈3 eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n +1)p←ns transition of K, Rb, and Cs (n =4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d←5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.

  18. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  19. Inelastic electronic excitation and electron transfer processes in collisions between Mg(3 {sup 1}S{sub 0}) atoms and K{sup +}({sup 1}S{sub 0}) ions studied by crossed beams in the 0.10-3.80-keV energy range

    SciTech Connect

    Sabido, M.; Andres, J. de; Sogas, J.; Lucas, J.M.; Alberti, M.; Bofill, J.M.; Aguilar, A.

    2005-09-22

    Inelastic and charge-transfer excitation processes in collisions between ground-state neutral Mg atoms and K{sup +} ions have been studied by means of a crossed molecular-beam technique. Decay fluorescent emissions from Mg(3 {sup 1}P{sub 1}),Mg(4 {sup 3}S{sub 1}), and Mg(3s{sup 1}3d{sup 1},3 {sup 3}D{sub 3,2,1}) as well as the phosphorescent emission due to Mg(3 {sup 3}P{sub 1}) have been observed from excited Mg atoms and the charge-transfer emission decays from K(4 {sup 2}P{sub 3/2,1/2}),K(5 {sup 2}P{sub 3/2,1/2}),K(6 {sup 2}S{sub 1/2}), and K(4 {sup 2}D{sub 5/2,3/2}) for excited K atoms. The corresponding absolute cross-sections values versus collision energy functions were determined in the 0.10-3.80 keV laboratory energy range. In order to interpret the experimental results, accurate ab initio full configuration-interaction calculations using pseudopotentials have been performed for the (Mg-K){sup +} system, giving a manifold of adiabatic singlet and triplet potential-energy curves correlating with the different collision channels, which allow a qualitative interpretation of the emission excitation functions measured for the different processes studied. A comparative study with other Mg-alkali ion systems previously studied is also included.

  20. A History of the Atomic Energy Commission

    DOE R&D Accomplishments Database

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  1. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  2. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  3. Low Energy Inelastic Atomic and Molecular Collisions.

    DTIC Science & Technology

    1981-04-15

    oemey A 17 mca mem ewa) atomic collisions deuterium molecular Collisions hydrogen argon .. excitation C argon Ions Ion beams LU & AinVIACt~ re- o sed a...1981). The intent of this work., described in our proposal, was toI obtain sufficient resolution of phosphorus, sulfur and argon L-x rays under single...collision, there are other intense VUV lines as well: the dominant ones observed in the 500-1100 A range were emission from the 2p excitation of neutral He

  4. Ellipticity dependence of neutral Rydberg excitation of atoms in strong laser fields

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Dong, Jingwei; Lv, Hang; Yang, Tianxiang; Lian, Yi; Jin, Mingxing; Xu, Haifeng; Ding, Dajun; Hu, Shilin; Chen, Jing

    2016-11-01

    Rydberg state excitation (RSE) of different atoms in elliptically polarized strong 800 nm laser fields is investigated experimentally, and the results are compared with calculations of the strong-field approximation (SFA) model and the semiclassical model. It is observed that the RSE probability declines with increasing laser ellipticity for all of the He, Ar, and Kr atoms. While the measured ellipticity dependence of He RSE is very consistent with the predictions of both the SFA and semiclassical calculations, the width of the ellipticity dependence for Ar and Kr atoms is wider than that of the SFA model but closer to the semiclassical calculations. Analysis indicates that unlike a tunneling-plus-rescattering process, the decline of the RSE yield with increasing ellipticity can be attributed to a decrease of electrons with low kinetic energy that could be captured in the Rydberg states by the Coulomb potential. It indicates that the atomic RSE process could be related to the very low or near-zero energy structure in the photoelectron spectrum in strong laser fields, which would stimulate further experimental and theoretical studies to reveal their underlying mechanisms.

  5. X-ray-photon scattering by an excited and ionized atom

    NASA Astrophysics Data System (ADS)

    Hopersky, Alexey N.; Nadolinsky, Alexey M.; Novikov, Sergey A.; Yavna, Victor A.

    2015-02-01

    The scattering process of an x-ray photon by an excited and ionized many-electron atom with attosecond photon-electron contact interaction is theoretically investigated. The results of the authors' recent work [Hopersky et al., Phys. Rev. A 88, 032704 (2013), 10.1103/PhysRevA.88.032704] are generalized for the cases of (a) arbitrary energy of the photon that prepares the scattering state and (b) the scattering of the photon by the continuous spectrum electron of the ionization state of the atom. The atom of Ne is considered as the object of the study. Along with the effects of normal Compton and elastic scattering, the existence of anomalous inelastic scattering is predicted. It may be assumed that this effect will become a basis for an experimental method of increasing the energy of the photons generated, for example, by a free-electron x-ray laser. It is determined that during the elastic scattering of a photon by an electron of the continuous spectrum, along with the known contribution from the jl Bessel function over the l =0 harmonic (Thomson scattering), there is also a contribution from Bessel functions with harmonics l ∈[1 ;∞ ) . The experimental discovery and application of the anomalous Compton photon scattering effect directly by the atomic electron of the continuous spectrum have their own practical interest.

  6. Influence of multi-photon excitation on the atomic above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Tian, Yuan-Ye; Wang, Chun-Cheng; Li, Su-Yu; Guo, Fu-Ming; Ding, Da-Jun; Wim-G, Roeterdink; Chen, Ji-Gen; Zeng, Si-Liang; Liu, Xue-Shen; Yang, Yu-Jun

    2015-04-01

    Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrödinger equation of a hydrogen-like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in above-threshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the above-threshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11034003, 11304116, 11274001, and 11247024), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).

  7. Atomic oxygen fluorescence excitation using a Raman-shifted, tunable ArF-excimer laser

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.

    1994-01-01

    A novel method for exciting the two-photon, 2p3 3p 3P left arrow 2p4 3P atomic oxygen transition is reported. The transition to the upper state is achieved through the combined absorption of photons from the second and third Stokes order pulses of an ArF-excimer laser that is wavelength-shifted by the use of deuterium Raman cell. All three transitions from the ground electronic state of the oxygen atom lie within the tuning range of the Raman-shifted ArF laser. The available pulse energy from this laser configuration is comparable to that of commercially available Nd:YAG-pumped dye laser systems operated at 226 nm.

  8. The Future of Atomic Energy

    DOE R&D Accomplishments Database

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  9. Direct Extraction of Excitation Energies from Ensemble Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Yang, Zeng-hui; Pribram-Jones, Aurora; Burke, Kieron; Ullrich, Carsten A.

    2017-07-01

    A very specific ensemble of ground and excited states is shown to yield an exact formula for any excitation energy as a simple correction to the energy difference between orbitals of the Kohn-Sham ground state. This alternative scheme avoids either the need to calculate many unoccupied levels as in time-dependent density functional theory (TDDFT) or the need for many self-consistent ensemble calculations. The symmetry-eigenstate Hartree-exchange (SEHX) approximation yields results comparable to standard TDDFT for atoms. With this formalism, SEHX yields approximate double excitations, which are missed by adiabatic TDDFT.

  10. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  11. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  12. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    SciTech Connect

    Zelener, B. B. Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E.

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  13. Spacecraft thermal energy accommodation from atomic recombination

    NASA Technical Reports Server (NTRS)

    Carleton, Karen L.; Marinelli, William J.

    1991-01-01

    Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.

  14. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce a.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  15. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Banks, Bruce A.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  16. How many atoms get excited when they decay?

    NASA Astrophysics Data System (ADS)

    Blocher, Philip Daniel; Mølmer, Klaus

    2017-09-01

    We analyse the time evolution of a two-level system prepared in a superposition of its ground state and radiatively unstable excited state. We show that by choosing appropriate means of detection of the radiated field, we can steer the evolution of the emitter and herald its preparation in the fully excited state. We determine the probability for the occurrence of this ‘excitation during the decay’ of a remote emitter.

  17. Triplet excited states of cyclic disulfides and related compounds: electronic structures, geometries, energies, and decay.

    PubMed

    Ginagunta, Saroja; Bucher, Götz

    2011-02-03

    We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 Å in the singlet ground state and 2.568 Å in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.

  18. Production of Excited Atomic Hydrogen and Deuterium from H2 and D2 Photodissociation

    NASA Astrophysics Data System (ADS)

    Gay, T. J.; Bozek, J. D.; Furst, J. E.; Gould, H.; Kilcoyne, A. L. D.; Machacek, J. R.; Martin, F.; McLaughlin, K. W.; Sanz-Vicario, J. L.

    2007-06-01

    We have measured the production of both Lyα and Hα fluorescence from atomic H and D for the photodissociation of H2 and D2 by linearly-polarized photons with energies between 24 and 60 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Our data are compared with ab initio calculations of the dissociation process, in which both doubly-excited state production and prompt ionization through non-resonant channels are considered. Agreement between our experimental data and that of earlier work [1], and with our theoretical calculations, is qualitative at best. [1] E.Melero Garc'ia, J.'Alvarez Ruiz, S.Menmuir, E.Rachlew, P.Erman, A.Kivim"aki, M.Glass-Maujean, R.Richter, and M.Coreno, J.Phys.B 39, 205 (2006). Support provided by the NSF (Grant PHY-0354946), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  19. Single photon transfer controlled by excitation phase in a two-atom cavity system

    NASA Astrophysics Data System (ADS)

    Xiao Zhou, Chun; Zhang, Rui; Di Guo, Miao; Moiseev, S. A.; Su, Xue Mei

    2017-06-01

    We investigate the quantum interference effect of single photon transfer in a two-atom cavity system caused by the excitation phase. In the proposed system, the two identical atoms are firstly put into a timed state by an external single photon field. During the excitation, the atoms grasp different phases which depend on the spatial position of the atoms. Due to the strong resonant interaction between the atoms and optical cavity mode, the absorbed input photon can be efficiently transferred from the atoms to the cavity mode. We show that photon transfer is sensitive to the quantum interference caused by the excitation phases of atoms. The atomic positions can also determine the coupling constants between the atoms and cavity mode as well as the interatomic dipole-dipole interaction which causes additional interference effects on the quantum transfer. Based on the characteristics of the excitation phase, we find that it is a feasible scheme to generate a long-lived dark state and it could be useful for storage and manipulation of single photon fields by controlling the excitation phase.

  20. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  1. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  2. Mean excitation energies for stopping powers in various materials composed of elements hydrogen through argon

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.

    1984-01-01

    The local plasma model is used to study the effects of the chemical and physical state of a medium on its stopping power. The relationship between that model and a more exact quantum treatment of bound systems is elucidated by examining related quantities in both theories for the case of one and two-electron systems. Atomic mean excitation energies and straggling parameters in the local plasma model are compared with the accurate calculations of Inokuti et al. (1975, 1978, 1981). The use of the Gordon-Kim electron gas model of molecular bonding is used to determine the effects of covalent chemical bond shifts on the mean excitation energies for elements of the first two rows. Calculations of mean excitation energies of ionic bonded substances are presented, and the mean excitation energies of metals are discussed.

  3. Mean excitation energies for stopping powers in various materials composed of elements hydrogen through argon

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.

    1984-01-01

    The local plasma model is used to study the effects of the chemical and physical state of a medium on its stopping power. The relationship between that model and a more exact quantum treatment of bound systems is elucidated by examining related quantities in both theories for the case of one and two-electron systems. Atomic mean excitation energies and straggling parameters in the local plasma model are compared with the accurate calculations of Inokuti et al. (1975, 1978, 1981). The use of the Gordon-Kim electron gas model of molecular bonding is used to determine the effects of covalent chemical bond shifts on the mean excitation energies for elements of the first two rows. Calculations of mean excitation energies of ionic bonded substances are presented, and the mean excitation energies of metals are discussed.

  4. Current status of free radicals and electronically excited metastable species as high energy propellants

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1973-01-01

    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  5. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  6. The Rouen energy-compensated atom probe

    NASA Astrophysics Data System (ADS)

    Sarrau, J. M.; Danoix, F.; Deconihout, B.; Bouet, M.; Menand, A.; Blavette, D.

    1994-03-01

    The energy-compensated atom probe developed in Rouen is based on the original instrument built in 1978. Since, several improvements were added. Some extensions, among which a Poschenrieder-type energy compensator and a spatial resolution controlling diaphragm, have been adapted to it. The main characteristics of this instrument are presented.

  7. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  8. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  9. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  10. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism.

    PubMed

    Nagesh, Jayashree; Frisch, Michael J; Brumer, Paul; Izmaylov, Artur F

    2016-12-28

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A. F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Becke's atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1- naphthyl)- methyl)- anthracene and 4-((2- naphthyl)- methyl)- benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that is not accessible using a simple density difference analysis.

  11. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism

    NASA Astrophysics Data System (ADS)

    Nagesh, Jayashree; Frisch, Michael J.; Brumer, Paul; Izmaylov, Artur F.

    2016-12-01

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A. F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Becke's atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1- naphthyl)- methyl)- anthracene and 4-((2- naphthyl)- methyl)- benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that is not accessible using a simple density difference analysis.

  12. Correlated energy transfer between two ultracold atomic species

    NASA Astrophysics Data System (ADS)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  13. Exchange-only optimized effective potential calculation of excited state spectra for He and Be atoms.

    SciTech Connect

    Desjarlais, Michael Paul; Muller, Richard Partain

    2006-02-01

    The optimized effective potential (OEP) method allows orbital-dependent functionals to be used in density functional theory (DFT), which, in particular, allows exact exchange formulations of the exchange energy to be used in DFT calculations. Because the exact exchange is inherently self-interaction correcting, the resulting OEP calculations have been found to yield superior band-gaps for condensed-phase systems. Here we apply these methods to the isolated atoms He and Be, and compare to high quality experiments and calculations to demonstrate that the orbital energies accurately reproduce the excited state spectrum for these species. These results suggest that coupling the exchange-only OEP calculations with proper (orbital-dependent or other) correlation functions might allow quantitative accuracy from DFT calculations.

  14. New Goals for Atomic Energy

    ERIC Educational Resources Information Center

    Parsegian, V. L.

    1971-01-01

    There should be a "shifting of emphasis from fossil fuel to nuclear systems as quickly as possible," but with a major change in the design of reactor systems to enable more efficient use of the total energy produced. Waste heat may be used for agriculture. (AL)

  15. New Goals for Atomic Energy

    ERIC Educational Resources Information Center

    Parsegian, V. L.

    1971-01-01

    There should be a "shifting of emphasis from fossil fuel to nuclear systems as quickly as possible," but with a major change in the design of reactor systems to enable more efficient use of the total energy produced. Waste heat may be used for agriculture. (AL)

  16. Excitation of Na D-line radiation in collisions of sodium atoms with internally excited H2, D2, and N2

    NASA Technical Reports Server (NTRS)

    Krause, H. F.; Fricke, J.; Fite, W. L.

    1972-01-01

    Excitation of D-line radiation in collisions of Na atoms with vibrationally excited N2, H2 and D2 was studied in two modulated crossed beam experiments. In both experiments, the vibrational excitation of the molecules was provided by heating the molecular beam source to temperatures in the range of 2000 to 3000 K, which was assumed to give populations according to the Boltzmann expression. In the first experiment, a total rate coefficient was measured as a function of molecular beam temperature, with absolute calibration of the photon detector being made using the black body radiation from the heated molecular beam source. Since heating affects both the internal energy and the collisional kinetic energy, the first experiment could not determine the relative contributions of internal energy transfer versus collisional excitation. The second experiment achieved partial separation of internal versus kinetic energy transfer effects by using a velocity-selected molecular beam. Using two simple models for the kinetic energy dependence of the transfer cross section for a given change in vibrational quantum number, the data from both experiments were used to determine parameters in the models.

  17. Highly correlated systems. Excitation energies of first row transition metals Sc--Cu

    SciTech Connect

    Raghavachari, K.; Trucks, G. W.

    1989-07-15

    The low-lying /ital d//sup /ital n/s//sup 2//r arrow//ital d//sup /ital n/+1//ital s//sup 1/ excitation energies of the first row transition metal atoms Sc--Cu are calculated using fourth-order M/congruent/ller--Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large /ital spd/ and /ital spdf/ basis sets. The MP4 method performs well for Sc--Mn but fails dramatically for Fe--Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. /ital f/ functions contribute 0.1--0.4 eV to the excitation energies for these systems. The highly correlated /ital d//sup 10/ state of the Ni atom is also considered in detail. The QCI technique obtains the /ital d//sup 9//ital s1//r arrow//ital d10/ splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree--Fock based methods can be successful in calculating excitation energies of transition metal atoms.

  18. Highly correlated systems. Excitation energies of first row transition metals Sc-Cu

    NASA Astrophysics Data System (ADS)

    Raghavachari, Krishnan; Trucks, Gary W.

    1989-07-01

    The low-lying dns2→dn+1s1 excitation energies of the first row transition metal atoms Sc-Cu are calculated using fourth-order M≂ller-Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large spd and spdf basis sets. The MP4 method performs well for Sc-Mn but fails dramatically for Fe-Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. f functions contribute 0.1-0.4 eV to the excitation energies for these systems. The highly correlated d10 state of the Ni atom is also considered in detail. The QCI technique obtains the d9s1→d10 splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree-Fock based methods can be successful in calculating excitation energies of transition metal atoms.

  19. Product energy distributions and energy partitioning in O atom reactions on surfaces

    NASA Technical Reports Server (NTRS)

    Halpern, Bret; Kori, Moris

    1987-01-01

    Surface reactions involving O atoms are likely to be highly exoergic, with different consequences if energy is channeled mostly to product molecules or surface modes. Thus the surface may become a source of excited species which can react elsewhere, or a sink for localized heat deposition which may disrupt the surface. The vibrational energy distribution of the product molecule contains strong clues about the flow of released energy. Two instructive examples of energy partitioning at surfaces are the Pt catalyzed oxidations: (1) C(ads) + O(ads) yields CO* (T is greater than 1000 K); and (2) CO(ads) + O(gas) yields CO2* (T is approx. 300 K). The infrared emission spectra of the excited product molecules were recorded and the vibrational population distributions were determined. In reaction 1, energy appeared to be statistically partitioned between the product CO and several Pt atoms. In reaction 2, partitioning was non-statistical; the CO2 asymmetric stretch distribution was inverted. In gas reactions these results would indicate a long lived and short lived activated complex. The requirement that Pt be heated in O atoms to promote reaction of atomic O and CO at room temperature is specifically addressed. Finally, the fraction of released energy that is deposited in the catalyst is estimated.

  20. Net force on an asymmetrically excited two-atom system from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-12-01

    A net force on a system of two dissimilar atoms, one of which is excited, is shown to result from their van der Waals interaction. It is accompanied by a net transfer of linear momentum to the quantum fluctuations of the electromagnetic field. This momentum results from the asymmetric interference of the virtual photons scattered off each atom along the interatomic direction, which is in itself a manifestation of the optical theorem. Ultimately, the virtual photons' momentum, of equal strength and opposite direction to the momentum gained by the two-atom system while excited, is released through directional spontaneous emission, which allows for an indirect measure, a posteriori, of the total force on the excited system. A quantitative prediction is made in a two-alkali atom system. It is conjectured that a net force and hence a nonzero momentum of quantum fluctuations take place in any asymmetrically excited system.

  1. Excitation Energy Transfer Pathways in Lhca4

    PubMed Central

    Gibasiewicz, K.; Croce, R.; Morosinotto, T.; Ihalainen, J. A.; van Stokkum, I. H. M.; Dekker, J. P.; Bassi, R.; van Grondelle, R.

    2005-01-01

    EET in reconstituted Lhca4, a peripheral light-harvesting complex from Photosystem I of Arabidopsis thaliana, containing 10 chlorophylls and 2 carotenoids, was studied at room temperature by femtosecond transient absorption spectroscopy. Two spectral forms of Lut were observed in the sites L1 and L2, characterized by significantly different interactions with nearby chlorophyll a molecules. A favorable interpretation of these differences is that the efficiency of EET to Chls is about two times lower from the “blue” Lut in the site L1 than from the “red” Lut in the site L2 due to fast IC in the former case. A major part of the energy absorbed by the “red” Lut, ∼60%–70%, is transferred to Chls on a sub-100-fs timescale from the state S2 but, in addition, minor EET from the hot S1 state within 400–500 fs is also observed. EET from the S1 state to chlorophylls occurs also within 2–3 ps and is ascribed to Vio and/or “blue” Lut. EET from Chl b to Chl a is biphasic and characterized by time constants of ∼300 fs and 3.0 ps. These rates are ascribed to EET from Chl b spectral forms absorbing at ∼644 nm and ∼650 nm, respectively. About 25% of the excited Chls a decays very fast—within ∼15 ps. This decay is proposed to be related to the presence of the interacting Chls A5 and B5 located next to the carotenoid in the site L2 and may imply some photoprotective role for Lhca4 in the photosystem I super-complex. PMID:15653744

  2. Collisional excitation of the highly excited hydrogen atoms in the dipole form of the semiclassical impact parameter and Born approximations

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1971-01-01

    Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.

  3. Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity

    NASA Astrophysics Data System (ADS)

    Kandel, S. Alex; Zare, Richard N.

    1998-12-01

    The reactions of atomic chlorine with CH4 and CD4 were studied at five collision energies ranging from 0.13 to 0.29 eV using resonance-enhanced multiphoton ionization of the CH3 and CD3 products. Core-extracted ion arrival profiles were used to determine methyl radical product speed distributions. The distributions contain products that are moving anomalously fast which energetically cannot result from the reaction of ground-state chlorine with ground-state methane. We attribute these products to reaction of ground-state chlorine with methane vibrationally excited in trace quantities into low-energy bending and torsional modes. Measurements of product spatial anisotropy are used to confirm this interpretation and to indicate that the possible reaction of spin-orbit excited chlorine is less important. These low-energy vibrations create large enhancements in reactivity over ground-state molecules, and consequently, vibrationally excited reagents dominate reactivity at low collision energies and contribute substantially at the highest collision energies studied. It is suggested that vibrationally excited reagents play an important role in the thermal kinetics of the reaction of chlorine with methane and may contribute significantly to explain the observed deviation from Arrhenius equation behavior. Scattering distributions of the products of both ground-state and vibrationally excited reactions are reported, and additional measurements of the internal state distributions of the CH3 and CD3 products reveal that the methyl radicals contain very little energy in rotation or vibration.

  4. Energy Gap of Neutral Excitations Implies Vanishing Charge Susceptibility

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki

    2017-03-01

    In quantum many-body systems with a U(1) symmetry, such as particle number conservation and axial spin conservation, there are two distinct types of excitations: charge-neutral excitations and charged excitations. The energy gaps of these excitations may be independent from each other in strongly correlated systems. The static susceptibility of the U(1) charge vanishes when the charged excitations are all gapped, but its relation to the neutral excitations is not obvious. Here we show that a finite excitation gap of the neutral excitations is, in fact, sufficient to prove that the charge susceptibility vanishes (i.e., the system is incompressible). This result gives a partial explanation for why the celebrated quantization condition n (S -mz)∈Z at magnetization plateaus works even in spatial dimensions greater than one.

  5. Atomic electron excitation probabilities during orbital electron capture by the nucleus

    NASA Technical Reports Server (NTRS)

    Crasemann, B.; Chen, M. H.; Briand, J. P.; Chevallier, P.; Chetioui, A.; Tavernier, M.

    1979-01-01

    Approximate probabilities of electron excitation (shakeup/shakeoff) from various atomic states during nuclear ns electron capture have been calculated in the sudden approximation, using Hartree-Fock wave functions. Total excitation probabilities are much lower than during inner-shell ionization by photons or electrons, and ns states are more likely to be excited than np states. This latter result is borne out by K-alpha X-ray satellite spectra.

  6. The IMOMO and IMONM methods for excited states. A study of the adiabatic S 0 → T 1,2 excitation energies of cyclic alkenes and enones

    NASA Astrophysics Data System (ADS)

    Froese, Robert D. J.; Morokuma, Keiji

    1996-12-01

    The recently proposed integrated MO + MO (IMOMO) and MO + MM (IMOMM) methods have been applied to excited states of large molecules, i.e., the adiabatic triplet excitation energies of cyclic alkenes and enones. The IMOMO methods with G2MS as High level and HF or MP2 as Low level agree well with pure MO benchmarks and experiments. The substituent shifts have been discussed in the IMOMO analysis. The geometries of a testosterone derivative with more than 50 atoms were optimized for the lower triplet excited states with the IMOMM(HF:MM3) method and their energies were calculated using IMOMO and IMOMM methods.

  7. Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films

    NASA Astrophysics Data System (ADS)

    Zeng, Hualing; Zhu, Bairen; Liu, Kai; Fan, Jiahe; Cui, Xiaodong; Zhang, Q. M.

    2012-12-01

    Atomically thin MoS2 crystals have been recognized as quasi-two-dimensional semiconductors with remarkable physical properties. We report our Raman scattering measurements on multilayer and monolayer MoS2, especially in the low-frequency range (<50 cm-1). We find two low-frequency Raman modes with a contrasting thickness dependence. When increasing the number of MoS2 layers, one mode shows a significant increase in frequency while the other decreases following a 1/N (N denotes the number of unit layers) trend. With the aid of first-principles calculations we assign the former as the shear mode E2g2. The latter is distinguished as the compression vibrational mode, similar to the surface vibration of other epitaxial thin films. The opposite evolution of the two modes with thickness demonstrates vibrational modes in an atomically thin crystal as well as a more precise way to characterize the thickness of atomically thin MoS2 films. In addition, we observe a broad feature around 38 cm-1(5 meV) which is visible only under near-resonance excitation and pinned at a fixed energy, independent of thickness. We interpret the feature as an electronic Raman scattering associated with the spin-orbit coupling induced splitting in a conduction band at K points in their Brillouin zone.

  8. Supplementary absolute differential cross sections for the excitation of atomic hydrogen's n=3 and 4 levels by electron impact

    SciTech Connect

    Sweeney, Christopher J.; Shyn, Tong W.; Grafe, Alan

    2004-05-01

    We have conducted measurements of absolute differential cross sections for the excitation of hydrogen atoms to their n=3(3S+3P+3D) and 4(4S+4P+4D+4F) levels. A modulated, crossed-beam method was employed, and the impact energies were 40 and 60 eV. Comparison of our results with those of others is quite favorable.

  9. Excitation energies of superdeformed states in the Pb isotopes

    SciTech Connect

    Wilson, A. N.; Byrne, A. P.; Dracoulis, G. D.; Davidson, P. M.; Lane, G. J.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Ward, D.

    2006-04-26

    Measurements of the excitation energies of superdeformed states via the observation of single-step linking transitions have now been made in three even-A Pb nuclei, with a quasicontinuum analysis providing a limit in a fourth, odd-A case. These results allow us to take the first steps towards establishing systematic trends in excitation energies and binding energies in the second minimum in Pb isotopes.

  10. Atomic electron binding energies in fermium

    SciTech Connect

    Das, M.P.

    1981-02-01

    Calculations of the binding energies of electrons in fermium by using a relativistic local-density functional theory are reported. It is found that relaxation effects are nonnegligible for inner core orbitals. Calculated orbital binding energies are compared with those due to nonlocal Dirac-Fock calculations and also with those determined experimentally from conversion electron spectroscopy. Finally the usefulness of the local-density approximation for the study of heavy atomic and condensed systems is discussed.

  11. The excitation and collisional deactivation of metastable N/2P/ atoms in auroras

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Espy, P. J.; Boyle, C. F.

    1980-01-01

    The concentration and altitude distribution of metastable N(2P) atoms was measured in a diffuse IBC II(+) auroral arc. The dominant N(2P) source is shown to be the dissociative excitation of N2 by electron impact with a minor contribution from the dissociative recombination of N2(+) ions. The possibility that an ion-molecule process involving atomic oxygen and vibrationally excited N2(+) ions is a significant N(2P) source is examined. Values for the proportional yield of N(+), N(2P), N(2D), and N(4S) atoms from electron-impact dissociation of N2 under optically thick conditions are given.

  12. The excitation and collisional deactivation of metastable N/2P/ atoms in auroras

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Espy, P. J.; Boyle, C. F.

    1980-01-01

    The concentration and altitude distribution of metastable N(2P) atoms was measured in a diffuse IBC II(+) auroral arc. The dominant N(2P) source is shown to be the dissociative excitation of N2 by electron impact with a minor contribution from the dissociative recombination of N2(+) ions. The possibility that an ion-molecule process involving atomic oxygen and vibrationally excited N2(+) ions is a significant N(2P) source is examined. Values for the proportional yield of N(+), N(2P), N(2D), and N(4S) atoms from electron-impact dissociation of N2 under optically thick conditions are given.

  13. Excited states of two-dimensional hydrogen atom in tilted magnetic field: Quantum chaos

    NASA Astrophysics Data System (ADS)

    Koval, Eugene A.; Koval, Oksana A.

    2017-09-01

    The aim of the current work is the research of the influence of a tilted magnetic field direction on the spectrum and the energy level spacing distribution of a two-dimensional (2D) hydrogen atom and of an exciton in GaAs/Al0.33Ga0.67As quantum well. It was discovered that the quantum chaos (QC) is initiated with an increasing angle α between the magnetic field direction and the normal to the atomic plane. It is characterized by the repulsion of levels leading to the eliminating of the shell structure and by changing the spectrum statistical properties. The statement about the initiation of chaos and its dominance over regular motion with increasing angle α is confirmed by the results of our calculations of the classical dynamics presented in this paper. The evolution of the spatial distribution of the square of the absolute value of the wave function at an increasing angle α was observed. The differences of calculated dependencies of energies for various excited states on the tilt angle at a wide range of the magnetic field strength were described.

  14. Roles of the Excitation in Harvesting Energy from Vibrations

    PubMed Central

    Zhang, Hui; Ma, Tianwei

    2015-01-01

    The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183

  15. Collective excitation of Rydberg-atom ensembles beyond the superatom model.

    PubMed

    Gärttner, Martin; Whitlock, Shannon; Schönleber, David W; Evers, Jörg

    2014-12-05

    In an ensemble of laser-driven atoms involving strongly interacting Rydberg states, the steady-state excitation probability is usually substantially suppressed. In contrast, here we identify a regime in which the Rydberg excited fraction is enhanced by the interaction. This effect is associated with the buildup of many-body coherences induced by coherent multiphoton excitations between collective states. The excitation enhancement should be observable under currently existing experimental conditions and may serve as a direct probe for the presence of coherent multiphoton dynamics involving collective quantum states.

  16. Electron capture and excitation in collisions of O[sup +]([sup 4][ital S],[sup 2][ital D],[sup 2][ital P]) ions with He atoms and He[sup +] ions with O atoms at energies below 10 keV

    SciTech Connect

    Kimura, M. Department of Physics, Rice University, Houston, Texas 77251 ); Gu, J.P.; Liebermann, H.P.; Li, Y.; Hirsch, G.; Buenker, R.J. ); Dalgarno, A. )

    1994-12-01

    Electron capture and excitation in O[sup +]([sup 4][ital S],[sup 2][ital D],[sup 2][ital P])+He collisions above 100 eV are studied theoretically by using a semiclassical molecular representation and electron capture in He[sup +]+O([sup 3][ital P]) collisions; excitation and deexcitation in O[sup +]([sup 4][ital S])+He[leftrightarrow]O[sup +]([sup 2][ital D])+He collisions at lower energies are studied by using a fully-quantum-mechanical molecular representation. At higher energies, nonadiabatic couplings are the driving forces that cause transitions. At collision energies below 10 eV, transitions are driven by spin-orbit couplings. At kilo-electron-volt energies, the contribution from metastable O[sup +]([sup 2][ital D],[sup 2][ital P]) ions to electron capture is much larger than that from the ground O[sup +]([sup 4][ital S]) ions. At energies below 1 eV, the cross section for electron capture in He[sup +]+O collisions is very small, with a magnitude of less than 10[sup [minus]20] cm[sup 2]. The cross sections for the excitation-deexcitation of metastable O[sup +] ions are larger, with values near 10[sup [minus]18] cm[sup 2].

  17. Probing dark energy with atom interferometry

    SciTech Connect

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A. E-mail: Edmund.Copeland@nottingham.ac.uk

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  18. Probing dark energy with atom interferometry

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E. A.

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  19. Cross sections for electron capture and excitation in collisions of Li{sup q+} (q=1, 2, 3) with atomic hydrogen

    SciTech Connect

    Liu, L.; Wang, J. G.; Li, X. Y.; Janev, R. K.

    2014-06-15

    The two-center atomic orbital close-coupling method is employed to study electron capture and excitation reactions in collisions of Li{sup q+} (q = 1-3) ions with ground state atomic hydrogen in the ion energy range from 0.1 keV/u to 300 keV/u, where u is the atomic mass unit. The interaction of the active electron with the projectile ions (Li{sup +}, Li{sup 2+}) is represented by a model potential. Total and state-selective cross sections for charge transfer and excitation processes are calculated and compared with data from other sources when available.

  20. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    SciTech Connect

    Winter, T.G.; Alston, S.G.

    1995-08-01

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during the collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.

  1. Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations.

    PubMed

    Galindo, Johan F; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G; Fernandez-Alberti, Sebastian; Tretiak, Sergei; Roitberg, Adrian E; Kleiman, Valeria D

    2015-09-16

    Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment-theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.

  2. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    SciTech Connect

    Rizzo, T.R.

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  3. Low energy excitations of the neutron star core

    NASA Astrophysics Data System (ADS)

    Reddy, Sanjay

    2017-01-01

    I will summarize recent work on low energy excitations in cold dense matter and its implications for thermal and transport properties, and seismology of neutron stars. I argue that a low energy Lagrangian with a handful of low energy constants (LECs) provides an adequate framework for calculations. The LECs can be related to the equation of state of dense matter at zero temperature.

  4. Entropy driven atomic motion in laser-excited bismuth.

    PubMed

    Giret, Y; Gellé, A; Arnaud, B

    2011-04-15

    We introduce a thermodynamical model based on the two-temperature approach in order to fully understand the dynamics of the coherent A(1g) phonon in laser-excited bismuth. Using this model, we simulate the time evolution of (111) Bragg peak intensities measured by Fritz et al. [Science 315, 633 (2007)] in femtosecond x-ray diffraction experiments performed on a bismuth film for different laser fluences. The agreement between theoretical and experimental results is striking not only because we use fluences very close to the experimental ones but also because most of the model parameters are obtained from ab initio calculations performed for different electron temperatures.

  5. Time-resolved observation of interatomic excitation-energy transfer in argon dimers.

    PubMed

    Mizuno, Tomoya; Cörlin, Philipp; Miteva, Tsveta; Gokhberg, Kirill; Kuleff, Alexander; Cederbaum, Lorenz S; Pfeifer, Thomas; Fischer, Andreas; Moshammer, Robert

    2017-03-14

    The ultrafast transfer of excitation energy from one atom to its neighbor is observed in singly charged argon dimers in a time-resolved extreme ultraviolet (XUV)-pump IR-probe experiment. In the pump step, bound 3s-hole states in the dimer are populated by single XUV-photon ionization. The excitation-energy transfer at avoided crossings of the potential-energy curves leads to dissociation of the dimer, which is experimentally observed by further ionization with a time-delayed IR-probe pulse. From the measured pump-probe delay-dependent kinetic-energy release of coincident Ar(+) + Ar(+) ions, we conclude that the transfer of energy occurs on a time scale of about 800fs. This mechanism represents a fast relaxation process below the energy threshold for interatomic Coulombic decay.

  6. Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3

    NASA Astrophysics Data System (ADS)

    Adhikari, C. M.; Debierre, V.; Jentschura, U. D.

    2017-09-01

    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.

  7. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots.

    PubMed

    Vanacore, Giovanni M; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H

    2017-07-01

    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots-grown by Droplet Epitaxy on AlGaAs-with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  8. Optical excitation and decay dynamics of ytterbium atoms embedded in a solid neon matrix.

    SciTech Connect

    Xu, C.-Y.; Hu, S.-M.; Singh, J.; Bailey, K.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Welp, U.

    2011-09-01

    Neutral ytterbium atoms embedded in solid neon qualitatively retain the structure of free atoms. Despite the atom-solid interaction, the 6s6p {sup 3}P{sub 0} level is found to remain metastable with its lifetimes determined to be in the range of ten to hundreds of seconds. The atomic population can be almost completely transferred between the ground level and the metastable level via optical excitation and spontaneous decay. The dynamics of this process is examined and is used to explicitly demonstrate that the transition broadening mechanism is homogeneous.

  9. Optical Excitation and Decay Dynamics of Ytterbium Atoms Embedded in a Solid Neon Matrix

    SciTech Connect

    Xu, C.-Y.; Lu, Z.-T.; Hu, S.-M.; Singh, J.; Bailey, K.; Mueller, P.; O'Connor, T. P.; Welp, U.

    2011-08-26

    Neutral ytterbium atoms embedded in solid neon qualitatively retain the structure of free atoms. Despite the atom-solid interaction, the 6s6p {sup 3}P{sub 0} level is found to remain metastable with its lifetimes determined to be in the range of ten to hundreds of seconds. The atomic population can be almost completely transferred between the ground level and the metastable level via optical excitation and spontaneous decay. The dynamics of this process is examined and is used to explicitly demonstrate that the transition broadening mechanism is homogeneous.

  10. Atom and molecule emission caused by ion impact into a frozen oxygen target: Role of rovibrational excitation

    NASA Astrophysics Data System (ADS)

    Anders, Christian; Pedrys, Roman; Urbassek, Herbert M.

    2013-11-01

    Translational energy distributions of particles sputtered by 750 eV Ne+ ion impact into a cryogenic O2 target are studied using molecular-dynamics simulation. When comparing the energy distribution of emitted molecules to a Thompson distribution, good agreement can only be found for energies E with Uenergy of oxygen molecules. At smaller energies, a strong spike contribution enhances the spectrum. At higher energies (≳0.5 eV), simulation shows a deficiency in sputtered molecules compared to the Thompson distribution; we show that this can be traced back to the decay of highly rovibrationally excited molecules after emission. Around 2% of the sputtered particles consist of radicals (atomic O). These originate from direct projectile-molecule collisions; they are emitted early in the collision cascade and feature a strong high-energy contribution.

  11. Vibration energy harvesting from random force and motion excitations

    NASA Astrophysics Data System (ADS)

    Tang, Xiudong; Zuo, Lei

    2012-07-01

    A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not

  12. Excited-state intramolecular proton transfer to carbon atoms: nonadiabatic surface-hopping dynamics simulations.

    PubMed

    Xia, Shu-Hua; Xie, Bin-Bin; Fang, Qiu; Cui, Ganglong; Thiel, Walter

    2015-04-21

    Excited-state intramolecular proton transfer (ESIPT) between two highly electronegative atoms, for example, oxygen and nitrogen, has been intensely studied experimentally and computationally, whereas there has been much less theoretical work on ESIPT to other atoms such as carbon. We have employed CASSCF, MS-CASPT2, RI-ADC(2), OM2/MRCI, DFT, and TDDFT methods to study the mechanistic photochemistry of 2-phenylphenol, for which such an ESIPT has been observed experimentally. According to static electronic structure calculations, irradiation of 2-phenylphenol populates the bright S1 state, which has a rather flat potential in the Franck-Condon region (with a shallow enol minimum at the CASSCF level) and may undergo an essentially barrierless ESIPT to the more stable S1 keto species. There are two S1/S0 conical intersections that mediate relaxation to the ground state, one in the enol region and one in the keto region, with the latter one substantially lower in energy. After S1 → S0 internal conversion, the transient keto species can return back to the S0 enol structure via reverse ground-state hydrogen transfer in a facile tautomerization. This mechanistic scenario is verified by OM2/MRCI-based fewest-switches surface-hopping simulations that provide detailed dynamic information. In these trajectories, ESIPT is complete within 118 fs; the corresponding S1 excited-state lifetime is computed to be 373 fs in vacuum. Most of the trajectories decay to the ground state via the S1/S0 conical intersection in the keto region (67%), and the remaining ones via the enol region (33%). The combination of static electronic structure computations and nonadiabatic dynamics simulations is expected to be generally useful for understanding the mechanistic photophysics and photochemistry of molecules with intramolecular hydrogen bonds.

  13. High-energy electron-impact excitation process: The generalized oscillator strengths of helium

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Ying; Li, Jia-Ming

    2006-12-01

    The high-energy electron impact excitation cross sections are directly proportional to the generalized oscillator strengths (GOSs) of the target (an atom or molecule). In the present work, the GOSs of helium from the ground state to nS1 , nP1 , nD1 (n→∞) and adjacent continuum excited states are calculated by a modified R -matrix code within the first Born approximation. In order to treat the bound-bound and bound-continuum transitions in a unified manner, the GOS density (GOSD) is defined based on the quantum defect theory. The GOSD surfaces of S1 , P1 , and D1 channels are calculated and tested stringently by the recent experiments. With the recommended GOSD surfaces with sufficient accuracy, the GOSDs (i.e., GOSs) from the ground state into all nS1 , nP1 , and nD1 excited states of helium can be obtained by interpolation. Thus, the high-energy electron impact excitation cross sections of all these excited states can be readily obtained. In addition to the high-energy electron impact excitation cross sections, a scheme to calculate the cross sections in the entire incident energy range is discussed.

  14. Excitation Mechanism of H, He, C, and F Atoms in Metal-Assisted Atmospheric Helium Gas Plasma Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Khumaeni, Ali; Kurihara, Kazuyoshi; Kurniawan, Koo Hendrik; Lee, Yong Inn; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2011-12-01

    To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H--He and F--He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.

  15. Excitation Mechanism of H, He, C, and F Atoms in Metal-Assisted Atmospheric Helium Gas Plasma Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment

    NASA Astrophysics Data System (ADS)

    Sukra Lie, Zener; Khumaeni, Ali; Kurihara, Kazuyoshi; Hendrik Kurniawan, Koo; Inn Lee, Yong; Fukumoto, Ken-ichi; Kagawa, Kiichiro; Niki, Hideaki

    2011-12-01

    To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H-He and F-He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.

  16. Using atom interferometry to detect dark energy

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  17. Low energy neutral atom imaging techniques

    SciTech Connect

    Funsten, H.O. McComas, D.J.; Scime, E.E.

    1993-01-01

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

  18. Core excitation effects on oscillator strengths for transitions in four electron atomic systems

    NASA Astrophysics Data System (ADS)

    Chang, T. N.; Luo, Yuxiang

    2007-06-01

    By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).

  19. Atomic interferometry test of dark energy

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine

    2016-11-01

    Atomic interferometry can be used to probe dark energy models coupled to matter. We consider the constraints coming from recent experimental results on models generalizing the inverse power law chameleons such as f (R ) gravity in the large curvature regime, the environmentally dependent dilaton and symmetrons. Using the tomographic description of these models, we find that only symmetrons with masses smaller than the dark energy scale can be efficiently tested. In this regime, the resulting constraints complement the bounds from the Eötwash experiment and exclude small values of the symmetron self-coupling.

  20. Atomic displacement energy in amorphous compounds

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Mashanov, A. A.

    2016-12-01

    Atomic displacement energy Δɛe in multicomponent sheet and lead-silicate glasses is calculated from the free activation energy of a viscous flow. The value of Δɛe is shown to remain constant in a rather wide range of temperatures in the glass transition region. Satisfactory agreement with calculations of Δɛe using the current formula incorporating the glass transition temperature and the fluctuation volume fraction frozen at this temperature is obtained. The validity of the above formula not only at the glass transition temperature but also in the temperature region adjacent to it is confirmed.

  1. Post-threshold energy dependence of the cross section for endoergic processes - Vibrational excitation and reactive scattering.

    NASA Technical Reports Server (NTRS)

    Levine, R. D.; Bernstein, R. B.

    1972-01-01

    The essential features of the translational energy dependence or excitation function for two types of endoergic collisional processes are deduced on the basis of information on the inverse, exoergic processes. Microreversibility is conveniently exploited via the symmetric field function, Y(E), which is uniquely determined at a given total energy, E. In the case of the vibrational excitation of diatomic molecules by atomic or molecular impact, use is made of the abundant data on the temperature dependence of the relaxation time.

  2. Atomic Mass and Nuclear Binding Energy for F-35 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-35 (Fluorine, atomic number Z = 9, mass number A = 35).

  3. Atomic Mass and Nuclear Binding Energy for B-12 (Boron)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope B-12 (Boron, atomic number Z = 5, mass number A = 12).

  4. Atomic Mass and Nuclear Binding Energy for I-124 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-124 (Iodine, atomic number Z = 53, mass number A = 124).

  5. Atomic Mass and Nuclear Binding Energy for Pd-103 (Palladium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pd-103 (Palladium, atomic number Z = 46, mass number A = 103).

  6. Atomic Mass and Nuclear Binding Energy for F-18 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-18 (Fluorine, atomic number Z = 9, mass number A = 18).

  7. Photoionization cross sections of the excited 3s3p 3Po state for atomic Mg

    NASA Astrophysics Data System (ADS)

    Wang, Guoli; Wan, Jianjie; Zhou, Xiaoxin

    2017-01-01

    The photoionization cross sections of the excited levels (3s3p 0,1,2,o 3P) of atomic Mg have been studied theoretically using both the nonrelativistic and fully relativistic R-matrix method. For the threshold cross sections, as previous nonrelativistic studies, present calculations show significant differences (a factor of 3) from former experimental values. Large discrepancies with experiment calls for additional measurements of the photoionization cross sections from the excited states of Mg.

  8. Computational test of the infinite order sudden approximation for excitation of linear rigid rotors by collisions with atoms

    NASA Technical Reports Server (NTRS)

    Green, S.

    1978-01-01

    The infinite order sudden approximation for excitation of linear rigid rotors by collisions with atom is tested by comparing integral state-to-state cross sections with accurate close coupling and coupled states results. The systems studied are HCl-Ar, HCl-He, CO-He, HCN-He, CS-H2 and OCS-H2. With the exception of diatomic hydrides (e.g., HCl) which have atypically large rotational constants the method is found to be very accurate to remarkably low collision energies. This approximation should generally be extremely useful for thermal energy collisions.

  9. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  10. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  11. Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms

    SciTech Connect

    Eletskii, A.V.; Capitelli, M.; Celiberto, R.; Laricchiuta, A.

    2004-04-01

    Resonant charge-exchange cross sections and the relevant transport (diffusion) cross sections for excited states of nitrogen and oxygen atoms have been calculated. The calculation is performed using the asymptotic approach, based on the single-electron asymptotic representation of the electron wave function. The ground-state cross sections are in a good agreement with those calculated via comprehensive quantum chemical approach. The results of calculations demonstrate a reasonable accuracy and a high convenience of this approach in determination of cross sections for the manifold of excited states of atoms.

  12. Single-Photon Interference due to Motion in an Atomic Collective Excitation

    NASA Astrophysics Data System (ADS)

    Whiting, D. J.; Šibalić, N.; Keaveney, J.; Adams, C. S.; Hughes, I. G.

    2017-06-01

    We experimentally demonstrate the heralded generation of bichromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats, a novel interference effect resulting from the relative motion of atoms in the CSE. A combination of velocity-selective excitation with strong laser dressing and the addition of a magnetic field allows for exquisite control of this collective beat phenomenon. The present experiment uses a diamond scheme with near-IR photons that can be extended to include telecommunications wavelengths or modified to allow storage and retrieval in an inverted-Y scheme.

  13. Electronic excitation and quenching of atoms at insulator surfaces

    NASA Technical Reports Server (NTRS)

    Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.

    1988-01-01

    A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.

  14. Electronic excitation and quenching of atoms at insulator surfaces

    NASA Technical Reports Server (NTRS)

    Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.

    1988-01-01

    A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.

  15. Excitation of torsional modes of proteins via collisional energy transfer: A quantum dynamical approach

    NASA Astrophysics Data System (ADS)

    Clary, David C.; Meijer, Anthony J. H. M.

    2002-06-01

    Quantum dynamical calculations have been carried out on the excitation of the torsional vibrations of a protein by collision with a solvent molecule. This energy transfer process represents the first step in the unfolding of the protein. The method developed for this purpose is the torsional close coupling, infinite order sudden approximation. Both time-independent and time dependent methods are used to solve the scattering problem and individual excitation of all the torsional modes of the protein is treated. The method is applied to the excitation of the HIV protein gp41 colliding with a water molecule. This protein has 1101 atoms, 56 amino acids, and 452 torsional modes. A major mode-selective effect is found in the computations: it is much easier to excite backbone torsions than sidechain torsions in the protein. In addition, resonances arise in the collisional process and these complexes involve temporary trapping of the water molecule inside the pockets of the protein.

  16. Spontaneous decay of an atom excited in a dense and disordered atomic ensemble: Quantum microscopic approach

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2014-07-01

    On the basis of general theoretical results developed previously [I. M. Sokolov et al., J. Exp. Theor. Phys. 112, 246 (2011), 10.1134/S106377611101016X], we analyze spontaneous decay of a single atom inside cold atomic clouds under conditions when the averaged interatomic separation is less than or comparable with the wavelength of quasiresonant radiation. Beyond the decay dynamics we analyze shifts of resonance as well as distortion of the spectral shape of the atomic transition.

  17. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  18. Energies and damping rates of elementary excitations in spin-1 Bose-Einstein-condensed gases

    NASA Astrophysics Data System (ADS)

    Szirmai, Gergely; Szépfalusy, Péter; Kis-Szabó, Krisztián

    2003-08-01

    The finite temperature Green’s function technique is used to calculate the energies and damping rates of the elementary excitations of homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature in both the density and spin channels. For this purpose a self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to satisfy the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to gases of 23Na and 87Rb atoms.

  19. Ultrafast excited state hydrogen atom transfer in salicylideneaniline driven by changes in aromaticity.

    PubMed

    Gutiérrez-Arzaluz, Luis; Cortés-Guzmán, Fernando; Rocha-Rinza, Tomás; Peón, Jorge

    2015-12-21

    We investigated two important unresolved issues on excited state intramolecular proton transfer (ESIPT) reactions, i.e., their driving force and the charge state of the transferred species by means of quantum chemical topology. We related changes in the aromaticity of a molecule after electron excitation to reaction dynamics in an excited state. Additionally, we found that the conveyed particle has a charge intermediate between that of a bare proton and a neutral hydrogen atom. We anticipate that the analysis presented in this communication will yield valuable insights into ESIPT and other similar photochemical reactions.

  20. AtomDB and PyAtomDB: Atomic Data and Modelling Tools for High Energy and Non-Maxwellian Plasmas

    NASA Astrophysics Data System (ADS)

    Foster, Adam; Smith, Randall K.; Brickhouse, Nancy S.; Cui, Xiaohong

    2016-04-01

    The release of AtomDB 3 included a large wealth of inner shell ionization and excitation data allowing accurate modeling of non-equilibrium plasmas. We describe the newly calculated data and compare it to published literature data. We apply the new models to existing supernova remnant data such as W49B and N132D. We further outline progress towards AtomDB 3.1, including a new energy-dependent charge exchange cross sections.We present newly developed models for the spectra of electron-electron bremsstrahlung and those due to non-Maxwellian electron distributions.Finally, we present our new atomic database access tools, released as PyAtomDB, allowing powerful use of the underlying fundamental atomic data as well as the spectral emissivities.

  1. Spectral Broadening of Excitation induced by Ultralong-range Interaction in a Cold Gas of Rydberg Atoms

    SciTech Connect

    Loboda, A. V.; Mischenko, E. V.; Gurnitskaya, E. P.; Glushkov, A. V.; Khetselius, O. Yu.

    2008-10-22

    Preliminary results of calculating the broadening of spectral lines of excited atoms induced by ultralong- range (100 Bohr radii) interactions in a cold gas of Rb atoms within the 'own pressure' approximation and perturbation theory formalism are presented.

  2. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].

    PubMed

    Feng, Li; Liu, Jing; Wang, Shu-Ying; Zhang, Wen-Jun; Li, Jia-Ling; Dai, Kang; Shen, Yi-Fan

    2014-07-01

    The vibrational levels of KH(X1 sigma+ v" = 0-3) were generated in the reaction of K(5P) with H2. The vibrationally excited KH(v" = 17) was populated by an overtone pump-probe configuration Different characteristics of collisional energy transfer in highly and lowly excited vibrational levels of KH and CO2 were investigated through measuring the time-resolved distribution of vibrational energy in KH(v" = 17.3) + CO2 collisions. For KH(v" = 17), there existed three principal regions of vibration temperature (T(v)) in this equilibration process. The initial phase consists of very rapid fall in T(v) within - 5 micros, and the vibrational energy of KH(v" = 17) is mainly transferred to the vibrational levels of CO2 (00 degrees 1) or high rotational levels of CO2 (00 degrees 0). The second phase (5-20 micros) has a slight decline in T(v), and the process of energy transfer to vibrational levels or high rotational levels of CO2 has already finished. The vibration temperature of the third phase has a slightly more rapid decline compared with the last phase. This phase shows that the process of transfer to lowly rotational levels and translation energy of CO2 is accelerated. The equilibration of vibrationally excited KH (v" = 3) in CO2 was also investigated. There are similarities to the behavior of KH (v" = 17) in CO2 plot, but also are significant differences. Once the initial resonant V-R exchange has equalized vibrational temperatures, there is a very slow linear decline in T(v) with equilibrium attained within -80 micros. This same point is reached within 15 micros for KH (v" = 17). The data demonstrate that single rate coefficient measurements are unlikely to capture the complex nature of processes that generally are multistaged with different relaxation rates characterizing each different stage. Examination of the quantum state distributions reveals that these distinct stages reflect the dominance of specific energy transfer mechanisms, some of which are inherently

  3. Effect of the coupling channel on the excitation of hydrogenic atoms by the impact of protons and antiprotons

    NASA Astrophysics Data System (ADS)

    Tantawi, Reda S.

    2014-02-01

    Excitation of hydrogenic atoms H, He+ and Li++ initially in the 2p excited state to the n = 3 states by impact of protons and antiprotons is studied using the single-center atomic orbital close-coupling formalism in its impact parameter approach. The calculations cover the incident energy range from 1 to 1000 keV, in which the straight-line trajectory description of nuclear motion is applicable and the inertial confinement plasma research is of main interest. The influences of couplings between the n = 2 states, as well as the back coupling to the 2p initial state, on the excitation processes are investigated. Including the back couplings is found to be more important in the case of proton scattering than in the case of antiproton, and neglecting couplings between the n = 2 states is found to increase the effect of the sign of the projectile's charge. The calculated cross sections for the H atom are compared with those obtained by previous theoretical calculations.

  4. Spreading and atomization dynamics of ultrasonically excited droplets

    NASA Astrophysics Data System (ADS)

    Kumar, Ranganathan; Deepu, P.; Basu, Saptarshi

    2013-11-01

    The dynamics of a sessile droplet under the combined influence of standing pressure wave and a constant substrate acceleration is investigated experimentally. The asymmetric acoustic force field results in radial spreading of the droplet. The spreading rate varies inversely with viscosity which is explained using an analytical model. In low viscosity droplets, towards the end of droplet spreading capillary waves grow to form ligaments of varying length and time scales, ultimately leading to droplet disintegration. Proper Orthogonal Decomposition of high speed images from the droplet spreading phase predicts the likelihood of atomization. The different regimes in the life of surface ligaments are identified. Viscous dissipation plays a crucial role in determining the initial ligament momentum and thus the frequency of ligament breakup. However in the current experimental conditions the growth of a typical ligament is governed by inertial and capillary forces and the influence of viscosity in the ligament growth phase is rather negligible. By including the effect of acoustic pressure, a characteristic timescale is deduced which collapses the ligament growth profiles for different fluids on a straight line.

  5. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  6. Raman active high energy excitations in URu2Si2

    NASA Astrophysics Data System (ADS)

    Buhot, Jonathan; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Piekarz, Przemysław; Lapertot, Gérard; Aoki, Dai; Méasson, Marie-Aude

    2017-02-01

    We have performed Raman scattering measurements on URu2Si2 single crystals on a large energy range up to ∼1300 cm-1 and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the Eg symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A1g symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  7. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    SciTech Connect

    Rizzo, T.R.

    1993-04-01

    Infrared-optical double resonance is being used to study the unimolecular dissociation dynamics of hydrazoic acid (HN[sub 3]). 6[nu][sub NH] vibrational overtone excitation spectra are given for HN[sub 3]. Work was begun to determine the feasibility of extending the infrared-optical double resonance photofragment spectroscopy to small free radicals, and to be able to monitor atomic dissociation fragments via laser induced fluorescence in the VUV spectrum. 1 fig.

  8. Inelastic and reactive collisions with polarized excited Na atoms

    SciTech Connect

    Schmidt, H.; Hertel, I.V.; Lee, Y.T.

    1985-07-01

    Polarization effects in inelastic collisions of laser state-prepared Na(3/sup 2/P, M/sub J/) with Na/sup +/ leading to Na(3/sup 2/D) or Na(3/sup 2/S) are discussed for the energy range E/sub cm/ = 5-47.5eV. Studies with linearly polarized light can be explained with a simple ''locking'' model of the Na(P)-orbital. The investigations employing circularly polarized light are a very sensitive test of the models describing the nonadiabatic angular momentum coupling between electronic and nuclear motion. The dynamical effects of the electronic spin on the angular momentum transfer are discussed. Recent crossed-beam experiments on the Na + O/sub 2/ -> NaO = O reaction in the energy range E/sub cm/ = 0/3-0.8eV show a pronounced dependence on the electric electronic symmetry of Na. 17 refs., 11 figs.

  9. Corrections to charge exchange spectroscopic measurements in TFTR due to energy-dependent excitation rates

    SciTech Connect

    Howell, R.B.; Fonck, R.J.; Knize, R.J.; Jaehnig, K.P.

    1988-08-01

    The use of charge exchange spectrocopy to determine plasma rotation speeds and ion temperature is complicated by the energy dependence of the excitation cross sections. The Doppler-broadened spectral line shape is distorted by the relative velocity between the neutral hydrogen atoms of the injected beam and impurity ions. The asymmetric nature of the energy dependence of this cross section causes a non-motional shift of the line center and a non-thermal change in the line width. These effects vary with the angles between the beam direction, rotation velocity direction, and direction of the viewing sightline. When viewing two neutral beams at different angles on TFTR, the two measurements of v/sub phi/(r) show discrepancies about 20 to 30% with each other. The calculation of the spectral intensity profiles, using the excitation rates available, overcorrects these discrepancies and indicates the need for better excitation coefficients. 10 refs., 5 figs.

  10. Energy-dependent excitation cross section measurements of the diagnostic lines of Fe XVII

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Scofield, J H; Boyce, K R; Kelley, R L; Kilbourne, C A; Porter, F S; Kahn, S M; Szymkowiak, A E

    2005-01-24

    By implementing a large-area, gain-stabilized microcalorimeter array on an electron beam ion trap, the electron-impact excitation cross sections for the dominant x-ray lines in the Fe XVII spectrum have been measured as a function of electron energy up to greater than three times the threshold energy, establishing a benchmark for atomic calculations. The results reveal a consistent overestimation by recent calculations of the excitation cross section of the resonance transition, which is shown to be at the root of several long-standing problems associated with modeling solar and astrophysical Fe XVII spectra. The data do not show strong contributions from resonance excitation contrary to recent statements in the literature.

  11. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  12. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  13. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  14. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  15. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  16. Evolution of the giant dipole resonance properties with excitation energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.

    2006-10-01

    The studies of the evolution of the hot Giant Dipole Resonance (GDR) properties as a function of excitation energy are reviewed. The discussion will mainly focus on the A ˜ 100-120 mass region where a large amount of data concerning the width and the strength evolution with excitation energy are available. Models proposed to interpret the main features and trends of the experimental results will be presented and compared to the available data in order to extract a coherent scenario on the limits of the development of the collective motion in nuclei at high excitation energy. Experimental results on the GDR built in hot nuclei in the mass region A ˜ 60-70 will be also shown, allowing to investigate the mass dependence of the main GDR features. The comparison between limiting excitation energies for the collective motion and critical excitation energies extracted from caloric curve studies will suggest a possible link between the disappearance of collective motion and the liquid-gas phase transition.

  17. Crossover of Feshbach Resonances to Shape-Type Resonances in Electron-Hydrogen Atom Excitation with a Screened Coulomb Interaction

    SciTech Connect

    Zhang Songbin; Wang Jianguo; Janev, R. K.

    2010-01-15

    The effects of Coulomb interaction screening on electron-hydrogen atom excitation in the n=2 threshold region are investigated by using the R-matrix method with pseudostates. The interaction screening lifts the l degeneracy of n=2 Coulomb energy level, producing two distinct thresholds for 2s and 2p states. The phenomenon of transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances is observed when they pass across the 2s and 2p threshold, respectively, as the interaction screening increases. It is shown that this resonance transformation leads to dramatic effects in the 1s->2s and 1s->2p excitation collision strengths in the n=2 threshold collision energy region.

  18. Spin exchange in the excitation of spin-polarized Na atoms by Ne/sup +/-ion impact

    SciTech Connect

    Jitschin, W.; Osimitsch, S.; Reihl, H.; Mueller, D.W.; Kleinpoppen, H.; Lutz, H.O.

    1986-11-01

    The 3s-3p excitation of spin-polarized Na atoms by Ne/sup +/ ions has been studied for impact energies E/sub lab/ = 200 eV to 6 keV, i.e., in the adiabatic regime. The total excitation cross section and the three Stokes polarization parameters of the fluorescence light have been measured. The linear polarization of the light shows a preferential excitation of the chemically bondm/sub l/chemically bond = 1 magnetic substates. The circular polarization probes the spin orientation of the excited 3p state. At the highest impact energies investigated the experimental data are compatible with conservation of spin orientation during the collision. With decreasing impact energy, the spin polarization of the final 3p state becomes smaller than the spin polarization of the initial 3s state. This apparent spin depolarization is attributed to the exchange interaction between the Na valence electron and the unfilled Ne/sup +/ 2p/sup 5/ core in the quasimolecule formed during the collision.

  19. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Song, Lei; Balakrishnan, N.; van der Avoird, Ad; Karman, Tijs; Groenenboom, Gerrit C.

    2015-05-01

    We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 - 30 to v' = 0, j' are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm-1 based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v' = 0, j' are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H-CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H-CO collisions in astrophysical models.

  20. Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms

    SciTech Connect

    Song, Lei; Avoird, Ad van der; Karman, Tijs; Groenenboom, Gerrit C.; Balakrishnan, N.

    2015-05-28

    We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 − 30 to v′ = 0, j′ are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm{sup −1} based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v′ = 0, j′ are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H–CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H–CO collisions in astrophysical models.

  1. Contribution of the 4 f -core-excited states in determination of atomic properties in the Promethium Isoelectronic Sequence

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Safronova, U. I.; Safronova, A. S.

    2014-05-01

    The atomic properties of Pm-like ions were comprehensively studied using relativistic atomic codes with the main emphasis on W ion. Excitation energies of the 4f14 nl (with nl = 5 s , 6 s , 5 p , 6 p , 5 d , 6 d , and 5 f) states in Pm-like ions with nuclear charge Z ranging from 74 to 100 are evaluated within the framework of relativistic many-body theory (RMBPT). First- and second-order Coulomb energies and first- and second-order Breit corrections to the energies are calculated. The important question of what is the ground state in Pm-like ions was answered. Properties of the 4 f -core-excited states are evaluated using the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code) and the Hartree-Fock-Relativistic method (COWAN code). Our large scale calculations includes the following set of configurations: 4f14 5 s , 4f14 5 p , 4f13 5s2 , 4f13 5p2 , 4f13 5 s 5 p , 4f12 5s2 5 p , 4f12 5 s 5p2 , and 4f12 5p3 . Excitation energies, transition rates, and lifetimes in Pm-like tungsten are evaluated with additional inclusion of the 4f11 5s2 5p2 , 4f11 5 s 5p3 , 4f10 5s2 5p3 , and 4f10 5 s 5p4 configurations. Wavelengths of the 5 s - 5 p transitions are obtained by the COWAN, HULLAC, and RMBPT codes. This research was sponsored by DOE under the OFES grant DE-FG02-08ER54951 and in part by NNSA Cooperative Agreement DE-NA0001984. Work at Lawrence Livermore National Lab. was performed under the auspices of DOE under Contract DE-AC52-07NA27344.

  2. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport.

    PubMed

    Song, Peng; Nordlander, Peter; Gao, Shiwu

    2011-02-21

    The coupling of optical excitation and electron transport through a sodium atom in a plasmonic dimer junction is investigated using time-dependent density functional theory. The optical absorption and dynamic conductance is determined as a function of gap size. Surface plasmons are found to couple to atomic-scale transport through several different channels including dipolar, multipolar, and charge transfer plasmon modes. These findings provide insight into subnanoscale couplings of plasmons and atoms, a subject of general interest in plasmonics and molecular electronics.

  3. TOPICAL REVIEW: Shapes and collectivity of exotic nuclei via low-energy Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas

    2010-10-01

    The way in which an atomic nucleus responds to excitations, whether by promoting individual nucleons into higher shells or by collective rotation or vibration, reveals many details of the underlying nuclear structure. The response of the nucleus is closely related to its macroscopic shape. Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei, allowing the measurement of static and dynamic electromagnetic moments as a probe of the nuclear wavefunctions. Owing to the availability of radioactive heavy-ion beams with energies near the Coulomb barrier, it is now possible to study the shape and collectivity of short-lived nuclei far from β stability (the so-called exotic nuclei), providing a particularly stringent test of modern theoretical nuclear structure models. This review gives an introduction to the experimental techniques related to low-energy Coulomb excitation with radioactive ion beams and summarizes the results that were obtained over the last 10 years for a wide variety of exotic nuclei at various laboratories employing the isotope separation on-line technique.

  4. Coherent Excitation of Lithium to Rydberg States and Application to Rydberg Atom Optics

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Widmer, M.; Tudorica, F.; Iu, C.-H.; Metcalf, H.

    1996-05-01

    We present a theoretical analysis of several schemes for coherently exciting lithium atoms in a thermal beam to Rydberg states in a four level/three laser system, previously discussed by Oreg et al.(J. Oreg et al.), Phys. Rev. A 45, 4888 (1992). The time evolution of the dressed states and their populations are calculated numerically, solving the optical Bloch equations by a fourth order Runge-Kutta integration. Our code closely models actual experimental conditions, including spontaneous decay, beam profiles, intensities and detunings. Large Rydberg populations (50%) around n=15 may be obtained by non-adiabatic excitation, with each laser power on the order of 1 mW. We discuss the effects of an externally controlled time dependent detuning in the Rydberg state, for example as produced by atoms traversing an inhomogeneous electric field. An understanding of this excitation mechanism is important for large angle reflection of coherently excited atoms using field gradients. Some primitive ideas of Stark-Rydberg atom optics are presented.

  5. High-precision Stark shift measurements in excited states of indium using an atomic beam

    NASA Astrophysics Data System (ADS)

    Majumder, P. K.; Carter, A. L.; Augenbraun, B. L.; Rupasinghe, P. M.; Vilas, N. B.

    2016-05-01

    A recent precision measurement in our group of the indium scalar polarizability within the 410 nm 5p1 / 2 --> 6s1 / 2 transition showed excellent agreement with ab initio atomic theory. We are now completing a measurement of the polarizability within the 6s1 / 2 --> 6p1 / 2 excited-state transition. In our experiment, two external cavity semiconductor diode lasers interact transversely with a collimated indium atomic beam. We tune the 410 nm laser to the 5p1 / 2 --> 6s1 / 2 transition, keeping the laser locked to the exact Stark-shifted resonance frequency. We overlap a 1343 nm infrared laser to reach the 6p1 / 2 state. The very small infrared absorption in our atomic beam is detected using two-tone FM spectroscopy. Monitoring the two-step excitation signal in a field-free supplemental vapor cell provides frequency reference and calibration. Precisely calibrated electric fields of 5 - 15 kV/cm produce Stark shifts of order 100 MHz for this excited state. Experimental details, latest results, and comparison to theory will be discussed. In the near future, The same infrared laser will be tuned to 1291 nm to study the scalar and tensor polarizability of the 6p3 / 2 excited state providing a distinct test of atomic theory. Work supported by NSF Grant # 1404206.

  6. Plasmon excitations in sodium atomic planes: a time-dependent density functional theory study.

    PubMed

    Wang, Bao-Ji; Xu, Yuehua; Ke, San-Huang

    2012-08-07

    The collective electronic excitation in planar sodium clusters is studied by time-dependent density functional theory calculations. The formation and development of the resonances in photoabsorption spectra are investigated in terms of the shape and size of the two-dimensional (2D) systems. The nature of these resonances is revealed by the frequency-resolved induced charge densities present on a real-space grid. For long double chains, the excitation is similar to that in long single atomic chains, showing longitudinal modes, end and central transverse modes. However, for 2D planes consisting of (n × n) atoms with n being up to 16, new 2D characteristic modes emerge regardless of the symmetries considered. For in-plane excitations, besides the equivalent end mode, mixed modes with contrary polarity occur. The relation between the frequency of the primary modes and the system size is similar to the case of a 2D electron gas but with a correction due to the realistic atomic structure. For excitations perpendicular to the plane there are corner, side center, bulk center, and circuit modes. Our calculation reveals the importance of dimensionality for plasmon excitation and how it evolves from 1D to 2D.

  7. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    PubMed

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  8. Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films.

    PubMed

    Pale, Ville; Giedraityte, Zivile; Chen, Xi; Lopez-Acevedo, Olga; Tittonen, Ilkka; Karppinen, Maarit

    2017-08-01

    Atomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements.

  9. Properties of atoms in electronically excited molecules within the formalism of TDDFT.

    PubMed

    Sánchez-Flores, Eric Iván; Chávez-Calvillo, Rodrigo; Keith, Todd A; Cuevas, Gabriel; Rocha-Rinza, Tomás; Cortés-Guzmán, Fernando

    2014-04-15

    The topological analysis of the electron density for electronic excited states under the formalism of the quantum theory of atoms in molecules using time-dependent density functional theory (TDDFT) is presented. Relaxed electron densities for electronic excited states are computed by solving a Z-vector equation which is obtained by means of the Sternheimer interchange method. This is in contrast to previous work in which the electron density for excited states is obtained using DFT instead of TDDFT, that is, through the imposition of molecular occupancies in accordance with the electron configuration of the excited state under consideration. Once the electron density of the excited state is computed, its topological characterization and the properties of the atoms in molecules are obtained in the same manner that for the ground state. The analysis of the low-lying π→π* singlet and triplet vertical excitations of CO and C6H6 are used as representative examples of the application of this methodology. Altogether, it is shown how this procedure provides insights on the changes of the electron density following photoexcitation and it is our hope that it will be useful in the study of different photophysical and photochemical processes.

  10. High-multipole excitations of atoms by twisted photons near phase singularity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Afanasev, Andrei; Carlson, Carl E.; Mukherjee, Asmita

    2016-09-01

    We calculate transition amplitudes and cross sections for excitation of hydrogen-like atoms by the twisted photon states, or photon states with more than one unit of angular momentum projection along the direction of propagation. If the target atom is located at distances of the order of atomic size near the vortex center, the transitions rates into l_f>1 states become comparable with the rates for standard electric dipole transitions. It is shown that when the transition rates are normalized to the local photon flux, the resulting cross sections for l_f>1 are singular near the optical vortex center, i.e., high-multipole excitations take place in the region of zero field intensity near phase singularity. Relation to the "quantum core" concept introduced by Berry and Dennis is discussed.

  11. Mean excitation energies for ions in gases and plasmas

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Deutsch, Claude; Maynard, Gilles

    1987-02-01

    A variational approach yields accurate upper and lower bounds for mean excitation energies and other related parameters describing the stopping of nonrelativistic point charges by isolated species and ions embedded in dense and hot matter of relevance to particle-driven inertial fusion. The resulting I compares nicely with previous ones by Hartree-Fock-Slater and with experimental data when available. An efficient pseudo-analytic formula based on the Thomas-Fermi method is obtained, together with a cubic spline interpolation variationally improved. It is shown that in high temperature plasmas (kBT≥10 eV) mean excitation energies are significantly smaller than their cold homologue.

  12. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  13. Fluorescent resonant excitation energy transfer in linear polyenes.

    PubMed

    Das, Mousumi; Ramasesha, S

    2010-03-28

    We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R(-2) rather than as R(-6), suggested by the Forster type of dipolar approximation. Our time-evolution study also shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Forster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Forster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Forster theory since the one-photon transition intensity to these states (from the ground state) is zero.

  14. Fluorescent resonant excitation energy transfer in linear polyenes

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Ramasesha, S.

    2010-03-01

    We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R-2 rather than as R-6, suggested by the Förster type of dipolar approximation. Our time-evolution study also shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Förster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Förster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Förster theory since the one-photon transition intensity to these states (from the ground state) is zero.

  15. Dynamics of insertion reactions of H2 molecules with excited atoms.

    PubMed

    Aoiz, F J; Bañares, L; Herrero, V J

    2006-11-23

    Recent progress in the study of insertion reactions of hydrogen molecules with excited atoms is reviewed in this article. In particular, the dynamics of the reaction of O(1D), N(2D), C(1D), and S(1D) with H2 and its isotopomers, which have received a great deal of attention over the past decade, are examined in detail. All of these systems have in common the existence of several potential energy surfaces (PES) correlating with the reagents' states, and consequently, they can give rise to reaction following different adiabatic and nonadiabatic pathways. The main contribution, however, arises from their ground singlet PESs which feature the existence of deep wells with small or null barriers for insertion. Accordingly, these reactions proceed mainly via formation of relatively long-lived collision complexes and display an overall nearly statistical behavior. In spite of their similarities, the various reactions have peculiar characteristics caused by important differences of their respective PESs. The contribution of excited PES to the global reactivity, which has also become an important issue and a challenge both for theory and experiment, is also examined. The different theoretical approaches are discussed in the text, along with the experimental results obtained by a variety of techniques. The recent exact quantum treatments of these reactive systems together with the development of a rigorous statistical model have contributed to a very accurate description which in many cases matches very well the detailed measurements. The quasi-classical trajectory (QCT) method has also provided a fairly accurate description of the reaction dynamics for these systems. In particular, the analysis in terms of collision times has yielded interesting clues about the reaction mechanisms.

  16. Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology

    SciTech Connect

    Hankin, Aaron Michael

    2014-08-01

    With the advent of laser cooling and trapping, neutral atoms have become a foundational source of accuracy for applications in metrology and are showing great potential for their use as qubits in quantum information. In metrology, neutral atoms provide the most accurate references for the measurement of time and acceleration. The unsurpassed stability provided by these systems make neutral atoms an attractive avenue to explore applications in quantum information and computing. However, to fully investigate the eld of quantum information, we require a method to generate entangling interactions between neutral-atom qubits. Recent progress in the use of highly-excited Rydberg states for strong dipolar interactions has shown great promise for controlled entanglement using the Rydberg blockade phenomenon. I report the use of singly-trapped 133Cs atoms as qubits for applications in metrology and quantum information. Each atom provides a physical basis for a single qubit by encoding the required information into the ground-state hyper ne structure of 133Cs. Through the manipulation of these qubits with microwave and optical frequency sources, we demonstrate the capacity for arbitrary single-qubit control by driving qubit rotations in three orthogonal directions on the Bloch sphere. With this control, we develop an atom interferometer that far surpasses the force sensitivity of other approaches by applying the well-established technique of lightpulsed atom-matterwave interferometry to single atoms. Following this, we focus on two-qubit interactions using highly-excited Rydberg states. Through the development of a unique single-photon approach to Rydberg excitation using an ultraviolet laser at 319 nm, we observe the Rydberg blockade interaction between atoms separated by 6.6(3) m. Motivated by the observation of Rydberg blockade, we study the application of Rydberg-dressed states for a quantum controlled-phase gate. Using a realistic simulation of the

  17. Chemical bonding in excited states: Energy transfer and charge redistribution from a real space perspective.

    PubMed

    Jara-Cortés, Jesús; Guevara-Vela, José Manuel; Martín Pendás, Ángel; Hernández-Trujillo, Jesús

    2017-05-15

    This work provides a novel interpretation of elementary processes of photophysical relevance from the standpoint of the electron density using simple model reactions. These include excited states of H2 taken as a prototype for a covalent bond, excimer formation of He2 to analyze non-covalent interactions, charge transfer by an avoided crossing of electronic states in LiF and conical interesections involved in the intramolecular scrambling in C2 H4 . The changes of the atomic and interaction energy components along the potential energy profiles are described by the interacting quantum atoms approach and the quantum theory of atoms in molecules. Additionally, the topological analysis of one- and two-electron density functions is used to explore basic reaction mechanisms involving excited and degenerate states in connection with the virial theorem. This real space approach allows to describe these processes in a unified way, showing its versatility and utility in the study of chemical systems in excited states. © 2017 Wiley Periodicals, Inc.

  18. Two-step laser excited atomic fluorescence spectrometry determination of mercury

    NASA Astrophysics Data System (ADS)

    Resto, W.; Badini, R. G.; Smith, B. W.; Stevenson, C. L.; Winefordner, J. D.

    1993-04-01

    A novel method for the determination of mercury by laser excited atomic fluorescence with electrothermal atomization (LEAFS-ETA) has been developed. The experimental set-up consisted of a dual dye-laser system pumped with a XeCl excimer laser operated at 10 Hz, and an electrothermal atomizer with platform atomization. The atomization program allowed time for the injection of Pd (as a matrix modifier) and used a drying step at 110°C and an atomization step at 1200°C. The collection is made at 90° using a pierced mirror, an achromat lens and a long-pass filter. The monochromator is fitted with a 1P28 PMT. The signal is processed by using a boxcar and an analog to digital interface. The excitation scheme is a two-step process, with λ 1 = 253.7 nm and λ 2 = 435.8 nm. Direct fluorescence is observed at 546.1 nm. The limit of detection (LOD) obtained is 90 fg (9 pptr with 10 μ1 injection). The linear dynamic range (LDR) is five orders of magnitude and is limited by the non-linearity of the co-operative processes occurring at higher concentrations. In order to extend the LDR to higher amounts of mercury, indirect fluorescence is collected with the less sensitive line at 407.8 nm, allowing concentrations of 1 ppm and up to be measured, extending the LDR of the technique to at least seven orders of magnitude.

  19. Simulating quantum spin models using Rydberg-excited atomic ensembles in magnetic microtrap arrays

    NASA Astrophysics Data System (ADS)

    Whitlock, Shannon; Glaetzle, Alexander W.; Hannaford, Peter

    2017-04-01

    We propose a scheme to simulate lattice spin models based on strong, long-range interacting Rydberg atoms stored in a large-spacing array of magnetic microtraps. Each spin is encoded in a collective spin state involving a single nS or (n+1)S Rydberg atom excited from an ensemble of ground-state alkali atoms prepared via Rydberg blockade. After the excitation laser is switched off, the Rydberg spin states on neighbouring lattice sites interact via general XXZ spin–spin interactions. To read out the collective spin states we propose a single Rydberg atom triggered avalanche scheme in which the presence of a single Rydberg atom conditionally transfers a large number of ground-state atoms in the trap to an untrapped state which can be readily detected by site-resolved absorption imaging. Such a quantum simulator should allow the study of quantum spin systems in almost arbitrary one-dimensional and two-dimensional configurations. This paves the way towards engineering exotic spin models, such as spin models based on triangular-symmetry lattices which can give rise to frustrated-spin magnetism.

  20. Dynamic emission and population control in a Λ-type excitation scheme of atomic potassium

    NASA Astrophysics Data System (ADS)

    Papademetriou, G.; Pentaris, D.; Efthimiopoulos, T.; Lyras, A.

    2017-06-01

    The nonlinear interaction of a four-level atomic configuration in potassium, with ns pump and coupling fields, is numerically investigated. The resonant pump acts on the two-photon transition | 4{{{S}}}{1/2}> ≤ftrightarrow | 6{{{S}}}{1/2}> causing internally generated emissions in two atomic paths: path-1, | 4{{{S}}}{1/2}> ≤ftrightarrow | 6{{{S}}}{1/2}> ≤ftrightarrow | 5{{{P}}}{3/2}> ≤ftrightarrow | 4{{{S}}}{1/2}> , and path-2, | 4{{{S}}}{1/2}> ≤ftrightarrow | 6{{{S}}}{1/2}> ≤ftrightarrow | 4{{{P}}}{3/2}> ≤ftrightarrow | 4{{{S}}}{1/2}> , respectively. The coupling laser resonantly excites the single-photon transition | 6{{{S}}}{1/2}> \\to | 4{{{P}}}{3/2}> in a Λ-type scheme. A controlled temporal shift and enhancement of the partially coherent cascade emissions of path-2 is obtained. The amplification without inversion mechanism is proposed to explain the lower path-2 emission. It is shown that when the coupling field is delayed from the pump, then an efficient dynamic effect is induced, based on an additional population interplay of states | 6{{{S}}}{1/2}> and | 4{{{P}}}{3/2}> . Finally, a novel coherent method for temporally controlling the quasi-stationary population dynamics in a saturated system is proposed, when the driving fields are also delayed. The importance of the present work is related to the fact that the induced coherence (polarisation or energy injection) of the coupling field can be temporally controlled in nonlinear gaseous media.

  1. Low energy barriers of H-atom abstraction from phenols

    NASA Astrophysics Data System (ADS)

    Tishchenko, Oksana; Kryachko, Eugene S.; Nguyen, Minh Tho

    2002-09-01

    The energy barriers governing the hydrogen atom transfer between phenols related to Vitamin E and methylperoxyl radical are determined using the B3LYP/6-31G(d,p) method. For phenol, o, o-dimethylphenol, and o, o, m-trimethylphenol, they are equal to 6.0, 4.2, and 3.5 kcal/mol, respectively. While in both reactants and products the H-bond is nearly coplanar with the aromatic ring, it becomes essentially twisted out of the ring in the transition state structures. This implies that the transition states in such reactions are likely located at the avoided crossing of the lower-lying electronic states of the H-bonded complex, correlating with the ground π and first excited σ states of the incipient phenoxyl radical.

  2. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Vicic, M. D.

    2006-06-15

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  3. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    SciTech Connect

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H/sub 2//sup +/ + He and HD/sup +/ + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H/sub 2//sup +/ or HD/sup +/ is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C/sub 2/H/sub 2//sup +/ + H/sub 2/ ..-->.. C/sub 2/H/sub 3//sup +/ + H.

  4. Three-photon resonant atomic excitation in spatially incoherent laser beams

    SciTech Connect

    Peet, Victor; Shchemeljov, Sergei

    2003-10-01

    Two-color excitation by spatially coherent and incoherent laser beams has been used to study three-photon-resonant excitation and subsequent ionization of xenon in conditions, when internally generated sum-frequency field plays an important role in excitation of atomic resonances through interfering one-photon excitation pathway. We show that the incoherence in one of the pumping fields reduces the efficiency of generated sum-frequency field, and thus suppresses the interference between the three- and the one-photon excitation channels. The degree of suppression is controlled by varying the crossing angle between coherent and incoherent laser beams. We show that ionization profiles can be analyzed on the basis of the well-studied interference of one- and three-photon transition amplitudes, but with pumping field decomposed into multiple small-scale uncorrelated domains where coherent process of four-wave mixing occurs. The gain length for a coherent process in these domains depends on the coherence degree and excitation geometry. It gives a possibility of controlling the contribution of coherent processes to the excitation of multiphoton resonances.

  5. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    PubMed

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  6. Quantum signature for laser-driven correlated excitation of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Wu, Huaizhi; Li, Yong; Yang, Zhen-Biao; Zheng, Shi-Biao

    2017-01-01

    The excitation dynamics of a laser-driven Rydberg-atom system exhibits a cooperative effect due to the interatomic Rydberg-Rydberg interaction, but the large many-body system with inhomogeneous Rydberg coupling is hard to exactly solve or numerically study by density-matrix equations. In this paper, we find that the laser-driven Rydberg-atom system with most of the atoms being in the ground state can be described by a simplified interaction model resembling the optical Kerr effect if the distance-dependent Rydberg-Rydberg interaction is replaced by an infinite-range coupling. We can then quantitatively study the effect of the quantum fluctuations on the Rydberg excitation with the interatomic correlation involved and analytically calculate the statistical characteristics of the excitation dynamics in the steady state, revealing the quantum signature of the driven-dissipative Rydberg-atom system. The results obtained here will be of great interest for other spin-1/2 systems with spin-spin coupling.

  7. Complex fragment emission at low and high excitation energy

    SciTech Connect

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs.

  8. Excitation-energy influence at the scission configuration

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.

    2017-09-01

    Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z˜50 and Z˜55, where their impact evolves with the excitation energy.

  9. Accurate Cross Sections for Excitation of Resonance Transitions in Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Electron collision excitation cross sections for the resonance 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0), 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3s (sup 3)P(sup 0) and 2p(sup 4) (sup 3)P-2s2p(sup 5) (sup 3)P(sup 0) transitions have been calculated by using the R matrix with a pseudostates approach for incident electron energies from near threshold to 100 eV. The excitation of these transition sgives rise to strong atomic oxygen emission features at 1304, 1027, 989, 878, and 792 Angstrom in the spectra of several planetary atmospheres. We included 22 spectroscopic bound and autoionizing states and 30 pseudostates in the close-coupling expansion. The target wave functions are chosen to properly account for the important correlation and relaxation effects. The effect of coupling to the continuum is included through the use of pseudostates. The contribution of the ionization continuum is significant for resonance transitions. Measured absolute direct excitation cross sections of 0 I are reported by experimental groups from the Jet Propulsion Laboratory and Johns Hopkins University. Good agreement is noted for the 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0) transition (lambda 1304 Ang) with measured cross sections from both groups that agree well with each other. There is disagreement between experiments for other transitions. Our results support the measured cross sections from the Johns Hopkins University for the 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0) and 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transitions, while for the 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transition the agreement is switched to the measured cross sections from the Jet Propulsion Laboratory.

  10. Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States

    NASA Astrophysics Data System (ADS)

    Makowski, Marcin; Hanas, Martyna

    2016-09-01

    The performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.

  11. Real-time observation of interference between atomic one-electron and two-electron excitations.

    PubMed

    Geiseler, Henning; Rottke, Horst; Zhavoronkov, Nickolai; Sandner, Wolfgang

    2012-03-23

    We present results of real-time tracking of atomic two-electron dynamics in an autoionizing transient wave packet in krypton. A coherent superposition of two Fano resonances is excited with a femtosecond extreme-ultraviolet pulse. The evolution of the corresponding wave packet is subsequently probed with a delayed infrared pulse. In our specific case, we get access to the interference between one- and two-electron excitation channels in the launched wave packet, which is superimposed on its decay through autoionization. A simple model is able to account for the observed dynamical evolution of this wave packet.

  12. Direct dark modes excitation in bi-layered enantiomeric atoms-based metasurface through symmetry matching.

    PubMed

    Bochkova, Elena; Burokur, Shah Nawaz; de Lustrac, André; Lupu, Anatole

    2016-01-15

    We provide evidence for the mechanism of direct dark mode excitation in a metasurface composed of bi-layered Z-shaped enantiomeric meta-atoms. The electromagnetic behavior of the structure is investigated through both numerical simulations and experimental measurements in the microwave domain. We demonstrate direct field coupling excitation of second higher order electric mode under normal incidence based only on symmetry matching conditions. The proposed approach provides a better flexibility in engineering dark mode resonances that do not rely on hybridization mechanism and presents important advantages for multi-spectral sensor applications.

  13. Excitation energy dependent Raman spectrum of MoSe2

    PubMed Central

    Nam, Dahyun; Lee, Jae-Ung; Cheong, Hyeonsik

    2015-01-01

    Raman investigation of MoSe2 was carried out with eight different excitation energies. Seven peaks, including E1g, A1g, E2g1, and A2u2 peaks are observed in the range of 100–400 cm−1. The phonon modes are assigned by comparing the peak positions with theoretical calculations. The intensities of the peaks are enhanced at different excitation energies through resonance with different optical transitions. The A1g mode is enhanced at 1.58 and 3.82 eV, which are near the A exciton energy and the band-to-band transition between higher energy bands, respectively. The E2g1 mode is strongly enhanced with respect to the A1g mode for the 2.71- and 2.81-eV excitations, which are close to the C exciton energy. The different enhancements of the A1g and E2g1 modes are explained in terms of the symmetries of the exciton states and the exciton-phonon coupling. Other smaller peaks including E1g and A2u2 are forbidden but appear due to the resonance effect near optical transition energies. PMID:26601614

  14. Atom-Interferometry Constraints on Dark Energy

    NASA Astrophysics Data System (ADS)

    Mueller, Holger

    2016-03-01

    If dark energy is a light scalar field, it might interact with normal matter. The interactions, however, are suppressed in some leading models, which are thus compatible with current cosmological observations as well as solar-system and laboratory studies. Such suppression typically relies on the scalar's interaction with macroscopic amounts of ordinary matter, but can be bypassed by studying the interaction with individual particles. Using an atom interferometer, we have placed tight constraints on so-called chameleon models, ruling out interaction parameters βM > 4 ×104 . This limit is improved by 2.5 orders of magnitude relative to previous experiments. We have already increased the sensitivity of our interferometer hundredfold and are expecting a new constraint soon. Purpose-built experiments in the lab or on the international space station will completely close the gap and rule out out chameleons and other theories, such as axions, dark photons, symmetrons or f (R) gravity.

  15. Studies on production of metastable core-excited atoms by laser-produced x-rays. Final report, 1 October 1984-30 September 1985

    SciTech Connect

    Harris, S.E.; Young, J.F.

    1986-04-01

    The overall objective of the work on this program was to study methods for production of core-excited metastable atoms by laser-generated x-rays. We are interested in the spectroscopy of these levels, their autoionizing and radiative rates, and their metastability in the presence of hot electrons and ions. The concept of using x-rays emitted from a laser-produced plasma to excite large densities of energetic excited levels in atoms and ions has been thoroughly experimentally investigated using modest, 100 mJ, plasma-producing lasers. One of the objectives of this work was to verify that these techniques could be scaled up to higher energies, such as 20 J. Thus a major effort this year has been devoted to the design and construction of the high energy (20 J) 1064 nm plasma-forming laser system and the tunable probe/transfer laser.

  16. Velocity dependent O atom IR excitation cross sections: Connections with flight data

    NASA Astrophysics Data System (ADS)

    Oakes, D. B.; Sonnenfroh, D. M.; Caledonia, G. E.; Blumberg, W. A. M.

    1994-12-01

    A fast oxygen atom source has been used to study the velocity dependence of O atom infrared excitation reactions with various molecular species in a crossed beam experiment. These short wave infrared (SWIR) measurements are performed under single collision conditions, simulating the low Earth orbit environment. Such data are fundamental to the analysis and interpretation of atmospheric oxygen atom interaction with plume exhaust species and with the local environment about structures in low Earth orbit. Measurements have been performed over the oxygen atom velocity range of 6 to 12 km/s. These are the first such experimental measurements, and they may be used to validate theoretical estimates presently used in predictive models. We specifically discuss the velocity dependent cross sections for the reaction O + N2 yields NO(v) + N. This reaction is endothermic for O atom velocities less than or equal tto 8 km/s. Preliminary data are also shown for the reaction O + CO2 yields CO2 nu(sub3) + O yields CO(v) + O2. Both band integral and spectrally resolved results will be presented. The spectrally resolved data provide information on the rotation/vibrational distribution of the excited states. Limited observations of infrared emissions resulting from atmospheric interactions have become available in recent years from both shuttle- and rocket-borne experiments. Comparisons between our experiemental database and selected data from several different flight experiments are provided. These comparisons clearly identify the kinetic mechanisms responsible for the flight observations.

  17. Radiative Quenching and Excitation of Metastable States upon Differential Scattering of Atoms: I. Uniform Quasi-Classical Theory

    SciTech Connect

    Devdariani, A.Z.; Chesnokov, E.A.

    2005-12-15

    A theory of radiative-collisional transitions between the ground and metastable {sup 1}S states of a colliding atom is proposed. The theory uses the uniform quasi-classical approximation generalized to the case of spherically asymmetric interactions. The theory takes into account the angular momentum of an emitted (absorbed) photon and allows one to calculate the total and differential scattering cross sections in a wide range of radiation frequencies including both wings and the center of the line of a forbidden atomic transition. The range of admissible collision energies and intensities of an external radiation field is restricted by the use of the adiabatic approximation, as well as the approximation of a weak coupling between the ground and excited states of a quasi-molecule, the potentials of which are assumed to be monotonically repulsive.

  18. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  19. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-01

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.

  20. Engineering extended Hubbard models with Zeeman excitations of ultracold Dy atoms

    NASA Astrophysics Data System (ADS)

    Vargas-Hernández, R. A.; Krems, R. V.

    2016-12-01

    We show that Zeeman excitations of ultracold Dy atoms trapped in an optical lattice can be used to engineer extended Hubbard models with tunable inter-site and particle number-non-conserving interactions. We show that the ratio of the hopping amplitude and inter-site interactions in these lattice models can be tuned in a wide range by transferring the atoms to different Zeeman states. We propose to use the resulting controllable models for the study of the effects of direct particle interactions and particle number-non-conserving terms on Anderson localization.

  1. Note: Determining the detection efficiency of excited neutral atoms by a microchannel plate detector

    SciTech Connect

    Berry, Ben; Zohrabi, M.; Hayes, D.; Ablikim, U.; Jochim, Bethany; Severt, T.; Carnes, K. D.; Ben-Itzhak, I.

    2015-04-15

    We present a method for determining the detection efficiency of neutral atoms relative to keV ions. Excited D* atoms are produced by D{sub 2} fragmentation in a strong laser field. The fragments are detected by a micro-channel plate detector either directly as neutrals or as keV ions following field ionization and acceleration by a static electric field. Moreover, we propose a new mechanism by which neutrals are detected. We show that the ratio of the yield of neutrals and ions can be related to the relative detection efficiency of these species.

  2. CHEMI-IONIZATION IN SOLAR PHOTOSPHERE: INFLUENCE ON THE HYDROGEN ATOM EXCITED STATES POPULATION

    SciTech Connect

    Mihajlov, Anatolij A.; Ignjatovic, Ljubinko M.; Sreckovic, Vladimir A.; Dimitrijevic, Milan S. E-mail: mihajlov@ipb.ac.rs

    2011-03-15

    In this paper, the influence of chemi-ionization processes in H*(n {>=} 2) + H(1s) collisions, as well as the influence of inverse chemi-recombination processes on hydrogen atom excited-state populations in solar photosphere, are compared with the influence of concurrent electron-atom and electron-ion ionization and recombination processes. It has been found that the considered chemi-ionization/recombination processes dominate over the relevant concurrent processes in almost the whole solar photosphere. Thus, it is shown that these processes and their importance for the non-local thermodynamic equilibrium modeling of the solar atmosphere should be investigated further.

  3. Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes

    NASA Astrophysics Data System (ADS)

    Garcia, Ricardo; Martinez, Nicolas F.; Patil, Shivprasad; Lozano, Jose R.

    2007-03-01

    We demonstrate that the compositional sensitivity of an atomic force microscope is enhanced by the simultaneous excitation of its first two normal eigenmodes^1-2. The coupling of those modes by the non-linear probe-surface interactions enables to map compositional changes in several conjugated molecular materials with a phase shift sensitivity that is about two orders of magnitude higher than the one achieved in amplitude modulation atomic force microscopy. *T.R. Rodriguez and R. Garcia, Appl. Phys. Lett. 84, 449 (2004) *N.F. Martinez, S. Patil, J.R. Lozano and R. Garcia, Appl. Phys. Lett. 89, 153115 (2006)

  4. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings.

    PubMed

    Muñoz-Losa, A; Curutchet, C; Fdez Galván, I; Mennucci, B

    2008-07-21

    We present a comparative study on the influence of the quantum mechanical (QM) method (including basis set) on the evaluation of transition energies, transition densities and dipoles, and excitation energy transfer (EET) electronic couplings for a series of chromophores (and the corresponding pairs) typically found in organic electro-optical devices and photosynthetic systems. On these systems we have applied five different QM levels of description of increasing accuracy (ZINDO, CIS, TD-DFT, CASSCF, and SAC-CI). In addition, we have tested the effects of a surrounding environment (either mimicking a solvent or a protein matrix) on excitation energies, transition dipoles, and electronic couplings through the polarizable continuum model (PCM) description. Overall, the results obtained suggest that the choice of the QM level of theory affects the electronic couplings much less than it affects excitation energies. We conclude that reasonable estimates can be obtained using moderate basis sets and inexpensive methods such as configuration interaction of single excitations or time-dependent density functional theory when appropriately coupled to realistic solvation models such as PCM.

  5. Quantum mechanical methods applied to excitation energy transfer: A comparative analysis on excitation energies and electronic couplings

    SciTech Connect

    Munoz-Losa, A.; Mennucci, B.; Curutchet, C.; Galvan, I. Fdez.

    2008-07-21

    We present a comparative study on the influence of the quantum mechanical (QM) method (including basis set) on the evaluation of transition energies, transition densities and dipoles, and excitation energy transfer (EET) electronic couplings for a series of chromophores (and the corresponding pairs) typically found in organic electro-optical devices and photosynthetic systems. On these systems we have applied five different QM levels of description of increasing accuracy (ZINDO, CIS, TD-DFT, CASSCF, and SAC-CI). In addition, we have tested the effects of a surrounding environment (either mimicking a solvent or a protein matrix) on excitation energies, transition dipoles, and electronic couplings through the polarizable continuum model (PCM) description. Overall, the results obtained suggest that the choice of the QM level of theory affects the electronic couplings much less than it affects excitation energies. We conclude that reasonable estimates can be obtained using moderate basis sets and inexpensive methods such as configuration interaction of single excitations or time-dependent density functional theory when appropriately coupled to realistic solvation models such as PCM.

  6. Atomic Mass and Nuclear Binding Energy for Pa-248 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-248 (Protactinium, atomic number Z = 91, mass number A = 248).

  7. Atomic Mass and Nuclear Binding Energy for Po-280 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-280 (Polonium, atomic number Z = 84, mass number A = 280).

  8. Atomic Mass and Nuclear Binding Energy for Po-282 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-282 (Polonium, atomic number Z = 84, mass number A = 282).

  9. Atomic Mass and Nuclear Binding Energy for Po-274 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-274 (Polonium, atomic number Z = 84, mass number A = 274).

  10. Atomic Mass and Nuclear Binding Energy for Po-275 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-275 (Polonium, atomic number Z = 84, mass number A = 275).

  11. Atomic Mass and Nuclear Binding Energy for Po-276 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-276 (Polonium, atomic number Z = 84, mass number A = 276).

  12. Atomic Mass and Nuclear Binding Energy for Po-278 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-278 (Polonium, atomic number Z = 84, mass number A = 278).

  13. Atomic Mass and Nuclear Binding Energy for Po-270 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-270 (Polonium, atomic number Z = 84, mass number A = 270).

  14. Atomic Mass and Nuclear Binding Energy for Po-269 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-269 (Polonium, atomic number Z = 84, mass number A = 269).

  15. Atomic Mass and Nuclear Binding Energy for Po-284 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-284 (Polonium, atomic number Z = 84, mass number A = 284).

  16. Atomic Mass and Nuclear Binding Energy for Po-273 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-273 (Polonium, atomic number Z = 84, mass number A = 273).

  17. Atomic Mass and Nuclear Binding Energy for Po-283 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-283 (Polonium, atomic number Z = 84, mass number A = 283).

  18. Atomic Mass and Nuclear Binding Energy for Po-271 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-271 (Polonium, atomic number Z = 84, mass number A = 271).

  19. Atomic Mass and Nuclear Binding Energy for Po-272 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-272 (Polonium, atomic number Z = 84, mass number A = 272).

  20. Atomic Mass and Nuclear Binding Energy for Po-277 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-277 (Polonium, atomic number Z = 84, mass number A = 277).

  1. Atomic Mass and Nuclear Binding Energy for Po-279 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-279 (Polonium, atomic number Z = 84, mass number A = 279).

  2. Atomic Mass and Nuclear Binding Energy for Po-281 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-281 (Polonium, atomic number Z = 84, mass number A = 281).

  3. Atomic Mass and Nuclear Binding Energy for Pa-247 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-247 (Protactinium, atomic number Z = 91, mass number A = 247).

  4. Atomic Mass and Nuclear Binding Energy for At-283 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-283 (Astatine, atomic number Z = 85, mass number A = 283).

  5. Atomic Mass and Nuclear Binding Energy for At-280 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-280 (Astatine, atomic number Z = 85, mass number A = 280).

  6. Atomic Mass and Nuclear Binding Energy for At-284 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-284 (Astatine, atomic number Z = 85, mass number A = 284).

  7. Atomic Mass and Nuclear Binding Energy for At-245 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-245 (Astatine, atomic number Z = 85, mass number A = 245).

  8. Atomic Mass and Nuclear Binding Energy for At-217 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-217 (Astatine, atomic number Z = 85, mass number A = 217).

  9. Atomic Mass and Nuclear Binding Energy for At-221 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-221 (Astatine, atomic number Z = 85, mass number A = 221).

  10. Atomic Mass and Nuclear Binding Energy for At-266 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-266 (Astatine, atomic number Z = 85, mass number A = 266).

  11. Atomic Mass and Nuclear Binding Energy for At-237 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-237 (Astatine, atomic number Z = 85, mass number A = 237).

  12. Atomic Mass and Nuclear Binding Energy for At-248 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-248 (Astatine, atomic number Z = 85, mass number A = 248).

  13. Atomic Mass and Nuclear Binding Energy for At-225 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-225 (Astatine, atomic number Z = 85, mass number A = 225).

  14. Atomic Mass and Nuclear Binding Energy for At-270 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-270 (Astatine, atomic number Z = 85, mass number A = 270).

  15. Atomic Mass and Nuclear Binding Energy for At-228 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-228 (Astatine, atomic number Z = 85, mass number A = 228).

  16. Atomic Mass and Nuclear Binding Energy for At-218 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-218 (Astatine, atomic number Z = 85, mass number A = 218).

  17. Atomic Mass and Nuclear Binding Energy for At-226 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-226 (Astatine, atomic number Z = 85, mass number A = 226).

  18. Atomic Mass and Nuclear Binding Energy for At-252 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-252 (Astatine, atomic number Z = 85, mass number A = 252).

  19. Atomic Mass and Nuclear Binding Energy for At-267 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-267 (Astatine, atomic number Z = 85, mass number A = 267).

  20. Atomic Mass and Nuclear Binding Energy for At-259 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-259 (Astatine, atomic number Z = 85, mass number A = 259).

  1. Atomic Mass and Nuclear Binding Energy for At-238 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-238 (Astatine, atomic number Z = 85, mass number A = 238).

  2. Atomic Mass and Nuclear Binding Energy for At-235 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-235 (Astatine, atomic number Z = 85, mass number A = 235).

  3. Atomic Mass and Nuclear Binding Energy for At-265 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-265 (Astatine, atomic number Z = 85, mass number A = 265).

  4. Atomic Mass and Nuclear Binding Energy for At-239 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-239 (Astatine, atomic number Z = 85, mass number A = 239).

  5. Atomic Mass and Nuclear Binding Energy for At-243 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-243 (Astatine, atomic number Z = 85, mass number A = 243).

  6. Atomic Mass and Nuclear Binding Energy for At-242 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-242 (Astatine, atomic number Z = 85, mass number A = 242).

  7. Atomic Mass and Nuclear Binding Energy for At-246 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-246 (Astatine, atomic number Z = 85, mass number A = 246).

  8. Atomic Mass and Nuclear Binding Energy for At-231 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-231 (Astatine, atomic number Z = 85, mass number A = 231).

  9. Atomic Mass and Nuclear Binding Energy for At-255 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-255 (Astatine, atomic number Z = 85, mass number A = 255).

  10. Atomic Mass and Nuclear Binding Energy for At-262 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-262 (Astatine, atomic number Z = 85, mass number A = 262).

  11. Atomic Mass and Nuclear Binding Energy for At-258 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-258 (Astatine, atomic number Z = 85, mass number A = 258).

  12. Atomic Mass and Nuclear Binding Energy for At-249 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-249 (Astatine, atomic number Z = 85, mass number A = 249).

  13. Atomic Mass and Nuclear Binding Energy for At-256 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-256 (Astatine, atomic number Z = 85, mass number A = 256).

  14. Atomic Mass and Nuclear Binding Energy for At-274 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-274 (Astatine, atomic number Z = 85, mass number A = 274).

  15. Atomic Mass and Nuclear Binding Energy for At-250 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-250 (Astatine, atomic number Z = 85, mass number A = 250).

  16. Atomic Mass and Nuclear Binding Energy for At-247 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-247 (Astatine, atomic number Z = 85, mass number A = 247).

  17. Atomic Mass and Nuclear Binding Energy for At-269 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-269 (Astatine, atomic number Z = 85, mass number A = 269).

  18. Atomic Mass and Nuclear Binding Energy for At-216 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-216 (Astatine, atomic number Z = 85, mass number A = 216).

  19. Atomic Mass and Nuclear Binding Energy for At-236 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-236 (Astatine, atomic number Z = 85, mass number A = 236).

  20. Atomic Mass and Nuclear Binding Energy for At-276 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-276 (Astatine, atomic number Z = 85, mass number A = 276).

  1. Atomic Mass and Nuclear Binding Energy for At-244 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-244 (Astatine, atomic number Z = 85, mass number A = 244).

  2. Atomic Mass and Nuclear Binding Energy for At-234 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-234 (Astatine, atomic number Z = 85, mass number A = 234).

  3. Atomic Mass and Nuclear Binding Energy for At-271 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-271 (Astatine, atomic number Z = 85, mass number A = 271).

  4. Atomic Mass and Nuclear Binding Energy for At-282 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-282 (Astatine, atomic number Z = 85, mass number A = 282).

  5. Atomic Mass and Nuclear Binding Energy for At-253 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-253 (Astatine, atomic number Z = 85, mass number A = 253).

  6. Atomic Mass and Nuclear Binding Energy for At-264 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-264 (Astatine, atomic number Z = 85, mass number A = 264).

  7. Atomic Mass and Nuclear Binding Energy for At-251 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-251 (Astatine, atomic number Z = 85, mass number A = 251).

  8. Atomic Mass and Nuclear Binding Energy for At-275 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-275 (Astatine, atomic number Z = 85, mass number A = 275).

  9. Atomic Mass and Nuclear Binding Energy for At-224 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-224 (Astatine, atomic number Z = 85, mass number A = 224).

  10. Atomic Mass and Nuclear Binding Energy for At-233 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-233 (Astatine, atomic number Z = 85, mass number A = 233).

  11. Atomic Mass and Nuclear Binding Energy for At-219 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-219 (Astatine, atomic number Z = 85, mass number A = 219).

  12. Atomic Mass and Nuclear Binding Energy for At-277 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-277 (Astatine, atomic number Z = 85, mass number A = 277).

  13. Atomic Mass and Nuclear Binding Energy for At-229 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-229 (Astatine, atomic number Z = 85, mass number A = 229).

  14. Atomic Mass and Nuclear Binding Energy for At-261 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-261 (Astatine, atomic number Z = 85, mass number A = 261).

  15. Atomic Mass and Nuclear Binding Energy for At-279 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-279 (Astatine, atomic number Z = 85, mass number A = 279).

  16. Atomic Mass and Nuclear Binding Energy for At-268 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-268 (Astatine, atomic number Z = 85, mass number A = 268).

  17. Atomic Mass and Nuclear Binding Energy for At-263 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-263 (Astatine, atomic number Z = 85, mass number A = 263).

  18. Atomic Mass and Nuclear Binding Energy for At-232 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-232 (Astatine, atomic number Z = 85, mass number A = 232).

  19. Atomic Mass and Nuclear Binding Energy for At-220 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-220 (Astatine, atomic number Z = 85, mass number A = 220).

  20. Atomic Mass and Nuclear Binding Energy for At-223 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-223 (Astatine, atomic number Z = 85, mass number A = 223).

  1. Atomic Mass and Nuclear Binding Energy for At-222 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-222 (Astatine, atomic number Z = 85, mass number A = 222).

  2. Atomic Mass and Nuclear Binding Energy for At-241 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-241 (Astatine, atomic number Z = 85, mass number A = 241).

  3. Atomic Mass and Nuclear Binding Energy for At-272 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-272 (Astatine, atomic number Z = 85, mass number A = 272).

  4. Atomic Mass and Nuclear Binding Energy for At-240 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-240 (Astatine, atomic number Z = 85, mass number A = 240).

  5. Atomic Mass and Nuclear Binding Energy for At-273 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-273 (Astatine, atomic number Z = 85, mass number A = 273).

  6. Atomic Mass and Nuclear Binding Energy for At-257 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-257 (Astatine, atomic number Z = 85, mass number A = 257).

  7. Atomic Mass and Nuclear Binding Energy for At-227 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-227 (Astatine, atomic number Z = 85, mass number A = 227).

  8. Atomic Mass and Nuclear Binding Energy for At-285 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-285 (Astatine, atomic number Z = 85, mass number A = 285).

  9. Atomic Mass and Nuclear Binding Energy for At-278 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-278 (Astatine, atomic number Z = 85, mass number A = 278).

  10. Atomic Mass and Nuclear Binding Energy for At-281 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-281 (Astatine, atomic number Z = 85, mass number A = 281).

  11. Atomic Mass and Nuclear Binding Energy for At-254 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-254 (Astatine, atomic number Z = 85, mass number A = 254).

  12. Atomic Mass and Nuclear Binding Energy for At-230 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-230 (Astatine, atomic number Z = 85, mass number A = 230).

  13. Atomic Mass and Nuclear Binding Energy for At-260 (Astatine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope At-260 (Astatine, atomic number Z = 85, mass number A = 260).

  14. Atomic Mass and Nuclear Binding Energy for Cf-327 (Californium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Cf-327 (Californium, atomic number Z = 98, mass number A = 327).

  15. Atomic Mass and Nuclear Binding Energy for Cf-326 (Californium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Cf-326 (Californium, atomic number Z = 98, mass number A = 326).

  16. Atomic Mass and Nuclear Binding Energy for Cf-330 (Californium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Cf-330 (Californium, atomic number Z = 98, mass number A = 330).

  17. Atomic Mass and Nuclear Binding Energy for Cf-329 (Californium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Cf-329 (Californium, atomic number Z = 98, mass number A = 329).

  18. Atomic Mass and Nuclear Binding Energy for Cf-328 (Californium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Cf-328 (Californium, atomic number Z = 98, mass number A = 328).

  19. Atomic Mass and Nuclear Binding Energy for Db-314 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-314 (Dubnium, atomic number Z = 105, mass number A = 314).

  20. Atomic Mass and Nuclear Binding Energy for Db-336 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-336 (Dubnium, atomic number Z = 105, mass number A = 336).

  1. Atomic Mass and Nuclear Binding Energy for Db-344 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-344 (Dubnium, atomic number Z = 105, mass number A = 344).

  2. Atomic Mass and Nuclear Binding Energy for Db-339 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-339 (Dubnium, atomic number Z = 105, mass number A = 339).

  3. Atomic Mass and Nuclear Binding Energy for Db-320 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-320 (Dubnium, atomic number Z = 105, mass number A = 320).

  4. Atomic Mass and Nuclear Binding Energy for Db-283 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-283 (Dubnium, atomic number Z = 105, mass number A = 283).

  5. Atomic Mass and Nuclear Binding Energy for Db-338 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-338 (Dubnium, atomic number Z = 105, mass number A = 338).

  6. Atomic Mass and Nuclear Binding Energy for Db-331 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-331 (Dubnium, atomic number Z = 105, mass number A = 331).

  7. Atomic Mass and Nuclear Binding Energy for Db-308 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-308 (Dubnium, atomic number Z = 105, mass number A = 308).

  8. Atomic Mass and Nuclear Binding Energy for Db-352 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-352 (Dubnium, atomic number Z = 105, mass number A = 352).

  9. Atomic Mass and Nuclear Binding Energy for Db-318 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-318 (Dubnium, atomic number Z = 105, mass number A = 318).

  10. Atomic Mass and Nuclear Binding Energy for Db-292 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-292 (Dubnium, atomic number Z = 105, mass number A = 292).

  11. Atomic Mass and Nuclear Binding Energy for Db-304 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-304 (Dubnium, atomic number Z = 105, mass number A = 304).

  12. Atomic Mass and Nuclear Binding Energy for Db-303 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-303 (Dubnium, atomic number Z = 105, mass number A = 303).

  13. Atomic Mass and Nuclear Binding Energy for Db-273 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-273 (Dubnium, atomic number Z = 105, mass number A = 273).

  14. Atomic Mass and Nuclear Binding Energy for Db-265 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-265 (Dubnium, atomic number Z = 105, mass number A = 265).

  15. Atomic Mass and Nuclear Binding Energy for Db-342 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-342 (Dubnium, atomic number Z = 105, mass number A = 342).

  16. Atomic Mass and Nuclear Binding Energy for Db-315 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-315 (Dubnium, atomic number Z = 105, mass number A = 315).

  17. Atomic Mass and Nuclear Binding Energy for Db-319 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-319 (Dubnium, atomic number Z = 105, mass number A = 319).

  18. Atomic Mass and Nuclear Binding Energy for Db-323 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-323 (Dubnium, atomic number Z = 105, mass number A = 323).

  19. Atomic Mass and Nuclear Binding Energy for Db-296 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-296 (Dubnium, atomic number Z = 105, mass number A = 296).

  20. Atomic Mass and Nuclear Binding Energy for Db-335 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-335 (Dubnium, atomic number Z = 105, mass number A = 335).

  1. Atomic Mass and Nuclear Binding Energy for Db-287 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-287 (Dubnium, atomic number Z = 105, mass number A = 287).

  2. Atomic Mass and Nuclear Binding Energy for Db-307 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-307 (Dubnium, atomic number Z = 105, mass number A = 307).

  3. Atomic Mass and Nuclear Binding Energy for Db-275 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-275 (Dubnium, atomic number Z = 105, mass number A = 275).

  4. Atomic Mass and Nuclear Binding Energy for Db-334 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-334 (Dubnium, atomic number Z = 105, mass number A = 334).

  5. Atomic Mass and Nuclear Binding Energy for Db-333 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-333 (Dubnium, atomic number Z = 105, mass number A = 333).

  6. Atomic Mass and Nuclear Binding Energy for Db-285 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-285 (Dubnium, atomic number Z = 105, mass number A = 285).

  7. Atomic Mass and Nuclear Binding Energy for Db-302 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-302 (Dubnium, atomic number Z = 105, mass number A = 302).

  8. Atomic Mass and Nuclear Binding Energy for Db-326 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-326 (Dubnium, atomic number Z = 105, mass number A = 326).

  9. Atomic Mass and Nuclear Binding Energy for Db-348 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-348 (Dubnium, atomic number Z = 105, mass number A = 348).

  10. Atomic Mass and Nuclear Binding Energy for Db-343 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-343 (Dubnium, atomic number Z = 105, mass number A = 343).

  11. Atomic Mass and Nuclear Binding Energy for Db-293 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-293 (Dubnium, atomic number Z = 105, mass number A = 293).

  12. Atomic Mass and Nuclear Binding Energy for Db-311 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-311 (Dubnium, atomic number Z = 105, mass number A = 311).

  13. Atomic Mass and Nuclear Binding Energy for Db-313 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-313 (Dubnium, atomic number Z = 105, mass number A = 313).

  14. Atomic Mass and Nuclear Binding Energy for Db-309 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-309 (Dubnium, atomic number Z = 105, mass number A = 309).

  15. Atomic Mass and Nuclear Binding Energy for Db-281 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-281 (Dubnium, atomic number Z = 105, mass number A = 281).

  16. Atomic Mass and Nuclear Binding Energy for Db-276 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-276 (Dubnium, atomic number Z = 105, mass number A = 276).

  17. Atomic Mass and Nuclear Binding Energy for Db-282 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-282 (Dubnium, atomic number Z = 105, mass number A = 282).

  18. Atomic Mass and Nuclear Binding Energy for Db-340 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-340 (Dubnium, atomic number Z = 105, mass number A = 340).

  19. Atomic Mass and Nuclear Binding Energy for Db-329 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-329 (Dubnium, atomic number Z = 105, mass number A = 329).

  20. Atomic Mass and Nuclear Binding Energy for Db-286 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-286 (Dubnium, atomic number Z = 105, mass number A = 286).

  1. Atomic Mass and Nuclear Binding Energy for Db-300 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-300 (Dubnium, atomic number Z = 105, mass number A = 300).

  2. Atomic Mass and Nuclear Binding Energy for Db-346 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-346 (Dubnium, atomic number Z = 105, mass number A = 346).

  3. Atomic Mass and Nuclear Binding Energy for Db-291 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-291 (Dubnium, atomic number Z = 105, mass number A = 291).

  4. Atomic Mass and Nuclear Binding Energy for Db-278 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-278 (Dubnium, atomic number Z = 105, mass number A = 278).

  5. Atomic Mass and Nuclear Binding Energy for Db-328 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-328 (Dubnium, atomic number Z = 105, mass number A = 328).

  6. Atomic Mass and Nuclear Binding Energy for Db-280 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-280 (Dubnium, atomic number Z = 105, mass number A = 280).

  7. Atomic Mass and Nuclear Binding Energy for Db-345 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-345 (Dubnium, atomic number Z = 105, mass number A = 345).

  8. Atomic Mass and Nuclear Binding Energy for Db-350 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-350 (Dubnium, atomic number Z = 105, mass number A = 350).

  9. Atomic Mass and Nuclear Binding Energy for Db-289 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-289 (Dubnium, atomic number Z = 105, mass number A = 289).

  10. Atomic Mass and Nuclear Binding Energy for Db-290 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-290 (Dubnium, atomic number Z = 105, mass number A = 290).

  11. Atomic Mass and Nuclear Binding Energy for Db-266 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-266 (Dubnium, atomic number Z = 105, mass number A = 266).

  12. Atomic Mass and Nuclear Binding Energy for Db-330 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-330 (Dubnium, atomic number Z = 105, mass number A = 330).

  13. Atomic Mass and Nuclear Binding Energy for Db-271 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-271 (Dubnium, atomic number Z = 105, mass number A = 271).

  14. Atomic Mass and Nuclear Binding Energy for Db-321 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-321 (Dubnium, atomic number Z = 105, mass number A = 321).

  15. Atomic Mass and Nuclear Binding Energy for Db-347 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-347 (Dubnium, atomic number Z = 105, mass number A = 347).

  16. Atomic Mass and Nuclear Binding Energy for Db-267 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-267 (Dubnium, atomic number Z = 105, mass number A = 267).

  17. Atomic Mass and Nuclear Binding Energy for Db-327 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-327 (Dubnium, atomic number Z = 105, mass number A = 327).

  18. Atomic Mass and Nuclear Binding Energy for Db-297 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-297 (Dubnium, atomic number Z = 105, mass number A = 297).

  19. Atomic Mass and Nuclear Binding Energy for Db-262 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-262 (Dubnium, atomic number Z = 105, mass number A = 262).

  20. Atomic Mass and Nuclear Binding Energy for Db-322 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-322 (Dubnium, atomic number Z = 105, mass number A = 322).

  1. Atomic Mass and Nuclear Binding Energy for Db-268 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-268 (Dubnium, atomic number Z = 105, mass number A = 268).

  2. Atomic Mass and Nuclear Binding Energy for Db-305 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-305 (Dubnium, atomic number Z = 105, mass number A = 305).

  3. Atomic Mass and Nuclear Binding Energy for Db-312 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-312 (Dubnium, atomic number Z = 105, mass number A = 312).

  4. Atomic Mass and Nuclear Binding Energy for Db-341 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-341 (Dubnium, atomic number Z = 105, mass number A = 341).

  5. Atomic Mass and Nuclear Binding Energy for Db-263 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-263 (Dubnium, atomic number Z = 105, mass number A = 263).

  6. Atomic Mass and Nuclear Binding Energy for Db-299 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-299 (Dubnium, atomic number Z = 105, mass number A = 299).

  7. Atomic Mass and Nuclear Binding Energy for Db-284 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-284 (Dubnium, atomic number Z = 105, mass number A = 284).

  8. Atomic Mass and Nuclear Binding Energy for Db-325 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-325 (Dubnium, atomic number Z = 105, mass number A = 325).

  9. Atomic Mass and Nuclear Binding Energy for Db-288 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-288 (Dubnium, atomic number Z = 105, mass number A = 288).

  10. Atomic Mass and Nuclear Binding Energy for Db-316 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-316 (Dubnium, atomic number Z = 105, mass number A = 316).

  11. Atomic Mass and Nuclear Binding Energy for Db-269 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-269 (Dubnium, atomic number Z = 105, mass number A = 269).

  12. Atomic Mass and Nuclear Binding Energy for Db-351 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-351 (Dubnium, atomic number Z = 105, mass number A = 351).

  13. Atomic Mass and Nuclear Binding Energy for Db-295 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-295 (Dubnium, atomic number Z = 105, mass number A = 295).

  14. Atomic Mass and Nuclear Binding Energy for Db-264 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-264 (Dubnium, atomic number Z = 105, mass number A = 264).

  15. Atomic Mass and Nuclear Binding Energy for Db-306 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-306 (Dubnium, atomic number Z = 105, mass number A = 306).

  16. Atomic Mass and Nuclear Binding Energy for Db-310 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-310 (Dubnium, atomic number Z = 105, mass number A = 310).

  17. Atomic Mass and Nuclear Binding Energy for Db-272 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-272 (Dubnium, atomic number Z = 105, mass number A = 272).

  18. Atomic Mass and Nuclear Binding Energy for Db-279 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-279 (Dubnium, atomic number Z = 105, mass number A = 279).

  19. Atomic Mass and Nuclear Binding Energy for Db-301 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-301 (Dubnium, atomic number Z = 105, mass number A = 301).

  20. Atomic Mass and Nuclear Binding Energy for Db-277 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-277 (Dubnium, atomic number Z = 105, mass number A = 277).